An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

An almost convincing scheme for discriminating the preparation basis of quantum ensemble and why it will not work

Sandeep K. Goyal

IISER Mohali
Feb 02, 2018

Quantum states

An almost
convincing
scheme for
discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

Quantum states

An almost
convincing
scheme for
discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

Quantum states

An almost
convincing
scheme for
discriminating
the
preparation
basis of
quantum
ensemble and
why it will not
work
Sandeep
K. Goyal

$$
|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle
$$

Quantum states

An almost
convincing
scheme for
discriminating
the
preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
\begin{gathered}
|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle \\
\rho=|\psi\rangle\langle\psi|
\end{gathered}
$$

Quantum states

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
\begin{gathered}
|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle \\
\rho=|\psi\rangle\langle\psi| \\
\rho=\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|, \quad \sum_{n} p_{n}=1, \quad p_{n} \geq 0
\end{gathered}
$$

Quantum states

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
\begin{gathered}
|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle \\
\rho=|\psi\rangle\langle\psi| \\
\rho=\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|, \quad \sum_{n} p_{n}=1, \quad p_{n} \geq 0 \\
\rho=\rho^{\dagger}
\end{gathered}
$$

Quantum states

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
\begin{gathered}
|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle \\
\rho=|\psi\rangle\langle\psi| \\
\rho=\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|, \quad \sum_{n} p_{n}=1, \quad p_{n} \geq 0 \\
\rho=\rho^{\dagger} \\
\rho \geq 0
\end{gathered}
$$

Quantum states

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
\begin{gathered}
|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle \\
\rho=|\psi\rangle\langle\psi| \\
\rho=\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|, \quad \sum_{n} p_{n}=1, \quad p_{n} \geq 0 \\
\rho=\rho^{\dagger} \\
\rho \geq 0 \\
\operatorname{tr} \rho=1
\end{gathered}
$$

Density operators

An almost
convincing
scheme for
discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K．Goyal

Density operators

An almost
convincing
scheme for
discriminating
the
preparation
basis of
quantum
ensemble and
why it will not
work
Sandeep
K. Goyal

$$
\rho=\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|
$$

Density operators

An almost
convincing
scheme for
discriminating
the
preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
\begin{aligned}
& \rho=\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| \\
& \rho=\sum_{m} q_{m}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|
\end{aligned}
$$

Density operators

An almost
convincing
scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

$$
\begin{gathered}
\rho=\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| \\
\rho=\sum_{m} q_{m}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right| \\
\sqrt{p_{n}}\left|\psi_{n}\right\rangle=\sum_{m} W_{n m} \sqrt{q_{m}}\left|\phi_{m}\right\rangle
\end{gathered}
$$

Density operators

An almost
convincing
scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

$$
\begin{gathered}
\rho=\sum_{n} p_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| \\
\rho=\sum_{m} q_{m}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right| \\
\sqrt{p_{n}}\left|\psi_{n}\right\rangle=\sum_{m} W_{n m} \sqrt{q_{m}}\left|\phi_{m}\right\rangle
\end{gathered}
$$

$\sum_{n} W_{n m} W_{n m^{\prime}}^{*}=\delta_{m m^{\prime}} \equiv W^{\dagger} W=\mathbb{1}$

Quantum Measurement

An almost
convincing
scheme for
discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K．Goyal

Quantum Measurement

An almost
convincing
scheme for
discriminating
the
preparation
basis of
quantum
ensemble and
why it will not
work
Sandeep
K. Goyal

- Consider the state $|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle$

Quantum Measurement

- Consider the state $|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle$
- Upon measurement in basis $\{|\uparrow\rangle,|\downarrow\rangle\}$, the state will collapse to $|\uparrow\rangle$ with probability $|\alpha|^{2}$ and to state $|\downarrow\rangle$ with probability $|\beta|^{2}$.

