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Abstract.

There are heuristic arguments proposing that
the accuracy of monitoring position of a free
mass m is limited by the standard quantum
limit (SQL) ([0],[0]):σ2(X(t)) ≥ σ2(X(0)) +
(t2/m2)σ2(P (0)) ≥ ~t/m, where σ2(X(t)) and
σ2(P (t)) denote variances of the Heisenberg
representation position and momentum op-
erators. Yuen [0] discovered that there are
contractive states for which this result is in-
correct. Here I prove universally valid rigor-
ous quantum limits (RQL) viz. rigorous up-
per and lower bounds on σ2(X(t)) in terms



of σ2(X(0)) and σ2(P (0)) for a free mass,

and for an oscillator : these may be called

dynamical uncertainty relations. I also ob-

tain the ‘maximally contractive’ and ‘maxi-

mally expanding’ states which saturate the

RQL, and use the contractive states to set

up an Ozawa-type [0] measurement theory

with accuracies respecting the RQL but beat-

ing the standard quantum limit. The Con-

tractive states for oscillators improve on the

Schrödinger coherent states of constant vari-

ance and may be useful for gravitational wave

detection and optical communication.



Introduction. A quantum system is pre-

pared, for example by a measurement, in an

initial state . Subsequent monitoring or mea-

surements of an observable A may be use-

ful to detect any external disturbances addi-

tional to the intrinsic change in the uncer-

tainty of the observable due to the system

evolving by its own Hamiltonian.Much before

the actual discovery of gravitational waves

[0] it was realised that accurate monitoring

of position of an oscillator and of a free mass,

including quantum effects are important for

gravitational wave interferometers [0].



For an arbitrary initial state of a free mass

or an oscillator , I shall obtain rigorous quan-

tum limits (RQL) on the intrinsic uncertainty

after time t.

For any observable with Schrödinger opera-

tor A (e.g. position A = X or momentum

A = P ), and any Hamiltonian H, the Heisen-

berg operator A(t) at time t and its variance



σ2(A(t)) are defined by,

A(t) ≡ exp(iHt/~)A exp(−iHt/~), (1)

σ2(A(t)) ≡< ψ(0)|(∆A(t))2|ψ(0) >,(2)

∆A(t) ≡ A(t)− < A(t) >, (3)

< A(t) >≡< ψ(0)|A(t)|ψ(0) > (4)

where |ψ(0) > is the initial state.

Heuristic Standard Quantum Limit on Mon-

itoring Position of a Free Mass . There

are heuristic arguments proposing that the

accuracy of position monitoring is limited by



the standard quantum limit (SQL) ([0],[0])

on the variance of the position operator X(t)

:

σ2(X(t)) ≥ σ2(X(0)) + (t2/m2)σ2(P (0))(5)

≥ 2(t/m)σ(X(0))σ(P (0)) ≥ ~t/m, (6)

For the free mass , H = P2/(2m). the in-

equality (5) is actually an equality for Gaus-

sian states,



< p|ψ(t) >= (πα)−1/4exp[−
(p− β)2

2α
− it

p2

2m
],

σ2(P (t)) =
α

2
, σ2(X(t)) = ~21 + (αt/(m~))2

2α
.(7)

< x||ψ(t) >=
(α/π)1/4√

1 + itα/(m~)
exp(f),

f = −
α

2~2
(
1 + t2(α/(m~))2

) ×
[
(x−

βt

m
)2 − it

α

m~
(x2 − (~β/α)2)− 2i~βx/α

]
(8)



A small position uncertainty at t = 0 (i.e.

large α) forces a rapid expansion of the wave

packet size with time. This was the basis of

Einstein questioning the standard interpre-

tation of quantum mechanics at the 1927

Solvay conference.



At the 1927 Solvay conference Einstein dis-
cussed the example of a particle passing through



a narrow hole on to a hemispherical fluores-

cent screen which records the arrival of the

particle.





Suppose that a scintillation is seen at a point

P at time t = T , and suppose that the hole is

so narrow that the wave packet correspond-

ing to the particle is uniformly spread all over

the screen at t slightly less than T . Was the

particle somewhere near P at t = T − ε (ε

small)? Ordinary quantum mechanics says

that the probabilities at t = T −ε for the par-

ticle being anywhere on the screen are uni-

form (and not particularly large in the vicinity

of P ). Thus the naive history corresponding

to the idea of a particle with a trajectory

(any trajectory) is denied.



