
Computability theory and Bell non-locality

Antonio Acín1, Ariel Bendersky2, Gonzalo de La Torre1,
Santiago Figueira2 y Gabriel Senno1

1ICFO - The Institute of Photonic Sciences.
2Computer Science Department, FCEyN, University of Buenos Aires.

International Symposium on New Frontiers in Quantum Correlations
(ISNFQC18)

Kolkata, January 2018

Abstract

Two results relating computability theory and Bell non-locality:
Inputs: The computability loophole.

Outputs: Computability + non-locality =⇒ signaling.

2

Abstract

Two results relating computability theory and Bell non-locality:
Inputs: The computability loophole.
Outputs: Computability + non-locality =⇒ signaling.

2

The computability loophole

3

The CHSH game

pCHSH
win :=

1

4

∑
a,b

p(a 6= b|1, 1) +
∑

(x,y)6=(1,1)

p(a = b|x, y)



4

The CHSH game

pCHSH
win :=

1

4

∑
a,b

p(a 6= b|1, 1) +
∑

(x,y)6=(1,1)

p(a = b|x, y)


4

Local strategies

p(a, b|x, y) =
∑
λ

q(λ)δa=Aλ(x)δb=Bλ(y).

pCHSH
win ≤

3

4
, for every local strategy.

5

Local strategies

p(a, b|x, y) =
∑
λ

q(λ)δa=Aλ(x)δb=Bλ(y).

pCHSH
win ≤

3

4
, for every local strategy.

5

Bell inequalities

The CHSH inequality

p(= |P1, P1) + p(= |P1, P2) + p(= |P2, P1) + p(6= |P2, P2) ≤ 3

is an example of a Bell inequality.
In general, ∑

a,b,x,y

Ba,b,x,yp(a, b|x, y) ≤ Bl.

6

Quantum strategies

Quantum strategy:

p(a, b|x, y) = 〈ψ|Πx
aΠy

b |ψ〉

with |ψ〉 ∈ H,∑a Πx
a =

∑
b Πy

b = IH and [Πx
a,Π

y
b] = 0.

For the CHSH game, preparing |ψ−〉 =: 1√
2
(|01〉 − |10〉) and

measuring in the following spin directions:

it is easy to see that, pCHSH
win = cos2(π/8) ≈ 0, 85.

7

Quantum strategies

Quantum strategy:

p(a, b|x, y) = 〈ψ|Πx
aΠy

b |ψ〉

with |ψ〉 ∈ H,∑a Πx
a =

∑
b Πy

b = IH and [Πx
a,Π

y
b] = 0.

For the CHSH game, preparing |ψ−〉 =: 1√
2
(|01〉 − |10〉) and

measuring in the following spin directions:

it is easy to see that, pCHSH
win = cos2(π/8) ≈ 0, 85.

7

Memory scenario

Local strategies:
p(an, bn|xn, yn) =

∑
λ q(λ)δan=Aλ(xn,M)δbn=Bλ(yn,M).

pCHSH
win ≤ 3/4 [Barrett et al., Phys. Rev. A 66, 042111, 2002].

8

Memory scenario

Local strategies:
p(an, bn|xn, yn) =

∑
λ q(λ)δan=Aλ(xn,M)δbn=Bλ(yn,M).

pCHSH
win ≤ 3/4 [Barrett et al., Phys. Rev. A 66, 042111, 2002].

8

Memory scenario

Local strategies:
p(an, bn|xn, yn) =

∑
λ q(λ)δan=Aλ(xn,M)δbn=Bλ(yn,M).

pCHSH
win ≤ 3/4 [Barrett et al., Phys. Rev. A 66, 042111, 2002].

8

Memory scenario with computable inputs

Theorem ([Bendersky, Senno, de la Torre, Figueira and Acín. PRL 116, 230402, 2016])
If the referee in the CHSH game with memory chooses (at least) one of
the players’ questions using a computable function f : N→ {0, 1},
there is a perfect local strategy (independent of f).

9

Memory scenario with computable inputs

Theorem ([Bendersky, Senno, de la Torre, Figueira and Acín. PRL 116, 230402, 2016])
If the referee in the CHSH game with memory chooses (at least) one of
the players’ questions using a computable function f : N→ {0, 1},
there is a perfect local strategy (independent of f).