Quantum Measurement

An almost
convincing
scheme for discriminating the
preparation
basis of
quantum ensemble and why it will not work

Sandeep
K. Goyal

- Consider the state $|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle$
- Upon measurement in basis $\{|\uparrow\rangle,|\downarrow\rangle\}$, the state will collapse to $|\uparrow\rangle$ with probability $|\alpha|^{2}$ and to state $|\downarrow\rangle$ with probability $|\beta|^{2}$.
- After the measurement the quantum system lose all the information about the state $|\psi\rangle$.

Unsharp measurements

basis of
quantum ensemble and why it will not work

Sandeep K. Goyal

- A more general measurement approach is to make an ancillary system interact with the quantum system under observation and perform measurement on the ancillary system afterward

Unsharp measurements

An almost
convincing
scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

- A more general measurement approach is to make an ancillary system interact with the quantum system under observation and perform measurement on the ancillary system afterward
- For example, we start with a system in state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ and an ancillary system in state $|0\rangle$.

Unsharp measurements

An almost
convincing
scheme for discriminating the
preparation
basis of
quantum ensemble and why it will not work

Sandeep K. Goyal

- A more general measurement approach is to make an ancillary system interact with the quantum system under observation and perform measurement on the ancillary system afterward
- For example, we start with a system in state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ and an ancillary system in state $|0\rangle$.
- The joint state of the system and ancilla is $|\psi\rangle|0\rangle$.

Unsharp measurements

An almost
convincing
scheme for
discriminating
the
preparation
basis of
quantum
ensemble and
why it will not
work
Sandeep
K. Goyal

If U is the unitary operator that characterize the interaction between the system and ancilla then the state after the interaction reads

Unsharp measurements

An almost
convincing
scheme for discriminating the
preparation
basis of
quantum ensemble and why it will not work

Sandeep K. Goyal

If U is the unitary operator that characterize the interaction between the system and ancilla then the state after the interaction reads

$$
\begin{aligned}
U(|\psi\rangle|0\rangle)= & \left(\sqrt{p_{0}} \alpha|0\rangle+\sqrt{1-p_{0}} \beta|1\rangle\right)|0\rangle \\
& +\left(\sqrt{1-p_{0}} \alpha|0\rangle+\sqrt{p_{0}} \beta|1\rangle\right)|1\rangle .
\end{aligned}
$$

Unsharp measurements

An almost
convincing
scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

Upon measurement the ancillary system will collapse to $\{|0\rangle,|1\rangle\}$ which result in the state of the system

Unsharp measurements

An almost
convincing scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

Upon measurement the ancillary system will collapse to $\{|0\rangle,|1\rangle\}$ which result in the state of the system

$$
\begin{aligned}
& |\psi\rangle_{+}=\sqrt{p_{0}} \alpha|0\rangle+\sqrt{1-p_{0}} \beta|1\rangle \equiv M_{+}|\psi\rangle, \\
& |\psi\rangle_{-}=\sqrt{1-p_{0}} \alpha|0\rangle+\sqrt{p_{0}} \beta|1\rangle \equiv M_{-}|\psi\rangle .
\end{aligned}
$$

Unsharp measurements

An almost
convincing
scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

Upon measurement the ancillary system will collapse to $\{|0\rangle,|1\rangle\}$ which result in the state of the system

$$
\begin{gathered}
|\psi\rangle_{+}=\sqrt{p_{0}} \alpha|0\rangle+\sqrt{1-p_{0}} \beta|1\rangle \equiv M_{+}|\psi\rangle, \\
|\psi\rangle_{-}=\sqrt{1-p_{0}} \alpha|0\rangle+\sqrt{p_{0}} \beta|1\rangle \equiv M_{-}|\psi\rangle . \\
M_{+}=\left(\begin{array}{cc}
\sqrt{p_{0}} & 0 \\
0 & \sqrt{1-p_{0}}
\end{array}\right), \quad M_{-}=\left(\begin{array}{cc}
\sqrt{1-p_{0}} & 0 \\
0 & \sqrt{p_{0}}
\end{array}\right) .
\end{gathered}
$$