The SQL tries to argue that this problem

is generic, not limited to the Gaussian wave

packet.

One heuristic argument for the SQL ([0],[0])

Eq. (5) starts from H = P2/(2m),∆X(t) =

∆X(0) + (t/m)∆P (0),

σ2(X(t)) = σ2(X(0)) + (t2/m2)σ2(P (0)) +

(t/m) < ψ(0)|∆X(0)∆P (0) + ∆P (0)∆X(0)|ψ(0) > .(9)

One obtains the SQL if one assumes that

the third term on the right-hand side is non-

negative.



In a seminal paper, Yuen [0] noted that there

are contractive states for which this assump-

tion is incorrect. In an interesting and cor-

rect argument for the SQL, valid in certain

measurement models, Caves [0] noted that

in some models, resolution of the meter ≥
σ(X(0)) may entail that the variance of the

position measurement at time t is ≥ σ2(X(0))+

σ2(X(t)) which is ≥ ~t/m by the uncertainty

principle. Yuen [0] and Ozawa [0] (see also

[0]), point out the existence of other mea-

surement models for which the imperfect res-

olution correction can be much smaller than



σ2(X(0)). I address myself first to find-

ing a rigorous version of the heuristic SQL

Eq. ( 5) on σ2(X(t)) and optimum con-

tractive states. I then briefly discuss how

the Ozawa[0] measurement model and the

contractive states may be used for repeated

measurements on oscillators or free masses

over finite times , respecting of course the

rigorous quantum limits (RQL) presented here,

but beating the SQL .

Rigorous Quantum Limit on Monitoring

Position of a Free Mass . We start from



Eq. (9) and find exact limits on the third

term on the right-hand side. Using

[∆X(0),∆P (0)] = i~, (10)

we have,

< ψ(0)|∆X(0)∆P (0) + ∆P (0)∆X(0)|ψ(0) > +i~
= 2 < ψ(0)|∆X(0)∆P (0)|ψ(0) > . (11)

Cauchy-Schwarz inequality on the right-hand

side yields,(
< ψ(0)|∆X(0)∆P (0) + ∆P (0)∆X(0)|ψ(0) >

)2

≤ 4σ2(X(0))σ2(P (0))− ~2, (12)



which is a rearrangement of the usual uncer-

tainty relation on the product of variances of

X and P [0].

Substituting this into Eq. (9) I have the

rigorous quantum limits (RQL),

σ2(X(0)) + (t/m)2σ2(P (0))

−(t/m)
√

4σ2(X(0))σ2(P (0))− ~2

≤ σ2(X(t))

≤ σ2(X(0)) + (t/m)2σ2(P (0))

+(t/m)
√

4σ2(X(0))σ2(P (0))− ~2.(13)



It must be stressed that the bounds are

fundamental quantum limits valid for ar-

bitrary states. The only states saturat-
ing the inequalities are those for which the
Schwarz inequalities are equalities, i.e. ∆P (0)|ψ(0) >
is a complex constant times ∆X(0)|ψ(0).
Hence the RQL ,Eq. (13) are equalities if
and only if,

∆P (0)|ψ(0) >= iλ∆X(0)|ψ(0) >, (14)

< X ′|ψ(0) >=
(Reλ
π~

)1/4

×exp
(i < P (0) > X ′

~
−
λ(X ′− < X(0) >)2

2~

)
,(15)



with Reλ > 0,

|Imλ| =
1

2σ2(X(0))

√
4σ2(X(0))σ2(P (0))− ~2,

σ2(X(0)) = ~/(2Reλ), σ2(P (0)) = ~|λ|2/(2Reλ),(16)

and,

< ψ(0)|∆X(0)∆P (0) + ∆P (0)∆X(0)|ψ(0) >

= ∓
√

4σ2(X(0))σ2(P (0))− ~2, if Imλ = ±|Imλ|(17)

The positive and negative signs of Imλ cor-
respond respectively to saturation of the left-
hand side and right-hand side of the inequality(13).



