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Density Matrix

The density matrix encodes complete information of a quantum system.
It describes a ray in the Hilbert space.
It is Hermitian and positive, with Tr(ρ) = 1.
It generalises the concept of probability distribution to quantum theory.
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The real diagonal elements are the classical probabilities of observing
various orthogonal eigenstates.
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Density Matrix

The density matrix encodes complete information of a quantum system.
It describes a ray in the Hilbert space.
It is Hermitian and positive, with Tr(ρ) = 1.
It generalises the concept of probability distribution to quantum theory.

The real diagonal elements are the classical probabilities of observing
various orthogonal eigenstates.
The complex off-diagonal elements (coherences) describe quantum
correlations among the orthogonal eigenstates.

For pure states, ρ2 = ρ and det(ρ) = 0.
Any power-series expandable function f (ρ) becomes a linear combination
of ρ and I . So generic basis-independent functions of ρ, e.g. Tr(f (ρ)O),
reduce to conventional expectation values.
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Wigner Function

Wigner function is the density matrix in the phase space representation,
where the relative coordinate is Fourier transformed to its conjugate
variable. It is real by construction, and normalized to unity.
It can be negative, but its marginals are non-negative.
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Wigner Function

Wigner function is the density matrix in the phase space representation,
where the relative coordinate is Fourier transformed to its conjugate
variable. It is real by construction, and normalized to unity.
It can be negative, but its marginals are non-negative.

For a particle on a line (infinite dimensional Hilbert space):
W (x , p) = 1

2π~

∫∞
−∞ dy ρ(x − y

2 , x + y
2 )e

ipy/~ ,

ρ(x − y
2 , x + y

2 ) =
∫∞
−∞ dp W (x , p)e−ipy/~ ,

〈O〉 = Tr(ρO) =
∫∞
−∞ dx dp W (x , p) :O: .
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where the relative coordinate is Fourier transformed to its conjugate
variable. It is real by construction, and normalized to unity.
It can be negative, but its marginals are non-negative.

For a particle on a line (infinite dimensional Hilbert space):
W (x , p) = 1

2π~

∫∞
−∞ dy ρ(x − y

2 , x + y
2 )e

ipy/~ ,

ρ(x − y
2 , x + y

2 ) =
∫∞
−∞ dp W (x , p)e−ipy/~ ,

〈O〉 = Tr(ρO) =
∫∞
−∞ dx dp W (x , p) :O: .

For a state in an odd finite dimensional Hilbert space:
W (n, k) = 1

d

∑d−1
m=0 ρn−m,n+me

4πikm/d .
Here the indices are defined modulo d , i.e. n, k ,m ∈ Zd = {0, 1, ..., d − 1}.
With odd d , all indices are covered in two cycles of Zd .
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Wigner Function

Wigner function is the density matrix in the phase space representation,
where the relative coordinate is Fourier transformed to its conjugate
variable. It is real by construction, and normalized to unity.
It can be negative, but its marginals are non-negative.

For a particle on a line (infinite dimensional Hilbert space):
W (x , p) = 1

2π~

∫∞
−∞ dy ρ(x − y

2 , x + y
2 )e

ipy/~ ,

ρ(x − y
2 , x + y

2 ) =
∫∞
−∞ dp W (x , p)e−ipy/~ ,

〈O〉 = Tr(ρO) =
∫∞
−∞ dx dp W (x , p) :O: .

For a state in an odd finite dimensional Hilbert space:
W (n, k) = 1

d

∑d−1
m=0 ρn−m,n+me

4πikm/d .
Here the indices are defined modulo d , i.e. n, k ,m ∈ Zd = {0, 1, ..., d − 1}.
With odd d , all indices are covered in two cycles of Zd .

This construction does not work in even dimensions.
A “quantum square-root” is needed. Given the construction for d = 2,
tensor products can reach any d , as an odd number times a power of 2.
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Wigner Function (contd.)

For a qubit, the Wigner function is a 2× 2 matrix.
Eigendirections of σz and σx can be chosen as the conjugate coordinates.
(σx is the translation generator for the σz eigenstates.)

