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Summary and Plan of the Thesis

We study the interaction of charged matter with an Astrophysical black hole. We
look into two types of interactions. In one case, the bulk charged fluid is considered to
fall onto the black hole due to the strong gravitational effect. During the infall of the
matter nuclear reactions take place among various species contained in the infalling
fluid. We study this nucleosynthesis thoroughly around stellar mass black holes which
presumably form through the supernova explosion. We watch the behaviour of the
bulk matter during its infall onto the black hole without concentrating on the be-
haviour of individual element. Of course during the infall of the matter, abundance
of different isotopes are changed. We see that the energy release due to nuclear reac-
tions sometimes dominates over the viscous energy of the flow; in those cases disk may
be unstable. In some of the cases enormous neutron is produced around black hole
and forming neutron torus. We check thoroughly all these phenomena systematically.
This is the main part of the thesis.

Apart from this rather macroscopic aspect of the black hole astrophysics, we
study interaction of individual particles specifically Fermionic particles with a black
hole. Although we can develop ways to obtain the solution for any half-integral spin
particles, here we consider the simplest case where the spin of the particle is chosen
to be only half (e.g., electrons, neutrinos etc.). To find the nature of the interaction,
we need to solve the Dirac equation in a curved space-time. Although we can choose
the black hole having any mass, to get the significant interaction we choose only
those black holes which were presumably produced in the early Universe as a result

of the perturbation in the homogeneous background density field. These are called



primordial black hole. They have mass of the order of 10¥gm and clearly, they cannot
be formed by supernova explosion. All the mini black holes with mass M < 10**gm can
radiate their energy in a time less than the age of the Universe. Only the primordial
black holes with mass M 2 10'°gm could exist today.

So the thesis is divided into two parts. In the first and the major part, we study
nucleosynthesis around black holes. In section 1, we present an introduction on
nucleosynthesis. In §2, we give an idea of evolution of accretion disk model. In §3,
we describe the nucleosynthesis in accretion disk. Finally in §4, we present some
implications of nucleosynthesis around black holes.

The part two is comparatively brief. Here, in section 1, we give an introduction
about the interaction of spin-half particles with black hole. In §2, we show some

solutions of the Dirac equation. Finally in §3, we draw some concluding remarks.



PART-1

NUCLEOSYNTHESIS
AROUND BLACK HOLES



1 Introduction

Here we introduce briefly the subject nucleosynthesis and its connection with astro-
physical system. First of all we will define the term nucleosynthesis then will discuss
about the origin and evolution of the nuclear elements in the Universe. To describe
this evolution we plan to discuss about primordial nucleosynthesis, chemical evolution
of the galaxy and the star in brief way step by step. Finally we give a brief idea about

nucleosynthesis in accretion disk.

1.1 What is Nucleosynthesis?

Nucleosynthesis is a way in which a system of one set of nuclei transforms to another
set in a given thermodynamical condition. Commonly, this refers to the ‘Primordial
Nucleosynthesis’ of matter in the early universe. However, nucleosynthesis is present
in stars, in boundary layers of neutron stars and in accreting matter around compact
objects like black hole. In short, nucleosynthesis can take place in any hot dense

medium where enfropy is high.

1.2 Primordial Nucleosynthesis

In the very early universe, particle physics is the most dominant physics. Main
confrontation between the theoretical ideas about the early Universe and observations
comes in the epoch since nucleosynthesis started. One of the first predictions which
comes from the particle physics and cosmology was constraint on the number of light
(£ 10MeV) neutrino flavours, N, by the Big Bang nucleosynthesis. This limit happens
to be N, < 3. When the cosmological limit was first proposed, the particle physics

limits on this quantity ran into thousands. Thus the cosmological statement of small



numbers seemed very risky. Because of particle theory alone did not limit N,, a
cosmological constraint is extremely important. It is therefore of great relief that this
cosmological prediction was ﬁnally tested to be correct in the laboratory by collider
experiments. From the pioneering work of Peebles (1966) and Wagoner, Fowler &
Hoyle (1967) that the lightest elements like D,®He,* He and "L: should be synthesized
during the earliest epochs of the Universe evolution. According to Sciama (during the
first CERN-ESO meeting held in Geneva in November, 1983) ‘Early nucleosynthesis is
a triumph for the Big-Bang theory’ (Audouze 1989). Below, the primordial abundance
determination of D,2He,*He and "L: are discussed shortly.

The quark-hadron transition can produce variation in the ratio n/p in the early
Universe and that the mixture of such variable n/p ratios can fit D,>He,*He abun-
dances (Schramm 1989; Applegate, Hogan & Scherrer 1987). Also the large varia-
tion of n/p seems to inevitably over produce "Li. After Big-Bang, during the first
few seconds nuclear abundances are in statistical equilibrium but the corresponding
abundance of any nucleus above neutron and proton (which are formed by quark-
hadron phase transition) is very low because of high entropy per baryon. It can be
mentioned here that in accretion disk the entropy is also very high. When kT falls
to 0.3 Mev, the equilibrium mass fraction of *He reaches about 0.15 (for n/p ~ 0.2)
but the equilibrium condition is no longer applicable after this. Nuclear reactions
become too slow, partly from Coulomb barriers and partly because of low (still near-
equilibrium) abundances of lighter nuclei D,°He and “He. Only when the D/p ra-
tio (depending on the balance between p ~ n captures and photo-dissociation) has
built up to a value of order 107° at kT ~ 0.1 MeV, do nuclear reactions effec-

tively build up to *He, which then uses up virtually all the neutrons remaining from



freeze-out and subsequent decay. After the formation of *He, traces of lighter ele-
ments survive because nuclear reactions are frozen out by low density and tempera-
ture before their destruction is complete and still smaller traces of "L: and "Be are
formed. The series of reactions which take place in primordial nucleosynthesis are
given as: p(n,y)D, D(D,n)*He, D(D,p)T, *He(D,p)*He, T(D,n)*He, *He(c,v) Be,
T(c,v)'Li, "Be(n,p)'Li, "Li(p,«)*He, T(v,v)*He (with 7/,=12.2 Yr.), "Be(v, )Lt
(by K-capture after recombination). Few of these reactions take place in accretion
disk also but with different reaction rates because these rates depend on density and
temperature. The nuclear reactions in accretion disk are described in §3.2.

All deuterium in the Universe are originated from Big-Bang nucleosynthesis be-
cause thermonuclear reactions in stars only cause net destruction of D and it is
vastly more abundant than other light nuclei like ®L: or ®Be that are basically re-
sult of spalletion reactions (Pagel 1997). The first evidence for primordial deu-
terium abundance was obtained in the early 1970s from the studies of the solar
wind, planetary atmospheres and the interstellar medium. These studies give an
average *He/*He ~ 4.1 x 107%. With He/H ~ 0.1 for the Sun, this is equivalent
to He/H ~ 4.1 x 107%. Black (1971) and Geiss & Reeves (1972) computed proto
solar *He abundance present in the wind from the primitive Sun and attributed the
excess in the present day solar wind to proto-solar deuterium which was burnt to *He
during Solar evolution. The proto-solar deuterium abundance is thus about 2.6 x 107°
which is in fair agreement with observation. Bania et al. (1987) have analysed the
abundance of ®He with improved determination technique avoiding various sources
of systematic errors. Although the range of possible interstellar 3He/H abundance is

somewhat reduced with respect to the one reported by Rood et al. (1984) there are



still very large variations of the ®*He abundance as 1.2 x 107% < 3He/H < 1.5 x 107*.

“He has been thoroughly observed in metal poor galaxies (Lequeux et al. 1979;
Kunth & Sargent 1983; Pagel et al. 1986). From Kunth (1986) and Shields (1986)
abundance of *He = 0.24 & 0.01. Audouze (1989) concluded the abundance of *He
to be 0.235 &+ 0.012. Also by the Voyager measurement of He/H at the surface
of Uranus, abundance of ‘He = 0.262 &+ 0.048 (Audouze 1989). It might be noted
that variable n/p seems to also have high values for *He. In particular, any realistic
spectrum of quark-hadron parameters rather than a single, fine-tuned value not only
over-produces Li but also *He.

The abundance determination of “Li concerning the old population II stars per-
formed by Spite & Spite (1982) and Audouze (1989) such as Li/H ~ 107*° in such
stars have been confirmed by two further independent analysis. One was performed
by Hobbs & Duncan (1987) and another was by Rebﬂolo, Molaro & Beckman (1988).
As was noted by Audouze (1989), the difference of behaviour of the Li/H and O/H
abundance ratio with respect to Fe/ H for instance constitutes a very important ar-

gument in favour of a low primordial abundance of “Li so that "Li/H is roughly

2 x 10719,

1.3 Chemical Evolution of the Galaxy

From the discovery of microwave background, it is assumed that the Universe was
originated from a hot big-bang (Peebles 1966; Schramm & Wagoner 1977). From
detailed nucleosynthesis calculation based on hot big-bang model it is shown that no
heavier element than *Be could be synthesized primordially with an abundance more

than 10~!* by mass fraction. But in today’s Universe there are appreciable amounts
y p



of elements heavier than helium. Out of these elements 2% of the visible mass are be-
lieved to have been synthesized in stars or starlike objects. Cosmic gas fragmentation
into huge gas clouds forming galaxies and further fragmentation of which possibly
led the formation of stars. Stars evolve on timescales ranging from several millions
to tens of billions of years, synthesize elements in their central parts and emit the
processed elements into the interstellar medium at various stages. The interstellar
medium is thus enriched with heavy elements and the stars formed thereafter are
born with a higher metalicity. This cycle should go on until all gas in the interstellar
medium is exhausted. Thus the chemical evolution of galaxies involves understanding
the spatial distribution and temporal evolution of various elements in the galaxies by
taking into account the process of star formation, distribution of stars according to
their masses and chemical compositions and the final yields of various elements and
any detectable remnants of the parent stars.

Ideas of modern astrophysics and astrochemistry were originated from Maghnad
Saha (Saha 1920, 1921). By the middle of the 1950s it became clear that elements
in the galaxies and stars could not have been synthesized in the hot big-bang. The
metalicity of the interstellar medium should increase monotonically with time through
the evolution of stars. So from the measure of metalicity, age can be obtained. Studies
of stellar structure combined with the spectral colour and luminosity distributions of
stars yielded the first frequency distribution of stars according to their masses which
is called the initial mass function. In 1959, Schmidt (1959) suggested an empirical
expression relating star formation with local density of gas in the interstellar medium.
Van den Bergh (1962) and Schmidt (1963) found frequency distributions of Sun type

stars according to their metalicity that did not agree with the calculated one which



was done from a simple model of chemical evolution. This discrepancy i.e., significant
underabundance of metal-poor stars is known as G-dwarf problem.

The first solution of G-dwarf problem was suggested by Truran & Cameron (1971)
in which they assumed a prompt initial enrichment of models with a non-zero initial
metalicity (Zy # 0). Larson (1972) suggested the infall model which assumes an
inflow of metal-free gas from the halo and the rate of inflow proportional to the local
star formation rate. Lynden-Bell (1975) considered the inflow together with a non-
zero initial metalicity. Tinsley (1975) and Ostriker & Thuan (1975) proposed collapse
models where the rate of inflow of gas was assumed to have metalicity proportional to
the metalicity of disk and to compensate for star formation rate. These models were
constructed from Larson’s (1973) own model of star formation or disk formation.

The increasing interaction of the chemical evolution of the disk with that of the
pre-existing halo was revealed in the pioneering measurements of the abundance of
various heavy elements. These showed widely varying Fe/H relation (Clegg 1977).
There are no depletion in the O/H ratio with respect to the Fe/H ratio which is
the case for new stars. Thus, the differential evolution is suggested in the various
elements with time. At least three phases of the Galactic evolution were identified
in terms of three different metalicity dependent populations of stars. In the cases of
thin young disk, the abundance of most elements changes proportional to F'e/H. On
the other hand, in thick disk cases, significant changes in trends of various elements
relative to iron are noticed. The a-rich and neutron-rich heavy elements are produced
essentially independent of initial iron abundance through supernova explosions of the
short-lived massive stars, which do not contribute a significant amount of iron. The

bulk of iron is produced by relatively long-lived progenitors of the type la supernova



explosions. The abundances of C, N, Mg, Al, Ca, Sr, Ba and a few other elements
again change their abundance ratios beyond Fe/H ratio.

The change of the observational numbers with time invalidates most of the theo-
retical analysis based on the previous results of observations. For example G-dwarf
metalicity distributions which were used before 1989 differ greatly from those given by
Pagel (Beckman & Pagel 1989). The gas distribution differs by few factors depending
on whose distribution is used. The assumed variation of yields could be different in

various models.

1.4 Chemical Evolution of the Star

Star possesses a self-gravitating mechanism in which the temperature is adjusted so
that the outflow of energy through the star is balanced by nuclear energy generation
except at catastrophic phases. The temperature required to give this adjustment de-
pends on the particular nuclear fuel available. Hydrogen requires a lower temperature
than helium; helium requires a lower temperature than carbon and so on. At iron
this increasing of temperature sequence stops because the energy generation by the
fusion process ends here. In initial stage, when hydrogen is present, the temperature
is adjusted to hydrogen as fuel which is comparatively low. If hydrogen is exhausted
as stellar evolution proceeds, the temperature rises until helium becomes the prin-
cipal fuel. When all the helium nuclei are exhausted, the temperature rises further
until the next nuclear fuel comes into operation and so on. This automatic tempera-
ture rise is brought about in each case by the conversion of gravitational energy into
thermal energy. Since the penetration of Coulomb barrier occurs more readily as the

temperature rises, it can be anticipated that the sequence will be the one in which
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reactions take place between nuclei with greater and greater nuclear charges. As it
becomes possible to penetrate larger and larger barriers the nuclei will evolve towards
configuration of greater and greater stability, so that heavier and heavier nuclei will
be synthesized until iron is reached. Thus there must be a progressive conversion of
light nuclei into heavier ones as the temperature rises (Burbidge et al. 1957).

The temperature of star is not constant everywhere. As the central temperature
1s maximum, corresponding nuclear evolution is most advanced there. On the other
hand on the surface, this evolution is least as temperature is minimum. Thus the
composition of star can not be expected to be uniform throughout. A stellar explosion
does not accordingly lead to the ejection of material of one definite composition but
instead a whole range of compositions may be expected. Also there are mixing of
central material outward and outer material inward. Material ejected from one star
may subsequently become condensed in another star. So the elements of the star are
evolving by all these series of processes.

Now we briefly describe several processes through which elements are synthesized.
Hydrogen burning is responsible for the majority of the energy production in the
stars. By fhe CNO cycle and pp-chain helium is synthesized from hydrogen. The
helium burning proceés is responsible for the synthesis of carbon from helium and by
further a-particle addition for the production of %0, **Ne. With the addition of a-
particle successively to *°Ne, the nuclei **Mg, 2853, 329, %¢Ar, *Ca and may be *Ca,
7 are produced. Under condition of high temperature and density, the isotopes
of vanadium, chromium, manganese, iron, cobalt and nickel are synthesized. This
process is called equilibrium process (Hoyle 1946, 1954). Also neutron captures are

taking place in stars whose time-scale is very long ranging from 100 years to 10°
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years. This synthesis is responsible for the production of the majority of the isotopes
in the range 23 < A < 46 excluding those synthesized predominantly by the o-
process and for a considerable proportion of the isotopes in the range 63 < A < 209.
There is another type of neutron capture process which has very short time-scale like
0.01 — 10sec. This is called the rapid-capture process or, simply, the ‘r-process’. In
this process isotopes in the range 70 < A < 209 are produced. Through this process
some light elements like %5, 4Ca, 4 a, perhaps *T'7, 4°T'i and °°T': are produced. In
stars, as in an accretion disk, few proton-capture process or emission of n by vy-ray
absorption take place. By this process proton rich isotopes are produced but with
low abundances compared with the nearly normal and neutron-rich isotopes. There is
another process called ‘x-process’ which is responsible for the synthesis of deuterium,
lithium, beryllium and boron. x-process is collectively more than one process but
characteristic of all of these produced elements is that they are very unstable at the
temperature of the stellar interior, so that it appears probable that they have been
produced in regions of low density and temperature. The typical abundances of few
of the isotopes which are synthesized in a young star (may be Sun) are given as:
p = 7.425 x 107}, D = 2.948 x 107, 3He = 2.538 x 107%, *He = 2.380 x 107!,
Li = 1.055 x 1078, 1B = 5.765 x 107, %0 = 8.779 x 1073, *Mg = 5.562 x 10~*
etc. When we study nucleosynthesis in accretion disk in later Sections, this type of
abundance of different isotopes are chosen as the initial abundance since matter is
supplied to the disk from the nearby star or companion stars.

In §1.5 we will describe more about few of the major nuclear processes mentioned
above. In later Sections we will see that in the disk main reactions are proton-

capture, rapid-proton capture, sometimes neutron capture processes, dissociation of
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the elements etc.

1.5 Description of Major Nuclear Processes and Reaction
Rate Equations
Here we will discuss briefly about different nuclear reactions which may come in
this thesis in different places. We mainly will concentrate on the discussion of pp
chains, CNO cycle, proton capture and rp process, « process, photo-dissociation
(Chakrabarti et al. 1987).
(a) pp chain:
By this process protons can be converted into helium nuclei via different reactions.
If only protons are present the reactions proceed through the so-called pp/ chain
following the set of reactions as p(p,v)D, D(p,v)*He, ®He(*He,2p)*He. After pro-
duction of *He, "Be is produced by *He(*He,v)"Be. Depending upon the fate of "Be,
two series of reactions may follow and are called the ppII and pplII chains. They
are respectively as, ‘He(*He,~)'Be, "Be(e™,v)"Li, "Li(p, o)*He and *“He(*He,v) Be,
"Be(p,~)*B, 8B(e~,v)®Be, ®Be(v, a)*He. The pp chain is effective for the temperature
range as Tp ~ 0.01 — 0.2 (Ty is the temperature in unit of 10°K). As the‘hydrogen
burning time scale by pp chain reactions is of the order 108 sec so the conversion to
helium from hydrogen through pp chain reaction is possible not only if the temper-
ature (Ty) is in between 0.01 and 0.2 but also if the residence time of the system is
very large.
(b) CNO cycle:
If the matter of the system consisted only of hydrogen and helium, then only the
reactions of pp chain would be responsible for hydrogen depletion, but usually there

are traces of heavy elements. In the presence of some carbon (which may be produced
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via triple-alpha reaction, i.e., *He(a,v)®Be(a,v)'%C), nitrogen and oxygen nuclei, the
hydrogen to helium conversion is more efficient. This is called as C NO cycle which
operates as C(p,v)N(e*, v) 0 (p,v)"N(p,7)*0(et,v)®N(p, @)!*C. For these re-
actions the operating temperature can be as low as Ty ~ 0.02 At low temperature
the CNO cycle is limited by the proton capture rate of *N. When Ty 2 0.3, the
proton capture on *N completes with. positron decay and the C NO cycle changes
into a hot CNO cycle (HCNO cycle). The basic reactions of hot CNO cycle are
2C(p, )N (p, )" O(et, V)N (p,7)*O(e*,v)N(p, @)'*C. The HCNO cycle oper-
ates in the temperature range as 0.5 2 Tg & 0.3. So the temperature (T5) range of
CNO cycle is 0.02 — 0.5.

When the initial abundance of %0 is considerable (may be same as Sun), it dumps

N into CNO cycle in the following way: O0(p,v)"F(e*,v)™O(p, «)'*N. This pro-
cess continues until % depletion is balanced by the reaction *N(p,v)'®N. This can
increase the flow of CNO or HCNO by increasing C NO seeds. When Tg > 0.1, 170
can change in the following way: *O(p,v)'®F(p, @)'%0, again producing C NO seeds.
(c) Rapid proton capture and proton capture process:
In the case of proton-rich environment, when temperature Tg ~ 0.5, for a given neu-
tron number nuclei will keep capturing. protons until the positron decay dominates
proton capture. This process is known as rapid proton capture process or in short
rp process. In the high temperature region rp process is favoured over CNO cy-
cle. Also in temperature lower than 0.5 x 10°K elements like 30, °N, ¢Li, L1 etc.
capture proton and hydrogen burning takes place. These are called proton capture re-
action. By these reactions isotopes convert as: ¥(p, a)®N(p, @)**C, ®Li(p,*He)*He,
Li(p,a)*He, 'B(p,v)3*He, "O(p, a)'*N etc.

14



(d) « processes:

The triple a reaction is also important for Ty & 0.1. It will produce C NO seeds for
pure hydrogen burning. It also process light elements into heavy elements. In suf-
ficiently hot environment helium can be significantly processed by the triple a (3«)
reaction. By the burning process of carbon, neon, oxygen etc. free particles like p, n
and as are provided which are useful to mediate further nucleosynthesis. Following 3«
reaction, helium burning can go into ‘alpha process’. In the presence of large quantity
of helium, the alpha capture reactions produce heavy elements whose atomic weight is
multiple of 4, i.e., *C(c,7)*O0(a,7)®Ne(a,v)*Mg(e, v)?8S1( e, v)*2S (e, 7)*°Ar (e, )
etc. upto *®Ni. Beyond %N, the mean binding energy per nucleon decreases for these
7 = 2n, A = 4n nuclei. Here Z and A are atomic number and mass number respec-
tively, n is a positive integer. Alpha elements beyond *Cla are beta (e*) unstable.
Thus %N finally becomes 56F'e by capturing two electrons.

(e) Photodissociation:

When temperature Ty 2 0.8 few elements like D, *He start to dissociate to produce
their daughter elements. By this process elements are hit by photons and break up
with the absorption of the energy from the system, because total mass in the left
hand side of the reaction is less than that of the right hand side. This is called
photo-dissociation of the elements. The corresponding reactions are like, D(7y,n)p,
SHe(v,p)D etc. Also at even higher temperature, Ty ~ 5 — 15, the heavier nuclei like
‘He can be dissociated. Photodissociation of *®Ni may be represented schematically as
Ni(v,a)13*He. The Q-value for this reaction is 87.85MeV. By the photo-dissociation
of %Fe to a (@ = 124.4MeV) and that to p and n (Q = 28.3MeV) huge amount of

the energy can be absorbed from the system. The reactions are 6Fe(7y,4n)13*He and
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‘He(v,2n)2p.

Now we give the idea about how the nucleosynthesis problem in a system can be
solved, where different nuclear reactions take place. Due to the interactions among
different isotopes nuclear energy is released which depends on corresponding reaction
rate which is dependent on temperature of the system. As an example, for two body

reaction, total reaction rate per unit volume can be written as (Clayton 19383),

- NiNjAg
— 217772 1.1
" . (14 612) (L1

where, A1y is the reaction rate per pair of particles. N; and N, are number density

of the interacting isotopes as,
_ pNa4Y;

N; A,

(1.2)

Here, Y;= abundance of ith isotope, A;= atomic mass number of sth isotope, Ny=
Avogadro Number=6.023 x 10%* and p= density of the matter.

Now we will briefly talk about the reaction rate equation to have an idea about
how the abundance of isotopes are changed:
Here as an example we consider a simplistic nuclear network with only three reactions
and three isotopes. Although in our final calculation we will use 255 isotopes and
corresponding set of reactions.

We choose the isotopes in the network as p, D and *He. The nuclear reactions
are considered out of those three isotopes as p(p,7)D (fusion of protons), D(vy,n)p
(deuterium dissociation) and *He(y, D)D (helium dissociation). The corresponding

rate equations are
ay,
dt

1
= =AYb + SAmeYire + 225 Y, (1.4)

1
= —/\WY;, + ‘2'/\dYD (13)

Yo
dt
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dYHe
dt

= —AgeYie. (L5)
Here we consider the corresponding backward reactions rate are negligibly small com-
pared to the forward one. From those equations we can write
P RS —App 3N A0
pr Yp | =1 2\ —Xa 2= |, (1.6)
YHe 0 0 "'>\He

which is of the form

d
=V =AV. (L7)

Here 3 components of the vector V' are Y, Yp and Yy. (actually Yig.) and A is the
3 x 3 matrix. The solution consists of finding three eigenvectors of A, defined as
(Clayton 1983)

AVi = MVi, AV = XVo, AV = A3V, (1.8)

where, A;, Ay and A3 are 3 eigenvalues of A. From Eqn. (L.7) it follows that if
V(t) is expressed as a linear combination of the eigenvectors with exponential time

dependence as (Clayton 1983)
V(t) = ae’'V; + be™'Vy + eV, (1.9)

where a, b, ¢ are constant coefficients, then Eqn. (1.7) is exactly satisfied. This is cor-
rect only if individual nuclear lifetimes are constant. This condition can not be strictly
met if there is a gradual dépletion of p and possibilities of changes in temperature.
From the elementary theory, it is known that the solution for eigenvalues as in Eqn.
(1.8) can be obtained only if the eigenvalues themselves are such that the determinant

of the matrix (A — AI) vanishes. The secular equation is given as

—(App+A) A 0
M —(atd) 2w =0 (L10)
0 0 "'(AHe + )\)
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Solving this equation we can find out eigenvalue As and eigenvector Vs as

A
- - 2\
)\1 = 0, ‘/1 = ‘——Lm (Illa)
0
1 Ad
Ay = —Ape, Vo= 2(App — AHe)
\/)‘73’*‘ 4(App = Are)? + 16(Ame — Mg — App)? 4(Age — Ad — App)
(I1.11b)
9 -1/2 -1/3
Aa=—(App+Ag), V3= v B or if Age =0, Va=| 2/3 |. (Lllc)
0 2/3

The eigenvalue A\; = 0 corresponds to the fact that abundances in this ratio do not
change in time. This is the equilibrium abundance. By putting these solution of Vs
and As into Eqn. (1.9) we get the exact solution of abundance of different isotopes
(Clayton 1983).

In general, if we choose n number of isotopes in the network then corresponding
matrix A will be of n X n dimension and vectors V will be of n dimensional column
matrix. Following the same method described above, solving the rate equations,

abundance of different isotopes can be found for any time.

1.6 Brief idea about Nucleosynthesis around Black Hole

Before going into the detail discussion of nucleosynthesis in accretion disk let us
present a brief outline about accretion disk and nucleosynthesis in it. When matter
falls through the accretion disk towards a black hole, nuclear reactions can occur.
Naturally, due to these reactions, abundance of several species may change and nuclear
energy may be released in a large scale.

What is an accretion disk? Usually when matter falls, it comes with some angular
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momentum and falls towards a black hole in a spiral path. As a result, a matter
distribution is formed around black hole which is called ‘Accretion Disk’. The rate of
falling of the matter 1s called the ‘Accretion rate’ which depends mainly on viscosity,
density and angular momentum of the in-falling matter. Since a black hole could
not be seen, one can only be sure about the existence of a black hole by observing
the different phenomena inside the accretion disk. Nuclear reactions i.e., the nucle-
osynthesis is one of such phenomena. The interaction within the in-falling matter,
out of which the accretion disk around the black hole is formed, gives rise to various
nuclear reactions. From the discussion of §1.4, we know in a star significant nuclear
fusion takes place, mainly due to the presence of hydrogen (proton) as 3p(p, 2e* )*He,
p(p,eT)D. Sometimes proton capture reactions such as, ‘Li(p, a)*He also take place.
In all the cases total mass of the left hand side is greater than that of right hand
side, so energy is released (exothermic reaction) by these reactions. In the case of a
star, the temperature is low and pp-chain and CNO cycle are possible. For compar-
atively low temperature, the pp-chain is active but in the case of high temperature
(C'NO cycle is more prominent in burning protons as we discussed in §1.4. Basically,
through these processes hydrogen (proton) is converted into helium and huge amount
of nuclear energy is released. The number of carbon, nitrogen and oxygen nuclei in
the case of C NO cycle remain conserved. These behave as catalysts. Their presence
just enhance the rate of the reactions i.e., the conversion rate to helium from proton
i.e., the evolution of nuclear energy. Apart from the hydrogen burning, a few of the
other reactions are also outlined in the last Section.

Unlike the stellar case, where the central temperature is of the order of 107K

and the density is around 107! gm/cc, in the case of black hole accretion disk the
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temperature is high (of the order of 10°K) and even though the density is low (of
the order of 10™* gm/cc for stellar mass black hole accretion disk and much lower for
black holes located at the galactic centers) enough. Although the density of the disk
is low compared to that of star but on their spiral path the matter is heated up. The
temperature of the matter becomes so high that after the Big-Bang nucleosynthesis
the most favourable temperature to allow significant nucleosynthesis is attained in
disks. Also corresponding entropy of the infalling matter in the disk is very high as
sometimes of the order 10'® — 10*®erg/K. All these motivate us to study the nucle-
osynthesis in the accretion disk. On their path, the matter may achieve favourable
temperature for proton capture and rapid-proton capture (rp-process) reactions. Due
to these reactions nuclear energy is released in the disk (exothermic reaction). Some-
times this nuclear energy may dominate over the energy released due to the viscous
processes inside the disk. As matter falls, the potential energy is converted to the

kinetic energy and then to thermal energy i.e.,
Potential Energy — Kinetic Energy — Thermal Energy.

Consequently, as matter comes close towards the black hole, the temperature in-
creases. In this high temperature region helium, deuterium may start to burn through
photo-dissociation process. At high accretion rates, a large number of photon is pro-
duced inside the matter, as a result of Compton cooling, the matter cools down due
to transfer of energy from the hot matter to the cold photon. On the other hand,
for low accretion rate, matter does not get sufficient photon to cool down by inverse
Compton effect. So at low accretion rate near black hole, temperature is high and
the photo-dissociation is more effective than the case of high accretion rate. With

photo-dissociation, huge amount of energy is absorbed from the disk. Higher the
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temperature of the disk, higher will be the absorption rate of energy. This process is
continued till the photo-dissociation is complete.

In the case of some accretion disks, where viscosity arises mainly due to the
magnetic coupling and the accretion rate is low; the neutrons, after being produced by
the dissociation of deuterium nuclei, do not accrete rapidly. They are charge neutral
and are not coupled by magnetic viscosity. But all the other elements (ion, proton
etc.) will fall towards the black hole under the influence of magnetic viscosity. Here
as the radius of the disk decreases neutron abundance in each radius increases and at
a certain point abundance gets maximum value i.e., the peak attains, then again up
to black hole horizon abundance decreases monotonically. Although the process was
started with zero abundance of neutron, at the end, with steady condition, prevailing
the neutron abundance could be as high as 10% at the peak. Thus a ‘Neutron Torus’
is formed in the disk. Neutrons of this torus interact with freshly accreted matter

and enhance neutron rich isotopes.
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2 Evolution of Accretion Disk Models

Before going into details of nucleosynthesis in accretion disk we would like to discuss
the evolution of the disk models. We describe how the basic equations of the disk
are improved with improved understanding of the accretion process. Here we choose
the units of distance, time and velocity to be 2GM/c?, 2GM/c® and c, respectively
where, G is the gravitational constant, M is the mass of the central object and ¢ is

the velocity of light.

2.1 Bondi Flow

The process by which the matter is being captured by the gravitational object is called
accretion. When matter with angular momentum falls into the central gravitating
object a disk like structure called accretion disk is formed around the compact object
as was explained in earlier Section. In 1952, Bondi (1952) studied the spherical
accretion where matter falls without any angular momentum. This is known as Bondi
Flow. Before we understand the spherical accretion solution onto a black hole it is
easier to discuss the flow on a Newtonian star.

The steady-state radial momentum equation of motion of this infalling matter is
given by

dd 1dp 1

b ldp 1 _ 112
19dr+pdr+r2 0, (112)

where, 9 is radial speed, p is the density, P is the isotropic pressure, r is the radial
coordinate of the infalling matter.

The equation of continuity can be written as,

——(pdr?) = 0. (1.13)



We are considering adiabatic flow with equation of state P = Kp", where « is chosen
constant called adiabatic index, K is measuring the entropy of the flow. Considering

all these informations and integrating above energy momentum equation we get

1 1
E= —2-192 + na® — - = Constant, n = ;%T (1.14)
The mass flux is obtained as
M = por? (1.15)
which is basically baryon number conservation equation.
Now using p = (,7“;?)“, Eqn. (1.15) becomes
M = a®9r?. (1.16)

Then M = M~"K™ is conserved in the flow. Chakrabarti (1990b) refers this quantity
as the ‘accretion rate’ and later (Chakrabarti 1996a) ‘entropy accretion rate’. From

Eqn. (I.14) and (I.15) we get (Chakrabarti 1990b)
== (1.17)

From the sonic point condition we get J, = a., 7. = 5};5
Here, subscript ¢ is referred as critical point. 7. is called sonic point since no
disturbance created within this radius can cross this radius (also known as the sound
horizon) and escape to a large distance. This is analogous to the event horizon of a
black hole since no electromagnetic disturbance can escape outside that horizon.
The relativistic equations governing the flow around a black hole are very com-

plicated. However, if one chooses the central black hole to be the Schwarzschild

type (zero angular momentum) and uses Paczynski-Wiita pseudo-potential concept
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(Paczyriski & Wiita 1980) the form of basic radial momentum equation same as that
of the Newtonian star, except that the gravitational potential term is replaced by
_ﬁrL—T)' If one chooses this potential in Newtonian equation, the geometry around a
Schwarzschild black hole is mimicked. The results in exact black hole geometry and
using this potential become similar with very minor difference.

The origin of the analytical form of the potential can be understood as follows:

If we calculate the Keplerian angular momentum in Schwarzschild geometry we get

(Shapiro & Teukolsky 1983)
3
) r

A= — [.18
K7 ofr —1)2 (L18)
However, using the potential mentioned above, one can calculate the centrifugal force

which balances gravity from:

M (PW) _ 1 )
rd 2(r — 1)2°

(1.19)

Where (PW) indicates Keplerian angular momentum obtained using the potential
above. We note that both the angular momentum distributions are identical.

Using this potential, the energy equation can be written for black hole accretion
as

1, 1
== _——= tant. 1.2
E 219 + na =D Constan (1.20)

The mass flux equation is same as Eqn. (1.15). Now from Eqn. (I1.20) and (1.15) we

get
2a°

& _ s T

— = 2 -
dr & —

(L21)

SIE

For the sonic point condition we get

do=a.and r, =1+ 871?5 + 4 /3;11—5 + 541; (Chakrabarti 1990b).

24



This r. is the sonic location. If a. is allowed to infinity, the sonic point stays at the
horizon, namely at r = 1 as in the case of Schwarzschild geometry. Other properties

are similar to the Bondi solution in Newtonian geometry.

2.2 Thin Accretion Disk

So far only spherical accretion flows have been discussed. In those cases the infall
velocity is very high so the density is very low for a given accretion rate. When the
flow has some angular momentum the inflow velocity becomes smaller and density
is much higher. In this case the infall time becomes higher and viscosity has time
to dissipate angular momentum and energy except very close to the black hole. As
matter loses angular momentum, it sinks deeper into the potential well and radiates
more efficiently. The actual efficiency depends on viscosity and cooling process inside
the disk.

In the case of a binary system, when one of the components is compact, the
companion is stripped of its matter due to the tidal effect. The matter with angular
momentum falls towards the central body as the angular momentum is removed by
viscosity. The flow encircling the compact object forms a quasi-spherical structure
around it, preferably in the orbital plane. This quasi-stationary structure is commonly
known as accretion disk. Although it contains very little matter compared to the
binary components but it is the most important ingredient of an accreting binary
system from the observational point of view.

In the case of active galaxies and quasars, matter may be supplied to the central
black hole very intermittently and the angular momentum of the supplied matter is

not necessarily Keplerian. This is because the matter may be originated from the wind
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of star clusters. Also the loosing of the angular momentum may be the result of the
collision with other winds. So the flow is expected to be of low angular momentum,
quasi-spherical and mostly advective.

In the case of thin disk the half-thickness of the disk A(r) << r. The heat
generated by the viscous stress is radiated in the vertical direction so that the disk
becomes cool as kT << GMm,/r in contrary to the case of a spherical accretion
where kT ~ GMm,/r. This means the disks are non-adiabatic. Here M is the mass
of the black hole and m, is the mass of the proton, k is the Boltzmann constant.
So the thin disk is non-adiabatic. The vertical velocity is negligible compared to
the radial and azimuthal velocity. As the accretion rate is assumed to be much lower
compared to the Eddington rate and pressure is neglected, specific angular momentum
distribution is Keplerian. The surface density of the disk ¥ at radius r can be written
as,

h(r)

Y= dz, 1.22
)P (1.22)

where, p is the density at the equatorial plane. Now, by replacing the integral of

products by the products of averages (Matsumoto et al. 1984),
= 2h(r)p. (1.23)

For the Keplerian disk, the stress tensor is

dQ 3
Wep = nr— = ——-nfl [.24
¢ =1nr— 5" (1.24)
where, Keplerian angular velocity Q% = g% and 7 is the coefficient of dynamic vis-

cosity.
Let f, is the viscous stress exerted in the ¢ direction by the fluid element at » on

the neighbouring element at r + dr. This viscous stress is related to the stress tensor
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as fo = —W,4 and
3 3 /GMN\V?
fo=-Wa=gm=5n(35)

(1.25)
To get the steady-state disk solution we need to solve the four sets of equations given
below simultaneously (Chakrabarti 1996b). Also the law of viscosity must be specified
which should transport angular momentum outwards allowing to fall the matter in.
The governing equations for a steady flow are:
(a) Rest mass conservation:
As the flow approaches compact object it is compressed and the density is in-
creased. We assume baryons are conserved; then integrating the continuity equation
we get

M = 27mr¥d = Constant. (1.26)

(b) Angular momentum conservation:
Because angular momentum distribution is Keplerian, infalling of the matter inside
indicates the transportation of angular momentum outwards. This requires significant

viscosity in the disk. The torque applied by the viscous stress is given by
G = f4(2mr2h(r))r = M(GM)Y?(r*/? — r3/?) (1.27)

where, rg is the inner edge of the disk which is assumed at the marginally stable orbit.
(¢) Equation governing the energy conservation:

The viscous heat generated as

2
ot ~ Wro __JelWro (1.28a)
n n
The flux is obtained as
3MGM ro\ /2
F(r)= h(r)Q+ = p— (1 — (70) ) . (1.28Db)
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The luminosity of the disk is

L= / ~ 9F.2nrdr = %GM M (1.28¢)
ro

To

So the luminosity is exactly half the potential energy of the matter at the inner edge
of the disk. This is because of the Keplerian distribution of the matter.
If there is no loss of energy, the rotational velocity can be obtained at the inner

edge of the disk as
%,ggw _ %@ (1.284)
because of the choice of angular momentum distribution. So half of the energy must
come out of the disk whatever be the physical viscosity.
(d) Vertical momentum balance:
As mentioned earlier the component of vertical velocity is negligible compared to

other components (radial and azimuthal). The vertical momentum balance equation

in this case becomes:

1dP GM =
— = - [.2
p dz r¢ r (1-29a)
Letting, AP ~ P and Az ~ h(r), we get h(r) ~ 4. Thus,
h(r) ., @ (1.29b)

r s’
where a, is adiabatic sound speed. Since we choose h(r) << r (thin disk condition},
the azimuthal flow is supersonic. In the case of viscous flow the viscous stress can be
written as

fs = =W, ~ P = total pressure on the matter.

So in general fy = oP with a < 1. This is the o disk prescription of Shakura &
Sunyaev (1973).
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The standard accretion disk model is useful to explain the observations in binary
systems and active galaxies (Pringle 1981; Shapiro & Teukolsky 1983; Frank et al.
1992). As in this model the advective term is not accounted correctly the disk is
terminated at the marginally stable orbit and the inner boundary condition is not

made to satisfy correctly.

2.3 Thick Accretion Disk

Here, the accretion rate is considered high (M >> M Edd). The pressure is incorpo-
rated to find the dynamical structure of the disk and determination of the thermo-
dynamical quantities inside the disk. The presence of radiation pressure makes the
disk geometrically thick (h(r) ~ r). After incorporating the radiation pressure term

the radial Euler’s equation becomes,

d9 1dP )\
e WA = L.
- + Py + F(r)=0 (1.30)

where, F'(r) is the gravitational force and A is the specific angular momentum. Ig-

noring the advective term 19%? we get (Chakrabarti 1996b)

r3dP

A <r3F(r) ?E«')‘ (1.31)

Here, the angular momentum is higher (lower) than that of Keplerian distribution

if pressure gradient term is positive (negative). The term is significant when QTM— ~

f;— ~ a?, where @ is sound speed. Maraschi et al. (1976) first studied quantitatively
the effect of radiation pressure on angular momentum distribution. Paczynski and his
collaborators (Paczynski & Bisnovatyi-Kogan 1981; Paczydski & Muchotrzeb 1982)

included the advection and pressure effects in the transonic accretion disks but they

did not perform any systematic study. Global solutions for thick accretion disk were
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only possible when advection term was dropped. Some full general relativistic exact
solution for thick accretion disk are done by Chakrabarti (1985).

In the case of thick accretion disk, the force acting on blob of matter inside it are
described as: the gravitational force acts radially inwards and the centrifugal force
acts in a direction normal to the angular momentum vector outwards. The net force
is acted along the effective gravity. To maintain hydrostatic equilibrium a force of

equal magnitude due to the pressure gradient must act opposite to this direction.

2.4 Modern Accretion Disk

Observation of Cyg X-1 in the early seventies appears to indicate that it emits X-
rays in two states (Agrawal 1972; Tananbaum 1972). Inner optically thin region is
thought to emit hard X-rays and the outer optically thick flow is thought to emit
soft X-rays (Thorne & Price 1975). Ichimaru (1977) showed that the advection is
important close to the black hole and obtained a new optically thin solution which
includes heating, cooling and advection. Ichimaru found that depending on outer
boundary the solution can go over to the optically thick and thin branch. However,
there was no global solution. In case of inviscid adiabatic flow an example of global
solution was provided (Fukue 1987) where study of shocks similar to that in solar
winds and galactic jets was made.

In the so called ‘Slim-Disk’ model (Abramowicz 1988) using local solutions insta-
bilities near the inner edge of the disk are removed with the addition of advective
term. This was done in optically thick limit. Chakrabarti (1990a,b) first obtained
satisfactory global solution of the governing equation in the optically thick or thin

limit including advection, viscosity, heating and cooling in the limit of isothermality
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condition. Here single temperature disk models of which are Keplerian far away were
considered.

The accretion onto central black holes in binary systems and in active galaxies
and quasars the angular momentum of the flow need not be Keplerian everywhere. In
the binary system, matter could be accreted both through the winds as sub-Keplerian
flow and through the Keplerian flow. In the case of low mass X-ray binary (LMXB)
systems where the winds may absent, the sub-Keplerian matter could still be produced
from Keplerian flow close to the black hole. In an active galaxy, the same situation
may prevail although in these cases matter is accreted solely from the winds of the
stars, very far away which has very little angular momentum. The sub-Keplerian flow
whether it originates from Keplerian disk or not will have significant velocity, since
the centrifugal pressure is not sufficient to overcome gravity. The sub-Keplerian flow
first accretes quasi-spherically with infall time-scale similar to the free-fall time-scale
as tinsan ~ r/0s; ~ r>* until the specific angular momentum of the flow becomes
comparable to the local Keplerian angular momentum i.e., A*(r) ~ M (r). At this
point, r ~ A%(r), the low may be virtually stopped by the centrifugal barrier and a
standing shock may form. After that flow continues, it attains supersonic speed and
falls into the black hole.

Now we will study the transonic flows in a realistic astrophysical system. We
choose the equation of motion in equatorial plane of the central object but the flow
is in hydrostatic equilibrium in the transverse direction. We assume a thin, rotating,
adiabatic accretion or wind flow near a compact object. The matter flows through
the disk in a spiral path. Since matter is assumed to move in equatorial plane in

vertical equilibrium, the position coordinate is expressed in terms of single cartesian-
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like coordinate z in place of r to describe the motion of the incoming flow. The basic
equations of the flows as follows (Chakrabarti 1989):

(a) The energy conservation equation can be written as

PN 1
=—4n ——
g T T T oz —1)

(1.32)
As previous, we use the Paczynski-Wiita pseudo-potential concept.
(b) The mass flux conservation equation (apart from the geometric factor) is given

by
M = dpzh(z). (1.33)
h(z) is half thickness of the disk defined as h(z) = az'/%(x — 1) exactly same as

defined earlier but here we use coordinate « in place of r.

As usual we write the mass conservation equation in terms of ¥, z and a as
M =9a%**(z - 1), q¢=2n+1. (1.34)

This M (x MK™) is called entropy accretion rate which may not be constant at the
shock location due to generation of entropy.
As in a Bondi flow, doing sonic point analysis, we get

o= DO =N
¢ vel(bz, —3)

2 _ 2 =
V9 =va., where v =

and a (1.35)

The energy of the flow E with angular momentum X passing through critical point
z. is given by,

V[ _Un+de-D],  (tDe I (1.36)

=50 (z.—3) | (ee-D(Ew.—3) 2(ec—1)

So we can conclude that there can be more than one critical points for particular

energy and angular momentum.
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From Eqn. (1.35) as a? is always greater than zero, the angular momentum at
the critical point must be less than the Keplerian value. Although we started with
three conserved quantities namely E, M and ), not all of them can be specified
independently if the flow is transonic. This is because as we have three unknowns
#(z), a(z) and z. we need three equations to solve them uniquely. Together with the
two transonic conditions as Eqn. (1.35) we need only one quantity: either energy or
accretion rate. Thus as in the case of Bondi flow, M = M(E, ). In other words,

the parameters for a stationary transonic solution lie on a hypersurface (Chakrabarti

1990b):
F(E,M,)\) = 0. (1.37)

[t can be concluded that, if a compact object is brought in the middle of a cloud
of certain specific energy, then a stationary transonic solution joining infinity to the
compact object selects the amount of matter which'is going to accrete. Thus the
accretion rate is the eigenvalue of the problem. If matter, other than eigenvalue,
is pushed towards the compact object using external force, then the resulting flow
will be non-stationary till it reaches another equilibrium configuration if it exists

corresponding to the new force field.
2.4.1 Shock Formation and Corresponding Conditions

At the shock (Chakrabarti 1989), the flow jumps from supersonic to subsonic branch.
In the case of black hole accretion this is possible if low passes through two critical
points one on each side of shock location z,. A shock is characterised by four quanti-

ties: shock location x4, possible jumps in two independent velocities 9, a and entropy

33



K ie.,

T =, (1.38a)

Aa = ayp(z,) — a_(zs) (1.38b)

AY =9 (xs) —I-(z5) (1.38¢)

AK =K, - K_. (1.38d)

The subscript “—”" and “+” denote quantities before and after the shock respectively.

At the shock the conserved quantities are (Chakrabarti 1989, 1990b),
M, = M._ (1.39a)

Py +py9% = P_+ p_92. (1.39b)

Eqn. (1.39a-b) provides two constraints on these four quantities (Eqn. (1.38a-d)). P
and p denote averaged pressure and density respectively.

We can think of three distinct types of shock corresponding to three extreme phys-
ical situations: Rankine-Hugoniot shock (E, = E_.), isentropic compression waves
(M, = M_) and isothermal shock (a4 = a_) (Chakrabarti 1990b).

In case of Rankine-Hugoniot shock energy is not radiated through the surface
of the flow i.e., radiative cooling mechanism is extremely inefficient. The postshock
temperature is higher. For this type of shock, £ = E_, T4 > T- and sy > s_
(My > M_), where s is the entropy of the flow.

In case of isentropic compression waves, entropy does not change in the flow but
some energy is lost at the discontinuity. The amount of entropy generated at the

shock is comparable to the entropy radiated away. For this type of shock, s, = s_,

E+ < E_. and T+ > T_..
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In the case of isothermal shock radiative cooling is very efficient. Some energy
and entropy are lost from the surface of the flow at the shock location to keep the

postshock temperature equal to its preshock value. For this type of shock, T, = T-,

Ei < E_ and s; < s...

2.4.2 Outflows from the Accretion Disk

It is believed that from the center of active galaxies cosmic radio jets are originated.
Even in so called ‘micro-quasars’ such as GRS 1915+105 which are believed to have
stellar mass black holes (Mirabel & Rodriguez 1994) the outflows are common. Also
collimated outflows in SS433 are well known now (Margon 1984). Here, our approach
to discuss the mass outflow rate is same as Chakrabarti (1999) and Das & Chakrabarti
(1999). Close to the black hole, where infail time-scale x/J(z) is short compared
to the viscous time-scale (unless @ > 1) in the region of last few to couple of ten
Schwarzschild radius angular momentum remains roughly constant. Constant angular
momentum flow introduces large centrifugal force which forms a dense region around
a black hole. This centrifugal pressure supported boundary layer of the black hole
is called CENBOL. As black hole does not has any hard surface, it is the effective
surface layer of the black hole. Chakrabarti (1999) suggested one simple method to
compute the outflow rate assuming that the inflow and outflow are both conical. We
are assuming for the sake of argument that our system is made up of the infalling gas,
the dense boundary layer of the compact object and the outflowing wind. The sub-
Keplerian hot and dense quasi-spherical region forms either due to centrifugal barrier
or due to pair plasma pressure or due to pre-heating effects. The incoming matter

compressed and heated above (the heating is due to the geometric compression at the

CENBOL) comes out from the disk at the CENBOL. If the flow is compressed and
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heated at the centrifugal barrier around a black hole it would also radiate enough to
keep the flow isothermal. Thus following Chakrabarti (1999) we can give a simple
expression for ratio of mass outflow rate and mass inflow rate assuming the flow is
extremely collimated. If R is the compression ratio, ©;, is the solid angle subtended
by the inflow and ©,,; is the solid angle subtended by the outflowing cone one obtains
mass outflow rate as

Mout @in R R2 32 3 R2
Bi=7 _@outZ[R—l] “Pl3TR-1| (1.40)

apart from the geometric factor. The expression is independent of location of the
sonic point and the size of the shock. This is because Newtonian potential is used
throughout thé calculation. As we choose only low luminosity then outflow rate is
independent of accretion rate. For high luminous flow, Comptonization will cool down
the dense region and corresponding mass loss will be negligible. When fully general
relativistic calculations are made these dependency will appear explicitly. Exact and
detailed computations using both the transonic inflow and outflow are in Das (1998)
and Das & Chakrabarti (1999), they computed self-consistently the compression ratio
R.

2.5 Basic Properties of the Advective Disk and Motivation
of Nucleosynthesis Work

Angular momentum in accretion disks around black holes must deviate from a Ke-
plerian distribution, since the presence of ion, radiation or inertial pressure gradient
forces become as significant as the gravitational and centrifugal forces (Chakrabarti

1996a,b; and references therein). The inertial pressure close to a black hole is high,

because, on the horizon, the inflow velocity must be equal to the velocity of light.
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For causality, the velocity of sound must be less than the Velbcity of light. In fact,
in the extreme equation of state of P = %:—p (where ¢ is the velocity of light and
P and p are the isotropic pressure and mass density respectively), the sound speed
is only ¢/v/3. Thus, the flow must pass through a sonic point and becomes su-
personic before entering into the horizon. A flow which must pass through a sonic
point must also be sub-Keplerian (Chakrabarti 1996b and references therein), and
this causes the deviation. If the accretion rate is low, the flow cools down only by
inefficient bremsstrahlung and Comptonization processes, unless the magnetic field is
very high (Shvartsman 1971; Rees 1984; Bisnovatyi-Kogan 1998). This hot flow can
undergo significant nucleosynthesis depending on the inflow parameters. Earlier, in
the context of thick accretion disks calculations of changes in composition inside an
accretion disk were carried out (Chakrabarti et al. 1987; Hogan & Applegate 1987;
Arai & Hashimoto 1992; Hashimoto et al. 1993), but the disk models used were not
completely self-consistent, in that neither the radial motion, nor the cooling and heat-
ing processes were included fully self-consistently. Secondly, only high accretion rates
were used. As a result, the viscosity parameter required for a significant nuclear burn-
ing was extremely low (s < 107*). Here, we do the computation after including the
radial velocity in the disk and the heating and cooling processes. We largely follow
the solutions of Chakrabarti (1996a) to obtain the thermodynamic conditions along a
flow. The results presented here are reported in Mukhopadhyay (1998), Chakrabarti
& Mukhopadhyay (1999), Mukhopadhyay (1999) and Mukhopadhyay & Chakrabarti
(2000).

Close to a black hole horizon, the viscous time-scale is so large compared to the

infall time-scale that the specific angular momentum X of matter remains almost con-
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stant and sub-Keplerian independent of viscosity (Chakrabarti 1996a,b; Chakrabarti
1989). Because of this, as matter accretes, the centrifugal force A2/z® increases much
faster compared to the gravitational force GM/z? (where G and M are the gravi-
tational constant and the mass of the black hole respectively, A and z are the di-
mensionless angular momentum and the radial distance from the black hole). As a
result, close to the black hole (at z ~ A?/GM) matter may even virtually stop to
form standing shocks (Chakrabarti 1989). Whether Shock is formed or not, as the
flow slows down, the kinetic energy of matter is converted into thermal energy in the
region where the centrifugal force dominates. Hard X-rays and v-rays are expected
from here (Chakrabarti & Titarchuk 1995). In this centrifugal pressure supported hot
‘boundary layer’ (CENBOL) of the black hole (Chakrabarti et al. 1996) we find that
for low accretion rates, *He of the infalling matter is completely photo-dissociated
and no "L could be produced. In this region, about ten to twelve percent of matter
is found to be made up of pure neutron for the low accretion hot cases. These neu-
trons should not accrete very fast because of very low magnetic viscosity associated
with neutral particles (Rees et al. 1982) while protons are dragged towards the cen-
tral black hole along with the field lines. Of course, both the neutrons and protons
would have ‘normal’ ionic viscosity, and some slow accretion of protons (including
those produced after neutron decay) would still be possible. If the ionic viscosity is
less compared to magnetic viscosity neutron disk and torus may form. In contrast
to neutron stars, the neutron disks which we find are not dense. Nevertheless, they
can participate in the formation of neutron rich isotopes and some amount of deu-

terium. They can be eventually dispersed into the galaxy through jets and outflows,

which come out from CENBOL (Chakrabarti 1999; Das & Chakrabarti 1999), thereby
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possibly of influencing the metalicity of the galaxy.

