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Chapter 1 

O V E R V I E W  

 

Classical and quan tum field theories may be consistently formulated in arbi t rary d 

dimensional  space. Low dimensional field theories, for which d < 3, form an impor 

rant  class of such theories. Present challenges of theoretical  physics come from the 

strongly interact ing systems which are not amenable  to solutions by ordinary pertur- 

bation techniques. The low dimensional theories serve as ' laboratories '  where various 

nonper turbat ive  methods have been developed and tested with comparat ively lesser 

efforts. Also such low dimensional theories correspond to concrete situations in var- 

ious phenomenology. In this dissertation we focus at tent ion on (2+1)- dimensional 

field theoretic models which are being actively investigated in the recent times. Of 

course the scope of such studies is vast. Our research concentrates on certain as- 

pects of three - dimensional field theories tha t  are of current interest. Specifically, 

we concentrate  on the Chern - Simons (C - S) coupled theories [1, 2]. The C - S 



interaction has numerous interesting properties [3], which make it useful in lnanv 

branches of physics and mathemat ics .  Below we ment ion a few of those properties 

which are related to our area of research. Subsequently an overview of the thesis is 

presented in the remaining sections. 

The abelian C - S term in (2+1) dimensions is given by, 

k 
Z.cs = -4 % . ~ A " F  ~ ,  

where A" is the C - S gauge field and F"" is the corresponding field tensor, 

(1.1) 

F . .  = O . A .  - OVA.. (le  

Here e ""a is the total ly ant isymmetr ic  symbol with e ~ = 1. We work in a Mmkowskmn 

space with the diagonal metric  tensor, 

g . .  = d i a g ( 1 , - 1 , - 1 ) .  (1.3) 

A nonabelian generalisation of (1.1) is described by the Lagrangian density, 

Ecs  N = ~%~x t r (AUF ~ + A " A " A ~ ) .  

A" and F u~ are now matrices,  

and 

A .  = A . ~ T  ~ 

F~,,. = F.v, ,T" = cO.A. - cO.A. + [A. ,  A,.], 

where T a are the generators of the gauge group G in which A takes its values. 

satisfy the Lie algebra of the nonabelian group G, 

(1.4) 

(2.8) 

(1.6) 

T ~ 

[T '~, T b] = fa~T~,  (1.7) 



fo~: being the structure constants. The abelian C - S Lagrangian (1.1) is a special 

case of (1.4); the trilinear term in (1.4) vanishes due to the antisylnmetry of the e - 

symbol when the gauge group is abelian. 

The C - S Lagrangian (1.1) may be reduced to the following form by neglecting 

total boundary terms ~, 

s = kA2Jtl + kAoF12. (1.8) 

Equation (1.8) shows that  the fields A1 and A2 are canonically conjugate to each 

other. The field A0 is nothing but a Lagrange multiplier which enforces the Gauss 

law constraint. This situation is very.different from the conventional Maxwell (Yang 

Mills) gauge field where Ai may be regarded as coordinate fields, canonically 

conjugate to the electric field Ei = Foi. The C - S gauge field thus has no dynamics 

of its own - it is a nonpropagating field whose dynamics comes from the fields to 

which it is coupled. A remarkable fallout of this is that  the C - S gauge field can be 

coupled to both Poincare and Galileo symmetric  theories, a unique feature in the 

class of gauge theories. 

Let us now consider the coupling of the C - S gauge field with external source. A 

representative example is the nonlinear 0(3)  sigma model which admits  a conserved 

current j" .  The C - S term may be minimally coupled to the theory by extending 

the Lagrangian as 

s = 12 + j~,A" + s (1.9) 

where s is given by (1.1). In case of coupling with complex scalars, the extension 

(1.9) is formally the same but the current j ,  is now improved so that  it is covariantly 

conserved (D~,j" = 0). The equation of motion satisfied by A,  is obtained by the 

1We are considering the abelian C - S term for simplicity, but all these remarks apply to the 

nonabelian generalisation (1.4). 



usual method to be 

ke" ' aF ,  a = j" .  (1.10) 
2 

Using equation (1.10) A, can be expressed in terms of the variables of the matter 

sector /2 which shows in another way that  the C - S field is devoid of any inde- 

pendent dynamics. However, the global topological effects associated with the C 

- S interaction leads to a spectrum of interesting phenomena with the inclusion of 

source j" .  These include the generation of topologically massive gauge mode [2], 

transmutation of statistics [4, 5], production of novel solitonic excitations [6, 7, 8, 9] 

etc. 

The action corresponding to the pure C - S term is generally covariant irrespective 

of any metric [10]. This leads to the development of the C - S theories as topological 

field theories [11]. The metric independence of the C - S action has crucial effect on 

the form of the symmetry generators of the theory (1.9). These symmetry generators 

are constructed from the symmetric,  gauge invariant energy momentum (EM) tensor 

obtained by varying the action with respect to a background metric, 

5A 
e , - =  (1.11) 

and finally setting the metric fiat. Due to the metric independence, the pure C - 

S part of the action does not contribute to O. Nevertheless, it contributes to the 

EM tensor obtained from Noether's definition. A clean method of studying the 

symmetry of a gauge theory is provided by the gauge independent approach [12, 13] 

where the constraints are only weakly zero [14]. Thus the EM tensor is required to be 

augmented by some suitable linear combinations of the constraints of the theory to 

generate appropriate symmetry generators [15]. Using this freedom it is possible to 

understand the difference between (1.11) and Noether's definition, and to formulate 

a consistent definition of intrinsic spin [16]. This connection is explicitly discussed 



in section 2 of this chapter  where our studies of the spin of the C - S vortices are 

outlined. 

The Euler - Lagrange (E - L) equations following from the Lagrangian (1.9) are 

nonlinear in general. These nonlinear field equations admit  finite energy solutions 

which correspond to extended structures moving without  dissipation [17]. Solitons, 

instantons etc. are such solutions which have become paradigms of modern field 

theory [18]. Their  quantizat ion crucially depends on the solutions of the classical E 

- L equations. Such solutions are however very difficult to find. In this context, a 

class of theories enjoy a very prominent  place where a set of first order equations 

may be found which satisfies the second order E - L equations. The first order 

equations so obtained are observed to exhibit some kind of se l f -  duality. In this 

sense the corresponding theories may be called se l f -  dual  theories. Henceforth in 

the following the term ' se l f -  dual '  will be used to refer to the cases where the 

equations of motion may be factorised in first order forms [3]. Prom (1.10) we find 

tha t  in C - S theories the equations of motion satisfied by the gauge - field is already 

in the se l f -  dual  form. This may be contrasted with the Maxwell (Yang - Mills) 

case where the gauge field satisfies second order equations of motion.  The C - S 

coupled theories are thus prone to provide a large variety of self - dual theories [3]. 

Since the soliton sector of the C - S theories provide candidate  excitations for the 

realization of anyons, the se l f -  dual C - S models are extremely impor tan t  in the 

context of anyonic quan tum field theory with applications to such planar models as 

quan tum Hall effect, anyonic superconductivi ty etc. Connections of the self - dual 

theories with related extended supersymmetr ic  s tructures have also been revealed. 

We have worked on a new type of se l f -  duali ty in connection with the partially 

gauged 0(3)  nonlinear sigma models , an overview of which is presented in section 

3 of this chapter.  



The C - S theories (1.9) being gauge theories, are necessarily constrained. Using 

the reduction (1.8) it is easy to read off the Gauss law constraint which generates 

gauge transformations at a certain instant of time in the Hamiltonian approach [14, 

19]. A suitable gauge fixing condition is to be invoked to eliminate the redundancy 

of the theory arising out of the gauge symmetry. This amounts to reduction of the 

phase space using the chosen gauge. One way of the reduction of phase space is 

to solve the Gauss constraint along with the gauge condition, thereby eliminating 

the C - S gauge field in terms of the matter variables. This is the symplectic 

method [20] of phase space reduction. Alternatively, one may follow Dirac's method 

[14] of constrained Hamiltonian analysis. It is instructive to compare the different 

reduced phase space calculations. We have studied the aspects of symmetry of a 

nonrelativistic matter theory coupled with the nonabelian C - S term (1.4), using 

alternative methods of phase space reduction. Outline of this work is contained in 

section 4 below. 

1.2 Analysis of spin in (2+1)-dimensional  field 

theories coupled with the Chern-  Simons term 

Perhaps the most interesting and fascinating aspect of (2+1)- dimensional models is 

the possibility of existence of particles with arbitrary spin and statistics~ interpolat- 

ing continuously between bosons and fermions. This may be understood from the 

following group- theoretic arguments [10]. The rotation group in two dimensions 

is the abelian group U(1). The group elements satisfy no non - trivial algebra and 

therefore study of infinitesmal rotations does not fix the possible representations as 

in the three dimensional analogue. However~ a finite rotation by 27r must bring all 

6 



the physical quantities to their initial setting. Since the squared modulus of the 

wavefunction is physically observable only, the wave function may gain an extra 

phase e i0 on rotation by 21r where 0 is any real number. The corresponding angular 

momentum eigenvalues (J) are then given by 

J = h(2- ~ + n), (1.12) 

where n is an integer. We find from (1.12) that any real spin is allowed. The number 

0 is defined modulo 2rr and 0 = 0 (rr) correspond to bosons (fermions). In analogy 

with bosons and fermions, particles carrying arbitrary real spin are called anyons. 

Traditionally the anyons are said to have fractional spin though any real spin value is 

actually allowed [21]. By a generalised spin-statistics connection [22] the anyons obey 

fractional (arbitrary) statistics. Fractional spin and statistics is a comparatively new 

idea in physics [23] which has been made popular by the pioneering works of Wilczek 

[24]. Since then the idea has been vigorously pursued in the literature [10, 21, 25]. 

Indeed, this is not only due to the mathematical curiosity involved. Anyons have 

been found useful in understanding fractional quantum Hall effect and they are 

believed to be responsible for high- Tc superconductivity [10, 26, 27]. 

It is natural to expect that  the full significance of fractional spin and the spin- 

statistics connection may be understood in the context of relativistic field theories. 

From the quantum mechanics of anyons it is known that  fractional spin and statistics 

is induced when the configuration space is multiply connected. So in field theories 

we look for field configurations that  fall in disjoint classes. The nonlinear field 

equations do admit soliton solutions that  are classified into topologically distinct 

classes in various (2+1)-dimensional field theories [17]. Such theories, thus, appear 

to be candidates for providing anyon - like excitations. 

A well - known example of a (2+l)-dimensional field theoretical model supporting 



topologically stable soliton solutions is the non- linear 0(3)  sigma model [28]. The 

Lagrangian of the model is given by, 

1 a u a 
E = -~-]O,n 0 n ,  (1.13) 

where ha(X) are a tr iplet  of fields satisfying, 

n ~  ~ = 1 ( 1 . 1 4 )  

and f is a parameter  having dimension of length. 

From equation (1.14) we find tha t  the components n a define a vector in the 

internal space, always confined on the unit  sphere with centre at the origin. Static 

solutions of the problem are mappings from the physical space to the internal space. 

For the finiteness of energy of the soliton configurations , we require, 

n a = n0a (1.15) 

at spatial infinity, where n]  is constant.  The physical space is thus one point com- 

pactified to S 2. The static field configurations are then maps n : S 2 --~ 5 '2 which fall 

into distinct homotopy classes [17, 29] 

1-I2($2) = Z. (1.16) 

Time - dependent solutions are obtained from static soliton solutions by letting the 

location of the solitons depend on time. The corresponding current, 

jU(x) = --~e"V~ %b,:naOvnbO.~nC, (1.17) 

is identically conserved irrespective of the equations of motion. 

conserved charge, 
1 

Q = -~ f d2xea~eiiO, nbOjnU ~ (1.18) 

We then get a 

8 



which gives the winding number of the mapping (1.16). Since Q characterizes the 

homotopy classes it is called the topological charge. Accordingly, j"  is the topological 

current. The soliton solutions of the model (1.13) with Q = 1 are called baby 

skyrmions: 

The time dependent solutions of (1.13) are mappings from S a to S 2. Here closed 

curves on S a are mapped onto points of S 2 and there exists an invariant called 

the Hopf invariant, which classifies the space of field histories in distinct homotopy 

classes, 

YI3(S2) = Z. (1.19) 

Analytically the Hopf invariant is given by the Hopf interaction, 

H __ 

with A~ defined implicitly through 

1 fdaxAajO,  (1.20) 
27r 

f '  = euv~'O,,A~,. (1.21) 

The nonlinear 0(3) sigma model (1.13) with the addition of the Hopf interaction 

(1.20) becomes, 

17. ~ f_. + OH, (1.22) 

where 0 is an arbitrary real parameter. The resulting theory is non - local because 

A~ defined via (1.21) is essentially a non - local function of n". The soliton solutions 

of the extended theory are endowed with fractional spin ~ [4]. Alternatively, adding 

the following terms 

A E : - O ( f ' A ~ , - ~ e ~ ' ~ O ~ , A ~ )  (1.23) 

with the Lagrangian (1.13) does the trick [4, 30]. The kinetic term for the gauge 

field is easily recognised to be the celebrated Chern- Simons term (1.1). The topo- 

logical solitons of the (2+1)- dimensional 0(3) sigma model are thus endowed with 



fractional spin when coupled with the C - S gauge field. The model has been treated 

in the Hamiltonian approach a la Dirac [14] where the structure of the canonical 

(Noether) angular momentum has been shown to be shifted due to the inclusion of 

the Hopf interaction [31]. A gauge- independent analysis [12, 13] shows conclusively 

that the fractional spin induced is a physical effect and not an artifact of the gauge 

[161. 

Subsequently, it has been found that  the C - S coupling is instrumental in re- 

ducing fractional spin in a number of field theoretic models [32]. The study of the 

spin of the topological solitons of the C - S theories is therefore very important in 

the context of anyon physics. There are various approaches of computing the spin 

of the Chern - Simons vortices but the results from different methods do not always 

agree [33]. In the original method proposed by Wilczek and Zee [4] it is shown that 

the wave function of a Q = I  soliton in the model becomes a nmltivalued function 

for adiabatic space rotation of the soliton. If the wave- function is n-ply valued for 

the space rotation, then the value of the spin for the soliton is 1/n. In another 

method the field angular momentum for a static soliton configuration is calculated 

and any nonzero expression thus obtained is identified with the spin of the soliton. 

The charged vortex, which is a topological soliton in the (2+1)-dimensional Chern- 

Simons-Higgs model, was shown to have fractional spin basing on this consideration 

[8, 9, 34]. However, it happens that the spin value obtained in the static limit of the 

field angular momentum does not always give consistent results [33]. A remarkable 

example is the nonlinear 0(3) sigma model coupled with the Hopf or Chern - Simons 

term. Since the Hopf or C - S action is generally covariant without reference to the 

metric, the EM tensor constructed according to (1.11) does not get any contribution 

from these terms.The resulting expression is the same as that found for the usual 

10 



sigma model (1.13), 

2 
0,,,  f2 (20, naO~'nQ - g, "O~'n'O'~n~ (1.24) 

This EM tensor is symmetric, gauge invariant and appears m the Dirac - Schwinger 

quantum conditions [35]. We will henceforth refer to this as the Schwinger EM 

tensor. The angular momentum integral is obtained from the Schwinger EM tensor 

a s  

J = f d2xeijxiO'oj, (1.25) 

Since the (0,j) component of @~, explicitly involves a time derivative of n ~ J van- 

ishes in the static configuration. The definition of [8, 9, 34] then predicts zero spin 

of the baby skyrmions. However, we have just observed that it follows from quite 

general topological arguments that they carry fractional spin [4]. The connection 

of the baby skyrmions with the quasiparticles found in the quantum Hall state has 

been established, where the anomalous spin of the excitations play a crucial role [36]. 

So the vanishing spin of the baby skyrmions predicted by the definition of [8, 9, 34] 

is clearly a contradiction. The static limit of the angular momentum cannot thus be 

identified with fractional spin consistently. The reason for this may be ascribed to 

the fact that  unlike the Noether angular momentum, the Schwinger angular momen- 

tum does not naturally split in orbital and spin parts [37]. The method followed in 

IS, 9, 34] involves integration over detailed field configuration for which one needs to 

resort to some suitable ansatz. The analysis depends again on how one accounts for 

the contribution from the singularities of the configuration which is why the results 

obtained by the same method do not always agree [8, 34]. 

A new field theoretic method of computation of the spin of the C - S vortices was 

advanced in [16] in connection with the nonlinear 0(3) sigma model coupled with 

the C - S term. The method is based on constraints, the role of which proves crucial 
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in generating space time symmetry transformations of the fields. The analysis was 

carried out in a gauge independent setting [12, 13] and the Schwinger EM tensor 

was required to be improved by suitable linear combinations of the constraints of 

the theory [15] to generate proper transformations of the fields. The EM tensor ob- 

tained from the canonical (Noether) prescription was then constructed. The angular 

momentum obtained from the (improved) Schwinger EM tensor was found to differ 

from the angular momentum obtained from the Noether EM tensor (Jc) by a total 

boundary term K, 

K = -o f d2xOi(xiAjA j xJmiAj). (12S) 

The boundary term does not offend local transformations of the fields under rotation 

and so J, like Jc, generates appropriate transformation of the fields under rotation 

For nonsingular field configurations the difference term vanishes but for the singular 

vortex structures, it gives nonvanishing contribution. The value of the difference 

of J and Jc in a rotationally symmetric configuration is found to be independent 

of the origin of coordinates. It is, therefore, interpreted as the spin of the vortices 

Equation (1.26) serves as the spin formula. Note that  for the calculation of spin 

from the definition (1.26) only the asymptotic configuration of the gauge field is 

necessary. This form is dictated by the requirements of rotational symmetry and 

the Gauss constraint of the theory to be 

Ai(x ) = Q xJ 

where Q is the topological charge (1.18). Using equation (1.26) we get 

(1.27) 

Q2 
K = ~-~r0. (1.28) 

For Q = 1 this result agrees with the earlier computations [4, 31]. The definition of 

[16], unlike [8, 9, 34] yields results in this example which are compatible with general 
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topological arguments [4] and is in conformity with the experimental  observations 

[36]. 

We have seen that  the definition of [16] gives a consistent method  of finding the 

spin of the baby skyrmions, which are the Q = 1 excitations of the nonlinear 0(3)  

sigma model coupled with the C - S term. The question comes whether this scheme 

is applicable to the C - S theories in general. This question has been addressed in 

our works on the C - S vortices [38, 39]. We found that  the definition of [16] can 

be used to develop a general method of calculation of the spin of the C - S vortices, 

both relativistic and nonrelativistic. 

Among the relativistic C - S theories the C - S - H model is a prominent one. 

