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History

Quantum mechanics is the finest theory of nature that explains behavior of atoms
and subatomic particles.

It has been enormously successful in giving correct results in practically every
situation.

In spite of the overwhelming success of quantum mechanics, the foundations of
the subject contain many paradoxes.
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History

(Heisenberg) Matrix mechanics [Zeitschrift für Physik, 33, 879-893 (1925)].

(Schrödinger) wave mechanics. [ E. Schrödinger, Ann. der Physik, 384, 361-376
(1926)].

The wave mechanics appealed to many physicists. It is equivalent to matrix
mechanics.

Matrix mechanics was difficult to visualize.

Intense debate between the alternative versions of quantum mechanics formed
the background for the development of uncertainty relation and the Copenhagen
Interpretation.
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History

I knew of [Heisenberg’s] theory, of course, but I felt discouraged, not to say
repelled, by the methods of transcendental algebra, which appeared difficult to
me, and by the lack of visualizability.
-Schrödinger in 1926

The more I think about the physical portion of Schödinger’s theory, the more
repulsive I find it...What Schrödinger writes about the visualizability of his theory
’is probably not quite right,’ in other words it’s crap.
–Heisenberg, writing to Pauli (1926)
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History

It is meaningless to ascribe any properties or even existence to anything that has
not been measured.

Bohr: “Nothing is real unless it is observed”.

Einstein: It is the theory which decides what we can observe.

I believe that the existence of the classical “path” can be formulated as follows:
The ”path” comes into existence only when we observe it.
–Heisenberg, in uncertainty principle paper (1927)
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Uncertainty Principle

(1927) Heisenberg’s uncertainty principle is a fundamental result in quantum
physics and gives profound insights to quantum world.

Minimum amount of unavoidable momentum disturbance and inaccuracy in
position measurement ∆x∆p ∼ h

However, he did not give a precise definition for ∆x and ∆p.

One can never know with perfect accuracy both of those two important factors
which determine the movement of one of the smallest particle–its position and its
velocity.
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Uncertainty Relation

Robertson Uncertainty Relation (1927): Bounds the product of the variances for
two observables through the expectation value of the commutator

∆A2∆B2 ≥ |
1
2
〈ψ|[A,B]|ψ〉|2 (1)

There is a limit to the precision with which a pair of non-commuting observables
can be measured.

Robertson and Kennard (1927) relation ∆x∆p ≥ ~
2 .

More precisely the position of a particle is determined, the less precisely its
momentum can be known.
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Uncertainty Principle vs Relation

Uncertainty principle is different than uncertainty relation. Both appear in similar
formulations that even many practicing physicists tend to confuse.

Heisenberg version is about uncertainty principle: in observing a quantum particle
we inevitably disturb it.

When we measure the position of an electron with an error ∆x, we disturb the
momentum of the electron by the amount ∆p.
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This (UR) inequality shows that the fluctuation exists regardless whether we
measur or not–preparation uncertainty.

This inequality does not say anything about what happens when a measurement
is performed.

Robertson-Kennard formulation is therefore totally different from Heisenberg’s.

But many physicists, probably including Heisenberg himself, have been under the
impression that both formulations describe same phenomenon.
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Introduction

Quantum mechanics has many distinguishing features from classical mechanics
in the microscopic world.

Existence of incompatible observables lead to uncertainty relations.

Owing to the seminal works by Heisenberg, Robertson and Schrödinger, lower
bounds were shown to exist for the product of variances of two non-commuting
observables.

Entropic uncertainty relations also capture the essence of quantum uncertainty
and the incompatibility between two observables, but in a state-independent way.
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Uncertainty relations

With the advent of quantum information theory, uncertainty relations in particular,
have been established as important tools for a wide range of applications.

Further, it has been used in entanglement detection, security analysis of quantum
key distribution in quantum cryptography, quantum metrology and quantum speed
limit.

In most of these areas, particularly, in quantum entanglement detection and
quantum metrology or quantum speed limit, where a small fluctuation in an
unknown parameter of the state of the system is needed to detect,
state-dependent relations may be useful.

Thus, a focus on the study of the state dependent, tighter uncertainty and the
reverse uncertainty relations based on the variance is important.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

With the advent of quantum information theory, uncertainty relations in particular,
have been established as important tools for a wide range of applications.

Further, it has been used in entanglement detection, security analysis of quantum
key distribution in quantum cryptography, quantum metrology and quantum speed
limit.

In most of these areas, particularly, in quantum entanglement detection and
quantum metrology or quantum speed limit, where a small fluctuation in an
unknown parameter of the state of the system is needed to detect,
state-dependent relations may be useful.

