Computability theory and Bell non-locality

Antonio Acín¹, Ariel Bendersky², Gonzalo de La Torre¹, Santiago Figueira² y *Gabriel Senno*¹

 $^{1}\mbox{ICFO}$ - The Institute of Photonic Sciences. $^{2}\mbox{Computer Science Department, FCEyN, University of Buenos Aires.$

International Symposium on New Frontiers in Quantum Correlations
(ISNFQC18)
Kolkata, January 2018

Abstract

Two results relating computability theory and Bell non-locality:

• Inputs: *The computability loophole*.

Abstract

Two results relating computability theory and Bell non-locality:

- Inputs: *The computability loophole*.
- Outputs: Computability + non-locality \implies signaling.

The computability loophole

The CHSH game

The CHSH game

Local strategies

Local strategies

Bell inequalities

• The CHSH inequality

$$p(=|P_1,P_1)+p(=|P_1,P_2)+p(=|P_2,P_1)+p(\neq |P_2,P_2) \leq 3$$
 is an example of a Bell inequality.

• In general,

$$\sum_{a,b,x,y} B_{a,b,x,y} p(a,b|x,y) \le B_l.$$

Quantum strategies

• Quantum strategy:

$$p(a, b|x, y) = \langle \psi | \Pi_a^x \Pi_b^y | \psi \rangle$$

with
$$|\psi\rangle\in\mathcal{H}, \sum_a\Pi_a^x=\sum_b\Pi_b^y=\mathbb{I}_{\mathcal{H}}$$
 and $[\Pi_a^x,\Pi_b^y]=0.$

Quantum strategies

• Quantum strategy:

$$p(a,b|x,y) = \langle \psi | \Pi_a^x \Pi_b^y | \psi \rangle$$

with $|\psi\rangle \in \mathcal{H}, \sum_a \Pi_a^x = \sum_b \Pi_b^y = \mathbb{I}_{\mathcal{H}}$ and $[\Pi_a^x, \Pi_b^y] = 0$.

• For the CHSH game, preparing $|\psi^-\rangle=:\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$ and measuring in the following spin directions:

it is easy to see that, $p_{win}^{\text{CHSH}} = \cos^2(\pi/8) \approx 0,85.$

Memory scenario

Memory scenario

Local strategies:

$$p(a_n, b_n | x_n, y_n) = \sum_{\lambda} q(\lambda) \delta_{a_n = A_{\lambda}(x_n, M)} \delta_{b_n = B_{\lambda}(y_n, M)}.$$

Memory scenario

- Local strategies:
 - $p(a_n, b_n | x_n, y_n) = \sum_{\lambda} q(\lambda) \delta_{a_n = A_{\lambda}(x_n, M)} \delta_{b_n = B_{\lambda}(y_n, M)}.$
- $ullet p_{win}^{ ext{CHSH}} \leq 3/4$ [Barrett et al., Phys. Rev. A 66, 042111, 2002].

Memory scenario with computable inputs

c

Memory scenario with computable inputs

Theorem ([Bendersky, Senno, de la Torre, Figueira and Acín. PRL 116, 230402, 2016])

If the referee in the CHSH game with memory chooses (at least) one of the players' questions using a computable function $f : \mathbb{N} \to \{0, 1\}$, there is a perfect local strategy (independent of f).

• A function $f: \mathbb{N} \to \{0,1\}$ is said to be *computable* if there is a program \mathcal{P} that on input n outputs f(n).

• A function $f: \mathbb{N} \to \{0, 1\}$ is said to be *computable in* (*deterministic*) *time* O(T) for some $T: \mathbb{N} \to \mathbb{N}$ if there is a program \mathcal{P} that on input n outputs f(n) after (at most) $c \cdot T(\log n)$ computational steps for some c and suff. large n.

- A function $f: \mathbb{N} \to \{0,1\}$ is said to be *computable in (deterministic) time* O(T) for some $T: \mathbb{N} \to \mathbb{N}$ if there is a program \mathcal{P} that on input n outputs f(n) after (at most) $c \cdot T(\log n)$ computational steps for some c and suff. large n.
- A class of computable functions $C = \{f_0, f_1, \dots\}$ is said to be *computably enumerable* if there is a program \mathcal{P} that on inputs n outputs (the code of) a program that computes f_n .

