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Motivation

Understanding the out of equilibrium quantum many-body
systems is one of the central problems for both theoretical and
experimental physics.

Thermalization of isolated quantum systems, many-body
localization and related concepts are at the forefront of
research today.

Entanglement entropy and entanglement dynamics play a key
role in many of these ideas.

Entanglement entropy for the bosonic systems was realized
experimentally by R. Islam, et al., Nature, (2015) and A. M.
Kaufman et al., Science, (2016).

With recent advances in cold atoms and optical lattices it is
plausible that detailed predictions of entanglement dynamics
may be amenable to experimental studies.
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Motivation

Ref: R. Islam, et al., Nature, (2015)
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Motivation

Ref: A. M. Kaufman et al., Science, (2016)
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Motivation

Another motivation of this study arises from black hole
physics.

The black hole horizon provides a bipartition of space-time
into exterior and interior region.

With respect to the exterior region, the black hole behaves as
a thermodynamic object.

Bekenstein-Hawking entropy law gives S ∝ A.

This can be interpreted as entanglement entropy [Sorkin
(1986), Srednicki (1993)].

It is interesting to ask how the system would behave in a
non-equilibrium situation.
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Introduction

State of system is described by

ψAB

Product state if
ψAB = ψA ⊗ ψB

Entangled state if
ψAB 6= ψA ⊗ ψB
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Introduction

Density matrix of a system is defined as ρ = |ψ >< ψ|
The reduced density matrix of any subsystem is

ρA/B = TrB/A(ρ)

The von Neumann entropy is a measure of quantum
entanglement

S1 ≡ −Tr(ρA log ρA) = −
∑
i

(pi log pi )
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Model

The Hamiltonian of the many-body system is given by

HN(t) =
1

2

 N∑
j=1

(p2
j + ω2(t)x2

j ) + k(t)
N−1∑
j=1

(xj − xj+1)2


=

1

2

 N∑
j=1

p2
j + XT .K (t).X


where ω is the trapping frequency and k is the interaction strength.
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N = 2

We will first discuss the case for N = 2

H(t) =
1

2

[
p2

1 + p2
2 + ω2(t)(x2

1 + x2
2 ) + k(t)(x1 − x2)2

]
,

which could be mapped to the two site Bose-Hubbard model

H = ωBH(a†1a1 + a†2a2)− J(a†1a2 + a†2a1).

for ω = (ωBH − J) and k = 2ωBHJ.

The above Hamiltonian could be written as two independent
harmonic oscillator with time dependent frequencies

H(t) =
1

2

[
p2

+ + p2
− + ω2

+(t)x2
+ + ω2

−(t)x2
−
]
,

where p± = p1±p2√
2

and x± = x1±x2√
2

and with ω+ = ω and

ω− =
√
ω2 + 2k
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TDSE

A time dependent Hamiltonian satisfies the time dependent
Schrödinger equation (TDSE)

i~
∂

∂t
|ψ〉 = H(t)|ψ〉

In order to find the solutions, it is necessary to look for an
invariant Hermetian operator I such that

dI

dt
≡ ∂I

∂t
+

1

i~
[I ,H] = 0

The solutions of the TDSE can be constructed from the
eigenstates of the operator I [Lewis and Riesenfeld (1969)].
For a given Hamiltonian there is no general procedure to find
the invariant. If H is an element of a dynamical algebra, then
I can be expanded in terms of its elements with time
dependent factors.
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Time dependent SHO

The Hamiltonian for a single time dependent oscillator is

H(t) =
p2

2m
+

mω2(t)

2
x2

The corresponding time dependent Schrödinger equation is

i~
∂

∂t
|ψ〉 = H(t)|ψ〉

There exists a time invariant Hermitian operator I (t)
satisfying

dI

dt
≡ ∂I

∂t
+

1

i~
[I ,H] = 0

By using above two equations we obtain

i~
∂

∂t
(I |ψ〉) = H(t)(I |ψ〉)
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Time dependent SHO