Thus, a focus on the study of the state dependent, tighter uncertainty and the
reverse uncertainty relations based on the variance is important.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

With the advent of quantum information theory, uncertainty relations in particular,
have been established as important tools for a wide range of applications.

Further, it has been used in entanglement detection, security analysis of quantum
key distribution in quantum cryptography, quantum metrology and quantum speed
limit.

In most of these areas, particularly, in quantum entanglement detection and
quantum metrology or quantum speed limit, where a small fluctuation in an
unknown parameter of the state of the system is needed to detect,
state-dependent relations may be useful.

Thus, a focus on the study of the state dependent, tighter uncertainty and the
reverse uncertainty relations based on the variance is important.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

With the advent of quantum information theory, uncertainty relations in particular,
have been established as important tools for a wide range of applications.

Further, it has been used in entanglement detection, security analysis of quantum
key distribution in quantum cryptography, quantum metrology and quantum speed
limit.

In most of these areas, particularly, in quantum entanglement detection and
quantum metrology or quantum speed limit, where a small fluctuation in an
unknown parameter of the state of the system is needed to detect,
state-dependent relations may be useful.

Thus, a focus on the study of the state dependent, tighter uncertainty and the
reverse uncertainty relations based on the variance is important.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

With the advent of quantum information theory, uncertainty relations in particular,
have been established as important tools for a wide range of applications.

Further, it has been used in entanglement detection, security analysis of quantum
key distribution in quantum cryptography, quantum metrology and quantum speed
limit.

In most of these areas, particularly, in quantum entanglement detection and
quantum metrology or quantum speed limit, where a small fluctuation in an
unknown parameter of the state of the system is needed to detect,
state-dependent relations may be useful.

Thus, a focus on the study of the state dependent, tighter uncertainty and the
reverse uncertainty relations based on the variance is important.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

With the advent of quantum information theory, uncertainty relations in particular,
have been established as important tools for a wide range of applications.

Further, it has been used in entanglement detection, security analysis of quantum
key distribution in quantum cryptography, quantum metrology and quantum speed
limit.

In most of these areas, particularly, in quantum entanglement detection and
quantum metrology or quantum speed limit, where a small fluctuation in an
unknown parameter of the state of the system is needed to detect,
state-dependent relations may be useful.

Thus, a focus on the study of the state dependent, tighter uncertainty and the
reverse uncertainty relations based on the variance is important.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

With the advent of quantum information theory, uncertainty relations in particular,
have been established as important tools for a wide range of applications.

Further, it has been used in entanglement detection, security analysis of quantum
key distribution in quantum cryptography, quantum metrology and quantum speed
limit.

In most of these areas, particularly, in quantum entanglement detection and
quantum metrology or quantum speed limit, where a small fluctuation in an
unknown parameter of the state of the system is needed to detect,
state-dependent relations may be useful.

Thus, a focus on the study of the state dependent, tighter uncertainty and the
reverse uncertainty relations based on the variance is important.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

Uncertainty relations in terms of variances of incompatible observables are
generally expressed in two forms— product form and sum form.

Although, both of these kinds of uncertainty relations express limitations in the
possible preparations of the system by giving a lower bound to the product or sum
of the variances of two observables, product form cannot capture the concept of
incompatibility of observables properly because it may become trivial even when
observables do not commute.

In this sense, uncertainty relations in terms of the sum of variances capture the
concept of incompatibility more accurately.

It may be noted that earlier uncertainty relations that provide a bound to the sum
of the variances comprise a lower bound in terms of the variance of the sum of
observables, entropic uncertainty relations, sum uncertainty relation for angular
momentum observables, sum uncertainty relations for N-incompatible
observables, uncertainty relations for noise and disturbance and also uncertainty
relations for non-Hermitian operators.

Recently, experiments have also been performed to test various uncertainty
relations.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

Uncertainty relations in terms of variances of incompatible observables are
generally expressed in two forms— product form and sum form.

Although, both of these kinds of uncertainty relations express limitations in the
possible preparations of the system by giving a lower bound to the product or sum
of the variances of two observables, product form cannot capture the concept of
incompatibility of observables properly because it may become trivial even when
observables do not commute.

In this sense, uncertainty relations in terms of the sum of variances capture the
concept of incompatibility more accurately.

It may be noted that earlier uncertainty relations that provide a bound to the sum
of the variances comprise a lower bound in terms of the variance of the sum of
observables, entropic uncertainty relations, sum uncertainty relation for angular
momentum observables, sum uncertainty relations for N-incompatible
observables, uncertainty relations for noise and disturbance and also uncertainty
relations for non-Hermitian operators.

Recently, experiments have also been performed to test various uncertainty
relations.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

Uncertainty relations in terms of variances of incompatible observables are
generally expressed in two forms— product form and sum form.

