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Motivation

Here we make use of ideas of quantum information and open quantum systems to
study aspects of Unruh effect, neutrino oscillations and correlated neutral mesons.

We will talk about the Unruh effect as well as correlated neutral mesons which
are copiously produced at the high energy frontier experiments, for example, the
Large Hadron Collider (LHC) at CERN, from the perspective of open quantum
systems .

Further, we will discuss some aspects of neutrino oscillations from the perspective
of quantum information.
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Unruh Effect as a Quantum Noise Channel: Motivation

Make use of the tools of quantum information theory to shed light on the Unruh
effect. A modal qubit appears as if subjected to quantum noise that degrades
quantum information, as observed in the accelerated reference frame [S. Omkar,
SB, R. Srikanth, A. K. Alok (2015)].

Study various facets of quantum correlations, such as, Bell inequality violations,
entanglement, teleportation and measurement-induced disturbance under the
effect.

Unruh effect experienced by a mode of a free Dirac field, as seen by a
relativistically accelerated observer, is treated as a noise channel, which we term
the “Unruh channel”.

Characterize this channel by providing its operator-sum representation. Compare
and contrast this channel from conventional noise due to environmental
decoherence.
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Unruh Effect as a Quantum Noise Channel

Unruh effect

The relativistic effect named after Unruh [Davies (1975), Unruh (1976), Takagi
(1986)] predicts that the Minkowski vacuum as seen by an observer accelerating with
constant proper acceleration a will appear as a warm gas at the Unruh temperature:

τ =
~a

2πkB c
,

where c is the speed of light in vacuum, and kB is Boltzmann’s constant.

The Unruh effect produces a decoherence-like effect, earning it the moniker
‘Unruh channel’.

The Unruh effect is usually studied by examining the Minkowski (flat) spacetime
in terms of Rindler coordinates [Rindler (1966)].

The Rindler transformation divides spacetime into two causally disconnected
wedges, such that, a uniformily accelerated observer in one wedge is causally
separated from the other wedge.

Subhashish Banerjee Open Quantum Systems and Quantum Information in Relativistic and Sub-atomic Systems



Unruh Effect as a Quantum Noise Channel

The fields in question, scalar or Dirac, are quantized and expressed in terms of
linear combinations of creation and annihilation operators, for both the
Minkowski and Rindler spacetimes.

Quantization leads to the concepts of particles in either spacetime.

The annihilation operator of particles in one space time, say for example
Minkowski spacetime, can be expressed in terms of creation and annihilation
operators of particles in the Rindler spacetime. Thus we see that the Minkowski
vacuum is different from the Rindler vacuum and they have different Fock spaces.

The linear coefficients of the above transformations are the so called Bogoliubov
transformations [Bogoliubov (1947), Fulling (1973)], relating the two Fock
spaces.

Consider two observers, Alice (A) and Rob (R) sharing a maximally entangled
state of two Dirac field modes (and thus a qubit fermionic Unruh channel), at a
point in Minkowski spacetime, of the form

|ψ〉A,R =
|00〉A,R + |11〉A,R√

2
,

where |j〉 denote Fock states.
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Unruh Effect as a Quantum Noise Channel

Let Rob move away from stationary Alice with a uniform proper acceleration a.
The effect of constant proper acceleration is described by a Rindler spacetime,
which manifests two causally disconnected regions I and II, where region I is
accessible to Rob, and separated from region II by an event horizon.

From Rob’s frame the Minkowski vacuum state is a two-mode squeezed state,
while the excited state appears as a product state [Alsing et al. (2006)]

|0〉M ≡ cos r |0〉I |0〉II + sin r |1〉I |1〉II ,
|1〉M ≡ |1〉I |0〉II ,

where ω is a Dirac particle frequency while cos r = 1√
e
− 2πωc

a +1

is one of the

Bogoliubov coefficients, connecting the Minkowski and Rindler vacua. It follows
that cos r ∈ [ 1√

2
, 1] as a ranges from ∞ to 0.

Tracing out mode II, we obtain the density matrix:

ρ′A,R =
1

2

[
cos2(r)|00〉〈00|+ cos r(|00〉〈11|+ |11〉〈00|) + sin2(r)|01〉〈01|+ |11〉〈11|

]
,

The ‘evolution’ of Rob’s qubit to a mixed state under the transformation
EU : ρR → ρ′R constitutes what we call the Unruh channel for a fermionic qubit.
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Some measures of quantum correlations

Quantum Correlations

Quantum correlations are a many-faceted entity.

Bell’s inequality

Given a pair of qubits in the state ρ, the elements of correlation matrix T are
Tmn = Tr [ρ(σm ⊗ σn)]. If ui (i = 1, 2, 3) are the eigenvalues of the matrix T †T
then the Bell-CHSH inequality can be written B(ρ) < 1 [Horodecki (1995,1996)],
where B(ρ) = max(ui + uj ) (i 6= j).

For ρ′A,R , Γ†Γ = Diag(cos2 r , cos2 r , cos4 r) and hence B(ρ) = 2 cos2 r .

