Entanglement generation in accelerated quantum walks

C. M. Chandrashekar The Institute of Mathematical Sciences, Chennai, India

Arindam Mallick

02nd February 2018 ISNFQC 2018, SNBNCBS, Kolkata

Entanglement generation in accelerated quantum walks

 Superposition and interference : Evolution (dynamics) exploits superposition and interference aspects of quantum mechanics entangling the Hilbert space involved in the dynamics (particle and position space)
 Explores multiple possible paths simultaneously with amplitude corresponding to different paths interfering

- Superposition and interference : Evolution (dynamics) exploits superposition and interference aspects of quantum mechanics entangling the Hilbert space involved in the dynamics (particle and position space)
 Explores multiple possible paths simultaneously with amplitude corresponding to different paths interfering
- The variance grows quadratically with number of steps (t) compared to the linear growth for CRW : $\sigma^2 \propto t^2$ (QW), $\sigma^2 \propto t$ (CRW)

- Superposition and interference : Evolution (dynamics) exploits superposition and interference aspects of quantum mechanics entangling the Hilbert space involved in the dynamics (particle and position space)
 Explores multiple possible paths simultaneously with amplitude corresponding to different paths interfering
- The variance grows quadratically with number of steps (t) compared to the linear growth for CRW : $\sigma^2 \propto t^2$ (QW), $\sigma^2 \propto t$ (CRW)
- Experimentally implemented and control over the dynamics demonstrated NMR system, ion traps, photons in optical waveguide, neutral atoms on optical lattice......

물에 비용에 다

Applications

• Quantum algorithms and other quantum information processing tasks: quantum memory, quantum state transfer

(a) Quantum Information Processing, Volume 13, Issue 6, Pages 1313-1329 (2014) & (b) European Physics Letters 110, 10005 (2015)

3

Applications

• Quantum algorithms and other quantum information processing tasks: quantum memory, quantum state transfer

(a) Quantum Information Processing, Volume 13, Issue 6, Pages 1313-1329 (2014) & (b) European Physics Letters 110, 10005 (2015)

• Modelling quantum dynamics : Localization, quantum percolation

(a) Phys. Rev. A, 83, 022320 (2011) ; (b) Scientific Reports 4, 6583 (2014) ; (c) J. Phys. B: At. Mol. Opt. Phys. 47, 085502 (2014)

Applications

• Quantum algorithms and other quantum information processing tasks: quantum memory, quantum state transfer

(a) Quantum Information Processing, Volume 13, Issue 6, Pages 1313-1329 (2014) & (b) European Physics Letters 110, 10005 (2015)

• Modelling quantum dynamics : Localization, quantum percolation

(a) Phys. Rev. A, 83, 022320 (2011) ; (b) Scientific Reports 4, 6583 (2014) ; (c) J. Phys. B: At. Mol. Opt. Phys. 47, 085502 (2014)

• Operational scheme for simulating inaccessible high energy phenomenon in an accessible laboratory setup : Dirac Hamiltonian, Neutrino oscillations, dynamics in curved space-time

(a) Phys. Rev. A, 81, 062340 (2010) ; (b) Scientific Reports 3, 2829 (2013) ; (c) Eur. Phys. J. C (Particles and Fields), 77: 85 (2017) ;

Phys. Rev. A 97, 012116 (2018) ; arXiv:1712.03911

Applications

• Quantum algorithms and other quantum information processing tasks: quantum memory, quantum state transfer

(a) Quantum Information Processing, Volume 13, Issue 6, Pages 1313-1329 (2014) & (b) European Physics Letters 110, 10005 (2015)

• Modelling quantum dynamics : Localization, quantum percolation

(a) Phys. Rev. A, 83, 022320 (2011) ; (b) Scientific Reports 4, 6583 (2014) ; (c) J. Phys. B: At. Mol. Opt. Phys. 47, 085502 (2014)

• Operational scheme for simulating inaccessible high energy phenomenon in an accessible laboratory setup : Dirac Hamiltonian, Neutrino oscillations, dynamics in curved space-time

(a) Phys. Rev. A, 81, 062340 (2010) ; (b) Scientific Reports 3, 2829 (2013) ; (c) Eur. Phys. J. C (Particles and Fields), 77: 85 (2017) ;

Phys. Rev. A 97, 012116 (2018) ; arXiv:1712.03911

Simulation of photosynthesis and synthesis of topological insulators (a) Journal of Chemical Physics 129, 174106 (2008) (b) arXiv:1502.00436

Environment-Assisted Quantum Walks in Photosynthetic Energy Transfer

4 B K 4 B K

Entanglement generation in accelerated quantum walks

æ.

