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Thermalization, Entanglement, Many-body

systems, and all that jazz

1 Entanglement within many-body quantum states
drives subsystems to thermalization although the full
state remain pure and of zero entropy.

2 Closed many-body systems maybe integrable or not,
and it is believed that non-integrable systems with
very few conserved laws rapidly thermalize.

3 Information diffusion within many-body systems
could be exponentially fast and lead to
“scrambling”, “butterfly effect” and ...
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Experiments: 1. Bose Hubbard
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Experiments: 2. Three globally coupled

spins
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Kicked tops to many-body spins

H =

(
~p
τ

)
Jy +

(
~κ
2j

)
J2
z

∞∑
n=−∞

δ(t − nτ)

(Kus, Scharf, Haake, 1987; Haake’s book.)

Jx ,y ,z =
∑2j

l=1 σ
x ,y ,z/2, the unitary or Floquet operator:

U = exp

(
−i κ

8j

2j∑
l 6=l ′=1

σz
l σ

z
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)
exp

(
−i π
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2j∑
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l

)
,

(Wang, Ghose, Sanders, and Hu, 2004)

Thermodynamic limit is also classical limt j →∞.
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Classical Map: X 2
n + Y 2

n + Z 2
n = 1

Xn+1 = Zn cos(κXn) + Yn sin(κXn)

Yn+1 = −Zn sin(κXn) + Yn cos(κXn)

Zn+1 = −Xn.
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Results from the 3-Qubit experiment
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Results from the 3-Qubit experiment
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Results from the 3-Qubit experiment
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Our analysis of experimental data:

Correlations of various kinds

|ψn〉 = Un|000〉

1 Entanglement of one qubit with other two.

2 Discord, concurrence between two qubits.

3 3-Tangle between three qubits.

4 CHSH violation measure between 2 qubits (M(ρ))

Tij = tr(σi ⊗ σjρ), hi : eigenvalues ofTT †

M(ρ) = maxi<jhi + hj

M(ρ) > 1: some setting violates CHSH inequality.
Ack: Special thanks to the Martinis group for sharing the data
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Small j : j = 3/2, (3 Qubits):
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1 Rapid growth of correlations when system is chaotic.
2 Steps not seen in time averages indicate peculiar LU

invariance between even-odd times.
3 Eventual domination of multipartite entanglement.
4 Dependence of decoherence on chaos.
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Small j : j = 3/2, (3 Qubits):

1 No violation of CHSH whether there is chaos or not:
This is not true for typical 3-qubit pure states.
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Small j : j = 3/2, (3 Qubits): A global

view from simulations
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Large j : j = 20, (40 Qubits): A global

view from simulations
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Permutation symmetry and the Top

States of the Top are permutation symmetric

|ψ〉 =a0|000〉+ a1
1√
3

(|001〉+ |010〉+ |100〉)+

a2
1√
3

(|011〉+ |101〉+ |110〉) + a3|111〉

1 State of 2 qubits is a rank-3 X− state.
2 State of 2 qubits do not violate any CHSH

inequality.
3 Smaller entanglement in general: In an L qubit

symmetric random state, the linear entropy of 1
qubit is on average 〈S (1)

L 〉 = (L− 1)/(2L) =1/3 for
L = 3.
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Permutation symmetry and the Top
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From the 3-Qubit experiment

“

”
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Exact solution to the 3-qubit Top

Additional parity or up-down symmetry: [⊗2jσy , U] = 0
4−dim permutation symm. subspace = 2⊕ 2.

{|000〉 − i |111〉, |W 〉+ i |W 〉}/
√

2

{|000〉+ i |111〉, |W 〉 − i |W 〉}/
√

2

Un|000〉 =
1

2
(1 + in)

(
αn|000〉+ iβn|W 〉

)
− i

2
(1− in) (αn|111〉+ iβn|W 〉) .

αn = Tn(χ)− i

2
Un−1(χ) cos 2κ, βn = −

√
3

2
Un−1(χ) e−2iκ,

where χ = sin(2κ)/2.
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Exact solution to the 3-qubit Top

Single qubit density matrix eigenvalues after time 2n:
λ2n, 1− λ2n,

λ2n =
1

2
U2

2n−1 (χ) , χ =
1

2
sin(2κ).

Tchebyshev Polynomials of 1st and 2nd kinds:

Tn(cos θ) = cos(nθ), Un−1(cos θ) = sin(nθ)/ sin θ

Concurrence at time 2n :

C2n = |U2n−1(χ)|

∣∣∣∣∣12 |U2n−1(χ)| −
√

1− 3

4
U2

2n−1(χ)

∣∣∣∣∣
λ2n−1 = λ2n, C2n−1 = C2n: Steps and LU invariance
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So is it chaotic?

Exactly solvable chaotic models: Both rare and special.
3 <∞, 3 < 4: All-to-all interaction is same as nearest
neighbour for 3 particles.

U = exp
(
i
κ

6
(σz

1σ
z
2 + σz

2σ
z
3 + σz

3σ
z
1)
)

× exp
(
i
π

4
(σy

1 + σy
2 + σy

3 )
)

Can also be a small particle number of a kicked
transverse Ising model: an integrable model!
Entropy production can be ballistic even in integrable
models: (Cardy, Calaberese for TI model). (Rajarshi talk
as well).
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Summary

Recent experiments explore thermalization and
entanglement in small closed systems.

One such experiment showed an approach to
ergodic dynamics and made connections with the
classical chaotic dynamics.

Our analysis showed peculiar steps due to LU
invariance and effects of permutation symmetry.

Decoherence in the presence of chaos seems to be
more drastic and may appear as thermalization in
small systems.
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Summary

Alhough the large number of qubits case is
nonintegrable, the 3 qubit case is special and may
even be construed as a small integrable model. Yet
it is possible that thermalization may seem to occur.

Small systems provide an interesting and surprisingly
complex setting.

Mindful of these effects as quantum computers are
interacting many-body qubit systems.

Thats all folks!
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