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» Since entanglement cannot be created by LOCC, sharing of
entanglement requires sending quantum systems through
quantum channels along with LOCC.
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» How useful such a state is (for QIP) can be quantified by its
singlet fraction [Bennett +, PRL ,1995; PRA1996] defined by:

Flppn) = max (W pypal W),

where the maximization is over all maximally entangled states
W) € CY @ CH.
> Teleportation fidelity:

F d+1
flown) = Zlealdtl

> Entanglement distillation: VYields typically depend on
the singlet fraction.
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The basic protocol...

The goal is to establish entangled states of maximum
achievable singlet fraction.

However, maximizing F (pya) over all [1/) may not give the desired
result. WHY? Because, singlet fraction can increase under LOCC
[Badziag +, PRA, 2002, SB, PRA, 2002]. This brings us to the second
step of the protocol.

> Local post-processing: Define,

F*(ppr) = mExf(L(pwJ\)) ;L e TP-LOCC

» Why TP-LOCC? Because we do not want to throw away any
particle

» Unlike 7, F* is a LOCC monotone [Verstraete & Verschelde,
PRL 2003].
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about noisy channels? Is |t¢/,p) maximally entangled for noisy
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Definition:

FN) = T£>Xf* (Pu.n)

= f* (pwopt,/\) = mLaXF (L (pdfopt,/\))

Question of interest: For a given quantum channel A find F (A)

and figure out the protocol, that is, |¢)opt) and the relevant
TP-LOCC.

Remark: If the channel is noiseless, the solution is obvious. What
about noisy channels? Is |t¢/,p) maximally entangled for noisy
channels?

For qubit depolarizing channel, |¢op¢) is ME [Horodeckis, 1999];
For amplitude damping channel (qubit) |¢op) turned out to be
nonmaximally entangled; moreover, no local post-processing was
necessary [SB & AG, PRA(RC), 2012].
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po+ a- Moreover, the following equalities hold:
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Theorem
For a qubit channel A,

]:(/\) = Amax (pd>+,/\)a (1)

where |®1) = % (100) + [11)), po+ A = (Z @A) [®T) (dF| and
Amax (p¢+7/\) is the maximum eigenvalue of the density matrix
po+ a- Moreover, the following equalities hold:

F(N) = F (Pgopeh) = F (Prpope) - (2)

The optimal case does not require any local post-processing.

What can we say about |¢p)?
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Theorem
The state |1)opt) is maximally entangled if and only if A is unital,
where |1)opt) Is the eigenvector corresponding to the largest

eigenvalue of py. ; = (Z® /A\) |oF) ().
A is the map dual to \; that is, if N = {K;}, then A= {K,-T}.

Theorem
For a nonunital channel N\,

F* (p¢+7/\) < f(/\) (3)

Thus for a nonunital channel the optimal singlet fraction is achieved
only by sending nonmaximally entangled states through the channel.
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Optimal singlet fraction and Negativity

For unital channels

FO) = 24N ()] = 51+ N (]

N |~

However, for an amplitude damping channel (which is nonunital),

L+ N (porn)] < %[1 + N (N)]

N~

F(A) =

which means maximum output negativity is attained by a
nonmaximally entangled state.
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In a recent work [Pal and SB, available @ arXiv] we presented a
family of quantum channels Q in every finite dimension d > 3 with
the following properties:

F Q) = F (pyp.0) > F" (rva)

where U € C? ® C? is any maximally entangled state. And
moreover,

N(Q) > N(pwa).

Some of the properties do indeed carry over — but a full
characterization of channels, as we could do in the qubit case, looks
like a hard problem (so far).