• Walk is defined on the Hilbert space $\mathcal{H} = \mathcal{H}_c \otimes \mathcal{H}_p$

```
\mathcal{H}_c (particle) is spanned by |\uparrow\rangle and |\downarrow\rangle
\mathcal{H}_p (position) is spanned by |j\rangle, j \in \mathbb{Z}
```

 \bullet Walk is defined on the Hilbert space $\mathcal{H}=\mathcal{H}_{c}\otimes\mathcal{H}_{p}$

```
\mathcal{H}_c (particle) is spanned by |\uparrow\rangle and |\downarrow\rangle
\mathcal{H}_p (position) is spanned by |j\rangle, j \in \mathbb{Z}
```

• Initial state $|\Psi_{in}\rangle = [\cos(\delta)|\uparrow\rangle + e^{i\eta}\sin(\delta)|\downarrow\rangle] \otimes |j=0\rangle$

 \bullet Walk is defined on the Hilbert space $\mathcal{H}=\mathcal{H}_{c}\otimes\mathcal{H}_{p}$

```
\mathcal{H}_c (particle) is spanned by |\uparrow\rangle and |\downarrow\rangle
\mathcal{H}_p (position) is spanned by |j\rangle, j \in \mathbb{Z}
```

- Initial state $|\Psi_{in}\rangle = [\cos(\delta)|\uparrow\rangle + e^{i\eta}\sin(\delta)|\downarrow\rangle] \otimes |j=0\rangle$
- Evolution :
 - Coin operation Hadamard operation : $H = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$

 \bullet Walk is defined on the Hilbert space $\mathcal{H}=\mathcal{H}_{c}\otimes\mathcal{H}_{p}$

 \mathcal{H}_c (particle) is spanned by $|\uparrow\rangle$ and $|\downarrow\rangle$ \mathcal{H}_p (position) is spanned by $|j\rangle, j \in \mathbb{Z}$

- Initial state : $|\Psi_{in}\rangle = [\cos(\delta)|\uparrow\rangle + e^{i\eta}\sin(\delta)|\downarrow\rangle] \otimes |j=0\rangle$
- Evolution :
 - Coin operation Hadamard operation : $H = \frac{1}{\sqrt{2}} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}$
 - Conditional unitary shift operation S:

$$S = \sum_{j \in \mathbb{Z}} \left[| \uparrow
angle \langle \uparrow | \otimes |j-1
angle \langle j| + | \downarrow
angle \langle \downarrow | \otimes |j+1
angle \langle j|
ight]$$

state $|\uparrow\rangle$ moves to the left $% |\downarrow\rangle$ and state $|\downarrow\rangle$ moves to the right

• Each step of QW (Hadamard walk) : $W = S(H \otimes 1)$

100 step of CRW and QW $[S(H \otimes 1)]^{100}$ a particle with initial state $\frac{1}{\sqrt{2}}(|\uparrow\rangle + i|\downarrow\rangle)$

- G. V. Riazanov (1958), R. Feynman (1986)
- K.R. Parthasarathy, Journal of applied probability 25, 151-166 (1988)
- •Y. Aharonov, L. Davidovich and N. Zugury, Phys. Rev. A, 48, 1687 (1993)
- Use of word Quantum random walk

Entanglement generation in accelerated quantum walks

QW using generalized quantum coin operation

• Hadamard walk :

 $|\Psi_{in}\rangle = |\uparrow\rangle \otimes |j = 0\rangle \rightarrow \text{peak to left}$ $|\Psi_{in}\rangle = |\downarrow\rangle \otimes |j = 0\rangle \rightarrow \text{peak to right}$

QW using generalized quantum coin operation

• Hadamard walk :

$$\begin{split} |\Psi_{in}\rangle &= |\uparrow\rangle \otimes |j=0\rangle \rightarrow \text{peak to left} \\ |\Psi_{in}\rangle &= |\downarrow\rangle \otimes |j=0\rangle \rightarrow \text{peak to right} \\ |\Psi_{in}\rangle &= \frac{1}{\sqrt{2}} \Big[|\uparrow\rangle \pm i|\downarrow\rangle \Big] \otimes |j=0\rangle \rightarrow \text{symmetric} \end{split}$$

• SU(2) operation :

$$B_{\xi,\theta,\zeta} \equiv \begin{bmatrix} e^{i\xi}\cos(\theta) & e^{i\zeta}\sin(\theta) \\ -e^{-i\zeta}\sin(\theta) & e^{-i\xi}\cos(\theta) \end{bmatrix}$$

 Each step of generalized QW : *W*_{ξ,θ,ζ} = S(B_{ξ,θ,ζ} ⊗ 1)

