From Macroscopic Superpositions to Quantum Gravity

Sougato Bose *University College London*

If you *decohere* (kill superpositions) nonclassical features of quantum mechanics go away. Even old quantum mechanics: the right difference between energy levels obtained only through a superposition of localized states.

Such superpositions are also called GHZ states or NOON states or Schroedinger Cat States

Why do we need to stretch the domain of the superposition principle?

(a) We need to understand whether it has any boundaries or whether it holds at all scales (there are strong beliefs on either side $-$ better to be agnostic and look for experiments).

(b) It is always a winning game: If we can extend one aspect of the domain, we can extend certain other aspects as well (i.e., use those tools to stretch quantum attributes further. Eg. Applications to testing **quantum indistinguishability** and **quantum** gravity).

(c) Obvious sensing applications.

Feynman, 1954: Motivation – to argue about the necessity to quantize gravity: " *if you believe in* quantum mechanics up to any level then you have to believe in gravitational quantization in *order to describe this experiment."*

"The only way to avoid quantization of gravity can in principle no longer play a role beyond a certain point in the chain, and you are not allowed to use quantum mechanics on such a large scale. But I would say that this is the only 'out' *if you don't want to quantize gravity."*

• Is Gravity a Quantum Entity?

• If Gravity Mediates Entanglement It must be quantum entity

How to create the macroscopic superpositions (earliest idea is Schroedinger's Nucleo-Biological mechanism). Coherent ancilla induced.

D. Home & S. Bose, Physics Letters A 217, 209 (1996); Based on quantum erasure setup of Greenberger and Yasin.

Superpositions of States of a Macroscopic Object using an Ancillary Quantum System: S. Bose, K. Jacobs, P. L.

Ancilla-only

probing: Difficult to satisfy a skeptical person: Alternatives --Asadian, Brukner, Rabl. PRL 2013

Knight, Phys. Rev. A 59 (5), 3204 (1999). [arXiv: 1997]. *Decoherence/partial coherence is used to certify superposition.*

Armour, Blencowe, Schwab, PRL 2002. Marshall, Simon, Penrose, Bouwmeester, PRL 2003. *Decoherence & Recoherence is used to certify superpositions*

Bose, PRL 2006.

Ramsey Interferometry with a Levitated Thermal Mesoscopic Object

Diamond bead trapped in an optical trap. The bead contains a spin-1 NV center.

No cavity, no cooling.

Exploits Spin-Motion coupling mechanism proposed by Rabl et.al. 2009.

Initial State:

 β > | 0 >

Ramsey Interferometry with a Levitated Thermal Mesoscopic Object

Diamond bead trapped in an optical trap. The bead contains a spin-1 NV center.

No cavity, no cooling.

Step 1:

 $\left|\beta\right\rangle\left(\left|+1\right\rangle+\left|+1\right\rangle\right)$

Ramsey Interferometry with a Levitated Thermal Mesoscopic Object

Diamond bead trapped in an optical trap. The bead contains a spin-1 NV center.

Time Evolution:

 $e^{i\phi_+(t)}\left|\beta_+(t)\right\rangle +1$ + $e^{i\phi_-(t)}\left|\beta_-(t)\right\rangle -1$

Measuring the relative phase shift between superposed components

Step 3: apply the same very rapid mw pulse as in step 1,

The presence of $\Delta\phi$ gives a modulation of the population of $|S_z=0\rangle$ according to:

$$
|+1\rangle + e^{i\Delta\phi}|-1\rangle \rightarrow \cos\frac{\Delta\phi}{2}|0\rangle + ...
$$

For $m=10^{\circ}10$ amu (nano-crystal), superposition over 1 pm, the phase \sim O(1)

- M. Scala, M. S. Kim, G. W. Morley, P. F. Barker, S. Bose, Phys. Rev. Lett. **111**, 180403 (2013).
- Comment: F. Robicheaux, Phys. Rev. Lett. 118, 108901 (2017).
- Response: S. Bose et al, Phys. Rev. Lett. 118, 108902 (2017).

How can we increase the scale of the superposition?

Free particle in an inhomogeneous magnetic field (acceleration +*a* or –*a*)

$$
x_{\sigma}(t, j) = x_{j}(0) \pm \frac{1}{2}at^{2}
$$
\n
$$
= \frac{a\tau}{4}(t - \frac{\tau}{4}) \mp \frac{1}{2}a(t - \frac{\tau}{4})^{2}
$$
\n
$$
= \frac{1}{2}a(\frac{\tau}{4})^{2} \mp \frac{a\tau}{4}(t - \frac{3\tau}{4}) \pm \frac{1}{2}a(t - \frac{3\tau}{4})^{2}
$$
\n
$$
x_{\sigma}(t, j) = \frac{1}{2}a(\frac{\tau}{4})^{2} \mp \frac{a\tau}{4}(t - \frac{3\tau}{4}) \pm \frac{1}{2}a(t - \frac{3\tau}{4})^{2}
$$