The components {1, σx , σy , σz} respectively give the contributions:
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1 1
1 1
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, 1
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1 −1
1 −1
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1 −1
−1 1
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, 1
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1 1
−1 −1
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For a qubit, the Wigner function is a 2× 2 matrix.
Eigendirections of σz and σx can be chosen as the conjugate coordinates.
(σx is the translation generator for the σz eigenstates.)
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The Wigner function for ρ = 1
2(I + ~n · ~σ) is then positive within the

octahedron ±x ± y ± z = 1 embedded in the Bloch sphere.
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The Wigner function for ρ = 1
2(I + ~n · ~σ) is then positive within the

octahedron ±x ± y ± z = 1 embedded in the Bloch sphere.

The Wigner function for the two-qubit singlet state becomes:

Wsinglet =
1
8









−1 1 1 −1
1 1 1 1
1 1 1 1
−1 1 1 −1









.

Marginals for anticorrelated components are equal, while those for correlated components vanish.

The negative contributions are enough to give 〈(~σ ·~n1)(~σ ·~n2)〉 = −~n1 ·~n2.
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Weak Measurements

Information about the measured observable is extracted from the system
at a slow rate (e.g. by weak coupling). Stretching out the time scale can
allow one to monitor collapse of the system to a measurement eigenstate.
Note: A measurement interaction is the one where the apparatus does not,
for whatever reasons, remain in a superposition of pointer states.

There is only partially separated Stern-Gerlach signal, and no weak values.
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It has to be unraveled into quantum trajectories, whose stochastic
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allow one to monitor collapse of the system to a measurement eigenstate.
Note: A measurement interaction is the one where the apparatus does not,
for whatever reasons, remain in a superposition of pointer states.

There is only partially separated Stern-Gerlach signal, and no weak values.

The Born rule gives the quantum measurement ensemble, ρ −→
∑

i PiρPi .
It has to be unraveled into quantum trajectories, whose stochastic
dynamics would specify which “i” will occur in which experimental run.

Properties of quantum measurements impose strong constraints:
• Evolution dynamics has to be nonlinear, to make the measurement
eigenstates fixed points of the evolution.
• The Born rule should be a constant of evolution during measurement,
so that lack of simultaneity in special relativity does not conflict with the
outcomes in multipartite measurements.
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Weak Measurements

Information about the measured observable is extracted from the system
at a slow rate (e.g. by weak coupling). Stretching out the time scale can
allow one to monitor collapse of the system to a measurement eigenstate.
Note: A measurement interaction is the one where the apparatus does not,
for whatever reasons, remain in a superposition of pointer states.

There is only partially separated Stern-Gerlach signal, and no weak values.

The Born rule gives the quantum measurement ensemble, ρ −→
∑

i PiρPi .
It has to be unraveled into quantum trajectories, whose stochastic
dynamics would specify which “i” will occur in which experimental run.

Properties of quantum measurements impose strong constraints:
• Evolution dynamics has to be nonlinear, to make the measurement
eigenstates fixed points of the evolution.
• The Born rule should be a constant of evolution during measurement,
so that lack of simultaneity in special relativity does not conflict with the
outcomes in multipartite measurements.

Such a dynamical process exists! Gisin (1984)
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Salient Features

A precise ratio of evolution towards the measurement eigenstates and
unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.
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and viscous damping, implying a common origin for both in molecular scattering.

The measurement dynamics is completely local between the system and
the apparatus, independent of any other environmental degrees of freedom.

This is also an indication that the deterministic and the stochastic contributions to
the evolution arise from the same underlying process. The rest of the environment can
influence the system only via the apparatus.
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Salient Features

A precise ratio of evolution towards the measurement eigenstates and
unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.

The measurement dynamics is completely local between the system and
the apparatus, independent of any other environmental degrees of freedom.

This is also an indication that the deterministic and the stochastic contributions to
the evolution arise from the same underlying process. The rest of the environment can
influence the system only via the apparatus.

Technological advances allow us to monitor the
quantum evolution during weak measurements.
That can test the validity of the stochastic
measurement formalism, and then help us figure
out what may lie beyond.