On the equatorial plane, where the viscosity is the highest, a Keplerian disk devi-
ates to become sub-Keplerian very close to the black hole (Chakrabarti & Titarchuk
1995; Wiita 1982). Away from the equatorial plane, viscosity is lower and the flow
deviates from a Keplerian disk farther out. This is because the angular momentum
transport is achieved by viscous stresses. Weaker the viscosity, longer is the distance
through which angular momentum goes to match with a Keplerian disk. When the
viscosity of the disk is decreased on the whole, the Keplerian disk recedes from the
black hole forming quiescence states when the objects become very faint in X-rays
(Ebisawa et al. 1996). Soft photons from the Keplerian disk are intercepted by
this sub-Keplerian boundary layer (CENBOL) and photons are energized through
the Compton scattering process. For higher Keplerian rates, electrons and protons
cool down completely and the black hole is in a soft state (Tanaka & Lewin 1995).
Here, bulk motion Comptonization produces the power-law tail of slope o ~ 1.5
(Chakrabarti & Titarchuk 1995; Titarchuk et al. 1997). For lower Keplerian rates,
the Compton cooling is incomplete and the temperature of the boundary layer remains

close to the virial value,

1 2%y i [ 10
~ — =L =5, —_— . 1.41
T, SEmeC 5.2 x 10 Y K (1.41)

In this case, bremsstrahlung is also impoftant and the black hole is said to be in a
hard state with energy spectral index o (F, ~ v=%, where v is the frequency of the
photon) close to 0.5. In Eqn. (1.41), m, is the mass of the proton, z, = 2GM/c? is
the Schwarzschild radius of the black hole. In this low Keplerian rate, electrons are

1/2

cooler typically by a factor of (m,/m.)!/* unless the magnetic field is very high.

Present high energy observations seem to support the apparently intriguing as-
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pects of black hole accretion mentioned above. For instance, the constancy of (sep-
arate) spectral slopes in soft and hard states has been observed by many people
(Ebisawa et al. 1994; Miyamoto et al. 1991; Ramos et al. 1997; Grove et al. 1998;
Vargas et al. 1997). ASCA observations of Cygnus X-1 seem to indicate that the
inner edge of the Keplerian component is located at around 15z, (instead of 3z,)
(Gilfanov et al. 1997). HST FOS observations of the black hole candidate A0620-00
in quiescent state seem to have very faint Keplerian features (McClintock et al. 1995)
indicating the Keplerian component to be farther out at low accretion rates. Bulk
motion Comptonization close 'to the horizon has been considered to be a possible
cause of the power-law tail in very soft states (Crary et al. 1996; Ling et al. 1997,
Cui et al. 1997). However, some alternative modes may not be ruled out to explain
some of these features.

This observed and predicted dichotomy of states of black hole spectra motivated us
to investigate the nuclear reactions thoroughly for both the states. We use 255 nuclear
elements in the thermo-nuclear network starting from neutron, proton, deuterium etc.
till ?Ge and the nuclear reaction rates valid for high temperatures. We assume that
accretion on the galactic black hole is taking place from a disk where matter is supplied
from a normal main sequence star. That is, we choose the abundance of the injected
matter to be that of the sun. In reality initial abundance may be chosen from some
older stars or G/K type stars. Of course, when the disk temperature is very high, the
result is nearly independent of the initial composition.

Following Chakrabarti (1997) and Chakrabarti (1998c), in Fig. 1.1 we show one
cartoon picture of accretion and winds in the advective region around a compact

object. The region is intercepted by photons.
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Centrifugally and Thermally driven outflows

N

Compact object

CENBOL

Seopelis?!
ow

. Centrifugal barrier

Fig. I.1. Cartoon diagram of accretion flows, winds in Quasi-spherical sub-Keplerian flow
around compact object. The centrifugal pressure supported boundary layer CENBOL and
funnel wall for outflows are shown in the picture.
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As the hot matter approaches a black hole, photons originated by the bremsstrahlung
process, as well as those intercepted from the Keplerian disk, start to photo-dissociate
deuterium and helium in the advective region if they achieve their required temper-
ature. There also proton-capture reactions take place. If the initial temperature,
when matter deviates from Keplerian to sub-Keplerian region is comparatively low
then dissociation does not take place initially, only proton-capture reactions start.
As matter approaches towards the black hole its temperature increases and attends
the favourable temperature to start the dissociation reactions. Mainly dissociation of
three elements take place. First deuterium starts to burn then with the increase of
temperature dissociation of 3He starts. At much higher temperature *He comes into
the game and starts to burn. There are two challenging issues at this stage which we
address first: (a) Thermodynamic quantities such as density and temperature inside
a disk are computed using a thin disk approximation,'.i.e., the vertical height hA(z) at
a radial distance z very small compared to z (h(z) << z), and assuming the flow
to be instantaneously in vertical equilibrium. However, at a low rate, it is easy to
show that the disk is optically thin in the vertical direction foh(x) podh < 1 (o is the
Thomson scattering cross-section). However, soft photons from the Keplerian disk
enter radially and [* podr > 1, generally. In fact, this latter possibility changes
the soft photons of a few KeV from a Keplerian disk to energies up to ~ 1MeV by
repeated Compton scattering (Sunyaev & Titarchuk 1980; Chakrabarti & Titarchuk
1995) while keeping the photon number constant. The spectrum of the resultant
photons emitted to distant observers becomes a power law F, ~ v~% instead of a
blackbody, where o ~ 0.5 for hard state and a ~ 1.5 for soft states of a black hole.

(b) Now that the spectrum is not a blackbody, strictly speaking, the computation of
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photo-disintegration rate that is standard in the literature (which utilizes a Planckian
spectrum) cannot be followed. Fortunately, this may not pose a major problem. As
we shall show in.§3.3, the standard photo-disintegration rate yields a lower limit of
the actual rate that takes place in the presence of power-law photon spectra. Thus,
usage of the correct rate obtainable from a power-law spectrum would, if anything,
strengthen our assertion about the photo-disintegration around a black hole. After
photo-disintegration by these hard photons, all that are left are protons and neutrons.
The exact location where the dissociation actually starts may depend on the detailed
photon spectrum, i.e., optical depth of this boundary layer and the electron tem-
perature (Mukhopadhyay 1998; Mukhopadhyay 1999; Chakrabarti & Mukhopadhyay
1999; Mukhopadhyay & Chakrabarti 2000).

2.6 Basic Equations of the Problem

We use well understood model of the accretion flow close to the black hole in sub-
Keplerian region of the disk. To treat with more generalized flow we consider viscous
flow with angular momentum which may be varied with location. The energy is
dissipated in the disk due to presence of viscosity and nuclear burning. We solve the
following equations (Chakrabarti 1996a,b) to obtain the thermodynamic quantities:
(a) The radial momentum equation:

d9 1dP M, — N

— R . 1.42
ﬂdm+pdac+ x3 0 (1422)

This is nothing but Euler’s equation. First term is advective term which actually
gives the information of kinetic energy of the infalling matter. Second term is arised

due to pressure acting on the volume element by the matter itself. Last one is the
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combination of gravitational and centrifugal force terms.

(b) The continuity equation:

d
dz
here, ¥ = h(z)p is the vertically integrated density. It is assumed that the flow

(Sad) = 0, (1.42b)

parameters are unchanged in the vertical direction.

(¢) The azimuthal momentum equation:

dX\(z) N __1_i
dz Yz dz

W4 is the azimuthal pressure which is basically viscous stress in this case.

9 (2?Way) = 0, (L.42¢)

(d) The entropy equation:

ds _ h(z)d dp Py A4 N . _
ZUde B Fg—l(dx Flp) - ma9+Q'ﬂuc+Qvis_Q
= Q" — g(z,m)Q" = f(e,2,m)Q" (L42d)

Since the fluid is considered as viscous, energy is being dissipated in the flow. Here,
Q™ and Q~ are the viscous heat gained and lost by the flow where for simplicity @~ is
chosen proportional to Q™" with proportionality constant g(e, z,m) =1~ f(a,z,m),
where f(a,x,m) is the cooling factor and m is the mass accretion rate in unit of
the Eddington rate. Here, we have included the possibility of magnetic heating @,
(due to stochastic fields; Shvartsman 1971; Shapiro 1973; Bisnovatyi-Kogan 1998)
and nuclear energy release Q. as well (Taam & Fryxell 1985) while the cooling
is provided by bremsstrahlung, Comptonization, endothermic nuclear reactions and

neutrino emissions. A strong magnetic heating might equalize ion and electron tem-

peratures (Bisnovatyi-Kogan 1998) but this would not affect our conclusions. On the
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right hand side, we wrote @* collectively proportional to the cooling term for sim-
plicity (purely on dimensional grounds). We use the standard definitions of I’ (Cox

& Giuli 1968),
I'y~g

Pg =1 + m—, (143&)
(4-38)"(v— 1)
T =44+ 1.43b
V=t T D = B) (1430
and J(z) is the ratio of gas pressure to total pressure as,
B(=) PET iy (1.44)

= pkT/pm, + aT*/3 + B(z)/4r’
Here, @ is the Stefan constant, k is the Boltzmann constant, m, is the mass of the

proton, p is the mean molecular weight. Using the above definitions, Eqn. (1.42d)

becomes,

4-36[1dT _1d8 To—ldp) _ (0o o

=B {Tde pBdz p dz

Q" _ fazdn
dPh(z) v dz’

(1.42¢)

Here, we shall concentrate on solutions with constant 3. We will keep (3 constant
throughout the particular cases. Actually, we study in detail only the special cases,
g~ 0and B ~ 1, so we shall liberally use I'; = % = ['3 and '} = v = ['5 respectively.
The condition 8 ~ 0 implies the radiation dominated flow i.e., relativistic flows of
matter. We note here that unlike self-gravitating stars where 8 = 0 causes instability,
here this is not a problem. Although close to the black hole flows must be relativistic
whatever be its initial velocity (i.e., 3 must be %) and very far away from the black
hole flows need not be relativistic (so 8 need not be £) but here we have considered
$ constant throughout the particular cases. Similarly, we shall consider the cases

for f(a,xz,m) = constant, though as is clear, f ~ 0 in the Keplerian disk region

and probably much greater than 0 near the black hole depending on the efficiency
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of cooling (governed by m, for instance). We use the Paczyriski-Wiita potential
(Paczyriski & Wiita 1980) to describe the black hole geometry. W, is the vertically
integrated viscous stress as mentioned above, h(z) ~ az'/?(z 1) is the half-thickness
of the disk at radial distance z (both measured in unit of 2GM/c?) obtained from
vertical equilibrium assumption (Chakrabarti 1989), where a is the sound speed (a? =
vP/p), A(z) is the specific angular momentum, ¥ is the radial velocity, s is the entropy
density of the flow. The constant « above is the Shakura-Sunyaev (1973) viscosity
parameter used to express stress tensor in terms of the total pressure Il due to radial
motion (Il = W + ¥92, where W and ¥ are the integrated pressure and density
respectively (Chakrabarti & Molteni 1995) in the viscous flows. With this choice,
W4 keeps the specific angular momentum continuous across of the shock. Here we
will use MIxed Shear Stress (MISStress) prescription (Chakrabarti 1996a,b). The
stress tensor can be written in two ways. On the one hand it can be defined as
Wee(1) = —all. On the other hand, it can be defined as Wy4(2) = nz%2. Again the
expression of heat generation is defined as Q* = W2,/n. In this expression if we use
only W4(1), no information of actual shear is introduced. If only W54(2) is used, the
equations become difficult to solve. So we use in heating expression, the combination

of both W,4(1) and Wy4(2). So the viscous heat generation can be written as

o = a(W + Zv?)A

1) (1.45)

From the continuity equation (Eqn. (1.42b)), we find the mass accretion rate to be

given by

M = 2rph(z)Vz, (1.46)

here, 2 is the geometric factor.
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From the azimuthal momentum Eqn. (1.42¢),

z 2
A= = ala? : |
A aga <37_1+M), (1.47)

where, M = ¥/a is the Mach number of the flow and X, is the specific angular
momentum at the inner edge of the flow, i.e., at the horizon.

For a complete run, we supply the basic parameters, namely, the location of the
sonic point through which the flow must pass just outside the horizon z;,, the specific
angular momentum at the inner edge of the flow A;,, the polytropic index =, the ratio
f of advected heat flux Qt — Q™ to heat generation rate Q¥, the viscosity parameter
o and the accretion rate . The derived quantities are: zx where the Keplerian
flow deviates to become sub-Keplerian, the ion temperature T,, the flow density p,
the radial velocity v and the azimuthal momentum A of the entire flow from zx
to the horizon. Temperature of the ions obtained from above equations is further
corrected using a cooling factor Fg,mp, obtained from the results of radiative transfer
of Chakrabarti & Titarchuk (1995). Electrons cool due to Comptonization, but they
cause the ion cooling also since ions and electrons are coupled by Coulomb interaction.
Fcomp, chosen here to be constant in the advective region, is the ratio of the ion
temperature computed from radiation-hydrodynamic (Chakrabarti & Titarchuk 1995)
and hydrodynamic (Chakrabarti 1996a) considerations. In this way at each radius

we can have the information of disk parameters.
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3 Nucleosynthesis in Accretion Flows

Here, we mainly study nucleosynthesis in disks where the photo-dissociation may or
may not be complete and other reactions may be important, and show that depend-
ing on the accretion parameters, abundances of new isotopes may become abnormal
around a black hole in accretion flows. Thus, observation of these isotopes may give
a possible indication of black holes at the galactic center or in a binary system.

Earlier, Chakrabarti (1986) and Chakrabarti et al. (1987) initiated discussions
of nucleosynthesis in sub-Keplerian disks around black holes and concluded that for
very low viscosity (o parameter less than around 107*) and high accretion rates
(typically, ten times the Eddington rate) there could be significant nucleosynthesis
in thick disks. Radiation-pressure-supported thick accretion flows are cooler and
significant nucleosynthesis was not possible unless the residence time of matter inside
the accretion disk was made sufficiently high by reducing viscosity. The conclusions
of this work were later verified by Arai & Hashimoto (1992) and Hashimoto et al.
(1993).

However, the theory of accretion flows which contains a centrifugal-pressure-
supported hotter and denser region in the inner part of the accretion disk has been
developed more recently (Chakrabarti 1990c; Chakrabarti 1996a). The improvement
in the theoretical understanding can be appreciated by comparing the numerical sim-
ulation results done in the eighties (Hawley et al. 1984, 1985) and in the nineties
(Molteni et al. 1994; Molteni et al. 1996; Ryu et al. 1997). Whereas in the eighties
the matching of theory and numerical simulations was poor, the matching of the re-
sults obtained recently is close to perfect. It is realized that in a large region of the

parameter space, especially for lower accretion rates, the deviated flow would be hot
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and a significant nuclear reaction is possible without taking resort to very low viscos-
ity. Because of high viscosity residence time of the infalling matter may short but due
to very high temperature (~ 10'°K) significant nuclear reactions mainly dissociation
of elements take place.

We arrive at a number of the important conclusions: (a) Significant nucleosyn-
thesis is possible in the accretion flows. Whereas most of the matter of modified
composition enters inside the black hole, a fraction may go out through the winds
and will contaminate the surroundings in due course. The metalicity of the galaxies
may also be influenced. (b) In some parameter regions, nuclear energy release or
absorption may be of same order or greater than the energy release or absorption due
to viscous effect of the disk. Generation or absorption of energy due to exothermic
and endothermic nuclear reactions could seriously affect the stability of a disk. (c)
Hot matter is unable to produce Lithium (“L:) or Deuterium (D) since when the flow
is hot, photo-dissociation (photons partially locally generated and the rest supplied
by the nearby Keplerian disk (Shakura & Sunyaev 1973) when the region is optically
thin) is enough to dissociate all the elements completely into proton and neutron.
Even when photo-dissociation is turned off (low opacity cases or when the system
is fundamentally photon-starved) Li was not found to be produced very much. (d)
Most significantly, we show that one does not require a very low viscosity for nucle-
osynthesis in contrary to the conclusions of the earlier works in thick accretion disk
(Chakrabarti et al. 1987).

We already have presented in §2.6 the basic equations which govern accretion
flows around a compact object. Since we are interested to study the nucleosynthesis

around black hole only we will find the solution of the equation for general compact
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objects by imposing boundary condition for black hole. In §3.1 we present a set of
solutions of these equations which would be used for nucleosynthesis work. First of
all we compute pure thermodynamic quantities. Then on this background (knowing
velocity, density, sound speed, viscous energy etc. at each radius) when matter falls
we compute the energy due to nuclear reactions to check whether it is comparable
or not with viscous energy in the disk. When nucleosynthesis is insignificant with
respect to the viscous dissipation, we compute thermodynamic quantities ignoring
nuclear energy generation/absorption, otherwise we include it. We divide all the disks
into three categories: ultra-hot, moderately hot, and cold. We present the results of
nucleosynthesis for these cases separately. We find that in ultra-hot cases, the matter
is completely photo-dissociated. In moderately hot cases, proton-capture processes
along with dissociation of deuterium and *He are the major processes. In the cold
cases, no significant nuclear reactions gd on, only the proton capture reactions of
very small order take place. Then we discuss the stability properties of the accretion
disks in presence of nucleosynthesis and conclude that only the very inner edge of the
flow is affected. In those unstable cases, in the inner edge of the disk nuclear energy
becomes comparable with viscous energy to affect the disk but the outer region is
still unaffected and the disk is stable. Nucleosynthesis m#y affect the metallicities of

the galaxies as well as Lt abundance in companions in black hole binaries.

3.1 Typical Solutions of Accretion Flows

In our work below, we choose a Schwarzschild black hole i.e., the black hole is non-
rotating and space-time is spherically symmetric. We also choose the CGS unit when

we find it convenient to do so. The nucleosynthesis work is done using CGS unit and
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the energy release rates are in that unit as well. The location where the flow deviates
from a Keplerian disk will depend on the cooling and heating pr’ocesses (which depend
on viscosity). Several solutions of the governing equations (see Eqn. 1.42(a-e)) are
given in Chakrabarti (1996a). By and large, we follow this paper to compute ther-
modynamical parameters along a flow. Due to computational constraints, we include
energy generation due to nuclear reactions (Qnuc) only when it is necessary (namely,
when |@Qnuc| is comparable to energy genefation due to viscous effects as mentioned
above) and we do not consider energy generation due to magnetic dissipation (due to
reconnection effects, for instance). In Fig. 1.2, we show a series of solutions which we
employ to study nucleosynthesis processes. We plot the ratio A/Ax (Here, X and A
are the specific angular momentum of the disk and the Keplerian angular momentum
respectively) as a function of the logarithmic radial distance. The coeflicient of the
viscosity parameters are marked on each curve. The othér parameters of the solution
are in TABLE 1.2. These solutions are obtained with constant f = 1—Q~/Q™* and Q*
includes only the viscous heating. In presence of significant nucleosynthesis, the solu-
tions are obtained by choosing f = 1 — Q7 /(Q + Qnuc), Where Qnyc is the net energy
generation or absorption due to exothermic and endothermic reactions. The motiva-
tion for choosing the particular cases are mentioned in the next section. At z = zx,
the ratio A/Ax = 1 and therefore zx represents the transition region where the flow
deviates from a Keplerian disk. First, note that when other parameters (basically,
specific angular momentum and the location of the inner sonic point) remain roughly
the same, g changes inversely with viscosity parameter an (Chakrabarti 1996a).
(The only exception is the curve marked with 0.01. This is because, it is drawn for

v = 5/3; all other curves are for ¥ = 4/3). From the figure it is clear that as the
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viscosity parameter decreases, residence time of the matter in the disk increases, size
of the sub-Keplerian region of the disk increases i.e., sub-Keplerian matter takes more
time to match with Keplerian region. If one assumes, as Chakrabarti & Titarchuk
(1995) and Chakrabarti (1997) did, that the alpha viscosity parameter decreases with
vertical height, then it is clear from the general behaviour of Fig. 1.2 that zx would
go up with height. The disk will then look like a sandwich with higher viscosity
Keplerian matter flowing along the equatorial plane. As the viscosity changes, the
sub-Keplerian and Keplerian flows redistribute (Chakrabarti & Molteni 1995) and
the inner edge of the Keplerian component also recedes or advances. This fact that
the inner edge of the disk should move in and out when the black hole goes into soft
or hard state (as observed by, e.g., Gilfanov et al. 1997; Zhang et al. 1997) is thus
naturally established from this disk solution.

In Chakrabarti (1990b) and Chakrabarti (1996a), it was pointed out that in a
large region of the parameter space, especially for intermediate viscosities, centrifugal-
pressure-supported shocks would be present in the hot, accretion flows. In these cases
a shock-free solution passing through the outer sonic point was present. However,
this branch is not selected by the flow and the flow passes through the higher entropy
solution through shock and the inner sonic point instead. This assertion has been
repeatedly verified independently by both theoretically (Yang & Kafatos 1995; Nobuta
& Hanawa 1994; Lu & Yuan 1997; Lu et al. 1997) and numerical simulations (with
independent codes, Chakrabarti & Molteni 1993; Sponholz & Molteni 1994; Ryu et
al. 1995; Molteni et al. 1996 and references therein). When the shock forms, the
temperature of the flow suddenly rises and the flow slows down considerably, raising

the residence time of matter significantly. This effect of shock-induced nucleosynthesis
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Fig. 1.2. Variation of A/Ag with logarithmic radial distance for a few solutions which are
employed to study nucleosynthesis. The viscosity parameter oqy is marked on each curve.
¢ = rx where A\/Ag = 1, represents the location where the flow deviates from a Keplerian
disk. Note that except for the dashed curve marked 0.01 (which is for v = 5/3, and the rest
are for ¥ = 4/3), 2k generally rises with decreasing aqm. Thus, high viscosity flows must
deviate from the Keplerian disk closer to the black hole.
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is also studied in the next sub-section and, for comparison, the changes in composition
in the shock-free branch were also computed, although it is understood that the
shock-free branch is unstable. Our emphasis is not on shocks per se, but on the
centrifugal-pressure-dominated region where the accreting matter slows down. When
the shock does not form, the rise in temperature is more gradual. We generally follow
the results of Chakrabarti & Titarchuk (1995) and Chakrabarti (1997) to compute
the temperature of the Comptonized flow in the sub-Keplerian region which may or
may not have shocks. Basically we borrow the mean factor Foomps < 1 by which the
temperature of the flow at a given radius z (< zg) is reduced due to Comptonization
process from the value dictated by the single-temperature hydrodynamic equations.
This factor is typically 1/30 ~ 0.03 for very low (5 0.1) mass accretion rate of the
Keplerian component (which supplies the soft photons for the Comptonization) and
around 1/100 ~ 0.01 or less for higher Keplerian accretion rates. In presence of

magnetic fields, some dissipation is present due to reconnections. Its expression is

Qmag = I%fr’zpv (Shvartsman 1971; Shapiro 1973). We do not assume this heating
here.

The list of major nuclear reactions such as pp chain, CNO cycle, proton capture,
alpha («) processes, photo-dissociation etc. which may take place inside a disk are
given in §1.5. Due to the hotter nature of the sub-Keplerian disks, especially when the
accretion rate is low and Compton cooling is negligible, the major process of hydrogen
burning is some proton capture process (which operates at T 2 0.5x10°K) and mostly
(p, ) reactions as opposed to the pp chain (which operates at much lower temperature

T ~ 0.01 — 0.2 x 10°K) and CNO cycle (which operates at T' ~ 0.02 — 0.5 x 10°K)

as was pointed out earlier.
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Typically, accretion onto a stellar-mass black hole takes place from a binary com-
panion which could be a main sequence star. In a supermassive black hole at a
galactic center, matter is presumably supplied by a number of nearby stars. Because
it is difficult to establish the initial composition of the inflow, we generally take the
solar abundance as the abundance of the Keplerian disk. Furthermore, the Keplerian
disk being cooler, and the residence time inside it being insignificant compared to the
hydrogen burning time-scale, we assume that for £ & zx, the composition of the gas
remains the same as that of the companion star, namely, Sun. Thus our computation
starts only from the time when matter is. launched from the Keplerian disk. Occa-
sionally, for comparison, we run the models with an initial abundance same as the
output of big-bang nucleosynthesis (hereafter referred to as ‘big-bang abundance’).
These cases are particularly relevant for nucleosynthesis around proto-galactic cores
and the early phase of star formations. We have also tested our code with an initial
abundance same as the composition of late-type stars since in certain cases they are
believed to be companions of galactic black hole candidates (Martin et al. 1992, 1994;
Filippenko et al. 1995; Harlaftis et al. 1996).

3.1.1 Selection of Models

In selecting models for which the nucleosynthesis should be studied, the follow-
ing considerations were made. According to Chakrabarti & Titarchuk (1995) and
Chakrabarti (1997), there are two essential components of a disk. One is Keplerian
(of rate rmy) and the other is sub-Keplerian halo (of rate ry). For mg S 0.1 and
my S 1, the black hole remains in hard states. A lower Keplerian accretion rate
generally implies a lower viscosity and a larger g (zx ~ 30 — 1000; see, Chakrabarti

1996a and Chakrabarti 1997). Lower the Keplerian rate means low rate of matter
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coming into the disk. As the matter supply rate is low, energy momentum trans-
fer rate is low which signifies lower value of viscosity parameters. In this parameter
range the protons remain hot, typically, T, ~ 1 — 10 x 10°K or so. This is because
the efficiency of emission is lower (f =1 —Q~/Q* ~ 0.1, where, @+ and @~ are the
height-integrated heat generation and heat loss rates [ergs cm™2 sec™!] respectively.
Also, according to Rees (1984), it is argued that if m/o? < 1 the bremsstrahlung cool-
ing and inverse-Compton cooling are indeed inefficient. So the estimation of m/a? is
a good indication of the cooling efficiency of the hot flow, because high rm/a? means
high rate of supply of matter as well as photon from Keplerian disk and therefore high
rate of cooling.). Thus, we study a group of cases (Group A) where the net accretion
rate . ~ 1.0 and the viscosity parameter o ~ 0.001 —0.1. The Comptonization factor
Feompt ~ 0.03, i.e., the cooling due to Comptonization reduces the mean tempera-
ture roughly by a factor of around 30, which is quite reasonable. Here, although the
density of the gas is low, the temperature is high enough to cause significant nuclear
reactions in the disk. These belongs to moderately hot case.

When the net accretion rate is very low (m < 0.01) such as in a quiescence state of
an X-ray novae, the dearth of soft photon keeps the temperature of the sub-Keplerian
flow to a very high value and a high Comptonization factor Foompt ~ 0.1 could be
used (Group B). Here significant nuclear reaction takes place, even though the density
of matter is very low. Basically, the entire amount of matter is photo-dissociated into
protons and neutrons in this case even when opacity is very low. This belongs to ultra
hot case. It is noted that the number density of photon is much higher than that of
deuterium, helium etc. so, lower accretion rate (lower rate of transfer of soft photon

from Keplerian to sub-Keplerian region) does not make any significant influence on
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dissociation.

In the event where the inflow consist of both the Keplerian (accretion rate my)
and sub-Keplerian (accretion rate ;) matter as the modern theory predicts, there
would be situations where the net accretion rate is high, say m = g + mp ~ 1 = 5,
and yet the gas temperature is very high (T > 10°). This happens when viscosity is
low to convert sub-Keplerian inflow into a Keplerian disk. Here, most of the inflow is
in the sub-Keplerian component and very little (rhy ~ 0.01) matter is in the Keplerian
flow. Dearth of soft photon keeps the disk hot, while the density of reactants is still
high enough to have profuse nuclear reacﬁions. The simple criteria for the cooling
efficiency as pointed was out in previous page (that m/a? > 1 would cool the disk,
see Rees 1984) will not hold since the radiation source (Keplerian disk) is different
from the cooling body (sub-Keplerian disk). Although the accretion rate is high
enough most part of the matter is not coming from the Keplerian region so due to
the lower Keplerian rate soft photons are not profuse enough to cool down the disk.

One could envisage yet another set of cases (Group C), where the accretion rate is
very high {m ~ 10 —100), and the soft photons are so profuse that the sub-Keplerian
region of the disks becomes very cold. In this case, typically, viscosity is very high,
0.2; g becomes low (zx ~ 3 — 10). The efficiency of cooling is very high (Q* ~ Q~,
ie., f ~ 0) almost same as that in Keplerian disk. The Comptonization factor is
low, Feompt S 0.01, the black hole is in a soft state. There is no significant nuclear
reaction in these cases. A small amount of nuclear energy is generated through the
proton capture reactions which is much lower order of magnitude than viscous energy
release. So in this case we can safely neglect the nuclear energy release in the disk. In

the proto-galactic phase when the supply of matter is very high, while the viscosity
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may be so low (say, 10™*) that the entire amount is not accreted, one can have an
ultra-cold accretion flow with Fgompt ~ 1072, In this case also not much nuclear
reaction goes on.

The above simulations have been carried out with polytropic index v = 4/3. In
reality, the polytropic index could be in between 4/3 and 5/3. If v < 1.5 then shocks
would form as in some of the above cases. However, for v > 1.5, standing shocks
would not form (Chakrabarti 1996a). We have included two illustrative examples of
shock-free case with 4 = 5/3 which is very hot and we have presented the result in
Group B. In these cases, the Keplerian component is far away and the intercepted
soft photons are very few. The disk is very hot so that almost all the elements are
photo-dissociated into neutron and proton. Finally the disk consists of neutron and

proton only. This may be called Neutron Disk.
3.1.2 Selection of the Reaction Network

In selecting the reaction network we kept in mind the fact that hotter flows may pro-
duce heavier elements through triple-a and proton and « capture processes. Similarly,
due to photo-dissociation, significant neutrons may be produced. Thus, we consider
a sufficient number of isotopes on either side of the stability line. The network thus
contains neutron, proton, till ?Ge - altogether 255 nuclear species. The network of
coupled non-linear differential equation is linearized and evolved in time along the
solution of Chakrabarti (1996a) obtained from a given set of initial parameters of the
flow. This well proven method is widely used in the literature (see Arnett & Truran
1969; Woosley et al. 1973). Below in TABLE 1.1 we give the list of all nuclear specis

we consider here and their abundance.
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TABLE 1.1

n p ‘He D T
0.0 7.425 x'1071 1 2.380 x 10~ [ 2.948 x 105 0.0
g SHe SHe 1 L1
0.0 2.538 x 1075 0.0 7.337 x 10710 [ 1.055 x 108
83 "Be 8Be %Be 10,
0.0 0.0 0.0 1.916 x 10-10 0.0
llBe 8B QB 10B llB
0.0 0.0 0.0 1.310 x 107° | 5.765 x 10~°
12B 110 12C ISC 14C
0.0 0.0 3.931 x 1073 | 4.755 x 1073 0.0
13N 14N 15N 140 150
0.0 0.439 x 10~ | 3.718 x 10~¢ 0.0 0.0
160 170 180 17F 18F
8.779 x 1073 | 3.545 x 10~° | 2.014 x 10~5 0.0 0.0
19F 70F 21F 1%6 20Ne
4.372 x 107 0.0 0.0 0.0 1.774 x 1073
2lNe 2ZNe 2Ne 20N g 21N g
4.534 x 107° [ 1.429 x 104 0.0 0.0 0.0
2N g BNgq 24N g Mg 2Mgq
0.0 3.578 x 10~° 0.0 0.0 0.0
2%9 24Mg 25Mg 267\49 27Mg
0.0 5.562 x 1074 | 7.302 x 10~% | 8.375 x 10~° 0.0
Mg 234] 244] B4 264]
0.0 0.0 0.0 0.0 0.0
27Al 28Al ‘ 29Al 30Al 2552'
6.257 x 1075 0.0 0.0 0.0 0.0
2663 2755 2864 299 308,
0.0 0.0 7.047 x 10~% | 3.697 x 107° | 2.538 x 10~°
315'1' 7?2‘5'z 28P Q_QP 30P
0.0 0.0 0.0 0.0 0.0
SIP T’QP 33P ?ﬁp 29S
8.801 x 10~° 0.0 0.0 0.0 0.0
BTS 315 325 335 34S
0.0 0.0 4271 x 107* | 3.477 x 107° [ 2.014 x 10~°
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355 3631 375 3701 3301

0.0 8.648 x 10~% 0.0 0.0 . 0.0

C1 *C1 3C1 3C1 3801

0.0 3.793 x 10°¢ 0.0 1.282 x 10~° 0.0

1 L ed] 34y Yy 3BAr

0.0 0.0 0.0 0.0 0.0

364y STAr SBAp 394 W04y
8.609 x 1075 0.0 1.701 x 107 0.0 6.005 x 1010

aAp Ay SR 3K B

0.0 0.0 0.0 0.0 0.0

39K 40K 41[{ 4§K 43[(

3.743 x 107° | 4.804 x 1071° | 2.839 x 10~7 0.0 0.0

74 T 3Ca ¥Ca Ca

0.0 0.0 0.0 0.0 0.0

©Ca A0 20a Ca “WCa
6.464 x 107° 0.0 4.528 x 1077 | 9.684 x 107% | 1.533 x 107°

Ca Cq Cq ¥Ca *Ca

0.0 2.687 x 10~° 0.0 1.493 x 1077 0.0

06 ¢ 4G 42G¢ 43G¢ 49,

0.0 0.0 0.0 0.0 0.0

$6¢ 465, 47G¢ 80 490¢

4.152 x 1078 0.0 0.0 0.0 0.0

505¢ ar; a7y 7y 7y

0.0 0.0 0.0 0.0 0.0

467y T a7 or; 50T
2473 x 1077 | 2.283 x 10~7 [ 2.318 x 107° [ 1.738 x 10~7 [ 1.706 x 10~

51Ty 57y By my a8y

0.0 0.0 0.0 0.0 0.0

% 0y Sty 5%/ 53y

0.0 1.010 x 1079 | 4.093 x 10~7 0.0 0.0

541/ &Cr Cr 54 SIC

0.0 0.0 0.0 7.957 x 107 0.0

SCr SCr S4Cr 55Cr 5Cy

1.589 x 1075 | 1.851 x 107® [ 4.658 x 10~7 0.0 0.0
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SOMn SMn >2Mn S3Mn SMn
0.0 0.0 0.0 0.0 0.0
55Mn 56Mn 57Mn SSMn 52F6
1.427 x 10~° 0.0 0.0 0.0 0.0
53Fe 54Fe 55Fe 56Fe 57Fe
0.0 7.695 x 10~° 0.0 1.262 x 1072 | 3.018 x 10~°
e YFe S0F'e Slpe Co
4.132 x 107° 0.0 0.0 0.0 0.0
*Co *Co Co %0 *Co
0.0 0.0 0.0 0.0 3.623 x 107°
Co 51Co 52Co Co 56Ny
0.0 0.0 0.0 0.0 0.0
N SN N N, N
0.0 5.335 x 107° 0.0 2.112 x 107° | 9.275 x 1077
62N 63N 64y OSN3 66[Ng
2.995 x 10~° 0.0 7.844 x 107 0.0 0.0
¥Cu “Cu Cu 810y Cu
0.0 0.0 0.0 0.0 0.0
Cu “Cu SCu 5y "Cu
6.122 x 10~ 0.0 2.803 x 10~7 0.0 0.0
Cu 7n 60Zn 617 n 527n
0.0 0.0 0.0 0.0 0.0
37n %4Zn Zn 66Zn 57Zn
0.0 1.069 x 10~° 0.0 6.342 x 10~7 | 9.456 x 1078
7 n 97n Zn "Zn %Ga
4.343 x 1077 0.0 1.492 x 108 0.0 0.0
Ga %Ga Ga 5Ga Ga
0.0 0.0 0.0 0.0 0.0
%Ga Ga "Ga Ga Ga
0.0 4.275 x 1078 0.0 2.926 x 1078 0.0
Ga 5Ge 6Ge 6Ge Ge
0.0 0.0 0.0 0.0 0.0
&Ge Ge e Qe Ge
0.0 0.0 4.624 x 1078 0.0 6.348 x 1078

61




The reaction rates were taken from Fowler et al. (1975) including updates by
Harris et al. (1983). Other relevant references from where rates have been updated
are: Thielemann (1980); Wallace & Woosley (1981); Wagoner et al. (1967); Fuller
et al. (1980, 1982). For details of the procedure of adopting reaction rates, see,
Chakrabarti et al. (1987) and Jin et al. (1989). The solar abundance which was used
as the initial composition of the inflow was taken from Anders & Ebihara (1982).

Thielemann (1980) has given a formula to express different nuclear reaction rates
in terms of an exponential function. It depends on temperature in the unit of 10°

(Ts) and seven constant coefficients (¢;s) as .
< ov>i=r; = exp(g;) (1.48)

where, g; = ¢} + /Ty + /TS 4+ AT 4+ Ty + ST + (log(Ts), 7 indicates
corresponding reaction about which we are interested. For different reactions the

constant coeflicients ¢;s will be different.

3.2 Results

In this section, we present a few major results of our simulations using different
parameter groups as described in §3.1.1. For a complete solution of the sub-Keplerian
disks (Chakrabarti 1996a) we need to provide (a) the mass of the black hole M, (b)
the viscosity parameter ag, (c) the cooling efficiency factor f, (d) the Comptonization
factor Foompt, (€) the net accretion rate of the flow r, (f) the inner sonic point location
Tin through which the flow must pass and finally, (g) the specific angular momentum
Ain at the inner sonic point.

The following table gives the cases we discuss here. The II-stress viscosity pa-

rameter o, the location of the inner sonic point z;, and the value of the specific
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angular momentum at that point ), are free parameters. The net accretion rate m,

the Comptonization factor Fompt and the cooling efficiency f are related quantities

(Chakrabarti & Titarchuk 1995; Chakrabarti 1997). For extremely inefficient cool-

ing, f ~ 1.0, and for extremely efficient cooling, f = 0 or even negative. The derived

quantities, such as the value of maximum temperature Tg"®* of the flow (in unit of

10°K), density of matter (in CGS unit) at T&**, zx, the locations from where the

Keplerian disk on the equatorial plane becomes sub-Keplerian are also provided in

the table. In the rightmost column, we present whether the inner edge of the disk

is stable (S) or unstable (U) in the presence of the nucleosynthesis in accretion flow.

Three groups are separated as the parameters are clearly from three distinct regimes.

TABLE 1.2
Model M/Mgy ~ Tin Ain o7 ™ f FCompt T T pmax S/U
Al 10 4/3 2.7945 1.65 0.001 1 0.1 0.03 1655.7 5.7  6.2x10~7 S
A2 10 4/3 29115 16 0.07 1 0.1 0.03 401.0 4.7  49x1077 S
A3 108 4/3 29115 1.6 0.07 1 0.1 0.03 401.0 4.7  4.9x107'%2 U
B.1 10 4/3 2.8695 1.6 0.05 0.01 0.5 0.1 - 4814 165 3.9x107° S
B.2 10 4/3 2.8695 1.6 005 4 0.5 0.1 4814 165 1.6x107% U
B.3 10 5/3 2.4 1.5 0.01 0.001 0.5 0.1 84.4 47 3.3x10719 S
B4 10 5/3 2.35 1.55 0.01 0.001 0.6 0.1 85.1 37 2.9x10710 S
B.5 10 4/3 2795 1.65 02  0.01 0.2 0.1 8.4 13 1.1x107% S
B.6 10 4/3 2.7 165 0.2 001 0.1 0.1 4.2 11 1.1x107% S
C1 10 4/3 2.795 1.65 0.2 100 0.0 0.01 4.8 0.8 11x10~%* S
C.2 108 4/3 2795 1.65 10~* 100 0.0 0.001 36579 02  6.2x107!° S

The basis of our three groupings are clear from the TABLE 1.2. Very low m/af

in Group B makes the cooling efficiency to be very small. Thus we choose a relatively

large f ~ 0.1 — 0.5. For the case B.2, we see that m/af >> 1 but still we consider

it as very hot case and keep in Group B. This is because, though the accretion rate
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for B.2 case is chosen high but this is due to high rate of halo i.e., m1j is very high
but my is low. As the Keplerian rate is still low the supply of soft photon is very
low. Thus, in all the cases of Group B the cooling due to Comptonization is very low
(Foomps ~ 0.1). Therefore the disks could be ultra-hot. Intermediate m/a% in Group
A means that the efficiency of cooling is intermediate, f ~ 0.1 and the Compton
cooling of the sub-Keplerian region is average: Fcompt ~ 0.03. The sub-Keplerian
disk in this case is neither too hot nor too cold. Extremely high m/of causes a
strong cooling in Group C. Thus, we choose f = 0 and a very efficient Compton
cooling, Foompt ~ 0.01 — 0.001. As a result, the disk is also very cold. Now, we

present our numerical simulation results in these cases.

3.2.1 Nucleosynthesis in Moderately Hot Flows

Case A.1: In this case, the termination of the Keplerian component in the weakly
viscous flow takes place at * = 1655.7. The soft photons intercepted by the sub-
Keplerian region reduce the temperature of this region but not by a large factor. The
net accretion rate m = 1 is the sum of (very low) Keplerian component and the sub-
Keplerian component. Using computations of Chakrabarti & Titarchuk (1995) and
Chakrabarti (1997) for g ~ 0.1 and s ~ 0.9, we find that the electron temperature
T, is around 60keV, i.e., Ty ~ 0.6 (Ty is the temperature in unit of 10°K) and the
ion temperature is around Ty = 2.5. This fixes the Comptonization factor to about
Feompt = 0.03. This factor is used to reduce the temperature distribution of solutions
of Chakrabarti (1996a) (which does not explicitly use Comptonization) to temper-
ature distribution with Comptonization. The ion temperature (in Ty) and density
(in unit of 1071% gm cm™2 to bring in the same plot) distribution computed in this

manner are shown in Fig. 1.3a. Figure 1.3b gives the velocity distribution (velocity is
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measured in unit of 10'° cm sec™!). Note the sudden rise in temperature and slowing
down of matter close to the centrifugal barrier at z ~ 30. Figure I.3c shows the
changes in composition as matter is accreted onto the black hole. Only those species
with abundance Y; & 107* have been shown for clarity. Also, compositions closer to
the black hole are shown, as variations farther out are negligible. Most of the burning
of species takes place below # = 10. A significant amount of the neutron (with a final
abundance of Y, ~ 1072) is produced by the photo-dissociation process. Note that
closer to the black hole, 1%, %0, Mg and %57 are all destroyed completely, even
though at around = = 5 or so, the abundance of some of them went up first before
going down. Among the new species which are formed closer to the black hole are
%083, 4T3, SCr. The final abundance of **Ne is significantly higher than the initial
value. This was not dissociated as the residence time in hotter region was insufficient.
Thus a significant metalicity could be supplied by winds from the centrifugal barrier.

Figure 1.3d shows the energy release and absorption due to exothermic and en-
dothermic nuclear reactions (Qnuc) that are taking place inside the disk (solid). Su-
perposed on it are the energy generation rate Q* (long dashed curve) due to viscous
process and the energy loss rate Q~ in the sub-Keplerian flows. For comparison,
we also plot the hypothetical energy generation and loss rates (short dashed curves
marked as Qfgep and Q%., respectively) if the disk had purely Keplerian angular mo-
mentum distribution even in the sub-Keplerian regime. All these quantities are in
unit of 3 x 10% and they represent height-integrated energy release rate (ergs cm™2
sec”!). Note that these Qs are in logarithmic scale (if @ < 0, —log(]Q]) is plotted).
As matter leaves the Keplerian flow, the proton capture (p,a) processes (such as

¥0(p, a)'®N, N (p, a)'%C, Li(p, a)*He, "Li(p, a)*He, 'B(p,v)3a, YO(p, @)*N, etc.)
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Fig. 1.3b
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Fig. 1.3. Variation of (a) ion temperature (Ty) and density (p_10), (b) radial velocity
V10, (¢) matter abundance Y; in logarithmic scale and (d) various forms of height-integrated
specific energy release and absorption rates (in ergs cm 2 sec™!) when the model parameters
are M = 10Mg, m = 1.0, oy = 0.001 as functions of logarithmic radial distance (z in unit
of Schwarzschild radius). Q is in logarithmic scale. See text and TABLE 1.2 for other
parameters of Case A.1 which is considered here. The centrifugal barrier slows down and
heats up matter where a significant change in abundance takes place (AY; ~ 1073).
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burn hydrogen and release energy to the disk (since the temperature of the disk is
very high, pp chains or C NO cycles are not the dominant processes for the energy re-
lease as described in §1.5 and §1.6). At around z = 40, the deuterium starts burning
(D(v,n)p) and the endothermic reaction causes the nuclear energy release to become
‘negative’, i.e., a huge amount of energy is absorbed from the disk. At the completion
of the deuterium burning (at around z = 20) the energy release tends to go back
to the positive value to the level dictated by the original proton capture processes.
Excessive temperature at around z = 5 breaks *He down into deuterium (*He(v, p) D,
D(v,n)p). Another major endothermic reaction which is dominant in this region is
Y0(4,n)'0. These reactions absorb a significant amount of energy from the flow.
Note that in few regions the nuclear energy release or absorption is of the same or-
der as the energy release due to viscous prdcess. This energy was incorporated in
computing thermodynamic quantities following these steps:

(a) Compute thermodynamic quantities without nuclear energy

(b) Run nucleosynthesis code and compute Qpuc

(c) Fit Quuc using piecewise analytical functions and include this into the definition

of f,
9
Q+ + Qnuc

(d) Do sonic point analysis once more using this extra heating/cooling term and com-

f=1 (1.49)

pute thermodynamic quantities.
(e) Repeat from step (b) till the results converge. In this present case, there is vir-
tually no difference in the solutions and the solution appears to be completely stable

under nucleosynthesis.
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Case A.2: Here we choose the same net accretion rate, but with a larger viscosity.
As a result, the Keplerian component moves closer. The Comptonization is still not
very effective, and the flow is moderately hot as above with Feomps = 0.03. The
flow deviates from a very hot (sufficient to cause the flow to pass through the outer
sonic point) Keplerian disk at zx = 401.0, then after passing through an outer sonic
point at = 50 and through a shock at zg = 15, the flow enters into the black
hole through the inner sonic point at z = 2.9115. We show the results both for the
shock-free branch (i.e., the one which passes through only the outer sonic point before
plunging into the black hole, dotted curves) and the shocked branch of the solution
(solid curves). Figure I.4a shows the comparison of the temperatures and densities
(scaled in the same way as in Fig. I.3a). The temperature and density jump sharply
at the shock. Figure 1.4b shows the comparison of the radial velocities. The velocity
sharply drops at the shock. Both of these effects hasten the nuclear burning in the
case which includes the shock. Figure I.4c shows the comparison of the abundances of
only those species whose abundances reached a value of at least 107*. The difference
between the shocked and the shock-free cases is that in the shock case similar burning
takes place farther away from the black hole because of much higher temperature in
the post-shock region.

The nature of the (height integrated) nuclear energy release is very similar to Case
A.1 as the major reactions which take place inside the disk are basically same, except
that the exact locations where any particular reaction takes place are different since
they are temperature sensitive. In Fig. 1.4d, we show all the energy release/absorption
components for the shocked flow (solid curve). For comparison, we include the nu-

clear energy curve of the shock-free branch (very long dashed curve). Note that in the
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Fig. I.4b
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Fig. 1.4.: Variation of (a) ion temperature (Ty) and density (p_10), (b) radial velocity v;q,
(c) matter abundance Y; in logarithmic scale and (d) various forms of specific energy release
and absorption rates when the model parameters are M = 10Mg, m = 1.0, a1 = 0.07 as
functions of logarithmic radial distance (z in unit of Schwarzschild radius). See text and
TABLE 1.2 for other parameters of Case A.2 which is considered here. Solutions in the
stable branch with shock are solid curves and those without the shock are dotted in (a-
¢). Curves in (d) are described in the text. At the shock, temperature and density rise
significantly and cause a significant change in abundance even farther out. Shock-induced
winds may cause substantial contamination of the galactic composition when parameters
are chosen from these regions.
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post-shock region, hotter and denser flow of the shocked-branch causes a particular
nuclear reaction to take place farther away from a black hole when compared with the
behaviour in the shock-free branch as is also reflected in the composition variation in
Fig. L4c. The viscous energy generation (Q*) and the loss of energy (@~) from the
disk (long dashed) are shown. As before, these quantities, if the inner part had Keple-
rian distribution, are also plotted (short dashed). When big-bang abundance is chosen
to be the initial abundance, the net composition does not change very much, but the
dominating reactions themselves are somewhat different because the initial composi-
tions are different. The dot-dashed curve shows the nuclear energy release/absorption
in the shocked flow when big-bang abundance is chosen. All these quantities are, as
before, in unit of 3 x 108 and they represent height integrated energy release rate (ergs

2 sec™!). For instance, in place of proton capture reactions for computations with

cm”
solar abundance, the fusion of deuterium into *He plays a dominant role via the fol-
lowing reactions: D(D,n)*He, D(p,v)*He, D(D,p)T, *He(D, p)*He. This is because
no heavy elements were present to begin with and proton capture processes involving
heavy elements such as were prevalent in the solar abundance case cannot take place
here. Endothermic reactions at around z ~ 20 — 40 are dominated by deuterium
dissociation as before. However, after the complete destruction of deuterium, the
exothermic reaction is momentarily dominated by neutron capture processes (due to
the same neutrons which are produced earlier via D(y,n)p) such as *He(n,p)T which
produces the spike at around z = 14.5. Following this, *He and T are destroyed as
in the solar abundance case (i.e., *He(y,p)D, D(v,n)p, T(y,n)D) and reaches the

minimum in the energy release curve at around z = 6. The tendency of going back to

the exothermic region is stopped due to the photo-dissociation of *He via *He(v,p)T
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and *‘He(y,n)*He. At the end of the big-bang abundance calculation, a significant
amount of neutron is produced. The disk was found to be perfectly stable under
nuclear reactions.
Case A.3: This case is exactly same as A.2 except that the mass of the black hole
is chosen to be 10°Mg. The temperature and velocity variations are similar to the
above case. Because the accretion rate (in non-dimensional units) is the same, the
density (which goes as m/r2v) is lower by a factor of 107°. Tenuous plasma should
change its composition significantly only at higher temperatures than in the previous
case. However, the increase in residence time by a factor of around 10° causes the
nuclear burning to take place farther out even at a lower temperature. This is exactly
what is seen. Figure I.5a shows the comparison (without including nuclear energy)
of the composition of matter when the flow has a shock (solid curves) and when the
flow is shock-free (short dashed cﬁrve). We recall that the shock-free flow is in reality
not stable. It is kept only for comparison purposes. Note that unlike earlier cases, a
longer residence time also causes to burn all the *Ne that was generated from 0.
In Fig. 1.5b, we show a comparison of various height-integrated energy release and

2 sec™!). The nuclear energy remains

absorption curves as in Fig. 1.4d (in ergs cm™
negligibly small till around z = 100. After that the endothermic reactions dominate.
This is due to the dissociation of D, 3He and "Li and also of '%C, %0, **Ne etc.. all of
which produce *He. The solid curve is for the branch with a shock and the very long
dashed curve is for the shock-free branch. A small amount of neutron is produced
(Y, ~ 1073) primérily due to the dissociation of D. These considerations are valid

for solar abundance as the initial composition. In the case of big-bang abundance

(dash-dotted curve), similar reactions take place but no elements heavier than L
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Fig. 1.5.: Variation of (a) matter abundance Y; in logarithmic scale, (b) various forms of
height-integrated specific energy release and absorption rates and (c) velocity (in unit of
10'%m s~!) when the model parameters are M = 106Mg, m = 1.0, ayy = 0.07 as functions
of logarithmic radial distance (z in unit of Schwarzschild radius). See text and TABLL [.2
for other parameters of Case A.3. In (a) solutions in the stable branch with shock are solid
curves and those without the shock are short dashed. Curves in (b) are described in the
text. Basic conclusions are as in the previous case. In (c), dot-dashed curve and dashed
curve are drawn when nuclear energy is taken into account.
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are involved. The three successive dips are due to dissociation of D, *He and *He
respectively.

Below ¢ = 10, |Qquc| is larger compared to QT by 3-4 orders of magnitude. This is
because of the superposition of a large number of photo-dissociation effects. We ex-
pect that in this case the disk would be unstable. This is exactly what we see. In Fig.
[.5c, we show the effects of nuclear reactions more clearly. The dotted curve and the
solid curve are, as in Fig. [.4b, the variation of velocity for the solution without and
with shock, respectively. The dot-dashed curve represents velocity variation without
shock when nuclear reaction is included. The dashed curve is the corresponding so-
lution when nucleosynthesis of the shocked branch is included. Both branches are
unstable since the steady flow is subsonic at the inner edge. In these cases, the flow
is expected to pass through the inner sonic point in a time-dependent manner and

some sort of quasi-periodic oscillations cannot be ruled out.

3.2.2 Nucleosynthesis in Hot Flows

Case B.1: This case is chosen with such a set of parameters that a standing shock
forms at zs = 13.9. A very low accretion rate is chosen so that the Compton cooling
is negligible and the flow remains very hot (Comptonization factor Foomps = 0.1).
We show the results both for the shock-free branch (short dashed) and the shocked
branch (solid) of the solution. Figure 1.6a shows the comparison of the temperatures
and densities (in unit of 1072° gm cm™2 to bring in the same plot). Figure 1.6b shows
the comparison of the radial velocities. This behaviour is similar to that shown in
Case A.2. Because the temperature is suitable for photo-dissociation, we chose a very
small set of species in the network (only 21 species up to !'B are chosen). Figure [.6¢

shows the comparison of the abundances of proton (p), *He and neutron (n). In the
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absence of the shock, the breaking up of “He into n and p takes place much closer
to the black hole, while the shock hastens it due to higher temperature and density.
Although initially the flow starts with Y, = 0.7425 and Yy, = 0.2380, at the end of
the simulation, only proton (Y, ~ 0.8786) and neutron (Y, ~ 0.1214) remain and the
rest of the species become insignificant.