9

Computable functions

A function f : N→ {0, 1} is said to be computable if there is a
program P that on input n outputs f(n).

in (deterministic) time
O(T) for some T : N→ N if there is a program P that on input
n outputs f(n) after (at most) c · T (log n) computational steps
for some c and suff. large n.

A class of computable functions C = {f0, f1, . . . } is said to be
computably enumerable if there is a program P that on inputs n
outputs (the code of) a program that computes fn.
For every computable T : N→ N, the class CT of functions
computable in time O(T) is computably enumerable. This
include the well-known complexity classes P, NP, EXP, BQP.
But, the class of all computable functions is not computably
enumerable.

10

Computable functions

A function f : N→ {0, 1} is said to be computable in
(deterministic) time O(T) for some T : N→ N if there is a
program P that on input n outputs f(n) after (at most)
c · T (log n) computational steps for some c and suff. large n.

A class of computable functions C = {f0, f1, . . . } is said to be
computably enumerable if there is a program P that on inputs n
outputs (the code of) a program that computes fn.
For every computable T : N→ N, the class CT of functions
computable in time O(T) is computably enumerable. This
include the well-known complexity classes P, NP, EXP, BQP.
But, the class of all computable functions is not computably
enumerable.

10

Computable functions

A function f : N→ {0, 1} is said to be computable in
(deterministic) time O(T) for some T : N→ N if there is a
program P that on input n outputs f(n) after (at most)
c · T (log n) computational steps for some c and suff. large n.
A class of computable functions C = {f0, f1, . . . } is said to be
computably enumerable if there is a program P that on inputs n
outputs (the code of) a program that computes fn.

For every computable T : N→ N, the class CT of functions
computable in time O(T) is computably enumerable. This
include the well-known complexity classes P, NP, EXP, BQP.
But, the class of all computable functions is not computably
enumerable.

10

Computable functions

A function f : N→ {0, 1} is said to be computable in
(deterministic) time O(T) for some T : N→ N if there is a
program P that on input n outputs f(n) after (at most)
c · T (log n) computational steps for some c and suff. large n.
A class of computable functions C = {f0, f1, . . . } is said to be
computably enumerable if there is a program P that on inputs n
outputs (the code of) a program that computes fn.
For every computable T : N→ N, the class CT of functions
computable in time O(T) is computably enumerable. This
include the well-known complexity classes P, NP, EXP, BQP.

But, the class of all computable functions is not computably
enumerable.

10

Computable functions

A function f : N→ {0, 1} is said to be computable in
(deterministic) time O(T) for some T : N→ N if there is a
program P that on input n outputs f(n) after (at most)
c · T (log n) computational steps for some c and suff. large n.
A class of computable functions C = {f0, f1, . . . } is said to be
computably enumerable if there is a program P that on inputs n
outputs (the code of) a program that computes fn.
For every computable T : N→ N, the class CT of functions
computable in time O(T) is computably enumerable. This
include the well-known complexity classes P, NP, EXP, BQP.
But, the class of all computable functions is not computably
enumerable.

10

Predicting computable functions

Functions in computably enumerable classes can be predicted in
the following sense:

For every computably enumerable class C of computable
functions there is a program P (called a predictor for C) such that
for every f ∈ C,

(∃n0)(∀n ≥ n0) f(n) = P([f(0), . . . , f(n− 1)])

11

Predicting computable functions
The predictor works as follows,

First
match

Guess for
the target
function

Seen bits:

f(0)= f(1)= f(2)=

s1 = 0 0 0 0 0 0 0 . . .
s2 = 0 0 1 1 0 1 1 . . .
s3 = 1 0 0 0 1 0 1 . . .
s4 = 1 1 1 1 0 0 0 . . .
s5 = 0 1 0 1 0 1 0 . . .
s6 = 1 0 1 0 1 1 1 . . .
s7 = 1 1 0 1 1 0 1 . . .
...

1 0 1

12

Perfect local strategy
Let T : N→ N be some computable function, f ∈ CT and P a
predictor for CT .

13

Technical details of the model

Provided f ∈ CT , if Bob uses a predictor P for CT , after finitely
many rounds he will start predicting xi correctly.