Measurement ≡ An effective process of a more fundamental theory.
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1 Feb 2018, ISNFQC18, SNBNCBS, Kolkata
/ 22



Ensemble of Quantum Geodesic Trajectories

Leave out i [ρ,H] from the evolution description for simplicity.
The pointer basis {Pi} is fixed by the system-apparatus interaction.
Unitary interpolation between ρ and {Pi} gives the geodesic evolution:

d
dt
ρ =

∑

i wi g [ρPi + Piρ− 2ρTr(Piρ)] ,
∑

i wi = 1 .

g is the system-apparatus coupling, and t is the “measurement time”.

wi (t) are time-dependent real weights for the evolution trajectories to Pi .
They depend only on the observed degrees of freedom.
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∑

i wi = 1 .

g is the system-apparatus coupling, and t is the “measurement time”.

wi (t) are time-dependent real weights for the evolution trajectories to Pi .
They depend only on the observed degrees of freedom.

• This nonlinear evolution preserves ρ2 = ρ (pure states), and Tr(ρ) = 1.
The state is never entangled with the rest of the world (Schmidt decomposition).
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Ensemble of Quantum Geodesic Trajectories

Leave out i [ρ,H] from the evolution description for simplicity.
The pointer basis {Pi} is fixed by the system-apparatus interaction.
Unitary interpolation between ρ and {Pi} gives the geodesic evolution:

d
dt
ρ =

∑

i wi g [ρPi + Piρ− 2ρTr(Piρ)] ,
∑

i wi = 1 .

g is the system-apparatus coupling, and t is the “measurement time”.

wi (t) are time-dependent real weights for the evolution trajectories to Pi .
They depend only on the observed degrees of freedom.

• This nonlinear evolution preserves ρ2 = ρ (pure states), and Tr(ρ) = 1.
The state is never entangled with the rest of the world (Schmidt decomposition).

• All pointer states, ρ∗ = Pi , are fixed points of this evolution.

• Diagonal projections of ρ fully determine the evolution:
2

PjρPk

d
dt
(PjρPk) =

1
PjρPj

d
dt
(PjρPj) +

1
PkρPk

d
dt
(PkρPk)

There are n − 1 independent variables (diagonal projections Tr(Piρ)).
The evolution is totally decoupled from the decoherence process.
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Choice of Trajectory Weights

In case of instantaneous Born rule, wj = w IB
j ≡ Tr(ρ(t)Pj), the evolution

is deterministic and converges towards the closest fixed point.
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Choice of Trajectory Weights

In case of instantaneous Born rule, wj = w IB
j ≡ Tr(ρ(t)Pj), the evolution

is deterministic and converges towards the closest fixed point.

Instead, the trajectories can be made to wander around the state space
and explore other fixed points, by adding noise to the geodesic dynamics.

The type of the noise is not universal. It depends on the choice of the apparatus.
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• Each noise history wi (t) can be associated with an individual
experimental run—one of the many worlds in the ensemble.
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experimental run—one of the many worlds in the ensemble.

• The evolution of individual trajectories is nonlinear, while the ensemble
averaged evolution obeys a linear Lindblad master equation.
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Choice of Trajectory Weights

In case of instantaneous Born rule, wj = w IB
j ≡ Tr(ρ(t)Pj), the evolution

is deterministic and converges towards the closest fixed point.

Instead, the trajectories can be made to wander around the state space
and explore other fixed points, by adding noise to the geodesic dynamics.

The type of the noise is not universal. It depends on the choice of the apparatus.

• Each noise history wi (t) can be associated with an individual
experimental run—one of the many worlds in the ensemble.

• The evolution of individual trajectories is nonlinear, while the ensemble
averaged evolution obeys a linear Lindblad master equation.

• For the evolution satisfying the Born rule, free reparametrisation of the
“measurement time” is allowed, but no other freedom. This choice governs
the collapse time scale, and is fully local for each system-apparatus pair.
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Quantum Diffusion: Single Qubit Measurement

The evolution equations simplify considerably for a qubit.
Let |0〉 and |1〉 be the measurement eigenstates.

d
dt
ρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.
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d
dt
ρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.