 τ

Free flight scheme able to achieve 100 nm separation among superposed components: $\vert -1 \rangle + \vert -1 \rangle$

$$
|\Psi(t_3)\rangle = \frac{1}{\sqrt{2}}|\psi(t_3)\rangle(|+1\rangle + e^{-i\phi_g}|-1\rangle)
$$

$$
\langle x|\psi(t_3)\rangle = e^{-ip_0x}e^{-[(x-x_0-p_0t_3/m-g\cos\theta t_3^2/2)^2/2(\sigma')^2]}
$$

$$
\phi_g = (1/16\hbar)gt_3^3g_{\text{NV}}\mu_B(\partial B/\partial x)\cos\theta
$$

$$
\Delta x_M = 2 \times \frac{1}{2m}g_{\text{NV}}\mu_B \frac{\partial B}{\partial x}(t_3/4)^2
$$

 $10^{\text{A}}10$ amu mass can be placed in a superposition of states separated by 100 nm.

Towards Testing Quantum Gravity

A Schematic of two matter-wave interferometers near each other

Consider two neutral test masses *held* in a superposition, each exactly as a path encoded qubit (states |L> and |R>), near each other.

$$
\begin{array}{ccc}\n\overbrace{\Delta x} & \overbrace{\Delta x} & \overbrace{\Delta x} & \text{If they} \\
\overbrace{\begin{matrix}\begin{matrix}m_1\\k\end{matrix}\end{matrix}} & \overbrace{\begin{matrix}m_1\\m_2\end{matrix}} & \overbrace{\begin{matrix}m_2\\m_2\end{matrix}} & \text{through the} \\
\overbrace{\begin{matrix}m_1\\k\end{matrix}} & |R\rangle_1 & |L\rangle_2 & |R\rangle_2 & \text{force} \\
\overbrace{\begin{matrix}\end{matrix}} & |\overbrace{\begin{matrix}1\\k\end{matrix}} & |\overbrace{\begin{matrix}}l\rangle_1+|R\rangle_1\end{matrix}} & |\overbrace{\begin{matrix}}l\rangle_2+|R\rangle_2\end{matrix}} \\
= \frac{1}{2}(|L\rangle_1|L\rangle_2 + |L\rangle_1|R\rangle_2 + |R\rangle_1|L\rangle_2 + |R\rangle_1|R\rangle_2 \\
\rightarrow |\Psi(t=\tau)\rangle_{12} = \frac{1}{2}(e^{i\phi_{LL}}|L\rangle_1|L\rangle_2 + e^{i\phi_{LR}}|L\rangle_1|R\rangle_2 \\
+ e^{i\phi_{RL}}|R\rangle_1|L\rangle_2 + e^{i\phi_{RR}}|R\rangle_1|R\rangle_2),\n\end{array}
$$

where

$$
\phi_{RL} \sim \frac{Gm_1m_2\tau}{\hbar(d - \Delta x)}, \phi_{LR} \sim \frac{Gm_1m_2\tau}{\hbar(d + \Delta x)},
$$

$$
\phi_{LL} = \phi_{RR} \sim \frac{Gm_1m_2\tau}{\hbar d}
$$

If they interact *only* through the gravitational force

$$
|\Psi(t=\tau)\rangle_{12} = \frac{1}{2} (e^{i\phi_{LL}}|L\rangle_{1}|L\rangle_{2} + e^{i\phi_{LR}}|L\rangle_{1}|R\rangle_{2}
$$

+ $e^{i\phi_{RL}}|R\rangle_{1}|L\rangle_{2} + e^{i\phi_{RR}}|R\rangle_{1}|R\rangle_{2})$
= $\frac{e^{i\phi_{RR}}}{\sqrt{2}} \{ |L\rangle_{1} \frac{1}{\sqrt{2}} (|L\rangle_{2} + e^{i\Delta\phi_{LR}}|R\rangle_{2})$
+ $|R\rangle_{1} \frac{1}{\sqrt{2}} (e^{i\Delta\phi_{RL}}|L\rangle_{2} + |R\rangle_{2}) \}$
The above state is maximally entangled when $\Delta\phi_{LR} + \Delta\phi_{RL} \sim \pi$.

we have

 $\Delta\phi_{RL} \sim \frac{Gm_1m_2\tau}{\hbar(d-\Delta x)} >> \Delta\phi_{LR}, \Delta\phi_{LL}, \Delta\phi_{RR}$

For

$$
d - \Delta x < < d, \Delta x,
$$

we have

$$
\Delta \phi_{RL} \sim \frac{Gm_1m_2\tau}{\hbar(d - \Delta x)} >> \Delta \phi_{LR}, \Delta \phi_{LL}, \Delta \phi_{RR}
$$

For mass ~ 10 ^{\land}(-14) kg (microspheres), separation at closest approach of the masses \sim 200 microns (to prevent Casimir interaction), **time ~ 1 seconds**, gives: Scale of superposition ~ 100 microns, **Delta phi** ${RL}$ ~ 1

Planck's Constant fights Newton's Constant!