However, how many rounds it will take him is uncomputable.
Nevertheless, the number M of prediction errors he make
until that time is small.

If f(n) has a k-bits program, M ≤ O(log(k)).

Also, the prediction algorithm is (almost) as efficient as f .

If f is computable in O(T) time, then P runs in O(T · log(T)).

14

Technical details of the model

Provided f ∈ CT , if Bob uses a predictor P for CT , after finitely
many rounds he will start predicting xi correctly.

However, how many rounds it will take him is uncomputable.

Nevertheless, the number M of prediction errors he make
until that time is small.

If f(n) has a k-bits program, M ≤ O(log(k)).

Also, the prediction algorithm is (almost) as efficient as f .

If f is computable in O(T) time, then P runs in O(T · log(T)).

14

Technical details of the model

Provided f ∈ CT , if Bob uses a predictor P for CT , after finitely
many rounds he will start predicting xi correctly.

However, how many rounds it will take him is uncomputable.
Nevertheless, the number M of prediction errors he make
until that time is small.

If f(n) has a k-bits program, M ≤ O(log(k)).
Also, the prediction algorithm is (almost) as efficient as f .

If f is computable in O(T) time, then P runs in O(T · log(T)).

14

Technical details of the model

Provided f ∈ CT , if Bob uses a predictor P for CT , after finitely
many rounds he will start predicting xi correctly.

However, how many rounds it will take him is uncomputable.
Nevertheless, the number M of prediction errors he make
until that time is small.

If f(n) has a k-bits program, M ≤ O(log(k)).

Also, the prediction algorithm is (almost) as efficient as f .

If f is computable in O(T) time, then P runs in O(T · log(T)).

14

Technical details of the model

Provided f ∈ CT , if Bob uses a predictor P for CT , after finitely
many rounds he will start predicting xi correctly.

However, how many rounds it will take him is uncomputable.
Nevertheless, the number M of prediction errors he make
until that time is small.

If f(n) has a k-bits program, M ≤ O(log(k)).
Also, the prediction algorithm is (almost) as efficient as f .

If f is computable in O(T) time, then P runs in O(T · log(T)).

14

Technical details of the model

Provided f ∈ CT , if Bob uses a predictor P for CT , after finitely
many rounds he will start predicting xi correctly.

However, how many rounds it will take him is uncomputable.
Nevertheless, the number M of prediction errors he make
until that time is small.

If f(n) has a k-bits program, M ≤ O(log(k)).
Also, the prediction algorithm is (almost) as efficient as f .

If f is computable in O(T) time, then P runs in O(T · log(T)).

14

Loophole

In the context of non-locality experiments, this result can be
seen as a loophole, i.e. an experimental situation allowing
non-communicating classical devices to generate statistics
violating a Bell inequality.

Can it be closed?
Famous loophole-free experiments of 2015 use QRNGs. If we
assume quantum theory, they are free from the loophole (with
probability 1). However,

Rather circular to assume a non-local theory when testing
non-locality.
Experimentally unverifiable.

Nevertheless, the result I will talk about next implies that,
under reasonable assumptions, the outputs from QRNGs are,
in fact, uncomputable.

15

Loophole

In the context of non-locality experiments, this result can be
seen as a loophole, i.e. an experimental situation allowing
non-communicating classical devices to generate statistics
violating a Bell inequality.

Can it be closed?

Famous loophole-free experiments of 2015 use QRNGs. If we
assume quantum theory, they are free from the loophole (with
probability 1). However,

Rather circular to assume a non-local theory when testing
non-locality.
Experimentally unverifiable.

Nevertheless, the result I will talk about next implies that,
under reasonable assumptions, the outputs from QRNGs are,
in fact, uncomputable.

15

Loophole

In the context of non-locality experiments, this result can be
seen as a loophole, i.e. an experimental situation allowing
non-communicating classical devices to generate statistics
violating a Bell inequality.

Can it be closed?
Famous loophole-free experiments of 2015 use QRNGs. If we
assume quantum theory, they are free from the loophole (with
probability 1). However,

Rather circular to assume a non-local theory when testing
non-locality.
Experimentally unverifiable.