In the Figure, the quantity B(ρ)
2

(which indicates nonlocality if greater than 1
2

) is
plotted as a function of Unruh acceleration. There it is seen that the state
perceived by Rob becomes local around a = 4.6.
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Some measures of quantum correlations

Teleportation Fidelity

Teleportation provides an operational meaning to entanglement, whenever
Fmax > 2/3, teleportation is possible.

Fmax is computed in terms of the eigenvalues {ui} of T †T .

Fmax = 1
2

(
1 + 1

3
N(ρ)

)
where N(ρ) =

√
u1 +

√
u2 +

√
u3 [Horodecki et. al.

(1996)].

Here Fmax = 1
2

(
1 + 1

3

(
2 cos r + cos2 r

))
An inequality involving B(ρ) and Fmax

Fmax ≥
1

2

(
1 +

1

3
B(ρ)

)
≥

2

3
if B(ρ) > 1.
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Some measures of quantum correlations

Concurrence

For a mixed state ρ of two qubits, the concurrence, which is a measure of
entanglement, is C = max(λ1 − λ2 − λ3 − λ4, 0). λi are the square root of the

eigenvalues, in decreasing order, of the matrix ρ
1
2 (σy ⊗ σy )ρ∗(σy ⊗ σy )ρ

1
2 where ρ∗ is

computed in the computational basis {|00〉, |01〉, |10〉, |11〉} [Wootters (1996)].
For a two-qubit system, concurrence is equivalent to the entanglement of formation
which can then be expressed as a monotonic function of concurrence C as

EF = − 1+
√

1−C 2

2
log2(

1+
√

1−C 2

2
)− 1−

√
1−C 2

2
log2(

1−
√

1−C 2

2
).

C > 0 asymptotically in Figure 1.

Geometric discord

For the case of two qubits, geometric discord [Dakic et. al. (2010)] is
DG (ρ) = 1

3
[‖~x‖2 + ‖T‖2 − λmax (~x~x† + TT †)] where T is the correlation matrix, ~x is

the vector whose components are xm = Tr(ρ(σm ⊗ I2)), and λmax (K) is the maximum
eigenvalue of the matrix ~x~x† + TT †.
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Some measures of quantum correlations

Measurement induced disturbance (QMID)

QMID quantifies the quantumness of the correlation between the quantum
bipartite states shared amongst Alice and Rob.

For the given ρ′A,R , if ρ′A and ρ′R are the reduced density matrices, then the

mutual information that quantifies the correlation between Alice and Rob is

I = S(ρ′A) + S(ρ′R )− S(ρ′A,R ),

S(.) is the von Neumann entropy.

If ρ′A =
∑

i λ
i
AΠi

A and ρ′R =
∑

j λ
j
R Πj

R denotes the spectral decomposition of ρ′A
and ρ′R , respectively, then the state ρ′A,R after measuring in joint basis {ΠA,ΠR}
is

Π(ρ′A,R ) =
∑
i,j

(Πi
A ⊗ Πj

R )ρ′A,R (Πi
A ⊗ Πj

R ).

QMID [Luo (2008)] is

M(ρ′A,R ) = I (ρ′A,R )− I (Π(ρ′A,R ))

is a measure of quantumness of the correlation.

In Figure 1, we find that M > 0 throughout the range considered, implying that
the system remains nonclassical, as expected.
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Degradation of quantum information under Unruh Channel
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Figure : Degradation of QMID (M), teleportation fidelity (Fmax), Bell quantity (B/2) and
concurrence (C) as a function of Unruh acceleration (a). The system becomes local (B/2 < 1/2)
at a ≈ 4.6, but stays nonclassical with respect to the other parameters (C > 0, F > 2

3 ,M > 0)).
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Geometric characterization of the Unruh channel

Invoke the Choi-Jamiolkowski isomorphism [Choi (1975), Jamiolkowski (1972)]
which is a two-way mapping between a quantum state and quantum channel and
is an expression of channel-state duality.

Information is transmitted via a quantum channel and is basically a completely
positive map between spaces of operators.

The Kraus operators for the channel can be obtained by diagonalizing the Choi
matrix [Leung (2003), Havel (2003)].

Once the Kraus operators are obtained, the channel gets completely
characterized. We now apply this to the Unruh channel.

Spectral decomposition gives

ρU =
3∑

j=0

|ξj 〉〈ξj |,

where |ξj 〉 are the eigenvectors normalized to the value of the eigenvalue.
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Geometric characterization of the Unruh channel: continued...

By Choi’s theorem, each |ξj 〉 yields a Kraus operator obtained by folding the d2

(here: 4) entries of the eigenvector into d × d (2× 2) matrix, essentially by
taking each sequential d-element segment of |ξj 〉, writing it as a column, and
then juxtaposing these columns to form the matrix.

The two eigenvectors corresponding to the two non-vanishing eigenvalues are
|ξ0〉 = (cos r , 0, 0, 1), |ξ1〉 = (0, sin r , 0, 0).