Unsharp measurements

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
|\psi\rangle \rightarrow\left\{\begin{array}{l}
M_{+}|\psi\rangle \text { with } p_{+}=\langle\psi| M_{+}^{\dagger} M_{+}|\psi\rangle \\
M_{-}|\psi\rangle \text { with } p_{-}=\langle\psi| M_{-}^{\dagger} M_{-}|\psi\rangle
\end{array}\right.
$$

Unsharp measurements

An almost
convincing
scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

$$
|\psi\rangle \rightarrow\left\{\begin{array}{l}
M_{+}|\psi\rangle \text { with } p_{+}=\langle\psi| M_{+}^{\dagger} M_{+}|\psi\rangle \\
M_{-}|\psi\rangle \text { with } p_{-}=\langle\psi| M_{-}^{\dagger} M_{-}|\psi\rangle
\end{array}\right.
$$

- Since, $p_{+}+p_{-}=1$ for all the states $|\psi\rangle$ we have $M_{+}^{\dagger} M_{+}+M_{-}^{\dagger} M_{-}=\mathbb{1}$

Unsharp measurements

An almost
convincing
scheme for discriminating the
preparation
basis of
quantum
ensemble and why it will not work

Sandeep

K. Goyal

$$
|\psi\rangle \rightarrow\left\{\begin{array}{l}
M_{+}|\psi\rangle \text { with } p_{+}=\langle\psi| M_{+}^{\dagger} M_{+}|\psi\rangle \\
M_{-}|\psi\rangle \text { with } p_{-}=\langle\psi| M_{-}^{\dagger} M_{-}|\psi\rangle
\end{array}\right.
$$

- Since, $p_{+}+p_{-}=1$ for all the states $|\psi\rangle$ we have $M_{+}^{\dagger} M_{+}+M_{-}^{\dagger} M_{-}=\mathbb{1}$
- The expectation value of the operator σ_{z} is proportional to the probabilities p_{+}and p_{-}, i.e.,

$$
\left\langle\sigma_{z}\right\rangle \propto p_{+}-p_{-}
$$

Unsharp measurements

An almost
convincing scheme for discriminating the preparation basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
M_{+}=\left(\begin{array}{cc}
\sqrt{p_{0}} & 0 \\
0 & \sqrt{1-p_{0}}
\end{array}\right), \quad M_{-}=\left(\begin{array}{cc}
\sqrt{1-p_{0}} & 0 \\
0 & \sqrt{p_{0}}
\end{array}\right)
$$

Unsharp measurements

An almost
convincing scheme for discriminating
the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
M_{+}=\left(\begin{array}{cc}
\sqrt{p_{0}} & 0 \\
0 & \sqrt{1-p_{0}}
\end{array}\right), \quad M_{-}=\left(\begin{array}{cc}
\sqrt{1-p_{0}} & 0 \\
0 & \sqrt{p_{0}}
\end{array}\right)
$$

$$
|\psi\rangle \rightarrow\left\{\begin{array}{l}
M_{+}|\psi\rangle \\
M_{-}|\psi\rangle
\end{array}\right.
$$

Unsharp measurements

An almost
convincing
scheme for discriminating
the
preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

$$
M_{+}=\left(\begin{array}{cc}
\sqrt{p_{0}} & 0 \\
0 & \sqrt{1-p_{0}}
\end{array}\right), \quad M_{-}=\left(\begin{array}{cc}
\sqrt{1-p_{0}} & 0 \\
0 & \sqrt{p_{0}}
\end{array}\right)
$$

$$
|\psi\rangle \rightarrow\left\{\begin{array}{l}
M_{+}|\psi\rangle \\
M_{-}|\psi\rangle
\end{array}\right.
$$

$$
|\psi\rangle \rightarrow\left\{\begin{aligned}
M_{+}|\psi\rangle & \rightarrow\left\{\begin{array} { c }
{ M _ { + } ^ { 2 } | \psi \rangle } \\
{ M _ { - } M _ { + } | \psi \rangle } \\
{ M _ { - } | \psi \rangle }
\end{array} \rightarrow \left\{\begin{array}{c}
M_{+} M_{-}|\psi\rangle \\
M_{-}^{2}|\psi\rangle
\end{array}\right.\right.
\end{aligned}\right.
$$