Nevertheless, the result I will talk about next implies that,
under reasonable assumptions, the outputs from QRNGs are,
in fact, uncomputable.

15

Loophole

In the context of non-locality experiments, this result can be
seen as a loophole, i.e. an experimental situation allowing
non-communicating classical devices to generate statistics
violating a Bell inequality.

Can it be closed?
Famous loophole-free experiments of 2015 use QRNGs. If we
assume quantum theory, they are free from the loophole (with
probability 1). However,

Rather circular to assume a non-local theory when testing
non-locality.

Experimentally unverifiable.

Nevertheless, the result I will talk about next implies that,
under reasonable assumptions, the outputs from QRNGs are,
in fact, uncomputable.

15

Loophole

In the context of non-locality experiments, this result can be
seen as a loophole, i.e. an experimental situation allowing
non-communicating classical devices to generate statistics
violating a Bell inequality.

Can it be closed?
Famous loophole-free experiments of 2015 use QRNGs. If we
assume quantum theory, they are free from the loophole (with
probability 1). However,

Rather circular to assume a non-local theory when testing
non-locality.
Experimentally unverifiable.

Nevertheless, the result I will talk about next implies that,
under reasonable assumptions, the outputs from QRNGs are,
in fact, uncomputable.

15

Loophole

In the context of non-locality experiments, this result can be
seen as a loophole, i.e. an experimental situation allowing
non-communicating classical devices to generate statistics
violating a Bell inequality.

Can it be closed?
Famous loophole-free experiments of 2015 use QRNGs. If we
assume quantum theory, they are free from the loophole (with
probability 1). However,

Rather circular to assume a non-local theory when testing
non-locality.
Experimentally unverifiable.

Nevertheless, the result I will talk about next implies that,
under reasonable assumptions, the outputs from QRNGs are,
in fact, uncomputable.

15

Computable non-locality allows
for signaling

16

Deterministic boxes in a CHSH scenario

A B

x 2 {0, 1} y 2 {0, 1}

a = A(x, n) 2 {0, 1} b = B(y, n) 2 {0, 1}

Round n

P (a, b | x, y)

p(a, b|x, y) := lim
n→∞

|{i ≤ n | xi = x, yi = y, ai = a, bi = b}|
|{i ≤ n | xi = x, yi = y}| .

We will say that A and B are non-local if, when the inputs are
chosen uniformly at random, p violates a Bell inequality with

probability 1.

17

Deterministic boxes in a CHSH scenario

A B

x 2 {0, 1} y 2 {0, 1}

a = A(x, n) 2 {0, 1} b = B(y, n) 2 {0, 1}

Round n

P (a, b | x, y)

p(a, b|x, y) := lim
n→∞

|{i ≤ n | xi = x, yi = y, ai = a, bi = b}|
|{i ≤ n | xi = x, yi = y}| .

We will say that A and B are non-local if, when the inputs are
chosen uniformly at random, p violates a Bell inequality with

probability 1.

17

Deterministic boxes in a CHSH scenario

A B

x 2 {0, 1} y 2 {0, 1}

a = A(x, n) 2 {0, 1} b = B(y, n) 2 {0, 1}

Round n

P (a, b | x, y)

p(a, b|x, y) := lim
n→∞

|{i ≤ n | xi = x, yi = y, ai = a, bi = b}|
|{i ≤ n | xi = x, yi = y}| .

We will say that A and B are non-local if, when the inputs are
chosen uniformly at random, p violates a Bell inequality with

probability 1.
17

Determinism ∧ non-locality =⇒ violation of
Parameter Independence

A
hidden

signaling B

x 2 {0, 1} y 2 {0, 1}

a = A(x, y, n) 2 {0, 1} b = B(x, y, n) 2 {0, 1}

Round n

P (a, b | x, y)

Lemma
If A and B are non-local,
∃∞n [∃x A(x, 0, n) 6= A(x, 1, n) ∨ ∃y B(0, y, n) 6= B(1, y, n)].

Observation
Violation of Parameter Independence doesn’t imply signaling
(e.g.: Bohmian mechanics, Toner & Bacon, etc).