Solution of the Schrödinger equation can be written as,

ψn(x , t) = e iκ(t)φIn(x , t)

where φI (x , t) is an eigenstate of I and κ(t) is a real function
of time which satisfies the equation given by

dκ

dt
= 〈φ|

(
i~
∂

∂t
− H

)
|φ〉

Let us use following ansatz for invariant operator in the
quadratic form as

I (t) =
1

2
[α(t)x2 + β(t)p2 + γ(t)(px + xp)]

where α, β, γ are the dimensionful factors
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Time dependent SHO

The equations satisfied by α, β, γ given by

α̇ = 2mω2γ, β̇ = − 2

m
γ, γ̇ = − 1

m
α + mω2β

If we now introduce a new real function b(t) as

β(t) = b2(t)

Using the above equations we get

b
d

dt
(m2b̈ + m2ω2b) + 3ḃ(m2b̈ + m2ω2b) = 0

The integration of the above equation will produce a nonlinear
differential equation

b̈ + ω2(t)b =
ω2(0)

b3
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Time dependent SHO

The invariant operator now can be written as

I =
1

2

[
m2ω(0)2

b2
x2 + (bp −mḃx)2

]

In terms of the operators

â = 2−
1
2

[√
mω(0)

b
x + i

(bp −mḃx)√
mω(0)

]
,

â† = 2−
1
2

[√
mω(0)

b
x − i

(bp −mḃx)√
mω(0)

]
.

the invariant I has the form

I = (â†â +
1

2
)mω0.
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Time dependent SHO

If φI0(x , t) denotes the ground state of â in position basis,
then

âφI0(x , t) = 0,

Thus the ground state of I is

φI0(x , t) =

(
mω(0)

πb2

) 1
4

e
−
(

mω(0)

2b2 −im
ḃ

2b

)
x2

All the excited states are accessed by acting the creation
operator on the ground state, the nth order eigenstate is

φIn(x , t) =

(
mω(0)

22nn!2πb2

) 1
4

Hn

(
x

√
mω(0)

b2

)
e

imḃ
2b

x2
e−

mω(0)x2

2b2
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Time dependent SHO

Now the phase factor κ(t) using Schrödinger equation given
by

κ(t) = −
(
n +

1

2

)
ω(0)

∫ t

0

1

b2(t ′)
dt ′,

= −
(
n +

1

2

)
ω(0)τ.

Hence the ground state solution at time t is

ψgs(x , t) = e i(
ḃ

2b
x2−E0τ)ψgs

(x
b
, 0
)
,

where b(t) is a scaling parameter satisfies Ermakov equation
and τ =

∫ t
0

dt′

b2(t′)
and E0 is the ground state energy of the

oscillator at time t = 0.
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Detailed steps for N = 2

The TDSE of the two oscillator Hamiltonian is given by,

i
∂ψ(x1, x2, t)

∂t
= H(t)ψ(x1, x2, t).

The full time dependent wave function can be found as

ψ(x1, x2, t) =Ã(t)exp
[
i
(
a1x

2
1 + a1x

2
2 + 2a2x1x2

)]
× exp

[
− i
(
E+τ+ + E−τ−

)]
× exp

[
−

1

4b2
1(t)

ω+(0)(x1 + x2)2
]
× exp

[
−

1

4b2
2(t)

ω−(0)(x1 − x2)2
]

where Ã(t) =
(ω+(0)ω−(0))1/4

√
πb1(t)b2(t)

, a1(t) = ( ḃ1
4b1

+ ḃ2
4b2

), a2(t) = ( ḃ1
4b1
− ḃ2

4b2
) and

ω+ = ω and ω− =
√
ω2 + 2k.



Introduction Model TDSE Time dependent SHO Time-dependent calculations Results Summary

Solution of Ermakov equation

Here b1(t), b2(t) satisfy the nonlinear Ermakov equations
given by

b̈j + ω2
±(t)bj =

ω2
±(0)

b3
j

Boundary condition bj(0) = 1, ḃj(0) = 0.