 $\left(W_{\xi,\theta,\zeta}
ight)^t | \Psi_{in}
angle$ implements t steps of generalized DQW

Discrete-time quantum walks in 2D

Entanglement generation in accelerated quantum walks

æ

Discrete-time quantum walks in 2D

$$C = \sum_{x,y \in \mathbb{Z}} \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix} \otimes |x = 0, y = 0\rangle$$

$$\begin{split} S_{gv} &= |0\rangle\langle 0|\otimes |x-1,y-1\rangle\langle x,y| + |1\rangle\langle 1|\otimes |x+1,y+1\rangle\langle x,y| \\ &+ |2\rangle\langle 2|\otimes |x-1,y+1\rangle\langle x,y| |3\rangle\langle 3|\otimes |x+1,y-1\rangle\langle x,y| \end{split}$$

Probability of Grover walk

Self avoiding quantum walks in subspace

Entanglement generation in accelerated quantum walks

æ

Self avoiding quantum walks in subspace

$$C^{sc} = \frac{1}{\sqrt{3}} \begin{bmatrix} 0 & 1 & 1 & -1\\ 1 & 0 & 1 & 1\\ 1 & -1 & 0 & -1\\ -1 & -1 & 1 & 0 \end{bmatrix} ; \quad C^{sp} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & -1 & 1 & 0\\ 1 & -1 & 0 & -1\\ 1 & 0 & 1 & 1\\ 0 & 1 & 1 & -1 \end{bmatrix}$$
$$C^{scp} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -1 & 1 & 0\\ 1 & 0 & 0 & -1\\ 1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Probability of self avoiding quantum walk in coin, position and coin-position space

Entanglement generation in accelerated quantum walks

From discrete-time quantum walk to relativistic equations :Klein-Gordon, Dirac

(free quantum field dynamics)

Entanglement generation in accelerated quantum walks

$$|\Psi_{in}\rangle = \frac{1}{\sqrt{2}} \Big[|\uparrow\rangle \pm i|\downarrow\rangle \Big] \otimes |x=0\rangle \qquad B(\theta) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

Entanglement generation in accelerated quantum walks

э

$$|\Psi_{in}\rangle = \frac{1}{\sqrt{2}} \Big[|\uparrow\rangle \pm i|\downarrow\rangle \Big] \otimes |x=0\rangle \qquad B(\theta) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$|\Psi_{in}\rangle = \frac{1}{\sqrt{2}} \Big[|\uparrow\rangle \pm |\downarrow\rangle \Big] \otimes |x=0\rangle \qquad B(\theta) = \begin{bmatrix} \cos(\theta) & -i\sin(\theta) \\ -i\sin(\theta) & \cos(\theta) \end{bmatrix}$$

æ

$$|\Psi_{in}\rangle = \frac{1}{\sqrt{2}} \Big[|\uparrow\rangle \pm i|\downarrow\rangle \Big] \otimes |x=0\rangle \qquad B(\theta) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$|\Psi_{in}\rangle = \frac{1}{\sqrt{2}} \Big[|\uparrow\rangle \pm |\downarrow\rangle \Big] \otimes |x=0\rangle \qquad B(\theta) = \begin{bmatrix} \cos(\theta) & -i\sin(\theta) \\ -i\sin(\theta) & \cos(\theta) \end{bmatrix}$$

In the form of left moving and right moving component

$$\psi_{x,t+1}^{\uparrow} = \cos(\theta)\psi_{x+1,t}^{\uparrow} - i\sin(\theta)\psi_{x-1,t}^{\downarrow}$$

$$\psi_{x,t+1}^{\downarrow} = \cos(\theta)\psi_{x-1,t}^{\downarrow} - i\sin(\theta)\psi_{x+1,t}^{\uparrow}$$

э

$$|\Psi_{in}\rangle = \frac{1}{\sqrt{2}} \Big[|\uparrow\rangle \pm i|\downarrow\rangle \Big] \otimes |x=0\rangle \qquad B(\theta) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$|\Psi_{in}\rangle = \frac{1}{\sqrt{2}} \Big[|\uparrow\rangle \pm |\downarrow\rangle\Big] \otimes |x=0\rangle \qquad B(\theta) = \begin{bmatrix} \cos(\theta) & -i\sin(\theta) \\ -i\sin(\theta) & \cos(\theta) \end{bmatrix}$$

In the form of left moving and right moving component

$$\begin{split} \psi^{\uparrow}_{x,t+1} &= \cos(\theta)\psi^{\uparrow}_{x+1,t} - i\sin(\theta)\psi^{\downarrow}_{x-1,t} \\ \psi^{\downarrow}_{x,t+1} &= \cos(\theta)\psi^{\downarrow}_{x-1,t} - i\sin(\theta)\psi^{\uparrow}_{x+1,t} \end{split}$$