Although, both of these kinds of uncertainty relations express limitations in the
possible preparations of the system by giving a lower bound to the product or sum
of the variances of two observables, product form cannot capture the concept of
incompatibility of observables properly because it may become trivial even when
observables do not commute.

In this sense, uncertainty relations in terms of the sum of variances capture the
concept of incompatibility more accurately.

It may be noted that earlier uncertainty relations that provide a bound to the sum
of the variances comprise a lower bound in terms of the variance of the sum of
observables, entropic uncertainty relations, sum uncertainty relation for angular
momentum observables, sum uncertainty relations for N-incompatible
observables, uncertainty relations for noise and disturbance and also uncertainty
relations for non-Hermitian operators.

Recently, experiments have also been performed to test various uncertainty
relations.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

Uncertainty relations in terms of variances of incompatible observables are
generally expressed in two forms— product form and sum form.

Although, both of these kinds of uncertainty relations express limitations in the
possible preparations of the system by giving a lower bound to the product or sum
of the variances of two observables, product form cannot capture the concept of
incompatibility of observables properly because it may become trivial even when
observables do not commute.

In this sense, uncertainty relations in terms of the sum of variances capture the
concept of incompatibility more accurately.

It may be noted that earlier uncertainty relations that provide a bound to the sum
of the variances comprise a lower bound in terms of the variance of the sum of
observables, entropic uncertainty relations, sum uncertainty relation for angular
momentum observables, sum uncertainty relations for N-incompatible
observables, uncertainty relations for noise and disturbance and also uncertainty
relations for non-Hermitian operators.

Recently, experiments have also been performed to test various uncertainty
relations.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

Uncertainty relations in terms of variances of incompatible observables are
generally expressed in two forms— product form and sum form.

Although, both of these kinds of uncertainty relations express limitations in the
possible preparations of the system by giving a lower bound to the product or sum
of the variances of two observables, product form cannot capture the concept of
incompatibility of observables properly because it may become trivial even when
observables do not commute.

In this sense, uncertainty relations in terms of the sum of variances capture the
concept of incompatibility more accurately.

It may be noted that earlier uncertainty relations that provide a bound to the sum
of the variances comprise a lower bound in terms of the variance of the sum of
observables, entropic uncertainty relations, sum uncertainty relation for angular
momentum observables, sum uncertainty relations for N-incompatible
observables, uncertainty relations for noise and disturbance and also uncertainty
relations for non-Hermitian operators.

Recently, experiments have also been performed to test various uncertainty
relations.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

Uncertainty relations in terms of variances of incompatible observables are
generally expressed in two forms— product form and sum form.

Although, both of these kinds of uncertainty relations express limitations in the
possible preparations of the system by giving a lower bound to the product or sum
of the variances of two observables, product form cannot capture the concept of
incompatibility of observables properly because it may become trivial even when
observables do not commute.

In this sense, uncertainty relations in terms of the sum of variances capture the
concept of incompatibility more accurately.

It may be noted that earlier uncertainty relations that provide a bound to the sum
of the variances comprise a lower bound in terms of the variance of the sum of
observables, entropic uncertainty relations, sum uncertainty relation for angular
momentum observables, sum uncertainty relations for N-incompatible
observables, uncertainty relations for noise and disturbance and also uncertainty
relations for non-Hermitian operators.

Recently, experiments have also been performed to test various uncertainty
relations.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

Uncertainty relations in terms of variances of incompatible observables are
generally expressed in two forms— product form and sum form.

Although, both of these kinds of uncertainty relations express limitations in the
possible preparations of the system by giving a lower bound to the product or sum
of the variances of two observables, product form cannot capture the concept of
incompatibility of observables properly because it may become trivial even when
observables do not commute.

In this sense, uncertainty relations in terms of the sum of variances capture the
concept of incompatibility more accurately.

It may be noted that earlier uncertainty relations that provide a bound to the sum
of the variances comprise a lower bound in terms of the variance of the sum of
observables, entropic uncertainty relations, sum uncertainty relation for angular
momentum observables, sum uncertainty relations for N-incompatible
observables, uncertainty relations for noise and disturbance and also uncertainty
relations for non-Hermitian operators.

Recently, experiments have also been performed to test various uncertainty
relations.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

Uncertainty relations in terms of variances of incompatible observables are
generally expressed in two forms— product form and sum form.

Although, both of these kinds of uncertainty relations express limitations in the
possible preparations of the system by giving a lower bound to the product or sum
of the variances of two observables, product form cannot capture the concept of
incompatibility of observables properly because it may become trivial even when
observables do not commute.

In this sense, uncertainty relations in terms of the sum of variances capture the
concept of incompatibility more accurately.