- A function $f: \mathbb{N} \to \{0,1\}$ is said to be *computable in (deterministic) time* O(T) for some $T: \mathbb{N} \to \mathbb{N}$ if there is a program \mathcal{P} that on input n outputs f(n) after (at most) $c \cdot T(\log n)$ computational steps for some c and suff. large n.
- A class of computable functions $C = \{f_0, f_1, \dots\}$ is said to be *computably enumerable* if there is a program P that on inputs n outputs (the code of) a program that computes f_n .
- For every computable $T: \mathbb{N} \to \mathbb{N}$, the class \mathcal{C}_T of functions computable in time O(T) is computably enumerable. This include the well-known complexity classes P, NP, EXP, BQP.

- A function $f: \mathbb{N} \to \{0,1\}$ is said to be *computable in (deterministic) time* O(T) for some $T: \mathbb{N} \to \mathbb{N}$ if there is a program \mathcal{P} that on input n outputs f(n) after (at most) $c \cdot T(\log n)$ computational steps for some c and suff. large n.
- A class of computable functions $C = \{f_0, f_1, \dots\}$ is said to be *computably enumerable* if there is a program P that on inputs n outputs (the code of) a program that computes f_n .
- For every computable $T: \mathbb{N} \to \mathbb{N}$, the class \mathcal{C}_T of functions computable in time O(T) is computably enumerable. This include the well-known complexity classes P, NP, EXP, BQP.
- But, the class of all computable functions is *not* computably enumerable.

Predicting computable functions

Functions in computably enumerable classes can be predicted in the following sense:

For every computably enumerable class $\mathcal C$ of computable functions there is a program $\mathcal P$ (called a *predictor for* $\mathcal C$) such that for every $f \in \mathcal C$,

$$(\exists n_0)(\forall n \ge n_0) f(n) = \mathcal{P}([f(0), \dots, f(n-1)])$$

Predicting computable functions

The predictor works as follows,

Perfect local strategy

Let $T : \mathbb{N} \to \mathbb{N}$ be some computable function, $f \in \mathcal{C}_T$ and \mathcal{P} a predictor for \mathcal{C}_T .

$$M = [(x_1, y_1), \dots, (x_{n-1}, y_{n-1})]$$

$$X_n = f(n)$$

$$\begin{cases} 1 & \text{if } \mathcal{P}([x_1, \dots, x_{n-1}]) = 1 \land y_n = 1 \\ 0 & \text{o w} \end{cases}$$

• Provided $f \in C_T$, if Bob uses a predictor \mathcal{P} for C_T , after finitely many rounds he will start predicting x_i correctly.

- Provided $f \in C_T$, if Bob uses a predictor \mathcal{P} for C_T , after finitely many rounds he will start predicting x_i correctly.
 - However, how many rounds it will take him is uncomputable.

- Provided $f \in C_T$, if Bob uses a predictor \mathcal{P} for C_T , after finitely many rounds he will start predicting x_i correctly.
 - However, how many rounds it will take him is uncomputable.
- Nevertheless, the number *M* of prediction errors he make until that time is small.

- Provided $f \in C_T$, if Bob uses a predictor \mathcal{P} for C_T , after finitely many rounds he will start predicting x_i correctly.
 - However, how many rounds it will take him is uncomputable.
- Nevertheless, the number *M* of prediction errors he make until that time is small.
 - If f(n) has a k-bits program, $M \leq O(\log(k))$.

- Provided $f \in C_T$, if Bob uses a predictor \mathcal{P} for C_T , after finitely many rounds he will start predicting x_i correctly.
 - However, how many rounds it will take him is uncomputable.
- Nevertheless, the number *M* of prediction errors he make until that time is small.
 - If f(n) has a k-bits program, $M \leq O(\log(k))$.
- Also, the prediction algorithm is (almost) as efficient as *f* .

- Provided $f \in C_T$, if Bob uses a predictor \mathcal{P} for C_T , after finitely many rounds he will start predicting x_i correctly.
 - However, how many rounds it will take him is uncomputable.
- Nevertheless, the number *M* of prediction errors he make until that time is small.
 - If f(n) has a k-bits program, $M \leq O(\log(k))$.
- Also, the prediction algorithm is (almost) as efficient as f.
 - If f is computable in O(T) time, then \mathcal{P} runs in $O(T \cdot \log(T))$.