Evolution obeys Langevin dynamics, when unbiased white noise with
spectral density Sξ is added to w IB

i . The trajectory weights become:
w0 − w1 = ρ00 − ρ11 +

√

Sξ ξ .
〈〈ξ(t)〉〉 = 0 , 〈〈ξ(t)ξ(t ′)〉〉 = δ(t − t ′) .
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Quantum Diffusion: Single Qubit Measurement

The evolution equations simplify considerably for a qubit.
Let |0〉 and |1〉 be the measurement eigenstates.

d
dt
ρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.

Evolution obeys Langevin dynamics, when unbiased white noise with
spectral density Sξ is added to w IB

i . The trajectory weights become:
w0 − w1 = ρ00 − ρ11 +

√

Sξ ξ .
〈〈ξ(t)〉〉 = 0 , 〈〈ξ(t)ξ(t ′)〉〉 = δ(t − t ′) .

This is a stochastic differential process on the interval [0, 1].
The fixed points at ρ00 = 0, 1 are perfectly absorbing boundaries.
A quantum trajectory would zig-zag through the interval
before ending at one of the two boundary points.
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Individual quantum evolution trajectories for the initial state ρ00 = 0.5, with measurement
eigenstates ρ00 = 0, 1, and in presence of measurement noise satisfying gSξ = 1.
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Single Qubit Measurement (contd.)

It is instructive to convert the stochastic evolution equation from the
differential Stratonovich form to the Itô form that specifies forward
evolutionary increments:
dρ00 = 2g ρ00ρ11(ρ00 − ρ11)(1− gSξ)dt + 2g

√

Sξ ρ00ρ11 dW ,
〈〈dW (t)〉〉 = 0 , 〈〈(dW (t))2〉〉 = dt .

The Wiener increment, dW = ξ dt, can be modeled as a random walk.
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〈〈dW (t)〉〉 = 0 , 〈〈(dW (t))2〉〉 = dt .

The Wiener increment, dW = ξ dt, can be modeled as a random walk.

The first term produces drift in the evolution, while the second gives rise
to diffusion. The evolution with no drift, i.e. the pure Wiener process with
gSξ = 1, is rather special:

〈〈dρ00〉〉 = 0 ⇐⇒ Born rule is a constant of evolution.
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Single Qubit Measurement (contd.)

It is instructive to convert the stochastic evolution equation from the
differential Stratonovich form to the Itô form that specifies forward
evolutionary increments:
dρ00 = 2g ρ00ρ11(ρ00 − ρ11)(1− gSξ)dt + 2g

√

Sξ ρ00ρ11 dW ,
〈〈dW (t)〉〉 = 0 , 〈〈(dW (t))2〉〉 = dt .

The Wiener increment, dW = ξ dt, can be modeled as a random walk.

The first term produces drift in the evolution, while the second gives rise
to diffusion. The evolution with no drift, i.e. the pure Wiener process with
gSξ = 1, is rather special:

〈〈dρ00〉〉 = 0 ⇐⇒ Born rule is a constant of evolution.

The constraint gSξ = 1 also gives the coupling-free relation:

〈〈(dρ00 − dρ11)
2〉〉 = 4ρ00ρ11

(dρ00−dρ11)geo
ρ00−ρ11

.

The fact that both vanishing drift and fluctuation-dissipation relation lead
to the Born rule is an exceptional feature of quantum trajectory dynamics.
Implication: The environment can influence the measurement process only via the apparatus.
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Ensemble Evolution Dynamics

During measurement, the probability distribution p(ρ00, t) of the set of
quantum trajectories evolves according to the Fokker-Planck equation:

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

, with gSξ = 1 .
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Ensemble Evolution Dynamics

During measurement, the probability distribution p(ρ00, t) of the set of
quantum trajectories evolves according to the Fokker-Planck equation:

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

, with gSξ = 1 .

Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
non-interfering components with areas x and 1− x , monotonically
travelling to the boundaries at ρ00 = 1 and 0 respectively.

