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Nonclassical correlations between parts
of a system as well as those between the
system, among its parts, to its immediate 
environment and with the rest of the 
universe. 
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Figure 3. 20 ns results: Bloch sphere representation of the process as seen from
two different viewpoints (labelled (i) and (ii)). (a) Process from experimental
data, χ. (b) Process obtained from physically valid χ̃.

Process matrix EA

Experimental

⎛

⎜⎜⎝

1.0000 0 0 0
0.0626 0.6552 −0.0225 −0.1198
0.0448 0.0287 0.7309 −0.0226
0.0138 −0.0143 0.0878 0.9843

⎞

⎟⎟⎠

Reconstructed

⎛

⎜⎜⎝

1.0000 0 0 0
0.0532 0.6798 −0.0312 −0.1093
0.0420 0.0206 0.7051 −0.0227
0.0070 0.0001 0.0916 0.9410

⎞

⎟⎟⎠

An unphysical process, however, can lead to an unphysical ρE , possibly resulting in a process
fidelity which is greater than one. The application of the preceding fidelity-based distance
measures can, therefore, produce nonsensical results. In such cases it is necessary to use other
techniques in order to estimate the disparity between χ and χ̃ for example. If one defines
X = χ − χ̃, then possible measures are the matrix p-norms (p = 1, 2, ∞) of X and the Frobenius
norm of X (∥X∥Fro) as well as the trace distance (Dpro).

New Journal of Physics 8 (2006) 33 (http://www.njp.org/)

Howard, M., Twamley, J., Wittmann, C., Gaebel, T., Jelezko, F., & Wrachtrup, J. (2006). Quantum process 
tomography and Linblad estimation of a solid-state qubit. New Journal of Physics, 8(3), 33–33.



Open quantum dynamics

Open quantum dynamics

Isolated quantum systems
Schrödinger equation , Unitary evolution
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Open quantum systems
Master equations ⌦ Dynamical maps

∂r

∂ t
= Lr ; r ! Fr

Dynamical maps take density matrices to density matrices

Linear and trace preserving

Preserves Hermiticity of r

Maps positive matrices to positive matrices

06 Jul 2017 2 / 41⇢rs �! Ars;r0s0⇢r0s0 = (A⇢)rs

Ars;r0s0(t) $ Brr0;ss0(t)

The ‘B’ Matrix form is often more convenient to use

The B-Matrix is in itself Hermitian



The operator sum form
Operator sum form of B

Since B is hermitian, it can be written in terms of its eigenvalues and
eigenvectors.
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B is then a completely positive map

06 Jul 2017 4 / 41



Too restrictive?
Too restrictive?

Is complete positivity too restrictive a condition on allowable varieties or
open quantum dynamics?

One may reasonably doubt this argument. It is very powerful magic: W sits apart
from S+R and does absolutely nothing; by doing so, it forces the motion of S to be
completely positive with dramatic physical consequences such as T

2

 2T
1

for
exponential two-state relaxation.

� P. Pechukas, Phys. Rev. Lett. 73, 1060 (1994)

There is indeed a rich story to be told going beyond the confines of
completely positive maps

06 Jul 2017 6 / 41



Maps as contractions
Maps as contractions

Dynamical maps may be viewed as contractions of the unitary evolution of
an extended system:

BtrS = trE [UtRSE(0)U
†

t ]

where RSE(0) is the density matrix representing the combined initial state
of the system (S) and the environment (E)

The environment needs to be at most N2 dimensional to get any map

If RSE(0) = rS ⌦hE then Bt is completely positive

What if RSE(0) is entangled?

What if RSE(0) is a generic separable state?

06 Jul 2017 8 / 41
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Making Coffee

When will the coffee be cool enough to
drink for different temperature/pressure
and other settings of the preparation
device.
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Making Coffee



Making Coffee



Making Coffee

The dogma of CP maps asserts that 
one should not be asking questions like
this where the preparation device
influences the environment of the
open system as well.