From these, we have the Kraus representation for EU as

K U
1 =

(
cos r 0

0 1

)
; K U

2 =

(
0 0

sin r 0

)
,

whereby

EU (ρ) =
∑

j=1,2

K U
j ρ
(

K U
j

)†
,

with the completeness condition∑
j=1,2

(
K U

j

)†
K U

j = I.
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Geometric characterization of the Unruh channel: continued...

This is formally similar to the operator elements in the Kraus representation of an
Amplitude Damping (AD) channel, which models the effect of a zero temperature
thermal bath [SB, R. Srikanth (2008); SB, R. Ghosh (2007)].

This is surprising as the Unruh effect corresponds to a finite temperature and
would naively be expected to correspond to the generalized AD or SGAD
channels, which are finite temperature channels. This is a pointer towards a
fundamental difference between the Unruh and the AD channel.

For an initial pure qubit state
ρ = |0〉〈0| cos2 θ

2
+ |0〉〈1|e iφ cos θ

2
sin θ

2
+ |1〉〈0|e−iφ cos θ

2
sin θ

2
+ |1〉〈1| sin2 θ

2
,

the action of the Unruh channel is

EU (ρ) =

(
cos2 r cos2 θ

2
cos re iφ cos θ

2
sin θ

2
cos re−iφ cos θ

2
sin θ

2
sin2 r cos2 θ

2
+ sin2 θ

2

)
.

For infinite time and acceleration, the asymptotic state is

ρ∞ =

 1
2

cos2 θ
2

1√
2

e iφ cos θ
2

sin θ
2

1√
2

e−iφ cos θ
2

sin θ
2

1
2

cos2 θ
2

+ sin2 θ
2

 ,

with Bloch vector

n̂∞(θ, φ) ≡ (x̂ , ŷ , ẑ) =

(
cosφ sin θ
√

2
,

sinφ sin θ
√

2
,− sin2 θ

2

)
.
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Geometric characterization of the Unruh channel: continued...

This shows that the Bloch sphere gets mapped to the inscribed solid object
shown in Figure 2, whose south pole osculates with that of the Bloch sphere,
while the north pole (corresponding to initial θ = 0) is located midway between
the Bloch sphere center and south pole: n̂∞(0, φ) = (0, 0, 0) while
n̂∞(π, φ) = (0, 0,−1). This is thus a kind of an interrupted AD channel.

By virtue of linearity of the map, it follows that the maximally mixed state maps
to the Bloch vector which is the average of the above two, being

n̂∞(I) = (0, 0,−
1

2
).

Thus the channel is non-unital, with the new Bloch representation of the initially
maximally mixed state being

E∞U (I/2) =

(
1/4 0

0 3/4

)
.
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Geometric characterization of the Unruh channel: continued...

The geometry of the contracted, noisy version of the Bloch sphere can be inferred
to be

R(θ) = |n̂∞(θ, φ)− n̂∞(I)| =

√
3− cos 2θ

2
√

2
.

Since the volume of the Bloch sphere is V0 ≡ 4π
3

, it follows that the volume

contraction factor of the Bloch sphere under the relativistic channel is K ≡ 1
4

.

The eccentricity of the oblate sphere is given by

e =

√
1−

b2

a2
=

1
√

2
,

where a and b are the semi-major and semi-minor axis, which are seen from the
form of R(θ) to be 1√

2
(corresponding to θ = π

2
) and 1

2
(corresponding to

θ = 0, π), respectively.
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Geometric characterization of the Unruh channel: continued...
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Figure : Under EU , the Bloch sphere (the outer sphere) is shrunk asymptotically to the inner solid
oblate spheroid (eccentricity e = 1√

2
) by a volume factor 1

4 , centered at (0, 0,− 1
2 ) (surface

described by n̂∞(θ, φ).
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Composability of AD and Unruh channels

A genuine AD channel may be composed with an Unruh channel, resulting in an
AD channel. Consider a state

ρ =

(
α β
β∗ 1− α

)
,

with real α.

The action of Unruh noise yields

ρU = EU (ρ) =

(
α cos2 r β cos r
β∗ cos r 1− α cos2 r

)
,

while that of an AD channel on state ρU above is

EUV (ρ) =

(
α cos2 r(1− γ) β cos r

√
1− γ

β∗ cos r
√

1− γ 1 + α(− cos2 r + γ cos2 r)

)
.

Setting γ′′ = γ cos2 r + sin2 r , the Kraus operators of noise EUV are( √
1− γ′′ 0

0 1

)
,

(
0 0√
γ′′ 0

)
,

which has the form of an AD channel.

The same observation holds if the order of the AD and Unruh channels are
inverted. This closure under composition is a manifestation of the semi-group
property of AD channels.
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Comparisons between Unruh and Conventional Noise Channels

The origin of the Unruh channel is, as noted, quite different from a conventional
noise channel.