Then the general solution of bj(t) can be written by a
nonlinear superposition principle (Ref: E. Pinney, (1950)),

bj(t) =
√
Au(t)2 + Cv(t)2 + 2Bu(t)v(t)

where u(t), v(t) are the linearly independent solutions of the
Hill’s equations, A,B,C are constants, related by

AC − B2 = ω2(0)
W 2 and W = u̇v − v̇u is the Wronskian.
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Solution of Ermakov equation

For example we consider a particular form of
ω(t) = ωiθ(−t) + ωf θ(t).

Now the corresponding Hill’s equation is

ẍ + ω2
f x = 0.

The two linearly independent solutions of the above equation
are

u(t) = e iωf t ,

v(t) = e−iωf t ,

The Wronskian is, W = uv̇ − v u̇ = −2iωf
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Solution of Ermakov equation

Therefore the general solution can be written as

b(t) =

√√√√Ae2iωf t + Ce−2iωf t + 2

√
AC +

ω2
i

4ω2
f

Applying the boundary conditions bj(0) = 1, ḃj(0) = 0, we
get

b(t) =
√

n1 cos(2ωf t) + n2,

where n1 =
ω2
f −ω

2
i

2ω2
f

, n2 =
ω2
f +ω2

i

2ω2
f
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Detailed steps for N = 2

The reduced density matrix is defined as

ρred(x1, x
′
1, t) =

∫
dx2ρ(x1, x2, x

′
1, x2, t)

The reduced density matrix is

ρred (x1, x
′
1, t) = π−1/2(γ − β)1/2 exp

[
i(x2

1 − x ′21 )z(t)
]

exp
[
−
γ

2
(x2

1 + x ′21 ) + βx1x
′
1

]
where

γ(t) =

(
ω+(0)

b2
1

(t)
+

ω−(0)

b2
2

(t)

)
2

−

(
ω+(0)

b2
1

(t)
−

ω−(0)

b2
2

(t)

)2
−
(

ḃ1
b1
− ḃ2

b2

)2

4

(
ω+(0)

b2
1

(t)
+

ω−(0)

b2
2

(t)

) ,

β(t) =

(
ω+(0)

b2
1

(t)
−

ω−(0)

b2
2

(t)

)2
+

(
ḃ1
b1
− ḃ2

b2

)2

4

(
ω+(0)

b2
1

(t)
+

ω−(0)

b2
2

(t)

) ,

z(t) =

(
ḃ1

4b1

+
ḃ2

4b2

)
−

ω+(0)

b2
1

(t)
−

ω−(0)

b2
2

(t)

ω+(0)

b2
1

(t)
+

ω−(0)

b2
2

(t)

(
ḃ1

4b1

−
ḃ2

4b2

)
.
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Detailed steps for N = 2

The eigenvalue equation satisfied by ρred is∫ ∞
−∞

dx ′1ρred(x1, x
′
1, t)fn(x ′1, t) = pn(t)fn(x1, t)

The eigenvalue has the following form

pn(t) = (1− ξ(t))ξ(t)n

The time-dependence of ξ(t) is given by,

ξ(t) =
β

γ + ε
=

β
γ

1 +
√

1− β2

γ2

< 1,

The von Neumann entropy can be now written as

S1(t) = − log(1− ξ(t))− ξ(t)

1− ξ(t)
log ξ(t).
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Detailed steps for N = 2

This expression of von Neumann entropy is true for arbitrary
time dependence in the system

For the time independent frequencies, the entropy reduces to
that derived by Sorkin et al (1986) and Srednicki (1993) in
the context of black holes.

Next we will consider two different cases of quench.
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Quench in N = 2

The time dependence is given by sudden change in the
parameters.

The solutions of Ermakov equations for a sudden quench in ω
from ω(i) = ω → ω(f ) = 0 are

b1(t) =
√

1 + ω2t2,

b2(t) =
√

n2 cos(2kt) + m2,

where n2 = 2k−(ω2+2k)
4k

and m2 = 2k+(ω2+2k)
4k

.
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Von Neumann Entropy for N=2

0 10 20 30 40 50
0

1

2

3

4

5

6

Time, t

S
1
(t
)

We start with ω(i) = 3 and k = 2 then quench ω(i) to
ω(f ) = 0.
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Quench in N = 2

Here we do the quench in the Bose-Hubbard parameters.

