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Entanglement is a resource

I Entangled states, shared between distant observers, are
resources for QIP.

I Since entanglement cannot be created by LOCC, sharing of
entanglement requires sending quantum systems through
quantum channels along with LOCC.
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The basic protocol:Alice, Bob and a quantum
channel

I Preparation and Transmission: Alice prepares |ψ〉 ∈ Cd ⊗Cd (the
input state) and sends half of it down a d -dimensional quantum
channel Λ to Bob. This gives rise to the following mixed state
(output):

ρψ,Λ = (I ⊗ Λ) ρψ; ρψ = |ψ〉 〈ψ| .

I How useful such a state is (for QIP) can be quanti�ed by its
singlet fraction [Bennett +, PRL ,1995; PRA1996] de�ned by:

F (ρψ,Λ) = max
|Ψ〉
〈Ψ |ρψ,Λ|Ψ〉 ,

where the maximization is over all maximally entangled states
|Ψ〉 ∈ Cd ⊗ Cd .

I Teleportation fidelity:

f (ρψ,Λ) =
F (ρψ,Λ) d + 1

d + 1

I Entanglement distillation: Yields typically depend on

the singlet fraction.
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The basic protocol...

The goal is to establish entangled states of maximum
achievable singlet fraction.

However, maximizing F (ρψ,Λ) over all |ψ〉 may not give the desired
result.

WHY? Because, singlet fraction can increase under LOCC
[Badziag +, PRA, 2002, SB, PRA, 2002]. This brings us to the second
step of the protocol.

I Local post-processing: De�ne,

F∗ (ρψ,Λ) = max
L

F (L (ρψ,Λ)) ; L ∈ TP-LOCC

I Why TP-LOCC? Because we do not want to throw away any
particle

I Unlike F , F∗ is a LOCC monotone [Verstraete & Verschelde,
PRL 2003].
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One-shot optimal singlet fraction

De�nition:

F (Λ) = max
|ψ〉
F∗ (ρψ,Λ)

= F∗
(
ρψopt,Λ

)
= max

L

F
(
L
(
ρψopt,Λ

))
Question of interest: For a given quantum channel Λ �nd F (Λ)
and �gure out the protocol, that is, |ψopt〉 and the relevant
TP-LOCC.

Remark: If the channel is noiseless, the solution is obvious. What
about noisy channels? Is |ψopt〉 maximally entangled for noisy
channels?

For qubit depolarizing channel, |ψopt〉 is ME [Horodeckis, 1999];
For amplitude damping channel (qubit) |ψopt〉 turned out to be
nonmaximally entangled; moreover, no local post-processing was
necessary [SB & AG, PRA(RC), 2012].
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Qubit channels (non-entanglement breaking)

R. Pal, SB & S. Ghosh, PRA, 2014

Theorem

For a qubit channel Λ,

F (Λ) = λmax
(
ρΦ+,Λ

)
, (1)

where |Φ+〉 = 1√
2

(|00〉+ |11〉), ρΦ+,Λ = (I ⊗ Λ) |Φ+〉 〈Φ+| and
λmax

(
ρΦ+,Λ

)
is the maximum eigenvalue of the density matrix

ρΦ+,Λ. Moreover, the following equalities hold:

F (Λ) = F∗
(
ρψopt,Λ

)
= F

(
ρψopt,Λ

)
. (2)

The optimal case does not require any local post-processing.

What can we say about |ψopt〉?
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Qubit channels

Unital: Λ (I) = I; Non-unital: Λ (I) 6= I.

Theorem

The state |ψopt〉 is maximally entangled if and only if Λ is unital,

where |ψopt〉 is the eigenvector corresponding to the largest

eigenvalue of ρΦ+,Λ̂ =
(
I ⊗ Λ̂

)
|Φ+〉 〈Φ+|.

Λ̂ is the map dual to Λ; that is, if Λ = {Ki}, then Λ̂ =
{
K
†
i

}
.

Theorem

For a nonunital channel Λ,

F∗
(
ρΦ+,Λ

)
< F (Λ) (3)

Thus for a nonunital channel the optimal singlet fraction is achieved
only by sending nonmaximally entangled states through the channel.
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Optimal singlet fraction and Negativity

For any two-qubit density matrix ρ with negativity N (ρ) [Vidal and
Wener, 1999] we have,

F∗(ρ) ≤ 1

2
[1 +N (ρ)] , (4)

which immediately leads to,

F (Λ) ≤ 1

2
[1 +N (Λ)]

where N (Λ) = maxψN (ρψ,Λ) is the maximum output negativity.
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which means maximum output negativity is attained by a
nonmaximally entangled state.
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Higher dimensional channels

Characterization of quantum channels (d ≥ 3) in terms of one-shot
optimal singlet fraction remains open. Which properties carry over
to higher dimensions?

In a recent work [Pal and SB, available @ arXiv] we presented a
family of quantum channels Ω in every �nite dimension d ≥ 3 with
the following properties:

F (Ω) ≥ F∗ (ρψ,Ω) > F∗ (ρΨ,Ω)

where Ψ ∈ Cd ⊗ Cd is any maximally entangled state. And
moreover,

N (Ω) > N (ρΨ,Ω) .

Some of the properties do indeed carry over � but a full
characterization of channels, as we could do in the qubit case, looks
like a hard problem (so far).
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