For an AD channel, which is derived using the Born-Markov and rotating-wave
approximations, one can invoke the fluctuation-dissipation theorem to require the
convergence of the Bloch sphere at initial time to a single fixed point of the
evolution asymptotically. The finite contraction factor, for the Unruh channel,
thwarts this behavior.

Another point is that the rank of ρU is 2, and not 4. This is reflected in the fact
that there are only 2 canonical Kraus operators.

This entails that the Unruh noise corresponds to only a single Lindblad channel
corresponding to a de-excitation process. Now if the environment were a
conventional finite-temperature bath, then we should have also the Lindblad
excitation channel corresponding to the qubit absorbing a photon from this bath.
The lack of the excitation channel here suggests that, from the physical
perspective of an inertial detector, the Unruh background interacts as a vacuum,
even though Rob views it as a thermal Rindler state in his own reference frame.
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Unruh Effect as a Quantum Noise Channel

Bloch vector representation of Unruh channel has been developed. This is used to
provide a unified, analytical treatment of quantum Fisher and Skew information
for a qubit subjected to the Unruh channel [SB, A. K. Alok, S. Omkar (2016)].

How environmentally induced decoherence modifies the effect of the Unruh
channel... [SB, A. K. Alok, S. Omkar, R. Srikanth (2017)].
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Foundations of Quantum Mechanics in Neutrinos

Quantum correlations is a central topic of investigations in the quest for an
understanding as well as for the harvesting of the power of quantum mechanics in
a plethora of systems provided by nature.

The foundations of quantum mechanics are usually studied in optical or electronic
systems where the interplay between the various measures of quantum
correlations is well known.

Inspired by the recent technical advances in high energy physics experiments, in
particular the neutrino oscillation experiments, this quest can now be directed
towards neutrinos.

Motivation

Neutrino system is particularly interesting as the effect of decoherence as
compared to other particles widely used in quantum information processing, is
minimal.

Also, the detection efficiency is much higher than that of the corresponding
detectors used in optical or electronic systems.

Thus neutrino system has the potential to provide an alternative platform for
testing foundations of quantum mechanics.
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Neutrinos

In nature, neutrinos are available in three flavors.

Owing to their non-zero mass, they oscillate from one flavor to another which has
been confirmed by a plethora of experiments, using both natural and
“man-made” neutrinos.

Neutrino oscillations are fundamentally three flavor oscillations. However, in some
cases, it can be reduced to effective two flavor oscillations.

Quantum correlations in Neutrinos

The coherent time evolution of neutrino flavor eigenstates implies that there is a
linear superposition between the mass eigenstates which make up a flavour state.

Neutrino oscillations are related to the multi-mode entanglement of single-particle
states which can be expressed in terms of flavor transition probabilities.

Hence neutrino is an interesting candidate for study of quantum correlations.
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Neutrinos

Definition of the problem

We are interested in studying various facets of quantum correlations in neutrinos. In
particular, we intend to study:

The interplay between various aspects of quantum correlations such as
non-locality, entanglement and weaker measures such as discord.

To explore relation between neutrino mixing and coherences in the system.

The three flavour states (eigenstates of weak interaction) of neutrinos, νe , νµ and ντ
mix via a 3× 3 unitary matrix to form the three mass eigenstates (which are the
propagation eigenstates) ν1, ν2 and ν3.

Neutrino oscillations occur only if the three corresponding masses, m1,m2 and m3, are
non-degenerate.

Of the three mass-squared differences ∆ij = m2
i −m2

j (where i , j = 1, 2, 3 with i > j),
only two are independent. Oscillation data tells us that ∆21 ≈ 0.03×∆32,
∆31 ≈ ∆32.

In considering neutrino oscillations, in general, one should use the full three flavour
oscillation formulae.
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Neutrinos

However, in a number of cases, the three flavour formula reduces to an effective two
flavour formula, if one or both of the small parameters, ∆21/∆32 and θ13, are set
equal to zero.

For example, in long baseline accelerator experiments, both the above parameters can
be neglected in doing leading order calculations. Then the problem reduces to that of
two flavour mixing of νµ and ντ to form two mass eigenstates ν2 and ν3.

The corresponding oscillations are described by one mixing angle θ (≡ θ23 in three
flavour mixing) and one mass-squared difference ∆ (≡ ∆32 in three flavour mixing).

In the case of two flavour mixing, the relation between the flavour and the mass
eigenstates is described by a 2× 2 rotation matrix, U(θ),(

να
νβ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
νj

νk

)
.
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Neutrinos

Each flavour state is given by a superposition of mass eigenstates,

|να〉 =
∑

j

Uαj

∣∣νj

〉
,

where α = µ or τ and j = 2, 3.
The time evolution of the mass eigenstates

∣∣νj

〉
is given by∣∣νj (t)

〉
= e−iEj t

∣∣νj

〉
,

where
∣∣νj

〉
are the mass states at time t = 0.

Thus, we can write
|να(t)〉 =

∑
j

e−iEj t Uαj

∣∣νj

〉
.