The solutions of Ermakov equations for a sudden quench in
ωBH (ωBH(i)→ ωBH(f )) is

b1(t) =
√
n1 cos(2(ωBH(f )− J)t) + m1,

b2(t) =
√

n2 cos(2(ωBH(f ) + J)t) + m2,

where n1 = (ωBH (f )−J)2−(ωBH (i)−J)2

2(ωBH (f )−J)2 , m1 = (ωBH (f )−J)2+(ωBH (i)−J)2

2(ωBH (f )−J)2

n2 = (ωBH (f )+J)2−(ωBH (i)+J)2

2(ωBH (f )+J)2 and m2 = (ωBH (f )+J)2+(ωBH (i)+J)2

2(ωBH (f )+J)2 .
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Von Neumann Entropy for N=2

ΩBHHfL=2.01

ΩBHHfL=2.06

ΩBHHfL=2.15

0 10 20 30 40 50
0

1

2

3

4

5

6

Time, t

S 1
HtL

We start with ωBH(i) = 3 and J = 2 then quench ωBH(i) to
ωBH(f ) = 2.15, 2.06 and 2.01.
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Time-dependent entangled system

The Hamiltonian for N coupled oscillators with time
dependent parameters is given by

HN(t) =
1

2

 N∑
j=1

p2
j + XT .K (t).X


where X=(x1, x2...xN)T and K is a real symmetric N × N

matrix with real eigenvalues.
The time dependent density matrix of the whole system has
the form

ρ(X ,X ′, t) =

(
det

Ω

π

) 1
2

exp
[
i
(
XT b̃X − X ′T b̃X ′

)]
exp

[
−XTΩX

2
− X ′TΩX ′

2

]
here Ω = UT

√
K ′DU, K ′Djj =

KD
jj (0)

b4
j (t)

, b̃ = UT b̃DU
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Reduced system and entropy

Tracing over the subsystem Xα, the reduced density matrix of
X a is given by

ρred(X a,X ′a, t) =

∫ n∏
α=1

dXαρ(X a,Xα,X ′a,Xα)

We write the matrices Ω and b̃ respectively as

Ω =

(
Ωn×n Ωn×N−n

ΩT
n×N−n ΩN−n×N−n

)
b̃ =

(
b̃n×n b̃n×N−n

b̃Tn×N−n b̃N−n×N−n

)
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Reduced system and entropy

Using these and after some algebra, we get

ρred(X a,X ′a, t)

=

(
det Ω

π

det Ωn×n

π

) 1
2

exp
[
i
(
X aTZX a − X ′aTZX ′a

)]
× exp

[
−1

2

(
X aTγX a + X ′aTγX ′a

)
+ X aTβX ′a

]
where X a, X ′a has N − n components

Z (t), γ, β are (N − n)× (N − n) matrices given by
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Reduced system and entropy

Z (t) = b̃N−n×N−n − b̃Tn×N−nΩ−1
n×nΩn×N−n,

γ(t) = ΩN−n×N−n −
1

2
ΩT
n×N−nΩ−1

n×nΩn×N−n

+ 2b̃Tn×N−nΩ−1
n×nb̃n×N−n,

β(t) =
1

2
ΩT
n×N−nΩ−1

n×nΩn×N−n + 2b̃Tn×N−nΩ−1
n×nb̃n×N−n

The reduced density matrix in new coordinates takes the form

ρred(Ra,R ′a, t) = exp
[
iRaTZ ′′Ra − iR ′aTZ ′′R ′a

]

×
N∏

j=n+1

(
1− β̃j

) 1
2

πN−n
exp

[
−1

2
(r2
j + r ′2j ) + β̃j rj r

′
j

]
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Time-dependent many-body system

The eigenvalues are given by

pl(t) =
N∏

j=n+1

(1− ξj)ξlj

where

ξj(t) =
β̃j

1 +

√
1− β̃j

2

In this case there will be N number of bj(t) satisfying
Ermakov equations given by

b̈j + λj(t)bj =
λj(0)

b3
j

where λj are eigenvalues of K which dependence on ω and k.
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Time-dependent many-body system

The von Neumann entropy takes the form

S1(t) =
N−n∑
j=1

[
− log(1− ξj(t))−

ξj(t)

1− ξj(t)
log ξj(t)

]
after partitioning the system to n versus N − n degrees of

freedom.