Unsharp measurements

An almost
convincing
scheme for discriminating
the
preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

$$
|\psi\rangle \rightarrow\left\{\begin{aligned}
M_{+}|\psi\rangle & \rightarrow\left\{\begin{aligned}
M_{+}^{2}|\psi\rangle \\
M_{-} M_{+}|\psi\rangle
\end{aligned}\right. \\
M_{-}|\psi\rangle & \rightarrow\left\{\begin{array}{c}
M_{+} M_{-}|\psi\rangle \\
M_{-}^{2}|\psi\rangle
\end{array}\right.
\end{aligned}\right.
$$

$$
M_{+} M_{-}=M_{-} M_{+}=\sqrt{p_{0}\left(1-p_{0}\right)} \mathbb{1}
$$

$$
\begin{aligned}
& M_{+}=\left(\begin{array}{cc}
\sqrt{p_{0}} & 0 \\
0 & \sqrt{1-p_{0}}
\end{array}\right), \quad M_{-}=\left(\begin{array}{cc}
\sqrt{1-p_{0}} & 0 \\
0 & \sqrt{p_{0}}
\end{array}\right) \\
& |\psi\rangle \rightarrow\left\{\begin{array}{l}
M_{+}|\psi\rangle \\
M_{-}|\psi\rangle
\end{array}\right.
\end{aligned}
$$

Unsharp measurements

An almost
convincing scheme for discriminating
the preparation
basis of
quantum ensemble and why it will not
work
Sandeep
K. Goyal

Unsharp measurements

An almost
convincing scheme for discriminating
the preparation
basis of quantum ensemble and why it will not
work
Sandeep
K. Goyal

$$
p_{\text {rev }}=2 p_{0}\left(1-p_{0}\right)
$$

Unsharp measurements

An almost
convincing scheme for discriminating
the
preparation
basis of
quantum ensemble and why it will not work

Sandeep
K. Goyal

Charlie

Unsharp measurements

An almost
convincing scheme for discriminating
the
preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
N_{+}=\# M_{+}, \quad N_{-}=\# M_{-}, \quad N_{+}+N_{-}=N
$$

Unsharp measurements

An almost
convincing scheme for discriminating
the
preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
N_{+}=\# M_{+}, \quad N_{-}=\# M_{-}, \quad N_{+}+N_{-}=N
$$

$$
n=\left(N_{+}-N_{-}\right) / N
$$

Unsharp measurements

An almost convincing scheme for discriminating the preparation basis of quantum ensemble and why it will not work

Sandeep
K．Goyal

$$
\text { If } N \rightarrow \infty
$$

Unsharp measurements

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
\text { If } N \rightarrow \infty
$$

$$
|\psi\rangle=|0\rangle=\binom{1}{0} \Rightarrow n=1-2 p_{0}
$$

Unsharp measurements

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
\text { If } N \rightarrow \infty
$$

$$
\begin{gathered}
|\psi\rangle=|0\rangle=\binom{1}{0} \Rightarrow n=1-2 p_{0} \\
|\psi\rangle=|1\rangle=\binom{0}{1} \Rightarrow n=-\left(1-2 p_{0}\right)
\end{gathered}
$$

Unsharp measurements

An almost
convincing scheme for discriminating the preparation basis of quantum ensemble and why it will not work

Sandeep K. Goyal

If $N \rightarrow \infty$

$$
\begin{gathered}
|\psi\rangle=|0\rangle=\binom{1}{0} \Rightarrow n=1-2 p_{0} \\
|\psi\rangle=|1\rangle=\binom{0}{1} \Rightarrow n=-\left(1-2 p_{0}\right) \\
|\psi\rangle=| \pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle) \Rightarrow n=0
\end{gathered}
$$

Unsharp measurements

An almost
convincing
scheme for discriminating the
preparation
basis of
quantum
ensemble and why it will not work