The evolving flavour neutrino state |να〉 can also be projected on to the flavour basis
in the form

|να(t)〉 = Ũαα(t) |να〉+ Ũαβ(t)
∣∣νβ〉 ,

where |να〉 is the flavour state at time t = 0 and |Ũαα(t)|2 + |Ũαβ(t)|2 = 1.
As all detectable neutrinos are ultra-relativistic, the flavor eigenstates are well defined
in the context of quantum mechanics.
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Mode entanglement in neutrinos

We can thus establish the following correspondence, using the occupation number of
neutrinos, with two-qubit states [Blasone et al. (2008, 2013, 2015)]

|να〉 ≡ |1〉α ⊗ |0〉β ≡ |10〉 ,
∣∣νβ〉 ≡ |0〉α ⊗ |1〉β ≡ |01〉 .

The time evolution of flavor eigenstate can then be written as

|να(t)〉 = Ũαα(t) |1〉α ⊗ |0〉β + Ũαβ(t) |0〉α ⊗ |1〉β ,

where,

Ũαα(t) = cos2 θe−iE2t + sin2 θe−iE3t ,

Ũαβ(t) = sin θ cos θ(e−iE3t − e−iE2t ) .

=⇒ The state |να(t)〉 has the form of a mode entangled single particle state.

Various measures of quantum correlations can now be determined using the density
matrix ρα(t) = |να(t)〉 〈να(t)| as the parameters of the density matrix, mixing angle
and mass squared difference, are known [A. K. Alok, SB, Uma Sankar (2014); SB, A.
K. Alok, R. Srikanth, B. Heismeyr (2015)].
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Two flavor neutrino oscillation with matter effect

The above calculation corresponds to the case when neutrinos travel through
vacuum. But the oscillation patterns can be significantly affected if neutrinos
travel through a material medium. Therefore matter effect should also be taken
care of.

νe interacts with electrons (e−) present in matter via neutral and charged current
interactions, while νµ and ντ interact only by neutral current interaction. The
amplitude corresponding to neutral current interactions are identical for all of the
three flavors. Therefore we consider the amplitude corresponding to charged
current interaction of νe with e− only.

Given that equation of motion in mass eigenstate basis is

i
d

dt

[
ν1

ν2

]
= H

[
ν1

ν2

]
where

H =

[
E1 0
0 E2

]
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Two flavor neutrino oscillation with matter effect

We assume that ν is emitted in plane wave state with definite momentum i.e.,
E 2

i = p2 + m2
i with ultra high relativistic approximation (p2 >>> m2

i ). Then
Hamiltonian

H =

p +
m2

1
2p

0

0 p +
m2

2
2p


Hamiltonian can also be expressed in terms of mass square difference
∆ = m2

2 −m2
1 as,

H =

p +
m2

1+m2
2

4p
− ∆

4p
0

0 p +
m2

1+m2
2

4p
+ ∆

4p


Therefore the equation of motion in flavor state basis is given by

i
d

dt

[
νe (t)
νµ(t)

]
=

[
p +

m2
1 + m2

2

4p
I +

∆

4p
OT

[
−1 0
0 1

]
O

] [
νe

νµ

]
where O is the mixing matrix.
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Two flavor neutrino oscillation with matter effect

Neglecting first term and putting p ≈ E, the above equation will be,

i
d

dt

[
νe (t)
νµ(t)

]
=

∆

4E

[
−cos2θ sin2θ

sin2θ cos2θ

] [
νe

νµ

]
The survival and oscillation probabilities take the form

Pee = 1− sin2 2θ sin2 ∆L

4E~c

Peµ = sin2 2θ sin2 ∆L

4E~c

Since νe only interacts with matter via charged current interaction, an extra term
V (matter density potential) is added to this equation as,

i
d

dt

[
νe (t)
νµ(t)

]
=

[
−∆ cos 2θ

4E
+ V ∆ sin 2θ

4E
∆ sin 2θ

4E
∆ cos 2θ

4E

] [
νe

νµ

]
where V =

√
2GF Ne with GF → Fermi constant, Ne → electron density.
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Two flavor neutrino oscillation with matter effect

As a result of this equation, for constant matter density, Survival and oscillation
probabilities become,

Pee = 1− sin2 2θm sin2 ∆mL

4E~c

Peµ = sin2 2θm sin2 ∆mL

4E~c

where θm and ∆m are effective mixing angle and mass square difference,
respectively, which in terms of vacuum mass square difference ∆ and mixing
angle θ, are

θm =
1

2
tan−1

(
tan 2θ

1− 2EV
∆ cos 2θ

)
∆m =

√
(∆ cos 2θ − 2EV )2 + ∆2 sin2 2θ

The resonance condition i.e., 2EV = ∆ cos 2θ, will cause the maximal mixing.
This is called Mikheyev − Smirnov −Wolfenstein (MSW ) effect.