Differential equation form in continuum limit :Klein-Gordon equation

$$\left[\frac{\partial^2}{\partial t^2} - \cos(\theta)\frac{\partial^2}{\partial x^2} + 2[1 - \cos(\theta)]\right]\psi_{x,t}^{\uparrow(\downarrow)} = 0$$

CMC, SB and RS, PRA, 81 062340 (2010)

Continuum limit and simulation of Dirac equation

Dirac equation

$$\left(i\hbar\frac{\partial}{\partial t}-\mathbf{\hat{H}}_{\mathbf{D}}\right)\Psi=\left(i\hbar\frac{\partial}{\partial t}+i\hbar c\hat{\alpha}\cdot\frac{\partial}{\partial x}-\hat{\beta}mc^{2}\right)\Psi=0$$

э

Continuum limit and simulation of Dirac equation

Dirac equation

$$\left(i\hbar\frac{\partial}{\partial t} - \hat{\mathbf{H}}_{\mathbf{D}}\right)\Psi = \left(i\hbar\frac{\partial}{\partial t} + i\hbar c\hat{\alpha} \cdot \frac{\partial}{\partial x} - \hat{\beta}mc^{2}\right)\Psi = 0$$

From DTQW

$$\psi_{x,t+1}^{\uparrow} = \cos(\theta)\psi_{x+1,t}^{\uparrow} - i\sin(\theta)\psi_{x-1,t}^{\downarrow}$$

$$\psi_{x,t+1}^{\downarrow} = \cos(\theta)\psi_{x-1,t}^{\downarrow} - i\sin(\theta)\psi_{x+1,t}^{\uparrow}$$

when $\theta = 0$, the expression in continuum limit takes the form

$$\left[i\hbar\frac{\partial}{\partial t}-i\hbar\sigma_3\frac{\partial}{\partial x}\right]\Psi(x,t)=0$$

Massless Dirac equation

David Mayer (1996) ; Fredrick Strauch (2006) ; CMC (2010)

Entanglement generation in accelerated quantum walks

Massive Dirac equation

Entanglement generation in accelerated quantum walks

Dirac Equation in 1D : For $\theta \neq 0$

Giuseppe Molfetta - Fabrice Debbasch (2013) and CMC (2013)

$$\begin{split} \mathcal{W}_{\theta} &= \mathcal{S}(\mathcal{B}_{\theta} \otimes \mathbb{1}) = \exp(-i\hat{H}(\theta)\tau) \\ \hat{H}_{\sigma_{z}}(\theta) &= \hat{R}^{\dagger}(\frac{\theta}{2})\hat{H}(\theta)\hat{R}(\frac{\theta}{2}) = -i\hat{\sigma}_{z} \cdot \frac{\partial}{\partial z} + \hat{\sigma}_{y}\sin(\theta) \\ &\left(i\hbar\frac{\partial}{\partial t} - \hat{\mathbf{H}}_{\mathbf{D}}\right)\Psi = \left(i\hbar\frac{\partial}{\partial t} + i\hbar c\hat{\alpha} \cdot \frac{\partial}{\partial x} - \hat{\beta}mc^{2}\right)\Psi = 0 \end{split}$$

Dirac Equation in 1D : For $\theta \neq 0$

Giuseppe Molfetta - Fabrice Debbasch (2013) and CMC (2013)

$$\mathcal{N}_{\theta} = \mathcal{S}(B_{\theta} \otimes \mathbb{1}) = \exp(-i\hat{H}(\theta)\tau)$$
$$\hat{H}_{\sigma_{z}}(\theta) = \hat{R}^{\dagger}(\frac{\theta}{2})\hat{H}(\theta)\hat{R}(\frac{\theta}{2}) = -i\hat{\sigma}_{z} \cdot \frac{\partial}{\partial z} + \hat{\sigma}_{y}\sin(\theta)$$
$$\left(i\hbar\frac{\partial}{\partial t} - \hat{\mathbf{H}}_{\mathbf{D}}\right)\Psi = \left(i\hbar\frac{\partial}{\partial t} + i\hbar c\hat{\alpha} \cdot \frac{\partial}{\partial x} - \hat{\beta}mc^{2}\right)\Psi = 0$$

Using different Pauli basis it can be extended to higher dimensions Scientific Reports 3, 2829 (2013) Evolution in 2D:

$$|\Psi^{sq}(t)
angle = [\hat{W}_{\sigma_{x}}(heta)\hat{W}_{\sigma_{z}}(heta)]^{t}|\Psi^{sq}_{in}
angle$$