The theory may be reduced to the self-  dual form. Remarkably, the model provides 

both topological and nontopological solitons [34]. Using the definition of [16] we 

find a spin formula identical with (1.26) and the Value of the spin for the topological 

solitons comes out to be 
71-krt 2 

K -  e2 (1.29) 

where e is the coupling constant,  k the strength of the C - S interaction and n is the 

topological number.  The similarity of the expression (1.29) with equation (1.28) is 

easily recognised. The signature of the spin [40] is the same as tha t  of the elementary 

excitations of the model [41]. In the earlier computat ion an opposite sign was found 

where the static limit of the angular momentum was identified as the spin. As a 

result the spin - statistics connection was not possible to establish from the usual 

Aharonov - Bohm [42] phase and a new interaction had to be invoked [43] to account 

for the extra phase. 

We have investigated the spin of the vortices of a number of relativistic C - S 

models. These include abelian and nonabelian [7] C - S - H models and a general- 
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isation of the C - S - H model[44]. In all the cases the spin formula were found to 

be identical in form with (1.26) and the resulting value of the spin were found to 

be given by (1.29) irrespective of the details of the matter  sector. The topological 

origin of the spin of the C - S vortices wa:o- thus clearly revealed. 

The method  of [16] is not directly applicable to the nonrelativistic models. This 

is because the Galileo symmetric models cannot be made generally covariant and the 

powerful method  of constructing the Schwinger EM tensor is not available. However, 

a gauge invariant EM tensor can still be constructed by using the equations of inotion 

2[45]. The spin of the nonrelativistic C - S vortices was defined as, 

K -~ J - j N ,  ( 1 . 3 0 )  

replacing the Schwinger angular momentum in the earlier definition by J, the gauge 

invariant EM tensor obtained from the equations of motion [39]. A unified method 

was thus developed to analyze the spin of the vortices of the relativistic and nonrel- 

ativistic C - S theories. There are some calculations of the spin of the nonrelativistic 

C - S vortices in the literature [46, 47] but a general methodology was lacking. We 

have applied our definition to the nonrelativistic model of a Schrodinger field cou- 

pled with the C - S term [48]. The analysis of spin was found to be in complete 

parallel with tha t  of relativistic models. 

2This t ime  the  E M  tensor  is not  s y m m e t r i c  as a consequence of the  specific na tu re  of the  

Gal i lean  space - t ime .  
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t ion with the  0 ( 3 )  nonlinear s igma mode l  in 

( 2 + 1 ) - d i m e n s i o n s  

Investigations of anyonic excitatiolas in relativistic field theories bring us in contact 

with the study of solitons in (2+ 1)-dig~ensional field theories coupled with the Chern 

- Simons (C - S) term. Classically, the soliton configurtions are to be obtained by 

solving the E - L equations. These second order nonlinear equations are, however, 

very difficult to solve. In this context the self- dual theories enjoy a unique place 

because here we obtain a set of first order equations that automatically satisfy the 

E - L equations. The C - S theories are all the more suitable for building self- dual 

theories because here the E - L equation satisfied by the gauge field is already in 

the first order, self- dual form. In this dissertation we discuss a new type of self- 

duality in the nonlinear 0(3) sigma model [49, 50]. 

In the usual (2+l)-dimensional nonlinear 0(3) sigma model (1.13) discussed 

earlier in this chapter, the self - dual point is achieved by minimising the energy 

functional corresponding to the static field configuration in a given topological sec- 

tor characterised by a fixed value of the topological charge (1.18). The trick of 

minimisation is due to Bogomol'nyi [51] which has become a standard for the self 

- dual theories in general. The Bogomol'nyi conditions lead.us to the first order 

self- dual equations, which for the model (1.13) are exactly integrable. The self- 

dual configurations are topological lumps which are characterized by the the second 

homotopy of the field as a mapping from the physical space to the internal space, 

equation (1.16). The solutions are obtained in terms of rational functions and enjoy 

scale invariance. Due to this scale invariance the excitations may change shape arbi- 
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trarily without loss of energy. Numerical simulations amply confirm this [52]. This 

leads to a difficulty of particle interpretation of these excitations on quantization 

Various methods have been proposed in the literature to break the scale invarl- 

ante of the self dual solitons of the nonlinear sigma model [53, 54]. Of them, a 

particularly interesting method is to partially gauge the global 0(3) symmetry of 

the model. By gauging a part of the global symmetry of (1.13) with the Maxwell 

[54] or the C - S interaction [55], one can have another self - duality. In order to 

satisfy the Bogomol'nyi bounds, one requires to include a suitable self- interaction 

in the extended model. Such models will be referred to as the gauged nonlinear 

0(3) sigma models. 

Both the models of [54] and [55] share a common feature-  their soliton sectors 

suffer from the problem of infinite degeneracy. In case of Maxwell coupling [54] 

we get neutral solutions with quantized energy in a given topological sector but 

having arbitrary magnetic flux. For the theory with the C - S coupling the solutions 

become charge - flux composites with both charge - flux and angular momentum 

arbitrary for fixed topological charge [55]. We consider this degeneracy physically 

undesirable, specifically in the context of our experience with the C - S vortices 

[38, a9]. The degeneracy of solutions actually frustrates the motivation for gauging 

because the scale invariance appears in a mutated form as a result of the arbitrariness 

of the magnetic flux [54]. We naturally enquire whether it is possible to construct 

gauged 0(3) nonlinear sigma models which will have the welcome features of self 

dual solutions with broken scale - invariance without the degeneracy. We have 

demonstrated this possibility first for the C - S coupled theory [49] and later on, for 

the Maxwell coupling [50]. 

Indeed, the degeneracy of the solutions is not an essential outcome of the prob- 
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lem. We have shown that  it is actually connected with the structure of the vaccum. 

If the self interaction potential is so chosen to allow symmetry breaking vaccua the 

degeneracy of the solitons is lifted [49, 50]. The corresponding models differ sig- 

nificantly from the earlier gauged sigma models [54, 55] due to the novel topology 

introduced in the process. The homotopy sectors of the solutions of [54, 55] are 

classified by (1.16) just as the usual sigma model. In contrast, the solutions of our 

models [49, 50] fall into the homotopy 

n , ( & )  = z ,  (1.31) 

which proves to be responsible for the lifting of the degeneracy. These new features 

in our models lead to new type of self- dual soliton configurations in connection 

with the gauged 0(3) nonlinear sigma model in (2 + 1) dimensions. 

We have performed detailed investigations of the new gauged sigma models with 

symmetry breaking vaccua. Topological classification of the soliton solutions were 

studied along with the general properties of the solutions like charge, flux, energy, 

and spin. Saturation of the self dual limits was explicitly demonstrated. The cor- 

responding self-  dual equations have solutions with broaken scale invariance as 

desired. We have also studied the integrability of the solutions and discussed nu- 

merical methods of solving the same taking the model with the Maxwell coupling 

as example. 
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1.4 A n a l y s i s  o f  s p a c e  - t i m e  s y m m e t r i e s  in a n o n -  

a b e l i a n  C h e r n -  S i m o n s  t h e o r y  

The C - S theories are necessarily constrained systems on account of the gauge 

symmetry. The issue of symmetry of the gauge theories is a subtle one because the 

imposition of the gauge condition forces the explicit transformation relations of the 

fields to deviate from the canonical structure. Mention may be made of such a well 

known theory as the Maxwell electrodynamics [15]. The example of the C - S theories 

are special because the C - S gauge field is nondynamical and can be eliminated from 

the phase space by solving the Gauss constraint along with the gauge fixing condition 

[45]. Alternatively, the phase space reduction can be carr iedout  [56] by Dirac's 

method of constrained Hamiltonian analysis [14]. While these approaches give the 

same result for the abelian models, the nonabelian C - S theories offer a few surprises. 

It was observed [57] that  the (classical) Poincare covariance gets violated in a theory 

where the nonabelian C - S term is coupled with fermions. T h e  calculations were 

done in the axial gauge which enabled the elimination of the gauge degrees of freedom 

in terms of the matter variables. However, the (classical) Poincare invariance was 

shown to be preserved [58] by following Dirac's method which retains all degrees of 

freedom. The issue of symmetry is even less transparent in the quantum level, due to 

the ordering ambiguities [48, 59]. The C - S term may be coupled with both Poincare 

and Galileo symmetric models. Purely Galilean invariant models are useful to study 

problems which are difficult to study within the full formalism of special relativity. 

We have, therefore, analysed in details, the classical and quantal Galilean algebra for 

a model involving the coupling of nonabelian C - S three form with nonrelativistic 

matter [60]. A gauge independent formulation [12, 13] of the canonical constrained 

structure was carried out which proved immensely helpful in the verification of the 
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Galilean algebra avoiding the problems related with gauge fixing. In the classical 

level the gauge fixed computations were done in both symplectic [20] and Dirac [14] 

approaches. By demanding the equivalence of different approaches some restrictions 

on the Green function were established. These conditions were again proved to be 

instrumental in closing the Galilean algebra in the quantum case in the gauge fixed 

approach. It was NOT necessary to assume vanishing self interaction as in the earlier 

approaches,since this condition was validated by two alternative arguments based 

on algebraic consistency. 

1.5 Organisat ion of the  thes is  

We are now in a position to describe the organisation of the thesis. In the next 

chapter the analysis of the spin of the Chern - Simons vortices is presented. Chapter 

3 contains our works on the partially gauged sigma models. Study of the Galilean 

symmetry of a nonabelian Chern - Simons matter system constitute the subject of 

chapter 4. Finally in chapter 5 some observations~garding the possible elaborations 

and new directions of research following from our studies has been discussed.The 

thesis is based on the results of the following works 3: 

[1] R. Banerjee and P. Mukherjee, Spin of the Chern - Simons Vortices [38]. 

[2] R. Banerjee and P. Mukherjee, Some comments on the Spin of the Chern - 

Simons Vortices [39]. 

[3] P. Mukherjee, On the question of degeneracy of topological solitons in a 

gauged 0(3) sigma model [49]. 

3Numbers in the parenthesis give bibliographical references 
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[4] P. Mukherjee, Magnetic vortices in a gauged 0(3) sigma model [50]. 

[5] R. Banerjee and P. Mukherjee, Galilean symmetry in a nonabelian Chern - 

Simons matter system [60]. 
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Chapter  2 

A N A L Y S I S  OF S P I N  OF T H E  

C H E R N -  S I M O N S  V O R T I C E S  

 

This chapter  conta ins  a deta i led  discussion of our  works [38, 39] on the  spin of the 

Chern - Simons (C - S) vortices. The  different techniques of ob ta in ing  the spin of 

the solitonic exci ta t ions  of the  C - S theories were reviewed in the  previous chapter .  

It was argued tha t  the  defini t ion of [16] appears  to be a consis tent  field theoret ic  

me thod  of c o m p u t i n g  the  spin of the  C - S vortices. We adopt  this definition as 

the basis for our  analysis. After  a brief discussion of the  m e t h o d  we demons t r a t e  in 

detail, its appl ica t ion to the  Chern  - Simons - Higgs (C - S - H) model  [8, 9 34] 1 

Spin of bo th  the  topological  and  the  nontopological  solitons of the mode l  is discussed 

1 Related analysis of the constraint structure of the model and its classical Poincare covariance 

are discussed in the appendices 
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and the effect of inclusion of the Maxwell term is examined. In the next section the 

analysis is extended to a generalisation of the C - S - H model [44]. Subsequently, 

we resort to the nonabelian C - S - H model [7] to demonstrate how our analysis fits 

into the nonabelian matter system coupled with the C - S term: 

The method of [16] is suitable for relativistic field theories~ But the topological 

C - S interaction can be coupled to both Poincare and Galileo symmetric models 

[45, 56, 48, 61]. The latter possibility is very useful in view of the applications of 

the C - S theories in condensed matter physics, which is essentially nonrelativistic. 

A nonrelativistic generalisation of the method of [16] was therefore developed [39] 
This has been discussed in the last section of the present chapter. 

2.2 The  m e t h o d  

To put our method in the proper perspective we first recall the usual method of 

defining the spin of the C - S vortices. Here the total angular momentum in the 

static soliton configuration is defined to be the spin of the vortices [8, 9, 34]. This 

angular momentum integral is constructed from the symmetric energy momentum 

(EM) tensor obtained by varying the action with respect to a background metric 

Since this EM tensor is relevant in formulating the Dirac - Schwinger conditions 

[35] it will henceforth be referred as the Schwinger EM tensor. Correspondingly, 

the angular momentum following from this EM tensor usually goes by the name of 

Schwmger. It is both symmetric and gauge invariant , and also occurs naturally 

in the context of the general theory of relativity. For these properties it is also 

interpreted as the physical angular momentum. Contrary to the Noether angular 

momentum, however, the Schwinger angular momentum does not have a natural 
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splitting into an orbital and a spin part [37]. Thus it is not transparent how the 

value of the angular momentum in the static limit may be identified with the intrinsic 

spin of the vortices. 

Now an alternative field-theoretic definition of the spin of tile C - S vortices was 

given in [16] which has been applied successfully in the recent past [62], and will also 

be used in the present thesis. Here one abstracts the canonical part from the phys- 

ical angular momentum. The canonical part is obtained by using tile conventional 

Noether definition. Both the canonical as well as the physical angular monlentmn 

are obtained from the improved versions of the corresponding EM tensors to prop- 

erly account for the constraints of the theory. Now the Noether angular momentum 

contains the orbital part plus the contribution coming from the spin degrees of free- 

dora as appropriate for generating local transformation of the fields under Lorentz 

transformations [63]. Its difference from the physical angular momentum is shown 

to be a total boundary containing the C - S gauge field only, the value of which 

depends on the asymptotic limit of the C - S field. This difference term does not 

affect local transformation of the fields under rotation. It vanishes for nonsingular 

configurations. However, for the C - S vortex configurations we get a nonzero contri- 

bution. This contribution is found to be independent of the origin of the coordinate 

system. Consequently we interpret it to be the intrinsic spin of the C - S vortices. 

The connection of the anomalous spin with the topological C - S interaction is thus 

clearly revealed. 
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2.3 S p i n  o f  t h e  s o l i t o n s  o f  t h e  C h e r n  - S i m o n s  

H i g g s  m o d e l  

Let us first consider the Chern - Simons - Higgs (C - S -H) Lagrangian considered 

in [8, 9, 34], 
k v,x 

E = (D,r162 + ~e" A,O~,A~, - V([r (2.1) 

where the covariant derivative is defined by, 

D u  = O , + i e A ,  (2.2) 

and the potential V([r has a symmetry breaking minimum at 1r = v containing 

only renormalisable interactions [34]. In the assymetric phase of the theory there 

exists topologically stable vortex solutions whereas in the symmetric phase there is 

no topological invariant. However, there exists nontopological vortices in this phase 

whose stability is ensured by the equations of motion. Nontopological solitons of 

nonzero vorticity are called nontopological vortices. We thus have topological and 

nontopological vortices in the model. 

By neglecting total boundary terms the Lagrangian (2.1) can be written explicitly 

in the symplectic form, 

: ~ r  ~'c~" + kA2A,  - ( ~ *  - Die'Die) + Ao[kciJOiAj + ie(r - r (2.3) 

where 7r (lr*) is the momentum conjugate to r (r 

OZ = r _ 
7r = -: i e A o r  (2.4) 

o r  

. = __Oz = r + ieAoO. (2.5) 
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From equation (2.3) we can immediately read off the basic equal time brackets 

{r = {r = 5 ( x -  y), (2.6) 

{A,(x), Aj(y)} = ~ , j S ( x  - y) (2.7) 

according to the symplectic arguments 2120]. The field A0 is observed to be a 

Lagrange nmltiplier which enforces the Gauss constraint, 

C : k~iJOiAj + ie(OTr - r ~ 0. (2.8) 

by, 

The energy momentum tensor following from Schwinger's [35] definition is given 

5A 
0 ~ -  59~,~, (2.9) 

where A is the action of the model (2.1). By a straightforward calculation we get, 

0 . .  = (D~ , r  + ( D . O ) * ( D . r  - g . , . [ ( D ~ r 1 6 2  - V(1r (2.10) 

where the Chern-Simons term, being covariant without reference to the metric, does 

not contribute. In the presence of the constraint (2.8) a more general expression for 

@.~ follows. This is called the total energy momentum tensor [15], 

0,~ = O,~ + A,~,G (2.11) 

where A~,,, are multipliers that  can be fixed by requiring that the fields transform 

normally under the various space - time generators [12, 15]. Note that since G is 

the generator of time - independent gauge transformations, the gauge invariance of 

O, T is preserved on the constraint surface, i.e., 

{o,L, G} ~ O. (2.12) 

2An alternative derivation of the basic brackets based on Dirac's method of Constrained Hamil- 

tonian analysis is presented in appendix 1 
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Since we are concerned with the angular momentum operator defined by, 

let us concentrate on the (0j) component of (2.11). It is easy to verify, using the 

algebra (2.6), (2.7) and the relations (2.10), (2.11), that  the correct transformations 

under spatial translations, 

{X, f E)0r/} = Oix, (2.14) 

where X generically denotes the basic fields (r r rr, rr*, Ai), a re  obtained for the 

choice, 

A0i = - d i .  (2.15)  

One can check that  with A0u = - A ,  the correct transformation properties follow 

under all the space time generators (translations, rotations, boosts' defined from 

(2.11) a. Hence the desired structure of J simplifies to, 

J = f d2xs Jr 7r*Ojdp* - kEtmAjOlArn]. (2.16) 

We now focus on the canonical angular momentum which requires 

definition of the energy momentum tensor, 

0 s  A,  ~ 0 s  0 s  0 * + 9 , , , s  
O,.~ - O(O,'r162 + o(a.r  ~r O(OuAo ) a~ - 

k 
= (Dur162 + (D.r162 + -~%. , ,A~ " - g . , , s  

Noether's 

(2.17) 

Note that, in contrast to the case of Schwinger's definition (2.10), the Chern-Simons 

term does contribute to IDu N. Once again it is possible to define, in analogy with 

(2.11), a total (canonical) energy momentum tensor by addition to (2.17) a term 

proportional to the Gauss constraint. This time, however, such a term is absent 

aThe corresponding calculations are shown in appendix 2 
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because the correct transformations are already generated by (2.17). Hence the 

canonical ( Noether ) angular momentum can be directly obtained from (2.17), 

f 0s - k t  kt Ji j = d2x(xiO~j - xjO0 N + O(O-6-Ak ) (9, gj - gjgi)A,), (2.18) 

which can be simplified in terms of the single component of Ji j as, 

k t dg = f d2xeii(x,@~ + "~eitA Aj) 

f t OjA.~) ~AJA;], = j d2x[eiJxi(TrOjr + :r*Ojr - + (2.19) 

where we have used (2.17) for simplifications. 