Let tanh(z) = ρ00 − ρ11 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞). Then the two
components are Gaussians centred at z± = z0 ± gt, z0 = tanh−1(2x − 1):

p(z , t) = 1√
2πgt

(

x exp
[

− (z−z+)2

2gt

]

+ (1− x) exp
[

− (z−z
−
)2

2gt

]

)

.
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Ensemble Evolution Dynamics

During measurement, the probability distribution p(ρ00, t) of the set of
quantum trajectories evolves according to the Fokker-Planck equation:

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

, with gSξ = 1 .

Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
non-interfering components with areas x and 1− x , monotonically
travelling to the boundaries at ρ00 = 1 and 0 respectively.

Let tanh(z) = ρ00 − ρ11 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞). Then the two
components are Gaussians centred at z± = z0 ± gt, z0 = tanh−1(2x − 1):

p(z , t) = 1√
2πgt

(

x exp
[

− (z−z+)2

2gt

]

+ (1− x) exp
[

− (z−z
−
)2

2gt

]

)

.

The precise nature of this distribution is experimentally testable.
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∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

, with gSξ = 1 .

Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
non-interfering components with areas x and 1− x , monotonically
travelling to the boundaries at ρ00 = 1 and 0 respectively.

Let tanh(z) = ρ00 − ρ11 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞). Then the two
components are Gaussians centred at z± = z0 ± gt, z0 = tanh−1(2x − 1):

p(z , t) = 1√
2πgt

(

x exp
[

− (z−z+)2

2gt

]

+ (1− x) exp
[

− (z−z
−
)2

2gt

]

)

.

The precise nature of this distribution is experimentally testable.

Parametric freedom: With the Born rule as a constant of evolution,
g can be time-dependent, and gt is replaced by τ ≡

∫ t

0 g(t ′)dt ′.
The white noise distribution remains unspecified beyond the mean and the
variance. Suitable choice can be made, e.g. Gaussian noise or Z2 noise.
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Experimental Setup

The system is a superconducting 3D transmon qubit (nonlinear oscillator).
It consists of two Josephson junctions in a closed loop (SQUID) shunted by a capacitor.

It possesses good coherence and is insensitive to charge noise.
Decoherence time ∼ 50− 100µs. Individual operation time: fraction of µs.
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The system is a superconducting 3D transmon qubit (nonlinear oscillator).
It consists of two Josephson junctions in a closed loop (SQUID) shunted by a capacitor.

It possesses good coherence and is insensitive to charge noise.
Decoherence time ∼ 50− 100µs. Individual operation time: fraction of µs.

It is kept in a microwave resonator cavity dispersively coupled to it.
The cavity frequency depends on the qubit state, whether |0〉 or |1〉.

The cavity is probed by a microwave pulse. The scattered wave is
amplified by a near-quantum-limited Josephson parametric amplifier.

One quadrature of the signal is extracted with high gain and high accuracy.

A. Patel (CHEP, IISc) Quantum Trajectories for Entangled States
1 Feb 2018, ISNFQC18, SNBNCBS, Kolkata

/ 22



Experimental Setup

The system is a superconducting 3D transmon qubit (nonlinear oscillator).
It consists of two Josephson junctions in a closed loop (SQUID) shunted by a capacitor.

It possesses good coherence and is insensitive to charge noise.
Decoherence time ∼ 50− 100µs. Individual operation time: fraction of µs.

It is kept in a microwave resonator cavity dispersively coupled to it.
The cavity frequency depends on the qubit state, whether |0〉 or |1〉.

The cavity is probed by a microwave pulse. The scattered wave is
amplified by a near-quantum-limited Josephson parametric amplifier.

One quadrature of the signal is extracted with high gain and high accuracy.

One-way isolator and circulator help extract the scattered wave.
Interference of the amplified wave with the reference wave yields
the quantum state signal, as a scattering phase-shift.

Both the cavity and the amplifier are bandwidth limited, with high frequencies suppressed.
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Experimental Setup

The system is a superconducting 3D transmon qubit (nonlinear oscillator).
It consists of two Josephson junctions in a closed loop (SQUID) shunted by a capacitor.