The right-hand side of inequality (13) sets

an upper limit on spreading of the position

wave packet and the left-hand side to the

amount of contraction possible. The states

(15) with positive Imλ derived without any

reference to oscillators turn out to be es-

sentially Yuen’s contractive Twisted Coher-

ent States (TCS) [0] of an associated ficti-

tious oscillator. Thus,the above demonstra-

tion shows that for given σ(X(0)), σ(P (0)),

the (TCS) are the optimum contractive states.

It is useful to rewrite the left-hand side of



the inequality (13) in two alternative forms:

σ2(X(t)) ≥
( ~

2σ(P (0))

)2
+
(σ(P (0))

m

)2
(t−

1

2
tM)2(18)

=
t

m

(
2σ(X(0))σ(P (0))−

√
4σ2(X(0))σ2(P (0))− ~2

)
+
(
t
σ(P (0))

m
− σ(X(0)

)2
, (19)

where ,

tM =
m

σ2(P (0))

√
4σ2(X(0))σ2(P (0))− ~2.

(20)

Eq.(18) shows that the optimal state (15)

with positive Imλ remains contractive upto



time tM/2, and the variance σ2(X(t)) is less

than the initial variance σ2(X(0)) for time

t < tM , i.e.

σ2(X(t)) ≤ σ2(X(0)), for t ≤ tM , (21)

for the optimum contractive state. Eq.(19)

shows that for a given uncertainty product,

by choosing (t/m)σ2(P (0)) = σ(X(0))σ(P (0)),

σ2(X(t)) can be made as small as

(t/m)
(
2(σ(X(0))σ(P (0))−

√
4σ2(X(0))σ2(P (0))− ~2

)
;

this is ≈ t~2/(4mσ(X(0))σ(P (0))) for a large

uncertainty product, and can be much smaller



than the heuristic standard quantum limit
~t/m .

Rigorous Quantum Limits on Monitoring
Position or Momentum of a Harmonic
Oscillator . This problem is specially
significant because Hamiltonians for all free
Bosonic fields , including the electromag-
netic field , are sums of Harmonic oscillator
Hamiltonians. In particular, the limits I de-
rive can be immediately translated into rigor-
ous quantum limits (RQL) on time develop-
ment of quadratures of the electromagnetic
field.



The Hamiltonian H = P2/(2m) + 1
2mω

2X2

can be rewritten as,

H =
1

2
~ω(p2 + x2) = ~ω(a†a+ 1/2), (22)

where,

p =
P√
m~ω

, x =
√
mω

~
X,

a =
x+ ip√

2
, a† =

x− ip√
2
. (23)

The Heisenberg equations of motion yield,

∆x(t) = cos(ωt) ∆x(0) + sin(ωt) ∆p(0)

∆p(t) = − sin(ωt) ∆x(0) + cos(ωt) ∆p(0).



Hence,

σ2(x(t)) = cos2(ωt)σ2(x(0)) + sin2(ωt)σ2(p(0))

+
1

2
sin(2ωt) < ψ(0)|∆x(0)∆p(0) + ∆p(0)∆x(0)|ψ(0) >,

σ2(p(t)) = sin2(ωt)σ2(x(0)) + cos2(ωt)σ2(p(0))

−
1

2
sin(2ωt) < ψ(0)|∆x(0)∆p(0) + ∆p(0)∆x(0)|ψ(0) > .

As before, using [∆x(0),∆p(0)] = i, and

Schwarz inequality, we obtain,



(
< ψ(0)|∆x(0)∆p(0) + ∆p(0)∆x(0)|ψ(0) >

)2

≤ 4σ2(x(0))σ2(p(0))− 1. (24)

Hence, we have the RQL for the oscillator in

terms of the dimensionless variables x and p

which can be the quadratures for a mode of



frequency ω of the electromagnetic field,(
cos2(ωt)σ2(x(0)) + sin2(ωt)σ2(p(0))

)
−

1

2
| sin(2ωt)|

√
4σ2(x(0))σ2(p(0))− 1

≤ σ2(x(t))

≤
(

cos2(ωt)σ2(x(0)) + sin2(ωt)σ2(p(0))
)

+
1

2
| sin(2ωt)|

√
4σ2(x(0))σ2(p(0))− 1(25)

which corresponds to Eqn.(13 ) for a free

mass. We also have RQL for σ2(p(t)) for

the oscillator,



(
sin2(ωt)σ2(x(0)) + cos2(ωt)σ2(p(0))

