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Some important heat engines

◮ Stirling engine: Originally conceived in 1816 by Robert
Stirling, a scottish inventor, as a rival to the steam engine.

◮ Carnot engine: A theoretical thermodynamic cycle
proposed by Nicolas Léonard Sadi Carnot in 1823.

◮ Otto engine : The earliest prototype four stroke engine
developed by Nikolaus August Otto in Cologne, Germany
in 1876.
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Microscopic realizations through a colloidal particle

in a harmonic trap

Working substance : A single colloidal particle in a harmonic
trap.

Externally controllable variables:

◮ spring constant (or equivalently the frequency ω of the
trap. Can be viewed as inversely proportional to the
‘volume’ in the context of macroscopic heat engines.

◮ ambient temperature.
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Stirling Engine

ω1,Tc Isothermal ω2,Tc

3 −→ 4
τc

Isochoric ↑ ↓ Isochoric
τh

2 ←− 1
ω1,Th Isothermal ω2,Th

ω2 > ω1, Th > Tc ,

Realized experimentally by Blickle and Bechinger [ Nature
Physics 8 143-146 (2012)].
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Carnot Engine

ω1,Th Isothermal ω2,Th

1 −→ 2
τh

Isentropic ↑ ↓ Isentropic
τc

4 ←− 3
ω4,Tc Isothermal ω3,Tc

ω1 > ω4 > ω2 > ω3, Th > Tc , βhω2 = βcω3, βhω1 = βcω4

β ≡ 1/KBT
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Otto Engine

ωc ,T2 Isentropic ωh,Th

4 ←− 3
τ1

Isochoric ↓ ↑ Isochoric
τ2

1 −→ 2
ωc ,Tc Isentropic ωh,T1

ωh > ωc >, Th > Tc , βcωc = β1ωh, βhωh = β2ωc , .
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Efficiencies from Thermodynamics

The knowledge of the internal energy U and the Helmholtz
free energy F = U − TS for a quantum harmonic oscillator

U =~ω[n(ω,T ) + 1/2], n(ω,T ) ≡
1

(eβ~ω − 1)
,

F =
1

β
ln(2 sinh(β~ω/2))

which in the classical limit β~ω << 1 read

U = 1/β

F (ω,T ) =
1

β
ln(β~ω)

together with the the thermodynamic conservation law

∆U = ∆Q −∆W ;
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enable one to compute the efficiency

η =
Work done by the system

Heat flow into the system at Th

.

for the three engines:
While for the Carnot and the Otto engine the efficiency as
defined turns out to be the same in both classical and
quantum cases

Carnot

ηclc = ηqc = ηc =

(
1−

Tc

Th

)
.

Otto

ηclo = ηqo = 1−
U(4)− U(1)

U(3)− U(2)
=

(
1−

ωc

ωh

)
.
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in the Stirling case the two differ
Stirling

ηqs =
1− Y /X

1 + Z/X
,

X = ln

(
sinh(βh~ω2/2)

sinh(βh~ω1/2)

)
, Y =

βh

βc

ln

(
sinh(βc~ω2/2)

sinh(βc~ω1/2)

)
,

Z =
βh

2
[~ω1 coth (βh~ω1/2)−

~ω2

2
{coth (βh~ω2/2)+

coth (βc~ω2/2)}].

In the classical limit

ηcls =
ηc

1 + ηc/ ln(
ω2
2

ω2
1

)

, ηc = 1−
Tc

Th

.
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We note that in deriving these results one has to bring in a
factor of half before the second term in the denominator to
make them coincide with those quoted by Blickle and
Bechinger. The origin and dependence on dissipation of this
factor are discussed in detail in

G S Agarwal, S. Chaturvedi Phys Rev E 88, 012130 (2013).

S. Chaturvedi Finite time corrections to the efficiencies of heat engines based



Need to go beyond standard thermodynamics

◮ To compute finite time corrections to the efficiencies of
various heat engines both in the quantum and the
classical cases.

◮ To understand the origin of the ad hoc factor of half in
the context of the Stirling cycle
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Beyond standard thermodynamics

To go beyond the standard thermodynamic assumptions we
need a framework which treats the system modelling the
engine as an open system and permitting proper inclusion of
dissipative effects and the possibility of varying the sytstem
potential and the ambient temperature. In the present context,
such a framework is provided by the dynamics of a quantum
Brownian oscillator of frequency ω in contact with a heat bath
at temperature T is described by the master equation

∂

∂t
ρ = −

i

~
[p̂2/2m +

1

2
mω2q̂2, ρ]

−
2κmω

~
(n(ω,T ) + 1/2)([q̂, [q̂, ρ]])−

iκ

~
([q̂, {p̂, ρ}]),

where q̂ and p̂ are denote the position and momentum
operators obeying the commutation relations [q̂, p̂] = i~.
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Wigner phase space description

ρ̂ 7→Wρ̂(q, p) = Tr

{
ρ̂ Ŵ (q, p)

}
;

Ŵ (q, p) =
1

(2π~)

∞∫

−∞

dq′ |q +
1

2
q′〉〈q −

1

2
q′| e i pq

′/~,
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Use of the Wigner description turns the master equation into a
Fokker-Planck equation for W (q, p)

∂

∂t
W = [−

∂

∂q

( p

m

)
+

∂

∂p

(
2κp +

(
∂V (q, a)

∂q

))
+ D

∂2

∂p2
]W ,

where

V (q, a) =
1

2
aq2, a ≡ mω2,

and

D = 2m~ωκ(n(ω,T ) +
1

2
), n(ω,T ) = (eβ~ω − 1)−1.