Quantum Process Tomography

Quantum Process

⇢f = A⇢i

The d4 x d4 matrix A represents the process to be reconstructed
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Quantum Process Tomography
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Quantum Process Tomography
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2. Evolve



Quantum Process Tomography

1. Prepare
2. Evolve
3. Read-Out



Quantum Process Tomography

1. Prepare
2. Evolve
3. Read-Out
4. Reconstruct



The preparation and CP
• For CP reduced dynamics, the initial joint state of the system (S) and 

its environment (E) should be 

• Here every state of S is associated with fixed state of E

• The preparation pulse in our example can very well affect E. 

• So each state of S that is prepared can potentially be associated with 
distinct states of E initially (The two could even be entangled!) 

• Quantum process tomography is then unlikely to yield CP reduced 
dynamics

⇢SE = ⇢S ⌦ ⌘E



The reference system
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The reference system

• The reference system can share prior entanglement with S and E or 
both.

• S and E can be entangled as well

• Is there a well defined map in this case? 
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The reference system

• The reference system can share prior entanglement with S and E or 
both.

• S and E can be entangled as well

• Is there a well defined map in this case? 

S

E
R

t > 0
The preparation 

device?



Point transformations and Maps
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Point transformations and Maps

⇢1S(t) = tr[U⇢1S ⌦ ⇢EU
†]

Point Transformation



Point transformations and Maps



Point transformations and Maps

Map



Process Tomography Again

• Sufficient number of linearly independent initial states 

• All states in compact, dense set undergoing the same 
transformation



Process Tomography Again

• Sufficient number of linearly independent initial states 

• All states in compact, dense set undergoing the same 
transformation



A natural set to define a map
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A natural set to define a map
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A natural set to define a map

• The steering set on SE induced by measurements on R

S

E
R

SSE(⇢RSE) :=

⇢
TrR[(PR ⌦ 1S ⌦ 1E)⇢RSE]

Tr[(PR ⌦ 1S ⌦ 1E)⇢RSE ]

�



Short Markov Chains and DPI
• Buscemi showed that if the initial RSE state forms a short Markov 

chain and if the SE, unitary dynamics satisfy the quantum data 
processing inequality, then the reduced dynamics on S is CP and 
defined on the reduced steering set of S. 

• The reduced steering set is obtained by tracing out E from the 
steering set of SE due to R starting from a single state of the RSE 
tripartite system

F. Buscemi, Physical Review Letters 113, 140502 (2014)



Again restrictive assumptions
• The assumptions that RSE form a short Markov chain and the 

dynamics satisfy the quantum DPI are not physically mandated or 
justified. 

• The reduced dynamics may be Not Completely Positive but still it is 
well defined on a dense set. 

• The reduced steering set is the domain of action of the map

• Steering gives an aesthetically pleasing and comprehensive solution 
of the puzzle of how an appropriate state of E gets associated with 
each set of S so that every state of S in the domain gets acted upon 
by the same reduced dynamics



Three qubit example

⇢RSE =
1

8
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The parameters of the three qubit state can be packaged as



Steering set on SE

Ê = Xµ�
µ
R, µ = 1, . . . , 4

⇢XSE =
1

4

�
IS ⌦ IE + eXj �j

S ⌦ IE + eX3+kIS ⌦ �k
E

+ eX6+3(j�1)+k�
j
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E

�
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1

2
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~eX = ⇥X

S. Jevtic, M. Pusey, D. Jennings, and T. Rudolph, Phys. Rev. Lett. 113, 020402 (2014)

Reduced steering set of S



Joint unitary evolution of S and E

⇢XS =
1

2

⇥
IS +⇥j,µXµ�

j
S

⇤

⇢XS ! e⇢XS =
1

2

⇥
IS + e⇥j,µXµ�

j
S

⇤

e⇥j,µ = ul0
j0⇥l,µ + u0k

j0⇥3+k,µ + ulk
j0⇥6+3(l�1)+k,µ

Linta Joseph and Anil Shaji, arXiv 1702.08718 

U�µ
S ⌦ �⌫

EU
† = uµ,⌫

↵,��
↵
S ⌦ ��

E



Joint unitary evolution of S and E

⇢XS =
1

2

⇥
IS +⇥j,µXµ�

j
S

⇤

⇢XS ! e⇢XS =
1

2

⇥
IS + e⇥j,µXµ�

j
S

⇤

e⇥j,µ = ul0
j0⇥l,µ + u0k

j0⇥3+k,µ + ulk
j0⇥6+3(l�1)+k,µ

• The map is independent of X and so the same on all the states in 
the reduced steering set of S

Linta Joseph and Anil Shaji, arXiv 1702.08718 
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S ⌦ ��

E



Discussion
• Approaching the problem using steering states provides a clear, 

elegant and aesthetically pleasing resolution to the question 
whether there can be a consistent mathematical definition of 
NCP dynamics with an unambiguous physical interpretation.