)
−

1

2
| sin(2ωt)|

√
4σ2(x(0))σ2(p(0))− 1

≤ σ2(p(t))

≤
(

sin2(ωt)σ2(x(0)) + cos2(ωt)σ2(p(0))
)

+
1

2
| sin(2ωt)|

√
4σ2(x(0))σ2(p(0))− 1.(26)

The extremal states saturating these RQL

may be written in terms of the dimensionless

variables x, p for use in optical quadrature



measurements,(
∆p(0)− iη±∆x(0)

)
|ψ(0)± >= 0 (27)

< x′|ψ(0)± >=
(Re η±

π

)1/4

× exp
(
i < p(0) > x′)−

η±(x′− < x(0) >)2

2

)
,(28)

with

η± =
1

2σ2(x(0))
[1±i

√
4σ2(x(0))σ2(p(0))− 1].

(29)

The values η = η± yield the values σ2(x(t))±
and σ2(p(t))±,



σ2(x(t))± − cos2(ωt)σ2(x(0))− sin2(ωt)σ2(p(0))

= ∓
1

2
sin(2ωt)

√
4σ2(x(0))σ2(p(0))− 1,(30)

and

σ2(p(t))± − sin2(ωt)σ2(x(0))− cos2(ωt)σ2(p(0))

= ±
1

2
sin(2ωt)

√
4σ2(x(0))σ2(p(0))− 1.(31)

We deduce ,for example, that for the initial

state |ψ(0)+ >,

σ2(x(t))+ ≤ σ2(x(0)), if 0 ≤ ωt ≤ ωt′M , (32)



where,

ωt′M ≡ tan−1[

√
4σ2(x(0))σ2(p(0))− 1

σ2(p(0))− σ2(x(0))
] < π ,

(33)

which corresponds to Eq. (20) in the free

mass case.

Upto time t′M , the contractive states for the

oscillator thus improve on the Schrödinger

coherent states which have constant σ2(x(t)).

Analogous results are easily obtained for (σ2(p(t)))−
for the initial state |ψ(0)− >.



It is easy to rewrite the bounds (25),(26) and
extremal states (27) in dimensionless vari-
ables in terms of the dimensional X and P
for the oscillator. Thus we have, the RQL
for the oscillator,

cos2(ωt)σ2(X(0)) +
sin2(ωt)

m2ω2
σ2(P (0))

−
| sin(2ωt)|

2mω

√
4σ2(X(0))σ2(P (0))− ~2

≤ σ2(X(t))

≤ cos2(ωt)σ2(X(0)) +
sin2(ωt)

m2ω2
σ2(P (0))

+
| sin(2ωt)|

2mω

√
4σ2(X(0))σ2(P (0))− ~2.(34)



which shows that in the limit ω → 0 the RQL

for the oscillator ( 34 ) yields the RQL for a

free mass ,Eq. (13).

Connection of extremal oscillator states

with squeezed coherent states. The ex-

tremal oscillator states have a close connec-

tion with squeezed coherent states with ar-

bitrary squeezing direction. There are many

applications of such optical states in quan-

tum optics [0] and optomechanics.In particu-

lar there has been progress in preparing a me-

chanical oscillator in non-Gaussian quantum



states [0] by transfering such states from op-
tical fields onto the oscillator. Squeezed co-
herent states have already been utilised in
precision measurements needed in gravita-
tional interferometers [0].

Using the definitons,

a =
x+ ip√

2
, α =< ψ(0)|a|ψ(0) >, (35)

the extremal oscillator eigen value equation
(27) is equivalent to ,

(b− β)|ψ(0) >= 0, with b = µa+ νa†, β = µα+ να∗,
ν/µ = (η − 1)/(η + 1), η = (µ+ ν)/(µ− ν), (36)



where we have suppressed the sub-scripts ±
on |ψ(0) >, η, µ and ν for simplicity. Given η,

only the ratio ν/µ is fixed; so we can make

the convenient choice,

|µ|2−|ν|2 = 1, µ > 0, i.e.µ = cosh r, ν = eiθ sinh r,

(37)

with r > 0, θreal ,in order to make the trans-

formation from a, a† to b, b† canonical, i.e.