 In the context of non-locality experiments, this result can be seen as a loophole, i.e. an experimental situation allowing non-communicating classical devices to generate statistics violating a Bell inequality.

- In the context of non-locality experiments, this result can be seen as a loophole, i.e. an experimental situation allowing non-communicating classical devices to generate statistics violating a Bell inequality.
 - Can it be closed?

- In the context of non-locality experiments, this result can be seen as a loophole, i.e. an experimental situation allowing non-communicating classical devices to generate statistics violating a Bell inequality.
 - Can it be closed?
- Famous loophole-free experiments of 2015 use QRNGs. If we assume quantum theory, they are free from the loophole (with probability 1). However,

- In the context of non-locality experiments, this result can be seen as a loophole, i.e. an experimental situation allowing non-communicating classical devices to generate statistics violating a Bell inequality.
 - Can it be closed?
- Famous loophole-free experiments of 2015 use QRNGs. If we assume quantum theory, they are free from the loophole (with probability 1). However,
 - Rather circular to assume a non-local theory when testing non-locality.

- In the context of non-locality experiments, this result can be seen as a loophole, i.e. an experimental situation allowing non-communicating classical devices to generate statistics violating a Bell inequality.
 - Can it be closed?
- Famous loophole-free experiments of 2015 use QRNGs. If we assume quantum theory, they are free from the loophole (with probability 1). However,
 - Rather circular to assume a non-local theory when testing non-locality.
 - Experimentally unverifiable.

- In the context of non-locality experiments, this result can be seen as a loophole, i.e. an experimental situation allowing non-communicating classical devices to generate statistics violating a Bell inequality.
 - Can it be closed?
- Famous loophole-free experiments of 2015 use QRNGs. If we assume quantum theory, they are free from the loophole (with probability 1). However,
 - Rather circular to assume a non-local theory when testing non-locality.
 - Experimentally unverifiable.
- Nevertheless, the result I will talk about next implies that, under reasonable assumptions, the outputs from QRNGs are, in fact, uncomputable.

Computable non-locality allows for signaling

Deterministic boxes in a CHSH scenario

Round
$$n$$

$$x \in \{0,1\}$$

$$A$$

$$B$$

$$A = A(x,n) \in \{0,1\}$$

$$b = B(y,n) \in \{0,1\}$$

Deterministic boxes in a CHSH scenario

Round
$$n$$

$$x \in \{0,1\}$$

$$A$$

$$A$$

$$A = A(x,n) \in \{0,1\}$$

$$b = B(y,n) \in \{0,1\}$$

$$p(a, b|x, y) := \lim_{n \to \infty} \frac{|\{i \le n \mid x_i = x, y_i = y, a_i = a, b_i = b\}|}{|\{i \le n \mid x_i = x, y_i = y\}|}.$$

Deterministic boxes in a CHSH scenario

Round
$$n$$

$$x \in \{0,1\}$$

$$A$$

$$B$$

$$a = A(x,n) \in \{0,1\}$$

$$b = B(y,n) \in \{0,1\}$$

$$p(a,b|x,y) := \lim_{n \to \infty} \frac{|\{i \le n \mid x_i = x, y_i = y, a_i = a, b_i = b\}|}{|\{i \le n \mid x_i = x, y_i = y\}|}.$$

We will say that A and B are *non-local* if, when the inputs are chosen uniformly at random, p violates a Bell inequality with probability 1.

Determinism \land non-locality \implies violation of Parameter Independence

Determinism \land non-locality \implies violation of Parameter Independence

Lemma

If A and B are non-local,

$$\exists^{\infty} n \ [\exists x \ A(x,0,n) \neq A(x,1,n) \lor \exists y \ B(0,y,n) \neq B(1,y,n)].$$

Determinism \land non-locality \implies violation of Parameter Independence

Lemma

If A and B are non-local,

$$\exists^{\infty} n \ [\exists x \ A(x,0,n) \neq A(x,1,n) \lor \exists y \ B(0,y,n) \neq B(1,y,n)].$$

Observation

Violation of Parameter Independence doesn't imply signaling (e.g.: Bohmian mechanics, Toner & Bacon, etc).

