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Excitonic energy transport (EET)
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[Valleau et al., ACS Cent. Sci. 3, 1086, (2017)]
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Vibrating molecules help
plants make use of quantum
effects

11 May 2015

by Joanna Roberts

Understanding how plants use quantum mechanics in photosynthesis could contribute to the design of m¢
efficient solar cells, Image: Shutterstock/ArTDI101
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understand how plants can
could help design more efficient solar cells.
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It's part of the emerging research field of quantum biology, which is looking at the role
quantum mechanics plays in biological systems.

Until recently, it was thought that quantum effects could only be observed in a system
where there was minimal interference from the environment, for example a system th
was cooled to near absolute zero to reduce the thermal vibrations of molecules. Biolog
systems were considered too complex for quantum descriptions to apply.

Quantumness from ultrafast spectroscopy

Nature does not rely on long-lived electronic quantum coherence for
photosynthetic energy transfer

Hong-Guang Duan, Valentyn I. Prokhorenko, Richard Cogdell, Khuram Ashraf, Amy L. Stevens, Michael Thorwart, R. ). Dwayne
Miller

(Submitted on 26 Oct 2016)

During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-
harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is understood in terms of exciton quasiparticles
which move on a grid of biomolecular sites on typical time scales less than 100 femtoseconds (fs). Since the early days of quantum
mechanics, this energy transfer s described as an incoherent Forster hopping with classical site occupation probabilites, but with quantum
mechanically determined rate constants. This orthodox picture has been challenged by ultrafast optical spectroscopy experiments with the
Fenna-Matthews-Olson protein in which interference oscillatory signals up to 1.5 picoseconds were reported and interpreted as direct
evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex
at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the
orthodox view of rapidly decaying electronic quantum coherence on a time scale of 60 fs. Our results give no hint that electronic quantum
coherence plays any biofunctional role in real photoactive biomolecular complexes. Since this natural energy transfer complex is rather small

defined protein with between being comparable to other light-harvesting
complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.
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Why do | /we care ?

@ Physics: Comparable system & system-bath energy scales
@ Chemistry: Excitons dynamics in organic systems

FMO monomer

b
Exciton  Transport
E T o—
. 13
5
4
3 A 4
2 A A A 4
1 v v

77 Biology: Does evolution exploit/use quantum mechanics?

{Valleau et al., ACS Cent. Sci. 3, 1086, (2017)}
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Efficiency: Structure-dynamics relationship

@ Very few naturally occurring light harvesting complexes
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Figure: Fenna-Matthews-Olson monomer Hio0
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Structure-dynamics relations
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Figure: Correlations about 3.3x with special chromophore

[ Knee/Rowe/Smith/ Troisi/AD, J. Phys. Chem. Lett., 8, 2328, (2017) ]
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Quantumness: Evidence & explanation

@ Quantum coherence in excited state dynamics of FMO

175, 1 FMO monomer
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Figure: Ultrafast 4-wave mixing experiment [Engel et al. Nature 446, 782 (2007)]

@ Various calculations of entanglement, nonclassicality EE

[Caruso, AD, Wilde, Sarovar, ] {Li/Lambert/Chen/Chen/Nori, Sci. Rep. 2 (2012)]

@ Due to exciton-vibrational coupling [Thyrhaug et al. JPCL 7, 1653 (2016)

@ Is quantumness present in EET?
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What is quantumness?

Canonically, Bell inequality
Experimental test against local hidden variable theory

Space-like separations and swift measurements

Infeasible to implement on nm-scale complexes
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What is quantumness?

@ Canonically, Bell inequality

o Experimental test against local hidden variable theory

@ Space-like separations and swift measurements

@ Infeasible to implement on nm-scale complexes

o Correlations across time rather than space — Leggett Garg

@ Test against 'macro realism’ {Leggetc/carg, PRL 54, 857(1985)}

@ Requires two-time correlations (Home's tan i
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No-signalling-in-time
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No-signalling-in-time

@ A simpler and more effective test of macrorealism
@ Mathematically,

Wh,(p) = Tr[My - p] = Tr[Mp - (Fop)], where I >T, >0

is the difference of probabilities on whether or not the I' acts
o Mop=7>;]iXi|lp|i)i| is dephasing in a chosen basis
=& Basis dependent measure!!
o Mathematically,

Wh,(p) < max Tr[MMy(p—Top)] =Tr|p—Top| = CnsiT(p)
1>M,>0

@ Dephasing covariant operations [Meznaric/Clark/AD, PRL 110, 070502 (2013)} ]

@ Related to resource theory of coherence

{Baumgratz/Cramer/PIenio, PRL 113, 140401 (2014)} [ Marvian/Spekkens, PRA 94, 052324 (2016

[Streltsov, Rana, Adesso, Winter, Eisert, Parashar, ... }
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NSIT

° 0< CnsiT(p) <1-13
o We will only use the witness Wh, (p)

NSIT without system-bath separation
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Why do all this?

o Is EET quantum? Ultrafast spectroscopy experiment proposal

@ Quantumness of processes not states

[ Meznaric/Clark/AD, PRL 110, 070502 (2013) }

Quantumness where system-bath isolation is impossible

Quantumness in macroscopic scenarios

Extracting quantumness directly from spectroscopy

Most light-matter interactions - trapped ions, superconducting
qubits are studied spectroscopically R

_———

Work in progess
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Light-matter interaction

H = Hy+ V(r,t)
Matter: System & bath (quantum)

Ho = > €iliil + > Vinalm) (n] +hzﬂja}aj+2gqu><j|<b} + b))
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Spectroscopy
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@ Choosing pulse parameters can give various spectroscopies
@ Transient absorption, circular dichroism, photon echo etc.
@ 4-wave mixing can give full process tomography on SEM

Nonlinear optical
spectroscopy

Photon echo
experiment
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Spectroscopy

@ 4-wave mixing can give full process tomography on SEM

Nonlinear optical Quantum information
spectroscopy processing
Photon echo Quantum process
experiment tomography
t 4t pulse
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@ X QPT implicitly assumes quantum mechanics
X Requires at least d* — d? experiments
e System dimension unclear

Quantumness from ultrafast spectroscopy www.warwick.ac.uk/ginfo 16



Pump-probe spectroscopy

@ We use pump-probe: N =2 and ¢ = ¢1 = ¢»,

pii(T) = Xijkipri(0), x is a map
Ability of x to generate coherence in the energy basis?

@ Pump prepares a superposition state p
@ Probe rotates the basis to make a measurement

oM 1) P Sy,

SEM |a)

'
GSM |g> (a)

[ Knee/Marcus/Smith/AD, In preparation}
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X Mmatrix elements
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Pump-probe spectroscopy
@ Let us target |a) for both pump and probe

o (ii) requires additional pulses
@ (iv) Population tomography and selective repreparation at t1.

Then, PI(b) = 37 Xaaji(T = t1)Xjjaa(t1)
i j
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Pump-probe spectroscopy

o PUiN(p) — P(V)(p): System coherence only

o PO (b) — P(")(b): System coherence + bath Markovianity

o PU)(b) — Pl (p): System coherence + system-bath
correlations
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[ Knee/Marcus/Smith/AD, In preparation}
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Why do all this?

o Is EET quantum? In progress ...

Extracting quantumness directly from spectroscopy

Most light-matter interactions - trapped ions, superconducting
qubits are studied spectroscopically

Quantumness where system-bath isolation is impossible

Quantumness in macroscopic scenarios

Quantumness of processes not states
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