Corresponding Hamiltonian:

$$\hat{H}^{sq}(\theta) = \hat{H}_{\sigma_x}(\theta) + \hat{H}_{\sigma_z}(\theta) = -i\left(\hat{\alpha}_x \cdot \frac{\partial}{\partial x} + \hat{\alpha}_z \cdot \frac{\partial}{\partial z}\right) + (\hat{\beta}_x + \hat{\beta}_z)\sin(\theta)$$

• Early Proposal to simplify the computation of field theories

- Divisibility of Space and Time., Yukawa, H. Atomistics and the Prog. Theor. Phys. Suppl. 37 and 38, 512 (1966)
- Quantum field theory on discrete space-time, Yamamoto, H., Phys. Rev. D 30 1127 (1984)

- Early Proposal to simplify the computation of field theories
 - Divisibility of Space and Time., Yukawa, H. Atomistics and the Prog. Theor. Phys. Suppl. 37 and 38, 512 (1966)
 - Quantum field theory on discrete space-time, Yamamoto, H., Phys. Rev. D 30 1127 (1984)
- Discretization of Dirac equation describing the relativistic motion of a spin 1/2 particle (one prominent example)
 - Confinement of quarks, Wilson, K. G., Phys. Rev. D 10, 2445 (1974)
 - Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata, Bialynicki-Birula, I., Phys. Rev. D 49, 6920 (1994)

- Early Proposal to simplify the computation of field theories
 - Divisibility of Space and Time., Yukawa, H. Atomistics and the Prog. Theor. Phys. Suppl. 37 and 38, 512 (1966)
 - Quantum field theory on discrete space-time, Yamamoto, H., Phys. Rev. D 30 1127 (1984)
- Discretization of Dirac equation describing the relativistic motion of a spin 1/2 particle (one prominent example)
 - Confinement of quarks, Wilson, K. G., Phys. Rev. D 10, 2445 (1974)
 - Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata, Bialynicki-Birula, I., Phys. Rev. D 49, 6920 (1994)

• Lattice guage theories

An introduction to lattice gauge theory and spin systems, Kogut, J. B., Rev. Mod. Phys. 51, 659 (1979)

- Early Proposal to simplify the computation of field theories
 - Divisibility of Space and Time., Yukawa, H. Atomistics and the Prog. Theor. Phys. Suppl. 37 and 38, 512 (1966)
 - Quantum field theory on discrete space-time, Yamamoto, H., Phys. Rev. D 30 1127 (1984)
- Discretization of Dirac equation describing the relativistic motion of a spin 1/2 particle (one prominent example)
 - Confinement of quarks, Wilson, K. G., Phys. Rev. D 10, 2445 (1974)
 - Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata, Bialynicki-Birula, I., Phys. Rev. D 49, 6920 (1994)

• Lattice guage theories

- An introduction to lattice gauge theory and spin systems, Kogut, J. B., Rev. Mod. Phys. 51, 659 (1979)
- Quantum cellular automaton and quantum lattice gas
 - From quantum cellular automata to quantum lattice gases, Meyer, D. A. J., Stat. Phys. 85, 551 (1996)
 - The Feynman path integral for the Dirac equation, Riazanov, G. V., Sov. Phys. JETP 6 1107-1113 (1958)

Discretization of Field (Dirac) equation \neq DQW

Entanglement generation in accelerated quantum walks

Dirac Cellular Automaton

DH from the QCA by constructing the evolution operator for a system which is (1) unitary, (2) invariant under space translation, (3) covariant under parity transformation, (4) covariant under time reversal and (5) has a minimum of two internal degrees of freedom (spinor).

Dirac Cellular Automaton

DH from the QCA by constructing the evolution operator for a system which is (1) unitary, (2) invariant under space translation, (3) covariant under parity transformation, (4) covariant under time reversal and (5) has a minimum of two internal degrees of freedom (spinor). This QCA evolution which recovers DE is named as DCA and is in the form,

$$U_{DA} = \begin{pmatrix} \alpha T_{-} & -i\beta \\ -i\beta & \alpha T_{+} \end{pmatrix} = \alpha \{ T_{-} \otimes |\uparrow\rangle \langle\uparrow| + T_{+} \otimes |\downarrow\rangle \langle\downarrow| \} - i\beta (I \otimes \sigma_{x})$$

where α corresponds to the hopping strength, β corresponds to the mass term.