Spin Entanglement Witness:

Step 1: SG splitting:

$$
|C\rangle_j \frac{1}{\sqrt{2}}(|\uparrow\rangle_j + |\downarrow\rangle_j) \rightarrow \frac{1}{\sqrt{2}}(|L,\uparrow\rangle_j + |R,\downarrow\rangle_j)
$$

Step 2: Gravitational interaction induced phase accumulation on the joint states of masses 1 &2 (*mapped to nuclear spins*)

Step 3: SG recombination:
$$
|L,\uparrow\rangle_j\rightarrow|C,\uparrow\rangle_j,\,\,|R,\downarrow\rangle_j\rightarrow|C,\downarrow\rangle_j
$$

Step 4: Witness spin entangled state:

$$
|\Psi(t = t_{\text{End}})\rangle_{12} = \frac{1}{\sqrt{2}} \{ |\uparrow\rangle_{1} \frac{1}{\sqrt{2}} (|\uparrow\rangle_{2} + e^{i\Delta\phi_{LR}} |\downarrow\rangle_{2})
$$

$$
+ |\downarrow\rangle_{1} \frac{1}{\sqrt{2}} (e^{i\Delta\phi_{RL}} |\uparrow\rangle_{2} + |\downarrow\rangle_{2})\} |C\rangle_{1} |C\rangle_{2}
$$

through the correlations:

$$
\mathcal{W} = |\langle \sigma_x^{(1)} \otimes \sigma_z^{(2)} \rangle - \langle \sigma_y^{(1)} \otimes \sigma_z^{(2)} \rangle|.
$$

How is this related to Quantum Gravity?

Must be quantum if the spins in the masses get entangled

Challenges (technical):

 \sim 200 micron superposition:

Literally pull one of the spin components?

Other demands:

1. Spin the masses to **average charge** multipoles.

2. Internal cooling to 77 K, **External pressure** 10^(-15) Pascal, **0.15 K temperature**

What does it imply in the context of **low energy effective field theory**? $\mathcal{H} = \sum m_j c^2 a_{j,\xi}^{\dagger} a_{j,\xi} + \sum \hbar \omega_k b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}$ $-\hbar \sum g_{j,\mathbf{k}} a_{j,\xi}^{\dagger} a_{j,\xi} (b_{\mathbf{k}} e^{i\mathbf{k}.\mathbf{r}_{j,\xi}} + b_{\mathbf{k}}^{\dagger} e^{-i\mathbf{k}.\mathbf{r}_{j,\xi}})$ Coherent States of the i_{\cdot} k, ξ gravitational Superposition field $|\Psi(t)\rangle_{\text{mat+grav}} = \frac{1}{2} \sum_{\xi, \xi' \in \{L, R\}} a_{1, \xi}^{\dagger} a_{2, \xi'}^{\dagger} |0\rangle$ $\otimes \prod e^{i\frac{(g_{1,\mathbf{k}}e^{i\mathbf{k}.\mathbf{r}_{1,\xi}}+g_{2,\mathbf{k}}e^{i\mathbf{k}.\mathbf{r}_{2,\xi^{\prime}}})^{2}}{\omega_{k}}}t_{\left|\mathcal{O}_{\mathbf{k},\xi,\xi^{\prime}}\right>}$ $\bf k$ $\frac{g_{1,\mathbf{k}}g_{2,\mathbf{k}}}{\omega_{k}} \propto \frac{1}{k^{2}}$ $g_{j,\mathbf{k}} = m_j c^2 \sqrt{\frac{2\pi G}{\hbar c^3 kV}}$

Superpositions of *distinct (?)* coherent states of the gravitational field

Summary

Large mass, small scale of superpositions:

Stern-Gerlach based Ramsey interferometry in a trap:

M. Scala, M. S. Kim, G. W. Morley, P. F. Barker, S. Bose, Phys. Rev. Lett. **111, 180403 (2013).** [related work by Tongcang Li et. al.]

Large mass, large scale superpositions:

Free flight Stern-Grlach based Ramsey interferometry:

C. Wan, M. Scala, G. W. Morley, ATM. A. Rahman, H. Ulbricht, J. Bateman, P. F. Baker, S. Bose, M. S. Kim, Phys. Rev. Lett. 117, 143003 (2016).

Spin Entanglement Witness for Quantum Gravity:

S. Bose, A. Mazumdar, G. W.Morley, H. Ulbricht, M. Toros, M. Paternostro, **P. F. Barker, A. Geraci, M. S. Kim, G. J. Milburn, Phys. Rev. Lett. 119, 240401 (2017). Related work:** C. Marletto and V. Vedral

Phys. Rev. Lett. 119, 240402 (2017)