Figure 1.6d shows the comparison of the height-integrated nuclear energy release
and absorption (units are as Fig. 1.3d). As the flow leaves the Keplerian disk at
tx = 481.4, the deuterium and °Be are burnt instantaneously at the cost of some
energy from the disk. At the end of deuterium burning at around & = 200, the rp and
proton capture processes (mainly via *B(p,~)3*He which releases significant energy)
and neutron capture (*He(n, p)T') take place, but further in, ®He (via *He(y, p) D) first
and *He (mainly via ‘He(y,n)*He and *He(vy, p)T, T(y,n)D) subsequently, are rapidly
dissociated. As soon as the entire helium is burnt out, the energy release/absorption
becomes negligible. This is because there is nothing left other than free protons
and neutrons and hence no more reactions take place and no energy is released or
absorbed. The solid curve is for the branch with a shock and the very long dashed
curve is for the shock-free branch. Inclusion of an opacity factor (which reduces
photo-dissociation) shifts the burning towards the black hole. The disk is found to
be completely stable even in presence of nucleosynthesis.

Case B.2: As discussed in §3.1.1, in extreme hard states, a black hole may accrete
very little matter in the Keplerian component and very large amount of matter in the
sub-Keplerian component. To simulate this we used B.1 parameters, but m = 4. The
resulting solution is found to be unstable when shocks are present. In Fig. 1.6b, we

superimposed velocity variation without nuclear energy (same as with nuclear energy
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as far as Case B.1 is concerned) and with nuclear energy. The dash-dotted curve next
to the un-shocked branch and dashed curve next to the shocked branch show the
resulting deviation. While the branch without shock still remains stable, the other
branch is distinctly unstable as the steady-state solution is sub-sonic at the inner
edge. The only solution available must be non-steady with oscillations near the sonic
point.

Case B.3: In this case, accretion rate is chosen to be even smaller (m = 0.001)
and the polytropic index is chosen to be 5/3. The maximum temperature reaches
Tgra* = 47. After leaving the Keplerian ﬂqw, the temperature and velocity of the
flow monotonically increase. Because of excessive temperature, D and *He are photo-
dissociated immediately after the flow leaves the Keplerian disk at zp = 84.4. At
around = = 30, all *He is photo-dissociated exactly as in Case B.1. Subsequently,
the flow contains only protons and neutrons and there is no more energy release from
the nuclear reactions. This behaviour is clearly seen in Fig. 1.7. The notations are
the same as in the previous run. This ultra-hot case is found to be stable since the
energy release took place far away from the black hole where the matter was moving
slowly and therefore the rate (Qnuc) was not high compared to that due to viscous
dissipation (units are as Fig. 1.3d).

Case B.4: This is aﬁother case where the accretion rate is chosen small as 0.001 and
polytropic index is chosen as 5/3 as in previous case. Apart from these, because of
small viscosity (0.01), the disk is so hot that the sub-Keplerian flow deviates from a
Keplerian disk farther away at = = 85.1. Similar to case B.3, here *He dissociates
completely at a distance of around z = 25 where the density and temperature are

p=229%x10"" gm cm™3 and T = 6.3 x 10° K. As the nuclear energy curve is similar
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Fig. I1.6. Variation of (a) ion temperature (Tp) and density (p_20), (b) radial velocity
vy, (¢) matter abundance Y; in logarithmic scale and (d) various forms of height-integrated
specific energy release and absorption rates when the model parameters are M = 10M),
i = 0.01, arp = 0.05 as functions of logarithmic radial distance (2 in unit of Schwarzschild
radius). See text and TABLE 1.2 for other parameters of Case B.1 which is considered here.
Solutions in the stable branch with shock are solid curves and those without the shock are
short dashed in (a-c). Curves in (d) are described in the text. The ultra-hot temperature
of the low photo-dissociates *He into protons and neutrons. The shocked branch (which is
stable) causes such dissociation farther out from the black hole than the unstable shock-free
branch. In (b), dot-dashed curve and dashed curve are drawn when nuclear energy is taken
into account and r = 4 is chosen (Case B.2).
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(Tiex = 44) as functions of logarithmic radial distance (z in unit of Schwarzschild radius).
The entire initial abundance is photo-dissociated at z 2 30. The viscous energy generation
curve (Q%) and absorption curve (Q~) [both long dashed] are presented for comparison.
Q}i(ep (dotted) curves are the specific energy generation and absorption rates provided the
inner disks were Keplerian. Qs are in unit of ergs cm™2 sec™*. See TABLE 1.2 for parameters
of Case B.3.
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to the case B.3, Fig. 1.7 (except the locations where different burnings take place), we
do not show it again. Maximum temperature attained in this case is 7™2* = 37 x 10°
K. Both the neutron and proton are enhanced for z < 25. This disk is consisting a
large amount of neutron although initially we started with zero abundance of it.

Case B.5: In this case, the net accretion rate is low (vh = 0.01) but viscosity is
high and the efficiency of emission is intermediate (f = 0.2). That means that the
temperature of the flow is high (Foompe = 0.1, maximum temperature 79" = 13).
Matter deviates from a Keplerian disk at around zx = 8.4. Assuming that the high
viscosity is due to stochastic magnetic field, protons would be drifted towards the
black hole due to magnetic viscosity, but the neutrons will not be drifted (Rees et al.
1982). They will generally circle around the black hole till they decay. This principle
has been used to do the simulation in this case. The modified composition in one
sweep is allowed to interact with freshly accreting matter with the understanding
that the accumulated neutrons do not drift radially. After few iterations or sweeps
the steady distribution of the composition is achieved. Figure I.8a shows the neutron
distribution in the sub-Keplerian region. The formation of a ‘neutron torus’ is very
apparent in this result. In fact, the formation of a neutron disk is very generic in
all the hot accretion flows as also seen in Cases B.1-B.3 (details are given in later
§3.3). The nuclear reactions leading to the neutron torus formation are exactly same
as previous cases and are not described here. However, we wish to present the energy
release curve in Fig. 1.8b, only to impress the fact that the degree of absorption
of nuclear energy from a given annulus of the disk is generally correlated with the
amount of neutrons deposited in that annulus. This is because no significant reactions

other than photo-dissociation are taking place in the disk.
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Fig. I1.8. Formation of a neutron torusin a hot inflow. (a) Neutron abundance (b) Various
height-integrated specific energy release and absorption rates as a function of the logarithmic
radial distance (z in unit of Schwarzschild radius, units same as in Fig. 1.3d). Note the
correlation of the neutron abundance with the degree of nuclear energy absorption. This is
due to the endothermic nature of the photo-dissociation. See, TABLE 1.2 for parameters of
Case B.4.
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Case B.6: This is another case where the viscosity is due to the stochastic magnetic
lines. We choose again a very high viscosity (o = 0.2) in the sub-Keplerian regime.
The cooling is chosen marginally inefficient. It is not as inefficient as other ultra-hot
cases but still is not as efficient as in a Keplerian disk: @~ ~ 0.9QF which is same as
that in intermediate hot cases (Cases A). Although in this case residence time is small
but as the cooling time-scale is larger than the infall time-scale the disk is hot enough
to make it one of the ultra-hot case. The specific angular momentum at the inner
edge is, A;, = 1.65 (in unit of 2GM/c). The flow deviates from a Keplerian disk at 4.2
Schwarzschild radii. It is to be noted that Q.' includes all possible types of cooling,
such as bremsstrahlung, Comptonization as well as cooling due to neutrino emissions.
We assume that the flow is magnetized so that only ions have larger viscosity. Here
also the neutron torus is formed in the disk. As the features are same as the case B.5

we do not show the figures.

3.2.3 Nucleosynthesis in Cooler Flows

Case C.1: Here we choose a high-viscosity flow with a very high accretion rate. Matter
deviates from the Keplerian disk very close to the black hole, zx = 4.8. The flow
in the centrifugal barrier is cooler (maximum temperature Tg*** = 0.8). Figure [.9a
shows the variation of the temperature and density (in unit of 107% gm cm™ to bring
in the same plot) of the flow. Figure 1.9b shows the velocity variation. Clearly, high
viscosity removes the centrifugal barrier completely and matter falls in almost freely.
Due to very short residence time, no significant change in the composition takes place.
Only a small amount of proton capture (mainly due to 'B(p,v)3*He, *O(p, @)"°N,
BN (p, a)1%C, ¥0(p, a)®N, ¥9F (p, a)*0) takes place. A small amount of deuterium

dissociation also takes place, but it does not change the energetics significantly. Figure
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[.9c shows the height-integrated energy release curves (units are same as in Case A.1).
Since the contribution due to nuclear reactions (@Qnyc) is very much smaller than the
viscous energy release, the flow is not found to be unstable in this case.

Case C.2: This is a test case for the proto-galactic accretion flow. In the early phase of
galaxy forination, the éupply of matter is high, and the temperature of the flow is very
low. The viscosity may or may not be very high, but we choose very low (presumably,
radiative) viscosity (a = 10™*). The motivation is to use similar parameters as were
used by Jin et al. (1989) while studying the nucleosynthesis in thick accretion disks.
The central mass M = 10°M, the maximum temperature is, 73 ~ (.2 and the
Comptonization factor Foomp: = 0.001. The temperature variation is similar to Fig.
[.3a when scaled down by a factor of 30 (basically by the ratio of the Fomp: values).
The velocity variation is similar to Fig. 1.3b and is not repeated here. Due to the
low temperature, there is no significant change in the nuclear abundance. Note that
since thick accretion disks are rotation dominated, the residence time was very long
in the simulation of Chakrabarti et al. (1987) and there was significant change in
composition even at lower temperatures. But in this case the flow radial velocity is
very high and the residence time is shorter. The nuclear energy release is negligible

throughout and is not shown.

3.3 Formation of Neutron Disk and Neutron Torus

To produce neutron disk and torus we start with a relativistic flow (polytropic index
v = 4/3) with the low accretion rate. We use the mass of the central black hole to
be M = 10Mg throughout. We choose a very high viscosity and the corresponding

o parameter (Shakura & Sunyaev 1973) is 0.2 in the sub-Keplerian regime. Due
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Fig. 1.9. Variation of (a) ion temperature (Ty) and density (p—s) (b) radial velocity v,
and (c) various forms of specific energy release and absorption rates (units same as in Fig.
1.3d) when the model parameters are M = 100Mg, m = 10, ag = 0.2 as functions of
logarithmic radial distance (z in unit of Schwarzschild radius). See text and TABLE 1.2
for other parameters of case C.1, considered here. Not much nucleosynthesis takes place in
this case.
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to poor supply of the soft photons from Keplerian disk, the Comptonization in the
boundary layer is not complete; we assume a standard value of Comptonization fac-
tor (Chakrabarti & Titarchuk 1995) in this regime: Fgomp ~ 0.1, i.e., ions (in the
radiation-hydrodynamic solution) are one-tenth as hot as obtained from the hydro-
dynamic solutions. (For high accretion rate, m & 0.3, Foomp ~ 0.001 and ions and
electrons both cool to a few KeV (~ 107K)). In the parameter regions for all cases of
Case B as mentioned in §3.2.2 either neutron disk or torus may form. Here we will
discuss these formations in detail. For the case B.5 the typical density and tempera-
ture near the marginally stable orbit at z = 3 are 8.5 x 1078 gm cm™2 and 7.5 x 10°K
respectively where the thermonuclear depletion rates N, < ov > for the D(y,p)n,
‘He(v, D)D and *He(a, p)’Li reactions are given by 1.6 x 10 gm=! s7!, 4 x 107°
gm~! 57! and 1.9 x 1072 gm~! s7! respectively. Here, N; is the number density
of the reactant elements (say for ith isotope) given as ’.Eqn. (1.2), o is the reaction
cross-section, v is the Maxwellian average velocity of the reactants and < ogv > is the
reaction rate. At these rates, the time-scale of these reactions are given by, 4 x 10°sec,
5 x 10'sec and 4 x 10%%sec respectively indicating that the deuterium burning is the
fastest of the reactions. In fact, it would take about a second to burn initial deuterium
with Yp = 10~%. The 7L: does not form at all because the *He dissociates to D much
faster.

The above depletion rates have been computed assuming Planckian photon dis-
tribution corresponding to ion temperature T,,. The wavelength Apiancr at which the
brightness is highest at T = T, is shown in Fig. 1.10 in the dashed curve (in unit
of 10~!' c¢m). Also shown is the average wavelength of the photon Acompton (solid

curve) obtained from the spectrum F, ~ v~%. The average has been performed over
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the region 2 to 50KeV of the photon energy in which the hard component is usually

observed,

f‘/maz Fde

—EW = Vaglmpton (150)

Vmn

< F, >=

where, vpmi, and vy,,, are computed from 2 and 50KeV respectively. The average
becomes a function of the energy spectral index a (F, o< »~%), which in turn depends
on the ion and electron temperatures of the medium. We follow Chakrabarti &
Titarchuk (1995) to compute these relations. We note that Acompton is lower compared
to Apianck for all ion temperatures we are interested in. Thus, the disintegration rates
and other reaction rates with Planckian distribution that we employed in all of our
computations are clearly a lower limit. Qur assertion of the formation of a neutron
disk and torus and other elements should be strengthened when Comptonization is
included.

Figure I.11a shows the result of the numerical simulation for the disk model men-
tioned above. Logarithmic abundance of neutron Y, is plotted against the logarithmic
distance from the black hole. First simulation produced the dash-dotted curve for the
neutron distribution, forming a miniature neutron torus. As fresh matter is added to
the existing neutron disk, neutron abundance is increased as neutrons do not fall in
rapidly. Thus the simulation is repeated several times in order to achieve a converging
steady pattern of the neutron disk as was described in §3.2.2. Although fresh neu-
trons are deposited, the stability of the distribution is achieved through neutron decay
and neutron capture reactions. Results after every ten iterations are plotted. The
equilibrium neutron torus remains around the black hole indefinitely. The neutron
abundance is clearly very significant (more than ten per cent!).

There are another two cases (B.3 & B.4) to have large neutron abundance where
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the accretion rate is smaller (vh = 0.001), the viscosity is so small (o = 0.01) and
the disk is so hot that the sub-Keplerian flow deviates from a Keplerian disk farther
away. The polytropic index is that of a mono-atomic (ionized) hot gas, v = 5/3. The
Compton cooling factor is as above since it is independent of the accretion rates as
long as the rate is low (Sunyaev & Titarchuk 1980; Chakrabarti & Titarchuk 1995).
The cooling is assumed to be very inefficient because of lower density.

In Fig. 1.11b, we show the logarithmic abundances of proton (p), helium (*He)
and neutron (n) as functions of the logarithmic distance from the black hole. From
the figure existence of a neutron disk (disk consisting of neutron mainly) is very
apparent. The neutron disk also remains stable despite of neutron decay, since new

matter moves in to maintain equilibrium.

3.4 Nucleosynthesis Induced Instability?

Chakrabarti et al. (1987), while studying nucleosynthesis in cooler, mainly rotating
disks, suggested that as long as the nuclear energy release is smaller than the gravi-
tational energy release, the disk would be stable. Here, we find that this suggestion
is valid in presence of the advective term also. Indeed, even when momentarily the
nuclear energy release or absorption is as high as the gravitational energy release
(through viscous dissipation), the disk may be stable. For instance, in Case A.1 (Fig.
1.3d) at around = = 4 these rates are similar. Yet the velocity, temperature and
density distributions (Fig. 1.3a-b) remain unchanged. In Case A.3, Qnyc is several
magnitudes greater than viscous energy release Q* and the thermodynamic quantities
are indeed disturbed to the extent that the flow with same injected quantities (with

the same density, velocity and their gradients) at the outer edge does not become
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supersonic at the inner edge. In these cases, the flow must be unsteady in an effort
to search for the ‘right’ sonic point to enter into the black hole. On the other hand,
ultra-hot cases like B.2 show deviation in non-shocked solution while the shocked
solution is unstable.

The general behaviour suggests that the present model of accretion disks is more
stable under nuclear reactions compared to the earlier, predominantly rotating model.
Here, the radial velocity (v) spreads energy release or absorption radially to a distance
vrp(p,T) = vND/ND cm, where, Np is the number density of, say, Deuterium and
Np is its depletion rate. For a free fall, v ~ £~1/2, while for most nuclear reactions,
mo(p, T) ~ z™, with n >> 1 (since reaction rates are strongly dependent on density
and temperature). Thus, Qnu for the destruction of a given element spreads out
farther away from the black hole, but steepens closer to it. Large dQn../dz causes
instability since the derivatives such as dv/dz at the inner regions (including the sonic

point) become imaginary.
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4 Implications of the Nucleosynthesis in the Ac-
cretion Disk

So far, we explored the possibility of nuclear reactions in inner regions of the accre-
tion flows. Because of high radial motion and ion pressure, matter deviates from a
Keplerian disk close to the black hole. The temperature in this region is controlled
by the efficiencies of bremsstrahlung and Comptonization processes (Chakrabarti &
Titarchuk 1995; Chakrabarti 1997) and possible heating by magnetic fields (Shapiro
1973): for a higher Keplerian rate and higher viscosity, the inner edge of the Keple-
rian component comes closer to the black hole and the sub-Keplerian region becomes
cooler (Chakrabarti & Titarchuk 1995). The nucleosynthesis in this soft state of the
black hole is quite negligible. However, as the viscosity is decreased to around 0.05 or
less, the inner edge of the Keplerian component moves away and the Compton cool-
ing becomes less efficient due to the paucity of the soft photons. The sub-Keplerian
region, though cooler by a factor of about Feomps = 0.01 to 0.03 from that of the
value obtained through purely hydrodynamical calculations of Chakrabarti (1996a),
is still high enough to cause significant nuclear reactions to modify compositions.
The composition changes very close to the black hole, especially in the centrifugal-
pressure-supported denser region, where matter is hotter and slower.

The degree of change in compositions which takes place in the Group A and
B calculations, is very interesting and its importance must not be underestimated.
Since the centrifugal-pressure-supported region can be treated as an effective surface
of the black hole which may generate winds and outflows in the same way as the
stellar surface (Chakrabarti 1998a,b,c; Das & Chakrabarti 1999), one could envisage

that the winds produced in this region would carry away a modified composition and
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contaminate the atmosphere of the surrounding stars and the galaxy in general.
One could estimate the contamination of the galactic metalicity due to nuclear
reactions. For instance, in Case A.1, 1%C, %0, ?°Ne, 3954, *‘Ca and Cr are found to
be over-abundant in some regions of the disk. Assume that, on an average, all the N
stellar black holes are of equal mass M and have a non-dimensional accretion rate of
around m ~ 1 (rh = M/MEdd). Let AY; (few times 1073) be the typical change in
composition of this matter during the run and let f,, be the fraction of the incoming
flow that goes out as winds and outflows (could be from ten percent to more than a
hundred percent when disk evacuation occurs, see Das & Chakrabarti, 1999), then in
the lifetime of a galaxy (say, 10!°yrs), the total ‘change’ in abundance of a particular

species deposited in the surroundings by all the stellar black holes is given by:

m., N AY; f w M Tga.l M, gal

- ~ A YA YA A YA -1 =
< A}/; >small’— ]‘0 ( 1 )(106)(10—3)(0.1)(].OM@)(].OlO 1011M®) ’ (I

Yr)(

The subscript ‘small’ is used here to represent the contribution from small black holes.
We also assume a conservative estimation that there are 10° such stellar black holes
in a galaxy, the mass of the host galaxy is around 10'! Mg ~atnd the lifetime of the
galaxy during which such reactions are going on is about 10'°Yrs. We also assume
that AY; ~ 10~2 and a fraction of ten percent of matter is blown off as winds. The
resulting < AY; >~ 10~7 may not be very significant if one considers averaging over
the whole galaxy. However, for a lighter galaxy < AY; > could be much higher. For
example, for My = 10°Mg, < AY; >~ 107°. This would significantly change the
average abundances of %54, *Ca and *Cr. On the other hand, if one concentrates
on the region of the outflows only, the change in abundance is the same as in the
disk, and should be detectable (e.g., through line emissions). One such observation

of stronger iron-line emission was reported for SS433 (Lamb et al. 1983; see also
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Arnould & Takahashi 1999, for a recent discussion on galactic contaminations).
When we consider a case like A.3, we find that '*C, %0, °Ne, and 2857 are increased
by about 1072 in some regions. In this case, the average change of abundance due to

accretion onto the massive black hole situated at the galactic centre would be,

@ AY: | fu M Tgal

Mgal
1 )(10—3)(61‘)(1061\4@)(1010

101 M,

< AY; >4 few x 1078( Yr)( Lo (152)

Here, we have put ‘big’ as the subscript to indicate the contribution from the massive
black hole. Even for a lighter galaxy, e.g., of mass Mg = 10° Mg, AY; = 107 which
may not be significant. If one considers only the regions of outflows, contamination
may not be negligible.

A few related questions have been asked lately: Can lithium be produced in black
hole accretion? We believe not. The spalletion reactions (Jin 1990; Yi & Narayan
1997) may produce such elements assuming that a helium-beam hits a helium target in
a disk. Using a full network, rather than only He-He reaction, we find that the hotter
disks where spalletion would have been important also photo-dissociate (particularly
due to the presence of photons from the Keplerian disk) helium to deuterium and then
to proton and neutron before any significant lithium could be produced. Even when
photo-dissociation is very low (when the Keplerian disk is far away, for instance), or
when late-type stellar composition is taken as the initial composition, we find that
the "Li production is insignificant, particularly if one considers more massive black
holes (M ~ 108 My).

Recently, it has been reported by several authors (Martin et al. 1992; 1994;
Fillipenko et al. 1995; Harlaftis et al. 1996) that a high abundance of Li is observed in
late type stars which are also companions of black hole and neutron star candidates.

This is indeed surprising since the theory of stellar evolution predicts that these
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stars should have at least a factor of ten lower L: abundance. These workers have
suggested that this excess Li could be produced in the hot accretion disks. However,
in Mukhopadhyay (1998, 1999), Chakrabarti & Mukhopadhyay (1999) as well as in
our Cases A and B computations we showed that L7 is not likely to be produced in
accretion disks. Indeed, we ran several cases with a mass fraction of He as high as
0.5 to 0.98, but we are still unable to produce L: with a mass fraction more than
1079, Recent work of Guessoum & Kazanas (1999) agrees with our conclusion that
profuse neutrons would be produced in the disk. They farther suggested that these
energetic neutrons can produce adequate L: through spalletion reactions with the (',
N, and O that is present in the atmosphere of these stars. For instance, in Cases B.1
and B.3 we see that neutrons could have an abundance ~ 0.1 in the disk. Since the
production rate is similar to what Guessoum & Kazanas (1999) found, Lt should also
be produced on stellar surface at a similar rate.

What would be the neutrino flux on earth if nucleosynthesis does take place? The
energy release by neutrinos (the pair neutrino process, the photoneutrino process and
the plasma neutrino process) can be calculated using the préscription of Beaudet et
al. (1967), (see also Itoh et al. 1996) provided the pairs are in equilibrium with the
radiation field. However, in the case of accretion disks, the situation is significantly
different from that inside a star (where matter is in static equilibrium). Because of
rapid infall, matter density is much lower and the infall time-scale could be much
shorter compared to the time-scale of various neutrino processes, especially the pair
and photo-neutrino processes. As a result, the pair density need not attain equilib-
rium. One important thing in this context is the opacity (7pair) of the pair process.

Following treatments of Colpi et al. (1984) we find that 7pair < 1 for all our cases, and
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therefore pair process is expected to be negligible (for Case B.2, 7, is the highest
[0.9]). Park (1990a,b), while studying pair creation processes in spherical accretion,
shows that even in the most favourable condition, the ratio of positron (n.) and ion
(n.) is no more than 0.05. A simple analysis suggests that neutrino production rate
is many orders of magnitude smaller compared to what the equilibrium solutions of
Beaudet et al. (1967) and Itoh et al. (1996) would predict. Thus, we can safely
ignore the neutrino luminosity.

When the nuclear energy release or absorption is comparable to the gravitational
energy release through viscous processes, we find that the disk is still stable. Stability
seems to depend on how steeply the energy is released or absorbed in the disk. This in
turn depends on 7pv, the distance traversed inside the disk by the element contribut-
ing the highest change of energy before depleting significantly. Thus, an ultra-hot
case (Group B) can be stable even though a hot (Group A) case can be unstable as
we explfcitly showed by including nuclear energy release. In these ‘unstable’ cases, we
find that the steady flow does not satisfy the inner boundary condition and becomes
subsonic close to the horizon. This implies that in these cases the flow must become
non-steady, constantly searching for the supersonic branch to enter into the black
hole. This can induce oscillations as have been found elsewhere (Ryu et al. 1997).
In such cases, one is required to do time dependent simulations (e.g., Molteni et al.

1994, 1996) including nuclear reactions.
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PART-II

BEHAVIOUR OF FERMIONIC
PARTICLES AROUND BLACK
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1 Introduction

Here we study the interaction of particles having half-integral spin (which may or
may not have charge) with a black hole. We are familiar with Dirac equation in
flat space by which we can investigate the behaviour of half-integral spin particle.
With the introduction of general relativistic effects, the form of the Dirac equation is
modified. For different background geometry like Kerr, Schwarzschild etc., the form
of the Dirac equation and the corresponding solution will be expected to be different.
In 1972, Teukolsky wrote down the Dirac equation in Kerr geometry (Teukolsky
1972). Chandrasekhar (1976) separated it into radial and angular parts in 1976.
Later Chakrabarti (1984) solved the angular equation. In 1999, Mukhopadhyay &
Chakrabarti (1999) have solved the radial Dirac equation in Schwarzschild geometry in
a spatially complete manner. Here we will discuss these developments systematically
and present some solutions. These work also can be done for charged black holes
(Page 1976; Mukhopadhyay 2000).

After writing the Dirac equation in curved space-time particularly in Kerr ge-
ometry using Newman-Penrose formalism (Chandrasekhar 1983) it was modified
and generalised. From the same equation of Teukolsky (1972), Dirac equation for
Schwarzschild metric (Weinberg 1972), where the central black hole is static can be
studied just by putting the angular momentum parameter a of the black hole to zero.
Following the separation of Dirac equation by Chandrasekhar (1976) solution of angu-
lar part was done by Chakrabarti (1984). Mukhopadhyay (1999), Mukhopadhyay &
Chakrabarti (1999, 2000), Mukhopadhyay (2000) and Chakrabarti & Mukhopadhyay
(2000) have solved radial part of the Dirac equation. Also Jin (1998) has studied the

scattering phenomena of spin-half particle from Schwarzschild black hole. Following
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those approaches here we shall introduce the spatially complete solution of radial
Dirac equation. Combined with the solution of the angular equation mentioned be-
fore, complete solution of Dirac equation can be obtained. Far away from the black
hole the modified Dirac equation for Kerr and Schwarzschild geometry (Weinberg
1972; Chandrasekhar 1983) and the interaction of particles with space-time reduce
into that of the flat space.

One of the most important solutions of Einstein’s equation is that of the spacetime
around and inside an isolated black hole. The spacetime at a large distance is flat
and Minkowskian where usual quantum mechanics is applicable, while the spacetime
closer to the singularity is so curved that no satisfactory quantum field theory could
be developed as yet. An intermediate situation arises when a weak perturbation (due
to, say, gravitational, electromagnetic or Dirac waves) originating from infinity im-
pinges on a black hole, interacting with it. The resulting wave is partially transmitted
into the black hole through the horizon and partially scatters off to infinity. In the
linearized (‘test field’) approximation this problem has been attacked in the past by
several authors (Teukolsky 1972, 1973; Chandrasekhar 1976, 1983). The master equa-
tions of Teukolsky (1972) which govern these linear perturbations for integral spin
(e.g., gravitational and electromagnetic) fields were solved numerically by Press &
Teukolsky (1973) and Teukolsky & Press (1974). Particularly interesting is the fact
that whereas gravitational and electromagnetic radiations were found to be amplified
in some range of incoming frequencies, Chandrasekhar (1983) predicted that no such
amplifications should take place for Dirac waves because of the very nature of the
potential experienced by the incoming fields. However, these later conclusions were

drawn by Chandrasekhar using asymptotic solutions. Mukhopadhyay & Chakrabarti
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(2000) and Chakrabarti & Mukhopadhyay (2000) have revisited this important prob-
lem not in asymptotic way but in a spatially complete manner to study the nature of
the radial wave functions as a function of the Kerr parameter, rest mass and frequency
of incoming particle.

Here we will first indicate how Dirac equation in curved space-time can be written
using Newman-Penrose formalism (Chandrasekhar 1983). Newman-Penrose formal-
ism is one of the tetrad formalisms where null basis are chosen instead of orthonormal

basis. To fulfill the understanding of Dirac equation in this formalism we also need

to know the ‘Spinor Analysis’ (Chandrasekhar 1983).

1.1 Spinor Analysis

In Minkowski space we consider a point z* (i = 0,1,2,3) on a null ray whose norm is
defined as
(29)7 = (2')" = (2" - (2)* = 0. (IL.1)

Now, we consider two complex numbers £° and ¢!, and their complex conjugate

numbers £ and ¢! in terms of which each point can be written as,

=7(£°£ +6'¢) (IL.2a)
= 7-—(5051' +€¢) (IL.2b)
z? 7(55 - €8 (11.2¢)
= (@ -8, (I1.24)

ﬂl

Conversely, we can write,

0‘0'____1_ 04 .3 a
8 = —5(a* +27) (11.32)
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08 = -{/li‘(xl +42?) (IL.3b)

8?=V§w—w) (IL3c)
¢ = %(x" - z%). (11.3d)
Let,
¢ = o’ pto, (I1.4a)
& = ag e (IL4b)

where, (A, B, A’, B’ = 0, 1), are the linear transformations in complex two-dimensional

spaces. The transformation of z* is defined as,
z, = izl (IL.5)
Now, using Eqns. (I1.2) and (II.3) we can write,

1 ' 20! / 1 e
‘7:8 _\_/_i(aoéo + atl)ﬁ )(0_‘8’60 oy 61 ) \/5(04(1)60 + aifl)( ot§ + a} f )

1 1 Y _y
5<aoa0/ + aal)(a + %) + 3(aa + alad)(e” - o)
1 :
( a0a% + alal) (! + iz?) + 2(a?ag, + olad)(z! - iz?). (11.6)

Similarly, we can write down the relations between z!, 22 and 22 with «’s and ’s.

Therefore, keeping in mind Eqn. (IL.5) we can write,
B3 + s = 0gag + aydig,
Bo—Bs = 0‘(1)0‘1' + aiai,,
B9 — i = a3a% + alal,
11/

ﬂl + zﬁz = alao, + a; 4.
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Now, imposing the condition that the transformation Eqn. (IL5) is Lorentzian we

can write,
0\2 02 042 0\2
(:30) - (ﬂl) - (:82) - (/83) =1.
So,
-0/ -1/ -0 -1
apay + ogdy  0fad + adads || 1 17
a%a% + alall o%a% 1=1 || = (IL.7)
1 OI 1 0/ alall + alall
This gives,
0 .0 =0 =0
ay o qy @ —
H ag’ o ’ Y H =AA =1. (11.8)
0 1 aol al,

Now we consider A = A =1, so individually each transformation of £ is Lorentzian.
So we can conclude if the transformation Eqn. (IL.5) is Lorentzian, the necessary

condition is, the transformation Eqn. (11.4) is also Lorentzian.

Now we define spinors ¢4, n? of rank one as €2 = af¢B and 2 = agn?,
(A, A", B, B’ = 0), where Hag I = H&gi” = 1. Since ¢4 and n# are two spinors of
same class,

0 g1
,670 51 = ' — &n° (IL9)

which is invariant under unimodular transformation, i.e.,
eAgﬁAnB — invariant (11.10)

where, €4p is Levi-Civita symbol. Here as in the case of tensor analysis e4p and €4/p
are used to lower the spinor indices as, £4 = £Ceca.
Now, using above information the representation of position vector ' can be

written as
1

V2

20+ 23 2! 4 iz?
gt — 322 20— 23

¢ ¢

z agr g (I1.11)




Generally any vector X* can be written in terms of spinor of rank two as,

500, 601,
510' 611/

So a 4-vector is associated with a hermitian matrix such that,

X0+ X3 Xl44X?

X' o _ 2
_.\/5 Xl—-iX2 XO_Xs

= X8, (I1.12)

(X0 = (X1 = (X2 = (X5 = (X0 X)(X° = X%) = (X! +iX3) (X - iX?)
— 2(§OOI£HI _ 601’610') _ (500/600’ + é-u,gll’ + 610'510’ + §01'§011) = XAB/XAB/.
From the definition of norm, we can write it in two different representations:
9i; X' X7 = epcepp XA XCD, (I1.13)

Therefore, we can transform X* < X458’ as (Chandrasekhar 1983),

X' =o'y XAF (11.14a)
XAB' = AP X (I1.14b)
where, 0%’ and o' 5 are nothing but Pauli matrices and their conjugate matrices

with a factor 715

A curved space-time is locally Minkowskian. At each point of space-time an
orthonormal Dyad basis can be set up as C(";) and ((“;',) (a,a’ =0,1 and A, A" =0,1)
for spinors.

We define, {((‘,) = o4 and ((“}) = {4, The condition of orthonormality is
€ap0tlB = Ol — 0110 = 0glB = —04l, = 1.

Also it is clear that, e(“)(b)(é)(g) = ¢*B, Then the null vectors are defined as
Il & 0268 mi & oAlB', m' « [45P, n & AP,
Here, vectors obey relations of null tetrads such as,

lin; = 1,m'm; = —1 and all other products give zero.
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In this way using dyad basis we can set up four null vectors which are basis of

Newman-Penrose formalism. Using Eqn. (II.14) we can write the basis explicitly as

I' = O'ZB;C(%)E(%:) = olygi0?a? (IL.15a)
m' = UZB/C('?))C_(}?:) = o' g0 [P, (I1.15b)
m' = o)l = oapl?o®, (IL.15¢)
n' = aqu,((’L})fgf)‘ = o'y gl 1P (I1.15d)

Thus, in Newman-Penrose formalism the Pauli matrices change their forms as (Chan-

drasekhar 1983),

; 1 li mi
Tap = VAR (I1.16a)
' 1 n; -1y
AB' __ & t 1
o = Bl -mi L (I1.16b)
Therefore in this basis, the directional derivatives can be written as,
D= lia,', A= nia,‘, 6= m"& and 6* = ﬁlia,'.
Thus, the spinor equivalents of Newman-Penrose formalism are
Ooor = D, 01y = A, Gorr = 6, dhor = 6™
Due to the reason, as explained earlier V; <+ V 45/, so we can write,
ViX; = Xji & VapXep = Xepriap,
therefore,
XCDI;ABI = O'éD,O'ZB,X';i. (1117)

For covariant derivatives spin coefficients I' are introduced. In the Newman-Penrose

formalism these different coefficients are assigned in terms of special symbols which

are given in TABLE II.1 below (Chandrasekhar 1983):
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TABLE II.1

Layeye@)

(a)(b) 00 0lorl10 11
(9)(d)

00" &« 5 s
100 p o A
01 ¢ Ié; W
11 ~y v

1.2 Dirac Equation and its Separation

Before going into discussion, we should mention about the unit of the system. Here
‘we have chosen throughout A = ¢ = G = 1, where h = Plank constant, ¢ = speed of
light and G’ = gravitational constant.
The Dirac equation in flat space using Newman-Penrose formalism can be written
as,
40P +ip.Qp =0 (11.18a)
04 5:0:Q% + iy Py = 0. (11.18b)
Here, PA and Q#' are the pair of spinors. p./v/2 is the mass of the particles and ¢, g,
is nothing but Pauli matrix, because 1/+/2 factors are canceled in the equation.

In curved space time Dirac equation reduces to
O'j‘iB’P;f -+ iM*QC’Cchl =0, (I1.19a)
i A - BC! _
oyp Qi + 1 P” ecipr = 0, (I1.19b)

where, 0,5, is same as defined in Eqn. (IL.16a).

Now, consider B’ = 0, then Eqn. (II.19a) reduces to
P2 + ol Py — i@ = 0
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or,
(aOO'PO + PEOO’Pb) + (BIO’P1 + F[iIO'Pb) - iN*Qll = 0.

Therefore,
(D + T1000 — Too10) P® + (8" + T'izorr — Torzor) P* — i@ = 0. (I1.20)

Similarly, choosing B’ = 1, we can get another similar type of equation and then we
can get corresponding conjugate equation of both by interchanging P and Q. Now
choosing,

Fi=P° F, =P, G =QY Gy=~Q"

and replacing various spin coefficients by their named symbols given in TABLE II.1

we get the the Dirac equation in Newman-Penrose formalism in its reduced form as

(Chandrasekhar 1983; Mukhopadhyay 1999),

(D +e~— p)Fl + (5* + T — Oé)Fg = i,u*Gl, (IIQla,)
(é+ﬂ—’7)F2+(5+,3—7')F1 = iM*Gz, (IIle)
(D +¢" = p")Gs = (647" — )Gy = ip. P, (I1.21c)
(A+p* =G = (6" + 87 — )G, = tpFy. (I1.21d)

1.2.1 Basis Vectors of Newman-Penrose formalism in terms of Kerr Ge-
ometry

The contravariant form of Kerr metric is given as (Chandrasekhar 1983),

¥2/p2A 0 0 2aMr/p*A
0 -A/p* 0 0
ij
2aMr/p*A 0 0 —(A—da%sin?0)/p*Asin®
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where, a is specific angular momentum of the black hole, M is the mass of the black
hole, p? = r? + a®cos*d (should not be confused with the spin coefficient I'(o)(0)(1)(0) =
p)y L% = (r? + a?)? — a®?Asin?0, A = r? 4+ a? — 2Mr.

i
Y dr T

In Kerr geometry, the tangent vectors of null geodesics are: & = ﬁ’"—z%‘ﬁE
+E, ¥ =0, ¥ = 2F where 7 is the proper time (not to be confused with spin
dr dr A p
coefficient T'(o)0)(1y11) = 7). Here F is energy of the particle (Chandrasekhar 1983).

Now, the basis of Newman-Penrose formalism can be written in Kerr geometry as

(in tetrad form) (Chandrasekhar 1983)

L = ZIS(A, _p?,0, —aAsin®6), (I1.23a)
n; = 217(A,p2,0, —aAsin®0), (11.23b)
1
m; = —=[1asind, 0, —p?, —i(r? + @*)siné)], (11.23c¢)
p\/i[ ( )sind)]
' = —i—-(r2 +a* A,0,a), (11.23d)
i 12, 2
nt = 5;5(1* +a*,—A,0,0), (11.23e)
m' = —1~—(iasin0,0, 1,icosech), (11.23f)

V2
m; and M are nothing but complex conjugates of m; and m' respectively and p =

r + 1acosb.
1.2.2 Separation of Dirac Equation into Radial and Angular parts

It is clear that the basis vectors basically become derivative operators when these
are applied as tangent vectors to the function ¢'@ttme)  Here, o is the frequency of
the particle (not to be confused with spin coefficient I'(oy(0)(0)1) = o) and m is the

azimuthal quantum number (Chakrabarti 1983).
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Therefore, we can write,

[=D=Dy,i=A=-2D} m=056=-LLl W =6==L-Lo,

2p° 2 V2
where,

iK r—M
D, =0, + X +2n N (I1.24a)

tog o K g =M
D! =0, A +2n X (11.24b)
L, = 0y + Q + ncoth (I1.25a)
L} =05 — Q + ncotd. (I1.25b)

K = (r* + a®)o + am, Q = aosinf + mcosecd (Chandrasekhar 1983; Chakrabarti &
Mukhopadhyay 2000).

The spin coeflicients can be written as a combination of basis vectors in Newman-
Penrose formalism which are now expressed in terms of elements of different compo-
nents of Kerr metric. So we are combining those different components of basis vectors

in a suitable manner and get the spin coeflicients as,

Kk=oc=A=v=¢e¢=0, (11.26a)
~ 1 . _cotd . _tasind
md p==550=5m ™= Grive
T = —iZ:Zinhe) H = ‘2;3,77’ v=p %—7)];—4’ =m - (11.26b)

Using the above definitions and results and choosing f; = §*Fy, g2 = pGa, fo = FY,

g1 = (G the Dirac equation is reduced to

Dof1 + 2_1/2/31/2]‘2 = (1pt.r + apxcost) gy, (I1.27a)
ADI/Qfg - 21/2£J{/2f1 = —2(ipr + apwcost)ga, (I1.27b)
Dogs — 2'1/251/2g1 = (tp.r — apxcost) fa, (I1.27¢)
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ADI/291 + 21/2[,1/2g2 = —2(ipaT — apucosh) fi. (11.274d)

Now we will separate the Dirac equation into radial and angular parts by choosing,
fi(r,0) = Ro12(r)S5-1/2(8), fa(r,0) = Rija(r)S1/2(9),
01(r,8) = Bupo(r)S-1/5(0), 92(r,0) = Rsya(r)Sual0).

Replacing these f; and g; (¢ = 1,2) into Eqn. (I1.27) and using separation constant
A we get (Chandrasekhar 1976),

L1841 =—(A—amycos§)S_y (11.28a)

L£YS_ 1 =4()+ amycos 0)S, 1 (11.28b)
2 2 2

ADoR_y = (A +im,r)AZR, (11.29a)

ATDIAT R,y = (A —imyr)R_y, (11.29b)

where, m,, is the mass of the particle which is nothing but 2!/24,. Also, 2'/2R_,3 is
redefined as R_y/s.
Eqns. (I1.28) and (I1.29) are the angular and radial Dirac equation respectively

in coupled form with the separation constant A (Chandrasekhar 1983).
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2 Solution

2.1 Solution of Angular Dirac Equation

Decoupling Eqn. (I1.28) we obtain the eigenvalue equation for spin-1 particles as

£%£1 + amy sin 6 L1+ (N - asz, cos?9)| S_
2

A+ amycosd 3 =0. (1L:30)

D=

Similarly, one can obtain decoupled equation for spin+3 particles. Here, the separa-
tion constant A is considered to be the eigenvalue of the equation. The exact solutions

of this equation for A and S_, are possible in terms of orbital angular momentum

1
2
quantum number [ and the spin of the particle s when the parameter p, = 22 = 1.
When the angular momentum of the black hole is zero i.e., Schwarzschild case, the
equation is reduced to such a form that its solution is nothing but standard spherical

harmonics such as (Newman & Penrose 1966; Goldberg et al. 1967),
S-1(0)€™ =_y Vi (6, ). (11.31)
The eigenvalue i.e., the separation constant can be solved as,
A= (l+1/2)% (11.32)
Similarly, for spin+3$ particle one can solve S/, as
St1/2(0)e™? =41 im (0, 9), (11.33)

with same eigenvalue .
For any non-integral |s|, solutions are (Newman & Penrose 1966; Goldberg et al.
1967)
Sts(0)e™ =4, Yim(8, 9), (11.34)
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A= (L + sl = |s| +1). (I1.35)

In the case of Kerr geometry, when a # 0 the equation can be solved by perturbative
procedure (Chakrabarti 1984) with perturbative parameter ao. The solution for

p1 =my/o =1 and s = 1 is (Chakrabarti 1984)

M= (+ %)2 + ac(p+ 2m) + a®c? |1 — I 1y)2+ — > (11.36)
15im = 1Yim + 20 _;;?'Z_ aax%Yle (11‘-375‘)
-45im = 4 Yim = 57 +Ci(;i p— (I1.37b)
where,
p=F); z=F(1+1,14+1); y=F(,1+1) (11.38)
and
F(ly, by) = [(2l +1)/(2l + D]} < lolm0jlm > [< 121%0|11% >
+(=1"2"pvV2 < 11 — %uzl% >]. (I1.39)
with < ....|.. > are the usual Clebsh-Gordon coefficients.

If p; # 1 then exact solution is not possible. In those cases the analytical expres-
sion of eigenvalue and angular wave-function are found as infinite series and not in a
compact form as the case of p; =1 .

From the general convergence of series expansions one can truncate the infinite
series upto certain order for particular values of [, s and m. For [ = %, s = —-;— and

m = —3%, up to third order in ac, one obtains (Chakrabarti 1934),

1
M= (U +3) +acfi(l,m) + (a0)’ foll,m) + (a0)*fall,m), (I11.40)
6 6\ 12 4
= —einf — | ein3Z _ o 112 B N2 2
_%S%_;_ = —sinf (sm 5 3m0cos2> [3a0(1+p1) + 15(aa) (1—p7)
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+§(aa)2(1 ) sinsg - 63inzgcoss—§ + 33ingcos4g . (11.41)

Here, fi, fa, f3 are functions of [.and m. The accuracy of eigenvalue and eigenfunction

decreases as a0 — 1.

2.2 Solution of Radial Dirac Equation

In the radial equation, independent variable r is extended from 0 to co. For mathe-

matical simplicity we change the independent variable r to r, as

ro=r 4 2Mry famjo, o (—’l . 1) _2Mr- famfo, <f— — 1) (1L.42)
Ty —T. T4 ' Ty —T. r—

(for r > r,), here in new r, co-ordinate system horizon r,. is shifted to —oco unless

0 < =5, (Chandrasekhar 1983), so the region is extended from —oo to co. We

also choose R_

= P_;_, A%RJF% = P+%. Then we are defining

L
2

(X & im,r) = exp(£if) /(A2 + mar?)

and

L= ¢+% erp [——;-z tan™? ( >] ,
(0

mpT
By
P.i=1_1 exp [-{-lz tan™? (MH .
T2 T2 2 A

Finally choosing,
Z:i: = 1/)+% + '9[)_-;-

and combining the differential Eqns. (I11.29a-b) we get (Chandrasekhar 1983; Mukhopad-
hyay & Chakrabarti 2000),

( ({ - W> Zy =1w0Z_, (I1.43a)
df
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and

d .
(dﬁ* + W) Z_. =102y, (11.43b)
where,
- 1 -1 m,,r)
Te = Tw + 20tan ( 3
and
A3 ()2 2,.213/2
W= F(X + myr) , (IL44)
w?(A? + m2r?) 4+ Am,A /20
where, w? = £,
Now decoupling Eqns. (I1.43a-b) we get,
L + o? Ze=VZ I1.45
T 0" | 4y = Vilyx. (11.45)
where,
dWw
W2
Ve=W*"% ey (11.46)

and 7, is extended from —oo (horizon) to +o0.

The Eqn. (I11.45) is nothing but one dimensional Schrédinger equation (Davy-
dov 1976) with potentials proportional to Vi and the energy of the particle pro-
portional to o? (since the system is dimensionless) in Cartesian co-ordinate system.
Now we will describe about corresponding solution (Mukhopadhyay & Chakrabarti
1998; Mukhopadhyay & Chakrabarti 1999; Mukhopadhyay 1999; Mukhopadhyay
2000; Mukhopadhyay & Chakrabarti 2000; Chakrabarti & Mukhopadhyay 2000).

Like transformation from r to r, as is described previously, by transformation
of the variable from r to 7, the horizon is shifted from r = ry to f. = —oco unless
o < oy = —am/2Mr, (Eqn. 11.42). If 0 < o,, super-radiation is expected for
particles with integral spins but not for those with half-integral spin (Chandrasekhar

1983). Thus, we concentrate on the region where, o > 0.
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The choice of parameters is generally made in such a way that there is a signif-
icant interaction between the particle and the black hole, i.e., when the Compton
wavelength of the incoming wave is of the same order as the outer horizon of the Kerr
black hole. Similarly, the frequency of the incoming particle (or wave) should be of

the same order as inverse of light crossing time of the radius of the black hole. These

yield (Mukhopadhyay & Chakrabarti 1999),
mp ~ 0 ~ [M +/(M? = a?)]. (1L.47)

Thus, we need to deal with quantum (primordial) black holes to get ‘interesting’
results. The physical mass of those black holes of the order of 10'®gm, obviously,
which do not form through supernova explosions. These black holes might be formed
in early Universe as a result of the perturbation in the homogeneous background

density field (Shapiro & Teukolsky 1983).

Now, total parameter region is divided into two parts in terms of m, and 0. As

2

? (unit is dimensionless), if we choose o < my,

far away from the black hole Vo ~ m
then particle can not enter into the potential field (Mukhopadhyay & Chakrabarti
1999). So the parameter space is divided into two parts accordingly. Then for the
region o > my, it is divided into two sub-regions whether the peak of the potential
barrier (V;,) is greater than ¢? or not (Mui{hopa,dhyay & Chakrabarti 1999). In the
region where V,, > o2, if ¢ < o, then potential barrier diverges at a point defined as
r? = a® + ¢ (Chandrasekhar 1983). This diverging potential is important for super-
radiation for integral spin particle but for spin-half particle super-radiation is absent
(Chandrasekhar 1983). So there are two cases of interest: (1) the waves do not ‘hit’

the potential barrier and (2) the waves do hit the potential barrier. First, we replace

the potential barrier by a large number of steps. Then we treat it as the step-barrier
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problem in quantum mechanics (Mathews & Walker 1970; Davydov 1976). Figure
I1.1 shows one such example of the potential barrier V (Eqn. I1.46) which is drawn
for a = 0.5, m, = 0.8 and o = 0.8. In reality we use tens of thousands of steps with
suitable variable widths so that the steps become indistinguishable from the actual
function. The solution of Eqn. (I1.45) at nth step can be written as (Davydov 1976;
Chakrabarti & Mukhopadhyay 2000),

Zyn = Anexplikyfin] + Bnexzp|—tknfy ) (11.48)

when energy of the wave is greater than the height of the potential barrier. The

standard junction condition is given as (Davydov 1976),

2., _dZ.

Z - Z 1 a,nd =
+,n +,n+ d’f'* I'n d'f'*

iy (IL.49)

The reflection and transmission coefficients at nth junction are given by (Chakrabarti

& Mukhopadhyay 2000):

An+1(kn+l - kn) + Bn+1(kn+1 + kn) .

R, = :
An+1(kn+1 + kn) + Bn+1(kn+l - kn)

T,=1-R,. (11.50)

At each of the n steps these conditions were used to connect solutions at successive
steps. Here, k is the wave number (k = \/&2—:_1_/;) of the wave and k, is its value at
nth step. We use the ‘no-reflection’ inner ’boundary condition: R — 0 at 7, — —o0.

For the cases where waves hit on the potential barrier, inside the barrier (where

0? < V) we use the wave function of the form (Chakrabarti & Mukhopadhyay 2000)
Zyn = Anexp[—onfun] + Brezplants,) (I1.51)

where, a, = /Vi — 02, as in usual quantum mechanics.

134



O.6IIIIIIIIIIITIIIIIlII
L -

0.4 -

0.2 - -

O | I T | l L1 1 I | N T | l 11

-10 0 10 20
r.

Fig. IL.1 : Behaviour of V, (smooth dotted curve) for a = 0.5, m, = 0.8, ¢ = 0.8. This
is approximated as a collection of steps. In reality tens of thousand steps were used with
varying step size which mimic the potential with arbitrary accuracy.
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Fig. I1.2a: Amplitude of Re(Z,) of waves with varying mass as functions of #,. m, = 0.78
(solid), my = 0.79 (dotted) and m, = 0.80 (long-dashed) are used. Other parameters are
a=0.5and o0 =0.8.
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Fig. IL.2b: Reflection (R) and transmission (T') coefficients of waves with varying mass
as functions of .. m, = 0.78 (solid), m, = 0.79 (dotted) and m, = 0.80 (long-dashed) are
used. Other parameters are a = 0.5 and o = 0.8. Inset shows R in logarithmic scale which
falls off exponentially just outside the horizon.
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2.3 Examples of Solutions

Figure II.2a shows three solutions (amplitudes of Re(Z;)) for parameters: a = 0.5,
o = 0.8 and m, = 0.78, 0.79, and 0.80 respectively in solid, dotted and long-dashed
curves. The energy o? is always higher compared to the height of the potential barrier
(Fig. 11.1) and therefore the particles do not ‘hit’ the barrier. k goes up and therefore
the wavelength goes down monotonically as the wave approaches a black hole. It is
to be noted that though ours is apparently a ‘crude’ method, it has flexibility and is
capable of presenting insight into the problérn, suppressing any other method such as
ODE solver packages. This is because one can choose (a) variable steps depending
on steepness of the potential to ensure uniform accuracy, and at the same time (b)
virtually infinite number of steps to follow the potential as closely as possible. In
Fig. 11.2b, we present the instantaneous values of the reflection R and transmission
T coefficients (i.e., R, and T, of Eqn. I1.50) for the same three cases. As the particle
mass is decreased, k goes up and corresponding R goes down consistent with the
limit that as k — oo, there would be no reflection at all as in a quantum mechanical
problem. For instance, in the inset, we show R in logarithmic scale very close to the
horizon. All the three curves merge, indicating that the solutions are independent
of the mass of the particle and a closer inspection shows that here, the slope of the
curve depends only on ¢. The exponential dependence of R, close to the horizon
becomes obvious. Asymptotically, V. = mg (Eqn. I1.46), thus, as m, goes down, the
wavelength goes down.

Figures I1.3(a-b) compare a few solutions where the incoming particles ‘hit’ the
potential barrier. We choose, a = 0.95, ¢ = 0.168 and mass of the particle m, =

0.16, 0.164, 0.168 respectively in solid, dotted and long-dashed curves. Inside the
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Fig. I1.3a: Reflection (R) coeflicient of waves with varying mass as functions of ..
mp = 0.16 (solid), m, = 0.164 (dotted) and m, = 0.168 (long-dashed) are used.
Other parameters are a = 0.95 and o = 0.168.
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Fig. IL.3b: Amplitude of Re(Z,) of waves with varying mass as functions of ..
m, = 0.16 (solid), m, = 0.164 (dotted) and m, = 0.168 (long-dashed) are used.
Nature of potential with m, = 0.168 is drawn shifting vertically by 2.05 unit for
clarity. Other parameters are a = 0.95 and o = 0.168.
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Fig. II.4a: Contours of constant amplitude are plotted in the meridional plane around a
black hole. Radial direction on equatorial plane is along X axis and the vertical direction
is along Y. Both radial and theta solutions have been combined. Parameters are a = 0.5,
mp = 0.8 and 0 = 0.8.
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Fig. IL.4b: Three dimensional view of R_,/3S_;/, are plotted in the meridional plane
around a black hole. Both radial and theta solutions have been combined. Parameters are
a=0.5 my,=0.8and o0 =0.8.
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barrier, the wave decays before coming back to a sinusoidal behaviour, before entering
into a black hole. In Fig. II.3b, we plotted the potential (shifted by 2.05 along vertical
axis for clarity). Here too, the reflection coefficient goes down as k goes up consistent
with the classical result that as the barrier height goes up more and more, reflection is
taking place strongly. Note however, that the reflection is close to a hundred percent.
Tunneling causes only a few percent to be lost into the black hole.