[b, b†] = 1.. Eqn. (36 ) is then just a twisted



coherent state eigen value equation.The uni-
tary displacement operator D and squeeze
operator S ,

D(β, b) = D(α, a) = exp (αa† − α∗a),

S(ξ) = exp
1

2

(
ξ∗a2 − ξa†2

)
, ξ ≡ r exp (iθ),(38)

obey ,

D†(β, b)bD(β, b) = b+ β,

S†(ξ)aS(ξ) = a cosh r − a†eiθ sinh r .(39)

Defining a|0 >= 0 we have ,

(b− β)|α, ξ >= 0, |α, ξ >≡ D(α, a)S(ξ)|0 >,(40)

i.e. |ψ(0) >= |α, r exp (iθ) > . (41)



Thus the extremal states |ψ(0) > are sim-

ply related to the squeezed coherent states.

Since ,

η =
1 + i sin θ sinh (2r)

cosh (2r)− cos θ sinh (2r)
, (42)

sin θ > 0 and sin θ < 0 correspond respec-

tively to |ψ(0) >+ and |ψ(0) >−. The Heisen-

berg equations of motion give a(t) = a exp (−iωt),

and hence the time dependent states are,

exp (−iHt)|ψ(0) >= e−iωt/2|αe−iωt, rei(θ−2ωt) > .

(43)



Position Measurements On Free Masses

and Harmonic Oscillators Using Contrac-

tive States. The RQL given above only

consider unitary evolution with the system

Hamiltonian. Caves [0] noted insightfully

that additional considerations involving system-

meter interactions during measurement are

necessary, and sometimes important. The

von Neumann model [0] is a prototype of

quantum measurement models which couple

the system to a meter, and monitor the me-

ter position y to obtain information about

the system position x. Caves considered a



class of models (which include the von Neu-

mann model), in which , at any time τ , σ2(y(τ)) =

σ2(x(τ)) + σ2
R, where σR is the meter reso-

lution. He showed that for measurements at

t = 0 and t = τ using identical meter states,

the assumption σR ≥ σ(x(0)), where σ(x(0))

is the position uncertainty just after the first

measurement would again imply the heuris-

tic SQL σ2(X(τ)) ≥ ~τ/m. The SQL also

applies to extensions of the Caves [0] model

to continuous measurements by Caves and

Milburn, and others [0].



In order to exploit the new possibilities al-

lowed by the contractive states which vio-

late the SQL (but obey the RQL), I out-

line below the use of the Ozawa interaction

Hamiltonian [0] ,

H = k[2xpy−2pxy+(xpx+pxx−ypy−pyy)/2],

(44)

where x, px are position and momentum op-

erators for the system, and y, py those for

the meter. The important properties of this

interaction are that ,for a carefully chosen

interaction time, after the measurement, (i)



the meter uncertainty does not contain the
additional uncertainty σR mentioned above
,and (ii) the contractive state of the meter
is transferred to the system.

Suppose N measurements, each of time du-
ration τ are made over time intervals

tε[0, τ ], [T, T+τ ], [2T,2T+τ ], ...[(N−1)T, (N−1)T+τ ]

by N meters, each identically prepared at the
beginning of the respective measurement in



the same contractive state given by Eq.( 28

)

< y′|χ >=
(Re η+

π

)1/4
exp

(
−
η+y

′2

2

)
, (45)

where we have chosen < y(0) >=< py(0) >=

0 for simplicity, and

η+ =
1

2σ2(y(0))
[1+i

√
4σ2(y(0))σ2(py(0))− 1].

(46)

The meter may for example be an oscilla-

tor of frequency Ω with Ω 6= ω where ω is

the frequency of the system oscillator. The



coupling strength k is assumed large enough

and the time interval τ small enough for the

free Hamiltonians of the system and meter

to be negligible during these measurement

periods.