Subhashish Banerjee Open Quantum Systems and Quantum Information in Relativistic and Sub-atomic Systems



Three flavor neutrino Oscillations

To study the effect of CP - violation in neutrino oscillations (for Dirac neutrinos),
one has to go through the calculation of three flavor neutrino oscillations.
Applying some appropriate approximations, mathematical picture of two flavor
oscillation can be reproduced through the three flavor case.

In three flavor neutrino oscillation
Propagation states → {|ν1〉 , |ν2〉 , |ν3〉};
Flavor states → {|νe〉 , |νµ〉 , |ντ 〉}
The general state of a neutrino can be expressed in flavor basis as:

|Ψ(t)〉 = νe (t) |νe〉+ νµ(t) |νµ〉+ ντ (t) |ντ 〉

Same state in propagation basis looks like:

|Ψ(t)〉 = ν1(t) |ν1〉+ ν2(t) |ν2〉+ ν3(t) |ν3〉

The coefficients in two representations are connected by a unitary matrixνe (t)
νµ(t)
ντ (t)

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1(t)
ν2(t)
ν3(t)

 .

or,
να(t) = Uνi (t). (1)
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Three flavor neutrino Oscillations

A convenient parametrization for U(θ12, θ23, θ13, δ) is given by the so called
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [ Progress of Theoretical
Physics 28, 870-880 (1962)]

U(θ12, θ23, θ13, δ) = c12c13 s12c13 s23e−iδ

−s12c23 − c12s23s13e iδ c12c23 − s12s23s13e iδ s23c13

s13s23 − c12c23s13e iδ −c12s23 − s12c23s13e iδ c23c13


where cij = cos θij , sij = sin θij , θij being the mixing angles and δ the CP violating
phase.

The mass eigenstates evolve asν1(t)
ν2(t)
ν3(t)

 =

e−iE1t 0 0
0 e−iE2t 0
0 0 e−iE3t

ν1(0)
ν2(0)
ν3(0)

 ,

or,
νi (t) = Eνi (0) (2)

From Eqns. (1) and (2), να(t) = U EU−1 να(0) = Uf να(0).

Subhashish Banerjee Open Quantum Systems and Quantum Information in Relativistic and Sub-atomic Systems



Three flavor neutrino Oscillations

So the flavor state at time t = 0 is connected to the flavor state at time t byνe (t)
νµ(t)
ντ (t)

 =

a(t) d(t) g(t)
b(t) e(t) h(t)
c(t) f (t) k(t)

νe (0)
νµ(0)
ντ (0)

 .

Some elements

a(t) = (c12c13)2 e−iE1t + (s12c13)2 e−iE2t + s2
13 e−iE3t ,

b(t) = (−s12c23 − c12s13s23e iδ)c12c13 e−iE1t

+ (c12c23 − s12s13s23e iδ)s12c13 e−iE2t + c13s23s13e iδ e−iE3t ,

c(t) = (s12s23 − c12s13c23e iδ)(c12c13) e−iE1t

+ (−c12s23 − s12s13c23e iδ)(s12c13) e−iE2t + (c13c23)(s13) e−iE3t ,

d(t) = (c12c13)(−s12c23 − c12s13s23e−iδ) e−iE1t

+ (s12c13)(c12c23 − s12s13s23e−iδ) e−iE2t

+ (s13e−iδ)(c13s23) e−iE3t
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Survival and Transitional Probabilities

Initial state |νe〉

Ψ(t) = a(t) |νe〉+ b(t) |νµ〉+ c(t) |ντ 〉
Survival probability: | 〈νe |Ψ(t)〉 |2 = |a(t)|2

Transition Prob. to νµ = | 〈νµ|Ψ(t)〉 |2 = |b(t)|2

Transition Prob. to ντ = | 〈ντ |Ψ(t)〉 |2 = |c(t)|2

Initial state |νµ〉

Ψ(t) = d(t) |νe〉+ e(t) |νµ〉+ f (t) |ντ 〉
Survival probability: | 〈νµ|Ψ(t)〉 |2 = |e(t)|2

Transition Prob. to νe = | 〈νe |Ψ(t)〉 |2 = |d(t)|2

Transition Prob. to ντ = | 〈ντ |Ψ(t)〉 |2 = |f (t)|2

Initial state |ντ 〉

Ψ(t) = g(t) |νe〉+ h(t) |νµ〉+ k(t) |ντ 〉
Survival probability: | 〈ντ |Ψ(t)〉 |2 = |k(t)|2

Transition Prob. to νe = | 〈νe |Ψ(t)〉 |2 = |g(t)|2

Transition Prob. to νµ = | 〈νµ|Ψ(t)〉 |2 = |h(t)|2
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Experiments

1 DUNE (Deep Underground Neutrino
Experiment): NuMI (Neutrinos at Main
Injector) Fermi-Lab, L = 1300 km,
En = 2 GeV to 10 GeV ,

2 NOνA (NuMI Off-Axis νe Appearance):
L = 810km, En = 1 GeV to 4 GeV .

3 T2K (Tokai to Kamioka):
L = 295 km,En = 0.1 to 1GeV .

Figure : NOvA (DUNE) and T2K experiments

All these experiments use νµ source
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Quantum correlations in neutrinos

Non-locality

M(ρ) = 1 +
[
3 + cos 4θ + 2 cosφ sin2 2θ

]
sin2 2θ sin2 (φ/2)

= 1 + 4Psur Posc .