Using that hidden signaling for communicating

W.l.o.g., let's assume that

$$\exists^{\infty} n \exists y \ B(0, y, n) \neq B(1, y, n). \tag{1}$$

Observation

If Alice and Bob had access to B, i.e. if they knew how to **compute** it, they could easily communicate: they just wait for the ns that verify (1) and, with the right choice of y_n , Bob can tell x_n . Thus, we assume B is hidden (it's Nature's secret). Can it be kept that way?

Using that hidden signaling for communicating

W.l.o.g., let's assume that

$$\exists^{\infty} n \exists y \ B(0, y, n) \neq B(1, y, n). \tag{1}$$

Observation

If Alice and Bob had access to B, i.e. if they knew how to **compute** it, they could easily communicate: they just wait for the ns that verify (1) and, with the right choice of y_n , Bob can tell x_n . Thus, we assume B is hidden (it's Nature's secret). Can it be kept that way?

Main Result

We give a protocol which, if B is a **computable function**, allows Alice to send a message to Bob with the sole knowledge of a bound on the computational complexity of B.

Learnability in the limit

A class computable functions $\mathcal C$ is *learnable in the limit* if there exists a program $\mathcal P$ (called a *learner for* $\mathcal C$) such that for every $f:\mathbb N\to\mathbb N\in\mathcal C$, there exists m such that for every $m\geq n$, on input (some coding of) $\{(0,f(0)),\ldots,(m,f(n))\}$ $\mathcal P$ outputs (the code of) a program that computes f.

Learnability in the limit

A class computable functions \mathcal{C} is *learnable in the limit* if there exists a program \mathcal{P} (called a *learner for* \mathcal{C}) such that for every $f: \mathbb{N} \to \mathbb{N} \in \mathcal{C}$, there exists m such that for every $m \geq n$, on input (some coding of) $\{(0, f(0)), \ldots, (m, f(n))\}$ \mathcal{P} outputs (the code of) a program that computes f.

• Every computably enumerable class of computable functions is learnable in the limit.

Learnability in the limit

A class computable functions \mathcal{C} is *learnable in the limit* if there exists a program \mathcal{P} (called a *learner for* \mathcal{C}) such that for every $f: \mathbb{N} \to \mathbb{N} \in \mathcal{C}$, there exists m such that for every $m \geq n$, on input (some coding of) $\{(0, f(0)), \ldots, (m, f(n))\}$ \mathcal{P} outputs (the code of) a program that computes f.

- Every computably enumerable class of computable functions is learnable in the limit.
- The class of all computable functions is not learnable in the limit.

Learning in the limit allows communication

Learning in the limit allows communication

Restrictions

- In order for Bob to learn a program to compute the function B, he needs to know Alice's inputs x, at least until B has been learned.
- For every n, Bob will only see the value of B for just one pair of inputs (x_n, y_n) .
- Bob will not be able to tell when he has effectively learned *B*.

The protocol $\mathcal{P}(t, m, S)$

Inputs:

- $oldsymbol{0}$ a computable non-decreasing function t
- $oldsymbol{0}$ the size of Alice's message m
- **3** a sequence $S \in \{(0,0), (0,1), (1,0), (1,1), 1, \dots, m\}^{\infty}$

The protocol $\mathcal{P}(t, m, S)$

Inputs:

- lacktriangledown a computable non-decreasing function t
- $oldsymbol{0}$ the size of Alice's message m
- **3** a sequence $S \in \{(0,0), (0,1), (1,0), (1,1), 1, \dots, m\}^{\infty}$

On each round n:

- if S(n)=(x,y), Alice inputs x and Bob inputs y. Then, Bob uses a learner for the class of functions computable in time O(t) on input $((x_{i_1},y_{i_1},B(x_{i_1},y_{i_1},i_1))\dots(x,y,B(x,y,n)))$ (with i_k being the past learning rounds) to update his guess \widetilde{B} of a program that computes B (Learning round).
- ② if $S(n) = i \in \{1, ..., m\}$, Alice inputs the ith bit of her message, a_i and Bob y s.t. $\widetilde{B}(0, y, n) \neq \widetilde{B}(1, y, n)$ and makes the output of his box his new guess for a_i . If there is no such y, he inputs 0 (**Signaling round**).