18

Determinism ∧ non-locality =⇒ violation of
Parameter Independence

A
hidden

signaling B

x 2 {0, 1} y 2 {0, 1}

a = A(x, y, n) 2 {0, 1} b = B(x, y, n) 2 {0, 1}

Round n

P (a, b | x, y)Lemma
If A and B are non-local,
∃∞n [∃x A(x, 0, n) 6= A(x, 1, n) ∨ ∃y B(0, y, n) 6= B(1, y, n)].

Observation
Violation of Parameter Independence doesn’t imply signaling
(e.g.: Bohmian mechanics, Toner & Bacon, etc).

18

Determinism ∧ non-locality =⇒ violation of
Parameter Independence

A
hidden

signaling B

x 2 {0, 1} y 2 {0, 1}

a = A(x, y, n) 2 {0, 1} b = B(x, y, n) 2 {0, 1}

Round n

P (a, b | x, y)Lemma
If A and B are non-local,
∃∞n [∃x A(x, 0, n) 6= A(x, 1, n) ∨ ∃y B(0, y, n) 6= B(1, y, n)].

Observation
Violation of Parameter Independence doesn’t imply signaling
(e.g.: Bohmian mechanics, Toner & Bacon, etc). 18

Using that hidden signaling for communicating
W.l.o.g., let’s assume that

∃∞n∃y B(0, y, n) 6= B(1, y, n). (1)

Observation
If Alice and Bob had access to B, i.e. if they knew how to
compute it, they could easily communicate: they just wait for the
ns that verify (1) and, with the right choice of yn, Bob can tell xn.
Thus, we assume B is hidden (it’s Nature’s secret). Can it be kept
that way?

Main Result
We give a protocol which, if B is a computable function, allows
Alice to send a message to Bob with the sole knowledge of a
bound on the computational complexity of B.

19

Using that hidden signaling for communicating
W.l.o.g., let’s assume that

∃∞n∃y B(0, y, n) 6= B(1, y, n). (1)

Observation
If Alice and Bob had access to B, i.e. if they knew how to
compute it, they could easily communicate: they just wait for the
ns that verify (1) and, with the right choice of yn, Bob can tell xn.
Thus, we assume B is hidden (it’s Nature’s secret). Can it be kept
that way?

Main Result
We give a protocol which, if B is a computable function, allows
Alice to send a message to Bob with the sole knowledge of a
bound on the computational complexity of B.

19

Learnability in the limit

A class computable functions C is learnable in the limit if there
exists a program P (called a learner for C) such that for every
f : N→ N ∈ C, there exists m such that for every m ≥ n, on input
(some coding of) {(0, f(0)), . . . , (m, f(n))} P outputs (the code
of) a program that computes f .

Every computably enumerable class of computable functions
is learnable in the limit.
The class of all computable functions is not learnable in the
limit.

20

Learnability in the limit

A class computable functions C is learnable in the limit if there
exists a program P (called a learner for C) such that for every
f : N→ N ∈ C, there exists m such that for every m ≥ n, on input
(some coding of) {(0, f(0)), . . . , (m, f(n))} P outputs (the code
of) a program that computes f .

Every computably enumerable class of computable functions
is learnable in the limit.

The class of all computable functions is not learnable in the
limit.

20

Learnability in the limit

A class computable functions C is learnable in the limit if there
exists a program P (called a learner for C) such that for every
f : N→ N ∈ C, there exists m such that for every m ≥ n, on input
(some coding of) {(0, f(0)), . . . , (m, f(n))} P outputs (the code
of) a program that computes f .

Every computably enumerable class of computable functions
is learnable in the limit.
The class of all computable functions is not learnable in the
limit.

20

Learning in the limit allows communication

A
hidden

signaling B

x 2 {0, 1} y 2 {0, 1}

a = A(x, y, n) 2 {0, 1} b = B(x, y, n) 2 {0, 1}

Round n

P (a, b | x, y)

Restrictions
In order for Bob to learn a program to compute the function B,
he needs to know Alice’s inputs x, at least until B has been
learned.
For every n, Bob will only see the value of B for just one pair
of inputs (xn, yn).
Bob will not be able to tell when he has effectively learned B.