Sandeep K. Goyal

If $N \rightarrow \infty$

$$
\begin{gathered}
|\psi\rangle=|0\rangle=\binom{1}{0} \Rightarrow n=1-2 p_{0} \\
|\psi\rangle=|1\rangle=\binom{0}{1} \Rightarrow n=-\left(1-2 p_{0}\right) \\
|\psi\rangle=| \pm\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle) \Rightarrow n=0
\end{gathered}
$$

For finite N the value of n will fall on a Gaussian curve centered around the expected value of n with a width proportional to $1 / \sqrt{N}$

Unsharp measurements

An almost
convincing scheme for discriminating the preparation basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

Estimating preparation basis

An almost
convincing
scheme for
discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

Estimating preparation basis

An almost
convincing
scheme for
discriminating
the preparation
basis of quantum ensemble and why it will not work

$$
\rho=\frac{1}{2} \mathbb{1}_{2}
$$

Sandeep
K. Goyal

Estimating preparation basis

An almost
convincing
scheme for
discriminating
the
preparation
basis of
quantum ensemble and why it will not work

Sandeep
K. Goyal

$$
\begin{gathered}
\rho=\frac{1}{2} \mathbb{1}_{2} \\
\rho=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)
\end{gathered}
$$

Estimating preparation basis

An almost
convincing
scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

$$
\begin{gathered}
\rho=\frac{1}{2} \mathbb{1}_{2} \\
\rho=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|) \\
\rho=\frac{1}{2}(|+\rangle\langle+|+|-\rangle\langle-|)
\end{gathered}
$$

Estimating preparation basis

An almost
convincing scheme for discriminating
the preparation
basis of
quantum ensemble and why it will not
work
Sandeep
K. Goyal

Estimating preparation basis

An almost
convincing scheme for discriminating
the preparation basis of quantum ensemble and why it will not
work
Sandeep
K. Goyal

Superluminal communication

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

A method to estimate the preparation basis can result in superluminal communication.

Superluminal communication

An almost convincing scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

A method to estimate the preparation basis can result in superluminal communication.

- Alice wants to send one bit of information $\{0,1\}$ to Bob without using classical communication

Superluminal communication

An almost
convincing
scheme for discriminating the
preparation
basis of
quantum ensemble and why it will not work

Sandeep K. Goyal

A method to estimate the preparation basis can result in superluminal communication.

- Alice wants to send one bit of information $\{0,1\}$ to Bob without using classical communication
- They have infinite supply of maximally entangled states $|\Phi\rangle$

$$
|\Phi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Superluminal communication

An almost
convincing
scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

A method to estimate the preparation basis can result in superluminal communication.

- Alice wants to send one bit of information $\{0,1\}$ to Bob without using classical communication
- They have infinite supply of maximally entangled states $|\Phi\rangle$

$$
|\Phi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

- If Alice wants to send ' 0 ' to Bob, she performs measurement in the eigenbasis of σ_{z}, i.e., $\{|0\rangle,|1\rangle\}$

Superluminal communication

An almost
convincing scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

A method to estimate the preparation basis can result in superluminal communication.

- Alice wants to send one bit of information $\{0,1\}$ to Bob without using classical communication
- They have infinite supply of maximally entangled states $|\Phi\rangle$

$$
|\Phi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

- If Alice wants to send ' 0 ' to Bob, she performs measurement in the eigenbasis of σ_{z}, i.e., $\{|0\rangle,|1\rangle\}$
- If Alice wants to send ' 1 ' to Bob, she performs measurement in the eigenbasis of σ_{x}, i.e., $\{|+\rangle,|-\rangle\}$

Superluminal communication

basis of quantum ensemble and why it will not work

Sandeep K. Goyal

- As soon as Alice performs measurement the state of the qubits in the Bob's possession acquire the state $\mathbb{1} / 2$ which is either

$$
\rho=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)
$$

Superluminal communication

basis of
quantum ensemble and why it will not
work
Sandeep K. Goyal

- As soon as Alice performs measurement the state of the qubits in the Bob's possession acquire the state $1 / 2$ which is either

$$
\begin{gathered}
\rho=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|) \\
\rho=\frac{1}{2}(|+\rangle\langle+|+|-\rangle\langle-|)
\end{gathered}
$$

Where is the problem?