It may be noted that earlier uncertainty relations that provide a bound to the sum
of the variances comprise a lower bound in terms of the variance of the sum of
observables, entropic uncertainty relations, sum uncertainty relation for angular
momentum observables, sum uncertainty relations for N-incompatible
observables, uncertainty relations for noise and disturbance and also uncertainty
relations for non-Hermitian operators.

Recently, experiments have also been performed to test various uncertainty
relations.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Uncertainty relations

Uncertainty relations in terms of variances of incompatible observables are
generally expressed in two forms— product form and sum form.

Although, both of these kinds of uncertainty relations express limitations in the
possible preparations of the system by giving a lower bound to the product or sum
of the variances of two observables, product form cannot capture the concept of
incompatibility of observables properly because it may become trivial even when
observables do not commute.

In this sense, uncertainty relations in terms of the sum of variances capture the
concept of incompatibility more accurately.

It may be noted that earlier uncertainty relations that provide a bound to the sum
of the variances comprise a lower bound in terms of the variance of the sum of
observables, entropic uncertainty relations, sum uncertainty relation for angular
momentum observables, sum uncertainty relations for N-incompatible
observables, uncertainty relations for noise and disturbance and also uncertainty
relations for non-Hermitian operators.

Recently, experiments have also been performed to test various uncertainty
relations.

Arun Kumar Pati PREPARATION UNCERTAINTY RELATIONS BEYOND HEISENBERG’S



Introduction Introduction Uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Tighter uncertainty relations Reverse uncertainty relations Summary and conclusions

Stronger Uncertainty Relations

Stronger Uncertainty Relation 1

∆A2 + ∆B2 ≥ ±i〈ψ|[A,B]|ψ〉+
∣∣∣〈ψ|(A± iB)|ψ⊥〉

∣∣∣2 (2)

which is valid for arbitrary states |ψ⊥〉 orthogonal to the state of the system |ψ〉,
where the sign should be chosen so that ±i〈[A,B]〉 (a real quantity) is positive.

The lower bound in UR1 is nonzero for almost any choice of |ψ⊥〉 if |ψ〉 is not a
common eigenstate of A and B. We can choose |ψ⊥〉 that is orthogonal to |ψ〉 but
not orthogonal to the state (A± iB)|ψ〉. Such a choice is always possible unless
|ψ〉 is a joint eigenstate of A and B.

L. Maccone and A. K. Pati, Phys. Rev. Lett. 113, 2604401 (2014)
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How to choose |ψ⊥〉: if |ψ〉 is an eigenstate of A one can choose
|ψ⊥〉 = (B− 〈B〉)|ψ〉/∆B ≡ |ψ⊥B 〉, or |ψ⊥〉 = (A− 〈A〉)|ψ〉/∆A ≡ |ψ⊥A 〉 if |ψ〉 is an
eigenstate of B.

If |ψ〉 is not an eigenstate of either and |ψ⊥A 〉 6= |ψ⊥B 〉, one can choose
|ψ⊥〉 ∝ (I − |ψ⊥B 〉〈ψ⊥B |)|ψ⊥A 〉, or |ψ⊥〉 = |ψ⊥A 〉 if |ψ⊥A 〉 = |ψ⊥B 〉.

An optimization of |ψ⊥〉 (namely, the choice that maximizes the lower bound), will
saturate the inequality: it becomes an equality.
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Stronger Uncertainty Relation 2

A second inequality with nontrivial bound even if |ψ〉 is an eigenstate either of A or
of B is

∆A2 + ∆B2 ≥
1
2
|〈ψ⊥A+B|(A + B)|ψ〉|2 (3)

where |ψ⊥A+B〉 ∝ (A + B− 〈A + B〉)|ψ〉 is a state orthogonal to |ψ〉 (where 〈O〉
denotes the expectation value of the observable O).

The form of |ψ⊥A+B〉 implies that the right-hand-side is nonzero unless |ψ〉 is an
eigenstate of (A + B).
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Both inequalities can be combined in a single uncertainty relation for the sum of
variances:

∆A2 + ∆B2 ≥ max(L(1),L(2)) (4)

with L(1),(2) the right-hand-side of UR1 and UR2, respectively.

Remarks: (i) UR1 and UR2 involve the sum of variances, so one must introduce
some dimensional constants in the case in which A and B are measured with
different units; (ii) removing the last term in UR1, we have
∆A2 + ∆B2 ≥ |〈ψ|[A,B]|ψ〉| which is also implied by the Heisenberg-Robertson
relation
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To prove UR1 use the parallelogram law in Hilbert space

2∆A2 + 2∆B2 = ‖C + αD|ψ〉‖2 + ‖C − αD|ψ〉‖2, (5)

for C = A− 〈A〉, D = B− 〈B〉, and α ∈ C with |α| = 1.