Let us next compute the difference between the two angular momentum operators 

(2.16) and (2.19), 

K = J -  dg = _ k  f d2xOiixiAjAi _ A,xjAJ], (2.20) 
2 

which can be further expressed in a compact form, 

K = - f d2xOi[~rieJkxjAa], 
d 

where 

(2.21) 

0s  k 
= OA'  = (2 .22 )  

is the momentum conjugate to A i. The above relation is effectively a constraint 

which has been accounted by the symplectic bracket (2.7) 4. It is now observed that 

the difference K between the two expressions of angular momentum is a boundary 

term. For nonsingular configurations this vanishes. For singular configurations 

however, K need not vanish. This is precisely what happens for the Chern-Simons 

vortices. 

4See appendix 1 
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For topological vortices of the model (2.1) the matter field r bears a representa- 

tion of the broken U(1) symmetry, 

r ~ ve  m~ (2.23) 

where n is the topological charge. The requirement of finite energy of the configu- 

ration dictates that  asymptotically, 

x j 
eA i  = ne 0 ixl2. (2.24) 

The above form is rotationally symmetric and obeys Gauss law. As a consequence 

tile magnetic flux is quantized, 

27rn 
= / d2xei jOiAj  - (2.25) 

d e 

After a straightforward calculation using (2.20) and (2.24), we obtain 

7rk?2 2 

K -  e2 (2.2G) 

Note that our analysis leading to equation (2.26) does, at no point presupposes 

any specific form of the self - interaction V(lr ) except for the general requirements 

that it has symmetry breaking minima at [r = v and contains only renormalizable 

interactions. Particularly, it was not assumed that  the self- dual point is saturated. 

Thus the expression for spin, equation (2.26), holds for the topological solitons of 

the model in general. 

When the potential is chosen so as to satisfy the self-  dual limits, a class of 

vortex solutions to the self- dual equations are obtained whose stability is ensured 

by the equations of motion and not by any topological criterion [34]. These solu- 

tions correspond to the symmetric minimum of the self interaction and are termed 
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nontopological vortices. For these the magnetic flux ~ is arbitrary. The asymptotic 

form of the gauge field is now expressed as , 

,I, x j 
Ai  = 2--Tqj ix12 (2.27) 

and the spin computed from (2.20) is 

k~ 2 
K = 47r " (2.28) 

Equations (2.26) and (2.28) give the spin of the topological and nontopological 

vortices of the C - S - H model respectively. Notice that  the sign of the spin is 

+ve in both the cases which is again the same as that  of the elementary excitations 

of the model [41]. In earlier analysis [34] there was a difference of sign which was 

explained by the introduction of a new interaction [43]. This is not necessary in the 

present discussion. 

The spin of the vortices of the self- dual C - S - H model, expressed by equations 

(2.26) and (2.28), is proportional to the strength k of the C - S interaction which is 

completely arbitrary. The value of K modulo integer is the 'fractional' part of the 

spin of the vortices. Thus the method  of [16] justifies the claim that  the charged 

vortices of the C - S - H model  are candidate excitations for anyons, just as it did for 

the C - S coupled nonlinear O(3) sigma model. At this point it may be recalled that  

the method of [8, 9, 34] predicted fractional spin of the C - S - H vortices but the 

application of the same method to the C - S coupled nonlinear O(3) sigma model 

yielded incorrect result[33]. 
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2.4 Effect of  the  Maxwe l l  t e rm 

It should be pointed out l~hat (2.21) is the master equation which yields tile frac- 

tional spin of Chern-Simons vortices in any theory. This is because the matter sector 

is completely absent in (2.21). Purthermore K is just a boundary term which reveals 

the topological origin of fractional spin. In this sense this establishes a correspon- 

dence with the approach of [4, 33] where the argument for determining spin depends 

on the topology associated with the relevant homotopy class. An immediate fall- 

out of (2.21) is that the result for the spin should be unaffected by including the 

Maxwell term in the original Lagrangian. This is because at large distances the low 

derivative Chern-Simons term dominates over the higher derivative Maxwell term. 

Consequently asymptotic effects (as, for instance, given by (2.21)) are insensitive 

to the Maxwell term. This can also be checked explicitly. Addition of the Maxwell 

piece modifies the momenta (2.22) to, 

k -~(OoAi OiAo) (2.29) IIi "= ~ e i j A J  -- 

The piece involving A0 will not contribute to the boundary term (2.20). This is 

because A0 is a Lagrange multiplier which can always be chosen so that  the boundary 

term vanishes. The asymptotic configuration (2.24) does not have any explicit time 

dependence so that  the piece OoAi also vanishes. Consequently the original result 

(2.26) for K is reproduced. 
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2.5 Appl i ca t ion  to the  genera l i s ed  C h e r n -  S imons  

- HIggs  m o d e l  

Let us next consider the generalised Chern-Simons-Higgs (GCSH) model introduced 

in [44]. The Lagrangian is defined by 

1 
s = 2v~eU"~ - 2i(rl 2 - ~Ir162162 + 4(7/= - 1r - V, (2.30) 

where V(Ir ) has symmetry  breaking min ima  at Ir --+ 77. 

The GCSH model was constructed by noting the analogy between the C - S - H 

model with the abelian Higgs model [64] on the one hand and tile construction of 

the generalised abelian Higgs model [65] from the abelian Higgs model on tile other. 

Like the C - S - H model, the GCSH model also allow self dual vortices [44]. One 

expects these vortices to carry fractional spin like the C - S - H vortices. However, 

this spin has not been computed earlier. 

To compute the spin of the GCSH vortices we use the master equation (2.21). 

The asymptotic expressions for Ai and rri are required. Since in the assymetr ic  

phase ( which is relevant for the existence of topological invariants ) r does not 

vanish at oo, A is required to go to the asymptot ic  limit (2.24) so tha t  Die  vanishes 

asymptotically. The later is required for finite energy of the configurations. Now 

from the Lagrangian (2.30) we get 

1 ,) 
= 4v'2eiJrl4Aj-8v/-2ieiJ(rl  2 -  71r162162 . (2.31) 

OAi 2 - - - -  

Since Die  vanishes assymptotically, 

rc i ~ 4x/2eiJrl4Aj (2.32) 
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when Ix[ -+ oo. Using (2.24) and (2.32)  in our master  equation (2.21), 

expression for the fractional spin can be derived, 

K = 8v/27rT]4n 2 

the desired 

(2.33) 

2.6 Nonabel ian C h e r n -  S i m o n s -  Higgs model  

Let us finally extend our analysis to non-abelian vortex configurations. As a typical 

example we consider the nonabel ian generalisation of the C - S - H model. The 

Higgs field r now forms a representat ion of the nonabelian group ~. The generators 

T a of the group are assumed to satisfy the Lie algebra 

[T ~, T b] = f:bTC (2.34) 

The Lagrangian of the nonabel ian C - S - H model is given by 

k , ~  lfakA~aA~bA.~r _ V(lr (2.35) s = (D,r162 + -~  [A,~aOzA?~ + -~ 

The gauge field A u now assumes values in the group space 

A u = Au,,T a (2.36) 

and Du is the covariant derivative defined by 

D u = 0 u + A u. (2.37) 

The second term in the expression of s is the nonabelian C - S term, equation (1.4) 

Vortex solutions are associated with spontaneously broken gauge symmetr ies  via the 

Higgs Fields. The form of the potential  V(l~bl) is thus required to be so chosen in 

order to have maximal symmet ry  breaking of the gauge group C~. As usual, part icular 

expression for V is not required in our calculations. 
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Proceeding now, as in the abelian models, one can show that the fractional spin 

is given by the non-abelian analogue of (2.21), 

K 

where 'a' denotes the group index. Th.e asymptotic form of the rtonabelian vortex 

configuration [58] is structurally identical to (2.24), 

x j Qa 
A~ = -eij 1~12 2 ,~ '  (2.39) 

where, 
I" Qa ] 2 a = d x J ; ,  (2 .40)  

with J~ being the nonabelian current, 

J ;  = r162 - (D,C.)*T"r (2.41) 

which enters the Euler-Lagrange equation as, 

k@~'(OzA~, + l~~ gc~ J'" (2.42) 
2 J ~ aJ = 

The nonnalisation in (2.39) is determined [58] from the fact that it should obey the 

charge-flux identity following from the time-component of (2.42). Inserting (2.39) 

in (2.38) yields the expression, 

IrkQaQ. 
g -- (2r~k) 2 . (2.43) 

Till now the analysis is completely general because the gauge group has not yet 

been specified. If we consider this group to be SU(2), which is the silnplest example 

admitting nonabelian vortices, it is possible to express QaQa in (2.43) in terms of the 

vortex number n. Requiring the finiteness of energy demands that (D,r should 
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vanish asymptotically, in analogy with the abelian case. 

and (2.39) this implies, 

[ ( % T  ~ + i n ) v i m  -- O; q~ - 
Qa 
27rk 

For nontrivial solutions of v this yields the condition, 

Using the ansatz (2.23) '~' 

(2.44) 

det I (qaT ~ + in ) l  = O. (2.45) 

For SU(2), the T a are just  the Pauli matrices. Using their s tandard representation, 

one obtains from (2.45), 

qaq '~ --- - n  2. (2.46) 

Substituting in (2.43) yields, 

K = rckn 2, (2.47) 

which is structurally identical to the abelian result (2.26). There is a difference of e 2 

because the coupling constant  was absorbed in the definition of the gauge potential  

(2.39). For the particular case of n = 1, where detailed vortex configurations have 

been worked out [7], the result agrees with (2.47) in magnitude.  A difference of 

sign occurs. In [7] the spin is defined as the static l imit of the Schwinger angular 

momentum like [8, 9, 34]. The difference of sign observed is therefore well recognised 

as a typical outcome from the experience of the calculations performed above. 

5Note that v is now a column vector 
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2.7 E x t e n s i o n  to  t h e  n o n - r e l a t i v i s t i c  m o d e l s  

Now we will apply the same general method to the non-relativistic models. Consider 

the Lagrangian 

1 k 
s = i r 1 6 2  - ~mm(DkC)*(Dkr + ~ % , z , A , O , , A x ,  (2.48) 

where r is a bosonic Schrodinger field. The model (2.48) is invariant under the 

Galilean transformations and not under the transformations of the Poincare group 

Note that the Galilean transformations take time and space on an unequal footing. 

So space-time metric is not defined. In writing (2.48) we adopt a spatial Eucledian 

metric, covariant and contravariant components are thus not to be distinguished. 

The action of model (2.48) cannot be made generally covariant. The powerful 

method of constructing a gauge invariant energy momentum(EM) tensor as formu- 

lated by Schwinger, is thus not available. Nonetheless, it is possible to construct 

a gauge invariant EM tensor by appealing to the equations of motion [45]. Our 

program is then clear. We will find a gauge-invariant momentmn density from the 

matter current obtained by using the equations of motion. These equations will then 

be exploited to show the conservation of the corresponding momentum. We work in 

the gauge-independent formalism in contrast with the gauge fixed approach of [45]. 

A suitable linear combination of the Gauss constraint is to be added with the gauge 

invariant momentum operator, in order to generate correct transformation of the 

fields under spatial translation. A gauge invariant angular monmntum is then con- 

structed using this momentum density. The canonical angular nlomentunl obtained 

by Noether's prescription is now subtracted from it. The spin of the vortices is, as 

usual, defined by 

K = Y - jN, (2.49) 
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which is exactly similar to equation (2.20) with the exception that J is now the 

gauge invariant angular momentum constructed by using the equations of motion 

From the Lagrangian (2.48) we write the Euler-Lagrange equation corresponding 

t o Al,, 

where j ,  is given by, 

ke,~,~O~A:~ = JI,, (2.50) 

j0 = r162 (2.51) 

1 
j ,  - 2 i m  [r162  - r162 (2.52) 

Observe that (2.50) leads to a continuity equation 

Oojo + Oiji = 0. (2.53) 

Hence J0 and Ji can be interpreted  as the  m a t t e r  d e n s i t y  and current density  respec- 

tively. 

From the E - L equation corresponding to A0 we get the Gauss constraint of the 

theory 

a = r162 -- kQjOiA j  ,~ O. (2.54) 

Now we come to the construction of the gauge invariant momentum operator. 

The (0-i) -th component of the EM tensor T0i (i.e. the momentum density) is 

obtained from the matter current 

To, = 2[r162 - r162 (2.55) 

It is straightforward to verify, using the equations of motion, that T0i indeed satisfies 

the appropriate continuity equation, 

OoToi + OkT~i = 0, (2.56) 
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where Tki is the stress - tensor [66], 

1 
= D * Tki ~-~m[(kr (D~r + (Dkr162 - O,(r162 + r162 (2.57) 

Using the expression(2.55) of Toi we construct a gauge invariant momentum operator 

= f d2xToi . (2.58) Pi 

Exploiting (2.56) and neglecting the boundary term we find tha t  Pi is indeed con- 

served, 
dP,  

= 0. (2.59) 
dt 

The boundary term vanishes due to the condition tha t  the covariant derivative D,r  

is zero on the boundary which is required to keep the energy finite. For proper 

transformation of the fields under spatial t ranslat ion we require to supplement T0, 

by the Gauss constraint, 

T6 T = Toi + Aia ,  (2.60) 

and the corresponding momentum operator 

Pi = / d 2 x [ [ ( r 1 6 2 1 6 2 1 6 2  *) + AiG] (2.61) 

turns out to be an appropriate generator of spatial  translation.  Note tha t  equation 

(2.59) is still valid on the constraint  surface. 

We now come to the construction of J ,  the gauge invariant angular momentum, 

from the momentum density (2.61), 

j / 2 i , = d xeijxi[-~( ~9 Djr - r162 + AjG] (2.62) 

The canonical angular momentum j g  is obtained from Noether 's  theorem as [48], 

f 2 i * ,  , 2 ,  ~ Ojr 4)(Ojdp)*) - ~ e m ,  AmOjAn) ~ A j A j ] +  (2.63) jN = _ d x[eijxi(-(d) - 
J 
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Substituting (2.62) and (2.63) in (2.49) we obtain, 

= _ k  / d2xO,[xiA2 _ xjAjAi]. (2.64) K 
2 

Observe that the master formula (2.64) for the calculation of spin is identical with 

equation (2.20). The asymptotic form of Ai following from general considerations 

already elaborated leads to the same structure as in (2.24). Inserting this m (2.64) 

exactly reproduces (2.26) as the spin of the vortices. 

We note in passing that  self- dual soliton solutions can be obtained by including 

a quartic self- interaction in (2.48) [45], which are interpreted as the nonrelativistic 

limit of the nontopological vortices of the relativistic Chern - Simons - Higgs model 

considered previously. The spin of these solitons can be calculated by (2.64) using 

the asymptotic form (2.27). The result comes out to be identical with (2.28). This 

is expected because the existence of the fractional spin is connected to the Chern - 

Simons piece which is a topological term. The spin of the model (2.48) with quartic 

self- interaction and an external magnetic field was calculated earlier [46, 47]. Their 

method was in spirit akin to that of [8, 9, 34] but they had to subtract the background 

contribution to get the spin. The result of [46, 47] scales as our result with tile 

vortex number and the same comments apply to this comparision as made earlier 

in connection with the C - S - H model. 

2.8 Conc lus ion  

We recall from Chapter 1 that the usual method of defining the spin as the static 

limit of the physical angular momentum yields contradictory results when applied 

to compute the spin of the solitons of the Chern - Simons (C - S) coupled 0(3) 
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nonlinear sigma model [33]. In this connection we have observed that a consistent 

result is obtained When we apply our general formalism for computing the spin 

in the C - S theories [16], which exploits the constraints of the theory. In this 

method the physical angular momentum is first constructed from the gauge invariant 

symmetric energy momentum tensor obtained by varying the action with respect to 

a background metric and then keeping the metric fiat. Since this EM tensor is used 

in formulating the Dirac - Schwinger conditions for the covariance of a theory [35] 

it is named as the Schwinger EM tensor. The angular momentum following from 

this EM tensor is called Schwinger angular momentum. The canonical part is then 

abstracted from the physical angular momentum. This is done by subtracting the 

angular momentum obtained from the canonical ( Noether ) EM tensor, from the 

Schwinger angular momentum. ( Incidentally, both the EM tensors are improved 

by including appropriate linear combination of the constraints so as to get proper 

transformation of the fields ) The difference was found to be nonzero for singular 

configurations. In particular for C - S vortices this difference was shown to be 

independent of the origin of the coordinate system. Consequently we interpret it as 

the intrinsic spin of the vortices. The formula for the spin comes out to be model 

independent and contrary to other approaches where detailed field configurations are 

necessary, only the asymptotic form of the gauge field is required for its evaluation. 

The spin of the topological and nontopological vortices of the C - S - H model 

was reviewed by the general formalism mentioned above. The spin of both types of 

vortices of the model comes out with the same sign. We also find that the sign of the 

spin of the topological vortices is the same as that of the elementary excitations of 

the model [41]. This is a satisfactory result because the spin-statistics connection is 

then respected with the usual Aharonov - Bohm phase. Notably, in [34] an opposite 

sign was found so that a new interaction was required to account properly for this 
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phase [43]. 

A remarkable feature of the method is its general applicability. We have consid- 

ered the effect of adding the Maxwell term to the C - S - H model and found that  

the spin is unchanged. This is expected because in the asymptotic  limit the lower 

derivative C - S term dominates over the Maxwell piece. We have also applied our 

method to a generalisation of the C - S - H model [44] and its non-abelian counter- 

part [7]. In the latter case an explicit expression was derived for the SU(2) group. 

Our result, valid for any winding number n agrees in magni tude  with the special 

case ( n = 1 ) discussed earlier [7]. 

Our formalism is directly applicable to the relativistic theories but the Chern - 

simons interaction enjoys the rare distinction of being suitable to be coupled to both 

Poincare and Galileo symmetric  models [45, 56, 48, 61]. We were thus motivated 

to extend our formalism to the nonrelativistic theories. Moreover, a systematic dis- 

cussion of the spin in such theories is nonexistent. The main problem here is that  

Galileo symmetric theories cannot be made generaly covariant and the powerful 

method of constructing the gauge - invariant Schwinger EM tensor is not available. 

However, a gauge - invariant EM tensor can still be constructed by using the equa- 

tions of motion [45]. We extended our formalism to the nonrelativistic models by 

using this gauge - invariant EM tensor. The resulting spin formula was identical 

with that obtained for the relativistic theories. The complete parallel of the method 

and the emergent spin formula is a pointer to the topological origin of the C - S 

term, responsible for the induction of the fractional spin, either in relativistic or 

nonrelativistic models. 
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2.9  A p p e n d i x  1 

S -  H m o d e l  

: C o n s t r a i n t  s t r u c t u r e  o f  t h e  C - 

We present here the detailed analysis of the constraint  s tructure of the theory (2.1). 