An almost
convincing
scheme for
discriminating
the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

Where is the problem?

An almost
convincing
scheme for discriminating
the
preparation
basis of
quantum
ensemble and
why it will not
work
Sandeep
K. Goyal

Where is the problem?

An almost
convincing scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

- All the trajectories with N retrievals have the same probability $p_{0}^{N}\left(1-p_{0}\right)^{N}$

Where is the problem?

An almost
convincing
scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

- All the trajectories with N retrievals have the same probability $p_{0}^{N}\left(1-p_{0}\right)^{N}$
- The number of possible trajectories when N_{+}number of + clicks occurs and $N_{-}=N-N_{+}$number of - clicks, is $N!/\left(N_{+}!\left(N-N_{+}\right)!\right)$

Where is the problem?

An almost
convincing
scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

- All the trajectories with N retrievals have the same probability $p_{0}^{N}\left(1-p_{0}\right)^{N}$
- The number of possible trajectories when N_{+}number of + clicks occurs and $N_{-}=N-N_{+}$number of - clicks, is $N!/\left(N_{+}!\left(N-N_{+}\right)!\right)$
- This number is largest when $N_{+}=N_{-}$

Where is the problem?

An almost
convincing scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

- All the trajectories with N retrievals have the same probability $p_{0}^{N}\left(1-p_{0}\right)^{N}$
- The number of possible trajectories when N_{+}number of + clicks occurs and $N_{-}=N-N_{+}$number of - clicks, is $N!/\left(N_{+}!\left(N-N_{+}\right)!\right)$
- This number is largest when $N_{+}=N_{-}$
- Thus, the trajectories which have $N_{+}=N_{-}$dominates the statistics

Where is the problem?

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

The paradox

An almost
convincing
scheme for
discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K．Goyal

The paradox

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep
K. Goyal

- Charlie is tasked with the measurement of a quantum system in an unknown state $|\psi\rangle$

The paradox

An almost convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

- Charlie is tasked with the measurement of a quantum system in an unknown state $|\psi\rangle$
- He is provided with one copy of the state at a time

The paradox

An almost convincing scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

- Charlie is tasked with the measurement of a quantum system in an unknown state $|\psi\rangle$
- He is provided with one copy of the state at a time

The paradox

An almost
convincing scheme for discriminating the
preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal

- Charlie is tasked with the measurement of a quantum system in an unknown state $|\psi\rangle$
- He is provided with one copy of the state at a time

- However, the two ways of preparing the states result in entirely different outcomes

The paradox

An almost
convincing
scheme for
discriminating
the
preparation
basis of
quantum ensemble and why it will not
work
Sandeep
K. Goyal

The paradox is more interesting when Charlie know the state $|\psi\rangle$. In that case he will know the means used to prepare the state just by looking at the statistics.

The paradox

An almost
convincing
scheme for discriminating the
preparation
basis of
quantum ensemble and why it will not
work
Sandeep
K. Goyal

The paradox is more interesting when Charlie know the state $|\psi\rangle$. In that case he will know the means used to prepare the state just by looking at the statistics.

Even though the systems and the states were identical in both the cases.

Reference

An almost
convincing scheme for discriminating the preparation basis of quantum ensemble and why it will not work

Sandeep
K. Goyal
"How measurement reversal could erroneously suggest the capability to discriminate the preparation basis of a quantum ensemble" Sandeep K. Goyal, Rajeev Singh, and Sibasish Ghosh PRA 93012114 (2016)

Reference

An almost
convincing scheme for discriminating the preparation
basis of quantum ensemble and why it will not work

Sandeep K. Goyal
"How measurement reversal could erroneously suggest the capability to discriminate the preparation basis of a quantum ensemble" Sandeep K. Goyal, Rajeev Singh, and Sibasish Ghosh PRA 93012114 (2016)