It possesses good coherence and is insensitive to charge noise.
Decoherence time ∼ 50− 100µs. Individual operation time: fraction of µs.

It is kept in a microwave resonator cavity dispersively coupled to it.
The cavity frequency depends on the qubit state, whether |0〉 or |1〉.

The cavity is probed by a microwave pulse. The scattered wave is
amplified by a near-quantum-limited Josephson parametric amplifier.

One quadrature of the signal is extracted with high gain and high accuracy.

One-way isolator and circulator help extract the scattered wave.
Interference of the amplified wave with the reference wave yields
the quantum state signal, as a scattering phase-shift.

Both the cavity and the amplifier are bandwidth limited, with high frequencies suppressed.

With a phase-sensitive amplifier, the scattering phase-shifts are Gaussians
peaked at the two eigenvalues. Weak measurements result when the
probe magnitude is small, making the two Gaussians closely overlap.
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Experimental Results

A quantum state initially polarised in XZ-plane is measured in the Z-basis.
Even though the weak measurement extracts only partial information, its
back-action on the qubit is completely known, and the qubit evolution
from a known starting state can be precisely constructed.

A. Patel (CHEP, IISc) Quantum Trajectories for Entangled States
1 Feb 2018, ISNFQC18, SNBNCBS, Kolkata

/ 22



Experimental Results

A quantum state initially polarised in XZ-plane is measured in the Z-basis.
Even though the weak measurement extracts only partial information, its
back-action on the qubit is completely known, and the qubit evolution
from a known starting state can be precisely constructed.

The quantum state is infered from the integrated signal measurement,
according to the Bayesian formalism (I0, I1, σ are known):

ρ00(t+∆t)
ρ11(t+∆t) =

ρ00(t)
ρ11(t)

exp[−(Im(∆t)−I0)
2/2σ2]

exp[−(Im(∆t)−I1)2/2σ2]
, Im(∆t) = 1

∆t

∫ ∆t

0 I (t ′) dt ′ .

Simultaneous relaxation of the excited state is accounted for, by
ρ11(t +∆t) = ρ11(t) exp(−∆t/T1) .
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back-action on the qubit is completely known, and the qubit evolution
from a known starting state can be precisely constructed.

The quantum state is infered from the integrated signal measurement,
according to the Bayesian formalism (I0, I1, σ are known):

ρ00(t+∆t)
ρ11(t+∆t) =

ρ00(t)
ρ11(t)

exp[−(Im(∆t)−I0)
2/2σ2]

exp[−(Im(∆t)−I1)2/2σ2]
, Im(∆t) = 1

∆t

∫ ∆t

0 I (t ′) dt ′ .

Simultaneous relaxation of the excited state is accounted for, by
ρ11(t +∆t) = ρ11(t) exp(−∆t/T1) .

The full quantum trajectories are constructed by combining these two
evolutions in a symmetric Trotter-type scheme, which has error O((∆t)2).
Trajectories are consistent with quantum state tomography (i.e. strong measurement at time t).
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Experimental Results

A quantum state initially polarised in XZ-plane is measured in the Z-basis.
Even though the weak measurement extracts only partial information, its
back-action on the qubit is completely known, and the qubit evolution
from a known starting state can be precisely constructed.

The quantum state is infered from the integrated signal measurement,
according to the Bayesian formalism (I0, I1, σ are known):

ρ00(t+∆t)
ρ11(t+∆t) =

ρ00(t)
ρ11(t)

exp[−(Im(∆t)−I0)
2/2σ2]

exp[−(Im(∆t)−I1)2/2σ2]
, Im(∆t) = 1

∆t

∫ ∆t

0 I (t ′) dt ′ .

Simultaneous relaxation of the excited state is accounted for, by
ρ11(t +∆t) = ρ11(t) exp(−∆t/T1) .

The full quantum trajectories are constructed by combining these two
evolutions in a symmetric Trotter-type scheme, which has error O((∆t)2).
Trajectories are consistent with quantum state tomography (i.e. strong measurement at time t).

