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Inference and Prior information

In inductive reasoning, the premises or hypotheses seek to suggest in
favour of (not absolute proof of) the truth of the conclusion. While the
conclusion of a deductive argument is understood to be certain, the truth
of an inductive argument is supposed to be probable, based upon the
evidence given.

Prior information is the piece of information which is assumed to be
given—as part of the model, before, say, the data are considered.
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Maximum entropy principle

Prior information:
Prior information in the form of constraints on mean values.

∑
i

Eipi = U,
∑
i

pi = 1.

Maximize Shannon entropy S subject to constraints.

S = −
∑
i

pi ln pi .

Optimal solution:

pi = exp(−βEi )/
∑
i

exp(−βEi ).
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Bayes’ Theorem

Updating probabilities in the light of new information:

P(X |D) =
p(D|X )π(X )

p(D)

p(D) =
∑
{X}

p(D|X )π(X ).

π(X ): Prior Probability

p(D|X ): Likelihood function

p(X |D): Posterior Probability
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Heat Engines
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Classical heat cycles

Reversible cycle has the maximum efficiency, ηC = 1− Tc
Th

.

Maximum work extraction, but power output

P =
Work

Cycle period
→ 0.
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Finite-time models of heat engines

Endoreversible Model

qh = α(Th − Thw )

qc = β(Tcw − Tc)

Power output:

P =
Qh − Qc

tc + th
.

Efficiency at maximum power
(EMP)

ηCA = 1−

√
Tc

Th

F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975)
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EMP

Low-dissipation model

M. Esposito, R. Kawai, K. Lindenberg, and C. Van den
Broeck, Phys. Rev. Lett. 105, 150603 (2010).

Universality near equilibrium

η∗ =
ηC
2

+
η2C

4(1 +
√

Σ−/Σ+)
+O(η3C )

(IISERM) Prior probability and heat engines 9 / 32



EMP

Low-dissipation model

M. Esposito, R. Kawai, K. Lindenberg, and C. Van den
Broeck, Phys. Rev. Lett. 105, 150603 (2010).

Universality near equilibrium

η∗ =
ηC
2

+
η2C

4(1 +
√

Σ−/Σ+)
+O(η3C )

(IISERM) Prior probability and heat engines 9 / 32



EMP

Low-dissipation model

M. Esposito, R. Kawai, K. Lindenberg, and C. Van den
Broeck, Phys. Rev. Lett. 105, 150603 (2010).

Universality near equilibrium

η∗ =
ηC
2

+
η2C

4(1 +
√

Σ−/Σ+)
+O(η3C )

(IISERM) Prior probability and heat engines 9 / 32



Otto cycle

4-step cycle:

• Two isochoric processes

• Two adiabatic processes

P

V

1

4

2

3

VV
2 1
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Quantum Heat Cycle

• Two heat reservoirs with T1 > T2.

• Quantum working medium: H(a) =
∑

i Ei |i〉〈i |,Ei = εia.

• Heat exchange with reservoirs; a is kept constant.

• Work performed by changing a; occupation probabilities stay
constant.
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Statistical Definitions of Heat and Work

Quantum state ρ.

Mean energy: U = Tr[ρH].

Change in mean energy: δU = Tr[ρ δH] + Tr[δρH],

First law of thermodynamics: δU = δQ + δW .
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Quantum Otto Cycle

Initial state: a = a1, ρ =
∑

i pi |i〉〈i |.

pi = exp(−εia1/kBT1)/Z .

(i) Ist adiabatic process: a1 → a2, without any transition between the
levels. The system continues to occupy its initial state.

The work done by the system: W1 = Tr[ρ∆H]

W1 =
∑
i

(Ei − E ′i )pi .

(ii) Ist Isochoric process: The system with a = a2 in thermal contact with
the cold bath (T = T2). The average heat dissipated

Q2 =
∑
i

E ′i (p
′
i − pi ).
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The Quantum Cycle

(iii) 2nd adiabatic process: The system is now detached from the cold
bath and made to undergo a2 → a1. Work done on the system:

W2 =
∑
i

(E ′i − Ei )p
′
i ;

(iv) 2nd Isochoric Process: Finally, the system in thermal contact with
the hot bath again. Heat absorbed by the system

Q1 =
∑
i

Ei (pi − p′i ).

Total work in one cycle

W =
∑
i

(Ei − E ′i )(pi − p′i ).
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Two-levels System

Q1 = a1

[
1

1 + exp(a1/T1)
− 1

1 + exp(a2/T2)

]
W = (a1 − a2)

[
1

1 + exp(a1/T1)
− 1

1 + exp(a2/T2)

]

Efficiency : η = 1− a2
a1

.

The operation as a heat engine: W ≥ 0 and Q1 ≥ 0,

a2
T2

>
a1
T1

=⇒ η < 1− T2

T1
.
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Work Extraction: Internal optimization

For given temperatures:(
∂W

∂a1

)
a2

= 0;

(
∂W

∂a2

)
a1

= 0.

Efficiency at Optimal Work:

η∗ = 1− a2
∗

a1∗
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Prior based approach

Engine with a known efficiency:

W (a1, η) = a1η

[
1(

1 + ea1/T1
) − 1(

1 + ea1(1−η)/T2
)] .

Known Unknown

T1 T2 η a1 (a2)

What can we say about the expected performance of the engine?

Expected value:

X =

∫
X (a1)π(a1)da1.