Dirac Cellular Automaton

DH from the QCA by constructing the evolution operator for a system which is (1) unitary, (2) invariant under space translation, (3) covariant under parity transformation, (4) covariant under time reversal and (5) has a minimum of two internal degrees of freedom (spinor). This QCA evolution which recovers DE is named as DCA and is in the form,

$$U_{DA} = \begin{pmatrix} \alpha T_{-} & -i\beta \\ -i\beta & \alpha T_{+} \end{pmatrix} = \alpha \{ T_{-} \otimes |\uparrow\rangle \langle\uparrow| + T_{+} \otimes |\downarrow\rangle \langle\downarrow| \} - i\beta (I \otimes \sigma_{x})$$

where α corresponds to the hopping strength, β corresponds to the mass term. Associated Hamiltonian in momentum basis, produces DH,

$$H(k) = rac{a}{c au} \left(egin{array}{cc} -kc & mc^2 \ mc^2 & kc \end{array}
ight)$$

with the identification $\beta = \frac{mac}{\hbar}$, k is a eigenvalue of momentum operator.

244264 (2015)

↓ ∃ ▶ ∃ • ∩ < ∩</p>

[•] Derivation of the Dirac equation from principles of information processing, D Ariano, G. M. and Perinotti, P. Phys. Rev. A 90, 062106 (2014)

[•] Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension, Bisio, A., DAriano, G. M., Tosini, A. Annals of Physics 354,

DTQW

The general form of $C \equiv B(\theta)$ is, $C = C(\xi, \theta, \phi, \delta) = e^{i\xi} e^{-i\theta\sigma_x} e^{-i\phi\sigma_y} e^{-i\delta\sigma_z} = e^{i\xi} \times \begin{pmatrix} e^{-i\delta}(\cos(\theta)\cos(\phi) - i\sin(\theta)\sin(\phi)) & -e^{i\delta}(\cos(\theta)\sin(\phi) + i\sin(\theta)\cos(\phi)) \\ e^{-i\delta}(\cos(\theta)\sin(\phi) - i\sin(\theta)\cos(\phi)) & e^{i\delta}(\cos(\theta)\cos(\phi) + i\sin(\theta)\sin(\phi)) \end{pmatrix}$ $= e^{i\xi} \begin{pmatrix} F_{\theta,\phi,\delta} & G_{\theta,\phi,\delta} \\ -G_{\theta,\phi,\delta}^* & F_{\theta,\phi,\delta}^* \end{pmatrix}$

DTQW

The general form of $C \equiv B(\theta)$ is, $C = C(\xi, \theta, \phi, \delta) = e^{i\xi} e^{-i\theta\sigma_x} e^{-i\phi\sigma_y} e^{-i\delta\sigma_z} = e^{i\xi} \times \begin{pmatrix} e^{-i\delta}(\cos(\theta)\cos(\phi) - i\sin(\theta)\sin(\phi)) & -e^{i\delta}(\cos(\theta)\sin(\phi) + i\sin(\theta)\cos(\phi)) \\ e^{-i\delta}(\cos(\theta)\sin(\phi) - i\sin(\theta)\cos(\phi)) & e^{i\delta}(\cos(\theta)\cos(\phi) + i\sin(\theta)\sin(\phi)) \end{pmatrix}$ $= e^{i\xi} \begin{pmatrix} F_{\theta,\phi,\delta} & G_{\theta,\phi,\delta} \\ -G_{\theta,\phi,\delta}^* & F_{\theta,\phi,\delta}^* \end{pmatrix}$

The general form of the evolution operator

$$U_{QW} = e^{i\xi} \begin{pmatrix} F_{\theta,\phi,\delta} T_{-} & G_{\theta,\phi,\delta} T_{-} \\ -G_{\theta,\phi,\delta}^{*} T_{+} & F_{\theta,\phi,\delta}^{*} T_{+} \end{pmatrix} \neq \begin{pmatrix} \alpha T_{-} & -i\beta \\ -i\beta & \alpha T_{+} \end{pmatrix}$$

 $U_{QW} = F_{\theta} \left\{ \left. T_{-} \otimes \left| \uparrow \right\rangle \left\langle \uparrow \right| + T_{+} \otimes \left| \downarrow \right\rangle \left\langle \downarrow \right| \right. \right\} + \left. G_{\theta} \left\{ \left. T_{-} \otimes \left| \uparrow \right\rangle \left\langle \downarrow \right| \right) + \left. T_{+} \otimes \left| \downarrow \right\rangle \left\langle \uparrow \right| \right. \right\} \right\}$

By taking the value of $\theta \to 0$ the off-diagonal terms can be ignored and a massless DH can be recovered.