Figures 11.4(a-b) show the nature of the complete wave function when both the
radial and the angular solutions (Chakrabarti 1984) are included. Figure II.4a shows
contours of constant amplitude of the wave (R_,/25_1/2) in the meridional plane - X
is along radial direction in the equatorial plane and Y is along the vertical direction.
The parameters are a = 0.5, m, = 0.8 and o = 0.8. Some levels are marked. Two
successive contours have amplitude difference of 0.1. In Fig. II.4b a three-dimensional
nature of the complete solution is given. Both of these figures clearly show how the
wavelength varies with distance. Amplitude of the spherical wave coming from a large
distance also gets weaker along the vertical axis and the wave is forced to fall generally

along the equatorial plane, possibly due to the dragging of the inertial frame.
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3 Conclusions

Here we write the Dirac equation in curved space-time and particularly in Kerr geom-
etry. From this, the behaviour of non-integral spin particles (more clearly spin-half
particle) can be studied in curved space-time. From the form of the equation and its
solution it is clear that in curved space the particles behave differently from that in a
flat space-time. The Newman-Penrose formalism is used to write the equation where
the basis system is null. Dirac equation is separated into angular and radial parts.
Similar separation can be possible on the background of Dyon black hole (Semiz
1992). The solution of angular part of the Dirac equation is first reviewed. The exact
solution is possible for 2 = 1, otherwise the solution is approximate (Chakrabarti
1984). Unlike in the case of a Kerr black hole, the solution of the angular equation
around a Schwarzschild black hole is independent of the azimuthal or meridional an-
gles (Chakrabarti 1984; Press & Teukolsky 1973; Teukolsky & Press 1974). This is
expected because of symmetry of the space-time.

Finally we study the scattering of massive, spin-half particles from a Kerr black
hole, particularly the nature of the radial wave functions and the reflection and trans-
mission coeficients. The radial Dirac equation is solved using the method described
above. The space dependent transmission and reflection coefficients are calculated.
Spatial dependency of the transmission and reflection coefficients are very clear from
the behaviour of the potential which is space-dependent. As the particle is moving in
the potential field, the potential is changing. As a result transmission and reflection of
the particle are changing. The reflection and transmission coefficients were found to
distinguish strongly the solutions of different rest masses and different energies. The

solution might be of immense use in the study of the spectrum of particles emitted

144



from a black hole horizon (Hawking radiation). We showed few illustrative cases as
examples. The physical region was classified into two parts, depending on whether
the particle ‘hits’ the potential barrier or not. Again, the region, where particle hits
on the barrier, is divided into two parts, one is super-radiant region and other is
non-super-radiant region. We chose one illustrative example in each of the regions.
We emphasize that the most ‘interesting’ region to study would be close to m, ~ o.
Our method of obtaining solutions should be valid for any black hole geometry which
is asymptotically flat so that radial waves could be used at a large distance.

In the literature, reflection and transmission coefficients are defined at a single
point. These definitions are meaningful only if the potential varies in a small region
while studies are made from a large distance of it. In the present case, the potential
changes over a large distance and we are studying in these regions as well. Although
we used the words ‘reflection’ and ‘transmission’ coefﬁciénts, in this thesis very loosely,
our definitions are very rigorous and well defined. These quantities are simply the
instantaneous values and in our belief more physical. The problem at hand is very
similar to the problem of reflection and transmission of acoustic waves from a strucked
string of non-constant density where reflection and transmission occurs at each point.

It is noted that all the cases where potentials diverge at a certain r arise for 0 < o,
with the negative values of azimuthal quantum number (here, m = —1/2) and the
positive Kerr parameter, a. For positive values of m and positive values of a, potential
does not diverge at any point for all values of o. If we change the spin orientation
of the black hole (negative values of a) and take positive m again divergence of the
potential will arise. Thus, it seems that the cases with opposite sign of a and m are

physically more interesting,.
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It is seen that for different physical parameters the solutions are different. The
waves scattered off are distinctly different in different parameter regions. In a way,
therefore, black holes can act as a mass spectrograph! Another interesting application
of our method would be to study the interactions of Hawking radiations in regions

just outside the horizon.
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NUCLEOSYNTHESIS IN ADVECTIVE ACCRETION DISKS
AROUND GALACTIC AND EXTRA-GALACTIC BLACK HOLIES

B. MUKHOPADIHYAY

S. N. Bose National Centre For Basic Sciences JI) Block, Salt
Lake, Sector-111, Caleutta-700091. India

1. Introduction

Many of the observational evidences for black hole rely on the fact that
the incoming gas has the potential to become as hol as its virial temper-
ature Tyivint ~ 1O I (Rees, 19240). This flow is nsuatly cooted down
through bremsstrahlung and Comptonization effects and hard and soft
slates are produced depending on the degree by which this cooling takes
place (Chakrabarti & Titarchuk, 1995). The generally sub-Keplerian, ad-
vective flow after deviating from a Keplerian disk, especially in the hard
states, remains sufliciently hot to cause a significant amount ol nuclear re-
actions around a black hole before plunging in it. The energy generated
could be high enough to destabilize the flow and the modified composition
may be dispersed through winds to change the metalicity of the galaxy
(Chakrabarti, Jin & Arnctt, 1987 {CIA]; Jin, Arnett & Chakrabarti, 1988;
Chakrabarti, 1988 Mukhopadhyay & Chakrabarti, 1998). Farlier works
have been done in cooler thick aceretion disks only. Below, we present a
f[ew examples of nuclear reactions in advective flows and discuss the impli-

cations. Results of more detailed study could be seen in Mukhopadhyay &
Chakrabarti (1998) [MC9R8].

2. Physical Systeins Under Considerations

Black hole accretion is by definitionadvective, i.e., matter must have radial
motion, and transonic, i.e., matter must be supersonic (Chakrabarti 1996
[CO6] and references therein). The supersonic flow must be sub-Keplerian
and therefore deviate from the Keplerian disk away from the black hole. The
study of viscous, transonic flows was initiated by Paczynski & Bisnovalyi-
IKogan (1981).
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By and large, we follow C'96 for thermodynamical parimeters along a
flow and Chakrabarti & Fitarchuk (1995) {C'T95] and Chakrabarti (1997a)
[C9Ta] to compnte the temperature of the Comptonized flow in the advee-
tive region which may or mayv not have shocks, According to these solutions.
a black hole aceretion may he thought to be simitar to asandwich whose
sub-Keplerian flow rate (1irg) in the *bread® part. progressively inereases and
that (724) in the ‘meat’ part progressively decreases as flow moves in Lo-
wards the black hole. Finally at o = »), the equatorial flow also deviates
from a Keplerian disk and for @ < ope the entire flow is sub-Keplerian,
Among the major reactions which are taking place inside the disk, we note
that, due 1o hotter nature of the advective disks, especially: when the ac-
cretion rate is low and Compton cooling is negligible, the major process
of hydrogen burning is the rapid proton capture process (which operates
at T'2 5 x 103K) as opposed to the PP chain (which operates at much
lower temperature 7" ~ 0.01 — 0.2 x 10"K) and CNO (which operates at
T ~ 0.02 - 0.5 x 10°K). The present. paper being exploratory in nature,
we do not include nuclear heating and cooling in determining the structure
and stability of the aceretion flow, We do not assume here heating duae to
magnetic dissipation (see, Shapiro, 1973 and Bisnovatyi-Kogan, [998).

FFor simplicity, we take the solar abundance as the abandance of the
Keplerian disk. Furthermore, Keplerian disk being cooler, no composition
change is assumed inside it In other words, onr computation starts only
from the time when matter is launched from the Keplerian disk (0 = @),
Most of the cases were repeated with initial abundance same as the ontput,
of big-bang nucleosynthesis (hereafter referred to as ‘hig-bang abundance’).

According to ("T'05, and C'97a. for two component accretion flows, for
mg S 0.1 and iy, S 1 the black hole remains in hard states. Lower rate
in Keplerian disks generally fmplies a lower viscosity and o larger oy
(e ~ 30 = 10005 see, €96 and C97a). In this parameter range the pro-
tons remain hot, typicallv. T, ~ 1 = 10 x 107 degrees or so. This is be-
cause the efficiency of emission is lower (f = 1| = Q7/Q" ~ 0.1, where,
Qt and Q= are the heat generation [due to viscous processes] and heat
loss rates respectively. Also see, Rees [1981], where it is argued that i /a?
is a good indication of the cooling eflicieney of the hot low.). We have
studiod a barge region of parameter space in details where 00000 2 o 20,
0.001 S S 100, 0.01 £ I"('l,,,,':‘,',, 5095, 1/3 54 £5/3 ave chosen. lere,
Fe;ompe 15 the factor by which the proton temperature is reduced due to
bhremsstrahlung and Comptonization effects, Results with several sets of
initial conditions are in MC98, Since shocks can form in advective disks
for a large region of parameter space (C96 and references therein) we use
a case with a stauding shock in this paper.

In selecting the reaction network we kept in mind the fact that hotter
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flows may produce heavier elements throngh triple-a and rapid proton and
o capture processes Furthermore dae to photo dizzociation sipnificant nen
trons may be produced and there is o possibility of production of neatron
rich isotopes. Thus. we consider snflicient number of isotopes on either side
of the stability line. 'The network thus contains protons, neutrons, Gl 720/
- altogether 255 nuclear species. The standard reaction rates were taken

[MCY8]. -

3. Results

We present now with a typical case which contained a shoek wave in the
advective region. We use the mass of the black hole A/AL: = 10, H-stress
viscosily parameter ayp = 0.07, the location of the inner sonic point x;, =
2.9115 and the value of the specific angular momentum at that point A

o=

1.6, the polytropic index 5 = 1/3 as free parameters. The net aceretion
rate 72 = 1, which is the sum of {(very low) Neplerian component and the

sub-ICeplerian component. Results of €195 and CO7a for 1y ~ 0.1 and
g~ 0.9, X Fegnge = 0.03, #0 = 101 This Tactor is used to convert
the temperature distribution of solutions of €96 (which does not explicitly
uses Comptlonization) to temperature disteibution with Complonization.
The proton temperature and velocity distribution computed in this manner

are shown in Figs. 1(a-b). (velocity is measured in units of 10™ cm see™ 1),
In Fig. lc, we show the composition change close to the black liole both

for the shock-free branch (dotted curves) and the shocked branch of the
solution (solid curves). Only prominent elements are plotted. The difler-
ence between the shocked and the shock-free casds is that in the shock case
the similar burning takes place farther away from the black hole because
of much higher temperature in the post-shock region. A significant. amount,
of the neutron (with a final abundance of ¥, ~ 107%) is produced due
to photo-dissociation process. Note that closer to the black hole, '3, M0,
Mg and 2S5 are all destroyed completely. even though at around » = 3 or
so, the abundance of some of them went up first belore going down. Among
the new species which are formed closer to the black hole are 257, 467
. Note that the final abundance of 29N ¢ is significantly higher than the
initial value. Thus a signilicant metalicity could be supplied by winds from
Lhe centrifugal bareier. tn Fig. tdo we slrow all the energy release /absorption
“components for the shocked flow. The viscous energy generation (QF) and
theloss of energy (Q-) from the disk (short dashed) are shown. These quan-
tities, had the advective regime had Keéplerian distribution, are also plotted
(dotted). Solid curve represents the nuclear energy release/absorption for
the shocked flow and the long dashed curve is that for the shock-free flow.
Dot-dashed curve represents the nuclear energy release/absorption for big-
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Fig. 1 : Variation of (a) proton temperature (Ty). (b) radial velocity v, (¢)
matter abundance Y; in logarithmic scale and (d) various forms of specific energy
release and absorption rates as functions of logarithmic radial distance (2 in units
of Schwarzschild radius). See text for parameters. Solutions in the stable branch
with shocks are solid curves and those without the shock are dotled in (a-¢).
Curves in (d) are deseribed in the text. At the shock temperature and density rise
significantly and canse a sipnificant change in abundance even faother ont, Shoek
induced winds may cause substantial contamination of the galactic composition

when parameters are chosen from these regions.

bang abundance. As matter leaves the Keplerian flow, the rapid proton
capture (rp-) processes (such as, p +'%0 = N+ ¢ ete) burn hydrogen
and releases energy to the disk. At around a = 15, 1) — n + p disso-
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ciates 1) and the endothermic reaction causes the nuelear energy release
Lo hecome ‘negative’ ed o hupe amonnt ol conerpy in oabzorbed from e
disk. At around o L the enerpyorelense s again dominated by the orig

inal rp-processes. Fxcessive temperature at aronnd r 12.6 broaks i

down into deuterium 'This type ol reactions absorh o significant amount of
energy from the flow. When big-bang abundance is chosen to be the ini-
tial abundance, the net composition does not change very much, but the
dominating reactions themselves are somewhat different becanse the initial
compositions are different. For instance, in place of rapid proton capture
reactions as above, the fusion of deuterium into ¢ plays dominant role
via D+ D 3He+n, D+p=2He. DD = p+T,% e+ D - p+tle.
This is because no heavy elements were present to begin with. lindothermic
reactions at around a = 20 —10 are dominated by deuterinm dissociation as
before. However, after the complete destruction of deuterivm, the exother-
‘mic reaction is momentarily dominated by neutron capture processes (due
to the same neutrons which are produced earlier via 1) — n + p) snch as
n4+3 e = p+ 1 which produces the spike at around 2 = 115, Following
this, 3 e and 1" are destroyed as in solar abundance case and reaches the
minimum in the energy release curve at aronnd @ = 6. The tendency of go-
ing back to the exothermic region is stopped due to the photo-dissociation
of e via e = p 1 and e = o 42 He, AU the end of the big-bang
abundance calculation, a significant amount of neutrons are produced. I
is interesting to note that the radial dependence as well as the magnitude
of the energy release due to rp-process and that due to viscous dissipation
(Q*) are very similar (save the region where endothermic reactions domi-
nate). This suggests that even with nuclear reactions, at least some part of
the advective disk may be perfectly stable.

We now present another interesting case where lower accretion rate
(rin = 0.01) but higher viscosity (0.2) were used aund the efficiency of emis-
sion is intermediate (f = 0.2). That means that the temperature of the
flow is high (Foomp: = 0.1, maximum temperature 75" = 13). x) = 8.4
in this case, if the high viscosity is due to stochastic magnetic field, protons
would be drifted towards the black hole due to magnetic viscosity, but the
neutrons will not be drifted (Rees et al., 1982) 4ill they decay. ‘This principle
has been used to do the simulation i’ this ease. The modilied composition
in one sweep is allowed to interact with freshly acereting matter with the
understanding that the accumnlated nentrons do not drift vadially, Alter
few iterations or sweeps the steady distribution of the composition may be
achieved. Figure 2 shows the neutron distributions in iteration numbers 1,
7, 14 & 21 respectively (from bottom to top curves) in the advective re-
gion. The formation of a ‘neutron torus’ (Hogan & Applegate, 1987) is very
apparent in this result and generally in all the hot advective llows. Details
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Fig. 2 : The convergence of the nentron abundance through successive iterations
in a very hot advective disk. Front hottom to top curves 1, 7, 14 and 21 iteration

results are shown. A neutron torns with a significant abundanee is formed in this
s,

are in Chakrabarti & Mokhopadhyay (1998).

4. Discussions and Conclusions

In this paper, we have explored the possibility of nuclear reactions in ad-
vective accretion flows around black holes. Although this region is not {fully
self-consistently computed vet, particularly near the region where the ad-
vective disk joins with a standard Ikeplerian disk, we have used the best
model that is available in the literature so far (€C96). Temperature in this re-
gion is controlled by the efliciencies of bremsstrahlung and Comptonization
processes (C196, C97a) and possible heating and cooling due to magnetic
fields (Shapiro, 1973; Bisnovatyvi-Kogan. 1998). For a higher Keplerian rate
and higher viscosity, the inner edge of the Keplerian component. comes
closer to the black hole and the advective region becomes cooler (C7195).
However, as the viscosity is decreased, the inner edge of the Keplerian com-
ponent moves away and the Compton cooling hecomes less efficient,

The composition changes especially in the centrifugal pressure sup-
ported denser region, where matter is hotter and slowly moving. Since
centrifugal pressure supported region can be treated as an effective surface
of the black hole which may generate winds and outflows in the same way
as the stellar surface, one could envisage that the winds produced in this
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region would carry away maodified composition (Chakrabarti, 1997h: Das
& Chakrabarti 1998: Das, 1998). In very hot disks, a significant amount. of
free neutrons are produced which, while caming out throngh winds may re
combine with outflowing protons ot o cooler environment to possibly form
deuteriums a process originally suggested by Ramadurai & 'Rees (1985) in
the context of on tori around black holes. A few related questions have
been asked lately: Clan lithinm in the universe be produced in black hole
accretion (Jin 1990; Yi & Naravan, 1997)7 We believe that this is not possi-
ble. The spallation reactiopns may produce such elements when only He-He
reactions are considered. But when the full network is used we find that
the hotter disks where spallation would have been important also photo-
dissociate heliums to deuteriums and then to protons and neutrons before
any significant lithiums could be produced. Another question is: Could the
metalicity of the galaxy be explained, at least partially, by nuclear reac-
tions? We believe that this is quite possible. Details are in NC98.

An interesting possibility of formation of the neutron forus was also
discussed by Hogan & Applegate (1987): Clan o neatron torus be formed
around a black hole? We find that in the case of hot inflows, such formation
of neutron toriis a very distinet possibility (Chakrabarti & Mukhopadhyay,
1008). Presence of o neatron toras aronnd o black hole would help the
formation of neatron rich species as well, o process hitherto attributed to
the supernovace explosions only,

The advective disks as we know today do not perfectly mateh with a
Keplerian disk. The shear, i.e., d€2/da is alwavs very small in the advective
flow compared to that of a Keplerian disk near the outer boundary of the
advective region. We believe that such behavior is unphysical and had the
viscosity «v parameter or the cooling function were allowed to be changed
continuously, such deviation would not have occurred. Thus some improve-
ments of the disk model at the transition region is needed. but since major
reactions are closer to the black hole, we believe that such modifications
of the model would not change our conclusions. T'he neutrino luminosity is
generally very large compared to the photon luminosity in case of hot disk
(Mukhopadhyay & Chakrabarti 1998). In the first Case that we discussed
above, neutrinos typically carey an energy of around 10™ erps see™! pm =t
Assuming that a typical neutrino is of energy ~ 1 NMeVoand appreciable
neutrinos are emitted only from a region of a radial extent of the order of a
Sehwarzschild radius where the disk is also around o Seliwarzaehild radius
thick and the density is around 1077 g see™ o In presence of hot advective
disks, the number of neutrinos that shonld be detected per square em area
on the surface of carth would be at least a few per second provided the
source is a 10AL.. black hole at a distance of 10kpe. On the other hand,
neutrino luminosity from a cool advective disk is low (around 10 orgs
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see™ !t gm= 1Y and no appreciable nnmber of neutrino are expected. Thus,

probably one way to cheek i hot, and stable advective disks exist is to fook
[or nentrinos from the suspeceted black hole candidates; especially in the
hard states.

In all the cases, even when the nuclear composition changes are not
very significant, we note that the nuclear energy release due to exothermic
reactions or absorption of energy due to endothermie reactions is of the
same order as actual radiation from the disk. Unlike the gravitational energy
release due Lo viscous processes, nuclear energy release strongly depends on
temperatures. Thus, the additional energy source or sink may destabilize
the flow. This aspect has not been studied in this work yet. A realistic way
to do this is to include the nuclear energy also in time dependent studies
of the black hole aceretion (e.g., Molteni, Lanzafame & Chakrabarti, 1991;
Molteni, Ryu & Chakrabarti, 1997). Such works are in progress and the
results would be reported elsewhere.
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Abstract, In 1976 Chandrasekhar separated the Dirac equation in Kerr geometry in radial and angular parts.
Chakrabarti in 1984 solved the angular equation and found the corresponding eigenvalues for different Kerr
parameters. Chandrasekhar solved the radial equation asymptotically and the reflection and transmission
coefficients were calculated by him for few Kerr parameters. In the present paper, we solve the complete
radial equation and calculate analytical expressions of radial wave functions for a set of Kerr and wave

parameters. From the solution we get the reflection and transmission coefficients, which are now space
dependent.

1. Introduction

One of the most important solutions of Einstein’s equation is that of the spacetime around and
inside an isolated black hole. The spacetime at a Jarge distance is flat and Minkowskian where
usual quantum mechanics is applicable, while the spacetime closer to the singularity is so curved
that no satisfactory quantum field theory could be developed as yet. An intermediate situation
arises when a weak perturbation (due to, say, gravitational, electromagnetic or Dirac waves)
originating from infinity impinges on a black hole, interacting with it. The resulting wave is
partially transmitted into the black hole through the horizon and partially scatters off from it to
infinity. In the linearized ("test field’) approximation this problem has been attacked in the past by
several authors [1-4]. The master equations of Teukolsky {2} which govern these linear
perturbations for integral spin (e.g., gravitational and electromagnetic) fields were solved
numerically by Press and Teukolsky {5] and Teukolsky and Press [6]. Chandrasekhar [3-4)
separated the Dirac equation in Kerr geometry into radial .and angular parts. Subsequently,
Chakrabarti {7] solved the angular part of the Dirac equation in Kerr geometry and gave the
eigenvalues of the equation, Chandrasekhar [4] calculated the asymptotic behavior of the radial
part of the Dirac equation for massless particles (neutrino) and indicated how the form would be

modified for when the Dirac particles are massive. In the present paper, we present a complete
solution of the Dirac equation.

2. Basic equations of the problem

The radial parts of the Dirac equation are Banibrata

1 t
AzDoR 1 =(/1+im,,r)A2R 1
— 4=
3 M
1 1 ( )R
A2D_A2R , =W —-im r
" "7 @
where D, =8,+1—A[S—+2ng:;—m, A=r2+a2—-2Mr, K:(r2 +a2)7+am

where, a = Kerr parameter, n = integer, 0 = frequency of incident wave of the particle, M = mass
of the black hole, m = azimuthal quantum number, m, = mass of the particle, A =eigenvalue of the
Dirac equation which was calculated in [7]}, R, n(R.1n) = radial wave function with spin up
(down).

The radial equation here is in coupled form. We can decouple it and express the equation
either in terms of spin up or spin down wave function. However it is more convenient to follow
Chandrasekhar's [4] approach by which he changed the basis and independent variable r and
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transformed the coupled equation into two independent one dimensional wave equations since
they are easier to solve,

We first define

+
" =r+2Mr,, am/olog(_r__l]_2Mr_+am/o|og{_f__l]
ry—r. r, r,—r. r
d A d

where r)r, and-—=———w =rt+at,a’=a®+{amlo
" drn  w@dr’ ¢ )

and choose
1

AzR —PI,R|=P|
+
2

— =10
Te d’o

2 2
In terms of r*, the operators take the form: D, = 95—(:;—1——4- io‘]and Dg = _w_( d _ ]

We choose 6 = tan~' (m,,r//l) which yields

9 A T J—" d(Ati i\ +m2r?)
€080 =~ 5in0 = an in r =exp(ti +mpr
A? +mf,r2 \ﬂ +m r )

Following exactly Chandrasekhar's (4] approach we write

1 a mpr 1 af mpr
P,=%Y [ exp|-=itan"| —— 1|l and P, =¥ , exp|+—itan
*; "'5 2 A "3 -3 2 A

. . a _ 1 -1 "’pr ield " A A”" 1
Finally a choiceof 7. = n +§;tan - yields dfe = 5 —-—;;7 re

w 20 APam?
With these definitions, the differential equations (1 and 2) are re-written as

d
(E:—w}z ioZ_ (3a)
[—d-+w}z ioZ, (3b)
df'o

1
Az(/12+mzr2) :
whereZ, =¥ | ¥ | and W =—r—
5 T3 0} (A +mir )+/\m,,A/2o

From these equations, we readily obtain the pair of independent one-dimensional wave-cquations

dz
F-&O’z t=Vtzt (4)
Ve

where
v, =w?s+2¥
dr.
1
- 12
A? (/12 +m§r2)) !

T em2e)s am a020] a2 +m2r 2 s (-t mdr? o amlra)
+m r°j+Am o

Az(l2+m r ),2
[w (/12+m r )+Am A/2o]‘

[ (/12 +mf,r2)+ me,wzr+/1m,,(r—M)/0]
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3. The method to solve the cquation

From eq. (4) it Is clear that it is not analytically solvable unless very special case is chosen
because of the non-trivial form of V,. But for a particular set of parameters (such as specific
angular momentum of the Kerr black hole, particle mass, particle energy) we observe that the
nature of the potential is well behaved although the mathematical expression of the potential is
complicated. So if expression of potential is fitted with a function with the presence of which the
differential equation can be solved analytically then equation can be solved by replacing that
expression of analytic function in place of potential expression in the differential equation. Using
this procedure the differential wave equation is solved here by WKB approximation method.
Solving the equation we get the reflection and fransmission coefficient (which was calculated by
Chandrasekhar [4] asymptotically). Also we impose space dependence on the coefficients so at
each point from infinity to black hole horizon we find how reflection and transmission coefficient
change. Here is one important point to note, that is the transformation of spatial co-ordinate 7 to r*
(and #*) is taken not only for mathematical simplicity but there is also physical significance. In
case of initial equation which was a function of r, the black hole horizon is at r,. By decoupling
the equation we obtain also two independent wave equations. Here we see the coefficients of the
first order derivative term and linear term are not well behaved with respect to r (they are

diverging functions). But by transforming those in terms of r* (and7*) we get well behaved
functions and horizon also is shifted to -oo.

4. Solution

We present here the solution of eq. (4) for a few sets of parameters. The choice of parameters is
generally made in such a way that there is significant interaction between the particle and the

black hole, the Compton wavelength of the incoming wave should be of same order as Kerr
radius. So,

G[M +\HM2 ~a? ’]/c2 ~h
m,c
Here we are choosing G=h=c=1, 50

-1
m, ~[M +\NM2 -a? ']

Again for the case of Kerr geometry, frequency of the incoming particle (or wave) will be of the
same order as inverse of time. So,

C3

G[M + m]

Using suitable units as before, we can wrile,

-1
m,,~0'~[M +\/iM2—a2i]

Case |

~a

The parameters chosen here are given below,
Kerr parameter, a = 0.5
Mass of the black hole, M =}
Mass of the particle, m, = 0.7999
Orbital quantum number, | = 1/2
Azimuthal quantum number, m = -1/2
Frequency of the incoming wave, 0=0.8
The derived parameters are,

Corresponding black hole horizon, r, =M + ,NM t_a? i':‘ 1.86603
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Corresponding g, = |

Corresponding g, = 0.006987

Corresponding parameter of = -0.0625

Corresponding eigenvalue 1 =0.918573 (7).
Here it is clear that ¢ is in between o, and o, and o <0, r, > e} so this is strictly non super-
radiant, i.e., o < o, [4).

From eq. (4) we observe there are two wave equations of corresponding potentials V, and
V.. The nature of potentials are'shown in Fig. 1a. It is clear from the Fig. la that potential V, (solid
curve) is well behaved. It is monotonically decreasing as the particle approaches the black hole,
and the total energy chosen in this case (o ) is always higher compared to V.. Here we
concentrate to study the equation with potential V,. The expression of the potential is fitted with
a few piecewise continuous anatytic functions which are of the form
V;=a +b) cxp(—- fa /c'l)

The index j refers to different choices of the constants &', &', ¢' in different ranges of 7*.
Now we re-write equation (4) as

2
dd:" +lo?-v, )k, =0 )

tet k(7 )= \Noz -V, i,u(?.)= I k(7 M. + constant, so

-7
k} =aj+b, cx;{—c—] (6)
J

Ja; +k (r)
" - J 7).
and u =Ik diy ==2¢c;k,(R)+c Ja log| tt———I + cons tant M
J J i INY -
Jaj - kj(r.)
Here, k is the wave number of the incoming wave and u as the Eiconal.
The solution of the equation (5) is,

Z,= %exp(iu)%:;_—;exp(— iu) ®)

In this case all along &* > V, and also %5—1‘: <<k, so WKB approximation is valid in the whole
r

region. The equation (8) is the second order approximate solution. In Fig. Ib we show the nature
of V, (solid curve), k (dashed curve) and E (= o ) (short-dashed curve). In Fig. 1c the nature of the
Eiconal u is shown. In the solution (eq. 8) first term represents the term corresponding incident

wave and second term corresponds to the reflected wave. Now we will introduce space
dependence on A, and A.to get more accurate solution.

We write,

W, =expliu)/ vk (9a)
and W_ =exp(-iu)/ Jk (9b)
and k2(R)= (%)

Defining

we can write
wi+lr+ex, =0 (10)
where, the single prime and double prime indicate single and double derivatives with respect to

#* respectively. The original Z, equation takes the form

Z0+Z, =0 (1
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Now considering Ay to be the osculating parameter and following the appioach of Mathews and
Walker (9] we get,

w,W -w,w_ (12)

Differentiating eq. (12) and using eq. (10) and eq. {(11) we can eliminate Z] and W, , and obtain

dA¢ iX -2fu

—t=-_ A+ .

Py 3 k[& Ae ] (132)
dA_ — i X +2iu

ot S A AL (13b)

Now multiplying (13a) by e*'* and (13b) by e'¥ and then adding, we get
edu dA+ +¢-lu dA

'—::'=0

dr dr. (14)

Now for simplicity we are considering A, to be real, so in eq. (14) separating real and imaginary
parts we get,

dA, | dA.

+4- o

ai | k. (152)
dA, dA

and e =0

P TIT) (15b)

Using either of the above equations we can find out analytical expression of A, and A.. We choose
eq. (15b) from where we obtain,

A=A +c (16)

This is a relation between A, and A. up to this order of approximation. Here, ¢ is an arbitrary
integral constant which can be calculated by boundary condition.
Also another necessary condition

AP+ A2 =k (17)
is imposed here since sum of the reflcction and the transmission coefficient must be unity with
respect to the transmission of the very previous point.

To determine ¢ we need the value of coefficient A, at least at one point, so we will
calculate the asymptotic values. For this we consider a square potential barrier of same area under
the curve as our given potential of the problem and of constant height as height at infinity of our
potential. With respect to this barrier if we find the value of the coefficients, which will be the
asymptotic values of the reflection and transmission coefficients for the original potential of our
problem. By remembering the value of k at infinity and if T and R are the asymptotic values of
transmission and reflection coefficients respectively then value of constant ¢ can be calculated as
c= leT - «/kRL =-0.032629 = ¢’

So now we can write
A, =A-C (18)
and

A =,“k—Af"—c' (9

This gives,

2
A, = [ 2k - ¢

2 2
But the solution with these coefficients has some disadvantage that it does not satisfy inner
boundary condition’ at the horizon, i.e., unit transmission and zero reflection coefficients. For this,
functions A, must be shifted by introducing two different constants. So expressions of A, and A.
change 1o

(20

2k —c?

[
A, =¢ +—+
+Tavy 2

(21a)
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2 (21h)

Now to maintain the sum of the reflection and transmission coeflicients to unity, we must have

2 2 2
Az +A? =(cl +-§-) +[C2 —%] +(cl +c, W2k - c? +£2L2—c—)=h(say)=(—t—}< (22)

It is advisable to choose the modified coefficients of the wave function as follows:

a, = A

t Jhik (23a)
a =_A"_

T Jnik (23b)
so that
a’+al=k (24)

and the reflection and transmission coefficients are a2/k and a?/k respectively which are
explicitly written as:

C'+§ 2% - ¢?
T = c|+-€-+\/2k—c2 =< (25a)
h 2 4h
[of
R= "2 e, - Sa2k-c? f ke (25b)
h L) 4h

It is clear that difference between a, and a. are not constant now and da, / df.is not same as

da_ [ df.. Also it can be easily checked by putting back this fourth order corrected solution into

original differential equation that solution is still satisfying the equation up to tonsideration
1 dk

—<<1.
k dr.

In Fig. 1d, variation of reflection and transmission coefficients are shown. It is szen that
as matter comes close towards the black hole, the barrier height goes down. As a result,
penetration probability increases resulting in the rise of the transmission coefficient.

Similarly, one can also solve the wave equation with potential V.

~he radial wave functions R, and R.;» which are of spin up and spin down particles
respectively of the original Dirac equation are given below,

rRd R A—;-]_ a, cos(u-6)+a_ cos(u+8)  a’, cos(u’-0)+a’ cosu’+0)
A2 |=

+

2k 2k (262)
il R Alz _a, sin(u-6)-a_sinu +b)_ a’, sin(u’ -6)-a’ sin(u’+0)

3 2k 2K (26b)

a, cos(u+8)+a_cos(u~0) a’, cos(u’+06)+a’ cosu’-8)

R R 1 = - =

-3 2k 2Jk’ (26¢)
i R a, sin(u+8)-a_sin(w-0) a sinfu’+0)-a’sin(u’'-6)

1= -

-3 2wk N4 (26d)

where a, /vk’and a’ /Jk" are the transmitted and reflected amplitudes respectively for the
wave of corresponding potential V.,

2

2
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Case 11

The parameters chosen here are given below,
Kerr parameter, a = 0.95
Mass of the black hole, M =1
Mass of the particle, m, = 0.1684208
Orbital quantum number, I = 1/2
Azimuthal quantum number, m=-1/2

Frequency of the incoming wave, o= 0.210526
The derived parameters are,

Corresponding black hole horizon, r, =M + \HM 2 _gq? jg 1.31225
Corresponding 0. = 0.526316

Corresponding g, = 0.180987

Corresponding parameter of = -1.353754

Corresponding eigenvalue A = 0.930115 {7]. )

It is clear that the values of o, 0, and o, indicate the region is non super-radiant, ie.. 0 <
0, [4). As before, the forin of the potentials are complicated and the analytical solution is not
possible. We employ the method as in the previous Section. We use the equation containing V,
(eq. 4). In Fig. 2a, we show the nature of V, and V.. Unlike the case in the previous Section, here

is no longer greater than V; at all radii. As a result, k> may attain negative values in some

region. The potential and therefore the corresponding k is fitted with a few piecewise smooth
functions such as

kf=(02—V)=al+bjexp(?./cj) (273)
k} =((72 —V)=a, +bfe -l (27b)

Similar forms are used even when V > ¢®. The corresponding us obtained by integrating these ks
yield the following forms:
k - , .

-—2c,k,—c,\[¢-17logk +‘/_.
J

+ constant (28a)

. b
Fo ——
2c }( ,f 2
L ! 4 ——- sin™| ————xt |4 constant (28b)
q 4c, a, b}
40,2

In Fig. 2b, nature of V, (solid curve), parameter k (dashed curve) and energy E (short-dashed
curve) are shown. In Fig. 2¢c, parameter u is shown. Here, WKB approximation can still be applied

- ‘s - . b adk . C .
but it is not valid in the whole range of 7. since ——— << k is not satisfied in the range ro=-4 to -1
re
and 1 to 7. In those two ranges, we have to employ a different method. There the the solutions wifl
be linear combination of Airy functions [8] because the potential is a linear function of 7 in

those intervals. At the junctions one has to match the solutions including Airy functions with the
solution obtained by WKB method.

In the region where the WKB approximation valid, reflection and transmission
coefficients and the wave function can be calculated easily by following the method described in
Case . In other regions, the equation reduces to

d*z
drd

t-xZ, =0

where x = 8'/3 (% — p)is chosen positive and p is the critical point where the total energy and
potential energy are matching.
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For the region x > 0 the solution of eq. (29) will be
| :
3 3

where § = %x”z .
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Figure 1. Behaviour of (a) V, (solid curve) and V. (dashed curve), (b) V, (solid curve), k (dashed
curve), total energy E (short-dashed curve), (c) eiconal u, (d) transmission (7', solid
curve) and reflection (R, dashed curve) coefficients as functions of Fe.
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Figure 2. Behaviour of (a) V, (solid curve) and V. (dashed curve), (b) V, (solid curve), k (dashed
curve), total energy E (short-dashed curve),.(c) eiconal u, (d) transmission (T, solid
curve) and reflection (R, dashed curve) coefficients as functions of 7.

For the case x < 0 the corresponding solution will be

Z,(x)= |X|%|:D|J+l &)+ Dz-’__l_ (5)]

where J, and I are the Bessel functions and the modified Bessel functions of order 1/3
respectively.

In terms of Airy functions the solutions can be written as

2, =2(C - il 2y + €, )oil) tor 0
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zZ, = %(1)2 +D, )Ai(x)+%(l)2 =D, )Bi(x) for x(0

By matching boundary conditions it is easy to show that the sotution corresponding x > 0
and that corresponding x < 0 are continuous when C, = - D, and C, = D». Following this process at
all the junctions, we get the solution from 7 to 1 (in . co-ordinate) around the critical point 7, =
4.45475 as

Z, =75.682216Ai(x)-41.393114Bi(x)

Similarly the solution from -1 to -4 i.e. around the critical point 7= -2.8053 can be calculated as
Z, =-19.43945Ai(x)+17.69174Bi(x)

It is to be noted that in the region 7 =1 to -1, even though the potential energy dominates over the
total energy, WKB approximation method is still valid. Here the solution will take the form

exp(—u)/s/; and exp(+u)/«/;.

Asymptotic values of the reflection and the transmission coefficients are obtained by
suitably modeling the exact potential in terms of the square-well potential. This yields the integral
constant ¢ as -0.355337. Using this, and eqs. 25(a-b), reflection and transmission coefficients are
calculated, behaviors of which are shown in Fig. 2d. The constants ¢, and ¢; of eqgs. 25(a-b) were

calculated as before. Note the decaying nature of the reflection coefficient inside the potential
barrier.

Case 111

The parameters chosen here are given below,
Kerr parameter, a = (.95
Mass of the black hole, M = |
Mass of the particle, m, = 0.10526315799
Orbital quantum number, I = 1/2
Azimuthal quantum number, m = -1/2

Frequency of the incoming wave, 0 =0.105263158
The derived parameters are,

Corresponding black hole horizon, r, =M + \NM 2_q2 is 131225

Corresponding o, = 0.526316 '

Corresponding o, = 0.180987

Corresponding parameter o = -3.609999

Corresponding eigenvalue A = 0.96970998 {7).
It is clear that according to the definition of super-radiance and the choices of the parameters o, ,
o, and o as above, this case should have belonged to the realm of super-radiance. However,
untike previous two cases, the relation between r and 7. is not single valued in this region. Here, at

both r = r, and r = oo, the value of 7. =eo. With the decrement of r, 7. is decreased initially up to
a certain point r = |t |. Subsequently, 7, starts to rise and at the black hole horizon it diverges.

The behavior of potentials V, and V. are shown in Fig. 3a. It is clear that at r = |a | the
potential diverges and potential's nature is changed from repulsive to attractive. Here we will treat
the equation of corresponding potential V.. Here, we have divided our calculation into two parts,
one for repulsive potential where particle is coming from infinity and most of them are reflecting
back from the infinitely high barrier and another one for attractive potential where particle from
the attractive potential field is coming outside (i.e. actually going to horizon but due to
multivaluedness of the radial co-ordinate 7., with tespect to r, the horizon is transformed to
infinity). Here for the case of positive potential the potential is going sharply to infinity at the

singular point so the wave with total energy o is hitting on the wall of the barrier. Here, as before

the complicated form of the potential is fitted into a simple form by adjusting the parameters a;, b;,
c;. The attractive part of V.is fitted as well.
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Figure 3. Behavior of (a) V, (solid curve) and V. (dashed curve), (b) V. (solid curve), & for region
where potential is positive ( k., dashed curve), k for region where potential is negative (
k., short-dashed curve), total energy E (dotted curve), (c) eikonal u (d) transmission (7,
solid curve) and reflection (R, dashed curve) coefficients as functions of 7.

As in the previous cases, we have computed k and 1 piecewise. In Fig. 3b nature of V., k
and E are shown. In Fig. 3¢ variation of u is shown. Here the WKB approximation method is valid

up to 7 equals to 40 (from infinity) since —i—gﬁ << lis not satisfied below this. The reflection and
r

transmission coefficients and the wave function of the particle are calculated as in the previous
case. Since the matter which tunnel through the infinitely high barrier face infinitely strong

attractive field, the possibility of extraction of energy would be zero. In Fig. 3d the variations of
transmission and reflection coefficients are shown.
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The net transmission of the wave through the hofizon is non-nepative all along and
theretore super-radintion is absent, wlthough ais tess than e, ‘The non-existence of super-radiation
is due to (r-la |)? variation of the potential near the singular point. Because of existence of

attractive field the extraction of energy is very very difficult, so the net transmission of the wave
through horizon from eo is always positive.

Conclusion

In this paper, we analytically study scatterings of spin-half particles from a Kerr black hole,
particularly the nature of the radial wave functions and the reflection and transmission
coefficients. We chose a few illustrative cases.

Though we start with the WKB approximation method, we improvise on it 5o as to obtain
spatial dependence of the coefficients of the wave function. This way we ensure that the analytical
solution is closer to the exact solution.

We verify Chandrasekhar's [4] conjecture based on asymptotic solution that for spin-1/2 particle
the phenomenon of super-rudiance is absent. We believe that this is due to the very way the

. . . - -3 . . .
potential develops a singularity at r = |a|). Here V_(7 Jec (r—|a|) , which results in an attractive

. . . ) - -4
potential in some region very close to the black hole. In contrast, the V_ (7)o (r o)™ when

electromagnetic and gravitational waves are scattered off the black hole {4} which does not create
an attractive part in the potential and possibly exhibit the phenomenon of super-radiance.
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Abstract. We study nucleosynthesis in low accretion rate hot
advective flows around black holes. We find that matter is gener-
ally photo-dissociated into protons and neutrons inside the disk.
These neutrons stay around black holes for longer time because
they are not coupled to magnetic fields while the protons ac-
crete into the hole. We find the nature of the resulting neutron
disks and estimate the rate at which these disks contaminate the
surroundings.

Key words: stars: neutron — nucleosynthesis — black hole
physics — accretion, accretion disks

1. Introduction

Angular momentum in accretion disks around black holes must
deviate from a Keplerian distribution. since the presence of ion,
radiation or inertial pressure gradient forces become as signifi-
cant as the gravitational and centrifugal forces (see Chakrabarti
1996a; Chakrabarti 1996b and references therein). The inertial
pressure close to a black hole is high, because. on the horizon,
the inflow velocity must be equal to the velocity of light. For
causality, the velocity of sound must be less than the veloci‘ty
of light. In fact. in the extreme equation of state of P = Sp
(where c is the velocity of light and P and p are the isotropic
pressure and mass density respectively). the sound speed is only
¢/v/3. Thus. the flow must pass through a sonic point and be-
come supersonic before entering into the horizon. A flow which
must pass through a sonic point must also be sub-Keplerian
(Chakrabarti 1996b and references therein). and this causes the
deviation. If the accretion rate is low, the flow cools down only
by inefficient bremsstrahlung and Comptonization processes,
unless the magnetic tield is very high (Shvartsman 1971; Rees
1984: Bisnovatyi-Kogan 1998). This hot flow can undergo sig-
nificant nucleosynthesis depending on the inflow parameters.
Earlier, in the context of thick accretion disks calculations of
changes in composition inside an accretion disk were carried
out (Chakrabarti et al. 1987; Hogan & Applegate 1987; Arai
& Hashimoto 1992; Hashimoto et al. 1993), but the disk mod-
¢ls used were not completely self-consistent, in that neither the
radial motion. nor the cooling and heating processes were in-
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cluded fully self-consistently. Second, only high accretion rates
were used. As a result, the viscosity parameter required for a
significant nuclear burning was extremely low (o, < 1077).
In the present paper, we do the computation after including the
radial velocity in the disk and the heating and cooling processes.
We largely follow the solutions of Chakrabarti (1996b) to obtain
the thermodynamic conditions along a flow.

Close to a black hole horizon, the viscous time scale is
so large compared to the infall time scale that the specific
angular momentum A of matter remains almost constant and
sub-Keplerian independent of viscosity (Chakrabarti 1996a.b:
Chakrabarti 1989). Because of this. as matter accretes. the cen-
trifugal force A% /23 increases much faster compared to the grav-
itational force G /z? (where G and Al are the gravitational
constant and the mass of the black hole respectively. A and .r
are the dimensionless angular momentum and the radial dis-
tance from the black hole). As a resuit. close to the black hole
(at.r ~ A2 /G Al) matter may even virtually stop to form stand-
ing shocks (Chakrabarti 1989). Shock or no-shock, as the flow
slows down. the kinetic energy of matter is converted into ther-
mal energy in the region where the centrifugal force dominates.
Hard X-rays and v-rays are expected from here (Chakrabarti
& Titarchuk. 1995). In this centrifugal pressure supported hot
‘boundary layer' (CENBOL) of the black hole (Chakrabarti et
al. 1996) we tind that for low accretion rates. * He of the infalling
matter is completely photo-dissociated and no * Li could be pro-
duced. In this region, about ten to twelve percent of matter is
found to be made up of pure neutrons. These neutrons should not
accrete very fast because of very low magnetic viscosity associ-
ated with neutral particles (Rees ct al. 1982) while protons are
dragged towards the central black hole along with the tield lines.
Of course, both the neutrons and protons would have ‘normal’
ionic viscosity, and some slow accretion of protons (including
those produced after neutron decay) would still be possible. In
contrast to neutron stars, the neutrron disks which we tind are
not dense. Nevertheless, they can participate in the formation
of neutron rich isotopes and some amount of deuterium. They
can be eventually dispersed into the galaxy through jets and out-
flows. which come out of CENBOL (Chakrabarti 1998: Das &
Chakrabarti 1998) thereby possibly influencing the metallicity
of the galaxy.

On the equatorial plane, where the viscosity is the highest.
a Keplerian disk deviates to become sub-Keplerian very close
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to the black hole (Chakrabarti & Titarchuk 1995; Wiita 1982).
Away from the equatorial plane, viscosity is lower and the flow
deviates from a Keplerian disk farther out. This is because the
angular momentum transport is achieved by viscous stresses.
Weaker the viscosity, longer is the distance through which an-
gular momentum goes to match with a Keplerian disk. When
the viscosity of the disk is decreased on the whole, the Keple-
rian disk recedes from the black hole forming quiescence states
when the objects become very faint in X-rays (Ebisawa et al.
1996). Soft photons from the Keplerian disk are intercepted by
this sub-Keplerian boundary layer (CENBOL) and photons are
energized through Compton scattering process, For higher Kep-
lerian rates, electrons and protons cool down completely and the
black hole is in a soft state (Tanaka & Lewin 1995). Here. bulk
motion Comptonization produces the power-law tail of slope
o ~ 1.5 (Chakrabarti & Titarchuk 1995; Titarchuk et al. 1997).
For lower Keplerian rates, the Compton cooling is incomplete
and the temperature of the boundary layer remains close to the
virial value,

T)~ am,?%e = 5.2 10! (ﬂ)—) oK. (1)

2k z zfx,
In this case, bremsstrahlung is also important and the black
hole is said to be in a hard state with energy spectral index «
(F, ~ =", where v is the frequency of the photon) close to
0.5. In Eq. (1), 1n,, is the mass of the proton, ., = 2GM/c? is
the Schwarzschild radius of the black hole, and ¢ is the velocity
of light. (In future, we measure the distances and velocities in
units of x,, and c.) In this low Keplerian rate, electrons are cooler
typically by a factor of (m,,/m..)/2 unless the magnetic field is
very high. Present high energy observations seem to support the
apparently intriguing aspects of black hole accretion mentioned
above. For instance, the constancy of (separate) spectral slopes
in soft and hard states has been observed by many (Ebisawa et
al. 1994: Miyamoto et al. 1991: Ramos et al. 1997; Grove et al.
1998: Vargas et al. 1997). ASCA observations of Cygnus X-1
seem to indicate that the inner edge of the Keplerian compo-
nent is located at around 151, (instead of 312,) (Gilfanov et
al. 1997). HST FOS observations of the black hole candidate
A0620-00 in quiescent state seems to have very faint Keple-
rian features (McClintock et al. 1995) indicating the Keplerian
component to be farther out at low accretion rates. Bulk motion
Comptonization close to the horizon has been considered to be
a possible cause of the power-law tail in very soft states (Crary
et al. 1996: Ling et al. 1997; Cui et al. 1997). However. some
alternative modes may not be ruled out to explain some of these
features.

This observed and predicted dichotomy of states of black
hole spectra motivated us to investigate the nuclear reactions
thoroughly for both the states, but we report here the results
obtained in the more important case, namely, when the flow is
hotter. i.e.. for hard states. We use 255 nuclear elements in the
thermo-nuclear network starting from protons. neutrons. deu-
terium etc. till 72Ge and the nuclear reaction rates valid for
high temperatures. We assume that accretion on the galactic
black hole is taking place from a disk where matter is supplied
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from a normal main sequence star. That is, we choose the abun-
dance of the injected matter to be that of the sun. Because of
very high temperature, the result is nearly independent of the
initial composition,”as long as reasonable choices are made.
When accretion rates are higher, the advective region becomes
cooler and very little nucleosynthesis takes place. the results are
presented elsewhere (Mukhopadhyay 1998; Mukhopadhyay &
Chakrabarti 1998).

As hot matter approaches a black hole, photons originated
by the bremsstrahlung process, as well as those intercepted from
the Keplerian disk, start to photo-dissociate deuterium and he-
lium in the advective region. There are two challenging issues
at this stage which we address first: (a) Thermodynamic quanti-
ties such as density and temperature inside a disk are computed
using a thin disk approximation, i.e., the vertical height h(x) at
a radial distance x very small compared to z (h(x) << x), and
assuming the flow to be instantaneously in vertical equilibrium.
However, at a low rate, it is easy to show that the disk is optically

thin in the vertical direction foh(z) podh < 1 (o is the Thom-
son scattering cross-section). However, soft photons from the
Keplerian disk enter radially and jlr podz > 1. generally. In
fact, this latter possibility changes the soft photons of a few keV'
from a Keplerian disk to energies up to ~ 1MeV by repeatéd
Compton scattering (Sunyaev & Titarchuk 1980: Chakrabarti
& Titarchuk 1995) while keeping the photon number strictly
constant. The spectrum of the resultant photons emitted to dis-
tant observers becomes a power law F,, ~ v~ instead of a
blackbody, where a ~ 0.5 for hard state and a ~ 1.5 for soft
states of a'black hole. (b) Now that the spectrum is not a black-
body, strictly speaking, the computation of photo-disintegration
rate that is standard in the literature (which utilizes a Planck-
ian spectrum) cannot be followed. Fortunately. this may not
pose a major problent. As we shall show. the standard photo-
disintegration rate yields a lower limit of the actual rate that
takes place in the presence of power-law photon spectra. Thus.
usage of the correct rate obtainable from a power-law spectrum
would, if anything, strengthen our assertion about the photo-
disintegration around a black hole. After photo-disintegration
by these hard photons, all that are left are protons and neutrons.
The exact location where the dissociation actually starts may
depend on the detailed photon spectrum. i.e.. optical depth of
this boundary layer and the electron temperature.

The plan of the present paper is the following: in the next see-
tion, we present briefly the hydrodynamical model using which
the thermodynamic quantities such as the density and temper-
ature inside the inner accretion disk are computed. We also
present the model parameters we employ. In Sect. 3. we present
results of nucleosynthesis inside a disk. Finally. in Sect. 4. we
present out concluding remarks.

2. Model determining the thermodynamic conditions

We chose the units of distance. time and mass to be 2G A/ /7.
2G M /¢® and M where, G is the gravitational constant. A/ is
the mass of the black hole, and ¢ is the velocity of light. To keep
the problem tractable without sacrificing the salient features.
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we use a well understood modet of the accretion flow close 1o
the black hole. We solve the following equations (Chakrabarti
1996a:b) to obtain the thermodynamic quantities:

(a) The radial momentum equation:

40 L1dP Akep =X _

b el p)
dr  pdz z3 0. 2

(b) The continuity equation:

-d—(E v)=0 2b

dz =TV =D (2b)

(c) The azimuthal momentum equation:

dA(z) 1 d
d - =——{(z? = 2
dr Tz dx(x Wzs) =0, 2)
(d) The entropy equation:
ds _ h(z)Y (dp p

il (d:c o

= Qmag + Quiue + Quis — Q7

= QY — glx,m)Q*T = fln,x)QY. {2d)

Here. Q™ and ()~ are the heat gained and lost by the flow. and
1 is the mass accretion rate in units of the Eddington rate. Here.
we have included the possibility of magnetic heating Q7,,,
(due to stochastic fields; Shvartsman 1971; Shapiro. 1973:
Bisnovatyi-Kogan, 1998) and nuclear energy release Q. as
well (cf. Taam & Fryxall 1985) while the cooling is provided
by bremsstrahlung, Comptonization, and endothermic reactions
and neutrino emissions. A strong magnetic heating might equal-
ize ion and electron temperatures (e.g. Bisnovatyi-Kogan 1998)
but this would not affect our conclusions. On the right hand side.
we wrote Q% collectively proportional to the cooling term for
simplicity (purely on dimensional grounds). We use the standard
definitions of T (Cox & Giuli 1968),

r-p5
1-33"

(4 =308)%(y—1)
J+12(v = )1 -7)

I3 =14

r = 3+

and .3(.r) is the ratio of gas pressure to total pressure,

_ pkT /[,
~ pkT/um, +aT4/3 + B(z)?/4n

B(z)

Here. @ is the Stefan constant, & is the Boitzman constant, i, is
the mass of the proton, y is the mean molecular weight. Using
the above definitions, Eq. (2d) becomes,

4-39 14T _ 148 _Ti=1dp
N -3'Tdx fdx p dzx

In this paper. we shall concentrate on solutions with constant J.
Actually. we study in detail only the special cases. .3 = ) and
3 = L. so we shall liberally use I’y = v = I's. We note here
that unlike self-gravitating stars where i3 = () causes instability,
here this is not a problem. Simitarly, we shall consider the case

] = fla.z.m)Q*.