Introduction Model TDSE Time dependent SHO Time-dependent calculations Results Summary

Entropy plots for N=4

As a specific example, we now consider a chain of N = 4
oscillators.

The Hamiltonian is given by

H(t) =
1

2

 4∑
j=1

(p2
j + ω2(t)x2

j ) + k(t)
4∑

j=1

(xj − xj+1)2


We consider the periodic boundary condition given by
x5 = x1. The matrix K has the form

K =


ω2 + 2k −k 0 −k
−k ω2 + 2k −k 0
0 −k ω2 + 2k −k
−k 0 −k ω2 + 2k
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Entropy plots for N=4

Eigenvalues are given by λj = (ω2 + 2k)− 2k cos
(

2πj
4

)
.

The corresponding eigenfunctions are

êj = N−1/2


1

exp(2πij/4)
exp(4πij/4)
exp(6πij/4)


where j = 1, 2, 3, 4.

Note that there are only three distinct eigenvalues (λ1 = λ3).

Hence there will be only three distinct Ermakov equations
(b1(t) = b3(t)) .
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Entropy plots for N=4

The matrices U, b̃D and (K ′D)
1
2 are given by

U =
1

2


1 1 1 1
i −1 −i 1
−1 1 −1 1
−i −1 i 1



b̃D =



ḃ1(t)
2b1(t)

0 0 0

0
ḃ2(t)

2b2(t)
0 0

0 0
ḃ1(t)

2b1(t)
0

0 0 0
ḃ4(t)

2b4(t)



(K ′D )1/2 =



√
ω2+2k

b2
1

0 0 0

0

√
ω2+4k

b2
2

0 0

0 0

√
ω2+2k

b2
1

0

0 0 0

√
ω2

b2
4
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Entropy plots for N=4

We now perform a sudden quench at time t = 0, when ω, k
change from a constant values (ω(i), k(i)) to (ω(f ), k(f )).

The reduced system is defined by tracing out the last two
oscillators in the chain.

In this case there are four Ermakov equations whose solutions
(with bj(t = 0) = 1 and ḃj(t = 0) = 0) are given by

bj(t) =

√
nj cos(2

√
λj(f )t) + mj

here nj =
λj (f )−λj (i)

2λj (f ) , mj =
λj (f )+λj (i)

2λj (f )

λj(i), λj(f ) are the eigenvalues of K before and after the
quench.
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Entropy plots for N=4

ΩHfL=0.01

ΩHfL=0.1

ΩHfL=0.3

0 10 20 30 40 50
0
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3

4

5

Time, t

S 1
HtL

Initial values ω(i) = 3 and k(i) = 2.
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Scaling of entropy

where nj =
λj (f )−λj (i)

2λj (f ) , mj =
λj (f )+λj (i)

2λj (f )

Three independent time scales contribute to the entanglement
dynamics.

This plot shows entanglement revival whose time period
increases with decreasing ω(f ).

Each revival period contains several quasi-revivals on shorter
time scales due to the effect of the Ermakov solutions

At large times, the profile of the entanglement dynamics is
dominated by the smallest frequency, which being independent
of interaction k .

Existence of multiple time scales within each revival period is
a new feature due to the solutions of the Ermakov equations.
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Entropy plots for different N

wHfL=0.01

N=4 N=6 N=10

N=16 N=20
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Ht,
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L

Plot of von Neumann entropy with different N and same
quenched parameters ω(f ) = 0.01
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Entropy plots for different N

The time evolution of S1(t,N) shows the effect of multiple
time scales whose number increases with N.