Take α = ±i and note that

‖(C ± iD)|ψ〉‖2 = ∆A2 + ∆B2 ± i〈[A,B]〉 (6)

Second term can be lower bounded through the Schwarz inequality as

|〈ψ|(A± iB)|ψ⊥〉|2 = |〈ψ|(A± iB− 〈A± iB〉|ψ⊥〉|2

= |〈ψ|(C ± iD)|ψ⊥〉|2 ≤ ‖(C ∓ iD)|ψ〉‖2 (7)

valid for all |ψ⊥〉 orthogonal to |ψ〉. Hence the proof.
The equality condition for follows from the equality condition of the Schwarz
inequality, namely iff |ψ⊥〉 ∝ (A∓ iB− 〈(A∓ iB)〉)|ψ〉.
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To prove UR2 we use the parallelogram law in Hilbert space to obtain

2∆A2 + 2∆B2 = ‖C + αD|ψ〉‖2 + ‖C − αD|ψ〉‖2, (8)

for C = A− 〈A〉, D = B− 〈B〉, and α ∈ C with |α| = 1. Since
∆(A + B) = ‖(C + D)|ψ〉‖, ∆(A− B) = ‖(C − D)|ψ〉‖, for α = 1 is equal to

∆A2 + ∆B2 =
1
2

[∆(A + B)2 + ∆(A− B)2]

≥
1
2

∆(A + B)2, (9)

which is equivalent to UR2 since ∆(A + B)2 = |〈ψ⊥A+B|(A + B)|ψ〉|2.

For any observable O

O|ψ〉 = 〈O〉|ψ〉+ ∆O|ψ⊥O 〉. (10)

Hence, we have

∆O2 = |〈ψ⊥O |O|ψ〉|2

(11)
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The equality condition for UR2: |ψ〉 must be an eigenstate of A− B. Also, note that
the lower bound in UR2 is nonzero unless |ψ〉 is an eigenstate of (A + B).

Clearly |ψ〉 can be an eigenstate of A + B without being an eigenstate of either A
or B, but in the interesting case when |ψ〉 is an eigenstate of one of the two (which
trivializes both Heisenberg’s and Schrödinger’s uncertainty relations), the lower
bound must be nonzero unless |ψ〉 is an eigenstate of both.

It is also easy to modify the inequality UR2 so that it has always a nontrivial lower
bound except when |ψ〉 is a joint eigenstate of A and B, namely

∆A2 + ∆B2 ≥ max(
1
2
〈ψ⊥A+B|(A + B)|ψ〉|2, |〈ψ⊥A |A|ψ〉|2,

|〈ψ⊥B |B|ψ〉|2) (12)
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Example

Stronger uncertainty relations suggest that the quantum world is more uncertain
than what the Heisenberg-Robertson uncertainty relation makes us believe.

Harmonic Oscillator Hamiltonian H = 1
2 (P2 + X2) (~ = 1,m = ω = 1).

For any state |ψ〉, the stronger uncertainty relation for the position and momentum

∆X2 + ∆P2 ≥ 1 +
∣∣∣√2〈ψ|a†|ψ⊥〉

∣∣∣2 , (13)

where a† = 1√
2
(X − iP) is the annihilation operator.

From the Heisenberg-Robertson UR:

∆X2 + ∆P2 ≥ 1 (14)
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If |ψ〉 = |n〉 is the nth eigenstate of the HO Hamiltonian, then we can choose |ψ⊥〉
as |n− 1〉. UR1 implies

∆X2 + ∆P2 ≥ (1 + 2n) (15)

This is stronger than what is implied by the Heisenberg-Robertson uncertainty
relation.

For |ψ〉 = |n〉, ∆X2 = (n + 1
2 ) and ∆P2 = (n + 1

2 ). This shows that all eigenstates
of HO Hamiltonian saturate the stronger UR.

Ground state of HO Hamiltonian is a minimum uncertainty state with respect to the
Heisenberg-Robertson UR. However, all the eigenstates of HO Hamiltonian are
minimum uncertainty states with respect to the stronger UR1.
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Measurement Uncertainty and Preparation Uncertainty

Heisenberg’s original principle is about measurement uncertainty.

Robertson-Schrödinger relation is about preparation uncertainty.

Recently, there has been an interesting and lively debate on how to interpret the
uncertainty principle [Ozawa, Busch-Lahti-Werner].

To elucidate the relation between these results and ours, we introduce Peres’
nomenclature that distinguishes between uncertainty relation and uncertainty
principle.