(2e)
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for f{cy, @, 1h) = constant, though as is clear, f ~ 0 in the Ke-
plerian disk region and probably much greater than 0 near the
black hole depending on the efficiency of cooling  governed by
. for instance). We use the Paczyriski-Wiita (1980) potential
to describe the black hole geometry. Thus, Ay, .. the Keple-
rian angular momentum is given by, M., = r® 2(r - 1)%,
exactly same as in general relativity. 11,4 is the vertically in-
tegrated viscous stress, h(x) is the half-thickness of the disk at
radial distance z (both measured in units of 2G.\/ ¢°) obtained
from vertical equilibrium assumption (Chakrabarti 1989) A(r)
is the specific angular momentum, ¢ is the radial velocity. s
is the entropy density of the flow. The constant n above is the
Shakura-Sunyaev (1973) viscosity parameter modified to in-
clude the pressure due to radial motion ([T = 11" — T2, where
11" and X are the integrated pressure and density respectively:
see Chakrabarti & Molteni (1995) in the viscous stress. With this
choice, W, keeps the specific angular momentum continuous
across of the shock,

For a complete run, we supply the basic parameters. namely,
the location of the sonic point through which flow must pass just
outside the horizon X, the specific angular momentum at the
inner edge of the low A;,,, the polytropic index - the ratio f
of advected heat flux Q. — (J_ to heat generation rate ()7,
the viscosity parameter ¢x,.;, and the accretion rate »ir. The de-
rived quantities are: z,, where the Kepierian flow deviates to
become sub-Keplerian, the ion temperature T;,, the flow den-
sity p, the radial velocity v, and the azimuthal velocity A/
of the entire flow from xz,, to the horizon. Temperature of the
ions obtained from above equations is further corrected using
a cooling factor Fgm, obtained {rom the results of radiative
transfer of Chakrabarti & Titarchuk (1995). Electrons cool due
to Comptonization, but they cause the ion cooling also since
ions and electrons are coupled by Coulomb interaction. Feymp.
chosen here to be constant in the advective region. is the ratio of
the ion temperature computed from hydrodynamic (Chakrabarti
1996b) and radiation-hydrodynamic (Chakrabarti & Titarchuk
1995) considerations.

3. Results of nucleosynthesis calculations

In the first example, we start with a relativistic flow rpolytropic
index v = 1/3) with the accretion rate Xo= 0010 . where,
‘\~I;._-,,,, is the Eddington accretion rate. We use the mass of the
central black hole to be A = 10A /.. throughout. We choose a
very high viscosity and the corresponding 1 parameter (Shakura
& Sunyaev 1973) is 0.2 in the sub-Keplerian regime. The cool-
ing is not as efficient as in a Keplerian disk: Q7 ~ 0.0Q7.
where, QF and @~ are the heat generation and heat loss rates
respectively. The specific angular momentum at the inner edge
is Ain = 1.85 (in units of 2G A /). The flow deviates from a Ke-
plerian disk at 4.15 Schwarzschild radii. It is to be noted that Q™
includes all possible types of cooling. such as bremsstrahlung.
Comptonization as well as cooling due to neutrino emissions.
We assume that the flow is magnetized so that only ions have
larger viscosity. Due to poor supply of the soft photons trom
Keplerian disks. the Comptonization in the boundary laver is
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Fig. 1. Comparison of wavelength A pp.nex at peak blackbody intensity
(dotted) with the mean (taken between 2 and H() keV) wavelength of
the Comptonized power law spectrum (solid) of the emitted X-rays,
Wavelengths are measured in units of 10~'* cm.

not complete: we assume a standard value (Chakrabarti, &
Titarchuk 1995) in this regime: Feump ~ 0.1, ie. tons (in
te radiation-hydrodynamic solution) are one-tenth as hot as ob-
tained from the hydrodynamic solutions. [For high accretion
rate. 1 2 0.3, Fegmp ~ 0.001 and ions and electrons both cool
to a few KeV (~ 107 ?K)]. The typical density and temperature
near the marginally stable orbitare p, =3 ~ 8.5x 10~ gmem ™3

and 7.5 x 10Y °K respectively where the thermonuclear deple-

tionrates Ny < ov > forthe D = p+n.'"He = D+ D
and *He +* He =7 Li + p reactions are given by 1.6 x 10"
gm~'s L, 4% 1073 gm~'s~'and 1.9 x 10”2 gm~' 57! re-
spectively. Here, N4 is the element abundance on the left. o
is the reaction cross-section, v is the Maxwellian average ve-
locity of the reactants. At these rates, the time scales of these
reactions are given by, 4 x 10%s, 5 x 10'' sand 4 x 10°%s re-
spectively indicating that the deuterium burning is the fastest
of the reactions. In fact, it would take about a second to burn
initial deuterium with Yp = 10~%. The 7 Li does not form at all
because the * He dissociates to D much taster.

The above depletion rates have been computed assuming
Planckian photon distribution corresponding to ion temperature
T,. The wavelength Apranck at which the brightness is highest
at T = T, is shown in Fig. | in the dashed curve (in units of
10~ cm). Also shown is the average wavelength of the photon
ACompton {solid curve) obtained from the spectrum F, ~ v ™",
The average has been performed over the region 2 to 50keV
of the photon energy in which the hard component is usually
observed
I e Fdy

i n — '/_’.
prmaz = YCompton

f, dv

LY

(F,) = (3)
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Fig. 2. Formation of a steady neutron torus in a hot inflow. Intermediate
iteration results (from bottom to top: Ist. 11th, 21st. 31st and 4 (st
iterations respectively) of the logarithmic neutron abundance Y, in
the flow as a function of the logarithmic radial distance (.r in units of
Schwarzschild radius) are shown.

where, u,,,,,," and v, are computed from 2 and 50 keV respec-
tively. The average becomes a tunction of the energy spectral
index v (F, o v~"), which in turn depends on the ion and
electron temperatures of the medium. We follow Chakrabarti
& Titarchuk (1995) to compute these relations. We note that
Actompton 18 lower compared to Ak for all ion tempera-
tures we are interested in. Thus. the disintegration rate with
Planckian distribution that we employed in this paper is clearly
a lower limit. Our assertion of the formation of a neutron disk
should be strengthened when Comptonization is included.

Fig. 2 shows the result of the numerical simulation for the
disk model mentioned above. Logarithmic abundance of neu-
tron Y, is plotted against the logarithmic distance from the black
hole. First simulation produced the dash-dotted curve for the
neutron distribution, forming a miniature neutron torus. As fresh
matter is added to the existing neutron disk. neutron abundance
is increased as neutrons do not fall in rapidly. Thus the simula-
tion is repeated several times in order to achieve a converging
steady pattern of the neutron disk. Although tresh neutrons are
deposited. the stability of the distribution is achieved through
neutron decay and neutron capture reactions. Results after every
ten iterations are plotted. The equilibrium neutron torus remains
around the black hole indefinitely. The neutron abundance is
clearly very significant (more than five per cent!).

We study yet another case where the accretion rate is smaller
(i1 = .001) and the viscosity is so small (o = (.01} and the
disk so hot that the sub-Kepleriun flow deviates tfrom a Kep-
lerian disk farther away at o+ = 85,1, The polvtropic index is
that of a mono-atomic (ionized) hot gas v = 5,3, The Comp-
ton cooling factor is as above since it is independent of the
accretion rates as long as the rate is low (Sunyaev & Titarchuk
1980:; Chakrabarti & Titarchuk 1995). The cooling is assumed
10 be very inefficient because of Juwer density: (07 ~ 110"
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Fig. 3. Variation of matter abundance Y; in logarithmic scale in a hot
flow around a galactic black hole. Entire * He is photodissociated at
around r = 30z, and the steady neutron disk is produced for r < 30
which is not accreted.

The specific angular momentum at the inner edge ot the disk
is Ay, = L.55. In Fig. 3, we show the logarithmic abundances
of proton (p). helium ( He) and neutron (n) as functions of the
logarithmic distance from the black hole. Note that *He¢ dis-
sociates completely at a distance of around @ = 3() where the
density and temperatures are p = 2.29 x 10='! gmem~? and
T = 6.3 x 10Y ”K. Maximum temperature attained in this case
is Tnar = 3.7 x 10'° K, Both the neutrons and protons are
enhanced for . < 30, the boundary layer of the black hole.
This neutron disk also remains stable despite neutron decay.
since new matter moves in to maintain equilibrium. The * L
abundance is insignificant.

4, Concluding remarks

In this paper. we have shown that hot flows may produce neutron
disks around black holes. where neutron abundance is signifi-
cant. However. unlike neutron stars, the formation of which is
accompanied by the production of neutron rich isotopes. neutron
disks do not produce significant neutron rich elements. Some
fragile elements. such as deuterium, could be produced in the
cooler outtlows as follows:

Neutrons and protons may be released in space through
winds which are produced in the centrifugal barrier. These winds
are common in black hole sources and earlier they have been
attributed to the dispersal of magnetic fields to the galactic
medium (Daly & Loeb 1990: Chakrabarti et al. 1994). Recently.
Chakrabarti (1998) and Das & Chakrabarti (1998), through a
first ever self-consistent calculation of outflows out of accre-
tion. found that significant winds can be produced and for low
enough accretion rates, disks may even be almost evacuated
causing the formation of quiescence and inactive states such as
what is observed in V404 Cyg und our Galuctic centre. It the
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emperature of the wind falls off as 1/ and density as 3 7 tas
is expected from an outflow of insignificant rotation). the deu-
terium synthesis rate n + p — D, increases much faster very
rapidly than the reverse (D — n 4 p) process. For instance.
with density and temperature mentioned as in the earlier sec-
tion, at z = 30z, the forward rate (N3 < gv >)is0.12x 107°
while the reverse rate is much higher: 6.7 x 10'3. This results
in the dissociation of deuterium. However, at = = 300.r,, the
above rates are 1.8 x 1078 and 9.6 x 1078 respectively and
at = = 3000z, the above rates are 1.3 x 108 and ~ 107!6
respectively. Thus a significant deuterium could be produced
farther out, say, starting from a distance of ~ 10*r,. Ramadu-
rai & Rees (1985) suggested deuterium formation on the surtace
of ion tori. As we establish here, this process may be feasible.
only if these tori are vertically very thick: z(x) ~ 10%z,. In
any case, deuterium would be expected to form in winds and
disperse.

_ In a typical case of a disk with an accretion rate of Mo~
M gqa, the temperature is lower, but the density is higher. In
that case, the photo-dissociation of *He¢ is insignificant and
typically the change in abundances of some of the elements.
such as 190, 20 Ne etc. could be around AY ~ 107* not as
high as that of the neutron as in above cases where A}, ~ 0.1.
One could cstimate the contamination of the galactic metalicity
due to nuclear reactions as we do for realistic models. Assume
that, on an average, al! the N stellar black holes of equal mass
Al have a non-dimensional accretion rate of around m ~ 1
(i1 = 1\7//\7,.;,/,,). Let AY; be the typical change in composition
of this matter during the run and let [, be the fraction of the
incoming flow that goes out as winds and outflows. then in
the lifetime of a galaxy (say. 10'”yrs). the total “change’ in
abundance of a particular species deposited to the surroundings
by all the stellar black holes is given by:

10-9 m N AY; ﬁ_ < M )
1) \105 ) L1o-3 ) \o.1/) \ wir,
n;al A [qul -
B AL [ [ . (4
X (10*0> (10'41\1‘_

We here assume a conservative estimate that there are 10" such
stellar black holes (there number varics from 10> ivan den
Heuvel 1992, 1998) to several thousands (Romani. 1998) de-
pending on assumptions made) and the mass of the host galaxy
is around 1043 A/, and the lifetime of the galaxy during which
such reactions are going on is about 107 Yrs. We believe that
< AY}; >~ 107 is quite reasonable for a typical case when
AY, ~ 1073 and a fraction of ten percent of matter is blown
off as winds. When AY; ~ 0.1 or the outflow rate is higher
{particularly in presence of strong centrifugal barrien the con-
tamination would be even higher.

It is to be noted that our assertion of formation of neutron
disks around a black hole for very low aceretion rae Mo~
().(l()l—().()lx\'[,.;,,,, is different from that of the carlier results,
(Hogan & Applegate 1987) where N~ 10X gy was believed
to be the more tavourable accretion rate. This is because in last
decades the emphasis -was on super-Eddington thick aceretion

(AY) =
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tori. More recent computations suggest that advective regions

are not as hot when the rates are very high. Another assertion of

our work is that 7 Li should not be produced in accretion disks
atall. This is not in line with earlier suggestions (Jin 1990) also.
That is because unlike earlier case where the spallation reaction
4 He +* He was dealt with in isolation, we study this in relation to
other reactions prevalent in the disk. We find that * He could be
dissociated much before it can contribute to spaltation. However.
our work supports Ramadurai & Rees’ (1985) conjecture that
deuterium may be produced in the outer regions of the disk
provided the disk is at least as thick as 103z,

In the process of performing the simulation we were faced
with achallenge which was never addressed earlier in the litera-
ture. The problem arises because the inflow under consideration
is optically thin vertically, but optically thick horizontally. As
aresult. photons emitted form a power-law spectrum. Question
naturally arises, whether these power-law photons are capable
of photo-disintegration. We find that the answer is yes and that
the calculation of usuai photo-disintegration gives a lower limit
of the changes in the composition. In the extreme conditions
close to the black hole, such processes are sufficiently effective
to produce neutron disks around bluck holes.

Acknowledgements. We thank Mr. A. Ray for carefully reading the
manuscript.
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Abstract.  Separation of the Dirac equation in the spacetime around a Kerr black hole into radial
and angular coordinates was done by Chandrasekhar in 1976, In the present paper, we solve the
radial equations in a Schwarzschild geometry semi-analytically using the WKB approximation
method.. Among other things, we present an analytical expression of the instantancous reflection
and transmission cocflicients and the radial wave functions of the Dirae particles. The complete
physical parameter space was divided into two parts depending an the height of the potential well
and cnergy of the incoming waves. We show thie general solution for these two regions, We also
solve the equations using a guantum mechanical approich in which the potential is approximated
by u series of steps and we have found that these two solutions agree. We compare solutions of

different initial parameters and show how the properties of the scattered wave depend on these
parameters,

PACS numbers: 0420, 0170, 04700, 95308

1. Introduction

The spacetime around an isolated black hole is flat and Minkowskian ata large distance where
usual quantum mechanics is applicable, while the spacetime closer to the singularity is curved
and no satisfactory quantum field theory has been developed as yet. However, occasionally,
it is useful to look into an intermediate situation: when a weak perturbation (duc to, say,
gravitational, electromagnetic or Dirac waves) originating from infinity scatters from a black
hole. The resulting wave is partially transmitted into the black hole through the horizon and
partially scatters off fromit toinfinity. Inthe lincarized (‘test ficld”) approximation this problem
has been attacked in the past by several authors | 1=4|. These methods are mostly numerical
and most of the solutions obtained so far are for particles of integral spin only. Chandrasckhar
13-4] separated the Dirac equation in Kerr geometry into radial and angular parts. These works
were extended to other spacetimes, such as in Kerr—-Newman geometry [5], and around dyon
black holes [6]. Subsequently, Chakrabarti {7] solved the angular part of the Dirac cquation in
Kerr geometry and gave the eigenvalues of the equation. These and the present works mostly
concern scattering off tiny black holes and thus changing the incoming solution appreciably
into an outgoing solution. Scattering effects from larger black holes could be studied by phase
shift analysis and this has also been done recently {8},

In the present paper, we attack a simpler problem to get a *fecl’” for the complete solution
when the black hole is non-rotating. In the next section. we present the basic equations. In

0264-9381/99/103165+17%30.00  © 1999 1OP Pullishing L.td 3165
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section 3, we classify the parameter space in terms of the physical and unphysical regions
and present the method we adopt to solve the equations, T section 3, we present a complete
solution. In scetion 5, we present solutions using a classical method in which the potential is
approximated by a series of steps and then compare the solutions of these twao methods, In
section 6, we also compare solutions ol various parameters and show how a Schwarzschild
black hole distinguishes incoming particles of various masses. Finally, in section 7. we draw
our conclusions.

2. Basic equations of the problem

Following Chandrasekhar (4], the radial part of the Dirge equation is casily reduced into a
Schrodinger like equation. However. because the spin-spin coupling term is absent in the
Schwarzschild geometry, the radial cquation is much simpler to deal with. The cigenvalue
of the angular equation for spin ﬂ:% is trivially obtained as (I + %)2 17, 9-10} where [ is the
orbital quantum number. In what follows. we choose [ = 1 throughout for concreteness. This
eigenvalue turns out to be the separation constant X of the original Dirac equation [4]. Here
we solve the equation for one possible value of separation constant A (for { = . X is unity).
In future we plan to explore the nature of the solutions for other orbital quunlulﬁ numbers.
Presently, we need to solve only the following coupled radial equations |4}

AYDYR 1= (L im ) AR,y

{1
atplatr,, = (1 —imyrR_,y. 2)
where
iK (r—=Mm)
Dy=08 + — +20—m—7—,
A
A=r?-2Mr
K = rlo.

Here n is an integer, o is the frequency of the incoming Dirac wave, M is the mass of the
black hole, m is the azimuthal quantum number, 1, is the rest mass of the Dirac particle (p

indicates particle), R,y (R_}) is the radial wave function for spin up (down) particles. DJf
is the complex conjugate operator. It should be noted that dimensionless units are chosen,
sothat G = ff = ¢ = 1. The radinl equation here is in coupled form. We can decouple it
and express the equation cither in terms ol a spin up or spin down wavelunction. However, it
is more convenient to follow Chandrasekhar's {4} approach by which the basis was changed
along with the independent variable r. That way. the coupled equation was reduced into two
independent one-dimensional wave equations since they are casicr t#solve.
We first define

re =r+2Mloglr — 2M|.

®)
where r > ry(=2M),
d A d )
dr, — r2dr’

and choose A'ER+; =P . Ry =P_1.
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Inteoms of r, . the operators tuke the torm:

2 i
'l)() = -’- ( -(« +i0 )
A \dr,
hi
N re d
Dl = — —iag].
0 A\(dr,, )

We choose 6 = tan™" (myr) which yields.

and

cos 6 ! sinf il
T e sinfl = ———————
V(1 +mir?) J+ m;’,rz)
and
(I £impr) = exp(£if) /(1 + m%rz).
Following exactly Chandrasckhar's {4] approach we write

P,y = v, exp[—ditan~ (nyr)]

(5)
and
I’__{‘ = t//_§cxp [+%i tan ™! (m,,r)] . (6)
Finally, a choice of 7, = r, + 7';[11(\"(”1[,;') yields dF, = (l + ,% '5";" '—;,—"ﬁ?) dr,.
With these definitions. the differential equations (1) and (2) are re-writlen as
d
(a';— - W) Z, =1iogZ_ (7a)
and
d ,
5‘ +WlZ_ = i0Z.,. (7[))
%
where Zy = 1//+% + l//__% and
AT(L+m2p2)32
= —t : (8)
r2(1 + mir?) +mpA /20

One important point to note: the transformation of spatial coordinate r to r, (and 7, ) is taken not
only for mathematical simplicity but aiso for a physical significance, When r is chosen as the
radial coordinate, the decoupled equations for independent waves show diverging behaviour.
However, by transforming those in terms of r, (and 7,) we obtain well behaved functions. The
horizon is shifted from r = r, to 7, = —o0,

From the above set of equations, we readily obtain a pair of independent one-dimensional
wive cquations,

dz
(E’;-z- +()'2) Zy =ViZs, (9)
where
, , dw
Vo= W% N (10)

1 220372

ATl +mirt)Y? I ,
P 3 A%(I i)y & ((r - M) +mz,r2) + .’»m‘rA)

tr2(1 +mir?) + mpA /20 ) P ! P
Al +ml:,r2)5/2

+ (P2 +msr?) + m',A/2n|"

Y

2r(t + nr':‘r:) + ?.mpr“ +mplr — My/al. (11
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3. Parameter space and mcethod to solve equations

We obtain solutions by employing the Wentzel Kramers Brillonin (WKB) [T1.12] method
and then imposing strict boundary conditions on the horizon, so that the reflection coctlicient
is zero and the transmission coeflicient is unity at the horizon. Alter establishing the general
solution, we present here the solution of equation (9) for two sets of parameters as illustrative
examples.

It is advisable to choose the parameters in such a way that there is a significant interaction
between the particle and the black hole. This is possible when the Compton wavelength of the
incoming wave is of the same order as the Schwarzschild radius of the black hole, i.e..

2G6M n

[ S ——

2 -
C npc

Here we are choosing G =fi=c = 1, s0

I
Ny, ~ —,
Pam

Again, in the casc of Schwarzschild geometry, the frequency of the incoming particle (or wave)
will be of the siame order as the inverse of time, So,

(_,i

——————

2GM
Using the units as before, one can write,

my~a ~ (2M)"". (12)
In principle one can choose any values of o and my, for a particular black hole and the
corresponding solution is possible, but we shall concentrate upon the region of parameter
space where the solution is expected to be interesting as pointed out above. namely the region
close to mp, = o. Infigure I(a), we draw this line. The parameter space is spanned by the
frequency o and the rest mass of the incoming particle my,. It is clear that 50% of the total
parameter space where o < m, is unphysical. and one need not study this region. The rest of
the parameter space (o > my) is divided into two regions: 1t E > V,, and I £ < V., where
V,, is the maxinum ol the potential, Inregion 1 the wave is locally sinusoidal because the wave
number & is real for the entire range of £, Tnregion 1 on the other hand, the wave is decaying
when £ < V,ie. where the wave thits™ the potential barrier, and in the rest of the region,
the wave is propagating. We shall show solutions in these two regions separately. In region |
whatever the physical parameters, the encergy of the particle’is always greater than the potential
energy and the WKB approximation is generally valid in the whole range (i.c. I"‘ %‘— & 1) In
region 11, the energy of the particle is always less than the maximum height of the potential
barrier. Thus, at two points (where k = 0) the total energy matches the potential energy and
in the vicinity of these two points the WKB approximation method is not valid. These have to
be dealt with separately. In figure 1(h). we show contours of constant ur,, =mz\x(k—,'3 (‘#) fora
given set (o, mp) of parameters. The labels show the actual values of (. Clearly, except for
parameters very close to the boundary of regions Tand 11 the WKB approximation is safely
valid for any value of .. One has to employ a different method (such as using Airy functions,
see below) to find solutions in this region.
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Figure 1. (a) Classification of the parameter space in terms of the encrgy and rest mass of the
particles. The physical region o > nip is further classified in terms of whether the particle actually

‘hits’ the barrier or not. (b) Contours of constant wpu= max( -'1 (%L are shown to indicate that
generally w < 1 and therefore the WKB approximation is valid in most of the physical region.

Labels indicate the values of u'.

3169



3170 B Mukhopadhyay and S K Chakrabarti
4. 'T'he complete solution
4.1. Solutions of region 1

In this region, for any sct of parameters, the energy of the particle is always greater than the
corresponding potential energy. We first re-write equation (9) as
2
d°Z,

F+(02——V+)Z‘=0,

(13)

This is simply the Schrodinger equation corresponding to the total energy of the wave o>, This
can be solved by the regular WKB method [11,12]. Let

kP = (02 - V). (14)

u(ry) = fk(r‘.)df-. + constant. (15)

Here, k is the wave number of the incoming wave and u is the eikonal. The solution of
equation (13) is,

. A, . A .
Z, = —rexpin) + —-expl—in),

(¢
Jk (16)

with
2 2 _ g
AL+ AT =k (17)
In this case all along @ > V, and also |
valid in the whole region. The quantity g+
strictly valid at long distance only.

It is clear that a standard WKB solution where A, and A_ are kept constant throughout
should not be accurate, since the physical inner boundary condition on the horizon must be that
the reflected component is negligible there. Thus the WKB approximation requires a slight
modification in which the spatial dependence of Ay is allowed. On the other hand, at a large

distance, where WKB is strictly valid. A, and A_ should tend to be constant, and hence their
difference is also a constant:

:— « k. so the WKB approximation is generally
j falls off rapidly with distance. Thus, WKB is

+ = A_ = (IS)
Here, ¢ is determined from the WKB solution at a large distance. This along with (17) gives
A — --

This spatial variation, slriclly valid at Iurgc distances only, should not be extended to the horizon
without correcting for the inner boundary condition. These values are to be shifted by, say.
A4y respectively, so that on the horizon one obtains physical R and T'. We first correct the

reflection coefficient on the horizon as follows: Let A_; be the value of A_ on the horizon
(see equation (19)),

A = fzk(;z)—c ]

It is appropriate to use A_ = A_ — A_,,. rather than A_, since A.. vanishes atr = r,.
Incorporating these conditions, the solution (16) becomes,

A
Z, = Z=expling + ZLexpl—in) (20
N
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with the usual normalization condition
9 bl
AL+ A =g, (21
whese Ay = A, — Ay, Here, g istobe determined self-consistently by equating the asymptotic
behaviour of this reflection cocfticient with that obtained using the WKB method. This ¢ in
turn is used to compute A, = A, — A,;. and therefore the transmission coelfficient T from
equation (21). In this way, normalization of R + T = | is assured.

The normalization factor ¢ — k& as 7, — o0 and the condition }:T"‘L <& ¢ are found to

'
be satisfied whenever %J"f‘- & k. This is the essence of our modification of the WKB. In a

true WKB, A, are constants and the normalization is with respect to an (almost) constant k.
However, we are using it as if WKB is instantaneously valid everywhere. Our method may
therefore be called the ‘instantaneous™ WKB approximation or IWKB for short. Using the

new notation, the instantaneous values (i.e. local values) of the reflection and transmission
coefficients are given by (see equation (20)).

AE

R=— (22a)
q
A.’.

T =22 (22
q

Determination of Ay, is done by ensuring ‘R obtained from cquation (22a) is the samce as that
obtained by the actual WK micthod at infinity.

To be concrete. we choose one set of parameters from region I (A large number of solutions
is compared in section 6 below.) Here. the total energy of the incoming particle is greater than
the potential barrier height for all values of 7,. We use mass of the black hote, M = }: mass of
the particle, m, = 0.8, orbital quantum number. ! = % azimutha! quantum number, m = — 3

frequency of the incoming wave, g = 0.8.

.

From equation (9) we observe that there are two wave equations for the two potentials V,
and V_. The nature of the potentials is shown in fipure 2. Itis clear that potentials Vy are well
behaved. They are monotonically decreasing as the particle approaches the black hole, and the
total energy chosen in this case (7) is always higher compared to V. For concreteness, we

solve using potential V,. A similar procedure can be adopted using potential V_ to compute
Z_ and its form would be

A, — A AL - A

Z_ = -———\/—q-,—ﬂ’—exp(in') - -——:—\/—;I—,——'—'exp(-'lu'). 20"

Note the occurrence of the negative sign in front of the reflected wirve. This is to satisly the
asymptotic property ol the wavelunctions which must conserve the Wronskian [4]. Since the
coclficients should not change sign between infinity and the horizon (as that would amount
to having zero amplitude, i.c. unphysical, absence of cither the forward or the backward
component) the same sign convention is followed throughout the space. Local values of the
reflection and transmission coefficients could also be calculated in the same manner. In the
solution (equations (20) and (20)), the first term represents the incident wave and the second
term represents the reflected wave,

In figure 3 we show the nature of V, (solid curve). k (dashed curve) and E(= a?) (short-
dashed curve). The diffcrence between E and V, and therefore k increases as the particle
approaches the black hole.

In figure 4, variation of ‘local’ reflection and transmission cocflicients is shown. 1t is
observed that as matter comes close to the black hole. the barrier height goes down. As aresult
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Figure 2. Behaviour of potentials V. (solid curve) and V_ (dashed curve). as a function of 7,. The
parameters are chosen from region [ of tigure 1.
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Figure 3. Behaviour of V, (solid curve), k (dashed curve) and total energy E (short-dashed curve)
as functions of 7,.

the penetration probability increases, resulting in the rise of the transmission cocflicients. At
the same time the reflection coefficient tends to zero. 1t should be noted that, strictly speaking,
the terms ‘reflection’ and ‘transmission’ coefficients are traditionally defined with respect to
the asymptotic values. The spatial dependences that we show are to be interpreted as the

instantaneous values. This is consistent with the spirit of the IWKB approximation that we
are using.

The behaviour of the solutions with V_ is not very different from that shown in figures 3

and 4 except in a region very close to the black hole horizon where V, and V_ differ slightly
(see figure 2).

Using the solutions of equations with potential V. and V_. the radial wavefunctions Ry,
and R_y, for spin up and spin down particles respectively, of the original Dirac equation are
2
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Figure 4, Bchaviour of local transmission (T, solid curve) and reflection (R, dashed curve)

cocfticients as functions of 7,. Close 1o the horizon, transmission is a hundred per cent and
reflection is almost zero.

given below,

Re (R%Ai) _ dscos(tt — @) + a_cos(u +0) N aycostu’ — 8) —a’_cos(u’ +6)

23
W Wi (23a)

Im (R%Ai) _ a,sin(u — ) —a_sin(u +0) N a,sin(u’ —8) +a’_sin(u’ +0)

23b
2k 2Vk' (239)

Re (R_%) - ascos(u +9¢) +a.cos(u —6) d,costu’ +0) — a’_cost’ — )

23
2/k 2k (239

Im (R_%) = a,sin(u + ) — a_sin(u — 6)  a;sin(u’ +6) +a_sin(u’ - 6)

. 23d
2k 2k (23

Here, a, = (A, — A/ Sg/kyanda = (A — A )/ Jlg/k). Here, we have brought
back & and &’ 'so thit these may resemble the original solution (equation (16)) using the WKB
approximation. -5‘/'-;-.7 and {i/f' are the transmitted and reflected amplitudes respectively for the
wave of corresponding potential V_,

Figure 5 shows the resulting wavefunctions for both the spin +% and spin —% particles
respectively. The eikonals used in plotting these functions (see equation (23a-d)) have been
calculated by approximating V. in terms of polynomials (this was done since V: as presented
in equation (10) is not directly integrable) and using the definition u(#,) = [ /(o? = Vi)dF,.
Note that the amplitude as well as the wavelength remain constant in regions where k is
also constant. As discussed before, the wavefunctions are almost sinusoidal close to the
horizon and at a very large distance (albeit with different frequencies). Since the net current
(1P, 12— lP_%lz) is conserved, the probability of spin +1 is complimentary to the probability
of spin ——% particles respectively.
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Figure 5. Behaviour of (a) Re(R|,gA“3). (h) lm(R|/3A‘/3). (c) Re(R.12). (d) Im(R_y,2) as

a . - . . e {
functions of #,. Note the comptimentary nature of the wavefunctions of the spin +% and spin — 3
particles. This is because the current is conserved.

4.2, Solutions of region 1l

Here we study the second region where for any set of physical parameters the total energy
of the incoming particle is less than the maximum height of the potential barrier. Thus, the
WKB approximation is not valid in the whole range of 7,. In such regions, the solutions will
be a linear combination of Airy functions because the potential is approximately linear in 7,
in those intervals. At the junctions one has to match the solutions with Airy functions along
with the solution obtained by the WKB method. In the region where the WKB approximation
is valid, local values of reflection and transmission coefficients and the wavelunctions can

be calculated easily by following the same method described in case 1. In other regions, the
equation reduces to

a2z
—“—d,‘-; ~xZ, =0, (24)
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I . - . - .
where x = AUF, - p), fis chosen to he positive and pis the eritical point where the total
cnergy and potential energey e equal,

Let Zo(x) = x 1Y () and considering region v > 0 the equation (24) reduces to

.rzdz),' +.\~ﬂl - (.\-’ + l) Y(x) =0. (25)
dx- dv 4
By making yet another transformation.
§ = 3xd, (26)
we obtain,
g’-dzy +5‘i’—'—(sl+l)r(s)=o. (27)
dg? dé 9 '

This is the modified Bessel equation. The solution of this equation is 1,1(§) and 1_;(§).
Hence, the solution of equation (27) will be '

Z.(x) = xHCy L1 (6) + Cal_y (8], (28)
When x < 0 the corresponding equation is
d*y  _dy I
2 2
+E— ~~)riE)y=0,
3 dE? SdE +(E 9) (£)=0 (29)
which is the Bessel equation. The corresponding sofution is
Zox) = WD (6) + D2y (6)), (30)
where Ji and [ are the Bessel functions and the moditied Bessel functions of order %
respectively.
The Airy functions are defined as
Aix) = Ly ) — Ly®)) x>0, 30
, '
AiGx) = I RU_ @) + La @) x <0, (32)
) I
Bi{x) = 73)(2[1_%(5) + I+%(§')], x>0, (33)
]
Bitx) = Iy ®) — Sy ®)). x <0 (34)
In terms of Airy functions, the solutions (28) and (30) can bi written as
3 Y :
Z, = —i((,z—C;)Al(.\')+—5—((,2+C|)131(x) for x > 0, (35)
3 . V3 . )
= E(Dz + D) Ai(x) + —7—(1)2 — Dy)Bi(x) for x < 0. (36)

By matching boundary conditions it is easy to show that the solution corresponding to x > 0
and that corresponding to x < 0 are continuous when Cy = — Dy and C; = D;.

To have an explicit solution, we choose the following set of parameters: M = 1, m, = 0.1,
l=4m=-}ando =0.15.

In figure 6, we show the nature of V, and V_. However. while solving. we use the equation
containing V, (equation (9)). Unlike the case in the previous section, a* is no longer greater
than Vy at all radii. As a result, k* may attain negative values in some region. In figure 7, the
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Fipure 6. Behaviour of V, (solid curve) and V_ tdashed curve), as functions of £.. The parameters
arc chosen from region 11 of tigure 1(a) and (b).
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Figure 7. As figure 3. See text for the choice of paramicters.

nature of V, (solid curve), parameter k (dashed curve) and energy E (short-dashed curve) are
shown. Here, the WKB approximation can be applied in regions other than 7, ~ —6 to —1
and 4 to 8 where k is close to zero and the condition } 3% « k is not satisticd. In the region

F. ~ 8 to 4 around the turning point 7, ~ 5.6088 the solution turns out as {13]
Z, = 1.858386Ai(x)+0.600610914Bi(x).

Similarly, the solution from —1 to —6, i.e. around the turning point 7,
be calculated as {13}

Z, =1978145Ai(x) +0.716 8807 Bi(x).

37
= —3.0675, can

(38)
It should be noted that in the region 7, ~ 4 10 — . even though the potential encrgy dominates
over the total energy, the WKB approximation method is still valid. Here the solution will take
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the form °"J'\‘/;, “ and “*‘:};’"’. Asymptotic values of the instantancous reflection and triamsnfission
cocflicients (which are traditionalty known as the *reflection™ and “transmission® cocflicients
respectively) are obtained from the WKB approximation, ‘this yields the integral constant ¢ as
in case 1. From equation (22«.h) local reflection and transmission coefticients are caleulated,
the behaviour of which is shown in figure 8. The constants A, and Ay, are caleulated as
before. Note the decaying nature of the retlection cocfticient inside the potential barrier.

l | v L) T T l-‘ T T Ll T ‘ T T T 1 1 T T LI
0.8 | \ .
i | ]
06 |- \\ ] _
0.4 |- T ]
I )
0.2 - N
0 A A —J__J l L L1 1 l 1 1 ' 1 L A L A l—
~100 0 190 200 300

Figure 8. As figure 4. Sce text for the choice of parameters,

5. Solution of the equations by step-potential method

In the above sections we presented our semi-analytical solutions by the WKB method with an
appropriate boundary condition at the horizon. A numerical approach would be to replace the
potential V (7,) by a collection of step functions as shown in figure 9(a). Here, the solid steps

approximate the dashed potential for m, = 0.8 and ¢ = 0.8. The standard junction conditions
are of the type

Z+.n = Z+.n+l

(39a)
where
Zay = Apexplikyfa ]+ Boexpl—ik, 7, )
and
%;/.%ln = %?—:lnn (39b)
where
dz,

‘(’f"n = ik, /Xllexp(iklvf*.ll) — ik, B:;exp(”iklnf*.l:)
Fa

at each of the n steps were used to connect solutions at successive steps. As before, we use
the inner boundary condition R — 0 at #, = —oo. In reality, we used as many as 12000
steps to accurately follow the shape of the potential. Smaller step sizes were used whenever
varied faster. Figure 9(b) shows the comparison of the instantancous reflection coceflicients in
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both methods. The solid curve is from the WKB method of the previous section and the dotted
curve is from the step-potential method as described here, ‘The agreement is clearly excellent.

0,8 "Y"‘l“""l"""f“"""' 'I'W' rroy l"‘ R el Bk o l TrTrE)
0.4 |- ~
= L i
02 - —
0 L 1 1t .t l L1 ) | 101 1 l 1 L.t 1
-20 =10 0 10 20 30
r.
(a)
m -4
0 50 100 150
r.
h)

Figure 9. (¢) Steps (solid) approximating a potential (dotted) thus reducing the problem to that of
quantum mechanics. The parameters are mp = 0.8 and o = 0.8, () Comparison of variation of
instantancous reflection coeflicient R with the radial coordinate £, using analytical WKB method
(solid) and numerical step-potential method (dotted). The parameters are n, = 0.8 and o = 0.8,

6. Black hole: a mass spectrograph?

In order to show that the black hole scatters incoming waves of differentrestmasses () and of
different energies (o 2) quite differently. we show a collection of solutions in figures 10(a)~(d).
In figure 10(a), we show reflection and transmission coefficients for waves with parameters
o = 0.8 (solid), 0.85 (dotted) and 0.90 (dashed) respectively with the same m, = 0.8. As the
energy of the particle rises comparable to the height of the potential (which is solely dependent
on m,, at a large distance), the reflection cocfficient goes down and the transmission cocflicient
goes up. In figure 10(5). the real parts of the wave Z,., corresponding to these three cases are
shown. At7, = 0. the wave pattern is independent of o as the phase factor is trivially the same
in all cases. The dispersal of the wave with frequency is clear. Waves with smaller energy
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and longer wavelength are scattered with higher amplitude of Re(Z,) as the fraction ol the
reflected wave goes up when the energy is reduced. This behaviour is valid until R < 0.5 since
the amplitude of Re(Z )= (14 VT RY'7Z. For B~ 0.5, the amplitude of Re(Z,) goes down
with energy. In figures 10(c). (). solutions are shown varying the rest mass ol the particles
while keeping o fixed at 0.8. The solid, dotted and dashed curves are torm, = 0.8,0.76,0.72
respectively. The most interesting aspect is that close to the black hole 7, < 0, the reflection
and transmission coeflicients as well as the nature of the wave are quite independent of the
rest mass. This is understandable, as just outside the horizon the potential is insensitive to m,
However, farther out, the anplitude of Re(Z, ) goes up as before when mi,, is raised, as a larger
fraction of the wave is reflected from the potential (figure 10(¢)).

This interesting behaviour for the first time shows that one could scatter & mixed wave

off a black hole and each of the constituent waves would behave differently as in a prism or a
mass spectrograph.

Ill]llll]‘1]]

! L

Ll,._J__._l__.J,._J.__L.n__J.._ et boeace e Lo

0 100 -20 O §20 40

Figure 10. Comparison of () refllection and transmission coellicients and (1) the real amplitude
of the wavefunction Z, for m, = 0.8 and o = 0.80 tsolid), 0.RS tdoted) and 0.90 (dashed)
respectively. (e) () Similar quantities for m = 0.80; (solid) 0.76 tdotted) and 0.72 (dashed)
respectively keeping @ = 0.8 fixed. The higher refleetion component enhances the wave amplitude,
thus difterentiating the incoming waves very clearfy.
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7. Concluding remarks

In this paper, we have analytically studied the scattering ol spin-hall particles from a
Schwarzschild black hole.  In particular, we have presented the natwre of the radial
wavelunctions and the reflection and transmission coefficients.  Qur main motivation was
to give an analytical expression of the solution which could be useful for further study of
interactions among Hawking radiations, for instance. We verified that these analytical solutions
were indeed correct by explicitly solving the same sct of equations numerically using the step-
potential approach as described in section 5. We classified the entire parameter space in terms
of the physical and unphysical regions and the physical region was further classified into two
regions, depending on whether the particle ‘hits’ the potential barrier or not. We chose one
illustrative example in each of the regions. We emphasize that the most ‘interesting’ region
to study would be close to m;, ~ o. However, we pointed.out (figure 1(5)) that for m,, < 0.3,

>

WKB solutions cannot be trusted, and other methods (such as those using Airy functions) must
be employed.

We used the well known WKB approximation method as well as the step-potential method
of quantum mechanics to obtain the spatial dependence of the coefficients of the wavefunction,
This in turn, allowed us to determine the reflection and transmission coclticients and the nature
of the wavefunctions. The usual WKB method with constant coetficients and (almost) constant
wave number k is successfully applied even when the coefficients and wave number are not
constant everywhere. The solution from this “instantancous” WKB (IWKB for short) method
agrees fully with that obtained from a purely classical numerical method where the potential
is replaced by a collection of steps. The resulting wavelorms satisfy the inner and the outer
boundary conditions. Our mcthod of obtaining solutions should be valid for any black hole
geometries which are asymptotically flat so that radial waves could be used at a farge distance.
This way we ensure that the analytical solution is closer to the exact solution. In region I1, in
some regions, the WKB method cannot be applied and hence an Airy function approach or
our step-potential approach could be used.

In the literature, reflection and transmission coefficients are defined at a single point,
These definitions are meaningful only if the potential sharply changes in a small region while
studies are made from a large distance. In the present case, however, the potential changes
over a large distance and we are studying these regions as well. Although we used the words
‘refllection” and ‘transmission” cocfficients in this paper very loosely, our definitions are very
rigorous and well defined. These quantities are simply the instantaneous values. Itis our belief
these are more physical. The problem at hand is very similar to the problem of reflection and
transmission of acoustic waves from a struck string of non-constant density where reflection
and transmission oceurs at cach point,

Unlike in the case of a Kerr biack hole, the solution of the angutar cquation wround a
Schwarzschild black hole is independent of the azimuthal or meridional angles {5-71. Thisis
expected because of symmetry of spacetime. However, otherwise the natwre of the reflection
and transmission coceflicients was found to strongly distinguish solutions of different rest
masses and different energies, as illustrated in figures 10(a)=(d). For instance, when the
energy of the wave is increased for a given mass of the particle. the reflected component goes
down. Inregions where R > 0.5, Re(Z,) goes down with energy, but where R < 0.5, Re(Z,)
goes up with energy. In any case, the waves scattered off are distinctly different. In a way
therefore, black holes can act as a mass spectrograph! For instance a mixture of waves should
be split into its components by the black hole. Our method:is quite general and should also be

used to study outgoing Hawking radiations. This is beyond the scope of this paper and will be
dealt with in future,
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Abstract. We are familiar with Dirac equation in flat space by which we can inves-
tigate the behaviour of half-integral spin particle. With the introduction of general
refativistic effects the form of the Dirac equation will be modified. For the cases of
dilferent. background geometry like INerr, Schwarzschild ete. the corresponding form
of the Dirac equation as well as the solution will be different. In 1972, Teukolsky
wrote the Dirac equation in Kerr geometry. Chandrasekhar separated it into radial
and angular parts in 1976. Later Chakrabarti solved the angular equation in 1984,
In 1999 Mukhopadhyay and Chakrabarti have solved the radial Dirac equation in
Kerr geometry in a spatially complete manner. In this review we will discuss these
developments systematically and present some solutions.

Keywords - General relativity, gravitation, black holes. quantuin aspects

PACS Nos. : 04.20.-¢, 04.70.-5. 04.70.Dy, 95.30.5{

1. Introduction

Behaviour of particles with half integral spin can be investigated through the
study of Dirac equation. Generally, we are familiar with the Dirac equation
and its solution when the space-time is flat. In the curved space-time where
the influence of the gravity is introduced, the corresponding equation will
be changed in form. fts solution will also be different. In 1972, Teukolsky [1]
wrote the Dirac equation in curved space-time particularly in Kerr geometry [2)
using Newman-Penrose formalism [3]. Through this modified Dirac equation
we can study the behaviour of spin half particles around” the spinning black
holes. Due to presence of central black hole the space-time is influenced and
behaviour of the particle is changed with respect to that of flat space. From
the same equation of Teukolsky, Dirac equation for Schwarzschild metric (2]
(Sehwarzsehild geometry), where the central black hole is static can be studied

© 1999 1ACS
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black he esamg a(;ds{he modified Dirac equation for curved space-time (for Kerr
and Schwarzschild geometry [2-3]) and its solution reduce into that of the flat
space.

In this review we will first indicate how Dirac equation in curved space-
time can be written using Newman-Penrose formalism [3]. Newman-Penrose
formalism is one of the tetrad formalism where null basis are chosen instead
of orthonormal basis. To fulfill the understanding of Dirac equation in this
formalism we also need to know the ‘Spinor Analysis’ [3]. In the next Section.
we will briefly describe this in the context of our present purpose. In §3 we
will write the Dirac equation in Newman-Penrose formalism for flat and curved
space-time. For curved space we will separate the Dirac equation under the
background of Kerr geometry. In §4 and §5 we will briefly outline the angular

and radial solution of Dirac equation respectively. In §6 we make concluding
remarks.

2. Spinor analysis

In Minkowski space we consider a point x* (i = 0,1,2,3) on a null ray whose
norm is defined as

(2°)? = (2!)? - (z9)* - (z7)* = 0. (1)

Now, we consider two complex numbers €2 and €', and their complex conjugate
-0’ -1/ . . . .
numbers €2 and £ in terms of which each point can be written as,

20 = —\}-5@“5” 4+ ') (2a)
= (08 4 €18 (20)
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Conversely, we can write,
c()f‘o’ _ —1—(r + 1 ) (e
V2
f”‘" = —l——(ar‘ + %) (30
V2
0 L 2 -
§¢ = —=(z -z (3¢
2
clft I o 3 Ny
gf 2——(.’E —IL‘) (3d|
2
Let,
f’j = (-YABfB (Ha)
5—:1/ = ﬁ’g',f—B/ (»H}‘\
where, (A, B, A", B’ = 0.1), are the linear transformations in complex two.

dimensional spaces. The transformation of ' is defined as
Eo 3t
I, =gzt

Now, using equation (2) and (3) we can write,

I . 1
2l = \—@mS“’ + a3 (agd” +afe) + ﬁ(aés(’ + &) (apd” + et
1 1 /. ] ! ! .
= 5(08&8, + abad) (= + 1) + 5(0'({&?, + alal)(z? - &?)
1 al'V(z! & iz Lo oo Lal/yeo 1 o2
+;2-((w al,+a i 4z )+§(al(rn,+n1‘ao,)(x — ). (6

Similarly, we can write down the relations between !, z2 and x? with a’s and
Therefore, keeping in mind (5) we can write,

0 0 00 11
jo + }33 = (Yoaot + (Yoaof,

0 0-0 1 -1’
- /33 = Qlall + Otl(Yl:,

0 :.0 1=1'
/31 - iu-z = (Yoaf‘l + QaQlyy,
30 <30 _ 0-0' 1t
3]+ 135 = a)dg + o &g

Now, imposing the condition that the transformation (5) is Lorentzian we can
write,

(B = (B = (B = (B9 =
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So,
00 =1 050 1~1'
aoao, + “o“o' “0“1; + 0001: -1 (7)
ofad + @l a9aY% + olall
This gives,
0 .0 =0 =0
ap o &y @ X
? o L =AA =1 (R)
al al —1 '1
0 1 Qg Oy,
Now we consider A = A = 1, so individually each transformation of ¢ is

Lorentzian. So we can conclude if transformation (5) is Lorentzian, the neces-
sary condition is transformation (4) is also Lorentzian.

Now we define spinors €4, n4' of rank one as €2 = nng and A’ = an/ B’
(A, A, B, B' = 0), where HaB“ = HOB,I\ = 1. Since €4 and n” are two spinors
of same class,

£ &y = €0y 1,0 (
NI =& (9)

which is invariant under unimodular transformation, i.e.,
eABEAnB — invariant (10)

where, €4p is Levi-Civita symbol. Here as in the case of tensor analysis e4p
and €4/ g+ are used to lower the spinor indices as, £4 = £C¢ca.

Now, using above information the representation of position vector ' can
be written as

1
\/2

m +:z: z! 4+ i2?

22 20 _ 23

€6 €%
gér ¢

zt & (11)

Generally any vector X' can be written in terms of spinor of rank two as,

EOO, 601, B _l_.
610' 6“’ - \/.‘2'

So a 4-vector is associated with a hermitian matrix such that,

X0+ X3 X'4ix?

Xt X1—ix? XO_

= X482 (12

(X2 — (X2 (X)) = (X = (X4 X)X X3) (X +iX D) (X' =i XD
= 2(€%76" - % €10) = (€% oo + E11r€"Y + E20€" + €V E01) = Xap XA
From the definition of norms, we can write it in two different representations:

9i; X' X7 = eqcepp X AP XD (13)
Therefore, we can transform X' « X A5 using,

X’ = U;BI,X'ABl (]40)
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! ! N
XAB' = oAB xi (1-1b)
where, a/B" and o' 4 are nothing but Pauli matrices and their conjugate

matrices with a factor ’—7

A curved space-time is locally Minkowskian. At each point of space-time
an orthonormal Dyad basis can be set up as C(’i) and C(’i',) (a,a’ = 0.1 and
A, A’ =0, 1) for spinors.

We define, C("é) = o and C("}) = |4, The condition of orthonormality is
eag0o®lB = %' — 0'1% = 0glB = —0Aly = 1.

Also it is clear that. e(“)(b)c("i)(& = 4B,

Then the null vectors are defined as

I' o 0268 mi « oM1B' ! e 1468 ni o 1ATB.

Where, vectors obey relations of null tetrads such as,

l'n; = 1, m'm; = —1 and all other products give zero.

In this way using dvad basis we can set up four null vectors which are basis
of Newman-Penrose formalism. Using (14) we can write the basis explicitly as

I' = (T;B;C('?))C_(%:‘) = (ri,B,oAﬁB', (15a)
m' = alyg((Chn = ohpotl? (150)
m' = cr_‘43,C(Al)(,:(%:) = ai‘B/lAéB', (15¢)
n' = ol () Chy = ahptE. (15d)

Thus, in Newman-Penrose formalisin the Pauli matrices change their forms
as,

- 1 Irom
4
g = — | _: : 16a
AB’ \/;2‘ mt ( )
' 1 n —-m
o8 = — | ‘ (165)
V2 —mi
Thercfore in this basis, the directional derivatives can be written as,
D=0 A=nd.s=md and §* = m'0;.
Thus, the spinor equivalents of Newman-Penrose formalism are
door = D, 01 = A. dorr = 6, Oyor = 67
Due to the reason, as explained earlier V; & V 45/, so we can write.
V,‘.\'J = XJ';,‘ o Vg Xepr = XCD’;AB'a
therefore, ‘ _
Xcprap = OJCD,O';;B:XJ';,'. (17)

For covariant derivatives spin coefficients [ are introduced. In the Newman-
Penrose formalism these different coeflicients are assigned in terms of special
symbols which are given below:

Ciayy(ey(an
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(a)(b) 00 0lor10 11

(c)(d')
00" & 3 m
100 p o A
0l a 6} U
11 T v v

3. Dirac equation and its separation

Before going into discussion, we should mention about the unit of the svstem.
Here we have chosen throughout h'=c = G = 1, where & = Planck constant,
¢ = speed of light and (i = gravitational constant. It is very clear that simul-
taneously all these quantities are chosen as unity implying the corresponding
system is dimensionless.

The Dirac equation in flat space using Newman-Penrose formalisin can be
written as,

(Ti‘B:a.'PA +i1.Qp =0 (18a)
oW 0:Q + iu. Py = 0. (18b)

Here, PA and Q4" are the pair of spinors. u./v/2 is the mass of the particles
and o' g, is nothing but Pauli matrix, because 1/+/2 factors are canceled in
the equation.

In curved space time Dirac equation reduces to
owp Pl +ip.Q% ccipr = 0, (19a)

oyp QR +iu P eccip = 0, (19b)

where, o', 5, is same as defined in equation (16a).
Now, consider B’ = 0, then (19a) reduces to

. . =t
000 P + 00 Py — in.Q' =0

or,

(600’130 + r(?oolpb) + (810’P] + FEIO/Pb) - iﬂ,@l, = 0’

Therefore,

(D + Tio00' = To010) P° + (8" + T1100 = Tor10r) Pt = ip. QY = 0 (20)
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Similarly, choosing B’ = 1, we can get another similar type equation and then
we can get corresponding conjugate equation of both by interchanging P and

. Now choosing,

Fi=P, F=P G =Q" G=-Q"

and replacing various spin coefﬁments by their named symbols we get the
the Dirac equation in Newman-Penrose formalism in its reduced form as.

(D+:z-p)Fy+ (6" + 7 - ) F, =1p.G,, (2la)
(A+p—-7F+ (§+0 - 1)F = ip.Gy, (21b)
(D+¢" = p)Gy - (6 + 7" — a")Gy = ip F, (21¢)
(A+u" =v)Gy = (6" + 8" = 77)Gq = i F1. (21d)

3.1. Basis vectors of Newman-Penrose formalism in terms of Kerr geometry

The contravariant form of Kerr metric is given as [3],

o2/pA 0 0 2aMr/p?A
; 0 -A/pt 0 0
Vo= : 22
2aMr/p?A 0 0 —(A — a%sin?0)/ptAsin?6
where, E is the energy, a xs spe( ific nngular momentum of the black hole, M =
mass of the black hole, p? = r + a*cos?8 (should not confuse wnth the spin
coefficient [(gy(0)(1)(0) = P) = (r? 4+ a?)? - a’Asin®0, A = r? + a? = 2Mr.

In Kerr geometry, the tangent vectors of null geodesics are: d = Lii"——E.
=+E, ¢ dT =0, dT = L E, where 7 is the proper time (not to be confused
w1th spin coefficient T'(o)0)(1)(1) = 7)-

Now, the basis of Newman-Penrose formalisin can be defined in Kerr ge-
ometry as (in tetrad form),

ly = —;—(A ~p?,0, —aAsin®), (23a)
n; = ——1——(A p%, 0, —aAsin?6) (23b)

2p2 ) 1 ] )

1

m; = —=(tasind, 0, —p?%, —i(r? + a?)sinf), (23c¢)

5 (2 + a?)