Entanglement generation in accelerated quantum walks

ミト ▲ ミト - ミー - のへ(や

Split-step QW - 2-period QW

$$C(\theta_1, \phi_1, \delta_1) = \begin{pmatrix} F_{\theta_1, \phi_1, \delta_1} & G_{\theta_1, \phi_1, \delta_1} \\ -G_{\theta_1, \phi_1, \delta_1}^* & F_{\theta_1, \phi_1, \delta_1}^* \end{pmatrix},$$
$$C(\theta_2, \phi_2, \delta_2) = \begin{pmatrix} F_{\theta_2, \phi_2, \delta_2} & G_{\theta_2, \phi_2, \delta_2} \\ -G_{\theta_2, \phi_2, \delta_2}^* & F_{\theta_2, \phi_2, \delta_2}^* \end{pmatrix}$$

and a two half-shift operators,

$$S_{-} = \begin{pmatrix} T_{-} & 0 \\ 0 & I \end{pmatrix}, \qquad S_{+} = \begin{pmatrix} I & 0 \\ 0 & T_{+} \end{pmatrix}$$

$$U_{SQW} = S_+ \Big(I \otimes C(\theta_2, \phi_2, \delta_2) \Big) S_- \Big(I \otimes C(\theta_1, \phi_1, \delta_1) \Big)$$

$$\begin{pmatrix} F_{\theta_{2},\phi_{2},\delta_{2}}F_{\theta_{1},\phi_{1},\delta_{1}}T_{-} & -G_{\theta_{2},\phi_{2},\delta_{2}}G_{\theta_{1},\phi_{1},\delta_{1}}^{*}I_{-} \\ -G_{\theta_{2},\phi_{2},\delta_{2}}F_{\theta_{1},\phi_{1},\delta_{1}}I_{-} & F_{\theta_{2},\phi_{2},\delta_{2}}G_{\theta_{1},\phi_{1},\delta_{1}}^{*}T_{+} \end{pmatrix}$$

 $\left. \begin{array}{l} F_{\theta_{2},\phi_{2},\delta_{2}}G_{\theta_{1},\phi_{1},\delta_{1}} T_{-} + G_{\theta_{2},\phi_{2},\delta_{2}}F_{\theta_{1},\phi_{1},\delta_{1}}^{*} I \\ - G_{\theta_{2},\phi_{2},\delta_{2}}^{*}G_{\theta_{1},\phi_{1},\delta_{1}} I + F_{\theta_{2},\phi_{2},\delta_{2}}F_{\theta_{1},\phi_{1},\delta_{1}}^{*} T_{+} \end{array} \right)$

SSQW $(\theta_1 = 0, \theta_2 = \pi/4) = \text{DCA } \alpha = \beta = \frac{1}{\sqrt{2}}$ Substituting $\theta_1 = \phi_1 = \delta_1 = \delta_2 = 0$ we get,

$$U_{SQW} = \begin{pmatrix} \cos(\theta_2)T_- & -i\sin(\theta_2)I \\ -i\sin(\theta_2)I & \cos(\theta_2)T_+ \end{pmatrix}$$

which is in the same form as U_{DA} where $\beta = \sin(\theta_2) \equiv \frac{mca}{\hbar}$ and $\alpha = \cos(\theta_2)$.

DCA and SS-QW cont.

From the unitary operator we will recover the DH in the form,

$$H_{SQW} = -\frac{\hbar \cos^{-1} \left(\cos(\theta_2) \cos\left(\frac{ka}{\hbar}\right)\right)}{\tau \sqrt{1 - \left(\cos(\theta_2) \cos\left(\frac{ka}{\hbar}\right)\right)^2}} \left[\cos(\theta_2) \sin\left(\frac{ka}{\hbar}\right) \left(\begin{array}{cc}1 & 0\\0 & -1\end{array}\right) - \sin(\theta_2) \left(\begin{array}{cc}0 & 1\\1 & 0\end{array}\right)\right]$$

For smaller mass, $\theta_2 \approx 0$ and for smaller momentum, $k \approx 0$, $\sin \theta_2 \approx \theta_2, \cos \theta_2 \approx 1, \sin \left(\frac{ka}{\hbar}\right) \approx \frac{ka}{\hbar}, \cos \left(\frac{ka}{\hbar}\right) \approx 1.$

$$H_{SQW} \approx -\frac{a}{\tau} k \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + \frac{\hbar}{\tau} \theta_2 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

which is in a form of one-dimensional Dirac equation for a $\frac{1}{2}$ spinor, with the identifications, $\frac{a}{\tau} = c$ and $\frac{\hbar\theta_2}{\tau} = mc^2$, so, $m = \frac{\hbar\theta_2\tau}{a^2}$.