The independent fields in the model are r162 and A u. The corresponding momenta  

7r,7r" and 7r ~ are obtained from the definition of the canonical momenta  as, 

~r = r - i eA~162  *, (2.65) 

7r* = r + ieA~162 (2.66) 

7r ~ = 0, (2.67) 

k i ~r i = ~eJAj .  (2.68) 

From these expressions we can immediately identify the pr imary constraints  of the 

theory 

7r ~ ~ 0, (2.60)  

k i pi  = rri _ -~e "TAj ~, O. (2.70) 

The constraint (2.69) has vanishing Poisson bracket ( PB ) with the others. It 

is therefore first class [14]. However, the constraints (2.70) are second class. The 

constraints should be preserved in time so tha t  thei r  PBs with the Hamil tonian are 

at least weakly zero. These conditions may generate secondary constraints.  

The Hamiltonian density according to the canonical definition is obtained as, 

k iJ(AoOiAj+AiOjAo)+V(jOpl ) Hc = ~ ' - i e A ~  r162 ~r*)-lOir r r 1 6 2  r ) - e2  AiAilr  e 

(2.71) 

The primary Hamiltonian is obtained by adding linear combinations of the primary 
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constraints with (2.71) as 

H = f d2x(Tgc + u0rro + uiPi), (2.72) 

where u0 and ui are arbitrary functions. Conserving the constraint (2.69) with this 

Hamiltonian we get, 

{Tr0(t,x), H(t)} = 0, (2.73) 

where { } denote equal time PBs. The condition (2.73) gives a secondary con- 

straint, 

G = ie ( r  - r + ke.iJOiAj "~ O. (2.74) 

Carrying on the iterative process we get no more secondary constraint. Thus equa- 

tions (2.69),(2.70) and (2.74) give the complete constraint structure of the theory. 

Prom (2.70) and (2.74) we find that P and G have nonvanishing PB. Thus there 

are apparently three second class constraints. We can, however, construct the fol- 

lowing linear combination of the constraints P and G, 

F = OiPi + G ,~ O, (2.75) 

which has vanishing PBs with both (2.69) and (2.70). The complete constraint 

structure of the theory thus consists of two first class constraints (2.69) and (2.75) 

and two second class constraints given by (2.70). 

The second class constraints (2.70) point to a redundancy of the configuration 

space variables which can be eliminated by replacing the PBs by the Dirac (star) 

brackets (DB) defined by, 

{X(x), r/(y)}* = {X(x),r/(y)} - f d2zd2z ' {x (x ,  P i ( z ) } P i 7 1 ( z , z ' ) { P j ( z ' ) , r l ( y ) } ,  

(2.76) 
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where ~.,rl are generic fields and Pij is the matrix of the Poisson brackets of the 

c o n s t r a i n t s ,  

Pij(x, y ) =  {Pi(x),Pj(y)}. (2.77) 

Our basic fields are r162 and A". Since r162 and A ~ have vaishing PBs with P,, 

their DBs are the same as the corresponding PBs. The nontrivial DBs are, 

1 
{Ai(x), Aj(y)}* = ~ e i j 6 ( x -  y), (2.78) 

1 {Ai(x),rrj(y)}* = ~ g i j ( ~ ( X  --  y), (2.79) 

k 
{Tri(x), rrj(y)}' = -~eij6(x- y). (2.80) 

The second class constraints (2.70) are now strongly implemented. The equations 

(2.79) and (2.80) then follow from (2.78) and (2.70). Thus (2.78) is the only nontriv- 

ial independent DB. This is the same bracket as (2.7) obtained from the symplectic 

arguments. Again, since Pi are strongly equal to zero, the constraints F given by 

(2.75) coincide with G. It is easy to check that  G is the generator of gauge transfor- 

mations at fixed time with respect to the DBs of the theory, 

f d=x~(x){a(x),  r = -ieoe(y)r (2.81) 

fd2xa(x){G(x) ,Ak(y)}  * = 0ka(y). (2.82) 

The constraint (2.74) is therefore identified with the Gauss constraint of the theory. 

2 . 1 0  A p p e n d i x  2 : 

o f  t h e  C -  S - 

C l a s s i c a l  P o i n c a r e  c o v a r i a n c e  

H m o d e l  

We discuss the classical Poincare covariance of the Chern - Simons - Higgs model 

(2.1) using alternative definitions of the energy momentum (EM) tensor. These 
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calculations provide detailed derivation of some of the results quoted in this chapter 

and provide justification for some comments made therein. 

We first consider the Schwinger EM tensor given by equation (2.10). The corre- 

sponding total EM tensor is 

O~ T = 0,~ + A,~G, (2.83) 

Now we find, 

| = (900 + A0oG = ~r*~r - 0ir162 * - i e A i ( r 1 6 2  * - r162 (2.84) 

- e 2 A i A i r 1 6 2  * + V(Ir + AooG (2.85) 

/ ,  

{r = ~r*(x)+ Aoo'ier  

= r + i e ( A o  + Aoo)r 

where we have used the basic equal time brackets (2.6) and (2.7). 

Equation (2.87) shows that if we chose 

Aoo = -A0, 

then the expected time development of r is obtained: 

{r H T }  : r  

With the choice (2.88) we can straightforwardly verify that 

{r  ~} : $, 

{A,(x),H r} : A,. 
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(2.86) 

(2.87) 

(2.88) 

(2.89) 

(2.9o) 

(2.91) 

where A,~ are some ( yet undetermined ) functions of the space - time coordinates. 

The corresponding total Hamiltonian density is given by, 



Froln (2.83) we construct the candidate generator of spatial translation 

Pi = f d2xOoT/ 

= / d~x[,~'(O,r - ieA,r + ~(0,r + ieA,r + fo, G]. 

Now 

(2.92) 

(2.93) 

{r Pi} = 0ir + ieAiO(x) + ie A0i r (2.94) 

and we find that for proper transformation of r under spatial translation, we 

require 

A0i = -Ai. (2.95) 

It is indeed pleasant to observe that  the choice(2.95) also gives proper transforma- 

tions of the fields r and Ai, 

{r = 0ir (2.96) 

{Ak(x),Pi} = oimk(x)- f d2yO~Ai(y)5(x Y) (2.97) 

= OiAk(x), (2.98) 

where in the last equation the boundary term vanishes due to the delta function 

term. 

From the above analysis we find that  the choice 

A0u = -Au  (2.99) 

gives appropriate transformation of the fields under space - time translations. 

Now let us come to the cases of rotations and boosts. 

defined as 

J,= = f d2xJ& 

The generators J,= are 

(2.100) 
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where, 

,STOrm, = x~,Oa T -- x~,(~a T .  (2.101) 

Using (2.83) for e .  T and the basic equal time brackets it can be readily shown that 

{r = Xo0,r  x,00r (2.102) 

{r = X o O , r  x,0or (2.103) 

and 

{r  J i j }  = x i O j r  - x j O i r  (2.104) 

{r  J,,} = x ,0 ,r  - x g , r  (2.10~) 

Also a straighforward calculation yields 

{Ak(x),J0i} = XoOiAk(x) - XiOoAk(x) + gikAo(x),  

{ A k ( x ) , J i j }  = x iOjAk(x )  - x jOiAk(x)  - gikAj(x) + gjkAi (x ) ,  

(2.106) 

(2.107) 

where we have dropped boundary terms containing delta function terms as in (2.97) 

Remember that the fields r r are Lorentz scalars whereas Ai is Lorentz vec- 

tor. Inspection of the above equation then reveals that all the fields transform 

appropriately under rotations and Lorentz boosts. Since all the fields satisfy normal 

transformation properties under space - time translations and rotations, the clas- 

sical Poincare algebra is trivially preserved. We also note that  the matrix Jij for 

rotation generators has only one independent component 6 which is identified with 

the angular momentum operator J, equation (2.16). 

6This is due to the trivial nature of the rotation group in two spatial dimensions, see section 2 

of chapter 1. 
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Tile analysis proceeds in exactly similar fashion with the EM tensor (2.17) ob- 

tained from Noether's prescription. We extend it as in (2.83). But now we find that 

the choice 

A.. = 0 (2.10S) 

is appropriate. In other words, the Noether EM tensor generates proper transfor- 

mations of the fields under space - time translation without any iml)rovement. The 

generators of rotations and boosts are now given by [67], 

where, 

with 

, t "  

&,, ! 2 T = j d xJd . .  

s,,S,, = e L  - e L  + 

(2.109) 

0s  (2.110) O(OaAP ) 2.~,A,. ,  

N~,Q= P ~ P ~ (2.111) g,g,,  - g,,,g~, 

The difference of the expression (2.110) with the corresponding expression (2.100) is 

to be noticed. The canonical definition splits naturally in the orbital and spin parts 

unlike the Schwinger definition. Using equation (2.17) we can verify that the fields 

transform appropriately under rotations and boosts. 

The demonstration of the Poincare covariance using the alternative definitions 

of the EM tensors clearly reveals the crucial role played by the Gauss constraint. 

The angular momentum operators obtained from these EM tensors are different 

by a boundary term which does not  affect the local transformation of fields under 

Pomcare group. 
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Chapter 3 

G A U G E D  S I G M A  M O D E L S :  A 

N E W  SELF D U A L I T Y  

3.1 In troduct ion  

From the general problem of determination of the spin of the vortex solutions of the 

Chern - Simons ( C - S ) theories, we now proceed to the particular problem of self 

- duality in the context of the gauged nonlinear 0(3) sigma models. Specifically, in 

the present chapter we will elaborate on the findings of a new type of self - duality 

[49, 50] in such models. 

The low dimensional sigma models have been studied extensively over a long pe- 

riod of time [68]. In (2+1) dimensions the model provides topologically stable soliton 

solutions [28] which are exactly integrable in the Bogomol'nyi limit [51]. These so- 

lutions find wide application in condensed matter physics [26]. A characteristic 
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feature of tile solutions is that they are expressed in terms of rational functions and 

thereby enjoy scale invariance. This scale invariance presents a problem of particle 

interpretation on quantisation because the size of the solitons can change arbitrarily 

without costing any energy. Numerical simulations of the interaction of the solitons 

reveal the problem clearly [52]. 

Several methods of breaking the scale invariance of the solutions have been dis- 

cussed in the literature [5~, 54, 69]. Of them a particularly interesting method is 

to gauge the U(1) subgroup of the full symmetry of the usual sigma model [54]. 

The gauge field dynamics was chosen to be governed by the Maxwell term and a 

particular form of self interaction was included to saturate the Bogomol'nyi bounds. 

In this connection it is interesting to observe that the self- dual point is not unique 

and different choices of the form of the potential is possible. This observation is 

crucial in relation to our studies as will be evident soon. 

The soliton solutions of the partially gauged 0(3) sigma model considered in 

[54] are electrically neutral but endowed with magnetic flux. This mimicks the 

topological solitons of the (2+1) dimensional Higgs model [64]. However unlike the 

later, the magnetic flux is not quantised by the topological charge and is, instead, 

arbitrary. The solutions thus do not qualify as vortices, being infinitely degenerate 

in each topological sector. The magnetic flux takes the role of the size parameter 

here. Since solutions with arbitrary magnetic flux are degenerate in energy, the 

scaling degeneracy of the pure 0(3) sigma model persists in the present model in a 

mutated form [54]. 

An extension of the study in the partially gauged 0(3) sigma model in (2+1) 

dimensions was performed in [55]. In this work the gauge field dynamics was assumed 

to be dictated by the Chern - Simons (C - S) term instead of the Maxwell piece. Tile 
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model was shown to admit soliton solutions with broken scale invariance. These are 

now charge - flux composites carrying fractional spin. The topological solitons of 

the model are again infinitely degenerate. Though the energy is quantised, both the 

charge - flux and angular momentum are arbitrary. 

We thus find that the studies of the gauged 0(3) sigma models are plagued with 

the problem of degeneracy [54, 55]. As we have already mentioned, due to this 

degeneracy these models are not able to remove the scaling degeneracy of the pure 

0(3) sigma models completely - the degeneracy only mutates. This degeneracy is 

thus physically undesirable. However, this is not mandatory. We have demonstrated 

that the degeneracy of the topological solitons of both [54, 55] is related to the 

fact that their vaccum structures fail to break the gauged U(1) symmetry. In this 

connection it is to be remembered that  the form of the self - interaction to be 

assumed in this type of models to saturate the Bogomol'nyi bounds is not unique. 

We can chose this interaction in such a way which has symmetry breaking minima. 

The spontaneous breaking of the U(1) symmetry corresponds to the introduction 

of novel topology in the corresponding models. Remarkably, the solutions of the 

resulting models do not show any form of degeneracy. In the case of the model 

with the Maxwell coupling, we get neutral magnetic vortices with the magnetic flux 

quantised by the topological number [50]. For the C - S coupling, the solutions are 

charge - flux composites as expected, with fractional spin. In contrast wi th  [55], all 

these parameters have fixed values in a particular topological sector [49]. These self 

-dual  solutions give, therefore, a new type of excitations which do not suffer from 

the problem of degeneracy. They have the physically desirable feature of breaking 

the scale invariance of the usual sigma model. The new self - duality exhibited by 

the models will be analysed in the following. To place the discussions in the proper 
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perspectives le t  us begin with a short review of the soliton structure of the usual 

sigma model in (2+1) dimensions and earlier attempts of gauging the model. 

 

Tile Lagrangian of the model is given by (1.13) which can be written by suppressing 

the dimensionful parameter f for convenience as, 

1 
Z, = naO no. (3.1) 

This is subject to the constraint 

n a r t  a =- n �9 n = 1, (3.2) 

where na (a = 1,2,3) are a triplet of scalar fields constituting a vector in the internal 

space the tip of which lies on a sphere of unit radius with centre at the origin. We 

use Greek letters to denote the Lorentz indices and Latin letters from the beginning 

of the alphabet to denote the internal space components. The set i a (a = 1,2,3) is 

an orthogonal basis in the later. Vectors in the internal space will be expressed by 

boldface letters with the 'dot' and 'cross' product symbols between them meaning 

the corresponding operations in that  space. Letters from the middle of the latin 

alphabet will denote the physical space components. Unless specified otherwise, 

repeated indices will always mean a summation over them. We will work in a 

Minkowski space with the metric 9u~ = d i a g ( 1 , - 1 , - 1 ) .  

The energy functional obtained from eqn, (3.1) in the static configuration is 

given by 

E = ~ d : x O i n a O i n , ~  (3.3) 
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which is of course constrained by eqn. 

vaccum structure is 

(3.2). From eqn. (3.3) we find that tile 

na =n(~ ~ (3.4) 

where n(~ ~ is an arbirary constant vector. The direction of n(0) is arbitrary. This 

indicates a spontaneous breaking of the 0(3) symmetry of the model. Tile finite 

energy solutions of the model demand the boundary condition 

lim na = n (~ (3.5) 

Note that as we approach infinity from any direction, n must tend to the same 

limit, otherwise the angular part of the gradient will contribute in eqn. (3.3) even at 

infinity making the energy infinite. This has very important topological significance. 

The physical infinity is one point compactified leading to the compactification of R2 

to $2 Phu. The static configurations are mappings from the physical space to the 

internal sphere S~ "t. Hence these are labelled according to the nontrivial homotopy 

I-I2($2) = Z. (3.6) 

Different homotopy sectors are classified according to the conserved topological 

charge Q, 

Q = ~ d2xe,jn �9 (O,n x Ojn), (3.7) 

which is equal to the winding number of the mapping. 

Now let us consider a fixed direction in the internal space, given by the constant 

unit vector i3 = (0,0,1) for example. The model (3.1) and the constraint (3.2) are 

invariant under rotations about is. These rotations form a SO(2) (U(1) ) subgroup 

of the full rotational symmetry of the model (3.1). When this subgroup is gauged 

the corresponding models become partially gauged nonlinear 0(3) sigma models. In 
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( 2 + 1) dimensions the dynamics of the gauge field A may be dictated alternatively 

by the Maxwell or the C - S term. Different classes of gauged nonlinear 0(3) sigma 

models are thereby obtained. In [54] the gauge field dynamics was assumed to b e  

dictated by the Maxwell term. A covariant derivative 

D,,n = 0~,n + Aj, i3 • n (3.8) 

was defined. The resulting Lagrangian of the model is 

s = -~D~,n. D ~ ' n -  F~,,,F ~'" + U(n), (3.9) 

where 
1 

U(n) = - [ ( 1  - i a -n )  2 (3.10) 

was the assumed form of the self - interaction and Fu~ = O~,A,, - O~,Aj,. We imme- 

diately observe that the vaccum structure corresponds to 

na  = 1, n l  = n2  = 0 ,  ( 3 . 1 1 )  

which is invariant under rotations about ia. The form of the chosen potential does 

not lead to the spontaneous breaking of the gauged U(1) symmetry. The finite 

energy configurations thus correspond to the mapping of the physical infinity to the 

north pole of the internal sphere and classified by the same homotopy equation (3.6) 

as the usual sigma model. The same comments are also due to the work [55] where 

the gauge field dynamics was chosen to be dictated by the Chern - Simons kinetic 

term. The model Lagrangian here is 

1 D k 1 
s = ~ ~,n. DUn  + d'"~'At, F,,~, - ~-~5(1 + ia" n)(1 - i 3 .  n )  ~. (3.12) 

The third term is the chosen form of self-interaction. We find that  in both the 

gauged 0(3) sigma models the topological sectors are classified by the second ho- 

motopy equation (3.6) and the gauged symmetry is not spontaneously broken. The 
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topological solitons of the models are infinitely degenerate in a particular sector, a 

feature not desirable from the point of view of particle interpretation. Our studies 

show that the self- interactions can be alternatively chosen so as to allow symmetry 

breaking minima and the resulting models provide self-dual soliton solutions free of 

the problem of degeneracy. 

3.3 Maxwell coupling 

Our model with the Maxwell coupling is given by the Lagrangian (3.9) but with tile 

potential U(n) given by 
1 2 

U ( n ) =  -~( i3 .n )  . (3.13) 

Explicitly, our model Lagrangian is 

1 ~ - ~(i3" n) 2. (3.14) s = -~D~,n .  D U n  - F~,,,F ~'~ 1 

Note that the minima of the potential correspond to, 

na = 0 and n~ + n~ = 1 (3.15) 

Clearly classical vaccua correspond to configurations where the vector n is spatially 

uniform and points in an arbitrary direction perpendicular to ia. The gauged U(1) 

symmetry is spontaneously broken, The physical situation is thus very different 

from the model considered in [54]. Its consequences will now be investigated. 