21

Learning in the limit allows communication

A
hidden

signaling B

x 2 {0, 1} y 2 {0, 1}

a = A(x, y, n) 2 {0, 1} b = B(x, y, n) 2 {0, 1}

Round n

P (a, b | x, y)Restrictions
In order for Bob to learn a program to compute the function B,
he needs to know Alice’s inputs x, at least until B has been
learned.
For every n, Bob will only see the value of B for just one pair
of inputs (xn, yn).
Bob will not be able to tell when he has effectively learned B.

21

The protocol P(t,m, S)

Inputs:
1 a computable non-decreasing function t
2 the size of Alice’s message m
3 a sequence S ∈ {(0, 0), (0, 1), (1, 0), (1, 1), 1, . . . ,m}∞

On each round n:
1 if S(n) = (x, y), Alice inputs x and Bob inputs y. Then, Bob

uses a learner for the class of functions computable in time
O(t) on input ((xi1 , yi1 , B(xi1 , yi1 , i1)) . . . (x, y,B(x, y, n)))

(with ik being the past learning rounds) to update his guess B̃
of a program that computes B (Learning round).

2 if S(n) = i ∈ {1, . . . ,m}, Alice inputs the ith bit of her
message, ai and Bob y s.t. B̃(0, y, n) 6= B̃(1, y, n) and makes
the output of his box his new guess for ai. If there is no such y,
he inputs 0 (Signaling round).

22

The protocol P(t,m, S)

Inputs:
1 a computable non-decreasing function t
2 the size of Alice’s message m
3 a sequence S ∈ {(0, 0), (0, 1), (1, 0), (1, 1), 1, . . . ,m}∞
On each round n:
1 if S(n) = (x, y), Alice inputs x and Bob inputs y. Then, Bob

uses a learner for the class of functions computable in time
O(t) on input ((xi1 , yi1 , B(xi1 , yi1 , i1)) . . . (x, y,B(x, y, n)))

(with ik being the past learning rounds) to update his guess B̃
of a program that computes B (Learning round).

2 if S(n) = i ∈ {1, . . . ,m}, Alice inputs the ith bit of her
message, ai and Bob y s.t. B̃(0, y, n) 6= B̃(1, y, n) and makes
the output of his box his new guess for ai. If there is no such y,
he inputs 0 (Signaling round).

22

Soundness of the protocol

For P(t,m, S) to be sound, it suffices that the following
properties hold:

1 There exists a number of round n such that for all m ≥ n, and
x, y ∈ {0, 1}, we have B̃(x, y,m) = B(x, y,m), i.e. the learning
process converges to B.

2 For every bit i of Alice’s message and for infinitely many n,
S(n) = i ∈ N and ∃y ∈ {0, 1}.B(0, y, n) 6= B(1, y, n).

23

Alternating randomly

Is not hard to see that properties 1 and 2 hold with probability 1
when Si are independent and uniformly distributed random
variables.

Pseudorandom Nature
It is unfair to allow the players randomness when we are
considering a pseudrandom Nature.

Can we de-randominize?

24

Alternating randomly

Is not hard to see that properties 1 and 2 hold with probability 1
when Si are independent and uniformly distributed random
variables.

Pseudorandom Nature
It is unfair to allow the players randomness when we are
considering a pseudrandom Nature.

Can we de-randominize?

24

Alternating randomly

Is not hard to see that properties 1 and 2 hold with probability 1
when Si are independent and uniformly distributed random
variables.

Pseudorandom Nature
It is unfair to allow the players randomness when we are
considering a pseudrandom Nature.

Can we de-randominize?

24

T -randomness

Definition
A sequence S is called T -random if there is no strategy
computable in time O(T) to win unbounded money betting
successively on the symbols of S starting from with some finite
initial capital.

Observation
We can compute T -random sequences in time
O(T (n) · log(T (n)) · n3) [Figueira, Nies, Theo. Comp. Sys. 56, 439 (2015)].

Theorem ([Bendersky, Senno, de la Torre, Figueira, Acín. Phys. Rev. Lett. 118, 130401, 2017])
If S is T -random, properties 1 and 2 hold.

25

T -randomness

Definition
A sequence S is called T -random if there is no strategy
computable in time O(T) to win unbounded money betting
successively on the symbols of S starting from with some finite
initial capital.