The former refers solely to the preparation of the system which induces a spread
in the measurement outcomes, and does not refer to the disturbance induced by
the measurement or to joint measurements. [Peres]

“The only correct interpretation of [the uncertainty relations for x and p] is the
following: If the same preparation procedure is repeated many times, and is
followed either by a measurement of x, or by a measurement of p, the various
results obtained for x and for p have standard deviations, ∆x and ∆p, whose
product cannot be less than ~/2.
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There never is any question here that a measurement of x ’disturbs’ the value of p
and vice-versa, as sometimes claimed. These measurements are indeed
incompatible, but they are performed on different particles (all of which were
identically prepared) and therefore these measurements cannot disturb each other
in any way.

The uncertainty relation reflects the intrinsic randomness of the outcomes of
quantum tests.

We emphasize that the uncertainty relation must not be confused with the
uncertainty principle.

The latter entails also the measurement disturbance by the apparatus and the
impossibility of joint measurements of incompatible observables.
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Applications

Peng Xue group have tested our stronger uncertainty relatons for 3-dimensional
system and have confirmed both relations UR1 and UR2.

Experimental investigation of the stronger uncertainty relations for all incompatible
observables
Kunkun Wang, Xiang Zhan, Zhihao Bian, Jian Li, Yongsheng Zhang, and Peng
Xue Phys. Rev. A 93, 052108 (2016).

Stronger Error Disturbance Relations for Incompatible Quantum Measurements C.
Mukhopadhyay, N. Shukla, A. K. Pati, Europhysics Letters 113, 50002 (2016)

Tighter Einstein-Podolsky-Rosen steering inequality based on the sum uncertainty
relation A. G. Maity, S. Datta, A. S. Majumdar, Phys. Rev. A 96, 052326 (2017)
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Tighter Uncertainty relations
Here, we provide a tighter UR compared to the Robertson-Schrödinger
uncertainty relation.

Let us consider two observables A and B in their eigenbasis as A =
∑

i ai|ai〉〈ai|
and B =

∑
i bi|bi〉〈bi|. Let us define (A− 〈A〉) = A =

∑
i ãi|ai〉〈ai| and

(B− 〈B〉) = B =
∑

i b̃i|bi〉〈bi|. We express |f 〉 = A|Ψ〉 and |g〉 = B|Ψ〉 as
|f 〉 =

∑
n αn|ψn〉 and |g〉 =

∑
n βn|ψn〉, where {|ψn〉} is an arbitrary complete

orthonormal basis.

New uncertainty relation:

∆A2∆B2 ≥
1
4

(∑
n

∣∣∣〈[A,Bψn ]〉Ψ + 〈{A,Bψn }〉Ψ
∣∣∣)2

. (16)
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Tighter uncertainty relations
Using the Cauchy-Schwarz inequality for two real vectors
~α =

(
|α1|, |α2|, |α3|, ...

)
, ~β =

(
|β1|, |β2|, |β3|, ...

)
, we have

∆A2∆B2 = 〈f |f 〉〈g|g〉 =
∑
n,m

|αn|2|βm|2

≥
(∑

n

|αn||βn|
)2

=
(∑

n

|α∗nβn|
)2

=
(∑

n

|〈Ψ|A|ψn〉〈ψn|B|Ψ〉|
)2

=
(∑

n

|〈Ψ|A Bψn |Ψ〉|
)2
, (17)

where Bψn = |ψn〉〈ψn|B, αn = 〈ψn|A|Ψ〉 and βn = 〈ψn|B|Ψ〉.

On expressing 〈Ψ|A Bψn |Ψ〉 = 1
2

(
〈[A,Bψn ]〉Ψ + 〈{A,Bψn }〉Ψ

)
, the new uncertainty

relation can be written as

∆A2∆B2 ≥
1
4

(∑
n

∣∣∣〈[A,Bψn ]〉Ψ + 〈{A,Bψn }〉Ψ
∣∣∣)2

. (18)
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Tighter uncertainty relations
The new uncertainty relation is tighter than the Robertson-Schrödinger uncertainty
relation. To prove this let us start with the right hand side of Eq. (17) and note that( ∑

n

|〈Ψ|A Bψn |Ψ〉|
)2
≥
∣∣∣∑

n

〈Ψ|A Bψn |Ψ〉
∣∣∣2

=
∣∣∣〈Ψ|A B|Ψ〉

∣∣∣2, (19)

where we have used the fact that |
∑

i zi|2 ≤ (
∑

i |zi|)2, zi ∈ C for all i. Here, the
last line in Eq. (19) is nothing but the bound obtained in Eq. (??).

Thus, our bound is indeed tighter than the Robertson-Schrödinger uncertainty
relation.