3.3.1 Equations of mot ion  

The classical equations of motion are given by the Euler - Lagrange (E - L) equations 

of the model (3.14) subject to the constraint (3.2), We use the Lagr, ange multiplier 
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tedmique and consider the augmented form of the Lagrangian 

s = s + Alnl 2, (3.16) 

where A(x) is the Lagrange multiplier. Extremizing the action corresponding to the 

Lagrangian (3.16) we derive 

D. (D"n)  = 2An - (i3.  n)ia. (3.17) 

Using eqn. (3.2) we can eliminate X from eqn. (3.17) to get, 

D.(D n) = n ] n  - i3 3 + 

which is the equation of motion for n. 

obtained as, 

O ~ F ~ ,  = j " ,  

where j ,  is the conserved U(1) current given by 

Similarly the equation of motion for A~ is 

(3.19) 

j "  = - ia  �9 J ' ,  (3.20) 

with 

J• = n • D~'n. (3.21) 

Using the equations of motion for n ,  eqn.(3.18), we can show that  J ,  satisfies 

D . J  t' = (i3 • n)na. (3.22) 

The structure of the equations (3.20) and (3.21) shows explicitly that  j .  is gauge 

invariant, as it should be. Putting/.t  = 0 we get, 

j o  = ( n 2 r i l  - n l r i 2 )  - A~ - n~). (3.23) 
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So, for static configurations, 

j0 = _A0(1 _ n2a). (3.24) 

Now, putting # = 0 in eqn. (3.19) we find, for static configurations, 

V2A0= _A0(1 - n2). (a.25) 

From the last equation it is evident that  we can chose 

A ~ = 0, (3.26) 

which along with eqn. (3.24) gives, 

j0 = 0. (3.27) 

The U(I) charge of the static configurations then vanish which implies that the 

excitations of the model are electrically neutral. 

3 .3 .2  H o m o t o p y  c l a s s i f i c a t i o n  

A symmetric gauge invariant energy - momentum tensor for the model (3.14) can 

be constructed by the standard method of varying the action with respect to a 

background metric, 
~A 

O ~ v -  ~g~v" (3.28 

Asis  well-known O00 gives the energy density. Starting from eqn. (3.14), it Is 

straightforward to obtain the energy-functional as, 

E = -~I .,f d2x[Don. DO n _ Din. Din + n=a - 2(F~Foi -41F2)]'  (3.29) 
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Under static conditions and the solution (3.26) the energy-functional becomes, 

1 
f d2x[(Din) �9 (Din) + F?2 + n~] (3.30) 

which is of course subject to the constraint (3.2). Equation (3.30) shows that the 

boundary conditions for finite energy configurations require n to go to one of the 

symmetry breaking minima given by eqn. (3.15), as spatial infinity is approached. 

A particular static field configuration then maps the infinite circle of the physical 

space to the equatorial circle of the internal sphere. These solutions are classified 

according to the homotopy, 

II1($1) = Z, (3.31) 

which is different from the usual 0(3) sigma model (3.6) and for that matter, from 

the gauged model of [54]. The choice (3.13) in eqn. (3.14) induces the new topology 

in the model which is a direct consequence of the spontaneous breaking of the gauged 

symmetry. 

The influence of the new topology (3.31) on the physics of the model is crucial. 

Defining 

r = nl + in2, (3.32) 

we observe that r at the physical infinity bears a representation of the gauged U(1) 

symmetry, 

r .~ e i"e, (3.33) 

where n is the number of times the equatorial circle on the internal sphere is wrapped. 

Clearly n is the topological number labelling the homotopy sectors (3.31). Now using 

eqn. (3.32), we can prove the identity, 

Din. Din = 1(0, + i A , ) r  2 + (O, na) 2. (3.34) 
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From eqn. (3.33) and eqn. 

we require 

(3.34) we observe that for finite energy configurations 

n 
A = eo- ,  (3.35) 

r 

on the boundary. 

The asymptotic form (3.35) allows us to compute the magnetic flux 

�9 = f B d 2 x =  AordO=27rn. 
undary 

(3.36) 

Tile above equation shows that the magnetic flux is quantized in each topological 

sector. Thus in contrast with [54], the topologically stable soliton solutions of the 

model (3.14) have quantized magnetic flux. Note that  the quantization of the mag- 

netic flux is ensured by the novel topology (3.31), the origin of which traces back to 

the choice of the self-interaction potential (3.13) having symmetry breaking minima. 

It will be an interesting exercise to compute the spin of the excitations using the 

method of the previous Chapter. A straightforward calculation shows that the spin 

K is given by equation (2.21). The momentum rri is now given by 

7r~ = -F0i (3.37) 

which vanishes due to equations (3.26) and (3.35). The excitations are spinless which 

is expected because the electrodynamic interaction does not give rise to 'fractional' 

spin like the C - S interaction. To explore further implication of the new topology 

we look for a gauge invariant conserved topological current. We propose a trial 

candidate 
1 

K .  = 8--~%v~[n. DVn • D ~ n -  FV~n3], (3,38) 

which is motivated by the form of the topological current of the usual sigma model, 

It can be shown easily that K.  is indeed conserved, 

O~,K ~' = 0. (3.39) 
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The corresponding conserved charge is 

T = f d2xKo . (3.40) 

Using eqn. (3.38) and eqn. (3.40) we obtain the expression of the topological charge, 

f ~-~ l fb n3AordO, (3.41) T = d2x[  ,jn.(0 n • 0Jn)] + o . ory 

where r,0 are polar coordinates in the physical space and Ao = e0 �9 A, The second 

term vanishes due to eqn. (3.15) and the first term is the topological charge of 

the usual 0(3) sigma model. The latter is known to give the number of times the 

physical space is wrapped over the internal space. Now if the equat.orial circle is 

traversed once, the physical space is mapped on a hemisphere of the internal sphere. 

We thus expect that  
n 

T = - .  (3.42) 
2 

Evidently half integral values of T are allowed. This is a again a new feature of our 

model. 

3 . 3 . 3  S e l f - d u a l  s o l u t i o n s  

So far we were discussing the general nature of the finite energy solutions of the 

model. Our next pursuit is to show that  in the present model self-duality conditions 

can be obtained by satisfying Bogomol'nyi limit. The following identity 

1 (Din + eijn • Djn )  2 :k ( i j n .  Din  x Din, (3.43) D i n .  D i n  = 

may be used to rearrange the energy functional as 

l f d2z[}(Din +  ijn • Djn)2 + (F'2 + n3)2] 4 T, (3.44) 
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where T is the topological charge given by eqn. (3.41). In a particular topological 

sector labelled by fixed value of T, the following equations 

Din :t: eijn x D in  = O, 

F12 • na = O, 

(3.45) 

(3.46) 

minimize the energy functional (3.44). In equations (3.45) and (3.46) the • sign 

corresponds to positive and negetive values of the topological charge. 

If we define the dual of Din as 

Din = :F{ijn • Djn,  (3.47) 

then the equations (3.45) are self- dual in that sense. The duality operation (3.47) 

must be consistent i.e. 

Din = Din (3.48) 

should be preserved. This can be checked easily 

Din ----- TQjn • Din  

= :t:eon x (:Fejtn x Dzn) 

--= - ~ i t n  x (n x Din) 

= - [ ( n .  Din)n - (n .  n)Din]. (3.49) 

Using the constraint (3.2) it can be shown that  

n .  Din = 0 (3.50) 

Using (3.2) and (3.50) we get from (3.49) the equation (3.48). Due to the self-  

duality of the equations (3.45) corresponding to the duality operation (3.47) the 

set of equations (3.45) and (3.46) are referred to as self- dual equations [3]. This 
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is the reason why the corresponding theories go by the name self - dual. In the 

context of our works the self- dual equations (3.45) and (3.46) have the significance 

that  they minimize the energy functional in the static limit. This means that  these 

equations extremize the action in this l imit and hence solution to these equations 

form a subset of solutions of the second order Euler - Lagrange equations (3.18) and 

(3.19). It is useful to verify this explicitly. 

Starting from eqn, (3.45), we get after some algebra, 

Di (Din)  = - q j D i n  x Din + (nais - n~n). (3.51) 

Using eqn. (3.45) for Din  in the r.h.s, of eqn, (3.51) again, we obtain 

Di(Din)  = [n .  Dk(Dkn)l �9 n + (n3is - n~n) 

where the constraint (3.2) and the condition (3,.50) has been used and F12 is sub- 

stituted by equation (3.46). Equat ion (3.52) is the E - L equation for n, equation 

(3.18), under the static limit and eqn. (3.2).Similarly, we can verify tha t  equation 

(3.19) is satisfied. 

3.3.4 Integrability of the self-dual equations 

The first order equations (3.45) and (3.46) can be cast in an equivalent second order 

equation by projecting the target  space S 2 steriographically onto C U cx~ [17]. A 

point on S 2 denoted by nx,n2,n3 subject to the constraint (3.2) corresponds to a 

point (wl, co2) on the complex plane so that ,  

nl  n2 
cox - - - , w 2  - (3.53) 

1 + n3 1 + n3 
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The plane on which the projection is made is parallel to the nl, n2plane and contains 

the north pole. We can now define the Complex variable w by 

w = wl + iw2 (3.54) 

The self-dual equations (3.45) and (3.46) can now be exploited to show that w 

satisfies 

Dlw = :viD2w (3.55) 

F12 = :F(1 - I~12) (3.56) 
(1 + I~12) 

where Dj now stands for 0j + iAj. Equations (3.55) and (3.56) imply the following 

second order equation for r = lnw, 

v2(r162 2 ) = t a n - -  
r162 

(3.57) 

This nonlinear Laplace equation falls outside the ,small class of such equations which 

are exactly integrable [70]. It then implies that the self-dual equations (3.45) and 

(3.46) are not exactly integrable. To obtain details of the solutions of these equations 

some numerical method must be adopted. There is an important class of solutions 

which are physically useful and easily amenable to numerical solutions. These are 

the rotationally symmetric solutions which we are going to study next. 

3 .3 .5  R o t a t i o n a l l y  s y m m e t r i c  s o l u t i o n s  

We consider the well-known rotationally symmetric ansatz for the solutions of eqn. 

(3.45) and eqn. (3.46), subject to the constraint (3.2) and the boundary conditions 

(3.15) and (3.35)[54, 711, 

nl(r,  0) = sin 9(r) cosne, 
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n2(r, 0) = sin 9(r) sin nO, 

na(r,O) = cos 9(r), 

na( ) 
A(r, 0) = - e 0 - -  (35S) 

r 

Equation (3.15) demands the boundary  condition 

9(r) -4 2 as r -4 oo (3.59) 

and equation (3.35) requires that 

a(r) -4 -I as r -4 oo (3.60) 

The boundary conditions at the origin follow from the condition that the fields be 

nonsmgular there. From the last equation of (3.58) we observe that the condition 

a(0) = 0 (3.61) 

is required. The energy functional (3.30) involves the gradient  of the fields n a which 

nmst be nonsingular at the origin. Imposit ion of the condition demands  tha t  

ns in  g(0) = 0. (3.62) 

Since n is the degree of vorticity which does not vanish for nontrivial  solutions, we 

- 0 or + 7r. These considerations suggest the following boundary  require g(0) 

conditions 

g(r) - 4  0 or =t= zr (3.63) 

a(r)  -4 0 (3.64) 

as r -+ 0. Subst i tut ing the ansatz (3.58) in (3.45) and (3.46), we get the following 

first order equations for g(r) and a(r), 

9'(r) = 
r 

T 
a'(r) = : t : - cosg ,  

?l 

s i n  g ,  (3.65/ 

(3.66), 
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where the upper sign holds fox" +ve T and the lower sign corresponds to -ve T. If we 

substitute the ansatz (3.58) in the expression (3.41) of T we get, 

n 
T = - ~ [ c o s  g ( ~ )  - cos g(0)]. (3.67) 

Using the allowed boundary conditions (3.59) and (3.63) for g(r) in (3.67) we find 

that T = + 9  This result is in conformity with our general considerations 1. 

Equation (3.67) also allow us to identify the appropriate boundary condition at the 

origin for +ve (-ve) T. If g(0) = 0, T is +ve and if g(0) = +rr, T is -ve. Henceforth, 

for convenience, we will assume +ve T. The equations to be solved are then, 

9 ' ( r )  n ( a +  1) sing,  (3.68) 
r 

a ' ( r )  - r cosg, (3.69) 
72 

with the boundary conditions 

g(0) = 0, a(0) = 0, g ( ~ )  = ~ ,  a ( ~ )  = - 1  (3.70) 

3.3.6 Numerical  Solution of the se l f -  dual equations 

The equations (3.68) and (3.69) have a regular singular point at r = 0. Due to this 

singularity the solution cannot be started from r = 0 and boundary conditions are 

to be imposed at a finite but very small value of r [54]. We take r = 10 -6 to start. 

A power series solution of eqn. (3.68) and eqn.(3.69) is sought, 

a ( r )  = a O ) ( r ) + a ( 2 ) ( r ) +  .... , (3.71) 

g ( r )  = gO) ( r )  + g(2)(r)  + .... , (3.72) 

1See equat ion  (3.38). 
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in the neighberhood of r = 0. The ascending terms of the series are progessively 

of higher order in r. Subst i tut ing eqn.s (3.71) and (3.72) in eqn.s (3,68) and (3.69) 

and equating terms of a part icular  order we get 

g(r)  = Ant  n + O(r"+2), (3.73) 

r 2 

a(r) = -2--n + O(r2n+2)' (3.74) 

where A~ is arbitrary, so far as the behaviour near tile origin is considered. The 

value of An determines the conditions at infinity. If the value is too large the 

conditions at infinity are overshooted, whereas, if the value is too small g(r) vanishes 

asymptotically after reaching a maximum. There is a critical value of A,, = A~ ' ' t  

which enables the solution star ted from r = 10 .6 to reach the asymptot ic  conditions. 

The situation is comparable with similar findings elsewhere [34]. Equations (3.73) 

and (3.74) allow us to impose the boundary  condition at the origin at a point near 

r = 0. This is necessary because r = 0 is a regular singular point of the differential 

equations (3.68) and (3.69) and as such, cannot be handled directly by the numerical 

algorithm. In figures 1 and 2 we show the solutions for g(r) and a(r)  for n = 1. The 

solutions for other n values can be similarly obtained and the critical value of An is 

found to decrease with increasing n. 
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3.4 C h e r n -  S imons  gauge  coupl ing  

We have mentioned in the introduction that in (2+1) dimensions the gauge field 

dynamics may be governed by the C - S term instead of the Maxwell piece. Field 

theories with C - S coupling have been actively pursued for a long period of time . 

The field is rich with interesting and exotic consequences. In particular the C - S 

term is found to induce fractional spin and statistics in the soliton sector of various 

models as we have elaborately discussed in the previous chapter. Earlier attempt of 

gauging the 0(3) sigma model by the C - S coupling suffers the problem of degen- 

eracy [55]. The solutions have arbitrary magnetic flux and angular momentum in a 

particular topological class, which is certainly unappetising in view of the experience 

with the C - S vortices. Moreover, the arbitrariness of the magnetic flux leads to 

excitations of arbitrary size which are degenerate in energy, a fact which frustrates 

the very motivation of gauging. The remeady is by now clear. It lies in the choice of 

the self interaction, the form of which must be so as to break the gauged symmetry. 

Simultaneously, the requirement of self-  duality is to be satisfied. We chose the 

potential satisfying this twin requirements. The model Lagrangian becomes 

1 
s = - ~ D u n .  DS'n  + &":~AuO,,A:~ + U(n), 

subject to the constraint (3.2). The last term 

U(n) = -  1 2 
2k 2 %(1 - n~) 

(3.75) 

(3.76) 

is the assumed self interaction. Note that the minima of the potential arise when 

either, 

nl  = O, n2 = 0 a n d  na = +1, (3.77) 

or,  

2 na = 0  a n d  n l + n 2 = 1. (3.78) 
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Equation(3.77) corresponds to a vaccum structure where the U(1) symmetry is not 

spontaneously broken whereas in eqn. (3.78) spontaneous symmetry breaking takes 

place. For obvious reasons we will refer to eqn. (3.77) as the sylnmetric and eqn. 

(3.78) as the symmetry breaking minima. This scenario is different froln the model 

with the Maxwell coupling, eqn. (3.14), where only symmetry breaking minima were 

obtained. We will find that the symmetric vaccua corresponds to soliton solutions 

whose stability is not guranteed by any topological criterion. Such solitons are 

termed as the nontopological solitons. The symmetry breaking minima again lead 

to topologically stable solutions. Thus, under these limits we get both topological 

and nontopological soliton solutions. Note that this soliton structure is different 

from that of [55] but comparable with the sotiton solutions of the Chern-Smmns- 

Higgs model [34]. 

3.4.1 Equations of mot ion 

The Euler - Lagrange equations of the system (3.75) are derived subject to the 

constraint (3.2) by the Lagrange multiplier technique just as in section 3, 

1 .  
D~(D~n) = [D~(D"n) �9 n]n - ~-~,3n3(1 - 2n3 2) 

+ 4n](1- 2n~)n, (3.79) 
k 

k .~ j . .  (3.80) 

The conserved current j~' is again expressed by 

j "  = - iz  �9 J",  (3.81) 

with 

J"  = n • D"n. (3.82) 
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These relations are identical with eqn. (3.20) and eqn. (3.21). Note that  eqn. (3.80) 

is already of first order i.e. in the self-dual form. This  is a special feature of the low 

derivative C - S interaction [3]. Using eqn. (3.80) we will now derive an important  

characteristic of the model. From the p = 0 component  of (3.80) we get, 

kei jOiAj  = jo. (3.83) 

But 

B = -e i j (g iA j  = curiA (3.84) 

is the magnetic field. Using eqn. (3.84) and integrat ing eqn. (3.83) over the entire 

space we get, 
Q 

r - k' (3.85) 

where Q is the charge and ff is the magnetic flux. The solitons are charge-flux 

composites in contrast with the model of the previous section. This is again another 

universal feature of the C - S vortices. 

3.4.2 T o p o l o g i c a l  c l a s s i f i c a t i o n  of  t h e  s o l u t i o n s .  

To analyse the topological properties of the finite energy solutions we again go to 

the static limit. The energy functional can be derived from Schwinger's energy - 

1 2 
+ A0~(1 - ~ i ) +  V~3(1  - nl)]. 

momentum tensor [35], 

1 
f d2x[(Din) �9 (Din)  E = ~  

Now from (3.81) and (3.82) we get 

j0 = _A0(1 _ n~). 