N

It = Z(r2+a2,A,0,a), (23d)

= ﬁ\l/§(r2+a'-’,—a,0,a), (23e)
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My = (1asind. 0. 1, icosect), (23/)

1
V2
m; and m' are nothing but complex conjugates of m; and m' respectively.

3.2. Separation of Dirac equation into radial and angular parts

It is clear that the basis vectors basicallv become derivative operators when
these are applied as tangent vectors to the function ¢(@*+™m®) Here, o i the
frequency of the particle (not to be confused with spin coefficient I'(g)(0y(0)(1) =
o) and m is the azimuthal quantum number [3].

Therefore, we can write,

I — -~ __ - A t - o 1 | B v
l._D__Do,n—é_—mD,m__é_mﬁo,m—é ﬁ\/—L(,
where, o
D, = 0, + l—é\— 4+ 20t —AM? (24a)
'D,Tl =0, — -l—é\——k‘lnr;M, (21b)
L, = 0a + Q + ncotd (25a)
Ll =05 — Q + ncotd: (25b)

K = (r? + a?)o + am, Q = aosinf + mcosech.

The spin coefficients can be written as combination of basis vectors in
Newman-Penrose formalism which are now expressed in terms of elements
of different components of Kerr metric. So we are combining those different

components of basis vectors in a suitable manner and get the spin coeflicients
as,

K=oc=A=v=c¢t=40. (26(2)
5 — — L — _coté _ _tasiné
p=—p B= 300 = i
r=-l u=—gaE Y=t a=T -4t (261)

Using the above definitions and results and choosing fi = p*Fy, g2 = p(y.
fa = F3, g1 = G, the Dirac equation is reduced to

Dofi + 272L, )y f2 = (ipr + ap.cosf) gy, (27a)
AD1/2f2 ~ 2! Q,Ct/zf = =2(i1p.r + ap.cos)g;, (27))
Doga = 27'°L} 01 = (ip.r = ap.cosh) fo, (27¢)
AD{/2g1 + 220, 90 = =2(ipar ~ apacosh) fy, (27d)

Now we will separate the Dirac equation into radial and angular parts by
choosing,
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Si(r 0y = R_y /0 ) —172(0). fz( V0) = Ry pp(r)S))a(0),

G 0) = Ry 5 (r)S_y/2(0). g2(r,8) = R_y (1) Sy /2(0).
Replacing these f; and g, ( 1, 2) into (27) and using separation constant
A we get,

L’%:‘>’+% = ~(A—amycos8)S L (2Ra)
LS L =+(A+amycos8)S,, (23b)

2 2 2
AIDGR_y = (A+imyr) AR, ., (29q)

2 2
ATDIAIR, +1 = (A= imyr)R_y, (295)

2

where, m, is the mass of the particle which is nothing but 2!/2u.. Also.
21/2R_l/2 is redefined as R_,,.

Equations (28) and (29) are the angular and radial Dirac equation respec-
tively in coupled form with the separation constant A [3].

4. Solution of angular Dirac equation

Decoupling equation (28) we obtain the eigenvalue equation for spm-— particles
as
am,sin 0

+ ct + (A* = a’mlcos’9)| S

L L
A+ amyc Oxb‘

L
2

= 0. (30)

-+

Similarly, one can obtain decoupled equation for Spin+:'2- particles. Here, the
separation constant A is considered to be the eigenvalue of the equation. The
exact solutions of this equation for A and S_, is possible in terms of orbital

=

angular momentum quantum number [ and the spin of the particle s when
the parameter py = 22 = 1. When the angular momentum of the black hote
is zero i.e., Schwarzschild case. the equation is reduced in such a form that
whose solution is nothing but standard spherical harmonics such as [8-9].

S_1y2000e™ =_1 Vi (6, 9), (31)

L
2

the eigenvalue i.e., the separation constant can be solved as,
A= (14 1/2)% (32)
Similarly, for spin-{-% particle one can solve S;,/, as
Sii2(0)e™? = =41 Yim (0, 9), (33)

with same eigenvalue A.
For any non-integral. massless, spin particle the solutions are [8-9]

Siﬁ(ﬂ)('”“(b =45 }"1”1(91 (f))‘ ({1)
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A= (T4 |sD( = Jsl + 1) (35)

In the case of Kerr geometry, when a # 0 the equation can be solved by

perturbative procedure [5] with perturbative parameter ao. The solution for
— —_ ] . - 1 o

pr=myfa=1and s = £3 is {5]

1. o 2
M=(l+35) 2 252 || - Y .
( +2) +ad(p+2m)+a‘o” |l S0+ ) Taoz | (36)
aoy . -
S m = },m } m ’
2! 3 + 2(1+'1)+an:rl5 +1 (37a)
. aay -
Sn = . m = { m 37
~15im _%}zvl 0T 1)+(mx_%h+1 (37b)
where,
p=F(1); z=Fl+1041); y=F({l1+1) (38)
and
i | ]
1"(11,12) = [(2[2-*- l)(211 + l)]% < 1217710“17” >7[< [2]:20'11;2- >
lo—1 1 1 Ih—1 - ] i
+(=1)27" < L1m0llHm > [< 121:2.0”15 > +(=1)2""p; V2 < 151 - 51]115 >]).
(39)
with < ....|].. > are the usual Clebsh-Gordon coefficients.

If p; # 1 then exact solution is not possible. In those cases the analytic
expression of eigenvalue and angular wave-function are found as infinite series
not in a compact form as the case p; =1 .

From the general convergence of series expansions one can truncate the
infinite series upto certain order for particular values of I, s and m. For [ = 1

2
s = -—% and m = —%, up to third order in ac, one obtains [5],

N = (14 2)2 4 a0 fy(lm) + (a0) fall m) + (a0 ) folym), (40)

6 6\ [2 4
__%S%_% = —sinf — (sin3_2. — sin@cos§> [gaa(l +p1) + E(agﬁ(l - pf)}
6 g L 6
+-§-(aa)2(1 ~p?) [sinsg - 63in2§cos3§ + 3sin§cos4 -2—] . (41)

The accuracy of eigenvalues and eigenfunctions decreases as ac — 1.

5. Solution of radial Dirac equation

In the radial equation independent variable r is extended from 0 to oco. For
mathematical simplicity we change the independent variable r to r, as
+2Mr++am/(flog< r ) _ 2M7»_+am/alog< r ) (42)

R | — =1
r4 r.

re =17

Yy —T- ry — T
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(for r > ry), here in new r. co-ordinate system horizon ry is shifted to —oo
unless o < —=2%— [3], so the region is extended from —oo to co. We also
2Mry o

choose R_y = P_,, A%R+l = P_,. Then we are defining
2 2 2

)

(A imyr) = exp(£i6) /(A + mZr?)

e 1't 1 [ MpT
15— l,»+:12_ zp 21 an ) )
1

and
P+

P_

-
i
c
{
o
™
8
3
—
+
[\ ]
[
L
Q
=
i
N
—
=
> 13
~—
et

Finally choosing,
Zy =YYy

and combining the differential equations (29) we get,

d
("T;— - ‘V) Z+ = ?:UZ_, (43(1)
and 4
(:1—7'— + W> Z_ =102y, (13b)
where,
. 1 -1 mpr)
Te =Ty + zatan < 3
and 1
A2 2,2\3/2
W= AZ(A* 4+ mor) (14)
wi(A2 4+ mir?) + Am,A /20
where, w? = Ld(-
Now decoupling equations (43a-b) we get,
d'.’

where, Vi = W2 + dw and r. is extended from —oo (horizon) to +oo.

The equation (45) is nothing but one dimensional %hrodmger equation
[10] with potentials V4 and the energy of the particle o2 (since the system
is dimensionless) in Cartesian co-ordinate system. The equation (45) can be
solved by WKB approximation method {10-11}. The corresponding solution is
[6'7])

Ay

B
Ziz\/aexp(ilzi):t \/{Ieaﬁp(——iui) (16)
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ky = /(0 = Vy), (7]

Uy = /kidf‘,.. (-IN)

where,
and

Now we improve the solution by introducing space dependences on coeflicients
Ay and By [6-7] (this is bevond WKB approximation, because WKB deals
with solutions with constant coefficients). It is seen that far away from a black
hole, potential varies very slowly. Thus, in those regions one can safely write.

A4 = By = Constant(= ). (19)
Since the sum of reflection and transmission coeflicients must be unity,
AL+ BL = ks (50)

Near the horizon it is seen that potential height reduces to zero so the reflec.
tion in that region is almost zero and transmission is almost 100%. This is the
inner boundary condition. Solving (19) and (50) we get analvtical expression
of space dependent reflection and transmission coeflicients far away from the
black hole which satisfy outer boundary condition. Combining the inner and
outer boundary conditions, we get analvtical expression of space dependent
coefficient A4 and B4 which is valid in whole region (—oc to +oc). For de-
tails see [6-7]. The space dependency of Ay and By i.c. the transmission and
reflection coefficients arises due to the variation of potential with distance.
So from the analytical expressions one can easily find out at cach point what
fraction of incoming matter is going inward and what other fraction is go-
ing outward as a result of the interaction with the black hole. Thesc space
dependent transmission and reflection coefficients are given below [6-7].

2 c . 2
ai (a1 +3) < c 2) 2ky — ¢ )
_ — 2l - Qky — ¢ —_—— 5l
Ty = fs = C1+2+\/Zki cc | + e (dla)

h':t
bzi (C-z - ';') c . 21‘\3: — ?
= -2 2 (o, — o /2y — 2 —— 51b
Re =, he (” T VERE € ) LT (o10)
Here, a4+ and by are defined as
Ag
= H2a
T ke ks 2l
by = (525)
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which are transmitted and reflected amplitudes of the solution with modified
WIKB method (going bevond WKB method) and

c\? c\? _ 2ky — c?
hy = <C1 + E) + (C;z - E) + (e1 4+ e2)y/2ky — 2+ L"i‘z—l, (53)

where, ¢; and ¢, are two constants introduced to satisfy the inner boundary
condition. The final form of the solution is

Zy = E—exp(iui):t

vV N+
Since the relation between Z; and R, is known, one can easily calculate the
2
radial wave function R 1.
2

by :
rp(—iuy). 54
\/-l\f_:t—exp( IU,:t) (j )

6. Conclusions

In this review we write the Dirac equation in curved space-time and particu-
larly in Kerr geometry. From this, the behaviour of non-integral spin particles
can be studied in curved space-time. From the form of the equation and its
solution it is clear that in curved space the particles behave in differently than
in a flat space-time. The Newman-Penrose formalism is used to write the equa-
tion where the basis svstem is null. Dirac equation is separated into angular
and radial parts, Similar separation can be possible on the background of Dyon
black hole [12]. The solution of angular component of the Dirac equation is
first reviewed. The exact solution is possible for =& = |, otherwise the solution
is approximate [3]. Unlike in the case of a Kerr black hole, the solution of the
angular equation around a Schwarzschild black hole is independent of the az-
imuthal or meridional angles [5, 13.11]. This is expected because of symmetry
of the space-time.

The radial Dirac equation is solved using WIKB approximation more clearly
modified WKB approximation {6-7], where the space dependent transmission
and reflection coefficients are calculated. Althongh WKB method is an ap-
proximate wethod, it is improvised in such a way that spatial dependence of
the coefficients of the wave function is obtained. This way we ensure that the
analvtical solution is closer to the exact solution. The reflection and transmis-
sion coeflicients were found to distinguish strongly the solutions of different
rest masses and different energies. The solution might be of immense use in the
study of the spectrum of particles emitted from a black hole horizon (Hawking
radiation).
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Abstract. Study of nucleosynthesis in accretion disks around black holes was ini-
tiated by Chakrabarti et al. (1937). In the present work we do the similar analysis
using the state-of-the-art disk model. namely, Advective Accretion Disks. During the
infall, matter temperature and density are generally increased which are first comn-
puted. These quantities are used to obtain local changes in composition, amount of
nuclear energy released or absorbed. etc. under various inflow conditions. In the cases
where the magnetic viscosity is dominant neutron torus may be formed. We also
talk about the fate of Li” and D during the accretion. The outflowing winds from
the disk could carry the new isotopes produced by nucleosynthesis and contaminate

the surroundings. From the degree of contamination, one could pinpoint the inflow
parameters.

Keywords : Accretion, black holes. nuclear astrophysics, origin and abundance of
elements

PACS Nos. :97.10.Gz, 04.70.-s. 98.80.Ft, 26.0

1. Introduction

There are many observational evidences where the incoming matter has the
potential to become as hot as its virial temperature Tyriar ~ 101 W [1].
Through various cooling effects. this incoming matter is usually cooled down
to produce hard and soft states [2]. In the accretion disk, matter in the sub-
Keplerian region generally remains hotter than Keplerian disks. The matter
is so hot that after big-bang nucleosynthesis this is the most fevourable tem-
perature to produce significant nuclear reactions. The energy generation due
to nucleosynthesis could be high enough to destabilize the flow and the mod-
ified composition may come out through winds to affect the metallicity of the
galaxy [3-7]. Previous works on nucleosynthesis in disk was done for cooler
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thick accretion disks. Since the sub-Keplerian region is much hotter than of
Keplerian region and also than the central temperature (~ 107K) of stars,

presently we are interested to study nucleosynthesis in hot sub-Keplerian re-
gion of accretion disks.

2. Basic equations and physical systems

In 1981 Paczynski & Bisnovatyi-Kogan [8] initiated the study of viscous tran-
sonic flow although the global solutions of advective accretion disks were
obtained much later [9] which we use here. In the advective disks, matter
must have radial motion which is transonic. The supersonic flow must be sub-
Keplerian and therefore must deviate from a Keplerian disk away from the
black hole. The basic equations which matter obeys while falling towards the
black hole from the boundary between Keplerian and sub-Keplerian region are
given below (for details, see, [9]):

(a) The radial momentum equation:

A0 1dP N, = A

P = =0, (la)
(b) The continuity equation:
1
—(Sa1) =0, (16)
dr
(c) The azimuthal momentum equation:
di\(z) 1 d . |
I = e (2o =0, (lc)
(d) The entropy equation:
2napdh(z)da a?dh(z)d
P ()____ ()—ngQ*L (1d)

0% dr 7 dz

where the equation of state is chosen as a? = 2P Here, A is the specific angular

momentum of the infalling matter. Ap, is that in the Keplerian region is
defined as A%, = ﬁxi_a—l—)-; [10], € is vertically integrated density, W4 is the
stress tensor, a is the sound speed and h(z) is the half thickness of the disk
(~az'/?(z-1)),n = ;{-T is the polvtropic index, f is the cooling factor which
is kept constant throughout our study, Q% is the heat generation due to the
viscous effect of the disk. For the time being we are neglecting the magnetic
heating term.

During infall different nuclear reactions take place and nuclear energy is
released. Here, our study is exploratory so in the heating term Q*, we do not
include the-heating due to nuclear reactions. (Work including nuclear energy
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release term is in {6].) Another parameter /3 is defined as ratio of gas pressure to
total pressure, which is assumed to be a constant value throughout a particular
case. Actually, the factor /3 is used to take into account the cooling due to
Comptonization. To compute the temperature of the Comptonized flow in the
advective region which may or may not have shocks, we follow Chakrabarti &

Titarchuk [2] and Chakrabarti’s [11] works and method. The temperature is
computed from.

_— a'z;unp[}.
vk

It is seen that due to hotter naturc of the advective disk especially when accre-
tion rate is low, Compton cooling is negligible, the major precess of hydrogen
burning is the rapid proton capture process, which operates at T 2 0.5 x 10°K
which is much higher than the operating temperature of PP chain (operates
at T ~ 0.01 — 0.2 x 10°K) and CNO cycle (operates at T ~ 0.02 — 0.5 x 109K)
which take place in the case of stellar nucleosynthesis where temperature is
much lower. Also in stellar case, in different radii same sets of reaction take
place but in the case of disk, in different radii different reactions (or different
sets of reaction) can take place simultancously. These are the basic diilerences
between the nucleosynthesis in stars and disks.

For simplicity, we take the solar abundance as the initial abundance of
the disk and our computation starts where matter leaves a Keplerian disk.
According to {2] and [11]. the black hole remains in hard states when viscosity
and acceretion rate are smaller. In this case, oy (at radius o matter deviates
from Keplerian to sub-Keplerian region) is large. In this parameter range the
protons remain hot (T, ~ | = 10 x 10°K). The corresponding factor f(=
I —QF/Q7) is not low enough to cool down the disk, (in [1], it is indicated
that 1 /a? is a good indication of the cooling efficiency of the hot flow). where
Q*F and Q= are the heat gain and heat loss due to viscosity of the disk.

We have studied a large region of paramster space with 0.0001 £ n < 1.
0.001 <110 £100.0.01 £ 3 < 1.4/3 5 v £5/3. We study a case with a stand-
ing shock as well. In selecting the reaction network we kept in mind the fact
that hotter flows mayv produce heavier elements through triple-a and rapid
proton and a capture processes. Furthermore due to photo-dissociation sig-
nificant neutrons mav be produced and there is a possibility of production
of neutron rich isotopes. Thus. we consider sufficient number of isotopes on
oither side of the stability line. The network thus contains protons, neutrons,

till "2Ge  altogether 255 nuclear species. The standard reaction rates were
taken [6].

(2)

3. Results

Here we present a typical case containing a shock wave in the advective region
(6]. We express the length in the unit of one Schwarzschild radins which is
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i(?{\i where M is the mass of the black hole. velocity is expressed in the unit
of velocity of light ¢ and the unit of time is -2%'# We use the mass of the
black hole M/Mg = 10 (M = solar mass), [l-stress viscosity parameter
aq = 0.05, the location of the inner sonic point z;, = 2.8695, the value of the
specific angular momentuimn at the inner edge of the black hole A, = 1.6. the
polytropic index v = 4/3 as free parameters. The net accretion rate th = 1 in
the unit of Eddington rate, cooling factor due to Comptonization /3 = (.03,
r1 = 481. The proton temperature (in the unit of 10%), velocity distribution
(in the units of 10'% cm sec™!), density distribution (in the unit of 2 x 107"
gm cm~3) are shown in Fig. 1(a).

In Fig. 1b, we show composition changes close to the black hole both for
the shock-free branch (dotted curves) and the shocked branch of the solution
(solid curves). Only prominent elements are plotted. The difference between
the shocked and the shock-free cases is that, in the shock case the similar
burning takes place farther away from the black hole because of much higher
temperature in the post-shock region. A significant. amount of the neutron
(with a final abundance of Y, ~ 107"} is produced due to photo-dissociation
process. Note that closer to the black hole. '3, YO, "M g and *°S7 are all
destroyed completely. Among the new species which are formed closer to the
black hole are 953, 1°Ti, ¢ r. Note that the final abundance of *N¢ is sig-
nificantly higher than the initial value. Thus a significant metallicity could be
supplied by winds from the centrifugal barrier. In Fig. 1c we show the change
of abundance of neutron (n), deuterium (D) and lithium ("L7). It is noted that
near black hole a significant amount of neutron is formed although initially
neutron abundance was almost zero. Also D) and “Li are totally burnt out near
black hole which is against the major claim of Yi & Narayan [13] which found
significant lithium in the disk. It is true that due to spallation reaction, i.e..

‘He+'He =" Li+p

"Li may be formed in the disk but due to photo-dissociation in high temper-
ature all 4He are burnt out before forming "Li i.e. the formation rate of ‘He
from D is much slower than the burning rate of it. Yi & Narayan [13] do not
include the possibility of photo-dissociation in the hot disk.

In Fig. 1d, we show nuclear energy release/absorption for the flow in
in units of erg sec™! gm~!. Solid curve represents the nuclear energy re-
lease/absorption for the shocked flow and the dotted curve is that for unstable
shock-free flow. As matter leaves the Keplerian region, the rapid proton cap-
ture such as, p+'80 =15 N+4Heetc.. burn hydrogen and releases energy to the
disk. At around £ = 50, D -— n+p dissociates D and the endothermic reaction
causes the nuclear energy release to become "negative’, i.e., a huge amount of
energy is absorbed from the disk. At around z = 15 the energy release is again
dominated by the original processes because no deuterium is left to burn. Due
Lo excessive temperature, immediately *He breaks down into deuterium and
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Figure 1. Variation of (a) proton temperature (Ty), radial velocity vio and
density distribution p_s (b) matter abundance Y in logarithmic scale (c)
neutron, deuterium and lithium abundance Y in logarithmic scale and (d)
nuclear energy release and absorption as a functions of logarithmic radial
distance z. See text for parameters. Solutions in the stable branch with shocks
are solid curves and those without the shock are dotted in (a-d). At the shock.
temperature and density rise and velocity lower significantly and cause a
significant change in abundance even farther out. Shock induced winds may

cause substantial contamination of the galactic composition when parameters
are chosen from these regions [6].

through dissociation of D again a huge amount of energy is absorbed from the
disk. It is noted that energy absorption due to photo-dissociation as well as the
magnitude of the energy release due to proton capture process and that due to
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Figure 2. The convergence of the neutron abundance through successive
iterations in a very hot advective disk. From bottom to top curves lIst, 4th,
7th and 11th iteration results are shown. A neutron torus with a significant
at .ndance is formed in this case [15].

viscous dissipation (Q%) are very similar (save the region where endothermic
reactions dominate). This suggests that even with nuclear reactions, at least
some part of the advective disk may be perfectly stable.

We now present another interesting case where lower accretion rate (m =
0.01) but higher viscosity (0.2) were used and the efficiency of cooling is not
100% (f = 0.1). That means that the temperature of the flow is high (8 = 0.1,
maximum temperature 7§*** = 11). In this case zx = 8.8, if the high viscosity
is due to stochastic magnetic field, protons would be drifted towards the black
hole due to magnetic viscosity, but the neutrons will not be drifted [13] till
they decay. This principle has been used to do the simulation in this case.
The modified composition in one sweep is allowed to interact with freshly
accreting matter with the understanding that the accumulated neutrons do
not drift radially. After few iterations or sweeps the steady distribution of
the composition may be achieved. Figure 2 shows the neutron distributions
in iteration numbers 1, 4, 7 & 11 respectively (from bottom to top curves)
in the advective region. The formation of a ‘neutron torus’ is very apparent
in this result and generally in all the hot advective flows. In 1987 Hogan &
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Applegate [14] showed that formation of neutron torus is possible with high
accretion rate. But high accretion rate means high rate of photon to dump into
sub-Keplerian region and high rate of inverse Compton process through which
matter cool down, that is why photo-dissociation will be less prominent. Also
formation of neutron is possible through the photo-dissociation of deuterium in
the hot disk which is physically possible prominently in our parameter region.

where neutron torus is formed. Details are in Chakrabarti & Mukhopadhvay
[15].

4. Discussions and conclusions

In this paper, we have explored the possibility of nuclear reactions in advective
accretion flows around black holes. Temperature in this region is controlled by
the efficiencies of bremsstrahlung and Comptonization processes [2, 7]. For a
higher Keplerian rate and higher viscosity, the inner edge of the Keplerian
component, comes closer to the black hole and the advective region becomes
cooler [2, 9]. However, as the viscosity is decreased, the inner edge of the Kep-
lerian component moves away and the Compton cooling becomes less efficient.

The composition changes especially in the centrifugal pressure supported
denser region, where matter is hotter and slowly moving. Since centrifugal
pressure supported region can be treated as an effective surface of the black
hole which may generate winds and outflows in the same way as the stellar
surlface, one could envisage that the winds produced in this region would carry
away modified composition [16-18]. In very hot disks, a significant amount of
lree neutrons are produced which, while coming out through winds may re-
combine with outflowing protons at a cooler environment to possibly form
deuteriums. A few related questions have been asked latelv: Can lithium in
the universe be produced in black hole accretion {12,19]7 We believe that this
is not. possible. When the full network is used we find that the hotter disks
where spallation would have been important also heliums photo-dissociate into
deuterinms and then to protons and neutrons before any significant produc-
tion of lithinms. Another question is: Could the metallicity of the galaxy be
explained. at least partially. by nuclear reactions? We believe that this is quite
possible. Details are in [6].

Another important thing which we find that in the case of hot inflows for-
mation of neutron tori is a very distinct possibility [15]. Presence of a neutron
torus around a black hole would help the formation of neutron rich species as
well, a process hitherto attributed to the supernovae explosions only. [t can
also help production of Li on the companion star surface (see [6] and references
therein).

The advective disks as we know todav do not perfectly match with a Ke-
plerian disk. The shear. i.e.. dS2/dx is always very small in the advective flow
compared to that of a Keplerian disk near the outer boundary of the advective
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region. Thus some improvements of the disk model at the transition region is
needed. Since major reactions are closer to the black hole, we helieve that such
modifications of the model would not change our conclusions. The neutrino
luminosity in a steady disk is generally very small compared to the photon
luminosity [6], but occasjonally. it is seen to be very high. In these cases,
we predict that the disk would be unstable. Neutrino luminosity from a cool
advective disk is low.

In all the cases, even when the nuclear composition changes are not very
significant, we note that the nuclear energy release due to exothermic reactions
or absorption of energv due to endothermic reactions is of the same order
as the gravitational binding energy release. Like the energy release due to
viscous processes, nuclear energyv release strongly depends on temperatures.
This additional energy source or sink may destabilize the flow [6].
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Abstract. Significant nucleosynthesis is possible in the cen-
trifugal pressure-supported dense and hot region of the accre-
tion flows which deviate from Keplerian disks around black
holes. We compute composition changes and energy genera-
tions due to such nuclear processes. We use a network con-
taining 255 species and follow the changes in composition.
Highly viscous, high-accretion-rate flows deviate from a Ke-
plerian disk very close to the black hole and the temperature
of the flow is very small due to Compton cooling. No signifi-
cant nucleosynthesis takes place in these cases. Low-viscosity
and lower-accretion-rate hot flows deviate farther out and sig-
nificant changes in composition are possible in these cases. We
suggest that such changes in composition could be contributing
to the metatlicities of the galaxies. Moreover. the radial yariation
of the energy generation/absorption specifically due to proton
capture and photo-dissociation reactions could cause instabili-
ties in the inner regions of the accretion flows. For most of these
cases sonic point oscillations may take place. We discuss the
possibility of neutrino emissions.

Key words: accretion, accretion disks — black hole physics -
stars: neutron — shock waves — nuclear reactions. nucleosynthe-
sis, abundances

1. Introduction

In Chakrabarti & Mukhopadhyay (1999, hereatter refetred to as
Paper 1) we studied the result of nucleosynthesis in hot. highly
viscous aceretion, flows with small aceretion rates and showed
that neutron tori can form around & black hole. In the present
paper. we study nucleosynthesis in disks in other parameter
space. where the photo-dissociation may not be complete and
other reactions may be important. and show that depending on
the accretion parameters, abundances of new isotopes may be-
come abnormal around a black hole. Thus. observation of these
isotopes may give a possible indication of black holes at the
galactic center or in a binary system.

Earlier, Chakrabarti (1986) and Chakrabarti et al. (1987,
hereinafter CJA) initiated discussions of nucleosynthesis in sub-
Keplerian disks around black holes and concluded that for very

Send affprint requests to: B. Mukhopadhyay (bm@boson.bose.res.in)

low viscosity (a parameter less than around 10~4) and high
accretion rates (typically, ten times the Eddington rate) there
could be significant nucleosynthesis in thick disks. Radiation-
pressure-supported thick accretion flows are cooler and signifi-
cant nucleosynthesis was not possible unless the residence time
of matter inside the accretion disk was made sufficiently high by
reducing viscosity. The conclusions ot this work were later ver-
ified by Arai & Hashimoto (1992) and Hashimoto et al. (1993).

However, the theory of accretion flows which contain a
centrifugal-pressure-supported hotter and denser region in the
inner part of the accretion disk has been developed more re-
cently (Chakrabarti 1990. hereafter C90 and Chakrabarti 1996,
hereafter C96). The improvement in the theoretical understand-
ing can be appreciated by comparing the numerical simulation
results done in the eighties (e.g. Hawley et al. 1984, 1985) und
in the nineties {e.g. Molteni et al. 1994: Molteni et al. {996:
Ryu et al. 1997). Whereas in the eighties the matching of theory
and numerical simulations was poor. the matching of the results
obtained recently is close to perfect. It is realized thatin a large
region of the parameter space. especially for lower accretion
rates, the deviated flow would be hot and a significant nuclear
reaction is possible without taking resort to very low viscosity.

We arrive at a number of the important conclusions: ()
Significant nucleosynthesis is possible in the accretion Hows,
Whereas most of the matter of modified composition enters in-
side the black hole. a fraction may go out through the winds and
will contaminate the surroundings in due course. The metallic-
ity of the galaxies may also be influenced. (b) Generation or
absorption of energy due to exothermic and endothermic nu-
clear reactions could seriously aflect the stability of adisk. (¢)
Hot matter is unable to produce Lithiun (71,7) or Deuterivnm (1)
since when the flow is hot. photo-dissociation (photons partially
locally generated and the rest supplied by the nearby Keplerian
disk (Shakura & Sunyaev 1973) when the region is optically
thin) is enough to dissociate all the elements completely into
protons and neutrons. Even when photo-dissociation is turned
off (low opacity cases or when the system is fundamentally
photon-starved) Li was not found to be produced very much.
(d) Most significantly, we show that one does not require a very
low viscosity for nucleosynthesis in contrary to the conclusions
of the earlier works in thick accretion disk (e.g.. CJA).

In Paper 1. we already presented the basic equations which
govern accretion flows around a compact object. so we do not
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present them here. The plan of the present paper is the follow-
ing: we present a set of solutions ol these equations in the next
section which would be used for nucleosynthesis work. When
nucleosynthesis is insignificant, we compute thermodynamic
quantities ignoring nuclear energy generation, otherwise we in-
clude it. The detailed method is presented here. We divide all the
disks into three categories: ultra-hot, moderately hot, and cold.
In Sect. 3. we present the results of nucleosynthesis for these
cases. We find that in ultra-hot cases, the matter is completely
photo-dissociated. In moderately hot cases, proton-capture pro-
cesses along with dissociation of deuterium and *He are the
major processes. In the cold cases, no significant nuclear re-
actions go on. In Sect. 4, we discuss the stability properties of
the accretion disks in presence of nucleosynthesis and conclude
that only the very inner edge of the flow is atfected. Nucleosyn-
thesis may affect the metallicities of the galaxies as well as L/
abundance in companions in black hole binaries. In Sect. 5. we
discuss these issues and draw our conclusions.

2. Typical solutions of accretion flows

In our work below, we choose a Schwarzschild black hole and
use the Schwarzschild radius 2G A /¢ o be the unit of the
length scale where G and ¢« are the gravitational constant and

the velocity of light respectively. We choose ¢ to be the unit of

velocity. We also choose the ¢gs unit when we find it convenient
to do so. The nucleosynthesis work is done using cgs units and
the energy release rates are in that unit as well.

A black hole accretion disk must, by definition. have radial
motion. and it must also be transonic, i.c.. matter must be super-
sonic (CY0) while entering through the horizon. The supersonic
flow must be sub-Keplerian and theretore deviate trom the Ke-
plerian disk away trom the black hole. The location where the
flow may deviate will depend on the cooling and heating pro-
cesses (which depend on viscosity). Several solutions of the
governing equations (see Eq.2(a-d) of Paper !) are given in
C96. By and large. we follow this paper to computeé thermody-
namical parameters along a flow. However, we have considered
Comptonization as in Chakrabarti & Titarchuk (1995, hereatter
CT95) and Chakrabarti (1997. hereafter C97). Due to computa-
tional constraints, we include energy generation due to nuclear
reactions ((0,,uc) only when it is necessary (namely. when (.|
is comparable to energy gencration due to viscous effects), and
we do not consider energy generation due to magnetic dissi-
pation (due to reconnection effects, for instance). In Fig. 1. we
show a series of solutions which we employ to study nucleosyn-
thesis processes. We plot the ratio A/ (Here, A and Ay are
the specific angular momentuin of the disk and the Keplerian

- angular momentum respectively.) as a function of the logarith-
mic radial distance. The coefficient of the viscosity parameters
are marked on each curve. The other parameters of the solu-
tion are in Table 1. These solutions are obtained with constant
f=1-0Q7/Q% and Q% include only the viscous heating.
In presence of significant nucleosynthesis. the solutions are ob-
tained by choosing f = 1 — Q7 /(Q¥ + Quue ). where Q. is
the net energy generation or absorption due (o exothermic and
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Fig. 1. Variation of A/ A with logarithmic radial distance for a few
solutions which are employed to study nucleosynthesis. The viscosity
parameter vy is marked on each curve. r = rx where A/ = 1.
represents the location where the flow deviates from a Keplerian disk.
Note that except tor the dashed curve marked 0.01 iwhich is for 4 =
573, and the rest are for vy = 4/3). i generally rises with decreasing
oq. Thus, high viscosity flows must deviate from the Kepterian disk
closer to the black hole.

endothermic reactions. The motivation for choosing the partic-
ular cases are mentioned in the next section. At .r = . the
ratio A/ Ay, = 1 and therctore .y represents the transition re-
gion where the flow deviates front a Keplerian disk. First, note
that when other parameters (basicually. specitic angular momen-
tum and the location of the inner sonic point) remain roughly
the same. .y changes inversely with viscosity parameter oy
(C96). (The only exception is the curve marked with 0.01. This
is because it is drawn for v = 573 all other curves are for
- = 4/3.) If one assumes. as Chakrabarti & Titarchuk (1995)
and Chakrabarti (1997) did. that the alpha viscosity parameter
decreases with vertical height, then it is clear trom the gen-
eral behaviour of Fig. | that .ryy would go up with height. The
disk will then look like a sandwich with higher viscosity Kep-
lerian matter flowing along the cquatorial plane. As the viscos-
ity changes, the sub-Keplerian and Keplerian Hlows redistribute
(Chakrabarti & Molteni 1995) and the inner edge ot the Kep-
lerian component also recedes or advances. This tact that the
inner edge of the disk should move in and out when the black
hole goes into soft or hard state (as observed by, e.g.. Giltanov
etal. 1997; Zhang etal. 1997) is thus naturally established from
this disk solution.

In C90 and C96. it was pointed out that in a large region
of the parameter space, especially for intermediate viscosities.
centrifugal-pressure-supported shocks would be present in the
hot. accretion flows. In these cases ashock-free solution pussing
through the outer sonic point was present. Howeser, this branch
is not selected by the flow and the flow passes through the higher
entropy solution-through shocks and the inner sonic points in-
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stead. This assertion has been repeatedly verified independently
by both theoretical (Yang & Kafatos 1995, Nobuta & Hanawa
1994: Lu & Yuan 1997; Lu et al. 1997) and numerical simu-
lations (with independent codes, Chakrabarti & Molteni 1993;
Sponholz & Molteni 1994; Ryu et al. 1995; Molteni et al. 1996
and references therein). When the shock forms, the temperature
of the flow suddenly rises and the flow slows down consid-
erably, raising the residence time of matter significantly. This
effect of shock-induced nucleosynthesis is also studied in the
next section and, for comparison, the changes in composition
in the shock-free branch were also computed. although it is un-

" derstood that the shock-free branch is unstable. Our emphasis is
not on shocks per se, but on the centrifugal-pressure-dominated
region where the accreting matter stows down. When the shock
does not form, the rise in temperature is more gradual. We gen-
erally follow the results of CT95 and C97 to compute the tem-
perature of the Comptonized flow in the sub-Keplerian region
which may or may not have shocks. Basically we borrow the
mean factor Foompt S 1 by which the temperature of the flow
at a given radius 2 (< Ix) is reduced due to Comptonization
process from the value dictated by the single-temperature hy-
drodynamic equations. This factor is typically 1/30 ~ 0.03 for
very low (< 0.1) mass accretion rate of the Keplerian compo-
nent (which supplies the soft photons for the Comptonization)
and around 1/100 ~ 0.01 or less for higher Keplerian accre-
tion rates. In presence of magnetic fields, some dissipation is
present due to reconnections. Its expression is (Qyay = —I—‘tf’—“;c
(Shvartsman 1971; Shapiro 1973). We do not assume this heat-
ing in this paper.

The list of major nuclear reactions such as PP chain, CNO
cycle, rapid proton capture and aipha (rv) processes. photo-
dissociation etc. which may take place inside a disk are already
given in CJA. and we do not repeat them here. Suffice it to say
that due to the hotter nature of the sub-Keplerian disks. espe-
cially when the accretion rate is low and Compton cooling is
negligible. the major process of hydrogen burning is some rapid
proton capture process (which operates at 7 2 0.5 x 10? K) and
mostly (p. o) reactions as opposed to the PP chain (which op-
erates at much lower temperature T° ~ 0.01-0.2 x 10" K) and
CNO cycle (which operates at T ~ 0.02-0.5 x 10 K) as in
CIA.

Typically, accretion onto a stellar-mass black hole takes
place from a binary companion which could be a main sequence
star. In a supermassive black hole at a galactic center, matter is
presumably supplied by a number of nearby stars. Because it
is difficult to.establish the initial composition of the inflow, we
generally take the solar abundance as the abundance of the Ke-
plerian disk. Furthermore. the Keplerian disk being cooler. and
the residence time inside it being insignificant compared to the
hydrogen burning time scale, we assume that for x 2 x ). the
composition of the gas remains the same as that of the com-
panion star. namely. solar. Thus our computation starts only
from the time when matter is launched from the Keplerian disk.
Occasionally. for comparison. we run the models with an ini-
tial abundunce same as the output of big-bang nucleosynthesis
{hereatter referred to as “big-bang abundance’). These cases are
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particularly relevant for nucleosynthesis around proto-galactic
cores and the early phase of star tormations. We have also tested
our code with an initial abundance same as the composition ot
late-type stars since in certain cases they are believed to be com-
panions of galactic black hole candidates (Martin et al. 1992,
1994; Filippenko et al. 1995; Harlaftis et al. 1996).

2.1. Selection of models

In selecting models for which the nucleosynthesis should be
studied, the following considerations were made. According to
CT95, and C97, there are two essential components of a disk.
One is Keplerian (of rate rhg) and the other is sub-Keplerian
halo (of rate 7i1y). For thg < 0.1 and iy, < 1. the black hole
remains in hard states. A lower Keplerian accretion rate gener-
ally implies a lower viscosity and a larger xx- (1 ~ 30-1000:
see, C96 and C97). In this parameter range the protons remain
hot, typically, T}, ~ 1-10 x 109 degrees or so. This is because
the efficiency of emission is lower (f = 1 — Q7 'Q% ~ 0.1,
where, Q* and O~ are the height-integrated heat generation and
heat loss rates [ergscm™2 sec™!| respectively. Also. see Rees
(1984), where it is argued that 1ir/a® is a good indication of
the cooling efficiency of the hot low.). Thus, we study a group
of cases (Group A) where the net accretion rate 1t ~ 1.0) and
the viscosity parameter o ~ (1.001-0.1. The Comptonization
factor Feomm ~ 0.03, i.e.. the cooling due to Comptonization
reduces the mean temperature roughly by a factor of around
30. which is quite reasonable. Here, although the density ot the
gas is low, the temperature is high enough to cause signiticant
nuclear reactions in the disk.

When the net accretion rate is very low (/h < 0.01) such
as in a quiescence state of an X-ray novae. the dearth of soft
photons keeps the temperature of the sub-Keplerian How to a
very high value and a high Comptonization factor F¢ e ~ 0.1
could be used (Group B). Here significant nuclear reaction takes
place. even though the density of matter is very low. Basically.
the entire amount of matter is photo-dissociated into protons
and neutrons in this case even when opacity is very low.

In the event the inflow consist of both the Keplerian tacere-
tion rate mg) and sub-Keplerian (accretion rate /iy, ) matter as
the modern theory predicts. there would be situations where the
net accretion rate is high, say riv = thy + 1y, ~ 1-3.and vet
the gas temperature is very high (77 = 10”). This happens when
viscosity is low to convert sub-Keplerian inflow into a Keplerian
disk. Here. most of the inflow is in the sub-Keplenan compo-
nent and very little (1714 ~ 0.01) matter is in the Keplerian flow.
Dearth of soft photons keeps the disk hot. while the density of
reactants is still high enough to have profuse nuclear reactions.
The simple criteria for the cooling efficiency (that 1ir/a? > |
would cool the disk. see Rees 1984) will not hold since the radi-
ation source (Keplerian disk) is ditferent from the cooling body
(sub-Keplerian disk).

One could envisage yet another set of cases (Group C),
where the accretion rate is very high (/i ~ 10=100). and the soft
photons are so profuse that the sub-Keplerian region of the disks
becomes very cold. In this case, typically, viscosity is very high
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0.2, .ry becomes low (g ~ 3-10). The efficiency of cooling is
very high (Q* =~ (07, i.e., f & ). The Comptonization factor
is oW Frgmpe S 0.01. The black hole is in a soft state. There
is no significant nuclear reaction in these cases. In the proto-
galactic phase when the supply of matter is very high. while
the viscosity may be so low (say. 10~7) that the entire amount
is not accreted, one can have an ultra-cold accretion flow with
Fcompt ~ 1073, In this case also not riuch nuciear reaction
goes on,

The above simulations have been carried out with polytropic
index v = 4/3. In reality, the polytropic index could be in be-
tween 4/3 and §/3. If ¥ < 1.5 then shocks would form as in
some of the above cases. However. fory > 1.5, standing shocks
would not form (C96). We have included one illustrative exam-
ple of a shock-free case with 4 = 5/3 which is very hot and we
have presented the result in Group B. In this case the Keplerian
component is far away and the intercepted soft photons are very
few.

2.2. Selection of the reaction network

In selecting the reaction network we kept in mind the fact that
hotter lows may produce heavier elements through triple-ce
and proton and « capture processes. Similarly, due to photo-
dissociation, significant neutrons may be produced. Thus. we
cansider a sufficient number of isotopes on either side of the
stability line. The network thus contains protons, neutrons. till
"2Ge - altogether 255 nuclear species. The network of coupled
non-linear differential equation is linearized and evolved in time
along the solution of C96 obtained from a given set of initial pa-
rameters of the flow. This well proven method is widely used in
the literature (see Arnett & Truran 1969: Woosley et al. 1973).

The reaction rates were taken from Fowler et al. (1975) in-
cluding updates by Harris et al. {1983). Other relevant reterences
tfrom where rates have been updated are: Thielemann (1980);
Wallace & Woosley (1981); Wagoner et al.(1967): Fuller et
al.(1980. 1982). For details of the procedure of adopting re-
action rates, see. CJA and Jin et ul. (1989, hereinafter JAC). The
solar abundance which was used as the initial composition of
the inflow was taken from Anders & Ebihara (1982).

3. Results

In this section. we present a few major results of our simula-
tions using different parameter groups as described above. For
a comnplete solution of the sub-Keplerian disks (C96) we need
to provide (a) the mass of the black hole A, (b) the viscosity
parameter oy, (¢) the cooling efticiency factor f, (d) the Comp-
tonization factor Feampt. (d) the net accretion rate of the flow
th. (e) the inner sonice point focation iy, through which the flow
must pass and finally, () the specific angular momentum A, at
the inner sonic point.

The following table gives the cases we discuss in this paper.
The I1-stress viscosity parameter vy, the location of the inner
sonic point iy, and the vatue of the specific angular momentum
at that point \;,, are tree parameters. The net accretion rate 7i.
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the Comptonization factor Fey and the cooling efficiency
[ are related quantities (CT96, C97). For extremely inethicient
cooling, f ~ 1.0, and for extremely efficient cooling f = 0
or even negative. The derived quantities. such as the value ot
maximum temperature T3 of the flow (in units of 10" K.
density of matter (in cgs units) at Tg"**, &y, the location from
where the Keplerian disk on the equatorial plane becomes sub-
Keplerian are also provided in the table. In the rightmost column.
we present whether the inner edge of the disk is stable (S} or
unstable (U} in the presence of the accretion flow. Three groups
are separated as the parameters are clearly from three distinct
regimes.

The basis of our three groupings are clear from the Table.
Very low 11t/ in Group B makes the cooling efficiency to be
very small. Thus we choose a refatively large f ~ 0.2-0.5. It
also makes the cooling due to Comptonization to be very low
(Fewmpr ~ 0.1). Thus the disks could be ultra-hot. [ntermediate
1iv/ad) in Group A means that the efticiency ot cooling is inter-
mediate f ~ 0.1 and the Compton cooling of the sub-Keplerian
region is average: Foompe ~ 0.03. The sub-Keplerian disk in
this case is neither 100 hot nor too cold. Extremely high it/ 05,
causes a strong cooling in Group C. Thus, we choose f = . and
a very efficient Compton cooling Fegnpe ~ 0.01=0.001. As a
result, the disk is also very cold. Now. we present our numerical
results in these cases.

3.1. Nucleosynthesis in moderately hot flioses

Cuase A.1: In this case, the termination of the Keplerian com-
ponent in the weakly viscous flow takes place at v = 1655.7.
The soft photons intercepted by the sub-Keplerian region re-
duce the temperature of this region but not by a large factor.
The net accretion rate /i = 1 is the sum of (very low) Keplerian
component and the sub-Keplerian ¢component. Using computa-
tions of CT95 and C97 tor 1y ~ 0.1 and 1y, ~ 0.9, we tind
that the electron temperature 7' is around G0keV T9 ~ 0.6
(T, is the temperature in units of 10" K) and the ion temper-
ature is around Ty = 2.5. This tixes the Comptonization tac-
tor to about Feryye = 0.03. This tactor is used to reduce the
temperature distribution of sotutions of C96 twhich does oot
explicitly use Comptonization) to temperature distribution wirh
Comptonization. The ion temperature (in Tg) and density tin
units of 107 gmem ~* 1o bring in the same plov distribution
computed in this manner are shown in Fig. 2a. Fig. 2b gives the
velocity distribution (velocity is measured in units of 10" cm
sec ™). Note the sudden rise in temperature and slowing down
of matter close to the centrifugal barrier » ~ 30. Fig. 2¢c shows
the changes in composition as matter is accreted onto the black
hole. Only those species with abundance Y; 2 107" have been
shown for clarity. Also. compositions closer to the black hole
are shown, as variations farther out are negligible. Most of the
burning of species takes place below = 100 A significant
amount of the neutrons (with a final abundance of' ¥, ~ 10 "1
is produced by the photo-dissociation process. Note that cloxer
to the black hole. '3C', 0. 2"\ [ y and 23S/ are all destroyed com-
pletely. even though at around .+ = 5 or so. the abundance of
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Table 1.
Model  M/Mg v Tin Ain an m f FC‘ompt TK T3 panx SIJ
Al 10 4/3 27945 1.65 0.001 ! 0.1 003 16557 5.7 6.2x107" S
A2 10 4/3 29115 1.6 0.07 I 0.1  0.03 401.0 4.7 49x1077 S
Al 10° 43 29115 16 007 | 0.1 0.03 4010 47 49x107"* U
B.l 10 4/3  2.8695 1.6 0.05 0.01 0.5 0.1 4814 16.5 39x 107" S
B.2 10 4/3 28695 1.6 0.05 4 0.5 0.1 481.4 16.5 1Lox107" U
B.3 10 513 24 1.5 001 0001 05 0.1 84.4 47 33x10° s
B4 10 4/3 2,795 1.65 0.2 0.01 0.2 0.1 8.4 13 LIx107® S
C.1 10 4/3 2.795 1.65 0.2 100 0.0 001 4.8 0.8 LIx107? S
Cc2 108 43 2795 165 107 100 00 0.001 36579 0.2 62x107' S
some of them went up first before going down. Among the new f=1- Q- ()
species which are formed closer to the black hole are 3°Si. 3T, QF + Qnuc

5Cr. The final abundance of 2°Ne is significantly higher than
the initial value. This was not dissociated as the residence time
in hotter region was insufficient. Thus a significant metallicity
could be supplied by winds from the centrifugal barrier.

Fig.2d shows the energy release and absorption due to

exothermic and endothermic nuclear reactions (Q,,,.) that are
taking place inside the disk (solid). Superposed on it are the
energy generation rate Q% (long dashed curve) due to viscous
process and the energy loss rate @~ in the sub-Keplerian flows.
For comparison, we also plot the hypothetical energy gencra-
tion and loss rates (short dashed curves marked as Qy;,,, and

Qkep Fespectively) if the disk had purely Keplerian angular
momentum distribution even in the sub-Keplerian regime. All
these quantities are in units of 3 x 10" and they represent height-
integrated energy release rate (ergs cm =2 sec ~'). Note that these
Qs are in logarithmic scale (if Q < 0. —log(|Q]) is plotted).
As matter leaves the Keplerian flow, the proton capture (p. )
processes (such as '%0(p, a)'°N. °N(p.a)!*C., “Li(p. o 'He.
Li(p.a)He, "B(p.v)3a. ""O(p. )N etc.) burn hydrogen
and release energy to the disk. (Since the temperature of the disk
is very high, PP chains or CNO cycles are not the dominant pro-
cesses for the energy release.) At around .: = (. the deuterium
starts burning (D(+y, n)p) and the endothermic reaction causes
the nuclear energy release to become ‘negative’, i.e.. a huge
amount of energy is absorbed from the disk. At the completion

of the deuterium burning (at around x = 20) the energy release.

tends to goes back to the positive value to the level dictated by
the original proton capture processes. Excessive temperature at
around .+ = 5 breaks *He down into deuterium (PHe(~. p)D.
D(~. n)p). Another major endothermic reaction which is dom-
inant in this region is *O(v, n)!%). These reactions absorb a
significant amount of energy from the flow. Note that the nuciear
energy release or absorption is of the same order as the energy
release due to viscous process. This energy was incorporated in
computing thermodynamic quantities fotlowing these steps:

{a) Compute thermodynamic quantities without nuclear energy
(b) Run nucleosynthesis code and compute (¢

(c) Fit Quue using piecewise analytical functions and include
this into the definition of f,

(d) Do sonic point analysis once more using this extra heat-
ing/cooling term and compute thermodynamic quantities.

(e) Repeat from step (b) till the results converge. In this case.
there in virtually no difference in the solution and the solution
appear to be completely stable under nucleosynthesis.

Case A.2: Here we choose the same net accretion rate. but with
a larger viscosity. As a result. the Keplerian component moves
closer. The Comptonization is still not very etfective. and the
flow is moderately hot as above with Fo e = 1183, The flow
deviates from a very hot (sufficient to cause the flow to pass
through the outer sonic point) Keplerian disk at .y = 01.0.
and after passing through an outer sonic point at » = 50. and
through a shock at :g = 15, the flow enters into the black hole
through the inner sonic point at o = 2.9115. We show the re-
sults both for the shock-free branch (i.e.. the one which passes
through only the outer sonic point before plunging into the black
hole. dotted curves) and the shocked branch of the solution (solid
curves). Fig. 3a shows the comparison of the temperatures and
densities (scaled in the same way as in Fig. 2a). The tempera-
ture and density jump sharply at the shock. Fig. 3b shows the
comparison of the radial velocities. The velocity <harply drops
at the shock. Both of these effects hasten the nuclear burning in
the case which includes the shock. Fig. 3¢ shows the compari-
son of the abundances of only those species whose abundances
reached a value of at least 107", The difference between the
shocked and the shock-free cases is that in the shock case simi-
lar burning takes place farther away from the black hole because
of much higher temperature in the post-shock region.

The nature of the (height integrated) nuclear energy release
is very similar to Case A.! as the major reactions which take
place inside the disk are basically same. except that the exact
locations where any particular reactions take place are difter-
ent since they are temperature sensitive. In Fig. 3d. we show
all the energy release/absorption components for the shocked
flow (solid curve). For comparison. we include the nuclear en-
ergy curve of the shock-free branch (very long dashed curve).
Note that in the post-shock region. hotter and denser flow of
the shocked-branch causes a particular nuclear reaction to take
place farther away from a black hole when compared with the
behaviour in the shock-free branch as is also reflected in the
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Fig. 2a—d. Variation of a ion temperature (1}) and density (p o). b radial velocity o, ¢ matter abundance Y, inlogarithmic scale and d vanous

-2

forms of height-integrated specific energy release and absorption rates (in ergsem sec ™'} when the mode) parameters are M = 103/
m = 1.0. an = 0.001 as functions of logarithmic radial distance .+ in units of Schwarzschild radius). Q is in logarithmic scale. See text und
Table i for other parameters of Case A.l which is considered here, The centrifugal barrier slows down and heats up matter where a significant

change in abundance takes place (AY; ~ 107%),

composition variation in Fig.3c. The viscous energy genera-
tion (Q*) and the loss of energy ((27) from the disk (long
dashed) and shown. As before, these quantities, if the inner
part had Keplerian distribution; are also plotted (short dashed).
When big-bang abundance is chosen to be the initial abun-
dance. the net composition does not change very much. but
the dominating reactions themselves are somewhat different
because the initial compositions are different. The dot-dashed

curve shows the energy release/absorption in the shocked ow
when big-bang abundance is chosen. All these quantities are.
as before, in units of 3 x 10% and they represent height in-
tegrated energy release rate (ergscm ~2 sec™h). For instance.
in place of proton capture reactions for computations with ~o-
Jar abundance. the fusion of deuterium into 'He plays a domi-
nant role via the following reactions: DD o H e . Dip~vVild e
DID.p)T. SHe(D. ) He. This is because no heavy elements
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Fig. 3a—d. Variation of a ion temperature (Th) and density (p_y0). b radial velocity vyg. € matter abundance Y, in logarithmic scale and d
various torms of specific energy release and absorption rates when the model parameters are Al = 102/, 1h = LU0, oy = 0.07 as functions
of logarithmic radial distance (¢ in units of Schwarzschild radius). See text and Table | for other parameters of Case A.2 which is considered
here. Solutions in the stable branch with shocks are solid curves and those without the shock are dotted in (a~c). Curves in d are described in
the text. At the shock temperature and density rise significantly and cause a significant change in abundance even farther out. Shock-induced
winds may cause substantial contamination of the galactic composition when parameters are chosen from these regions.

were present to begin with and proton capture processes in-
volving heavy elements such as were prevalent in the solar
abundance case cannot take place here. Endothermic reactions
at around &r = 20—40 are dominated by deuterium dissocia-
tion as betore. However. after the complete destruction of deu-
terium. the exothermic reaction is momentarily dominated by
neutron capture processes (due to the same neutrons which are

produced carlier via D(~y. n)p) such as “/{e(n. p)T which pro-
duces the spike at around o = 1-1.5. Following this. e and T
are destroyed as in the solar abundance case (i.e.. He(vop) D,
D(~y.mp. T(v.n)D) and reaches the minimum in the energy
release curve at around . = 6. The tendency of going back to
the exothermic region is stopped due to the photo-dissociation
of *He vin 'He(A. p)T and ‘Helvy. ) H . At the end ol the
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big-bang abundance calculation, a significant amount of neu-
trons are produced. The disk was found to be perfectly stable
under nuclear reactions.