During each of N − 1 time intervals of dura-

tion T−τ between successive measurements,

tε [τ, T ], [T + τ,2T ], ...[(N − 1)T + τ,NT ]

,



the measurement interaction is switched off

and the system (free mass or harmonic oscil-

lator) evolves unitarily according to its free

Hamiltonian. At the beginning of each mea-

surement period, (e.g. t = 0, T,2T, ..), i.e.

t = ti = (i− 1)T, i = 1,2, ..N , the joint wave

function of the system and meter is ,

< x′, y′|Ψ(ti) >=< x′|ψ(ti) >< y′|χ >, (47)

where we have suppressed a sub-script i re-

ferring to the i−th meter. Solving the Heisen-

berg equation of motion using the Ozawa



interaction, we get the operators after time
τ ,

x(ti + τ) =
2√
3

[
sin (kτ

√
3 +

π

3
)x(ti)− sin (kτ

√
3)y(ti)

]
y(ti + τ) =

2√
3

[
sin (kτ

√
3)x(ti) + sin (

π

3
− kτ

√
3)y(ti)

]
,

and the corresponding wave function

< x′, y′|Ψ(ti + τ) >=

<
2√
3

[
sin (kτ

√
3)y′+ sin (

π

3
− kτ

√
3)x′

]
|ψ(ti) > ×

<
2√
3

[
sin (kτ

√
3 +

π

3
)y′ − sin (kτ

√
3)x′

]
|χ > .(48)

If we choose the product of the strength and



duration of the interaction such that

kτ = π/(3
√

3). (49)

we get the simple operators and wave func-
tions,

x(ti + τ) = x(ti)− y(ti); y(ti + τ) = x(ti),(50)

< x′, y′|Ψ(ti + τ) >=< y′|ψ(ti) >< y′ − x′|χ > .(51)

Hence observation of the meter after the
measurement will return the correct expec-
tation value for the system before the mea-
surement,

< Ψ(ti)|y(ti + τ)− x(ti)|Ψ(ti) >= 0, (52)



and the predicted probability density P (y′)
for the meter,

P (y′)(ti + τ) =
∫
dx′| < x′, y′|Ψ(ti + τ) > |2

= | < y′|ψ(ti) > |2, (53)

which is identical to the system position prob-

ability density just before measurement. Hence,

σ2(y(ti + τ)) = σ2(x(ti)), (54)

without any extra error σR corresponding

to meter resolution. Further, after a meter



reading y′,the system is left in the state

< x′|ψ(ti + τ) >=< y′ − x′|χ >
[< y′|ψ(ti) >

| < y′|ψ(ti)|

]
,

(55)

which, apart from the phase factor in the

square bracket on the right-hand side, is just

the contractive state in which the meter was

prepared, but with < x >= y′. Using this

result and our previous results in Eqs. (20,33

), it follows that the choice

T − τ = t′M for oscillator;

T − τ = tM , for free mass, (56)



will ensure that the system state has posi-

tion uncertainty less than the initial meter

uncertainty for NT > t > τ . To justify

neglecting the free Hamiltonians during the

measurement interval τ we need Ωτ << 1 for

the meter and ωτ << 1 if the system is an

oscillator, σ(P (0))/σ(X(0))τ/m << 1 if the

system is a free mass; we need the error in

the condition kτ = π/(3
√

3) to be negligible,

i.e.the error kδτ << 1. Hence we have the

following necessary conditions on the sensi-

tivity of the time setting δτ and the strength



k of the measurement interaction:

δτ <<
1

k
= τ

3
√

3

π
<< min[

1

Ω
,

1

ω
], (57)

for measurements on the oscillator ; for the

case of the free mass 1/ω → mσ(X(0)/σ(P (0))

on the right-hand side of the above equation.

Conclusion. I have obtained rigorous quan-

tum limits on the variance σ2(X(t)) in terms

of σ2(X(0)) and σ2(P (0)) for arbitrary quan-

tum states of a free mass and of a har-

monic oscillator. I also obtained the states



which achieve saturation of the limits and

their connection with squeezed coherent states

of an oscillator with arbitrary squeezing di-

rection. In order to utilise the contractive

states to obtain accuracies beyond the SQL ,

I have outlined measurement models over fi-

nite non-zero time intervals for free mass po-

sition and oscillator position using the Ozawa

Hamiltonian [0] for system-meter interaction.Between

measurements the system evolves according

to the free Hamiltonian. In the oscillator

case the extremal contractive state improves

on the Schrödinger coherent states for a well



defined time interval, and the free evolution

period is adjusted to be equal to that inter-

val.I also briefly discuss the experimental sen-

sitivities needed to justify the assumptions

on the parameters of the model.
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