(3.86) 

(3.87) 
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Expressing jo with the help of (3.83) and (3.84) we get from (3.87) 

kB  
A ~ - ( 3 . 8 8 )  

1 - n3 z 

Equation (3.88) forces B to vanish whenever n3 becomes equal to 1. We will use 

this fact below. Meanwhile, using (3.88) in eqn. (3.86), A ~ can be eliminated from 

the expression of the energy fimctional. The expression now becomes 

[ k2B 2 1 2( 1 _ n~)]. 
1 J d2x[(Din) �9 (Din) + 1 n 2 + k :-5n3 (3.89) 

From (3.89) we note that  for finite energy configurations the potential  n must asymp- 

totically go to its symmetric minimum (3.77) or to the symmetry  breaking mininmm 

(3.78). Let us consider these two cases separately. 

c a s e l : s y m m e t r i c  m i n i m u m  

In this case the physical infinity is one point compactified to the north or south 

pole of the internal sphere. The situation is analogous to the model considered in 

[55]. The finite energy solutions are classified according to the homotopy 

II2($2) = Z, (3.90) 

just as the pure sigma model. The gauge field A can go to can go to any asymptotic 

limit. Since n3 ~ 1 at infinity the magnetic field vanishes asymptotically due to 

(3.88). The magnetic flux therefore remains finite. However both the magnetic 

flux and and angular momen tum assume arbitrary values. We thus see that  these 

configurations are not quite interesting from the point of view of breaking the scale 

invariance of the solutions. 

case2:  s y m m e t r y  b r e a k i n g  m i n i m u m  

The situation changes dramatically when we consider the symmetry  breaking 

minimum (3.78). Now the infn i te  circle on the physical space is mapped oil the 
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equatorial circle of tile internal sphere. The degree of this mapping , n, is the 

topological number labelling different sectors of the homotopy group 

II,(S~) = Z. (3.91) 

This state of affairs is analogous to the problem considered in the previous section, 

see the discussions under equation (3.31). As a result of this the gauge field ceases 

to remain arbitrary. The asymptotic limit of the gauge field is given by 

?2 
A = e0- ,  (3.92) 

r 

which is the same equation as (3.35) and derived in the same fashion. In fact the 

asymptotic form is sufficient to compute the charge, magnetic flux and spin of the 

model. The magnetic flux is 

= f Bd2x = f AordO = 2rrn. (3.93) 
d .I bo undary 

The charge Q is then automatically fixed by (3,,85) 

Q = -27rkn. (3.94) 

The spin of the excitations is determined by the method of Chapter2. Explicitly 

this spin K is given by 

= _ k  f~r Oi[xiA 2 -  AixjAJ]d2x = lrkn 2. (3.95) K 
2 ndary 

Equations (3.93) to (3.95) shows that the flux, charge and spin of the excitations 

are quantised in each topological sector. The degeneracy is totally lifted which 

enables us to interpret the excitations as extended particles in a consistent manner. 

Equation (3.38) still gives a relevant topological current and (3.40) is the expression 

for the corresponding charge. We find that for the configurations corresponding to 

the symmetry breaking minima the topological charge is given by 

n 
T = - .  (3.96) 

2 
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This expression actually gives the number of times the internal sphere is wrapped. 

1 which means tha t  one hemisphere is covered when the equatorial For n = l ,  T = 

circle is traversed once. 

Looking back at equation (3.41) we find that  for the symmetric  mininmm case 

T is not quantised. This is due to the presence of the second term in (3.41), 

1 / Ao.rdO, (3.97) 
4-~ 

which has arbi trary value as Ao is arbi t rary o11 the infinite circle. In this sense 

the finite energy solutions corresponding to the symmetric  vaccum will be called 

"nontopological". This can be put in an alternative way. Tile magnetic flux q5 

remain arbtrary for these solitons. Due to the charge flux relation �9 is however 

conserved. Thus �9 can be used to label the "nontopological" solitons. These results 

may be compared with the nontopological solitons of the Chern - Simons -Higgs 

model [34]. 

3.4.3 Se l f -  dual equations 

We then turn to show tha t  the model satisfies Bogomol'nyi conditions. The energy 

- functional (3.89) can be rearranged as 

1 d2x[ (Din  + eijn x Din )  2 + _---~32 (F12 + n3(1 - 21 • 4 r, (3.9s) E = ~  1 

where use has been made of the identi ty (3.43). We immediately get the self-  dual 

equations 

D in  4- eijn x D i n  = 0, 

1 
F,2 4- ~--~n3(1 - n 2) = 0, 

(3.99) 

(3.100) 
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which minimises the energy functional in a part icular  topological sector, the upper 

sign corresponds to +ve and the lower sign corresponds to -re value of the topological 

charge. 

We will now show the consistency of (3.99) and (3.100) using the well-known 

Ansatz [54, 71], 

nl(r,O) = sin g(r)cosnO, 

n2(r; 0) = sin g(r)s in  nO, 

n3( , 0) = cos g(r) ,  

A(r,  0) = - e o - -  
r 

From (3.78) we observe tha t  we require the boundary condition 

gr 
g{,r) -+ + -  as r --+ oo 

2 

and equation (3.92) dictates tha t  

a(r) -+ - 1  as r --+ oo. 

(3.101) 

(3.102) 

(3.103) 

Remember tha t  equation (3.92) was obtained so as the solutions have finite energy'. 

Again, for the fields to be well defined at the origin we require 

g(r) --+ 0 or ~r and .a(r) -+ 0 as r -+ 0 (3.104) 

Substi tuting the ansatz (3.101) into (3.99) and (3.100), we find tha t  

g'(r) = +n(a  + 1) sing,  
r 

r 
a'(r) = T ~ .  2 sin 2 gcosg ,  

(3.105) 

(3.106) 

where the upper sign holds for +ve T and the lower sign corresponds to -ve T.Equations 

(3.105) and (3.106) are not exactly integrable.They may be solved numerically sutt- 

ject to the appropriate boundary conditions to get the exact profiles. 
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Using the ansatz (3.101) we can explicitly compute the topological charge T by 

performing the integration in (3.41).The result is 

n cosg(0)] (3.107) T = - [cosg(oo) - 

_ n which is in agreement with So we find that  according to (3.102) and (3.104) T - : t :g  

our observation (3.42). Note that g(0) = 0 corresponds to +ve T and g(0) = rr 

corresponds to -ve T. If we take +ve T we find g(r) bounded between 0 and 2 is 

consistent with (3.102),(3.104) and (3.105).Again a(r) bounded between 0 and -1 is 

consistent with (3.92),(3.88) and (3.106).Thus for +ve topological charge the ansatz 

(~.101) with the following boundary conditions 

g ( 0 ) = 0 ,  a ( 0 ) = 0 ,  

7r 
= (3 .10s)  

are consistent with the Bogomol'nyi conditions. Similarly the consistency may be 

verified for -re T. Equations (3.105) and (3.106) can be solved by the same numerical 

algorithm discussed in the previous section. 

3 . 5  C o n c l u s i o n  

The nonlinear 0(3) sigma model in (2+1) dimensions support se l f -  dual soliton 

solutions [28]. The self- dual equations are exactly integrable and the solutions are 

expressed in terms of rational functions. The solutions are thus scale - invariant 

which poses a problem in the particle identification on quantisation [52]. An inter- 

esting method of breaking the scale - invariance is to partially gauge the model. A 

particular form of self - interaction is to be included in order to saturate the Bogo- 

mol'nyi bounds [51]. The form of this self- interaction is very important. In [54] the 

75 



gauge field dynamics is chosen to be dictated by the Maxwell term. An alternative 

possibility is the Chern - Simons coupling [55]. Both in [54, 55] the solitons are 

found to be infinitely degenerate in each topological sector. We have demonstrated 

that  this degeneracy is not an essential feature of the problem. The degeneracy of 

the solutions was shown to be lifted by suitably choosing the self - interaction so 

that the gauged symmetry is spontaneously broken. A new type of the partially 

gauged nonlinear sigma models was thereby discovered where a novel topology is 

introduced due to the symmetry breaking. This has been demonstrated for both 

Maxwell and Chern - Simons couplings [49, 50]. 

A detailed discussion of our model with the Maxwell coupling has been pre- 

sented. The Euler - Lagrange equations were derived by the Lagrange multiplier 

technique. The excitations of the model were shown to be electrically neutral using 

these equations of motion. The homotopy classification of the finite energy solutions 

exhibited the novel topology introduced in our model. The asymptotic limit of the 

gauge field obtained from the requirement of finite energy immediately provided 

the quantization of the magnetic flux in a given topological sector instead of being 

degenerate as in [54]. -the correspondence of the lifting of the degeneracy with the 

new topology was thus clearly revealed. A gauge invariant toplogical current was 

then constructed. The toplogical charge following from this current was found to 

assume both half integral and integral values which is again a new feature of our 

model. The expression of the topological charge was used to minimize the static 

energy functional in a particular topological sector a la Bogomol'nyi [51]. A set 

of coupled first order equations involving the field functions were obtained. Since 

these equations correspond to the minimization of the energy functional in the static 

limit, they are expected to satisfy the E - L equations of motion. This has been 

demonstrated explicitly. The self-  duality of the set of the first order equations 
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were explored. Integrability of the set was investigated by casting the equations 

in an equivalent second order form. The resulting nonlinear Laplace equation was 

found to fall outside the small el'ass of those equations that are exactly integrable 

Numerical solutions of the self- dual equations were discussed by adopting the well 

- known rotationally symmetric ansatz [54, 71]. The field profiles for T = ~ were 

explicitly demonstrated. 

The analysis of the model where the partial gauging was implemented by the 

C - S coupling mimicked the previous case of Maxwell coupling. The excitations 

are no longer electrically neutral. These are now charge - flux composites which 

is a characteristic feature of the C - S theories. From a homotopy classification 

of the solutions, the charge - flux and the spin of the excitations were derived 

where we have employed the method discussed in chapter 2. The novel topology of 

the solutions was again proved to be instrumental in lifting the degeneracy of the 

solutions observed in a similar model [55]. The self- dual equations were derived 

and the consistency of the equations and the boundary conditions were discussed 

by adopting a roatationally symmetric ansatz. 
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Chapter  4 

S Y M M E T R Y  IN A 

N O N A B E L I A N  C H E R N  S I M O N S  

S Y S T E M  

4.1 I n t r o d u c t i o n  

Theories with the Chern -Simons ( C - S ) gauge field coupling constitute the focal 

theme of our studies in three dimensional field theories. In chapter 2 we have 

discussed a general aspect of the C - S vortices, namely, the fractional spin. Later, 

in chapter 3 our attention was shifted to the aspect of self duality. In all these 

calculations we have mostly worked in a gauge independent setting [12, 13]. Of 

course in the final stage of calculation of the spin or in assuming a rotationally 

symmetric ansatz for the self dual configurations, a definite gauge fixing was tacitly 

assumed. But we still have not found suitable occassions to discuss the subtleties 
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of gauge fixing including its correspondence with the gauge independent analysis 

Again our analysis so far remained to be classical , to be more accurate, almost 

classical. Thus we did not bother about the ordering of different fields and such 

issues which occur in a full fledged quantum calculation. As we have indicated in 

the overview, both these issues of gauge fixing and ordering problems connected 

with quantization appear in our studies of the space time symmetries in connection 

with a nonrelativistic matter theory coupled with the nonabelian C - S term. These 

studies will be reported in the present chapter. 

Systems of point particles carrying non-abelian charge interacting with a non- 

abelian gauge potential have been considered over the last two decades [72]. Similar 

models in 2+1 dimensions, where the kinetic term of the gauge field is given by the 

Chern-Simons three form instead of the usual Yang-Mills piece, have been actively 

investigated in recent years [57, 58, 73, 74]. In this context it is interesting to note 

that it is possible to construct models which are Galilean invariant [45, 56, 59, 48, 

75, 76, 77] rather than Poincare invariant. This is because the Chern Simons term 

does not have an elementary photon associated with it so that the Bargmann super 

- selection rule can be accomodated. Purely Gali lean- invariant models are useful 

to study problems which are difficult when analysed within the full formalism of 

special relativity. 

An important issue in the context of theories involving non-abelian Chern- 

Simons term is the study of relevant space-time symmetries associated with either 

Galilean or Poincare transformations. For instance it was claimed [57] that (clas- 

sical) Poincare covariance gets violated in a theory where the non-abelian Chern- 

Simons term is coupled to fermions. The calculations were done in the axial gauge 

which enabled the elimination of the gauge degrees of freedom in favour of the mat- 
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ter variables. Alternatively, it has been shown [58] that by formulating the model 

in Dirac's [14] constrained approach which retains all degrees of freedom, the (clas- 

sical) Poincare covariance is preserved. It is thus clear that  the issue of symmetries 

is rather subtle and requires a thorough and systematic investigation. Indeed since 

Chern-Simons matter  systems are constrained systems, it is possible to discuss dif- 

ferent formalisms depending on how one accounts for the constraints. For instance 

it was shown [48] that  while the quantum Galilean algebra was preserved following 

a gauge independent approach [12, 13, 15, 16], there was a violation in the Coulomb 

gauge. Similarly, an unconventional ordering of operators, different from the usual 

normal ordering, was suggested in [59] to recover the quantum Galilean algebra 

in the axial gauge. Both these analyses were performed for abelian models. The 

situation is even less transparent for nonabelian models. Indeed, as far as we are 

aware, the systematic study of the galilean algebra of such a system remains to be 

performed. Incidentally, these models are interesting in their own right because of 

the nonabelian anyonic states supported by them as shown in recent works [74, 78]. 

The main obstacle that  hinders an analysis of nonabelian models is the existence 

of nonlinear constraints. The usual Coulomb gauge fails to "solve" the Gauss con- 

straint and recourse is taken to axial or holomorphic gauges [74, 78]. In formulating 

a quantised version, however, the holomorphic gauge poses problems in defining a 

hermitian Hamiltonian. The axial gauge,i therefore, remains a natural choice [74], 

but care must be exercised in the handling of boundary terms which are a usual 

consequence of this gauge. 

The object of this chapter is to analyse in details both the classical and quan- 

tal Galilean algebra of a model involving the coupling of nonabelian Chern Simons 

three form with nonrelativistic matter. In oreder to avoid the complexities of gauge 
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fixing in nonabelian theories, a gauge independent fornmlation [12, 13, 16] for the 

canonical constrained structure has been presented in section 2. The closure of the 

classical Galilean algebra on the constraint surface is then demonstrated. It is also 

shown that  the various galilean generators are gauge invariant on this surface. Con- 

sequently it is expected, although not mandatory, that the classical Galilean algebra 

should be preserved for gauge fixed computations.This aspect has been considered 

in sections3~, where different possibilities have been discussed for doing the reduced 

space computations in the axial gauge. In the symplectic approach [74, 20] the 

gauge degrees of freedom are eliminated in favour of the matter degrees of freedom 

by solving the Gauss constraint. The space time generators are then defined in the 

axial gauge. The classical Galilean algebra is now verified by using the fundamental 

brackets in the matter sector. Surprisingly, it is found that the complete galilean 

algebra does not close in general. Specifically, the bracket of the angular momentum 

with the Hamiltonian does not vanish; rather it is proportional to a boundary term. 

This term vanishes provided some additional restrictions on the Green functions 

are imposed. The reduced space formulation is briefly summarised following Dirac's 

[14] constrained formalism with a view to compare with the symplectic analysis. It 

is shown that  the algebra in the pure gauge sector differs by a boundary term in 

the two approaches which is exactly identical to the boundary term in the bracket 

of the angular momentum and the Hamiltonian found in the symplectic approach. 

In other words the same conditions on the Green functions simultaneously preserve 

the equivalence between the Dirac and the symplectic approaches, as well as the 

classical galilean symmetry of the model. Section ~ provides a quantum analysis, 

both in the gauge independent and gauge fixed (Dirac) approaches. A conventional 

normal ordering is invoked and the Galilean generators are defined to preserve her- 

miticity. The closure of the quantum Galilean algebra in the gauge independent 
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formalism is straightforward, exactly as happened for the classical analysis. This is 

basically due to the simple algebra in the mixed sector which considerably irons out 

the ordering problems. The reduced space computation, on the contrary, is more 

involved. Now the mixed sector algebra is nontrivial leading to complicated ordering 

isues. An immediate fallout of this is that  the equations of motion for either gauge 

or matter fields acquire quantum corrctions which are of O(h2). In the closure of 

the galilean algebra, the bracket of the angular momentum with the Hamiltonian 

does not vanish but contains terms proportional to O(h2), thereby revealing their 

quantum nature. Some of these are boundary terms which are similar to the ones 

already encountered in the classical analysis, which may therefore be eliminated by 

adopting identical restrictions on the Green functions. There also occurs a term 

that  drops out provided the self interaction vanishes. That  the latter is possible 

is shown by two alternative arguments based on algebraic consistency . Section t5 

contains the concluding remarks. 

4.2 Gauge independent formulation of the model  

In this section we study the clasical Galilean symmetry of the model without any 

explicit gauge fixing. The model comprises the Schrodinger Lagrangian minimally 

coupled with the non abelian Chern-Simons term [74], 

= ir162 - ~ ( D i r 1 6 2  ke~tr(A~O~A ~ + ~A~A~A~), (4.1) s 

where the covariant derivative is defined by, 

D~, = 0~, + A~, (4.2) 
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and A,  = A~aT a with the ant ihermit ian matrices T a normalised as, 

1 ab t r ( T a T  b) = - -~ g , (4.3) 

where gab is the metric [74] in group space. The Schrodinger field r is an N- 

component  column vector in a certain representation of T ". The Lagrangian (4.1) 

can be writ ten in a canonical form by working out the traces, 

Z: i r 1 6 2  kei j a "~ 1 = - A, Aj - ~(0~%b + - r162  + A i r  + Ao~G ~, (4.4) 

where 
k 

fabCAbAC~ (4.5) Ga = i%b+Tar + r + -  -- i-- j , .  

Since/2 has now been expressed in the desired canonical form, it. is simple to read- 

off the relevant brackets 1 using the symplectic approach [74, 20]. The nontrivial 

brackets are 

{r  r = - i a ,  m~$(x - x'), (4.6) 

{A~(x),A}(x'} = 1 ab ~eijg 6 ( x -  x'). (4.7) 

It is clear from (4.4) tha t  A~ is a Lagrange multiplier which enforces the constraint,  

G a ~ O. (4.8) 

This constraint  is just  the analogue of the usual Gauss constraint  in electrodynamics, 

being the generator of the time independent non-abelian gauge transformations.  

Using the brackets (4.6-4.7), it is straightforward to verify this property, 

/ d2x~a(x){%b(x'), Ga(x)} = c~(x')r (4.9) 

/ d 2 x a b ( x ) { A ~ ( x ' ) , G b ( x ) }  = -0,c~a(x ') + fabc~b(x')A/c(x' ) (4.10) 

1 All brackets are referred to at equal times 
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According to Dirac's [14] classification, therefore, GQ(x) is a first class constraint. 

Indeed it is easy to obtain the involutive algebra, 

{a~ ab(x')} = / :baC(x)a(x  - x') (4.11) 

The equations of motion obtained from (4.1) are found to be, 

iDor = - ~DiDir 

k 

where, 

is the field tensor and 

a b c F~,~ = O,A• - O,,A~ + fbcA,A~, 

(4.12) 

(4.13) 

(4.14) 

Jo = TaJ~ = T,~(-ir162 (4.15) 

Ji = T,J~ = - ~ T , [ r 1 6 2  (D~r162 (4:16) 

are the non-abelian charge density and spatial current density respectively. As usual, 

the time-component of (4.13) yields the Gauss constraint (4.8). 