The parameter a, the ‘spring constant’, will be taken to be
controlled externally.
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The Langevin equations equivalent to the above FPE read:

q̇ =
p

m
,

ṗ = −2κp −
∂

∂q
V (q, a) + f (t),

< f (t)f (t ′) >= 2Dδ(t − t ′).

The LE’s lend themselves to a nice thermodynamics
intepretation :
Rewriting the second as

−(−2κp + f (t)) + ṗ +
∂

∂q
V (q, a) = 0,

and multiplying it by dq and using

dV =
∂V (q, a)

∂q
dq +

∂V (q, a)

∂a
da,

one obtains
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−(−2κp + f (t))dq + d(p2/2m + V (q, a))−
∂V (q, a)

∂a
da = 0

The three terms in the above equation may now be identified
in an intuitively plausible manner as:

dQ = (−2κp + f (t))dq, dU = d(p2/2m + V ),

dW = −
∂V (q, a)

∂a
da,

leading to the energy balance equation:

−dQ+ dU + dW = 0,

with dQ ( -dQ) understood as the heat flow into of (out) the
system and dW (-dW) as the work done by (on) the system.

The stochastic averages of these quantities denoted by
dQ,dU and dW respectively relate directly to the
corresponding thermodynamic quantities and capture the
thermodynamic conservation laws.
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The computation of the work done, heat absorbed can now be
carried out from the knowledge of 〈q2〉, 〈p2〉, 〈qp〉
Thus, for instance, calculation of ∆W for the 1→ 2 step of
the Carnot engine :

∆W1→2 =

∫ 2

1

dW = −

∫ ω2

ω1

mω〈q2〉T=Tc
dω,

∆U1→2 =

∫ 2

1

dU

=

(
〈p2〉

2m
+

1

2
mω2〈q2〉

)

2

−

(
〈p2〉

2m
+

1

2
mω2〈q2〉

)

1

One recovers the results from thermodynamics when the
relevant moments appearing in these expressions are replaced
by their steady state values.
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Finite time corrections: Complementarity relations

We next consider the situation when the system starts out at
equilibrium with a bath at temperature T , and the frequency
is changed from its initial value ω0 to its final value ω1 in a
finite time either isothermally (T held fixed) or isentropically
(ω/T held fixed) and focus on computing finite time
corrections to the standard thermodynamic results.
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The equations for the second moments that follow from the
Langevin or the Fokker-Planck equation may be written as

d

dt
X (t) = A(t)X (t) + Y (t),

where

X (t) =



〈q2〉
〈qp〉
〈p2〉


 ,A(t) =




0 2
m

0
−mω2(t) −2κ 1

m

0 −2mω2 −4κ


 ,

Y (t) =




0
0

2D(t)


 .

(At this stage, as indicated, we allow the frequency and the
diffusion coefficients to be independent functions of t, Later
however, we would specialise to situations appropriate to
isothermal or isentropic variation of the frequency.)
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Putting t = sτ and expanding X (t) as

X (t) = X (0)(s) +
1

τ
X (1)(s) + · · · ,

we obtain

A(s)X (0)(s) + Y (s) = 0⇒ X (0)(s) = −A−1(s)Y (s),

X (1)(s) = A−1(s)
d

ds
X (0)(s).

The first of these equations can be taken to describe the
situation where the system is in the steady state corresponding
to the instantaneous values of ω and D and the second as
describing deviations from this steady state. These equations
then give
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〈q2(s)〉(0) =
D(s)

2m2ω2(s)κ
; 〈q(s)p(s)〉(0) = 0;

〈p2(s)〉(0) =
D(s)

2κ
,

and

〈q2(s)〉(1) = −[
8κ2 + 2ω2(s)

8κω2(s)

d

ds
〈q2(s)〉(0)

+
1

mω2(s)

d

ds
〈q(s)p(s)〉(0) +

1

4κm2ω2(s)

d

ds
〈p2(s)〉(0)],

〈q(s)p(s)〉(1) =
m

2

d

ds
〈q2(s)〉(0)

〈p2(s)〉(1) = −[
m2ω2(s)

4κ

d

ds
〈q2(s)〉(0) +

1

4κ

d

ds
〈p2(s)〉(0)].
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These equations give finite time corrections to the variances.
As the diffusion coefficient is a function of both ω and T we
now specialize to the situations where

◮ (a) ω is time dependent, T is held fixed (Isothermal Case)

◮ (b) ω,T both are time dependent but ω/T is held fixed
(Isentropic case).
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Finite time corrections to the Carnot Efficiency

Carnot engine

ω1,Th Isothermal ω2,Th

1 −→ 2
τ

Isentropic ↑ ↓ Isentropic
τ

4 ←− 3
ω4,Tc Isothermal ω3,Tc

ω1 > ω4 > ω2 > ω3, Th > Tc ,

βhω2 = βcω3, βhω1 = βcω4,
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Here we compute the finite time corrections to the Carnot
efficiency

η = 1−
|Q3→4|

|Q1→2|

for the case when the two isothermal steps are carried out in a
finite time τ with ω varied so as to minimize irreversible work.
For simplicity we give the results in the classical case.
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In the overdamped regime

η = 1−
βh

βc

[
1 + 3κ

τ
1

ln
(

ω4
ω3

)
(

1
ω3
− 1

ω4

)2
]

[
1− 3κ

ln
(

ω4
ω3

)
(

βh

βc

)2 (
1
ω3
− 1

ω4

)2
]

≈ ηc −
3κ

τ

(
Tc

Th

)[
1 +

(
Tc

Th

)2
]

1

ln
(

ω4

ω3

)
(

1

ω3

−
1

ω4

)2
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In the underdamped regime on the other hand one finds

η = ηc −
1

κτ

(
Tc

Th

)
ln

(
ω4

ω3

)

Complementarity relations
Efficiency at maximum power
Work fluctuations
................
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