In addition, the von Neumann entropy itself increases as a
function of N.

In order to extract the N dependence of the entropy, in next
section we have plotted the ratio S1(t,N)

lnN as a function of time
t for several N.
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Scaling of entropy

wHfL=0.01

N=4 N=6 N=10

N=16 N=20
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Time, t

S
1

Ht,
N

Lêl
n
N

Plot of von Neumann entropy with different N and scaled by
log(N)
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Scaling of entropy

Now we plot the ratio S1(t,N)
lnN as a function of time t for

several N.

It is clear that for N ≥ 10, the nature of this plot is consistent
with the scaling relation

S1(t,N) = c(t) lnN + O (1)

where c(t) is a time dependent function that encodes the
cumulative effect of the dynamically generated multiple time
scales.
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Connection to criticality

The Hamiltonian

HN(t) =
1

2

 N∑
j=1

(p2
j + ω2(t)x2

j ) + k(t)
N−1∑
j=1

(xj − xj+1)2


Under the following canonical transformation

(xj , pj) −→ (k1/4xj , pj/k
1/4),

Introducing a =
√
m/k (m = 1), Hamiltonian takes the form

HN(t) =
1

2

 N∑
j=1

(
p2
j

a
+ aω2(t)x2

j ) +
1

a

N−1∑
j=1

(xj − xj+1)2


Lattice discretization of a free boson with lattice spacing a and
mass ω.
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Connection to criticality

In the limit a→ 0, N →∞ we can replace

xj → φ(x),
pj
a
→ π(x) = φ̇(x), with x = na

Hamiltonian reduces to the two-dimension Euclidean action given by

Action, S =
1

2

∫
dx

∫
dτ
[
(∂µφ)2 + ω2φ2

]
.

In the limit ω −→ 0 it is conformally invariant

Therefore when ω → 0 and large N above Hamiltonian becomes
critical.

1

1P. Calabrese et al., (2013).
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Lieb Robinson bound

The wavefunction for this N coupled oscillator model with
time dependent coefficients is

ψ(x1, ...., xN , t) =

(
det

Ω

π

) 1
4

exp

i
XT b̃X −

N∑
j=1

Ejτj


× exp

[
−XTΩX

2

]
. (1)

here Ω = UT
√
K ′DU, K ′Djj =

KD
jj (0)

b4
j (t)

, b̃ = UT b̃DU

The equal time correlation has the form

< xi (t)xj(t) >=
1

2

N∑
m=1

Umi

(
1√

K ′D(t)

)
Umj
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Lieb Robinson bound

j=3 j=6 j=10

j=14 j=18

0 2 4 6 8 10 12 14
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Time, t

<
X

1
X
j>

Here we have quenched from ω(i) = 3 and k(i) = 2 to
ω(f ) = 2 and k(f ) = 2.5

It takes finite time to propagate correlation from site i to site
(i + r)
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Lieb Robinson bound

The plot of this distance versus time of propagation gives us
propagation velocity with a finite bound

The bound in the entanglement propagation speed for
harmonic chain system is given by (for quench from ω(i) = 3,
k(i) = 2 to ω(f ) = 2, k(f ) = 2.5)

 0

 1

 2

 3

 4

 5

 4  8  12  16  20

Speed=3.12T
im

e
, 

t

Distance, r

This shows a finite speed of entanglement propagation
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Summary

We have obtained exact analytical expressions of von
Neumann entropy for any arbitrary time-dependence.

The entanglement dynamics is characterized by a
multi-oscillatory behaviour and the number of time scales
appearing in the entanglement dynamics increases with N.

We saw that the entropy for this system violates the area law.

In the critical limit there is a logarithmic scaling of the
entanglement entropy.

This method can be used to obtain exact solutions to a
variety of quenches, which are under investigation.
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Thank You


	Introduction
	Model
	TDSE
	Time dependent SHO
	Time-dependent calculations
	Results
	Summary