Going over to the Hamiltonian formalism we observe that the momenta canoni- 

cally conjugate to the Lagrange multiplier A0 is a constraint, 

lr~ ~ 0 (4.17) 

This, together with G ~ form the complete set of constraints. The relations, 

{rr~(x),Gb(x')} = {~r~(x), %b(x')} = 0 (4.18) 

along with (4.11) constitute the full involutive algebra among the constraints. The 

canonical Hamiltonian is immediately written on inspecting (4.4), 

He = f d2x(~(Di~)+(Ddl,)-  A'~Ga) (4.19) 
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Using (4.6-4.7) it is easy to verify that H~ correctly generates the equations of 

0or = {r  He} (4.20) 

OoA~ = {A~, He} (4.21) 

motion, 

Let us next discuss the symmetries under various space-time transformations. 

Consider an infinitesimal transformation, 

with, 

! 
(4.22) 

r  = + (4.23) 

~x. : A..&o" (4.24) 

(5r = O.,,Sco" (4.25) 

where r  generically denotes the fields in the Lagrangian and v can be a single 

or double index. Then the invariance of any Lagrangian under the above transfor- 

mations leads to a conserved current [67], 

0s  
J"~ - 0(0"r  ~5,~. - 0.~A~ (4.26) 

where, 
0s  

0f,~ - 0 (0 . r162  (4.27) 

is the canonical ( Noether ) EM tensor. 

With this general input it is straightforward to obtain the various Galileo gen- 

erators of the present model. For example, under space translations, 

z i  - +  x'i = z i  - a w i ,  (4.28) 
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xo --+ x~ = xo, (4.29) 

the fields do not transform (O.v = 0) and the relevant generator is given by 

Pi = / d2x0o~(X) 

k Aa = fd2x( i r162  - ~ekj kOiAja). (4.30) 

Once again using (4.6-4.7) the normal transformation properties for the fields may 

be checked, 

{Ak(x), P~ } = OiAk(x), (4.31) 

{ r  P,} = Oir (4.32) 

Similarly, under infinitesimal spatial rotations with angle 0, 

t ' = t ,  (4.33) 

Xli : X i + OeijXj, (4.34) 

the fields transform as, 

A'o(X') = Ao(x), r = r (4.35) 

A'i(x' ) = Ai(x) + Oe,jAj(x ). (4.36) 

Comparing with the general transformation laws (4.22 - 4.25) we find, 

5Xi • OeijXj, Ai jk  = 5ijXk, Aiajk ~- 5ijA~. (4.37) 

The rotation generator after an antisymmetrisation now follows from (4.26), 

Jij = f d2xJo[o] 

k m maAj] ) (4.38) = f d2x(x[,Oojl + 
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Since there is only one component, we may express this as, 

J = f d=x(eijXiOoj + kAjaA;).,  
Z 

The basic fields obey covariant transformation laws, 

(4.39) 

{ r  ~ }  = e , , ~ , o j r  4.40) 

{A~(x), J} = e~kzjOkA~(x) + eijA~(x). 

Finally, we come to the Galileo boosts, 

(4.41) 

zi ~ z'i = zi - ~it. 4.42) 

The fields transform as, 

r  = r  t) - i<z,r 4.43) 

A'i(x',t' ) -- Ai(x, t ) ,  4.44) 

Ao(x',t '  ) = Ao(x, t)  + OiAi(z,t).  (4.45) 

It can be verified that the action corresponding to (4.1) is invariant under these 

transformations. Comparing (4.42 - 4.45) with (4.22 - 4.25) yields the correspon- 

dence, 

Aij  = -- tSi j ,  g2nj = - - iCnXj .  (4.46) 

so that  the boost generator may be obtained from (4.26) as, 

Ki = f d2xJ0i 

r O L ~  

= ] ( a 7 7  ~  - 

tPi + f d2xxir162 (4.47) 
J 
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This definition of the boost agrees with [45, 48] but differs from [59, 75] where the 

intermediate sign is minus instead of plus as occurs in (4.47). This difference in 

signatures was also noticed and clarified in an earlier work [48]. It should however 

be mentioned that  the boost generator has been derived here from first principles. 

Under these boosts the basic fields have the usual transformation properties, 

{r g,} = t O , r  iz,r (4.48) 

{Aj(x), Ki} = tOiAj(x). (4.49) 

We have thus shown that the basic fields transform covariantly under all the (Galilean) 

space-time generators. Consequently it is expected that the complete Galilean al- 

gebra ought to be satisfied. Indeed an explicit computation reveals that, 

{P,, Pj} : {P,,gc} : {K,, K~} = o, (4.50) 

{Pi, J} = ~,jPj, 

{K~, J} = ~ijI':j, 

{Pi, Kj} = 5ij / d2xr162 = 5ijM, 

{He, K,} = P~ + / d2xA~G, ~ P~, 

{ J, Hc } = e,j f d2xx, A'~OjG, ,~ O. 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

The last two brackets reduce to the conventional result on the constraint surface. 

Thus, on this surface classical Galilean covariance of the model has been demon- 

strated. An identical conclusion also holds in the abelian model [48]. 

The last part of this section is devoted to show that  the generators entering in the 

above (Galilean) algebra are all gauge invariant. In that case these generators can 

be regarded as physical entities. Using the basic brackets (4.6 - 4.7), the algebra of 
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the Gauss constraint (4.5) with the various generators may be explicitly calculated 

to yield, 

{.Pi, Ga(x)} = -0iGa(x)  ~ 0, (4.56) 

{Hc, G"(x)} = 0 ,  (4.57) 

{J, aa(x)} = -eijxiOjG'~(x),~ O, (4.58) 

{Ki, G~(x)} = -tOiG~(x) ,~ O. (4.59) 

Thus all the generators are found to be gauge invariant on the constraint surface 

defined by (4.8). This completes the gauge independent formulation of the model. 

The independent canonical pairs are (A1, A2) and (r162 Classical Oalilean al- 

gebra is satisfied. Furthermore gauge invariance of the relevant generators implies 

that this algebra should also be preserved in a gauge fixed analysis. However, this 

gauge invariance is valid in a weaker sense, because it assumes that G, ~ 0 im- 

plies OiG~ ~ O. To understand this implication in a simpler setting, let us consider 

the corresponding abelian case. The Gauss operator G is the generator of time - 

independent gauge transformations. Since 

{ J, G ( , , ) )  = - r  (4.60) 

We find that  under a gauge transformation 

Ai -+ A i -  &A (4.61) 

the change in J is given by 

Aj  = f d2,,A(x){J, a(x))  

= _ f d2xA(x)~,7,0F 
= _ f d2x0J(h(x)~,Jx, a) + f d2xeox'OjA(x) G (4.62) 
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where we have exploited the antisymmetry of the e - symbol in the last lille. Clearly, 

the second term of the r.h.s of the above equation vanishes on the constraint surface. 

The first term, however, vanishes only when we rule out singular vortex structures. 

In presence of the latter, only 

Jp = J + K (4.63) 

is strictly gauge invariant, where Kis that part of the physical angular momentum 

which gives the anomalous spin of the vortices (see the discussions of article 2.7). 

The Noetherian expressions used in equations (4.56) - (4.59) are gauge invariant, 

modulo singular vortex configurations. This also explains the interpretation of the 

weaker form of gauge invariance ( OiG,2 ,-~ 0 ). It is thus interesting and instructive 

to explicitly perform the gauge fixed computations. This will provide fresh insights 

into the model. 

4.3 G a u g e  f ixed formulat ion  : 

proach 

The  s y m p l e c t i c  ap- 

The basic idea of this formulation is to work in a reduced space by eliminating 

the gauge freedom. There are different ways to achieve this target. In the sym- 

plectic approach [20] one explicitly solves the Gauss constraint (4.8) by imposing 

an additional (gauge) condition, thereby eliminating the gauge degrees of freedom 

in favour of the matter variables. The brackets involving the gauge fields are now 

computed from the sole knowledge of the fundamental algebra in the matter sector. 

This was also the course adopted in [74]. It is important to point out, however, 

that whatever gauge condition is chosen, the resulting solution is nonlocal since it 

involves the inversion of a derivative. In this sense the concept of a local action 

90 



breaks down. An alternative approach which does not require the explicit solution 

of the Gauss constraint is to follow Dirac's [14] constrained analysis. In this case the 

Poisson brackets get replaced by the corresponding Dirac brackets. We shall show 

that the brackets in the pure gauge sector, computed by these two methods, differ 

by a boundary term involving the Green function. This term vanishes on imposing 

certain conditions on the Green function. Interestingly, these conditions are again 

required to prove the closure of the Galilean algebra. We now proceed with the 

reduced space analysis in the symplectic approach and the Dirac analysis will be 

discussed subsequently. 

A particularly effective gauge choice is the axial gauge, 

A ~ = 0 ,  (4.64) 

since it linearises the Gauss constraint, 

a ~ = kO~A~ - Jg  = o, (4.65) 

so that the other component of the gauge field is given by, 

1 
f d2x 'a (x  - x ' )Jg(x ' ) ,  A2 a = k" 

where G(x - x') is the Green function, 

(4.66) 

O , G ( x -  x')= ~(x- x'). (4.67) 

The algebra of the gauge sector is now completely governed by the basic bracket 

(4.6) in the matter  sector. Using (4.64) and (4.66) it follows, 

{A~(x), A~(x')} = {A~(x), A~(x')} = 0, (4.68) 

1 
{A~(x), A~(x')} = -~-Z / d 2 y G ( x -  y )G(x '  - y)f"~J0c(y) .  (4.69) 
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Likewise it is easy to obtain the algebra of the mixed sector, 

{A~(x), r  = 0, (4.70) 

{A~(x),r  = k (T" r  - x'). (4.71) 

The algebra involving A~ is inconsequential since it is a Lagrange multiplier and 

not a dynamical variable. Note that  there is an important subtlety in the solution 

(4.66). It does not represent a unique solution for A~. There is an arbirtrariness 

because if A~(x) is a solution then A'2a(x) = A~(x)+ f"(Xo, X2) is also a solution. 

On the other hand there is a residual gauge freedom that  survives the axial gauge 

(4.64) [58], 

O. Io. o A,(x) ~ A,  (x) = A,(x) + O~,a"(Xo,X2) + f~ (4.72) 

In the abelian theory it is possible, by choosing f"  = 02a", to account for the 

residual gauge freedom and regard (4.66) as a unique solution for the gauge field. 

For the nonabelian theory at hand, however, the presence of the extra piece in (4.72) 

complicates matters. Indeed if we take, 

fa(xo,x2) = 020~(Xo, X2) + fobCA2b(X)C~c(Xo,X2), (4.73) 

we find that  while the 1.h.s. depends on (x0, x2) only, the r.h.s, depends on all z, 

so that  it becomes impossible to find a solution for fo. The arbitrariness in (4.66), 

therefore, persists just as the residual gauge freedom due to (4.72) remains. 

The implementation of a specific gauge is known to modify the manifest covari- 

ant transformation of the basic fields [15]. For instance in the radiation gauge the 

boost law is found to be altered [48]. In the axial gauge, on the other hand, manifest 

rotational symmetry is violated. This implies that the transformation (4.41) under 
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rotations will be modified to preserve the gauge condition (4.64). Since manifest co- 

variance is spoilt it becomes imperative to verify the Galilean symmetry by working 

out the algebra (4.50 - 4.55) involving the gauge invariant generators. A detailed 

analysis shows that  apart from one exception the complete Galilean algebra (4.50 - 

4.55) is reproduced. The only nontrivial bracket is given by, 

1 t "  {J, Hc} = -~ ]d2xd2yd2z{G(x- y)G(y  - z) - G(x - z)G(y - z)} 

s (4.74) 

where the current J} and charge density J~ are defined in (4.15-4.16), and A~ is 

given in (4.66). It is possible to simplify the r.h.s, of (4.74) by replacing J~ using 

(4.65), 

/d2xd2yd2z{G(x - y ) G ( y -  z ) - G ( x -  z ) G ( y -  z)} 

a b c f,~A2(x)J~(y)O~A2(z ). (4.75) 

Using (4.67), one can further simplify to obtain, 

{J, Hc} = -fd2xd2yd2zO;{G(x-z)G(y-z)A~(z)}s (4.76) 

As pointed out in the previous section the algebra of the gauge invariant gen- 

erators must be independent of the choice of gauge. Since the complete Galilean 

algebra was demonstrated earlier, it implies that (J,  He} must vanish in the axial 

gauge. The r.h.s, of (4.76) shows that this is not true in general. A simple way to 

establish compatibility is to demand that the boundary term vanishes, i.e., 

/ d2zO; {G(x - z)G(y - z)A~(z) } = 0. (4.77) 

The above relation gives a restriction on the connection G(x - y). Note that this 

connection appears squared' which must be regularised [74, 79] to make it meaningful. 
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The regularisation must be such that the above condition (4.77) is satisfied. In that 

case the complete Galilean algebra is reproduced. It is useful to compare this analysis 

with Dirac's gauge fixed approach which is given below. 

4 . 4  G a u g e  f i x e d  f o r m u l a t i o n  : D i r a c ' s  a p p r o a c h  

In contrast to the symplectic approach the Hamiltonian analysis of Dirac [14] dis- 

tinguishes between first class and second class constraints. The gauge freedom gen- 

erated by the first class constraint G a ~. 0 is eliminated by initially choosing a gauge 

X b ~ 0 S o t h a t ,  

det ][{Ga, Xb}[[ ~ 0 (4.78) 

Then the complete set of constraints G a ~ 0, X b ~ 0 becomes second class which 

can be strongly implemented by working with Dirac (star) brackets, 

{r176 Cb(y)} �9 = {r Cb(y)}-f 
(4.79) 

where f~-~ is the inverse of the matrix defined by the Poisson brackets {f~, f~d} of 

the complete set of constraints f~c = Go, Z~ ~ 0. The ordinary brackets in (4.79) 

merely refer to the fundamental brackets (4.6 - 4.7). 

It is worthwhile to highlight some of the fundamental distinctions between the 

implementation of constraints in the symplectic [20, 74] and Dirac [14] approaches. 

Contrary to the symplectic case, all the degrees of freedom (either gauge or matter) 

are retained in the Dirac analysis. There is no need for an explicit solution of the 

Gauss constraint (4.65) leading to the non-local structure (4.66). This also avoids 

the inherent arbitrariness in the solution (4.66,4.67). 
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The next step is to compute the Dirac brackets among the basic fields in the 

axial gauge. The matrix of the Poisson brackets of the constraints is given by, 

( ~ Ot 0 5 ( x -  y)gOb, (4.80) 

where f~' = A~' ~ 0 and ft~ = G ~ ~ O. The corresponding inverse matrix is found 

to be, 
(f~b(x'Y))-I = ( 0-1 -1)  G(x-y)gab'O (4.81) 

where the conn'ection has been defined in (4.67). From the basic brackets (4.6, 4.7) 

and using the definition of Dirac brackets in (4.79), we find the gauge fixed algebra, 

{r  A~(y)}* = k G ( X -  y)[Tar (4.82) 

a b , 1 
{A2(x),A2(Y)} : fab~G(x- y)(A2~(x)-  A2c(y)) (4.83) 

The brackets with A~(x) vanish as expected from the gauge condition. Note that the 

second relation preserves the antisymmetry of the bracket under the sinmltaneous 

exchange x +4 y, a +4 b. 

Let us now compare the Dirac algebra with the corresponding symplectic algebra. 

Although the bracket (4.82) agrees with (4.71), the bracket (4.83) has a different 

structure from (4.69). Thus, at the level of the basic algebra, we find a distinction 

between the two approaches. It now takes only a little effort to show that the 

difference between (4.69) and (4.83) is just the boundary term in the 1.h.s. of (4.77). 

Using (4.65), the bracket (4.69) reduces to the following, 

1 
- Y)f , 2c(Y) {A~(x),A~(x')}i - k f d2yG(x y ) a ( x ' -  A 

fa~ - T f d2YO[[G(x- y ) G ( x ' -  y)A2c(y)] 
J 
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1 
+ ~ f a ~ G ( x ' -  x) (A2c(x) -  A2c(x')) 

fa~  
= {A~(x),A~(x')}* + --ft..-/d2yO[[G(x - y ) G ( x ' -  y)A2c(y)] (4.84) 

where, in going from the first to the second line, we have used (4.67). Thus, as 

announced, the difference between the symplectic and Dirac algebras is proportional 

to the boundary term in (4.77). If we impose the condition (4.77) then the two 

results agree. Finally, using the Dirac brackets (4.82,4.83), it is possible to establish 

the validity of the complete Galilean algebra (without any restrictions) including 

the bracket {J, Arc}* which previously yielded an anomalous structure (4.76) in the 

symplectic approach. This is not surprising because the anomalous structure in 

(4.76) is precisely compensated by the difference in the basic bracket {A~, A b~,2j 

equation (4.84), in the two approaches. 

4.5 Quantum analysis 

In this section the Galilean symmetry will be studied by taking into account the 

ordering ambiguities of relevant operators. Quantum effects, if any, will therefore 

be manifestated by additional terms. For an abelian theory this aspect has been 

analysed in [59] and [48]. An unusual ordering was devised in the former to preserve 

Galilean covariance. In [48], on the other hand, the gauge fixed computations done 

by solving the Gauss constraint revealed an anomaly which was absent in the gauge 

independent approach. The authors of [48] attributed this to inequivalent quanti- 

sation prescriptions. Here we shall show work with a conventional normal ordering 

of operators. The closure of the Galilean algebra is modified by O(h 2) quantum 

corrections. These corrections are boundary terms which, interestingly, are of sim- 

ilar nature as already found in the classical analysis and hence can be ignored by 
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invoking identical conditions on the Green function. There also appears a term pro- 

portional to G(0) which vanishes provided the self interaction is ignored. Algebraic 

arguments show that it is indeed feasible to take a vanishing self interaction. 

4.5.1 The Gauge independent analysis 

According to the usual method of quantisation the fields era(x), its conjugate and 

Ai(x) are considered as operators acting on some Hilbert space of state vectors 17]}. 

The brackets (4.6) and (4.7) are elevated to commutators following the prescription, 

[,] --9 ih{, } ,i.e.; 

= h .m (x - x ' ) ,  

= y ,jg x ' ) ,  

while complex conjugation is replaced by hermitian conjugation. All other com- 

mutators vanish. Note that  we have taken A0 = 0 thereby eliminating it and its 

conjugate ~r0 from the phase space. This can always be done when the gauge is not 

fixed, as in the present context. For explicit gauge fixing which imposes conditions 

on Ai, the situation is different as will be elaborated in the forthconfing sub-section. 