How to assign a suitable prior distribution for a1?
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Choice of the prior

Prior should be proper.

If there is no reason to prefer one value of a1 over another, then a
uniform density (π(a1) = constant) seems a natural choice.

(IISERM) Prior probability and heat engines 18 / 32



Choice of the prior

Prior should be proper.

If there is no reason to prefer one value of a1 over another, then a
uniform density (π(a1) = constant) seems a natural choice.

(IISERM) Prior probability and heat engines 18 / 32



Choice of the prior

Suppose the efficiency is specified, η = 1− a2
a1

.

Rule

The prior in terms of a1 or in terms of a2, should be the same, because a
change of scale should not be reflected in the prior as the two problems
are equivalent.

π(a1)da1 = π(a2)da2.

π(a1) =
N

a1
,

N =

[
ln

(
amax

amin

)]−1
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W (η) ≡
∫ amax

amin

W (a1, η) π(a1)da1

W (η) = Nη

[
T2

(1− η)
ln

(
1 + eamax(1−η)/T2

1 + eamin(1−η)/T2

)
− T1 ln

(
1 + eamax/T1

1 + eamin/T1

)]
.

W vanishes when (i) η = 0, (ii) η = ηc .

In between, the expected work exhibits a maximum.
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The efficiency at maximum expected work:

∂W
∂η = 0 −→ η̂(amin, amax).

The curves correspond to T2 = 1 and T1 taking values 2, 4, 6 respectvely, from bottom to top.

Limiting case: amin → 0, amax →∞:

η̂ → 1−
√
T2/T1.
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Uniform Prior

π(a1) =
1

amax

defined in the range [0, amax].
The efficiency at maximum work in the limit, amax →∞ is

(1− η∗)3 − (1 + η∗)θ2 = 0,

whose real solution is

η∗γ=0 = 1 +
θ4/3

3

(
1 +

√
1 + θ2

27

)1/3
− θ2/3

(
1 +

√
1 +

θ2

27

)1/3

.
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Efficiency at optimal expected work

0.2 0.4 0.6 0.8 1.0
Θ

0.2

0.4

0.6

0.8

1.0

Η

Universal Efficiency at Optimal Work with Bayesian Statistics, Phys. Rev. E 82, 061113 (2010).
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Feynman’s Ratchet and Pawl Model

Pawl and ratchet inside the cold
bath at Tc .
Vane inside the hot bath at Th.
ε2: energy to raise the pawl.
ε1 = ε2 + Zδ: energy to lift the
weight.

T2

T1

Vane

Spring

Pawl

Ratchet

Axle

Wheel

Weight

The rates of forward/backward jumps for lifting the weight:

RF = r0e
−ε1/T1 , RB = r0e

−ε2/T2 .
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The rate of heat absorbed from the hot bath:

Q̇1 = r0ε1
(
e−ε1/T1 − e−ε2/T2

)
,

The rate of heat rejected to the cold bath

Q̇2 = r0ε2
(
e−ε1/T1 − e−ε2/T2

)
,

Power output:

P = r0(ε1 − ε2)
(
e−ε1/T1 − e−ε2/T2

)
.

Efficiency:

η =
P

Q̇1

= 1− ε2
ε1
.

Maximum power: Optimization over ε1 and ε2.

EMP =⇒ η̃ =
η2c

ηc − (1− ηc) ln (1− ηc)
.
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EMP near equilibrium

ηCA =
ηC
2

+
η2C
8

+
6

96
η3C + · · ·

η̃ =
ηC
2

+
η2C
8

+
7

96
η3C + · · · .
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Power optimization with prior probability

For a given value of efficiency, consider ε2 as the uncertain parameter.

Prior distribution: Π(ε2); ε2 ∈ [εmin, εmax]

P(η, ε2) =
r0ε2η

(1− η)

(
e−ε2/(1−η)T1 − e−ε2/T2

)
,

P(η) =

∫ εmax

εmin

P(η, ε2)Π(ε2)dε2.

∂P

∂η
= 0.

G. Thomas and RSJ, J. Phys. A: Math. Theor. 48 335002 (2015).
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P(η) = Cη
[
T1

(
e−εmin/(1−η)T1 − e−εmax/(1−η)T1

)
− T2

(1− η)

(
e−εmin/T2 − e−εmax/T2

)]
.

C = r0

[
ln

(
εmax

εmin

)]−1
.
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∂P

∂η
≡ T1

(
e−εmin/(1−η)T1 − e−εmax/(1−η)T1

)
− η

(1− η)2

(
εmine

−εmin/(1−η)T1 − εmaxe
−εmax/(1−η)T1

)
+

T2

(1− η)2

(
e−εmax/T2 − e−εmin/T2

)
= 0.
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The EMP plotted versus εmin, while εmax = 10. The upper (lower) curve is for θ = 0.2 (θ = 0.6). The dashed lines
represent CA values. Inset: The EMP plotted versus εmax, with εmin = 0.01.
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Asymptotic limit

εmin << T2 < T1 << εmax

η → 1−
√

T2

T1
.
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ηu =
ηC
2

+
η2C
16

+
1

64
η3C + · · · .
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Conclusions

• Estimates of efficiency at optimal expected performance have been
obtained with partial information.

• Jeffreys prior and uniform prior have been compared.

• It suggests that averaging over internal energy scales reproduces
thermodynamic behavior.

• Exact optimization or tuning of internal parameters is not necessary
to guess optimal behaviour like EMP.
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