φ = ∆t
2E

M(ρ) is tied up with neutrino mixing.

In case of no mixing (θ = 0), M(ρ) = 1.

Concurrence

C = 2
√

sin4 θ + cos4 θ + 2 cos2 θ sin2 θ cosφ) sin 2θ sin (φ/2)

= 2
√

Psur Posc .

In case of no mixing, there is no entanglement.
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Quantum correlations in neutrinos

Geometric discord

DG (ρ) =
2

3
sin2 2θ sin2 (φ/2)

[
3 + cos 4θ + 2 cosφ sin2 2θ

]
=

8

3
Psur Posc .

DG (ρ) for θ = 0 is 0, a classically allowed value of geometric discord.

Teleportation fidelity

Fmax =
2

3
+

1

3
sin 2θ sin (φ/2)

√
3 + cos 4θ + 2 sin2 2θ cosφ

=
2

3
(1 + Psur Posc ).

In the absence of mixing, Fmax = 2/3, the classical value of teleportation fidelity.
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Quantum correlations in neutrinos
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Figure : The left panel of the top and bottom figure depicts M(ρ) (Bell’s inequality violation;
small-dashed line), Fmax (teleportation fidelity; thick solid line), C (concurrence, large-dashed line)
and DG (geometric discord; medium-dashed line) with respect to phase φ (≡ ∆t/2E) for the
mixing angle θ = 45◦ and θ = 10◦, respectively. The thin solid line in the left panel of the top
and bottom figure, PS , represents the neutrino survival probability. The right panel of the figure
depicts the magnitude of the off-diagonal elements of the density matrix.
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Quantum correlations in neutrinos
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Figure : The left panel of the figure depicts various quantum correlations with respect to phase φ
for the critical mixing angle θ = 22.5◦. The thin solid line in the left panel, PS , represents the
neutrino survival probability. The right panel of the figure depicts the magnitude of the
off-diagonal elements of the density matrix.
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Quantum correlations in neutrinos

Bell’s inequality is always violated and hence the evolution of neutrinos is highly
non local in nature.

Teleportation fidelity is always greater than 2/3 thus obeying the usual relation
between Bell’s inequality violation and teleportation fidelity, as seen in electronic
and photonic systems.

It is quite remarkable that the measurement of neutrino oscillations due to a non
zero value of the mixing angle implies quantum correlations.

The quantum correlations are seen to be very closely tied to the neutrino mixing
angle.

There exists a critical value of the mixing angle π/8, for which the Bell’s
inequality violation is maximal over a broad range of the kinematic variable φ.

Also, it is interesting to note that the off diagonal order, introduced here, is
gaining prominence in a number of recent studies related to quantum coherence
[Girolami (2014), Bromely et.al. (2015), U. Singh et. al. (2015)].
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Recent works in neutrinos

Geometric phase for neutrinos at various man-made facilities, such as the reactor
and accelerator neutrino experiments [K Dixit, A K Alok, SB, D Kumar, (2017)].

Leggett-Garg type inequality violations in the context of three flavor neutrino
oscillations studied in the presence of matter and CP violating effects [J A
Naikoo, A K Alok, SB, S Uma Sankar, G Guarnieri, B C Hiesmayr, (2017)].
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Quantum correlations in neutral meson systems

We study a number of well-established measures of quantum correlations, such as
Bell’s inequality violations, teleportation fidelity, concurrence and geometric
discord, in the correlated BB̄ and KK̄ systems. We also study an interplay
between these measures [A. K. Alok, SB (2013); SB, A. K. Alok, R. MacKenzie
(2015)].

B factories, electron-positron colliders tailor-made to study the production and
decay of B mesons, and φ factories, which perform the same function for K
mesons, provide an ideal testing ground.

In the case of B factories, the collider energy is tuned to the Υ resonance, so the
first stage of the process is e+e− → Υ. The Υ then decays into bb̄; these form a
BqB̄q (q = s, d) pair through hadronization. All this happens essentially
instantaneously. The B mesons then fly apart and decay on a much longer time
scale.

An important feature of these systems for the study of correlations is the
oscillation of the bottom and strangeness flavors, giving rise to BB̄ oscillations.

Another feature about these systems is that they are decaying and thus one needs
to study quantum correlations in unstable, decaying BB̄ and KK̄ systems.
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MM̄ as an open quantum system

For the B system, imagine the decay Υ→ bb̄ followed by hadronization into a
BB̄ pair.

In the Υ rest frame, the mesons fly off in opposite directions (left and right, say).

The same considerations apply to the K system, with the Υ replaced by a φ
meson.