Case A.3: This case is exactly same as A.2 except that the mass
of the black hole is chosen to be 10% /.. The temperature and
velocity variations are similar to the above case. Because the ac-
cretion rate (in non-dimensional units) is the same, the density
(which goes as ri/r?v) is lower by a factor of 107>, Tenu-
ous plasma should change its composition significantly only. at
higher temperatures than in the previous case. However. the in-
crease in residence time by a factor of around 10° causes the
nuclear burning to take place farther out even at a lower temper-
ature. This is exactly what is seen. Fig. 4a shows the comparison
(without including nuclear energy) of the composition of matter
when the flow has a shock (solid curves) and when the flow is
shock-free (dashed curve). We recall that the shock-tree flow
is in reality not stable. It is kept only for comparison purposes.
Note thatunlike earlier cases. alonger residence time also causes
to burn all the 2N ¢ that was generated from '%0.

In Fig.4b, we show a comparison of various height-
integrated energy release and absorption curves as in Fig. 3d
(in ergscm~? sec™'). The nuclear energy remains negligibly
small till around .r = 100. After that the endothermic reactions
dominate. This is due to the dissociation of D, *[{e and "Li and
also of '3, 10, 2N ¢ etc. all of which produce *He. The solid
curve is for the branch with a shock and the very long dashed
curve is for the shock-free branch. A small amount of neutrons
are produced (Y, ~ 10~3) primarily due to the dissociation of
D. These considerations are valid for solar abundance as the
initial composition. In the case of big-bang abundance (dash-
dotted curve), similar reactions take place but no elements heav-
ier than "Li are involved. The three successive dips are due to
dissociation of D.*H¢ and *He respectively.

Below & = 10. |Q,¢| is larger compared to Q* by 34
orders of magnitude. This is because of the superposition of a
large number of photo-dissociation effects. We expect thatin this
case the disk would be unstable. This is exactly what we see. In
Fig. 4c. we show the effects of nuclear reactions more clearly.
The dotted curve and the solid curves are, as in Fig. 3b, the
variation of velocity for the solution without and with shocks.
respectively. The dot-dashed curve represents velocity variation
without shock when nuclear reaction is included. The dashed
curve is the corresponding solution when nucleosynthesis of the
shocked branch is included. Both branches are unstable since
the steady flow is subsonic at the inner edge. In these cases. the
flow is expected to pass through the inner sonic point in a time-
dependent manner and some sort of quasi-periodic oscillations
cannot be ruled out.

3.2. Nucleosynthesis in hot flows

Case B.I: This case is chosen with such a set of parameters
that a standing shock forms at.r, = 13.9. A very low accretion
rate is chosen so that the Compton cooling is negligible and the
flow remains very hot (Comptonization factor Feuppm = .1).
We show the results both for the shock-free branch (dashed)

B. Mukhaopadhyay & S.K. Chakrabarti: Nucleosynthesis in accretion flows around black holes

and the shocked branch (solid) of the solwtion. Fig. 5a shows
the comparison of the temperatures and densities (in units of
10-2Y gmem~ to bring in the same plot). Fig. 3b shows the
comparison of the radial velocities. This behaviour is similar
to that shown in Case A.2. Because the temperature is suitable
for photo-dissociation. we chose a very small set of species
in the network (only 21 species up to '3 are chosen). Fig. 5¢
shows the comparison of the abundances of proton (p). *H¢
and neutron (n). In the absence of the shock. the breaking up
of "He into n and p takes place much closer to the black hole.
while the shock hastens it due to higher temperature and density.
Although initially the flow starts with ¥}, = 0.7425 and *He =
0.2380, at the end of the simulation. only proton (1, ~ 0.83786)
and neutron (Y, ~ 0.1214) remain and the rest of the species
become insignificant.

Fig. 5d shows the comparison of the height-integrated nu-
clear energy release (units are as Fig. 2d). As the flow leaves
the Keplerian disk at .y, = 481..1, the deuterium and *Be are
burnt instantaneously at the cost of some energy trom the disk.
At the end of deuterium burning at around r = 200, the p
and proton capture processes (mainly via ''B(p. - 13*H e which
releases significant energy) and neutron capture CHe(n. p)T)
take place. but further in, e (via T e(~. pyDy fiest and Mo
(mainly via "He(y. oV He and M e( )T Ti- ) D) subse-
quently. are rapidly dissociated. As soon as the entire helium
is burnt out. the energy release becomes negligible. This is be-
cause there is nothing left other than free protons and neutrons
and hence no more reactions take place and no energy is released
or absorbed. The solid curve is for the branch with a shock and
the very long dashed curve is for the shock-free branch. In-
clusion of an opacity tactor (which reduces photo-dissociation)
shifts the burning towards the black hole. The disk is found to
be completely stable even in presence of nucleosynthesis.
Cuse B.2: As discussed in Sect. 2. in extreme hard states. a black
hole may accrete very little matter in the Keplerian component
and very large amount of matter in the sub-Keplerian compo-
nent. To simulate this we used B.l parameters. but i = L
The resulting solution is found to be unstable when shocks are
present. In Fig. 5b, we superimposed velocity variation without
nuclear energy (same as with nuclear energy as tar as Case B. s
concerned) and with nuclear energy. The dash-dotted curve next
to the un-shocked branch and dashed curve next to the shocked
branch show the resulting deviation, While the branch without
shock still remains stable. the other branch is distinctly unsta-
ble as the steady-state solution is sub-sonic at the inner edge.
The only solution available must be non-steady with oscitlations
near the sonic point.

Case B.3: Inthis case. accretion rate is chosen to be even smaller
(. = 0.001) and the polytropic index is chosen to be 5/3.
The maximum temperature reaches T§""* = 7. After leaving
the Keplerian flow. the temperature and velocity of the How
monotonically increases. Because of excessive temperature. 1)
and *{ e are photo-dissociated immediately after the tlow leaves
the Keplerian disk at e = 84..L Ataround . = 30, all ¢ is
photo-dissociated exactly as in Case B. 1. Subsequently. the flon
contains only protons and neutrons and there is no more energy
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release from the nuclear reactions. This behaviour is clearly seen
in Fig. 6. The notations are the same as in the previous run. This
ultra-hot case is found to be stable since the energy releasé took
place far away from the black hole where the matter was moving
slowly and therefore the rate ((2,,.,) was not high compared (o
that due to viscous dissipation (units are as Fig. 2d).

Cuse B.4: In this case, the net accretion rate is low (sir = 0.01)
but viscosity is high and the efficiency of emission is interme-
diate (f = 0.2). That means that the temperature of the Hlow
is high (Foompt = 0.1, maximum temperature T3"*% = 13).
Matter deviates from a Keplerian disk at around .y S
Assuming that the high viscosity is due to stochastic magnetic
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Fig. 4a~c. Variation of a matter abundunce Y, in loganthmic scale,
b various torms of height-integrated specitic energy release and ab-
sorption rates and ¢ velocity (in units of t0'em s ) when the model
parameters are Af = 10°A ../ = L0, an = 0.07 as functions of
logarithmic radial distance (. in units of Schwarzschild radius). See
text and Table 1 for other parameters of Case A.3. In a <olutions in the
stable branch with shocks are solid curves and those without the shock
are short dashed. Curves in b are described in the text. Basic conclu-
sions are as in the previous case. In ¢, dot-dashed curve and dashed
curves are drawn when nuclear energy is taken into account.

field. protons would be drifted towards the black hole due to
magnetic viscosity, but the neutrons will not be drifted (Rees et
al. 1982). They will generally circle around the black hole till
they decay. This principle has been used to do the simulation
in this case. The moditied composition in one sweep is allowed
to interact with freshly accreting matter with the understanding
that the accumulated neutrons do not drift radially, After few
iterations or sweeps the steady distribution of the composition
is achieved. Fig. 7a shows the neutron distribution in the sub-
Keplerian region. The formation of a ‘neutron torus’ is very
apparent in this result. In fact. the formation of a neutron disk is
very generic in all the hot. highly viscous aceretion tlows as also
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Fig. Su—d. Variation of a ion temperature (Th) and density (p—20), b radial velocity o, ¢ matter abundance ¥, in logarithmic scale and d various
forms of height-integrated specific energy release and absorption rates when the model parameters are A/ = 10A/. .sir = 0.0L ap = .03
as functions of logarithmic radial distance (x in units of Schwarzschild radius). See text and Table | for other parameters of Case B.1 which is
considered here. Solutions in the stable branch with shocks are solid curves and those without the shock are short dashed in a—¢. Curves ind
are described in the text. The ultra-hot temperature of the flow photo-dissociates ‘He into protons and neutrons. The shocked branch (which is
stable) causes such dissociation farther out from the black hole than the unstabie shock-free branch. In b, dot-dashed curve and dashed curs es

are drawn when nuclear energy is taken into account and 71t = | is chosen (Case B.2).

seen in Cases B.1-B.3 (for details. see, Paper 1). The nuclearre-  givenannulus of the disk is generally correlated with the amout
actions leading to the neutron torus formation are exactly same  of neutrons deposited in that annulus. This is because no stenit
as previous cases and are not described here. However. we wish  icant reactions other than photo-dissociation are taking place in
to present the energy release curve in Fig. 7b. only to impress  the disk.

the fact that the degree of absorption of nuclear energy- from a
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Fig. 6. Specific nuclear energy rate variation curve (solid) foray =
5/3. ultra-hot case (T3"™ = 44) as functions of logarithmic radial dis-
tance (.r in units of Schwarzschild radius). The entire initial abundance
is photo-dissociated at x 2 30, The viscous energy generation curve
(Q*) and absorption curve (Q ™ ) [both long dashed] are presented for
comparison. Qie', (dotted) curves are the specific energy generation
and absorption rates provided the inner disks were Keplerian. (Js are
in units of ergscm~2 sec™'. See Table | for parameters of Case B.3.

3.3. Nucleosvnthesis in cooler flows

Cuse C.1: Here we choose a high-viscosity flow with a very
high accretion rate. Matter deviates from the Keplerian disk very
close to the black hole iy = 4.8. The flow in the centrifugal
barrier is cooler (temperature maximum 74"** = 0).8). Fig. 8a
shows the variation of the temperature and density (in units
of 10~3 gmem ™ to bring in the same plot) of the flow. Fig. 8b
shows the velocity variation. Clearly, high viscosity removes the
centrifugal barrier completely and matter falls in almost freely.
Due to very short residence time, no significant change in the
composition takes place. Only a small amount of proton capture
(mainly due to M'B(p.v)3'He. MO(p. ) INL VN (poa)CL

BO(p. ) 5N, YR (p. o) '0) takes place. A small amount of

deuterium dissociation also take place, but it does not change
the energetics significantly. Fig. 8¢ shows the height-integrated
energy release curves (units same as in Case A.1). Since the con-
tribution due to nuclear reactions ((2,,.) is very much smaller
than the viscous energy release, the flow is not found to be un-
stable in this case.

Cuase C.2: This is a test case for the proto-galactic accretion
flow. In the early phase of gataxy formation, the supply of mat-
ter is high. and the temperature of the flow is very low. The
viscosity may or may not be very high. but we choose very low
(presumably. radiative) viscosity (« = 107*). The motivation
is to use similar parameters as were used in JAC while studying
the nucleosynthesis in thick accretion disks. The central mass
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Fig. 7a and b. Formation of a neutron torus in a hot inflow. a Neu-
tron abundance as a function of the logarithmic radial distance (. in
units of Schwarzschild radius). b Various height-integrated specitic
energy release and absorption rates (units same as in Fig. 2d). Note
the correlation of the neutron abundance with the degree ot nuclear
energy absorption. This is due to the endothermic nature of the photo-
dissociation. See, Table | for parameters of Case B.4.

M = 10%Ml.;, the maximum temperature is T3 ~ (.2 and
the Comptonization factor Frrgyyr = 0.001. The temperature
variation is similar to Fig. 2a when scaled down by a factor of
30 (basically by the ratio of the Fogmpe values). The velocity
variation is similar to Fig. 2b and is notrepeated here. Due to the
low temperature, there is no significant change in the nuclear
abundance. Note that since thick accretion disks are rotation
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dominated. the residence time was very long in CJA simula-
tion and there was significant change in composition even at
lower temperatures. But in this case the flow radial velocity is
very high and the residence time is shorter. The nuclear energy
release is negligible throughout and is not shown.

4. Nucleosynthesis induced instability

CJA. while studying nucleosynthesis in cooler, mainly rotating
disks. suggested that as long as the nuclear energy release is
smaller than the gravitational energy release. the disk would
be stable. In the present paper. we find that this suggestion is
stitl valid. Indeed. even when momentarily the nuclear encrgy
release or absorption is as high as the gravitational energy re-
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Fig, 8a~c. Variation of ajon temperature ¢74) and density (p25) b ra-
dial velocity 1o, and ¢ various forms of specitic energy release and
absorption rates (units same as in Fig. 2d) when the model parameters
are A/ = 100N e == 10, a2 0.2 as functions of logarithimie
radial distance (. in units of Schwarzschild radiusy. See text and Ta-
ble 1 for other parameters of Case C.1. consaidered here. Not much
nucleosynthesis takes place in this case.

lease (through viscous dissipation). the disk may be stable. For
instance, in case A.l (Fig. 2d) at around . = 4 these rates are
similar. Yet the velocity. temperature and density distributions
(Fig. 2a.b) remain unchanged. In Case A 3. (0, is several mag-
nitudes greater than viscous energy release (2~ and the thermo-
dynamic quantities are indeed disturbed to the extent that the
flow with same injected quantities (with the same density and
velocity and their gradients) at the outer edge does not become
supersonic at the inner edge. In these cases. the low must be
unsteady in an effort to search for the “right” sonic point to en-
ter into the black hole. On the other hand. ultra-hot cases like
B.2 show deviation in non-shocked solution white the shocked
solution is unstable.
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The general behaviour suggests that the present model of
accretion disks is more stable under nuclear reactions compared
to the earlier. predominantly rotating model. Here, the radial
velocity (v') spreads energy release or absorption radially to a
distance vrpip. T) = 'vND/ND cm, where, Ny is the number
density of. say. Deuterium and N is its depletion rate. For a free
fall. ¢ ~ ™12, while for most nuclear reactivns, 7p{p. T) ~
x". with n >> 1 (since reaction rates are strongly dependent
on density and temperature). Thus, Q... for the destructionof a
given element spreads out farther away from the black hole, but
steepens closer to it. Large dQ,,,../dx causes instability since
the derivatives such as dv/dz at the inner regions (including the
sonic point) become imaginary.

5. Discussions and conclusions

In this paper. we have explored the possibility of nuclear reac-
tions in inner accretion flows. Because of high radial motion and
ion pressure. matter deviates from a Keplerian disk close to the
black hole. The temperature in this region is controlled by the
efficiencies of bremsstrahlung and Comptonization processes
(CT96. C97) and possible heating by magnetic ficlds (Shapiro
1973): for a higher Keplerian rate and higher viscosity, the in-
ner edge ot the Keplerian component comes closer to the black
hole and the sub-Keplerian region becomes cooler (CT95). The
nucleosynthesis in this soft state of the black hole is quite neg-
ligible. However. as the viscosity is decreased to around (.05 or
less. the inner edge of the Keplerian component moves away and
the Compton cooling becomes less efficient due to the paucity
of the supply of soft photons. The sub-Keplerian region, though
cooler by a tactor of about Feiuye = 0.01 10 0.03 from that of
the value obtained through purely hydrodynamical calculations
of C96. is still high enough to cause significant nuclear reactions
to modify compositions. The composition changes very close to
the black hole. especially in the centrifugal-pressure-supported
denser region. where matter is hotter and stower.

The degree of change in compositions which takes place
in the Group A and B calculations. is very interesting and its
importance must not be underestimated. Since the centrifugal-
pressure-supported region can be treated as an effective surface
of the black hole which may generate winds and outflows in the
same way as the stellar surface (Chakrabarti 1998a.b: Das &
Chakrabarti 1999). one could envisage that the winds produced
in this region would carry away a modified composition and
contaminate the atmosphere of the surrounding stars and the
galaxy in general.

One could estimate the contamination of the galactic metal-
licity due 10 nuclear reactions. For instance. in Case A.1. ',
160, 20N'¢, S, MCa and *XCr are found to be over-abundant
in some region of the disk. Assume that, on an average. ail the
N ostellar black holes are of equal mass A/ and have a non-
dimensional accretion rate of around e ~ | (i1 = ,\'l/.\'l,.;m).
Let AY; (few times 107%) be the typical change in composition
of this matter during the run and let f,,. be the fraction of the in-
coming How that goes out as winds and outflows (could be from
ten percent to more than a hundred percent when disk evacua-
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tion occurs), then in the lifetime of a galaxy {sav. 10" yrs), the
total "change’ in abundance of a particular species deposited in
the surroundings by all the stellar. black holes is given by:

it N AY,fu
= 0T (e =G

1
M Tg:\l Yo A [l,;.'nl

oa; oo g
The subscript "small’ is used here to represent the contnbution
from small black holes. We also assume a conservative esti-
mate that there are 10% such stellar bluck holes in a galasy.
the mass ot the host galaxy is around 10" .\/; and the life-
time of the galaxy during which such reactions are going on is
about 101 Yrs. We also assume that AY; ~ 1077 and a fraction
of ten percent of matter is blown off as winds. The resulting
(AY:) ~ 107" may not be very significant if one considers
averaging over the whole galaxy. However. for a lighter galaxy
(AY;) could be much higher. For example, for \/,q; = 10”1/ .
(AY;) ~ 1073, This would significantly change the average
abundances of 5%, “4Ca and 5%Cr. On the other hand. if one
concentrates on the region of the outflows only. the change in
abundance is the same as in the disk. and should be detectable
(e.g.. through line emissions). One such observation of stronger
iron-line emission was reported for SS433 (Lamb et al. 1983:
see also Arnould & Takahashi 1999, for a recent discussion on
galactic contaminations).

When we consider a case like A.3. we find that ', "0.
20N\, and 2857 are increased by about 107% in some regions.
In this case. the average change ot abundance due to accretion
onto the massive black hole situated at the galactic centre would

(AY) )

small

( y~h

2y

. ~ ot o AY,
(AX,,, = Jfe ‘f' x 10 (T)(ml()“‘)((—ﬁ)
A T..M . .‘/4.4.| _:
— ) —— N —e b (3
YA VIS TRV ’

Here. we have put 'big" as the subscript to indicate the contri-
bution from the massive black hole. Even for a lighter galaxy.
e.g.. of mass Mga = L0V AY, = 107" which may not
be significant. If one considers only the regions of outflows.
contamination may not be negligible.

A few related questions have been asked fatelv: Can lithium
be produced in biack hole accretion? We believe not. The spal-
lation reactions (Jin 1990: Yi & Narayvan 1997) which may pro-
duce such elements assuming that a heliwm beam hits @ helium
target in a disk. Using a full network. rather than only He-He
reaction, we find that the hotter disks where spallation would
have been important also photo-dissociate (particularly due o
the presence of photons from the Keplerian diski hefium to deu-
terium and then to protons and neutrons betore any significan
tithium could be produced. Even when phote-dissociation is
very low (when the Keplerian disk is far away. for instance), or
when late-type stellar composition is taken as the initial compo-
sition. we tind that the "7 production is insignificant. particu-
Jarlv if one considers more massive black holes €M/ ~ 0™ ).

Recently, it has been reported by several authors (Martin
etal. 1992: 1994 Filippenko et al. 1995 Harlaftis et al. 1996)
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that a high abundance of Li is observed in late type stars which
are also companions of black hole and neutron star candidates.
This is indeed surprising since the theory of stellar evolution
predicts that these stars should have at least a factor of ten lower
Li abundance. These workers have suggested that this excess Li
could be produced in the hot accretion disks. However, in Paper
I as well as in our Cases A and B computations we showed that
Liis notlikely to be produced in accretion disks. Indeed. we ran
several cases with a mass fraction of He as high as 0.5 to 0.98,
but we are still unable to produce Li with a mass fraction more
than 10719, Recent work of Guessoum & Kazanas (1999) agrees
with our conclusion that profuse neutrons would be produced
in the disk. They farther suggested that these energetic neutrons
can produce adequate Li through spallation reactions with the
C. N, and O that is present in the atmospheres of these stars.
For instance. in Cases B.l and B.3 we see that neutrons could
have an abundance of ~ 0.1 in the disk. Since the production
rate is similar to what Guessoum & Kazanas (1999) found. Li
shouid also be produced on stellar surface at a similar rate.
What would be the neutrino flux on earth if nucleosynthesis
does take place? The encrgy release by ncutrinos (the pair neu-
trino process. the photoneutrino process and the plasma neutrino
process) can be calculated using the prescription ot Beaudet et
al, (1967. hereafter BPS; see also ltoh et al. 1996) provided
the pairs are in equilibrium with the radiation field. However. in
the case of accretion disks, the situation is significantly different
from that inside a-star (where matter is in static equilibrium). Be-
cause of rapid infall. matter density is much lower and the infall
time scale coutd be much shorter compared to the time-scale
of various neutrino processes, especially the pair and photo-
neutrino processes. As a result. the pair density need not attain
equilibrium. One important thing in this context is the opacity
(Tpair) Of the pair process. Following treatments ot Colpi et al.
(1984) we find that 7, < 1 tor all our cases, and therefore
pair process is expected to be negligible (for Case B.2, 7. is
the highest [0.9]). Park (1990a.b), while studying pair creation
processes in spherical accretion, shows that even in the most
tavourable condition, the ratio of positron (n,) and ion (n;)
is no more than 1.05. A simple analysis suggests that neutrino
production rate is many orders of magnitude smaller compared
to what the equilibrium solutions of BPS and ftoh et al. would
predict. Thus. we can safely ignore the neutrino luminosity.
When the nuclear energy release or absorption is comparable
to the gravitational energy release through viscous processes.
we find that the disk is stil} stable. Stability seems to depend on
how steeply the energy is released or absorbed in the disk. This
in turn depends on Tpw, the distance traversed inside the disk
by the element contributing the highest change of energy betore
depleting significantly. Thus, an ultra-hot case (Group B) can be
stable even though a hot (Group A) case can be unstable as we
explicitly showed by including nuctear energy release. In these
‘unstable’ cases. we find that the steady flow does not satisty
the inner boundary condition and becomes subsonic close to the
horizon. This implies that in these cases the low must become
non-steadyv. constantly searching for the supersonic branch to
enter into the black hole. This can induce oscillations as have
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been found elsewhere (Ryu et al. 1997). In such cases. one is
required to do time dependent simulations (e.g.. Molteni et al.
1994, 1996) to include nuclear reactions. This will be attempted
in future.
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Abstract.  The Dirac cquation is sepurable in curved spacetime and its solution has been found

for both spherically and axially symmetric geometry. However, most work on this subject has
been done without considering the charge of the black hole, Here we consider the spherically
symmetric charged black-hole hackground, namely the Reissner-Nordstrim black hole. Due 1o
the presence of the charge of the black-hole, charge-charge interaction will be important for the
case of an incoming charged particle (c.g. an electron, proton, cte). Therefore, both gravitational
and clectromagnetic gauge ficlds should be introduced. Naturally the hehaviour of the particle
will be changed from that in the Schawirzschild geometry. We compare both the solutions. tn
the case of o Reissner—Nordstriom black hole there is a possibility of super-radiance unlike in the
Schwirzschild case. We also check this branch of the solution.

PACS numbers: 0420, 0470, 04700, 95308

1. Introduction

Chandrasekhar separated the Dirac equation in the Kerr geometry into radial and angular
parts [1] in 1976. His separation method can be extended to the Schwarzschild geometry and
corresponding separated equations can be found. However, he did not consider the charge of
the black hole. If we consider the black hole to be charged then electromagnetic interaction is
important for an incoming particle with charge. To study the behaviour of a spin—% particle,
the Dirac wave is treated as a perturbation in spacetime which is asymptotically flat [1]. Far
away from the black h' its influence on the particle is not significant. As it comes closer,
it feels the curvature ¢f ' ¢ spacetime and the corresponding behaviour start to change with
respect (o that of flat space. Particle behaviour around a black hole without charge has been
studied in the past by several authors [1-6]. In this paper, we will introduce charge in the
black hole. Here, we study a simpler problem to gain insight into the solution when the black
hole is non-rotating but charged. We have to solve the Dirac equation in an clectromagnetic
field around a Reissner—Nordstrom black hole. Thus we will study the particle in crossed
clectromagnetic and gravitational ficlds. Ttis very clear that the potential felt by the incoming
Dirac wave will be different from that for the Schwarzschild black hole {51, For an incoming
uncharged particle such as a neutron, the électromagnetic field does not play a part and the
Dirac equation will be reduced to being the same as in the Schwarzschild case except for the
redefinition of the horizon. For a charged incoming particle such as an electron, proton, etc,
an electromagnetic gauge field should be introduced. One can also study the neutrino wave
whose behaviour is known for the Kerr geometry [7]. In the next section, we present the basic

0264-9381/00/092017+10$30.00  © 2000 10P Publishing Ltd 2017
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Dyirac equations and separate them in this crossed field, In section 30 we study the hehaviour
ol the potential and the possibility of super radiance,

In section 4, we present o complete
solution. Finally, in section S, we draw our conclusions.

2. Dirac equation and its separation

By introducing an electromagnetic interaction and gravitational effect the covariant derivatives
ltake the form as

Dy =0, +igi A, +qal). )

The derivative of the spinor P* can be written as

D, P =8, P" +ig A, P 4.1\ P, (2)
where g and ¢, are coupling constants. g is the charge of the incoming particle (say g, = q)

and g, is chosen throughout as 1. A, and r;’:\ are the electromagnetic and gravitational

gauge (spin coefficients) fields. respectively. Thus. following {7] the Dirac equation in the
Newman--Penrose formalism can be written as

UAIJ Dll P’ A +I[l/,Q Gcn 0,

(3a)

(TA",I),,Q + I/L,,, ' 6(_"];' = (), (3b)

where, for any vector X;, Accordmg to the spmm formalism {7]) am i = Xan: A, B =0, 1.
Here, we introduce a null tetrad (. 7. . ) to _satisfy orthogonality relations. T-iio=1,
e = —tand T «niv =i <t =10 =i -5 = 0 following Newman and I’um)xc 18].

27210, is the mass of the Dirac particle. In terms of this new basis in the Newman-Penrose
formalism Pauli matrices can be written as

Thy = L o : (4)
J2\ e ot
Using equations (2), (3a), (4) and choosing B = 0 and subsequently B = 1 we obtain
"D, +ig A, ) PY + 1" (D, +iq AP+ (Tigor = Vooo) PY+ (Fyjg — Fono) P!
~in, Q" =0,
m" @y, +ig A PO+ 1 (@, +ig A PY+ (Tigor = Toore) PP+ (Fraor = Toner) P!

+i[,l,,, Q()l = 0.

(S5a)

(5bh)

Next, by taking complex conjugation of equation (3h). writing various spin coclficients using
their named symbol | 7] and choosing

PY = Iy, P! =y 0" =G, Q"= -G,
we oblain
4@, +ig A ) Fy+ " (3, +ig A ) Fy + (e — p)Fy + (1 — o) Fa = 111, G, (6a)
M (@, +iq A) Fy+ 0! (0 +ig A Fa + (it = y) Fr + (B = 0O Fy = 11, Go. (6b)
(D +iq A )G — m" (@, +ig A )G+ (€7 = p")Ga — (27 — )Gy =iyl (60

(9, +igA,)Gy — "9, +ig A, )Ga + (= yIGy — (B = 1tHGr =i, By (6dd)



Behaviour of a spin-% particle around a charged black hole 2019

‘These are the Dirac equations in the Newman-Penrose formalisn in curved spacetime in the
presence ol an clectromagnetic interaction.

Now we wrile the basis vectors of the null tetrad in terms of elements of the Reissner—
Nordstrom geometry 7.9} as

I
" = Z(I". A0, 0).

(7a)
n't ! 2 =A.0.0) (7h)
= e , - . U R )
2'42
m't = %(().(). 1. icosee ), (7¢)
,
m't = ———5(0.0‘ 1. —icosec ), (7d)
r

where A = r2 —2Mr + Q2 and G = I = ¢ = 1 are chosen. Here M is the mass of the black

hole, Q, is the charge of the black hole, G is the gravitational constant, / is Planck’s constant
and ¢ is the speed of light.

We consider the spin-% wavefunction as the form ol c“"””"”’_/'(r‘ ) where o is the
frequency of the incoming wave and m is the azimuthal quantum number. The temporal

and azimuthal dependences are chosen to bhe the same but radial and polar dependences are
chosen diflerently for different spinors. Thus we write

f] —_ e“"’*'”d”rF,. 12 — el(nfund))Fz‘

. . (8)
g = el(nH-mrf))Gh g2 = c”"”""’”r(?;.

Now we strictly consider the static field so the magnetic potentials are chosen to be zero. i.e.

A% = (A", 0,0,0). A’ is nothing but the corresponding scalar potential of the field as (in this
spherically symmetric spacetime)

qQx

A= , )]
r—r,

where r, = location of the horizon = M + /M’ — Q?

v

So using equations (7)—(9) and writing various spin coefficients in terms of the Reissner—
Nordstrom metric elements (actually in terms of basis vectors) [7] equation (6) reduces to

Dofi + 27 2Ly f2 = ip,re

(10a)
AD!, fa = 2'2L) y fy = =2 (10h)
Dogz — 27 2L} o0 = inpr s (10¢)
AD] 81 +2' 2 Lppga = =21 (10d)
where
D, = _d_ N ir<o N g Q.r- N 2”1' - M.
dr A Alr —ry) A an
b _(L 3 irto 3 ig Q. vl M

"dr A Alr —r,)
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. ¢
L,y = ==+ @ +ncotf

do
t d i (12
E,,::a-(;——(_)+nu)ll). )

Q = m coscc .

Now considering f1(r,0) = R_i(r)S_y,2(0), [atr.0) = Ryp(r)Sip@). gi(r.8) =
R\ 2(r)S_12(0), g2(r,0) = R_y/2(r)Sa1,2(0) and following Chandrasekhar |7] we can
separate the Dirac equation into radial and angular parts as

AI/Z’D()R_\/z = (A + i!!!,,!')Al/zRv‘g.

(13a)
A'PDIAYAR = (A~ int,pr )R-y 2. (13b)
LipSip =—XS5_1,, (14a)
LS =28 (14b)

Here m,, is the normalized rest mass of the incoming particle and A is the separation constant,

3. Nature of the potential in a decoupled system

Equations (14a) and (14b) arc the same as the angular cquation in the Schwarzschild gcometry
whose solution is given in [2, 10, 11} as

A=+ %)2, Ri1/2 = standard spherical harmonics = 212Y]0). (15)

It is clear that the separation constant depends on the orbital angular momentum quantum
number [.

Equations (13a) and (13b) are in coupled form. Following Chandrasekhar’s {7] and
Mukhopadhyay and Chakrabarti’s {5] approach we can decouple it as

d? 5
=40 Zy = Vils. (16)
dr?

where

=r, Fr— ¢ — =" Yo (r — _
T =t 20 " A o og( ! Yo —r- (ry —r.)2 °F r—r_
— s ] (17)

(r—r ) —1r)

~
~
)

re=r—3M+ —>—1loglr —r,) — log(r —r.). (18)
re—r_ re—r.

re =M+ /M2 - Q2 Zye = AR Ry pe 7O @ =m,r/r (19)

In the extreme case when M = Q*. the expression for 7. and r, are given as

o ).
AN A [log(r - M)~
A o

P, =r,+—tan~ (17"
20

M3 2M
(r—M?> =M

= M + 2M log( M) M (18"
 e— P e 3(y — [V —_—— —
=1 Ot (r — M)
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Here, 7, varics from —oo to +00 (Cartesian coordinate). 1 we compare equation (16) with the
one-dimensional Schrodinger equation in a Cartesian coordinate system, the enerpy 1 of the
incoming particle can be written as I oc o and the potential (V) felt hy the particle is given
as
2 2,243
AT +myre)
3
[rz()»2 + m%,rz) (1+Q.q/(r —ry)o)+ AAm,,/Zo]
2 2,.2
AL+ myre)

[rz()\2 + m%,rz) 1+ Q.q/r —r)o)+ Akm,,/20]"

><“r2()\2 +m3r?) (l + Q.q ) L Army
4 r—roo 20

2 4 02,2172
A% +mir)l

Vi =

XT‘(I- - M)()\z + mf),.ﬂ) + BA"’”;’) _ AI/Z(}\Q +In§,r2)}/2
X ‘2r()&2 +mf,,-2) (I + ﬂ._) + 21 m? (‘ + _&g___
, (r —ry)o ! r —roo

), C—~ MyAm,
SIPE TPCIPHIL P SO L N koL H (20)

+ nm, )(r — r+)20 .
From the expression of V. it is very clear that the potential depends strictly on the charge
of the particle as well as of the black hole. More precisely, it depends on the Coulomb
interaction between the charge of the black hole and the incoming particle. When the charge
of the black hole or particle, or both, are chosen to be zero the potential reduces to being the
same as in the Schwarzschild geometry [S5]. When the factor Q.q /o is positive, the potential
varies smoothly. When Q,.q /o becomes negative, V,. diverges at a certain location r = «.
For the second case, the factor (1 + Q.q/( — ry)o) vanishes

alr =r, — Qu/o > r,
and then becomes negative. At r = o > r, the denoininator of Vi vanishes. For

all other cases o < r, always, so there is no scope to diverge the potential,  Thus for
the positive encrgy solution when the electromagnetic scalar potential in the ficld is of an
attractive nature, the corresponding potential diverges, again for the negative energy solution
the potential diverges for the repulsive electromagnetic scalar potential. For the integral
spin particle, it is found that when the potential diverges energy extraction is possible, i.e.
super-radiation occurs in the spacetime {7). On the other hand, for the case of a spin-!
particle in the Kerr geometry, although at a certain parameter region the potential diverges,
super-radiation does not exist [7). In the case of a spherically symmetric Schwarzschild
geometry the potential does not diverge at all and there is no scope for super-radiation |5].
Here it is interesting to note that although our spacetime is spherically symmetric, due to
the presence of the electromagnetic interaction term a region exists which is expected to be
super-radiant.

Figure | shows the behaviour of the potential V, for different values of black-hole charge,
where o = 0.8, m,, = 08,1 = L g = lare chosen: o < ry,. When Q, = 0 (solid curve),
the potential reduces to being the same as in the Schwarzschild case shown in figure 2 by
Mukhopadhyay and Chakrabarti {5]. It is also seen that with increasing black-hole charge,
the barrier height decreases. An increase of the black-hole charge indicates an increase of the
electromagnetic coupling and a corresponding repulsive scalar potential opposces the attractive
gravitational field. So the net effect decreases. Figure 2 shows the change of potential barrier
for different values of particle charge, where 0 = 0.8, m,, = 0.8, = % 2. = 0.6 are chosen;
a < r,. The solid curve indicates the potential felt by a neutron-like particle.
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Figure 1. Behaviour of the potential for different values of the black-hole charge. The fixed
paramneters are: 0 = 0.8. m, =08,/ = % and ¢ = 1. From the upper to the lower curves the
charge Q. of the black hole is chosen as 0. 0.2. 0.4, 0.6.0.8. 0.998.

Now we come to the case when Q.q /o is negative. For these cases the 7, — r refation is
muitivalued. For both r — oo and r — r,. 7. — oc. As explained above the net potential
barrier diverges at a certain location in this parameter region. From equation (20) it is very
clear that near r = a, the potential varies as 1/(r — a)*. So it has two branches, one repulsive
and one attractive on either side of the singular point. As a result super-radiation is absent
for the case of Reissner—Nordstrom geometry as in other cases [5.7]. We can choose any
combination of Q,, ¢ and a in such a way that Q,q/a is negative.

In figure 3 we show how the nature ofithe potential (Vi) changes with the rest mass ol
the incoming particle where o = 0.8, (0, = 0.5, == L ¢ = 1 are chosen. "The solid curve
shows the nature of the neutrino wave, ftis very clear from the figure that with the increase of

rest mass of the incoming particle the gravitational interaction increases and the corresponding
potential barrier attains a high value.

4. The complete solution

Now we will find the spatially complete solution.  As mentioned earlier a solution of the
angular part is known which is the same as in the Schwarzschild case [5. 10, 11]. For the radial
solution we need to solve a decoupled radial equation. "The solution of equation (16) for the
potential V, and V_, using the instantancous WKB approximation (1IWKB) method |5, 6]. can
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Figure 2. Behaviour of the potential for different values of the incoming particle charge. The fixed
parameters arc: 0 = 0.8, m, =08/ = Land Q. = 0.6. From the upper ta the lower curves the
charge g of the particle is chosen as 0. 0.2, 0.4, 0.6, 0.8, 1.

be written as

Z, = JTolk, Gl explite) + Rk, (FO ) exp(—ite,). (21a)

Z_ = JT_lk_(F)Vexptiu) + V Rk _(F)bexpt—in-). (2th)
where

ki(Fo) = \[(0? = Vi), (22)

U (ry) = /ki(f',) dr, + constant. (23)
with

TL(r)+ Ro(r) =1, T_(r)+R_(r)=1 instantancously. (24)

Here, k is the wavenumber of the incoming wave and n is the eiconal, Ty and Ry are
instantaneous transmission and reflection coefficients [5]. respectively. Using this method
at each location, instantancously, the WKB method is applicd. This solution is valid when
(1/k)(dk/dry < k. otherwise a different method 15) should be used.

In figure 4, the comparison of the instantancous reflection and transmission coctticients
for the Schwarzschild and Reissner—Nordstrém geometries is shown. The parameters chosen
are given in the figure caption. With decreasing barrier height, the transmission coefficient
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Figure 3. Behaviour of the potential for different values of the rest mass of the incoming particle.
The fixed parameters are: 0 = 0.8, Q. = 0.5.7 = | and ¢ = 1. From the upper to the lower
curves the mass 11, of the particle is-chosen as 0.4.0.3.9.2,0.1. 0.

increases and the reflection coefficient decreases. It can be scen that by the introduction of
the electromagnetic coupling. the potential barrier height reduces so that the corresponding
transmission probability increases with respect to that of the Schwarzschild case (the behaviour
for the Schwarzschild case is shown graphically in [5]) for a particular set of parameters. So
the presence of the black-hole charge decreases the curved nature of spacctime.

Now rccombining 7, and 7 one can casily find the original radial Dirac wavetfunctions

Ry and R_y;2 |5). Finally, we will have a complete solution as J(r, () == Ry 20) 8 12(0).

5. Conclusions

In this paper, we have studied analytically the scattering of spin-% particles around a Reissner-—
Nordstrom black hole. Our main motivation is to show analytically how the spin-1 particles
behave in the presence of an electromagnetic interaction in curved spacetime. We introduced
the gravitational and electromagnetic gauge fields. Since no such study had been carried out
previously we started from scratch. Firstly, we wrote the corresponding dynamical equation of
a spin—% particle, namely the Dirac equation in a combined gravitational and electromagnetic
background. Due to the curvature of the spacetime a gravitational gauge field (here, spin

coefficients for the Reissner—Nordstrom geometry) was introduced.  The electromagnetic
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Figure 4. Instantancous reflection (R and transmission (7 coefticients for Reissner-Nordsirom
(solid curves) and Schwarzschild (dotted curvesy black holes. The physical parameters are chosen
asog =08.m, =081 = L g = 1. For the Reissner-Nordstram case @, = 0.5.

interaction comes into the game because of the charge of the black hole. Here, we have
considered a steady-state problem and the corresponding components of the clectromagnetic
vector potential are set to zero. We then separated the cquation into radial and angular parts.
1t is seen that in the case of a spherically symmetric spacetime, the presence of a charge of the
gravitating object does not affect the behaviour of the incoming particles in the polar direction.
Only the radial part of the equation is influenced. We then decoupled the radial Dirac equation.
Now the potential is dependent on charge~charge coupling in the spacetime. 1 the charge of
the black hole reduces to zero, the potential reduces to that of the Schwarzschild case. With
the presence of a repulsive (or attractive) charge-charge interaction for a positive (or negative)
energy solution the magnitude of the curvature effect reduces. This is because ol the opposing
nature of the two simultancous interactions.

There is one interesting sector of the solution (which was absent in the uncharged
spherically symmetric spacetime). If the charge~charge interaction is of an attractive nature
for the positive energy solution (or repulsive for the negative energy solution) then the potential
at a certain location (r = «) diverges. However, because of the /(e — )b variance of the
potential super-radiation is absent,

Here we study the behaviour of the potential by varying the charge of the black hole, the
charge of the incoming particle and the rest mass of the incoming particle. We also study
the space-dependent reflection and transmission coetlicients and display them graphically for
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one sct ol physical parameters. Ttis seen that as the potential barvier height decreases, the

corresponding transmission probahility increases. We solve the radial Dirac equation by the
IWKB method.
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Abstract

Chandrasckhar scparated the Dirac cquation for spinning and massive particles in Kerr gcometry
in radial and angular parts. Chakrabarti solved the angular eguation and found the corresponding
eigenvalues for different Kerr parameters. The radial equations were solved asymptotically by
Chandrasekhar. In the present paper, we use the WKB approximation to solve the spatially complete
radial equation and calculate analytical expressions of radial wave functions for a sct of Kerr
and wave parameters. From these solutions we obtain local values of reflection and transmission
coefficients. © 2000 Elseviér Science B.V. All rights reserved.

PACS: 04.20.-q; 04.70.-s; 04,70.Dy; 95.30.5f
Keywords: Black holes; Kerr geometry; Dirac waves

1. Introduction

One of the most important solutions of Einstein’s equation is that of the spacetime
around and inside an isolated black hole. The spacetime at a large distance is flat
and Minkowskian where usual quantum mechanics is applicable, while the spacetime
closer to the singularity is so curved that no satisfactory quantum ficld theory could be
developed as yet. An intermediate situation arises when a weak perturbation (due to, say,
gravitational, electromagnetic or Dirac waves) originating from infinity impinges on a
black hole, interacting with it. The resulting wave is partially transmitted into the black
hole through the horizon and partially scatters off to infinity. In the linearized (“test field™)
approximation this problem has been attacked in the past by several authors [1-4]. The
master equations of Teukolsky 2] which govern these linear perturbations for integral
spin (e.g., gravitational and electromagnetic) ficlds were sotved numerically by Press and

I him@boson.bose.res.in
2 chakraba@hoson, hose.res.in
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Teukolsky [5] and Teukolsky and Press (0], While the equations governing the massive
Dirac particles were separated by Chandrasekhar | 3. So far, only the angular eigenfunction
and cigenvalue (which happens to be the separation constant) have been obtained |71
Particularly interesting is the fact that whereas gravitational and electromagnetic radiations
were found to be amplified in some range of incoming frequencies, Chandrasekhar [4]
predicted that no such amplifications should take place for Dirac waves because of the very
nature of the potential experienced by the incoming fields. However, these later conclusions
were drawn using asymptotic solutions and no attempt has so far been made to determine
the nature of the radial wave functions, both incoming and outgoing, for the Dirac wave
perturbations. He also speculated that one needs to look into the problem for negative
eigenvalues (1) where one might come across super-radiance for Dirac waves.

In the present paper, we revisit this important problem to study the nature of the radial
wave functions as a function of the Kerr parameter, rest mass and frequency of incoming
particle. We also verify that super-radiance is indeed absent for the Dirac tield. Unlike
the works of Press and Teukolsky |5 and Teukolsky and Press (6] where numerical
(shooting) mcthods were used to solve the master equations governing gravitational and
electromagnetic waves, we use an approximate analytical method for the massive Dirac
wave. The details of the method would be presented below.

The plan of the paper is as follows: in the next scetion, we present the equation governing
the Dirac waves (waves for half-integral massive spin particles) as they were separated
into radial and angular coordinates. We then briefly present the nature of the angular
eigenvalues and eigenfunctions. In Section 3, we present our method of solution and

present the spatially complete radial wave functions. Finally, in Section 4, we draw our
conclusions.

2. The Dirac equation in Kerr geometry

Chandrasekhar |3] separated the Dirac equation in Kerr geometry into radial (R) and
angular (§) wave functions. Below, we present these equations from Chandrasekhar (4]
using the same choice of units: we choose it =1 =G =c.

The equations governing the radial wave-functions R, | corresponding to spin 41,
respectively, are given by: i

AEDR = (A +impr) AR .

(la)

A'PDIAVIR ) = (3~ impr)Roy 2. (1b)
where, the operators D), and 'D,t are given by,

D, =0, + l—g + Z’I(L:A—&' (2a)

D=0, — i—g— + 2::%@. (2b)

and
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A=ri4a? - 2Mr, (3a)
K = (l'2 + (12)(7 - am. (3h)

Here, a-is the Kerr parameter, n is an integer or half-integer, o is the frequency of incident
wave, M is the mass of the black hole, n1, is the rest mass of the Dirac particle, % is the
eigenvalue of the Dirac equation and m is the azimuthal quantum number.

The equations governing the angular wave-functions Si)’ corresponding to spin i%,
respectively, are given by: i

E%S+% =—(A—am,,cu.s‘(-))$_%. (4a)

[}E S_‘% =+@Q& +ampcosd)S, L (4b)
where, the operators £,, and [Z,*, are given by,

Ly, =09+ Q-+ ncotf. (5a)

LZ:', =dy — @ +ncotd (5b)
and

() = aa sinl) 4 m coscel), (6)

Note that both the radial and the angular sets of equations, i.e., Eqs. 1(a), 1(b) and

Eqs. 4(a), 4(b) are coupled equations. Combining Eqs. 4(a), 4(b), one obtains the angular
cigenvalue equations for the spin-% particles as | 7]

m,sing ,
. ch+ L ik +, + (Kz —asz, 00526)]5_1 =0. (7)
I 3 X+4+ampcosf 3 3

There are exact solutions of this equation for the eigenvalues X and the eigenfunctions

S_y when p =m, /o = | interms of the orbital quantum number 7 and azimuthal quantum
number . These solutions are |7]:

2 2
12=<l+%) +-acr(p+2m)+azaz[l ) ] (8)

B 204 N4+ aox

and
aoy
m= m - Y, ne (9)
%Sln %ylu 20+ l)+(m_‘_§ 1414
where
p=Fdl; x=FU+41.141): v=IF(14+1)
and

F(l, ) = [l + Dl + D] 1m0l m)
x [{2 150l 3) + (=0 tmolnm) (1 5ol ) + (=0 p V21 - L))
(10)

with (---}-- ) are the usual Clebsh—Gordon coefficients. For other values of p one has
to use perturbation theories. Solutions upto sixth order using perturbation parameter ao 18
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given in Chakrabarti | 7). The cigenvalues A are required to solve the radial equations which
we do now.

This radial equations (1a), (1b) are in coupled form. One can decouple them and express
the equation either in terms of spin up or spin down wave functions Ri% but the expression

loses its transparency. It is thus advisable to use the approach of Chandrasekhar [4] by
changing the basis and independent variable r to

2M ‘ . 2Mr_
S ry +amjo log(l——l)—— Ir_+am/o log(L—l> an
ry —r- ry ry —r. re
(forr > ry),

d A d

—— e — 12
dr,  w?dr’ (12)
w? =r? +o?, a? =uz+am/o'. (13)

o transform the set of coupled Eqs. 1(a), 1(b) into two independent one dimensional wave
equations given by:

d A2
(dr —iG>P+5 =3 (A —impr)P_y, (14)
d 1/2
(dT_*—iU)P_% =7(K+ilnl,l‘)1’+;. (15)
x 3

2 .
Here, Dy = “’Z(a‘-:: + io) and ”D:) = ¥
redefined as R_}, = P_; and A'/ZRJr
We now define a new variable,

0 =tan™! (mpr/x), (16)

which yields
X mpr
and sin@ =

- r __Mmer
Jr2+mir? X2+ m2r?
( & impr) = exp(£if) /22 +m2r2, (17)

so the coupled equations take the form

d A2 [ myr
(dr* -—ia)l’+|2= — (xz+mf,r2)|/21’_ exp| ~itan™’ —7'%— , (18a)

d A2y o (Mt
(dr* +m) P“i = (A7 +myre) 1’+%exp itan . . (18b)

Then, defining,

I _fmpr )
I)+% :1//+%exp[—§1um (—7—)] (19a)

cosf =

and

IR L

and
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I) _ +‘.t' | 'n,’,.‘ )
- = t//_icxp 51 an —X-— . (19b)

we obtain,

d‘l’+' A xm I Al/?
7 4 2,2 1/2
_w<'l+ 2 20 )&2+m rz)w+§ “w? (K + o, r) ‘//“5 (20)

and

drs
and
dy_y A | All?
2 r 2 2 . N11/2
1 = .
m +10'( + — 29 3 ,,,2,2)"[’ ! = (x + mopr ) 1//+%. (20b)

. oA - , A Antp
Further choosing 7y = ry + 75 tan I(-—i—) so that dry = (1 + —45 2"0’ 7&2+ : 2)dr*, the

above equations become,

d
(df*—ic’)‘//“u =Wy _ L (21a)

and

|
(-‘(w + m)\// L= Wy, (21b)
dFy

where

AV2(32 4 m%rz)z/z

. 22
w2 +mir2) +ampA /20 (22)
Now letting Z4 = 1,lr+|2 + 1//_% we can coinbine the differential equations to give,
d
— —-WlZ,=i0Z_, (23a)
dry
and
d .
— +W)Z_=i0Z,. (23b)
dr.

From these equations, we readily obtain a pair of independent one-dimensional wave
equations,

|2
( (A 2+(72>Z:!:=V:!:Z:h. (24)
dr.
where
, w2:tdw At/z(Kerm%,.z)z/z
+ = =

df, o2+ m%,rz) +xm,,A/20]2
X [Al/z(xz + m2 ‘2)3/2 + ((r - MyR? + m%,rz) + 3111%,1'A)]
A‘/z(x +mz,2)5/2
[w 2+ mzr 2y 4 ampd /20

X [2;'(1 + m,,r 2) 4 2/11,,(:) r4am,(r = M)/a l (25)
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One important point to note: the transformation of spatial coordinate » to r, Gand r,) is
taken not only for mathematical simplicity but also for a physical significance. When r
is chosen as the radial coordinate, the decoupled equations for independent waves show
diverging behaviour. However, by transforming those in terms of r, (and r,) we obtain
well behaved functions. The horizon is shifted from r = ry to Fy = —oo unless 0 < g5 =
—am/(2Mry) (Eq. (11)). In this connection, it is customary to define o where o’ =0 (Eq.
(13)). Thus, o, = —m/a. If o < oy, the region is expected to be super-radiant [4] because
for integral spin particles for o < o there exhibit super-radiation.

3. Solution of the radial equation

Out of the total physical parameter space, in one region (region 1) the total energy ol the
particle is always greater than the height of potential barrier and in the other region (region
) the energy is less than of the maximum height of the potential barrier. In region H, the
wave hits the wall of barrier and tunnels through it. One hias to treat these two cases a little
difterently.

The usual WKB approximation [8] is used to obtain the zeroth order solution. We
improve the solution by properly incorporating the inner and outer boundary conditions.
After establishing the general solution. we present here the solution of Eq. (24) for three
sets of parameters as illustrative examples. For those examples the choice of parameters is
made in such a way that there is a significant interaction between the particle and the black
hole, i.e., when the Compton wavelength of the incoming wave is of the same order as the
radius of the outer horizon of the Kerr black hole, So,

GIM + VM2 =2 h

) 26
2 n e (26)
We choose asbefore G =h=c =1, s0
|
n, ~ ) 27)
M+ VY MT DT

Similarly, the frequency of the incoming particle (or wave) should be of the same order as
the inverse of the light crossing time of the radius of the black hole, i.e.,
3

.
~ . (28)
GIM + VM2 — 2|

Using the same units as before, we can write,

my ~ o~ [M + \/M3~— (IEJ ‘. (29)

4
In principle, however, one can choose any values of o and nr), for a particular black hole
and the corresponding solution is possible.

- . N - . « ~ 2 .

One can easily check from Eq. (25) that for r — oc (le, iy — 20) Ve = my, So we
expand the total parameter space in terms of the frequency of the particle (or wave), o and
the rest mass of the particle. nrp,. Ttis clear that in half of the parameter space spanned
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Fig. 1. Contours of constant wmax= mdx(-[l; G ) arc shown to indicate that generally v < | and

therefore the WKB approximation is valid in most of the physical region. Labels indicate values of
Wmax -

by o — m, where, a < mp, particles are released at finite distance wnh so little energy
that they cannot escape to infinity. In this case, the total energy ~ a? of the incoming
particle at a large distance is less than the potential energy of the system. We will not
discuss solutions in this region. The rest of the parameter space (o = m ) is divided into
two regions — I: £ > V,, and Il £ < V,,,, where £ is the total energy of the incoming
particle and V,,, is the maximum of the potential. In region 1, the wave is locally sinusoidal
because the wave number k is real for the entire range of #,. In region 11, on the other hand,
the wave is decaying in some region when 12 - Ve, where the wave “hits™ the potential
barrier and in the rest of the region, the wave is propagating. We shall show solutions in
these two regions separately. In region-1 whatever be the physical parameters, the energy
of the particle is always greater than the potential energy and the WKB approximation is
generally valid in the whole range (i.e., kl 4k« 1). In cases of region-11, the energy of the
particle is always less than the maximum henght of potential barrier. Thus, at two points
(where k = 0) the total energy matches the potential energy and in the neighbourhood of
those two points the WKB approximate method is not valid. They lmve to be dealt with
separately. In Fig. 1, we show contours of constant vy = nmx(-w | ) for a given set
(o, mp) of parameters. The labels show the actual values ol wpy. (.luuly. in most of the
parameter regions the WKB approximation is safely valid for any vadue of 7. One has to
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employ a different method (such as using Airy functions, see below) to find solutions in
those regions where wyax attains a large value which indicates the non-validity of WKB
method.