Observation
We can compute T -random sequences in time
O(T (n) · log(T (n)) · n3) [Figueira, Nies, Theo. Comp. Sys. 56, 439 (2015)].

Theorem ([Bendersky, Senno, de la Torre, Figueira, Acín. Phys. Rev. Lett. 118, 130401, 2017])
If S is T -random, properties 1 and 2 hold.

25

T -randomness

Definition
A sequence S is called T -random if there is no strategy
computable in time O(T) to win unbounded money betting
successively on the symbols of S starting from with some finite
initial capital.

Observation
We can compute T -random sequences in time
O(T (n) · log(T (n)) · n3) [Figueira, Nies, Theo. Comp. Sys. 56, 439 (2015)].

Theorem ([Bendersky, Senno, de la Torre, Figueira, Acín. Phys. Rev. Lett. 118, 130401, 2017])
If S is T -random, properties 1 and 2 hold.

25

Future directions

1 Randomness amplification

Quantum nonlocality can be used to certify randomness
amplification (a task which is classically impossible [Santha and Vazirani,

J. Comput. Syst. Sci. 33(1), 1986]).
Algorithmic randomness cannot be computably amplified [Miller, Adv.

Math. 226(1), 373-384 (2011)].
In the signaling result, we show the outputs of non-local boxes
are not computable from the inputs. What else can be said about
their relative degree of uncomputability (or, more generally,
about their relative level of algorithmic randomness)?

2 Computability of the set of quantum correlations.
Very recent breaktrough results by Slofstra [arXiv:1606.03140, arXiv:1703.08618].

26

Future directions

1 Randomness amplification
Quantum nonlocality can be used to certify randomness
amplification (a task which is classically impossible [Santha and Vazirani,

J. Comput. Syst. Sci. 33(1), 1986]).

Algorithmic randomness cannot be computably amplified [Miller, Adv.

Math. 226(1), 373-384 (2011)].
In the signaling result, we show the outputs of non-local boxes
are not computable from the inputs. What else can be said about
their relative degree of uncomputability (or, more generally,
about their relative level of algorithmic randomness)?

2 Computability of the set of quantum correlations.
Very recent breaktrough results by Slofstra [arXiv:1606.03140, arXiv:1703.08618].

26

Future directions

1 Randomness amplification
Quantum nonlocality can be used to certify randomness
amplification (a task which is classically impossible [Santha and Vazirani,

J. Comput. Syst. Sci. 33(1), 1986]).
Algorithmic randomness cannot be computably amplified [Miller, Adv.

Math. 226(1), 373-384 (2011)].

In the signaling result, we show the outputs of non-local boxes
are not computable from the inputs. What else can be said about
their relative degree of uncomputability (or, more generally,
about their relative level of algorithmic randomness)?

2 Computability of the set of quantum correlations.
Very recent breaktrough results by Slofstra [arXiv:1606.03140, arXiv:1703.08618].

26

Future directions

1 Randomness amplification
Quantum nonlocality can be used to certify randomness
amplification (a task which is classically impossible [Santha and Vazirani,

J. Comput. Syst. Sci. 33(1), 1986]).
Algorithmic randomness cannot be computably amplified [Miller, Adv.

Math. 226(1), 373-384 (2011)].
In the signaling result, we show the outputs of non-local boxes
are not computable from the inputs. What else can be said about
their relative degree of uncomputability (or, more generally,
about their relative level of algorithmic randomness)?

2 Computability of the set of quantum correlations.
Very recent breaktrough results by Slofstra [arXiv:1606.03140, arXiv:1703.08618].

26

Future directions

1 Randomness amplification
Quantum nonlocality can be used to certify randomness
amplification (a task which is classically impossible [Santha and Vazirani,

J. Comput. Syst. Sci. 33(1), 1986]).
Algorithmic randomness cannot be computably amplified [Miller, Adv.

Math. 226(1), 373-384 (2011)].
In the signaling result, we show the outputs of non-local boxes
are not computable from the inputs. What else can be said about
their relative degree of uncomputability (or, more generally,
about their relative level of algorithmic randomness)?

2 Computability of the set of quantum correlations.
Very recent breaktrough results by Slofstra [arXiv:1606.03140, arXiv:1703.08618].

26