The flavor-space wave function of the correlated MM̄ meson systems
(M = K , Bd , Bs ) at the initial time t = 0 is

|ψ(0)〉 =
1
√

2

[∣∣MM̄
〉
−
∣∣M̄M

〉]
,

where the first (second) particle in each ket is the one flying off in the left (right)
direction and |M〉 and

∣∣M̄〉 are flavor eigenstates.

Thus, the initial state of the neutral meson system is a singlet (maximally
entangled) state.

Subhashish Banerjee Open Quantum Systems and Quantum Information in Relativistic and Sub-atomic Systems



MM̄ as an open quantum system

The state of the two-particle decaying system at time t is

ρ(t) =
1

4


a− 0 0 −a−
0 a+ −a+ 0
0 −a+ a+ 0
−a− 0 0 a−

 ,

where a± = 1± e−2λt .

The density matrix depends on only one parameter (in addition to time), the
decoherence parameter λ, which describes the interaction of the mesons with the
environment.
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Quantum correlations in neutral meson systems

Non-locality

M(ρ) = (1 + e−4λt ).

Concurrence

C = e−2λt .

Entanglement of formation is

EF = −
1 +
√

1− C 2

2
log2(

1 +
√

1− C 2

2
)−

1−
√

1− C 2

2
log2(

1−
√

1− C 2

2
).
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Quantum correlations in neutral meson systems

Geometric discord

DG (ρ) = M(ρ)/3.

Teleportation fidelity

Fmax =
1

12

[
6 + 2e−2λt +

√
2

√
α−

√
β +
√

2

√
α+

√
β
]
,

where

α = 1 + cosh(4λt)− sinh(4λt), β = 3− 2α+ cosh(8λt)− sinh(8λt).
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Quantum correlations in neutral meson systems

To take into account the effect of decay in the systems under study, the various
correlations are modified by the probability of survival of the pair of particles up
to that time, which can be shown to be e−2Γt , where Γ is the meson decay width.

For the K meson, Γ = 1
2

(ΓS + ΓL) (where ΓS and ΓL are the decay widths of

short and long neutral kaon states, respectively); its value is 5.59× 109 s−1 [K.
A. Olive et al. (PDG 2014)].

The decay widths for Bd and Bs mesons are 6.58× 1011 s−1 and 6.61× 1011 s−1,
respectively [Y. Amhis et al. (HFAG 2012)].

In the case of the K meson system, λ has been obtained by the KLOE
collaboration by studying the interference between the initially entangled kaons
and the decay product in the channel φ→ KS KL → π+π−π+π− [F. Ambrosino
et al. (KLOE Collaboration 2006)]. The value of λ is at most 1.58× 109 s−1 at
3σ.
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Quantum correlations in neutral meson systems

In the case of Bd meson systems, the standard method of determining the
decoherence parameter uses time-integrated dilepton events. The value of λ for
Bd mesons is determined by the measurement of Rd , the ratio of the total
same-sign to opposite-sign dilepton rates in the decays of coherent Bd − B̄d

coming from the Υ(4S) decays; the upper bound is 2.82× 1011 s−1 at 3σ [R. A.
Bertlmann and W. Grimus (2001)].

In [A. K. Alok, SB, S. U. Sankar (2015)], a number of methods were suggested to
determine the decoherence parameter in the B meson systems.

For Bs mesons, to the best of our knowledge, there is no experimental
information about λ so we will take it to be zero in what follows.
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Quantum correlations in neutral mesons
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Figure : Average correlation measures, i.e., the various measures modulated by the exponential
factor e−2Γt , as a function of time t. The left, middle and right panels correspond to the
correlations of a KK̄ , Bd B̄d and Bs B̄s pair created at t = 0, respectively. The four correlation
measures are (top to bottom): M(ρ) (Bell’s inequality; blue band), Fmax (teleportation fidelity; red
band), EF (entanglement of formation; grey band) and DG (geometric discord; green band). For

KK̄ pairs, left panel, time is in units of 10−10 seconds whereas for the Bd B̄d and Bs B̄s pairs, time
is in units of 10−12 seconds (in all cases, the approximate lifetime of the particles). In the left and
middle panels, the bands represent the effect of decoherence corresponding to a 3σ upper bound
on the decoherence parameter λ. The right panel has no such bands because there is currently no
experimental evidence for decoherence in the case of Bs mesons; for this case, Fmax = EF .
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Quantum correlations in neutral meson systems

On average, Bell’s inequality in these correlated-meson systems is violated for
about half of the meson lifetime.

We find that the quantum correlations here can be nontrivially different from
their stable counterparts. This is made explicit by the interplay between Bell’s
inequality violation and teleportation fidelity.

One particularly surprising result is that teleportation fidelity does not exceed the
classical threshold of 2/3 for all Bell’s inequality violations.
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Conclusions

We applied ideas of quantum information and open quantum systems to study
some aspects of Unruh effect, neutrino oscillations and correlated neutral mesons.

Unruh effect as well as correlated neutral mesons were examined from the
perspective of open quantum systems .

We also tried to understand neutrino oscillations from the perspective of
quantum information.
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