3.1. Solutions of region 1

We rewrite Eq. (24) as,

+ (2= V)Zy =0. (30)

This is nothing but the Schrodinger equation with total energy of the wave o2, This can be
solved by regular WKB method.
Let

k(Fe) =02 — Vq, u(ry) = / k(Fy)dry + constant,

k is the wavenumber of the incoming wave and u as the Eikonal. The solution of the
Eq. (30) is,

Ay . A .
Z4 = —=expliu) + —= exp(—in) (31)
Vk Vk

with

A2 + AL =k (32)
The motivation of Eq. (32) is to impose the WKB method at the each space point so that
sum of the transmission and reflection coefficients are same at each location. In this case
a? > Vg all along and also %:}‘Iﬁ‘— & k, so the WKB approximation is valid in the whole
region.

Itis clear that a standard WKB solution where A ¢ and A are kept constant throughout,
can not be accurate in whole range of -7, since the physical inner boundary condition
on the horizon must be that the reflected component is negligible there (since there the
potential barrier height goes down to zero). Thus the WKB approximation requires a slight
modification in which a spatial dependence of Ay is allowed. On the other hand, at a large

distance, where the WKB is strictly valid, Ay and A_ should tend to be constants, and
hence their difference is also a constant:

A+—A_=(T. (%3)

Here, one can choose also the sum of Ay and A_ are constant instead of difference as
Eqg. (33), but the final result will not be affected. Here, ¢ is determined from the WKB
solution at a large distance. For simplicity we choose Axs are real. This along with Ey. (32)
gives,

¢
Ar(r)==%- e, 34
+(r) 5 + > (34)

This spatial variation, strictly valid at large distances only, should not be extendable to the
horizon without correcting for the inner boundary condition. These values are to be shifted
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by, sity, A gy respectively, so that on the hotizon one obtains the physical £oand 770 We Lrst
correct the rellection coceltlicient on the horizon as follows: Let Ay, be the value of A on
the horizon (see Eqg. (34)),

¢ J2k(ry) =2
A_/, _ + —_— .
2 2
[tis appropriate to use A_ = A_ — A_j, rather than A_ since A_ vanishes at r =r,.
Incorporating these conditions, the solution (31) becomes,

VA At exp(iu) + A exp(—iu)
+ = — — —ite
NG Ja
with the usual normalization condition
2 2
AL+ A =g

where A, = AL — Ay,

(30)

Determination of Ay, is done by enforcing R obtained from Eq. (37a), which is shown
below, is the same as that obtained by the actual WKB method. The ¢ is used to compute
the transmission coeflicient 7° from Eq. (36). In this way. normalization of R + T =1 is
assured.

The normalization tactor ¢ ~- & as 77, = ~c and the condition (—',— :i?-lf <& ¢ is Tound to
be satisfied whenever Alﬁlrl‘j & k is satistied. This is the essence of our modification of the
WKB. In a true WKB, A4 are constants and the normalization is with respect to a (almost)
constant k. However, we are using it as if the WKB is instantancously valid everywhere.
Our method may therefore be called “Instantaneous™ WKB approximation or INKB for
short. Using the new notations. the instantancous values (i.e., local values) of the refiection
and transmission coeflicients are given by (see Eq. (35)).

_A?.
R=—, (374)
q
AZ
T =, (37b)
q

Whatever may be the value ol the physical parameters., % ﬁ';‘— <« k is satisfied in whole range
ol 7, forregion 1. |

The variation of reflection and transmission cocicients would be welb understood il we
imagine the potential barrier consists of a large number of steps. From simple quantum
mechanics, in between each two steps, we can calculate the reflection and transmission
coellicients |9]. Clearly these reflection and transmission coeflicients at different junctions
will be different. This is discussed in detail below. To be concrete, we choose one set of
parameters from region 1. Here. the total energy of the incoming particle is greater than the
potential barrier height for all values of 7. We use. Kerr parameter, a = 0.5: mass of the
black hole, M = 1; Mass of the particle, i, = 0.8 orbital angular momentam guantum
nwmber. /= 1/2: azimuthal quantum number.m = — 1720 frequency of the incoming wave,
a = 0.8. The derived parameters are, o = A+ JMI - al = 180003 6 = 1o, =

0.006987 ¢ = —0.0625. For these parameters, the eigenvalue is 3 = 0.92 |71,
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Fig. 2. Behaviour of (a) Vi (solid curve) and Voo (dashed curve). (h) Vi (solid curve), & (dashed
curve), total energy E (short-dashed curve). (o) Tocal transmission (77, solid curve) and reflection (R,

dashed curve) coclicients as Tunctions of 7. The parametersarca = 0.5, M =1.m ), =081 = 1/2.
m=—1/2, 0 =0.38.

Here it is clear that @ is in between o, and o, and o < 0, 1y > |ol. So we are in a
strictly non super-radiant regime since here. o > o, (4]

From Lig. (24) we observe that there are two wive cquations for two potentials Vyoand
Vo The nature of the potentials is shown in Fig. 20, 10is clear from the Fig. 260 that
the potentials Vi are well behaved. They are monotonically decreasing as the particle
approaches the black hole, and the total energy chosen in this case () is always higher
than V4. FFor concreteness, we study the equation with potential Vo A similar procedure
(IWK 13 method) as explained above can be adopted using the potential Vo to compute 7
and its form would be

A=A A=A -
Z_= ~—i——\/—_—liﬂ explin')y — —_~——¢T—'—"ﬁ expl—iu'y. (35")
4] VU

Note the occurrence of the negative sign in front of the reflected wave. Thisis 1o satisty
“the asymptotic property ol the wave functions.
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Fig. 3. (a) Steps (solid) approximating a potential (dottedy. thus reducing the problem to that
ol a quantum mechanics. The parameters are same as in Figo 20.(h) Comparison ol variation of
instantancous rellection coclticient B and transmission coctficient 77 with the radial coordinate 7y
using analytical WK method (solidy and step-potential method (dotted). The parameters are same
as Fig. 2.

In Fig. 2(b), we show the nature ol Vi (solid curve). & (dashed curve) and F(= o)
(short-dashed curve). In the solutions (Eqs. (35) and (357) the first term corresponds to the
incident wave and the second term corresponds to the reflected wave.

In Fig. 2(c¢), the variation of reflection and transmission coelticients are shown. Itis seen
that as matter comes close to the black hole. the barrier height goes down. As a result, the
penctration probability increases. causing the rise of the transmission coclticient.

Focal values of the reflection and transmission coctlicients could also be caleulated
using the well known gquantum mechanical :l|)|)|'l.)ilk'|l. First one has to replace the potentials
(as shown in Fig. 2¢a)) by a collection of step functions as shown in Fig. 3G, The standard
junction conditions of the type

Zovon =72+t

(I8a)
where
o= Ay CXPIi/\'l:":-«.nl + B, L‘7(|’| "i/\'n;'c al.
and
d7 4 dZ,.
) ekl (38h)
d"* n d"* n+4-1
where
(|Z+ . . - . . ~
—IT- =ik, A, CX|7(I’\',,I':|:_n) - Ii\‘,, B, expt LT
ry "

at cach of the n steps were used o connect solutions at suceessive steps. From the simple
quantum mechanical caleulation we obtain the reflection and transnission coctticients at
the cach junctions. Clearly at different junctions. e atdifterent radii this reflection and
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transmission coeflicients will be different. As betore, we use the inner boundiary condition,
tobe R — Oat 7, — —nc. Inreality we use as many steps as possible to follow accurately
the shape ol the potential. Smaller step sives were used whenever & varies faster. Frg. 3(h)
shows the comparison of the instantancous reflection and transimisston cocfficients in both
the methods. The agreement shows that the WKB can be used at each point quite success-
fully.

It is to be noted, that, strictly speaking, the terms *

reflection”™ and “transmission”
cocllicients .are traditionally defined with respect to the

asymptotic values. The spatial
dependence that we show are just the dependence of the instantancous values,
consistent with the spirit of IWKB approximation that we are using.

The radial wave functions R

This is

, v and R which are of spinup and spin down particles
respectively of the original Dirac equation are given below,

ty costy — Y 4+ a_costu + (1)
Re(Ry 4'%) = = -
: 2Vk
aly cosu’ —0) —a’ costu’ 1))

- . (390)
2/

3 ay sintie — H) « xin('u b (1)
Im(R.ﬁA'ﬁ) A W
-7 " osing {)
u+\m( Y4 a s " (39b)
kl
g COs -+ 0) 4 acost —0)
Re(R_1) = — .
: 2k
_ a, costi b)) —u cost — H). (390)
2k
ay sin(ue -0 —-a sintie — )
Im(R_i)= !
hi

2k
_ st ) sina = 0) o
7\/;\

Here, ay = (Ap — Apn)/JgIk anda. = (A — A )/ Jq7k. =& and —T are the trans-
mitted and reflected amplitudes. respectively, for the wave of umcspumluw potential V

In Fig. 4(a)-(d) we show the nature of these wavefunctions. The cikonals used in plotting
these functions (see Egs. (39:0)-39d)) have been caleulated by approximating Vi interms
ol a polynomial and using the definition ik = |\ al - \’{ dir,. This was done sinee Vi
is not directly integrable. Note that the amplitude as well as wavelength remain constants
in regions where & is also constant,

3.2. Solutions of region 11

Here we study the solution of a region where for any set of physical parameters. the total
energy of the incoming particle is less than the maximum height of the potential barrier.
So the WKB approximation (more precisely, our IWKB approximation) is not valid in
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Fig. 4. Nature of real and imaginary parts of radial wave functions for Case 1.

the whole range of 7. In the regions where the WKB is not valid, the solutions will be
the linear combination of Airy functions because the potential is a lincar function of 7, in
those intervals. At the junctions one has to match the solutions including Airy functions
with the solution obtained by WKB method.

In the region where the WKB approximation is valid. local values of reflection and
transmission coctticients and the wave function can be caleulated casily by following the
same method deseribed in previous sub-section (solutions of region b and the solution will
be same as Egs. (35).(35"). tn other regions, the equation reduces to

3 -
d /‘,F ‘—.\'741 = ().

+

dr

(40)

where v = B'73(7, — p). B is chosen to be positive and pis the critical point where the
total energy and potential energy are matching.
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PetZ o) Y7 (o and considering region v 0 the equation CH0) reduces o

Sy dy v by
R T B A I LEES ] (d1)
dv- dy 4

By making another transtormation

:—_"/' R
& 3\ (42)
we obtain
7d Y dY N |
—_— - - 1Y ={). 3
£” aEr +£ aE (E +9) (&) (43)

this ts the modificd Bessel equation. The solution of this equation is T (&) and 1 (§).
t
So ' the solution of Eq. (40) will be

Zyty=xPlen o A o). (44)

When v < (O the comresponding equation is.,

,d?Y gd)/ (Ez ! ViE) =0 45
A

which is the Bessel equation. The corresponding solution is

Zy ) =D E) + D2 )], (46)

where 'lﬂ:% and Ii{ are the Bcsscl functions and the modified Bessel functions of order
§ /3, respectively.
The Airy functions are defined as

by
ey — 172 : : .
Aity) = 3 Loy =1 ] v (47)
: Lo
Aiy) = 31| Pli_yer+ 7] <o, (48)
. | ,
BI(.\'):%.\‘5[1_%(E)+I+UE)J. x> 0. (49)
- T :
Bi(x) = *ﬁ'” Pliae —J @) w0 (50)
In terms of Airy functions, the solutions (44) and (46) can be written as
3 V3
7 3((w—(|)/\l(\) + --;"(('3 4 CyBity)  forx > 0, (51)
3 V3 .
Z+-;(I)w+1)|)/\|(\)+—-——(l)w~I)|)B|(\) for v < 0. (52)

By matching boundary conditions it is casy to show that the solution corresponding x> ()
and that corresponding v - 0 are continuous when Cy = = Dy and Cy = 1>,

As an example of solutions from this region. we choose: a = 095 M = 1. ny = 0. 17.

I =1/2.m=—1/2.and o = 0.21.The black hole horizonis atry = M+ (M2 =) =
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Fig. 5. Plots are same as in Fig. 2. The parameters are @ = 095, M = 1w, = 0171 = 1/2,
m=—1/2,0 =0.21.

1.31225, 0, = (.5263106, 7, = . 180YR7, o = —1.356 and 3 = 0.93 171, Teis clear that

the values of a,., a, and o? indicate the region is non super-radiant. In Fig. 5(a), we show
the nature of V4 and V__ however, while solving. we use the equation containing V. (Eq.
(24)). Unlike the case in the previous subsection. here o is no longer greater than V. at all
radii. As a result, k2 may attain negative values in some region. In Fig. 5(b). nature of V.
(solid curve), parameter &k (dashed curve) and energy I (short-dashed curve) are shown.
Here, WKB approximation can be applied in regions other than 7, ~ =4 to —~lL and 1 to 7
where k is close to zero and the condition %T#’ <k is not satistied.

In the region 7, = 7 1o | around the taurning point 7, = 445475 the sofutions (urns out
to be 10,

74 = LO8T526 Ay 4 0788908 Bity), (53)
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Similarly, the solution trom 7, 1o

e around the tuming point 7y = 28053
rns out to be 1 10].

Z4 = —1.328090 Ai(x) 4 0774420 Bitv) ). (54)

Itis to be noted that in the region 7, ~ 1 to — 1. even though the potential energy dominates

over the total energy, WKB approximation method is still valid. Here the solution will take
the form exp(—1)/ vk and exp(+10) /Vk. Asymptotic values of the instantancous reflection
and the transmission coetficients (which are traditionally known as the “reflection™ and
“transmission” coellicients) are obtained from the WKB approximation. This yields the
integral constant ¢ as in previous case.

From Ligs. (37a). (37h) local reflection and transmission cocefticients are calculated,
behaviours of which are shown in Fig. Sce). The constants Ay, and A 4y, are caleulated
as before. Note the decaying nature of the reflection coelficient inside the potential barrier,

3.3, Solwtions in the super-radiant region

In this region, the potential diverges at r = |o]. Here, the barrier height goes up to infinity
and then the potential changes sign so that its nature changes from repulsive to attractive
and vice versa. This is because o <oy (which is the condition Tor super-radiance) and
ry < |af fsee Egs. (1) and (13)]. Unlike the previous two cases, the relation between r
and 7, is not single valued. Here. at both r = ry and r = oo, the valuc of 7, = oo, With the
decrement of r, 7, is decreased initially up to r = |u|. Subsequently. 7, starts to rise and at
the black hole horizon it diverges. Obviously. in this case particles hit the barrier and we
can solve the equation following the same methods as explained in the previous cases, i.e.,
the solutions are the same as Figs. (35) and (357) for the region where the WKB method is
valid and Egs. (51) and (52) where the WKB method is not valid.

For illustrative example. here, we choose: a = 095, M- = |, m, = 0.105. ]
1/2, m = —1/2, and ¢ = 0.105. The black hole horizon is located at rp = M +
VM? Z a2 =1.31225, and o, =0.526316. 0, = 0.180987. ol = =3.62and x = 0.97 |7].
Chandrasekhar showed [4] that for integral spin particles this region exhibits super-
radiance and conjectured that for half-integral spins the super-radiance may be absent.
We investigate here if this conjecture is valid.

The behaviour of potentials Vyoand V

are shown in Fig, 606G, Itis clear that at r = |
the potential diverges and the nature of the potential is changed from repulsive to attractive
(for V_) and vice versa (for Vo). Here, we will treat the equation with Vo as the potential
(it is equally casy to do the problem with V). We first divide our computations into two
parts. In the repulsive part of the potentiat (e when Voo > 0). particles come from infinity
and most of them reflect back from the infinitely high barrier. In the attractive part of
the potential (i.e.. when Vi < 0), particle radiates outwards in the 7. coordinate (actually,
particle goes towards the horizon but due to multivalueness ot the radial coordinate 7, (with
respect 1o ) the horizon is mapped to infinity).

In FFig. 6(b). nature of V' k and £ are shown. The WKB approximation (more precisely

. . . . e - 1
IWK B approximation) method is valid from inlinity to . ;

A0 sinee, otherwise., } o

£ |
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Fig. 6. Behaviour of () Vi (solid curvey and Voo (dashed curve). (b Vo (solid curve), & for
region where potential is positive (Keep. dashed curve). &k for region where potential is negative
(k. short-dashed curve), total energy I (dotted curve). (¢) Tocal transmission (77, solid curve) and
rellection (R, dashed curve) coeflicients as functions of £, The parameters are @ = 0.95. M = |,
mp=0105.1=1/2,m=—1/2, a0 =0.105.

is not satisfied. In those other regions one has to apply a different method (which was
also explained in last sub-section) to find solutions. The local values of the reflection
and transmission coefficients and the wave function of the particle are calculated as in
the previous cases. Since the matter which tunnels through the infinitely high barrier face
infinitely strong attractive field. the possibility of extraction of energy would be zero. In
Fig. 0(¢), the variations of local transmission and reflection coctlicients are shown. “The
net transmission of the wave through the horizon is non-negative all along and therefore
super-radiation is absent, although o is less than a,. We believe that the non-existence

of super-radiation is due to (1 — o) 7 variation of the potential near the singular point.
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Because ol the existence ol attractive ficld. the extraction of cocrgy s difhicults so the net
transmission of the wave through the horizon from ~cis always positive. This arcument is
valid for any scet of parameters where o« oy

4, Conclusion

[n this paper. we studied scattering of massive. spin-hall’ particles from a Kery black
hole, particularly the nature of the radial wase functions and the reflection and transmission
cocllicients. Our main motivation was to give a general analytical expression of the solution
which can be usetul for further study. We showed few illustrative cases as examples.
We verified that these analytical solutions were indeed correct by explicitly solving the
same set of equations using quantum mechanical step-potential approach as described in
Section 3. We classitied the entire parameter space in terms of the physical and unphysical
regions and the physical region was further classiticd into two regions, depending on
whether the particle “hits™ the potential barrier or not. Again, the region where particle hits
on the barrier, is divided into two parts. one is super-radiant region and other is non-super-
radiant region. We chose one itlustrative example in cach of the regions. We emphasize that
the most “interesting” region to study would be close o m, ~ a . However. we pointed out
(Fig. 1) that tor nt,, < 0.35. the WKB solutions cannot be trusted. and other methods (such
as those using Airy functions) must be employed.

We used the well known WKB approximation method as well as the step-potential
method of quantum mechanics to obtain the spatial dependence of the cocetlicients of
the wave function. This in turn, allowed us to determine the reflection and transmission
coelficients and the nature of wave functions. The asual WKB mcethod with constant
coelticients and (almost) constant wane number A is suceessiully applied even when
the coelticients and wave number are not constant everyvwhere, Solution from: this
“instantancous”™ WKB (or IWKB) method agrees fully with that obtained from a purcly
guantum mechanical method where the potential is replaced by a collection of steps. Our
method of obtaining solutions should be valid for any black hole gcometry which are
asymptotically flat so that radial waves could be used at a large distance. This way we
ensure that the analytical solution is close to the exact solution. In region 1L in some
regions, the WKB method cannot be applied and henee Airy function approach or our
step-potential approach could be used.

In the literature. reflection and transmission coctlicients are defined at a single point.
‘These definitions are meaningtul only it the potential varies in a small region while studies
are made from a larpe distance trome it tnothe present case. the potential changes over a
large distance and we are studying in these regions as wello Although we used the words
“reflection™ and “transmission” coetficients. in this paper very loosely. our definitions are
very rigorous and well defined. These quantitics are simply the instantancous values and in
our beliel more physical, The problent at hand is very similar to the problem of rellection
and transmission. of acoustic waves from a struck string of non-constant density where
reflection and transmission occurs at cach point.
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Among other things, we verily Chandrasekhar’s conjecture [ based on the asymiptotic
solution, that for .\‘|)in-% particle the phenomenon ol super-radiance is absent. We believe
that this is due to the very way the potential develops the singularity at = Ju|. Here
V_(7y) o (r — |a])™3, which results an attractive |5(>lc11lizll in some region very close o
the black hole. In contrast. V_(#,) & (r — |o|)™* when electromagnetic and gravitational
waves are scattered off the black hole [4] does not ereate an attractive part in the potential
and possibly exhibit the phenomenon of super-radiance. Itis noted that all the cases where
potential diverge at r = o (i.e., 50 called super-radiation cases) arise for a < o, with the
negative values ol azimuthal quantum number (here. m = —1/2) and the positive Kerr
parameter, a. For positive values of m and positive values of «. potential does not diverge
at any point for all values of . If we change the spin orientation of the black hole (negative
values of a) and take positive m again divergence of the potential will avise. Thus, it scems
that the cases with opposite sign of « and m are physically more interesting.

-
&

[Cis seen that for dilferent physical parameters the solutions are different. 'The waves
scattered ofT are distinetly dilferent in different parameter regions, Inoa way, theretore,
black holes can act as a mass spectrograph! Another interesting application of our method

would be 10 study interactions of Hawking radiations in regions just outside the hovizon,

References

111 S, Teukolsky, Phys. Rev. Lett, 29 (1972 11HE4

121 S. Teukolsky. Astrophys, I IRS (1973) 635,

131 S. Chandrasckhar, Proc. R.Soc. London A 349 (1976) 571,

[4] S. Chandrasckhar, The Mathematical Theory of Black Holes, Clarendon Press. London, 1983,

[5} WL Press, S, Teukolsky. Astrophys. LIRS (1973) 649,

[6] S. Teukolsky, W.H. Press. Astrophys, 1193 (1974) 43,

[7] S.K. Chakrabarti, Proc. R. Soc. London A 391 (19Y84) 27,

181 ). Mathews, R.L. Walker. Mathematical Nethods ol Physics. Ind edine. The Benjamin-
Cummings Publishing Company. Calitornia. 1970.

191 A.S. Davydov, Quantum Mechimics, 2nd edns Pergamen Press Oxtord, New York. 1976,

1O M. Abramowitz, LA, Stegun (Lids. ). Handbook of Mathenatical Functions, National Burean of
Standards, Washington, 1972,



Mon. Not. R. Astron. Soc. 317, 979-984 (2000)

Scattering of Dirac waves off Kerr black holes

Sandip K. Chakrabarti*and Banibrata Mukhopadhyay

S.N. Bose National Centre for Basic Sciences, JD-Block, Sector I, Salt Lake, Calcutta 700091, India

Accepted 2000 May 16. Received 2000 May 16; in original form 2000 January 4

ABSTRACT

Chandrasekhar separated the Dirac equation for spinning and massive particles in Kerr
geometry into radial and angular parts. Here we solve the complete wave equation and find
out how the Dirac wave scatters off Kerr black holes. The eigenfunctions, eigenvalues and
reflection and transmission co-efficients are computed. We compare the solutions with
several parameters to show how ‘a spinning black hole recognizes the mass and energy of
incoming waves. Very close to the horizon the solutions become independent of the particle
parameters, indicating the universality of the behaviour.

Key words: black hole physic — waves — scattering.

1 INTRODUCTION

Chandrasekhar (1976) separated the Dirac equation in Kerr black hole geometry into radial'(+) and angular (8) parts. The radial equations
governing the radial wavefunctions, R+ corresponding to spin *1/2, are given by (withfi=1=G=¢):

AI/ZDoR_g/z =X+ im,,r)A'/zRH/z; AI/Z'D(',AI/ZRH/Z = (X — im,,r)R-l/z, H
where the operators D, and 'D,’I are given by

(r—M) iK (r—M)

iK
=9, + — H Y=g, -2+ 2
Dp=3 +x+2mT02;  Dl=d - +me—, @
and
A=7+ad - 2Mr, K=(?+ad")o+am. i 3)

Here, a is the Kerr parameter, n is:an integer, o is the frequency of the incident wave, M is the mass of the black hole, m, is the rest mass of

the Dirac particle, X is the eigenvalue that is the separation constant of the complete Dirac equation and m is the azimuthal quantum
number. :

The equations governing the angular wave-functions S+, corresponding to spin *1/2 are given by:
£|/28+|/2= -(X -am,,cosG)S-l/z; £:/25-1/2= +(X +am,,¢osO)SH/2 (4)

where, the operators £, and £} are given by,

L,=033+ Q+ncot8, L,',=8,—Q+ncot9 (5)
and
Q = aousin 0 + mcosec 6. (6)

Combining equation (4), one obtains a second-order angular eigenvalue equation, which admits exact solutions for spin-half particles when
p = my/o =1 (Chakrabarti 1984),

2

2 2 2 _ Y

K=(+1) +ao‘(p+2m)+a(fz[l —————2(1+l)+ao’x] )
and

1725t =172 Yim = ats Yietim (®)

2+ 1)+ aox
* E-mail: chakraba@boson.bose.res.in (SKC); bm@boson.bose.res.in (BM)
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where
p=FQ; x=F(+1,1+1) y=F(1+] )

and
F(ly, by = [l + DL+ DAL m0lLmy [( 1 1ol ) + (=D 1m0l m)] [(1,1§0|1. D+ (= pdH L - ,})].

Here, {...1...) are the usual Clebsh-Gordon coefticients and ,Y,, are the standard spin-weighted spherical harmonics (Chakrabarti 1984; see
also, Goldberg et al. 1967, Breure et al. 1982) of spin s and usual quantum numbers [ and . When p # m, /o = 1, one obtains the solutions
perturbatively with ao to be the perturbation parameter. The detailed procedure to obtain eigenfunctions and eigenvalues is in Chakrabarti
(1984) and is not described here.

The radial equations in equation (1) are in coupled form. One can decouple them and express the equation either in terms of spin-up or

spin-down wavefunctions Rz, but the expression loses its transparency. It is thus advisable to use the approach of Chandrasekhar (1983),
changing the basis and independent variable r to,

+ o+
P 2Mr, am/ulog(L_ l) _2Mr anl/rrh)g(_r__ l)(r> ) 0y
re = r- + ry —r. r.
where
d Ad s
——— e * =,-2+ 2, S Y
in P o e =a +am/o, (n

to transform the set of coupled equations (equation 1) into two independent one-dimensional wave equations given by:

d . A|/2 . d ) AI/Z )
(a— - |¢7)PH/2 = -wz——(/\ = imprP_y2; (E: + m)l’-l/z = —u—)z—(x +impr)Pyypa. (12)

4]

Here, Dy = EZ- (B%.' + ia) and ’D(', = —"3’2- (d—‘,'-;- - i(r) were used and wavefunctions were redefined as Ry, = Py, and A'/ZRH/Z =Py

2 SOLUTION PROCEDURE
We define a new variable, 6 = tan"(m,,r/x), which gives
(X £ impr) = exp(£if)/(X? + mlr?). (13)

Also, define

Pop=vup eXP[‘%i‘an_l (ﬂ;—r')] Poip=dip exP[*%i tan™" (%ﬂz)]. (14)

and choose Fx = re + 1/(20)tan"" ((mpr)/X), so that dF» = (1 + (B w?YAmpf20)(1 /(X2 + miz,rz)))dr*, and Z. =ty pp * xl/,,./z. The
above equations become

d d
_——W =ioZ-; —+W)Z_ =i0Z 1S
(d?* >Z+ 1 (dh ) 1oL+, as)
where
12y 20090
AZ(X2 + mirt)
W= L . (16)
WP (X2 +.mird) + AmpB /20
From these equations, we readily obtain a pair of independent one-dimensional wave equations,
¢? dw
et P Ze = VaZa; Ve=Wie | 17
(dhz )Z_ +Zs where V. TR an
By transforming the variable from 7 to r« (and F«), the horizon is shifted from r = r, to Fx = ~oo unless & < o, = —am/2Mr, (equation
10). In this connection, it is customary to define o where of = 0 (equation 11). Thus, o, = ~m/a. If o = oy, super-radiation is expected for

particles with integral spins but not for those with half-integral spins (Chandrasekhar 1983). Thus, we concentrate on the region where, o > ;.

The choice of parameters is generally made in such a way that there is significant interaction between the particle and the black hole,
i.e. when the Compton wavelength of the incoming wave is of the same order as the outer horizon of the Kerr black hole. Similarly, the
frequency of the incoming particle (or wave) should be of the same order as the inverse of the time taken for light to cross the radius of the
black hole. These parameters yield the following equation:

my ~ o~ M+ VM= at (18)
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Figure 1, Behaviour of V, (smooth solid curve) for a = 0.5, m, = 0.8 and & = 0.8, This is approximated as a coltection of steps. In reality. tens of thousand
steps with varying size, which mimic the potential with arbitrary accuracy were used.

Thus, dealing with quantum black holes yields ‘interesting’ results. There are two cases of interest: (1) when the waves do not *hit’ the
potential barrier, and (2) when the waves do hit the potential barrier. First, we replace the potential barrier by a large number of steps as in
the step-barrier problem in quantum mechanics. Fig. | shows one such example of the ﬁbtential barrier V. (equation 17), which is drawn for
a=0.5, m =08 and o= 0.38. In reality, we use tens of thousands of steps with suitably varying widths, so that the steps become
indistinguishable from the actual function. The solution of equation (17) at the ath step can be written as (Davydov 1976}

Z+,n = A, CXP[iknf°,n] + B, CXP[—iknF°,n], (19)

when the energy of the wave is greater than the height of the potential barrier. The standard junction condition is given by (Davydov 1976},
as

dZ . dZ,
Zin =21 and FF:I" = ‘(WI;NL (20)

The reflection and transmission co-efficients at the nth junction are given by:

An+l(kn+l - kn) + Bn+|(kn+l + kn)
R, = R Ta=1—-R, : 21
ForGonry T o) ¥ Bos1Uhnrr = k) @h

At each of the n steps, these conditions were used to connect solutions at successive steps. Here, k is the wave number k= +/o? = V)of
the wave and k, is its value at the nth step. We use the ‘no-reflection’ inner boundary condition: R — 0 at Fx — —o0.
For the cases where waves hit the potential barrier, inside the barrier (where o? < V) we use the wavefunction of the form

Bin = Apexpl—anfe,] + B, explanfen) (22

where, a, = 1/V+ — 02, as in ordinary quantum mechanics.

3 EXAMPLES OF SOLUTIONS

Fig. 2(a) shows three solutions [amplitudes of Re(Z. )] for the following parameters: a = 0.5, o = 0.8 and m, = 0.78, 0.79 and 0.80, solid,
dotted and long-dashed curves respectively. The energy o is always higher than the height of the potential barrier (Fig. 1) and, therefore,
the particles do not ‘hit’ the barrier. k increases and consequently, the wavelength decreases monotonically as the wave approaches a black
hole. It is to be noted that though ours is apparently a ‘crude’ method, it is flexible and is capable of giving an insight into the problem,
surpassing other methods such as ODE solver packages. This is because one can choose: (a) variable steps depending on the steepness of the
potential to ensure uniform accuracy, and, at the same time, (b) a virtually infinite number of steps to follow the potential as closely as
- possible. For instance, in the inset, we show R in logarithmic scale. very close to the horizon. Alt the three curves merge, indicating. that the
solutions are independent of the mass of the particle. Closer inspection shows that here, the slope of the curve depends only on o.
The exponential dependence of R, close to the horizon becomes obvious. Asymptotically, V. = m'z, (equation 17), thus, as my, decreases, the



982 S. K. Chakrabarti and Banibrata Mukhopadhyay

:I A T ) l T 1 T ‘ T T 1 l T T T ' §
2 -
L =
3 ]
g 0 —
D .
[0 A - 4
-1 :_ \
C ~
-2 ]

o L 1 1 I 1 L 1 I 1 L L I 1 1 1 l

-20 0 20 40 60

7 T.

Figure 2. (a) Reflection (R) and transmission (T) coefficients of waves with varying mass as functions of 7.. m, = 0.78 (solid), my = 0.79 (dotted) and
my, = 0.80 (long-dashed) are used. Other parameters are @ = 0.5 and ¢ = 0.8. The inset shows R in logarithmic scale, falling off exponentially just outside
the horizon, (b) Amplitude of Re(Z,) of waves with varying mass as functions of 7. m, = 0.78 (solid), m, = 0.79 (dotted) and my = 0.80 (long-dashed) are
used. Other parameters are a = 0.5 and o = 0.8.
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Figure 3. (a) Reflection (R) coefficient of waves with varying mass as functions of fe. mp = 0.16 (solid), my, = 0.164 (dotted) and i, = 0. 168 (long-dashed)
are used. Other parameters are a = (.95 and ¢ = 0.168. (b) Amplitude of Re(Z,) of waves with varying mass as functions of f.. my, = 0.16 (solid),
my, = 0.164 (dotted) and my = 0.168 (long-dashed) are used. The nature of the potential with my, = 0.168 is drawn shifted vertically by 2.05 units for clarity.
Other parameters are a = 0.95 and o = 0.168.

wavelength decreases. In Fig. 2b, we present the instantaneous vatues of the reflection R and transmission T coefficients (i.e., R, and T, of
equation 21) for the same three cases. As the particle mass decreases, k increases and correspondingly R decreases, consistent with the limit
that as k — oo, there should be no reflection at all as in a quantum mechanical problem.

Figs 3(a) and (b) compare a few solutions where the incoming particles *hit’ the potential barrier. We choose @ = 0.95, o = 0.168 and
mass of the particle m, = 0.16, 0.164 and 0.168, represented by solid, dotted and long-dashed curves, respectively. Inside the barrier, the
wave decays and then returns to a sinusoidal behaviour, before entering into a black hole. In Fig. 3(b), we plotied the potential (shifted by
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Figure 4. (a) Contours of constant amplitude are plotted in the meridional.plane around a black holé. The radial direction on the equatorial plane is along the
x-axis and the vertical direction is along the y-axis. Both radial and theta solutions have been combined. Parameters are'a = 0.5, m, = 0.8 and o = 0.8. (b)

Three-dimensional view of RS-, are plotted in the meridional plane around a black hole. Both radial and theta solutions have been combined.
Parameters are a = 0.5, m, = 0.8 and 0 = 0.8.

2.05 along the vertical axis for clarity). Here, too, the reflection coefficient decreases as k increases, consistent with the classical result that
as the barrier height increases more and more, reflection is taking place strongly. Note, however, that the reflection is close to a hundred per
cent. Tunneling causes only a small percentage to be lost into the black hole,

Figs 4(a) and (b) show the nature of the complete wavefunction when both the radial and the angular solutions (Chakrabarti 1984) are
included, Fig. 4(a) shows the contours of constant amplitude of the wave (R_;,,5_1/;) in the meridional plane — X is along the radial
direction in the equatorial plane and Y is along the vertical direction. The parameters are a = 0.5, m, = 0.8 and o = 0.8. Some levels are
marked. Two successive contours have an amplitude difference of 0.1, In Fig. 4(b), the three-dimensional nature of the complete solution is
given, Both these figures clearly show how the wavelength varies with distance. The amplitude of the spherical wave coming from a large

distance away also gets weaker along the vertical axis and the wave is gencrally forced to fall along the equatorial plane, possibly due to the
dragging of the inertial frame.

4 CONCLUSIONS

The scattering of massive, spin-half particles from a spinning black hole has been studied with particular emphasis on the nature of the
radial wavefunctions and the reflection and transmission coefficients. The well-known quantum mechanical step-potential approach is
applied successfully to a complex problem of barrier penetration in a space — time around a spinning black hole. One significant
observation, was that the wavefunction and R, and T behave similarly close to the horizon independent of the initial parameter, such as the
particle mass m,,. Particles of different mass scatter off to large distances, which are completely different, thus suggesting that a black hole
could be treated as a mass spectrograph! When the energy of the particle becomes higher than the rest mass, the reflection coefficient
diminishes as it should. Similar to a barrier penetration problem, the reflection coefficient becomes close to a hundred per cent when the
wave hits the potential barrier. Another significant observation is that the reflection and transmission coefficients are functions of the radial
coordinates. This is clear from the strongly space-dependent nature of the potential barrier, which we approximate as a collection of steps.

Combined with the solution of the theta-equation, we find that the wave-amplitude vanishes close to the vertical axis, possibly because of
frame-dragging effects.
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Summary. —

Chandrasekhar separated the Dirac equation for spinning and massive particles in
Kerr geometry into radial and angular parts. In the present review, we present
solutions of the complete wave equation and discuss how the Dirac wave scatters off
Kerr black holes. The eigenfunctions, eigenvalues and reflection and transmission co-
efficients are computed for different Kerr parameters. We compare the solutions with
several parameters to show how a spinning black hole distinguishes mass and energy
of incoming waves. Very close to the horizon, the solutions become independent of
the particle parameters indicating an universality of the behaviour.

PACS 04.20.-q - Classical general relativity.
PACS 04.70.-s - Physics of black holes.

PACS 04.70.Dy - Quantum aspects of black holes.
PACS 95.30.5f - Relativity and gravitatiou.

11 Nuovo Cimento (in press)

1. — Introduction

One of the most important solutions of Einstein’s equation is that of the spacetime
around and inside an isolated black hole. The spacetime at a large distance is flat
and Minkowskian where usual quantum mechanics is applicable, while the spacetime
closer to the singularity is so curved that no satisfactory quantum field theory could be
developed as yet. An intermediate situation arises when a weak perturbation (due to, say,
gravitational, electromagnetic or Dirac waves) originating from infinity interacts with a
black hole. The resulting wave is partially transmitted into the black hole through the
horizon and partially scatters off to infinity. In the linearized (‘test field’) approximation
this problem has been attacked in the past by several authors [1, 2, 3, 4]. The master
equations of Teukolsky {2] which govern these lincar perturhations for integral spin (c.g.,
gravitational and electromagnetic) fields were solved numerically by Press & Teukolsky
(5] and "Teukolsky & Press [6]. While the equations governing the massive Dirac particles
were separated in 1976 [3], the angular eigenfunction and eigenvalue (which happens
to be the separation constant) have been obtained in 1984 [7) and radial solutions have

@© Societa Italiana di Fisica |
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been obtained only recently [8, 9, 10, 11]. Particularly interesting is the fact that whereas
gravitational and electromagnetic radiations were found to be amplified in some range
of incoming frequencies, Chandrasekhar [4] predicted that no such amplifications should
take place for Dirac waves because of the very nature of the potential experienced by the
incoming fields. Although this later conclusion was drawn using an asymptotic equation,
we show that this is indeed the case even when complete solutions are considered for the
Dirac wave perturbations. Chandrasekhar also speculated that one needs to look into
the problem for negative eigenvalues (X) where one might come across super-radiance for
Dirac waves.

In the present review, we discuss this itnportant problem and its solutions. We show
the nature of the radial wave functions as a function of the Kerr parameter, rest mass
and frequency of incoming particle. We also verily that super-radiance is indeed absent
for the Dirac field. Unlike earlier works [5, 6] where numerical (shooting) methods were
used to solve the master equations governing gravitational and electromagnetic waves,
we use a classical approach whereby we approximate the potential felt by the particle by
a collection of small steps.

Below, we present the separated Dirac equations from Chandrasekhar [4] using the

same choice of units: we choose i = 1 = G = ¢, so that the unit of mass becomes bGL,

the unit of time becomes. Z}.;Ci, and the unit of length becomes he

P
The equations governing the radial wave-functions [ty 1 corresponding to spin & !
respectively are given by:

AYDR_y = (X +imyr)AT Ry, (1a)

AIDIARR,y = (X = impr) IRy, (1b)

where, the operators D, and D} are given by,

D, =0, + %‘— + 271(-"—“A—1\il—), (20)
iK (r— M)
DL:@,—K+27zT—, (2b)
and
A=1r24a*-2Mr {3a)
K =(0"+d)o+am. (30)

Here, a is the Kerr parameter, 1t is an integer or half integer, @ is the frequency ol incident
wave, M is the mass of the black hole, m,, is the rest mass of the Dirac particle, X is the
eigenvalue of the Dirac equation and m is the azimnthal quantam number.
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The equations governing the angular wave-functions S:Hz- corresponding to spin :}:%
respectively are given by:

LSy =—(X—ampcosf)S_y (4a)

c;s_% = +(X + amy cos)S, 4 (4b)

where, the operators £, and L}, are given by,

Ln=0s+Q+ ncot#, (5a)
Ll =08 -Q+ncot (56)

and
Q = aosinf + m cosec §. (6)

For massless particles these equations were solved using spin-weighted spheroidal har-
monics {12, 13]. Note that both the radial and the angular sets of equations i.e., egs.
1(a-b) and egs. 4(a-b) are coupled equations. Combining eqs. 4(a-b), one obtains the
angular eigenvalue equations for the spin-% particles as [7]

amy sin §

=0. (7)

[

t  _GiMpsIib ¢ 2 _ 2 2 2
[ﬁ%ﬁ%+x+ampcosé’£%+(x a“my cos 9)} S_

There are exact solutions of this cquation for the cigenvalues X and the eigenfunctions
S_% when p = ’—";*’— = 1 in terms of the orbital quantum number [ and azimuthal quantum
number m. These solutions are [7]:

1 2
2 _ Y 2.2 _ 8
X (l+2) + ac(p+2m) + a’c [1 2(l+1)+a0'x]’ (8)
and
_ ay .
1Sim = Yim — m%}l+lm (9)
where,

p=F(Ll); s=Fl+1L1+1); y=F{l+1)

and

) 11 _ 1o
Pl da) = [(2A41) 2L +D)F < lalm0lhm > [< L1500 > =1V <l =5l g >,
(10)
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with < ....].. > are the usual Clebsh-Gordon coefficients. For other values of p one has
to use perturbation theories. Solutions upto sixth order using perturbation parameter
ao are given in Chakrabarti (7] and are not described here. The eigenfunctions X are
required to solve the radial equations which we do now.

The radial equations 1{a-b) are in coupled form. One can decouple them and express
the equation either in terms of spin up or spin down wave functions Ry but the expres-
sion loses its transparency. It is thus advisable to use the approach of Chandrasekhar {4]
by changing the basis and independent variable r to,

M. -
ro=py Mretamjo, (i~1)———-—————’ ATLAN (3——1) (r>ry). (10)
Ty — - T+ Ty —T- ’

d d
o = %E’ w? = 4 a? o? = a® + am/o, (12)

to transform the set of coupled equations 1(a-b) into two independent one dimensional
wave equations given by:

i 1

dr, w? 3
(13)
Here, Dy = “j_\—’(a-g? + i0) and 'D(t, = “[’3—2— 35}: — i0) were used and wave functions were
redefined as R_y = P_y and YR,y = P, .
We are now defining a new variable,
0 = tan~'(m,r/X) (14)
which yields,
X . myr
0sf = ———— and sinf = ——5—L—
¢ V(X% + m2?) V(XE + m2r?)
and
(X £ imyr) = exp(Fi0)/(X* + 171.31'2),
so the coupled equations take the form,
d ic| Py = éi(xz +m2r2)2pP_sexp [—itan™! T (15a)
dr, 7)Y T 2 P -4eoP ‘ X ’

and

d . A} Ly [ myr
(dr, +w) P_% = :}7(7\2 + m§r2)1/2P+%e:cp [ztan ! ( ; )] . (15b)
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Then defining,
P = 1. ~1 [ myr .
1= ¢+% exp | —5i tan ~ (16a)
and
P P_1 ea -{-l  tan~! Mp 164
= ep l4+=2t —t
Ly = oy eap |5 tan™t (D)) (166)
we obtain,
di, A Xm 1 i
. P Y 2,2y1/2 -
d. Y (1 Y ) e = W ) ey (70
and
dy_y A xm 1 Al
; =4 - — 272 2,2\1/2,
dr. e (1+w2 20 X2+m§1~2 1/)“% R (A 4 myr) ! w+%' (170)

Further choosing #. = r. + f;tan"‘(%{i) so that dr, = (1 + “%M—#—,)d‘lu, the

2o '/\"-1-";;‘,1'-'
above equations become,

1
<d(1'. - i”) Pay = Wiy, {18a)

and

d .
(di-. i “’> oy = Wiy (180)

where,

W AF (X2 +m2r?)3/? |
w2(X? + m2r2) + Xmp A /20

(19)

Now letting Z4 = 1/J+% + 1/)_% we can combine the differential equations to give,

d . - .
((h”'. - W) Zy =doZ_, (20a)

and

d
< ot W) Z_=iocZ,. (200)

From these equations, we readily obtain a pair of independent one-dimensional wave
equations,
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d? .
(m-}-az) Zy =Valy. (21)

where, Vy = W2+ 4%

dr, !

B AYX? + m2r2)3/2
[W2(x? + mr?) + xmy A/20)?

[AFX? 4+ m2r?)P2 & (1 = M)(X® + m2r?) + 3mirA))

A%(x2 +m2r2)5/2
F - ,
[W2(X? + m2r2) + X, A/ 20]3

[2r(X* + 77:.,3:1'2) + ‘277);‘:(4)27' + Xy, (r - M) /o). (22)

One important point to note: the transformation of spatial co-ordinate » to r, (and 7.)
is taken not only for mathematical simplicity but also for a physical significance. When
7 is chosen as the radial co-ordinate, the decoupled equations for independent waves
show diverging behaviour. However, by transforming those in terms of r. (and #.) we

obtain well behaved functions. The horizon is shifted from » = ry to 7. = —o0 unless
o <o, = —am/2Mr, (eq. 11). In this connection, it is customary to define o, where
a? =0 (eq. 13). Thus, 0. = —m/a. If ¢ < o, the super-radiation is expected [4].

2. — Solution Procedure

The choice of parameters is generally made in such a way that there is a significant
interaction between the particle and the black hole, i.e., when the Clompton wavelength
of the incoming wave is of the same order as the outer horizon of the Kerr black hole.
Similarly, the frequency of the incoming particle {or wave) should be of the same order
as inverse of light crossing time of the radius of the black hole. These yicld [8],

m, ~ o~ [M + \/(M?*~a?)]". (23)

One can easily check from equation (22) that for » = oc (i.c., i = o) Vi — m}f. S0
the total energy of the physical particle should greater than square of its rest mass. So
if we expand the total parameter space in terms of frequency of the particle (or wave),
o and rest mass of the particle, m,, it is clear that 50% of total parameter space where
o < m, is unphysical (In this case, the energy is such that a particle released from a
finite distance cannot go back to infinity after scattering.), and one need not study this
region. Out of the total physical parameter space there are two cases of interest: (1) the
waves do not ‘hit’ the potential barrier and (2) the waves do hit the potential barrier.
To sole these potential problem first, we replace the potential barrier by a large number
of steps as in the step-barrier problem in quantum mechanics. Fig. I shows one such
example of the potential barrier [10] V4 (£q. 22) which is drawn for @ = 0.5, m, = 0.8
and o = 0.8. In reality we use tens of thousands ol steps with suitable variable widths
so that the steps become indistinguishable from the actual function. The solution of Liq.
22 at nth step can be written as [14],

Z-l-‘n = Aneu:p[i/c,,r.‘,,] + l}'l”""z’["”‘f"r‘,”] (24)
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Fig. 1 : Behaviour of V4 (smooth solid curve) for a = 0.5, m, = 0.8, ¢ =
0.8. This is approximated as a collection of steps. In reality tens of thousand
steps were used with varying step size which mimic the potential with arbitrary
accuracy.

when energy of the wave is greater than the height of the potential barrier. The standard
junction condition is given as [14],

dz dz
Z+,n = Z+,n+1 and —(}-;',iln = T:l’l-%l- (25)

The reflection and transmission co-eflicients at nth junction are given by:

An+l(kn+1 - k'n) + Bn-}-l(k'n+l + kn) .

Ry = ;
" An-{-l (kn+l + kn) + ”n-}—l(kn.-{-l - kn)

Ty=1~ R, (26)

At each of the n steps these conditions were used to connect solutions at successive steps.
Here, k is the wave number (k = \/o? — V) of the wave and k,, is its value at nth step.
We use the ‘no-reflection” inner boundary condition: . — 0 at #, — —o0.
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Fig. 2a: Reflection (1) and transmission (1) coellicients of waves with varying
mass as functions of #,. m, = 0.78 (solid), mp = 0.79 (dotted) and m, = 0.80
(long-dashed) are used. Other parameters are a = 0.5 and o = 0.8. Insct shows
It in logarithimic scale which falls off exponentially just outside the horizon.

For the cases where waves hit on the potential barrier, inside the barrier {(where
0% < Vy) we use the wave function of the form

Zpm = Apexpl—anty ] + Bueaplonfa ] (27)
where, an = v/Vi — 02, as in usual quantum mechanics.

3. — Examples of Solutions

Fig. 2ashows three solutions [amplitudes of R,(.‘(.Z+‘)] for parauneters: a = 0.5, 0 = .8
and m, = 0.78, 0.79, and 0.80 respectively in solid, dotted and long-dashed curves. The
energy o2 is always higher compared to the height of the potential barrier (Fig. 1) and
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Fig. 2b: Amplitude of Re(Z;) of waves with varying mass as functions of #..
m, = 0.78 (solid), m, = 0.79 (dotted) and my, = 0.80 (long-dashed) are used.
Other parameters are a = 0.5 and o = 0.8.

therefore the particles do not ‘hit’ the barrier. k goes up and therefore the wavelength
goes down monotonically as the wave approaches a black hole. It is to be noted that
though ours is apparently a ‘crude’ method, it has flexibility and is capable of presenting
insight into the problem, surpassing any other method such as ODE solver packages.
This is because one can choose (a) variable steps depending on steepness of the potential
to ensure uniform accuracy, and at the same time (b) virtually infinite number of steps
to follow the potential as closely as possible. For instance, in the inset, we show R in
logarithmic scale very close to the horizon. All the three curves merge, indicating that
the solutions are independent of the mass of the particle and a closer inspection shows
that here, the slope of the curve depends only on o. The exponential dependence of R,
close to the horizon becomes obvious. Asymptotically, V4 = m;{ {eq. 22), thus, as m,
goes down, the wavelength goes down. In Fig. 2h, we present the instantancous values
of the reflection R and transmission 1" coeflicients (i.c., I3, and T, of Lq. 26) for the
same three cases. As the particle mass is decreased, k goes up and corresponding I? goes
down consistent with the limit that as & — oo, there would be no reflection at all as in
a quantum mechanical problem.
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Fig. 3a: Reflection (R) coefficient of waves with varying mass as functions
of .. m, = 0.16 (solid), m, = 0.164 {dotted) and m, = 0.168 (long-
dashed) are used. Other parameters are a.= 0.95 and o = 0.168.

Figs. 3(a-b) compare a few solutions where the incoming particles ‘hit’ the potential
barrier. We choose, a = 0.95, ¢ = 0.168 and mass of the particle m, = 0.16, 0.164, 0.168
respectively in solid, dotted and long-dashed curves. Inside the barrier, the wave decays
before coming back to a sinusoidal behaviour, before entering into a black hole. In Fig.
3b, we plotted the potential (shifted by 2.05 along vertical axis for clarity). Here too,
the reflection coefficient goes down as k goes up consistent with the classical result that
as the barrier height goes up more and more, reflection is taking place strongly. Note
however, that the reflection is close to a hundred percent. Tunneling causes only a few
percent to be lost into the black hole.

Figs. 4(a-b) show the nature of the complete wave function when both the radial and
the angular solutions (7] are included. Fig. 4a shows contours of constant amplitude
of the wave (R_1/25-1/2) in the meridional plane - X is along radial direction in the
equatorial plane and Y is along the vertical direction. "The parameters are a = 0.5,
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Fig. 3b: Amplitude of Re(Z4) of waves with varying mass as functions of
fu. mp = 0.16 (solid), my, = 0.164 (dotted) and my, = 0.168 (long-dashed)
are used. Nature of potential with m, = 0.168 is drawn shifting vertically
by 2.05 unit for clarity. Other parameters are a = 0.95 and o = (.168.

mp, = 0.8 and o = 0.8. Some levels are marked. "T'wo successive contours have amplitude
difference of 0.1. In Fig. 4b a three-dimensional nature of the complete solution is given.
Both of these figures clearly show how the wavelength varies with distance. Amplitude
of the spherical wave coming from a large distance also gets weaker along the vertical
axis and the wave is forced to fall generally along the equatorial plane, possibly due to
the dragging of the inertial frame.

4. ~ Conclusion

We review here the scattering of massive, spin-half particles from a spinning black
hole with particular emphasis to the uature of the radial wave functions and reflection
and transmission coellicients. Here we presented a well known quantin mechaniceal step-
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Q 109

Fig. 4a: Contours of constant amplitude are plotted in the meridional plane
around a black hole. Radial direction on equatorial plane is along X axis and
the vertical direction and along Y. Both radial and theta solutions have been
combined. Parameters are a = 0.5, m;, = 0.8 and ¢ = 0.8.

potential approach [10] but one can verily by any numerical technique that the solution
would remain the same. A modified WKB approximation [8, 9, 11] also yields similar
result in Kerr geometry [15]. The approach presented here (i.e., step potential approach)
is very transparent since a complex problem of barricr penetration in a spacetime around
a spinning black hole could be tackled very easily. We report a few significant obscrva-
tions of these papers that the wave function and R, and 1" behave similarly close to the
horizon independent of the initial parameter, such as the particle mass m,. Particles of
different mass scatter off to a large distance completely differently, thus giving an im-
pression that a black hole could be treated as a tnass spectrograph! When the energy of
the particle becomes higher compared to the rest mass, the reflection coefficient dimin-
ishes as it should it. Similar to a barrier penetration problem, the reflection coeflicient
becomes close to a hundred percent when the wave hits the potential barrier. Another
significant observation is that the reflection and transmission coclficients are functions
of the radial coordinates. This is understood easily because of the very nature of the
potential barrier which is strongly space dependent which we approximate as a collection
of steps. Clombining with the solution of theta-equation, we find that the wave-amplitude
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Fig. 4b: Three dimensional view of R_;/2S_12 are plotted in the meridional

plane around a black hole. Both radial and theta solutions have been combined.
Parameters are a = 0.5, mp, = 0.8 and o = 0.8.

vanishes close to the vertical axis, possibly due to the frame-dragging effects.

13
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