This uncertainty relation in Eq. (18) can further be tightened by optimizing over
the sets of complete orthonormal bases as

∆A2∆B2 ≥ max
{|ψn〉}

1
4

(∑
n

∣∣∣〈[A,Bψn ]〉Ψ + 〈{A,Bψn }〉Ψ
∣∣∣)2

. (20)
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Tighter uncertainty relations

Figure : Here, we plot the lower bound of the product of variances of two incompatible observables, A = Lx and
B = Ly, two components of the angular momentum for spin 1 particle with a state |Ψ〉 = cos θ|1〉 − sin θ|0〉,
where the state |1〉 and |0〉 are the eigenstates of Lz corresponding to eigenvalues 1 and 0 respectively. The long
dashed (blue colored) line shows the lower bound of the product of variances given by (21), the flattest (purple
colored, tiny dashed) curve stands for the bound given by Schrödinger uncertainty relation given by Eq. (??) and the
continuous line (hue colored) plot denotes the product of two variances. Scattered black points denote the optimized
uncertainty bound achieved by Eq. (20).

As shown above, an optimization over different bases indeed gives tighter bound.
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Tighter uncertainty relations
Next, we derive an optimization-free uncertainty relation for two incompatible
observables. For that we consider (say)
A2

=
∑

i,j(ai − ajF
aj
Ψ)2|ai〉〈ai| =

∑
i(ãi)

2|ai〉〈ai| and

B2
=
∑

i,j(bi − bjF
bj
Ψ)2|bi〉〈bi| =

∑
i(b̃i)

2|bi〉〈bi|, where Fx
Ψ is nothing but the

fidelity between the state |Ψ〉 and |x〉 (|x〉 = |ai〉, |bi〉), F(|Ψ〉, |x〉) = |〈Ψ|x〉|2.

Using the Cauchy-Schwarz inequality, we obtain

∆A2∆B2 ≥
(∑

i

√
Fai

Ψ

√
Fbi

Ψãib̃i

)2

, (21)

To prove this use the inequality for two real vectors ~u and~v defined as

~u =
(

ã1

√
Fa1

Ψ , ã2

√
Fa2

Ψ , ã3

√
Fa3

Ψ , ...
)

,~v =
(

b̃1

√
Fb1

Ψ , b̃2

√
Fb2

Ψ , b̃3

√
Fb3

Ψ , ...
)

and the

quantities
√

Fai
Ψãi,

√
Fbi

Ψb̃i are arranged such that
√

F
ai+1
Ψ ãi+1 ≥

√
Fai

Ψãi and√
F

bi+1
Ψ b̃i+1 ≥

√
Fbi

Ψb̃i.

This new uncertainty relation depends on the transition probability between the
state of the system and the eigenbases of the observables. The incompatibility is
captured here not by the non-commutativity, rather by the non-orthogonality of the
state of the system |Ψ〉 and the eigenbases of the observables |ai〉 and |bi〉.
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Ψãi,

√
Fbi

Ψb̃i are arranged such that
√

F
ai+1
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Fbi

Ψb̃i.

This new uncertainty relation depends on the transition probability between the
state of the system and the eigenbases of the observables. The incompatibility is
captured here not by the non-commutativity, rather by the non-orthogonality of the
state of the system |Ψ〉 and the eigenbases of the observables |ai〉 and |bi〉.
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Tighter uncertainty relations

We use the the parallelogram law for two real vectors to improve the bound on the
sum of variances for two incompatible observables.

Using the parallelogram law for two real vectors ~u and~v, one can derive a lower
bound on the sum of variances of two observables as

∆A2 + ∆B2 ≥
1
2

∑
i

(
ãi

√
Fai

Ψ + b̃i

√
Fbi

Ψ

)2
. (22)

This is one of the tightest optimization free bound.

If one allows the optimization over a set of states, then the procedure used to
derive the uncertainty relation given in Eq. (20) can be used to derive another set
of uncertainty relations using the parallelogram law for two real vectors ~α and ~β.
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Reverse uncertainty relations
• Does quantum mechanics restrict upper limit to the product and sum of variances of
two incompatible observables?

• Here, for the first time, we introduce the reverse bound, i.e., the upper bound to the
product and the sum of variances of two incompatible observables.

• To prove the reverse uncertainty relation for the product of variances of two
observables, we use the reverse Cauchy-Schwarz inequality for positive real numbers.