Quantum diffusion is not monotonic in time (unlike spontaneous collapse).
Quantum trajectories stochastically diffuse along the meridians of the
Bloch sphere (the phase of ρ01 remains unchanged).
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Experimental Results (contd.)

Relaxation time T1 is determined from the decay rate of the ensemble
averaged current, after preparing the qubit in the excited state.

The experimentally observed trajectory distribution fits the quantum
diffusion prediction very well, in terms of the single dimensionless
evolution parameter τ ≡

∫ t

0 g(t ′)dt ′, and excited state relaxation T1.
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Evolution of the quantum trajectory distribution for weak Z-measurement of a superconducting
transmon qubit with the initial state ρ00 = 0.305(3). The histograms with bin width 0.01 (red)
represent the experimental data for an ensemble of 106 trajectories. The curves (blue) are the
best fits to the quantum diffusion model distribution, with the single dimensionless evolution
parameter τ ∈ [0, 1.2]. The trajectory parameters (with errors) were T1 = 45(4)µs, ∆t = 0.5µs,
I0 = 128.44(2), I1 = 127.68(3), σ = 5.50(1).
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The best fit values of the time integrated measurement coupling τ for two values of the
system-apparatus coupling, when experimental data for weak Z-measurement of a transmon
with different initial states ρ00(0) are compared to the theoretical predictions. It is obvious that
τ is essentially independent of the initial state, and varies almost linearly with time after a
slower initial build-up. The error bars correspond to changes in τ that would change the
χ2-values for the trajectory distribution fits by 100.
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Experimental Results (contd.)

• With a large ensemble of trajectories, the systematic errors dominate
over the statistical ones.
• With 100 data points and only one fit parameter, χ2 values less than a
few hundred indicate good fits. The fits work well for τ < 2.

τ > 10 is essentially projective measurement.

• The fit parameter τ is independent of the initial state. It is almost linear
in t, with a slower initial build-up.
• The mismatch between theory and experiment grows with increasing τ ,
quite likely due to magnification of small initial uncertainties due to the
iterative evolution.
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Experimental Results (contd.)

• With a large ensemble of trajectories, the systematic errors dominate
over the statistical ones.
• With 100 data points and only one fit parameter, χ2 values less than a
few hundred indicate good fits. The fits work well for τ < 2.

τ > 10 is essentially projective measurement.

• The fit parameter τ is independent of the initial state. It is almost linear
in t, with a slower initial build-up.
• The mismatch between theory and experiment grows with increasing τ ,
quite likely due to magnification of small initial uncertainties due to the
iterative evolution.

Systematic errors:
• Uncertainty in the initial state ρ00(0).
• Uncertainties in I0, I1.
◦ Leftover heralding photons, after the initial state preparation pulse.
◦ Thermal mixing with the higher excited transmon states.
Detector inefficiency is absorbed in the value of τ . (Formally, g∆t = (∆I )2/(4σ2).)
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Origin of Noise

The quantum measurement dynamics is nonlinear and non-universal.
It is fully produced by the underlying system-apparatus interaction, and
the nature of the noise depends on it.

It can be viewed as decoherence of the apparatus by the system.
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Origin of Noise

The quantum measurement dynamics is nonlinear and non-universal.
It is fully produced by the underlying system-apparatus interaction, and
the nature of the noise depends on it.

It can be viewed as decoherence of the apparatus by the system.

What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
(stochastic fluctuations), with precisely related magnitudes?

Apparatus-dependent noise ⇐⇒ System-dependent Born rule
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Origin of Noise

The quantum measurement dynamics is nonlinear and non-universal.
It is fully produced by the underlying system-apparatus interaction, and
the nature of the noise depends on it.

It can be viewed as decoherence of the apparatus by the system.

What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
(stochastic fluctuations), with precisely related magnitudes?

Apparatus-dependent noise ⇐⇒ System-dependent Born rule

Amplification incorporates quantum noise when the extracted information
is not allowed to return (e.g. spontaneous vs. stimulated emission).
A model for the measurement apparatus is needed to understand where the noise comes from.
The inherent uncertainty of coherent states can provide the required noise through back-action.