Soundness of the protocol

For $\mathcal{P}(t,m,S)$ to be sound, it suffices that the following properties hold:

- There exists a number of round n such that for all $m \ge n$, and $x, y \in \{0, 1\}$, we have $\widetilde{B}(x, y, m) = B(x, y, m)$, i.e. the learning process converges to B.
- ② For every bit i of Alice's message and for infinitely many n, $S(n) = i \in \mathbb{N}$ and $\exists y \in \{0,1\}.B(0,y,n) \neq B(1,y,n).$

Alternating randomly

Is not hard to see that properties 1 and 2 hold with probability 1 when S_i are independent and uniformly distributed random variables.

Alternating randomly

Is not hard to see that properties 1 and 2 hold with probability 1 when S_i are independent and uniformly distributed random variables.

Pseudorandom Nature

It is unfair to allow the players randomness when we are considering a pseudrandom Nature.

Alternating randomly

Is not hard to see that properties 1 and 2 hold with probability 1 when S_i are independent and uniformly distributed random variables.

Pseudorandom Nature

It is unfair to allow the players randomness when we are considering a pseudrandom Nature.

Can we de-randominize?

T-randomness

Definition

A sequence S is called T-random if there is no strategy computable in time O(T) to win unbounded money betting successively on the symbols of S starting from with some finite initial capital.

T-randomness

Definition

A sequence S is called T-random if there is no strategy computable in time O(T) to win unbounded money betting successively on the symbols of S starting from with some finite initial capital.

Observation

We can compute *T*-random sequences in time

 $O(T(n) \cdot \log(T(n)) \cdot n^3)$ [Figueira, Nies, Theo. Comp. Sys. 56, 439 (2015)].

T-randomness

Definition

A sequence S is called T-random if there is no strategy computable in time O(T) to win unbounded money betting successively on the symbols of S starting from with some finite initial capital.

Observation

We can compute T-random sequences in time $O(T(n) \cdot \log(T(n)) \cdot n^3)$ [Figueira, Nies, Theo. Comp. Sys. 56, 439 (2015)].

Theorem ([Bendersky, Senno, de la Torre, Figueira, Acín. Phys. Rev. Lett. 118, 130401, 2017])

If S is T-random, properties 1 and 2 hold.

Randomness amplification

- Randomness amplification
 - Quantum nonlocality can be used to certify randomness amplification (a task which is classically impossible [Santha and Vazirani, J. Comput. Syst. Sci. 33(1), 1986]).

- Randomness amplification
 - Quantum nonlocality can be used to certify randomness amplification (a task which is classically impossible [Santha and Vazirani, J. Comput. Syst. Sci. 33(1), 1986]).
 - Algorithmic randomness cannot be *computably* amplified [Miller, Adv. Math. 226(1), 373-384 (2011)].

- Randomness amplification
 - Quantum nonlocality can be used to certify randomness amplification (a task which is classically impossible [Santha and Vazirani, J. Comput. Syst. Sci. 33(1), 1986]).
 - Algorithmic randomness cannot be computably amplified [Miller, Adv. Math. 226(1), 373-384 (2011)].
 - In the signaling result, we show the outputs of non-local boxes are not computable from the inputs. What else can be said about their relative degree of uncomputability (or, more generally, about their relative level of algorithmic randomness)?

- Randomness amplification
 - Quantum nonlocality can be used to certify randomness amplification (a task which is classically impossible [Santha and Vazirani, J. Comput. Syst. Sci. 33(1), 1986]).
 - Algorithmic randomness cannot be computably amplified [Miller, Adv. Math. 226(1), 373-384 (2011)].
 - In the signaling result, we show the outputs of non-local boxes are not computable from the inputs. What else can be said about their relative degree of uncomputability (or, more generally, about their relative level of algorithmic randomness)?
- 2 Computability of the set of quantum correlations.
 - Very recent breaktrough results by Slofstra [arXiv:1606.03140, arXiv:1703.08618].