• This states that for two sets of positive real numbers c1, ..., cn and d1, ...dn, if
0 < c ≤ ci ≤ C <∞, 0 < d ≤ di ≤ D <∞ for some constants c, d, C and D for all
i = 1, ...n, then

∑
i,j

c2
i d2

j ≤
(CD + cd)2

4cdCD

(∑
i

cidi

)2
. (23)
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Reverse uncertainty relations

Using this inequality for ci =
√

Fai
Ψ|ãi| and di =

√
Fbi

Ψ|b̃i|, one can show that the
product of variances of two observables satisfies the relation

∆A2∆B2 ≤ ΩΨ
ab

(∑
i

√
Fai

Ψ

√
Fbi

Ψ|ãi||b̃i|
)2

, (24)

where ΩΨ
ab =

(
Ma

ΨMb
Ψ+ma

Ψmb
Ψ

)2

4Ma
ΨMb

Ψma
Ψmb

Ψ

with Ma
Ψ = max{

√
Fai

Ψ|ãi|}, ma
Ψ = min{

√
Fai

Ψ|ãi|},

Mb
Ψ = max{

√
Fbi

Ψ|b̃i|} and mb
Ψ = min{

√
Fbi

Ψ|b̃i|}.
If one uses the reverse Cauchy-Schwarz inequality for the two real positive vectors
~α and ~β, we have

∆A2 ∆B2 ≤ ΛψΨ
αβ

(∑
n

|αn||βn|
)2

=
ΛψΨ
αβ

4

(∑
n

∣∣∣〈[ A,Bψn ]〉+ 〈{A,Bψn }〉
∣∣∣)2

, (25)

where ΛψΨ
αβ =

(
MαψΨMβ

ψΨ
+mαψΨmβ

ψΨ

)2

4Mα
ψΨ

Mβ
ψΨ

mα
ψΨ

mβ
ψΨ

with Mα
ψΨ = max{|αn|}, mαψΨ = min{|αn|},

Mβ
ψΨ = max{|βn|} and mβψΨ = min{|βn|}.

One can optimize the right hand side.
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Figure : Here, we plot the upper bound of the product of variances for two incompatible observables, A = σx and
B = σz, two components of the angular momentum for spin 1

2 particle with a state

ρ = 1
2

(
I2 + cos θ2 σx +

√
3

2 sin θ2 σy + 1
2 sin θ2 σz

)
. Blue dashed line curve is the upper bound of the product of

the two variances given by (24) and the continuous line (hue colored) plot denotes the product of the two variances.
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Summary and conclusions

Arguably, the uncertainty relations are the most fundamental relations in quantum
theory.

Proved stronger URs, tighter, state-dependent uncertainty relations both in the
sum as well as the product form.

Proved state-dependent reverse uncertainty relations.

Significance of the uncertainty and the reverse relations is that for a fixed amount
of ‘spread’ of the distribution of measurement outcomes of one observable, the
‘spread’ for the other observable is bounded from both the sides.

These URS may play important role in quantum metrology, quantum speed limits
and many other fields of quantum information theory due to the fact that these
relations are optimization free, state-dependent and tighter than the most of the
existing bounds.

Reverse uncertainty relations may give upper bound on error in measurement and
the upper bound for the speed of quantum evolutions.
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12/8/2017 Quantum physics gets a reverse uncertainty relation - Nature India

http://www.natureasia.com/en/nindia/article/10.1038/nindia.2017.98 1/3

Most recent

RESEARCH HIGHLIGHTS

doi:10.1038/nindia.2017.98 Published online 1 August 2017

Quantum physics gets a reverse uncertainty relation
Theoretical physicists from the Harish-Chandra Research Institute (HRI) in Allahabad have derived a new
kind of relation in quantum mechanics called the "Reverse Uncertainty Relation", that could find applications
in various areas of quantum physics, quantum information and quantum technology .

Debasis Mondal, Shrobona Bagchi and Arun Kumar Pati from HRI show, for the first time, that there is an
upper limit to how accurately one can simultaneously measure the position and momentum of a particle.

The original uncertainty principle introduced in 1927 by Werner Heisenberg is a rule in quantum mechanics
which sets a "lower" limit on the product of the "variances" of two "incompatible observables" (such as
position and momentum), but it was not known if there is any "upper" limit.

"We show that there is indeed an upper limit," Pati, one of the authors, told Nature India. "The reverse
uncertainty relation shows that there is a "spread" or "range" for both the sum and product of variances of
two non-commuting observables," he said. In addition to the reverse uncertainty relation, the authors have
proved a new and tighter uncertainty relation from which the Heisenberg uncertainty relation directly follows.

The new relation may be useful in setting an upper limit in "quantum metrology," which exploits quantum
systems to reach unprecedented levels of precision in measurements. "Thus, this is not only of fundamental
interest but can have applications in diverse areas of quantum physics," Pati said adding "the reverse
uncertainty relation should open up a whole new direction of explorations in quantum mechanics which we
have not thought of."
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