Scientific Reports 6, 25779 (2016)

$$\begin{bmatrix} \frac{\partial}{\partial t} - \cos(\theta_2) \begin{bmatrix} \cos(\theta_1) & -i\sin(\theta_1) \\ i\sin(\theta_1) & -\cos(\theta_1) \end{bmatrix} \frac{\partial}{\partial x} - \begin{bmatrix} \cos(\theta_1 + \theta_2) - 1 & -i\sin(\theta_1 + \theta_2) \\ -i\sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) - 1 \end{bmatrix} \begin{bmatrix} \psi_{x,t}^{\downarrow} \\ \psi_{x,t}^{\downarrow} \end{bmatrix} = 0$$

• Setting $\theta_1 = 0$ and θ_2 to a small value (mass of sub-atomic particles) :

$$i\hbar \left[\frac{\partial}{\partial t} - \left(1 - \frac{\theta_2^2}{2} \right) \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \frac{\partial}{\partial x} + i\theta_2 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right] \begin{bmatrix} \psi_{x,t}^{\downarrow} \\ \psi_{x,t}^{\downarrow} \end{bmatrix} \approx 0$$

Setting $\cos(\theta_1 + \theta_2) = 1$:

$$i\hbar \begin{bmatrix} \frac{\partial}{\partial t} - \cos(\theta_2) \begin{bmatrix} \cos(\theta_1) & -i\sin(\theta_1) \\ i\sin(\theta_1) & -\cos(\theta_1) \end{bmatrix} \frac{\partial}{\partial x} \end{bmatrix} \begin{bmatrix} \psi_{x,t}^{\downarrow} \\ \psi_{x,t}^{\uparrow} \end{bmatrix} = 0$$

Setting θ_1 to be extremely small and $\cos(\theta_1 + \theta_2) = 1$:

$$i\hbar egin{bmatrix} \partial \partial dt &- \cos(heta_2) egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} rac{\partial}{\partial x} \end{bmatrix} egin{bmatrix} \psi^{\downarrow}_{\mathbf{x},t} \ \psi^{\downarrow}_{\mathbf{x},t} \end{bmatrix} pprox 0$$

Bounds on the dynamics of periodic quantum walks and emergence of gapless and gapped Dirac equation

N. Pradeep Kumar, Radhakrishna Balu, Raymond Laflamme and CMC, Phys. Rev. A 97, 012116 (2018)

3

Accelerating quantum walks

Replace θ in coin operation by $\theta(t) = \frac{\pi}{2}f(t)$ where $e^{-at} \ge f(t) \ge 0$.

Entanglement generation in accelerated quantum walks

< 注→ 注:

Accelerating quantum walks

Replace θ in coin operation by $\theta(t) = \frac{\pi}{2}f(t)$ where $e^{-at} \ge f(t) \ge 0$.

Entanglement generation in accelerated quantum walks

э

$Entanglement \ generation \ from \ accelerated \ QW$

• Entanglement

$$\begin{split} |\Psi\rangle_{AB} &= |a\rangle_A \otimes |b\rangle_B = |a\rangle_A |b\rangle_B \\ |a\rangle_A |b\rangle_B &\to \sum c_{ab} |a\rangle_A |b\rangle_B \\ |\Psi\rangle_{AB} &= \alpha |0\rangle_A |0\rangle_B \pm \beta |1\rangle_A |1\rangle_B \end{split}$$

Entanglement generation in accelerated quantum walks

Entanglement generation from accelerated QW

• Entanglement

$$\begin{split} |\Psi\rangle_{AB} &= |a\rangle_A \otimes |b\rangle_B = |a\rangle_A |b\rangle_B \\ |a\rangle_A |b\rangle_B &\to \sum c_{ab} |a\rangle_A |b\rangle_B \\ |\Psi\rangle_{AB} &= \alpha |0\rangle_A |0\rangle_B \pm \beta |1\rangle_A |1\rangle_B \end{split}$$

 $|\Psi_{in}\rangle = |00\rangle \rightarrow$ accelerated QW on two particle \rightarrow entangled state coin operation

$$C[\theta(t)] = \begin{pmatrix} \cos[\theta(t)] & 0 & 0 & -i\sin[\theta(t)] \\ 0 & \cos[\theta(t)] & -i\sin[\theta(t)] & 0 \\ 0 & -i\sin[\theta(t)] & \cos[\theta(t)] & 0 \\ -i\sin[\theta(t)] & 0 & 0 & \cos[\theta(t)] \end{pmatrix}$$

shift-operator

$$S^1 \otimes S^2$$

Entanglement Generation

Standard QW

Entanglement generation in accelerated quantum walks

æ

Entanglement Generation

Split-step QW

$\bullet~\mbox{QW}$ can be used to generate entanglement between the massive particles

THANK YOU

Entanglement generation in accelerated quantum walks

æ