We now consider the definition of the various space-time generators. An ordering 

is taken such that  these operators are (i) hermitian and (ii) their vacuum expecta- 

tion values vanish. The latter condition means that  the operators are to be normal 

ordered. From (4.85) we can interpret r162  as the destruction and creation oper- 

ators, respectively. Hence r is placed to the right of et.  Since the Chern-Silnons 

gauge field is photonless, no extra care is needed for its normal ordering. However, 

on account of (4.85), there is an ambiguity proportional to ~(0) in the product of 

identical components of the gauge field at the same space-time point. We chose to 
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work with a regularisation that enforces 5(0) = 0 so that there is no ambiguity in 

this ordering. The mixed sector is already commuting. With this ordering the Gauss 

constraint (4.5) can be written in the desired form. the physical space is annihilated 

by this constraint, 

k a a b c 
G a It/) = (iCtTar + -~eij(2OiAj + f~cAiAj))[r/) = 0. (4.86) 

This equation is the quantum analogue of (4.8). 

Following the above prescription the quantised versions of the Galilean generators 

are easily written. For instance, the canonical Hamiltonian obtained from (4.19) is 

given by 

1/ 
H = -~ d2x(D,r162  

- 2 f d:x(~162 - CtA'aTar162 + A'aTar (4.87) 

This is both normal ordered and hermitian. Although the ordering in the mixed 

sector is immaterial in this case, it will be essential for the gauge fixed computations 

presented subsecuently. The ordeering in (4.87) anticipates this fact. Likewise the 

other operators are bodily written from their classical expressions preserving exactly 

the same order. 

To verify the Galilean algebra, it is convenient to first give the equations of 

motion, 

ihOor = [r = - ~ D i D , r  
Z 

ihOoA,, = [ m i , ( x ) , g ] =  .h -*-ke,iJja(x),  (4.88) 

obtained from the basic commutators. These equations are the quantum analogues 

of (4.20) and (4.21), respectively. No extra terms are generated due to ordering 
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effects so that  the classical equations of motion are preserved. Since the classical 

Galilean algebra was already shown by the gauge independent method, it, is expected 

that  the same would now also hold. Indeed an explicit check reveals that the algebra 

closes in a straightforward manner except for the relation, 

[I(i,H] : l i f  d2xr162 + h f d2xAiaCtT'~ga. (4.89) 

The first and second terms are simplified by using the definitions of the translation 

generators and the Gauss constraint (4.5), respectively, 

D ~ k 
f d2xqm(AtaOiA~ - 2AiaOIA~)- ih f d2xAi~G ~ (4.90) [K,, H] = -ihPi - ,---~- 

Acting on the physical states the last term vanishes. The term involving the integral 

reduces to a pure boundary. In particular for i = 1 it simplifies to, apart, from an 

overall normalisation 

f d2x{Ox(AlaA'~)- 02(AI,~A~) + [A2a(x),O;A~(x)]} (4.91) 

The boundary terms can be dropped while the commutator has to be regularised to 

make it meaningful since it involves the derivative of a delta function at identical 

space-time points. This term also appears in the quantum fornmlation of an abelian 

theory. Using a point splitting regularuisation technique, it can be shown to vanish 

[48]. The occurence of such a term in the abelian context is not surprising since it 

is related to an ordering effect and not to the nonabelian nature of the problem. In 

the physical Hilbert space we therefore have, 

[K~,H] = -ihP~, (4.92) 

which establishes the closure of the complete galilean algebra. 
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4.5.2 The Gauge Fixed Analysis 

We next discuss the gauge fixed analysis by following the Dirac procedure. While 

we are free to choose any admissible gauge, let us restrict the analysis to the axial 

gauge, this helps in compairing with a corresponding analysis [74] that has been done 

using the symplectic formalism. In the gauge independent approach we were able 

to set A0 = 0 and eliminate the (A0, ~r0) pair from the phase space. Fo1 the gauge 

fixed analysis, however , the time conservation of the gauge fixes the multiplier. 

Demanding, therefore, 

[A,d, Hc] = 0  (4.93) 

where Hc is defined in (4.19), and using the basic coimnutators (4.85), leads to, 

kO~Ao + J2 = 0. (4.94) 

The above relation, which is just the 2-component of the  equation of motion (4.13) 

in the axial gauge, is the second gauge condition. The axial gauge together with 

this condition completely eliminates the gauge freedom associated with the two first 

class constraints of the theory. The Dirac brackets remain unchanged from (4.71) 

and (4.83). The corresponding commutators are, 

[r m~(y)] = ~ - V ( x -  y)[Tar (4.95) 

[A2a(x), A2b(y)] = ~f~ y)(m2~(x)-  A2~(y)). (4.96) 

The commutators in the pure matter sector are identical to those given in the gauge 

independent formulation. As before it is useful to deduce the basic equations of 

motion which are then exploited to verify the Galilean algebra. Using the above 

commutators, the equation of motion for r is obtained from 

ihOor = [r 
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ih f d2yG( x _ y)j~(y)T,~b(x ) = - Di(Di•(x)) + -ff~ 

h 2 
/ d 2 y G ( x -  y)G(x - y)r162 (4.97) + 

The O(h) term involving the connection can be simplified by using the gauge con- 

dition (4.94). A simple rearrangement then yields, 

ihDor - ~D. 2 ,(D,r  

h 2 
f d2yG(x - y ) G ( x -  y)r162 Tbr (4.98) + 

Comparision with the classical equation of motion clearly reveals that the O(h 2) 

term is a quantum correction. This correction is a peculiarity of the axial gauge. 

For instance, in the gauge independent analysis, such a term is nonexistent. It is 

not difficult to explain the difference. The O(?fl) term comes from the nonvanishing 

commutator of r with the gauge field. In the gauge independent analysis this 

commutator vanishes so that  there is no correction. Following a symplectic approach, 

this term was also obtained in [74]. In an abelian context the above equation of 

motion simplifies considerably, 

h 2 
ihDor = - h  Di(D,r + ~ f d2yV(x - y)G(x - Y)Jo(y)r (4.99) 

where J0 is the charge density. Strongly imposing the Gauss constraint eliminates 

this charge density in favour of the gauge field A2. Finally, dropping a boundary 

term which is identical to that  already encountered in (4.76), we obtain, 

ihDoC(X) = h --~D,(D,r + C(O)A2(x)r (4.100) 

If the self interaction is ignored so that G(0) = 0, the quantum correction vanishes. 

Later on we shall return to this point. 
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Proceeding similarly it is also possible to compute the equation of inotion for 

A2. A rather lengthy algebra yields, 

ihOoA2a = [A o, HI 
ih oqlr162 ) + ih / d2y02G(y _ x)J2a(Y) 

ih 
�9 + ~-~fab~ f d2yG(Y - x){O2r162 - r 

- r  r ~ (4.101) 

where the ordering of operators is important. It is this equation that will be used 

in the ensuing analysis of the Galilean algebra. Before proceeding, however, it is 

worthwhile to compare it with the classical equation of motion (4.13), whose a. = 1 

component is given by, 

J~ = kF~o , (4.102) 

with 
1 

J~' = - ~ ( r 1 7 6 1 6 2  - 01r162 (4.103) 

where the axial gauge has been implemented in obtaining (4.103) from (4.16). Let 

us next identify the various terms in the R.H.S. of (4.101). The first term is (4.103). 

The second term is simplified by eliminating ./2 in favour of A0 using the gauge 

condition (4.94). The definition of the connection then yields a term proportional 

to 02Ao. Finally, the piece involving the structure constant is manipulated so that 

A2(x) is taken outside the integral, both through the left and right sides. The 

remaining integral can be shown, using the gauge condition (4.94), to be identical 

to A0.. However the passage of A2(x) through the various terms will generate O(h 2) 

factors coming from the nonvanishing commutators. Collecting everything togather, 

we find, 

1 b 
ihJl~ = ihk(O2Ao~ - OoA2, - ~fo~{Ao, A~} ) 
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h 2 
+ ~kZ.2 f~k f d 2 y G ( y -  x)(202G(y - x)~b~(y)Tr 

+ f ~ G ( y -  x)r Tb]r (4.104) 

Note that a Weyl ordering has been used to define the product among the noncom- 

muting variables A0 and A2. In the classical limit the above equation reproduces 

(4.102). Once again the quantum correctios is of O(tz 2) which explicitly appears in 

(4.104). It may be remarked that in contrast to (4.100), the quantum correction is 

absent for an abelian theory, independent of the self interaction. We shall precisely 

exploit this fact later on to show, from algebraic consistency arguments, that G(0) 

must vanish. 

Using these basic equations of motion the algebra of the Galilean generators 

is computed. Apart from the bracket involving the angular momentum with the 

Hamiltonian, the others close in the standard way. The nontrivial bracket is written 

aS, 

[y, HI = [M, H] + IV, H], (4.105) 

where the matter (M) and gauge (G) contributions have explicitly separated, 

M = f d2xeijxi(ir162 

G = _k/d2xA2aA~" (4.106) 
2 

Although the equation of motion for r involves an O(h 2) correction, these are can- 

celled when computing the bracket of M with H. The final result is given by, 

[M, H] = ih [ d2x(OlCt A2r r162 
7 J - 
ih f d2xd2yG(x Y){ O2r (y)O2A2(x)r r (y)O2A2( z )O2r 
2 . I  - - 

- Ct(y)O2A2(x)g2(y)r Ct(y)A2(y)O2A2(z)r (4.107) 

103 



In order to generate identical terms from the other bracket,it is essential to use 

the commutation relations in the mixed sector. Consequently O(h 2) corrections are 

found and one obtains 

h 2 
f d2xJ1 (x) [G,H] - [M,H] - -ffG(O) 

h 2 
f d2yr  f d2xO~[G2(x '~  A ~ x - y ) fa~f  ( 2( ) -  A~(y))]Td~(y) 

8k 
h 2 

+ 

• (fd2x0 (G2(x- y))), (4 10s) 

where the charge density has been eliminated in favour of the gauge field. It is 

evident that  the anomalous piece in the commutator of J with H involves O(52) 

quantum corrections. These are boundary terms which are of an identical nature as 

already found in the classical analysis of the model. Employing similar restrictions 

on the Green functions these terms can therefore be"dropped. Finally there remains 

a term proportional to the self interaction G(0). In [74], for instance, a regularisation 

was assumed which enforced G(0) = 0. An alternative point of view [59] was to take 

a nonvanishing self interaction, but choose an unconventional ordering prescription 

so that  the Galilea~ algebra in an abelian model was preserved. In the present case 

certain definite arguments are now provided which ensure G(0) = 0, thereby proving 

the closure of the Galilean algebra (4.108) using, as we have done, the usual normal 

ordering of operators. 

The first point to note is that  the presence of terms like G(0) is  related to the 

algebra of operators at identical space time points. The symplectic algebra (4.69), 

at identical points, can be written as, 

1 
f d 2 y G ( x -  y)G(x - y)f"~O, A2c(y), (4.109) {A~(x), A~(x)} = -~.  
d 
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where the charge density has been eliminated in favour of the gauge field by imposing 

the Gauss constraint in the axial gauge. Dropping the familiar boundary term and 

using the definition (4.67) of the Green function, this simplifies to, 

2 abe {A'~(x),A~(x)}=-~G(O)f A2c(z). (4.110) 

As can be seen the corresponding Dirac algrbra (4.83), on the other hand, vanishes. 

Since the conditions on the Green function were such as to preserve equivalence 

among these algebras, it is clear that G(0) nmst vanish. In other words the restriction 

on the Green function satisfying (4.77) also implies the equivalent condition G(0) 

= 0. Yet another way of visualizing this result is to reconsider equations (4.100) 

and (4.104). For an abelian theory the quantum correction in the latter vanishes, 

while in the former it is true provided G(0) = 0. Now in the abelian case the Gauss 

constraint in the axial gauge can be used to unambiguously eliminate the gauge 

field in terms of the matter variables. The equation of motion for the gauge field 

is determined purely from the latter. Consequently a lack of quantum correction in 

one implies the same in other, thereby requiring G(0) = 0. The result is therefore a 

consequence of algebraic consistency. 

4.6 Conc lus ions  

We have investigated by different approaches the (classical) Galilean symmetry in 

a nonrelativistic model involving the coupling of nonabelian Chern-Simons term 

to matter fields [74]. Since the model is a constrianed system there are different 

formulations depending on how one accounts for the constraints. A conceptually 

clean and elegant way of doing this is to work in the gauge independent formalism 

[12, 13, 62]. The various Galilean generators are defined from first principles. It 
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is also verified that  on the constraint surface, these generators are gauge invariant. 

The basic fields are found to transform covariantly under the different space-time 

generators. The classical Galilean algebra is reproduced on the constraint surface. 

Since this algebra involves (physical) gauge invariant quantities, it implies that the 

algebra should be preserved in any gauge fixed compuatation. However this is not 

always true [48] so that  explicit gauge fixed computations are necessary. Two distinct 

approaches to gauge fixing have been considered here. In the symplectic approach 

[20] the Gauss constraint is explicitly solved in the axial gauge. The gauge degrees of 

freedom are eliminated in favour of the matter  variables. Since the process involves 

the inversion of a derivative, the solution for the gauge field is nonlocal. It is found 

that,  except for {J, Hc}, the classical Galilean algebra is preserved. The bracket 

{J, H,} is anomalous; it is in fact proportional to a boundary term involving the 

square of the connection. Compatibility with the Galilean covariance established 

gauge invariantly is therefore preserved provided this term is constrained to vanish. 

Conditions are therby imposed on the connection which recall similar findings based 

on the consistency of the Schrodinger equation. 

The results of the gauge fixed analysis are also given in the Dirac [14] fommlism. 

The Dirac brackets for the mixed sector coincides with the symplectic result, but 

it does not for the pure gauge sector. This is an important subtlety in the analysis 

and recalls a similar finding [58] for nonabelian relativistic Chern - Simons models. 

Interestingly~ however, this difference in the algebras is shown to be a boundary term 

that  is exactly identified with the boundary term occuring in the anomalous bracket 

{J, Arc} found in the symplectic approach. This provides an alternative interpre- 

tation whereby the conditions on the Green function follow by simply demanding 

the equivalence between the Dirac and symplectic reductions. These conditions will 

then naturally lead to the validity of the Galilean algebra. 
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We have next made a detailed analysis of the quantum Galilean algebra by in- 

cluding the effects of ordering among the operators. A standard normal ordering has 

been chosen such that the hermiticity of the various Galileo generators is respected. 

The closure of the algebra in the gauge independent scheme mimics the classical 

analysis. The gauge fixed analysis, on the contrary, reveals subtle and interesting 

aspects. The equations of motion for both the matter and gauge fields acquire 

quantum corrections of O(h 2) . It is not surprising, therefore, that the closure of the 

quantum Galilean algebra is modified by the presesnce of such corrections. Interest- 

ingly, these are boundary terms which can be dropped by imposing restrictions on 

the Green function that  are precisely identical to those found in the classical analy- 

sis. There also appears an anomalous term that is proportional to the self interaction 

G(0). In the literature [74] recourse is taken to a regularisation that enforces the 

vanishing of this term. Alternatively, it was suggested [59] to keep this term but 

modify the conventional normal ordering to preserve the Galilean symmetry in an 

abelian model. We have however, shown that  the vanishing of the self interaction 

is naturally required from conditions of algebraic consistency. Thus, with the usual 

normal ordering, the complete quantum Galilean algebra is preserved. 

A key point to be stressed is the distinctive roles played by Dirac and symplectic 

reductions. While it may be appreciated that these yield equivalent descriptions, the 

present analysis shows that by exploiting this fact, it is possible to obtain conditions 

on the Green function which are precisely required to preserve the Galilean algebra 

in the classical or quantal framework. No other input is necessary. Besides this it 

is interesting to observe that the symplectic method, already at the classical level, 

anticipates the ordering ambiguities since the corresponding Galilean algebra does 

not close unless restrictions are imposed on the Green function. This is an important 

point of distinction of the symplectic formalism from the Dirac method. 
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Chapter 5 

Concluding Remarks 

Our works on certain aspects of three dimensional field theories have been reported in 

this dissertation. The Chern - Simons ( C - S ) interaction [1, 2] was the focal theme 

of the thesis. We have investigated the fractional spin of the solitonic excitations 

of the C - S coupled theories. A new type of self duality in connection with the 

gauged 0(3) nonlinear sigma model was then discussed. Finally the issue of space 

time symmetries of a nonabelian C - S coupled matter system was analysed from 

alternative approaches of the symplectic [20] and Dirac [14] methods, both at the 

classical and  the quantum level, Before concluding the thesis we will briefly discuss 

some possible elaborations and new directions of research which follow from our 

works presented here. 

The analysis of fractional spin was based on a new field theoretic method [16] 

advanced recently in connection with the C - S coupled nonlinear 0(3) sigma model. 

We have applied this method to a number of C - S  coupled relativistic field theo- 

ries [38] and also found a generalisation to include the nonrelativistic models in the 
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same framework [39]. Our approach was semiclassical which, interestingly, repro- 

duces the same results obtained from the path integral method of Wilczek and Zee 

[10]. Connection between these methods lies in the topological properties of the C 

- S interaction as has been indicated in our work. This correspondence remains to 

be explored in detail. A full fledged quantum treatment using coherent state rep- 

resentation [11, 80] technique may be suggested as a possible extension of the work 

reported here, which is expected to exhibit the correspondence more clearly. 

The models we have discussed in the analysis of fractional spin are known to 

give rise to self dual theories [3]. The quantisation of the soliton sector of a model 

requires the classical solutions. Since the theories are nonlinear, these solutions are 

very difficult to find. The self - dual theories provide a set of first order equations 

which automatically satisfies the second order Euler - Lagrange equations. This 

explains the importance of the self dual theories in both classical and quantum field 

theories. We have discusssed a new type of self duality in connection with tile gauged 

nonlinear 0(3) sigma models. The nmtivation was to lift the degeneracy of the 

solutions in a particular topological sector observed earlier [54, 55]. The topology of 

the vaccua was shown to be responsible for this degeneracy. We have demonstrated 

that the degeneracy may be lifted by considering symmetry breaking vaccua [49, 50]. 

Models with either Maxwell or C - S coupling was discussed. The corresponding C - S 

coupled theory admits nontopological solitons in addition to topological ones. In the 

present dissertation we have not discussed the nontopological solutions elaborately. 

The simultaneous presence of both the C - S and the Maxwell term was also not 

explored. These issues may constitute the subject of future work. 

S o  far our analysis was classical. Also the calculations were performed in a 

gauge independent [12, 13] setting. Subtleties of gauge fixing were then considered in 
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relation to the studies of space time symmetries of a nonabelian C - S coupled matter 

system [60]. The study was carried out at both the classical and the quantum level. 

The gauge fixed computations were done from alternative approaches of symplectic 

and Dirac method of phase space reduction. We have worked in the axial gauge 

which linearises the Gauss constraint thereby offering some simplifications. In the 

radiation gauge the nonlinearity of the Gauss constraint prevents an exact solution 

of the problem [15]. Nevertheless, it will be interesting to pursue the work in this 

gauge since a violation of Galilean algebra was reported in the quantum level analysis 

of the corresponding abelian model [48]. 
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