• a given unitary acting on SE steering set will induce the same 
transformation on all the states in the reduced set of S 

• The set of states on which the transformation acts is dense and 
compact. Operationally this also means that one can 
reconstruct the map from observing the transformation 
occurring to  a sufficient, finite number of linearly independent 
initial states of S



Discussion
• Since the steering set of SE from which the domain of action of 

the maps follows is itself derived from a single state of RSE, 
there is no longer any mystery in having the initial state of the 
environment dependent on the state of S

• When S is a single quantum system and when we are 
concerned about its open dynamics over short time periods, its 
immediate environment is more often than not in itself 
microscopic or mesoscopic. The action of preparing an initial 
state of E not affecting the state of E in any way is an 
exceptional scenario in this case and in this sense so is CP 
reduced dynamics of the system.



Preparing devices
• An ideal preparation device does not interact with E. It can ‘steer’ S 

to any state in its state space and so there is no SE entanglement or 
nonClassical correlations. CP dynamics is obtained with the entire 
state space as its domain. 

• Buscemi’s measuring device interacts with S but not with E. 
However SE can be entangled/correlated. Reduced dynamics is CP 
on the steering set if the quantum DPI holds. 

• In general R can interact with S and E, and even during the process 
reconstruction, R can continue to interact with E. The reduced 
dynamics is not CP and the steering set is the domain. 



The reduced steering set

The reduced steering set of S obtained from that of SE generated
from a tripartite RSE state with RS and RE entanglements
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Figure 5. 80 ns results: Bloch sphere representation of the process as seen from
two different viewpoints (labelled (i) and (ii)). (a) Process from experimental
data, χ. (b) Process obtained from physically valid χ̃.

Process matrix EA

Experimental

⎛

⎜⎜⎝

1.0000 0 0 0
0.0442 0.2359 −0.1001 −0.0757
0.0791 −0.0947 0.3770 −0.1163
0.0434 0.0487 −0.0461 0.9554

⎞

⎟⎟⎠

Reconstructed

⎛

⎜⎜⎝

1.0000 0 0 0
0.0503 0.2726 −0.0290 −0.0752
0.0834 −0.0357 0.3291 −0.1038
0.0302 0.0457 −0.0495 0.8984

⎞

⎟⎟⎠

particular choice of basis means that χ is equal to the Choi matrix C [6, 34]

χ = C =
d−1∑

i,j=0

E(|i⟩⟨j|) ⊗ |i⟩⟨j| (27)

and proportional to the characteristic state ρE for the process:

χ = dρE = d(E ⊗ Id)|#⟩⟨#|. (28)

New Journal of Physics 8 (2006) 33 (http://www.njp.org/)

It is this property which we use to check the physicality of a process E; if the χ matrix 
reconstructed from experimental data has negative eigenvalue(s) then this indicates that 
noise and/or finitely sampled expectation values has caused the output data to infer an 
unphysical process. To overcome this problem, a physical matrix χ  ̃  is found which is as 
close as possible to the original χ in some sense. 

Howard, M., Twamley, J., Wittmann, C., Gaebel, T., Jelezko, F., & Wrachtrup, J. (2006). Quantum process 
tomography and Linblad estimation of a solid-state qubit. New Journal of Physics, 8(3), 33–33.



NCP and the quantum DPI

⌫ = max(0, I(R : S0
)� I(R : S))

Bneg =
X

j

|�j |� 2



Conclusion
• The reference system in the form of either a preparation device or 

the rest of the universe is a ubiquitous and unavoidable element in 
the analysis of any quantum process tomography experiment. 

• It is not surprising that quantum process tomography experiments 
often lead to NCP dynamics 

• The delocalized nature of quantum information gives the reference 
system also an important role in the open dynamics.  



Thank You