A. Patel (CHEP, IISc) Quantum Trajectories for Entangled States
1 Feb 2018, ISNFQC18, SNBNCBS, Kolkata

/ 22



Origin of Noise

The quantum measurement dynamics is nonlinear and non-universal.
It is fully produced by the underlying system-apparatus interaction, and
the nature of the noise depends on it.

It can be viewed as decoherence of the apparatus by the system.

What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
(stochastic fluctuations), with precisely related magnitudes?

Apparatus-dependent noise ⇐⇒ System-dependent Born rule

Amplification incorporates quantum noise when the extracted information
is not allowed to return (e.g. spontaneous vs. stimulated emission).
A model for the measurement apparatus is needed to understand where the noise comes from.
The inherent uncertainty of coherent states can provide the required noise through back-action.

Understanding the quantum state collapse reduces to understanding
why large amplitude coherent states are not observed in superposition.

Questions about origin of irreversibility remain open.

A. Patel (CHEP, IISc) Quantum Trajectories for Entangled States
1 Feb 2018, ISNFQC18, SNBNCBS, Kolkata

/ 22



Nature of Noise

Where are the quantum properties (no coherence or entanglement left)?
Is the noise classical or quantum?
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Nature of Noise

Where are the quantum properties (no coherence or entanglement left)?
Is the noise classical or quantum?

The geodesic trajectory weights wi are real, but are not confined to [0, 1].
They cannot be interpreted as classical probabilities.
For a qubit, classical trajectory weights would have w0 − w1 ∈ [−1, 1].
Instead, quantum diffusion has w0 − w1 = ρ00 − ρ11 +

√

Sξ ξ .
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Nature of Noise

Where are the quantum properties (no coherence or entanglement left)?
Is the noise classical or quantum?

The geodesic trajectory weights wi are real, but are not confined to [0, 1].
They cannot be interpreted as classical probabilities.
For a qubit, classical trajectory weights would have w0 − w1 ∈ [−1, 1].
Instead, quantum diffusion has w0 − w1 = ρ00 − ρ11 +

√

Sξ ξ .

For the singlet state correlation determination at angle θ, there are two
binary measurements. All four outcomes have probability 1/4.

ρ = 1
2









0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0









, P
(1)
0 ⊗ I =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









, I ⊗ P
(2)
θ

=









c2 cs 0 0
cs s2 0 0
0 0 c2 cs

0 0 cs s2









.

Excursions of the trajectory weights outside [0, 1] produce nontrivial
correlations. (Time ordering of the two measurements does not matter).
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Beyond Quantum Mechanics

Physical:
(1) Hidden variables with novel dynamics may produce quantum mechanics
as an effective theory, e.g. the GRW spontaneous collapse mechanism.
(2) Ignored (but known) interactions can produce effects that modify
quantum dynamics at macroscopic scales, e.g. effects of CMBR or gravity.
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Beyond Quantum Mechanics

Physical:
(1) Hidden variables with novel dynamics may produce quantum mechanics
as an effective theory, e.g. the GRW spontaneous collapse mechanism.
(2) Ignored (but known) interactions can produce effects that modify
quantum dynamics at macroscopic scales, e.g. effects of CMBR or gravity.

Philosophical:
(1) What is real (ontology) may not be the same as what is observable
(epistemology), e.g. the consistent histories formalism.
(2) Human beings have only limited capacity and cannot comprehend
everything in the universe.
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Beyond Quantum Mechanics

Physical:
(1) Hidden variables with novel dynamics may produce quantum mechanics
as an effective theory, e.g. the GRW spontaneous collapse mechanism.
(2) Ignored (but known) interactions can produce effects that modify
quantum dynamics at macroscopic scales, e.g. effects of CMBR or gravity.

Philosophical:
(1) What is real (ontology) may not be the same as what is observable
(epistemology), e.g. the consistent histories formalism.
(2) Human beings have only limited capacity and cannot comprehend
everything in the universe.

Bypass:
Many worlds interpretation—each evolutionary branch is a different world,
and we only observe the measurement outcome corresponding to the world
we live in (anthropic principle).
None of these have progressed to the level where they can be connected
to verifiable experimental consequences.
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