


QUANTUM TRANSMITTANCE 

THESIS SUBMITTED FOR THE DEGREE OF 
DOCTOR OF PHILOSOPHY (SCIENCE) 

OF 
JADAVPUR UNIVERSITY 

2002 

TAPAS M I T R A  

Jadavpur University 
Kolkata 

S.N. BOSE NATIONAL CENTRE FOR BASIC SCIENCES 

JD Block, Sector 3, Salt Lake, Kolkata - 700 098 



C E R T I F I C A T E  

This is to certify that the thesis entitled Q U A N T U M  T R A N S M I T T A N C E  
submitted by Tapas Mitra for the award of Ph.D (Science) degree of Jadavpur 
University, India, is based upon his own work carried out under the supervision of 
Prof. Abhijit Mookerjee at S. N. Bose National Centre For Basic Sciences, Calcutta. 
Neither this thesis nor any part of it has been submitted for any degree/diploma or 
for any other academic award anywhere before. 

Se~or Professor, 
Dean (Academic Programme), 
Satyendranath Bose National Centre For Basic Sciences, 
JD Block, Sector 3, Salt Lake City, Kolkata 700098 
India 
Date: q//o/2,oo..2 

~ / ABHIJIT MOOKERJEB 

8.N. Boee NiiOomJ Cent~ kx B~lo 8dmtms 
m ~  ~rm. m~mnm.yoo oeo 

~ t  i, alm, Kelalm.~ ml 



ii 

Acknowledgments 

I remember my late father for imparting a deep passion for knowledge in me. I 
express my gratitude to Prof. A. Mookerjee for excellent supervision and generous 
help and for teaching me the physics of disordered solids. I thank Dr. P. K. Thakur 
who was my collaborator in a significant portion of my research work. I should like 
to thank the late Prof. C.K. Majumdar for giving me the opportunity to work in the 
Centre. I thank the members of the staff of the S.N. Bose National Centre for Basic 
Sciences, Kolkata, where my research work was carried out, for their cooperation 
and help. I thank the members of the staff of the Sa.ha Institute of Nuclear Physics, 
Kolkata for their support. I am grateful to all my teachers. My special thanks are 
for Prof. P. Dasgupta, Prof. P. Rudra and Dr. A.P. Chatterjee for their support 
and constant encouragement. I thank the authorities and the members of the staff 
of Ranaghat College, Ranaghat and Gurudas College, Kolka~ta for their cooperation. 
I thank the Council for Scientific and Industrial Research, Government of India for 
financial support. Finally, I wish to thank my family members for their constant 
support. 



List of Publ icat ions  

111 

. Resonance pattern in electronic transmittance for two identical coupled random- 
dimer chains under different lead configurations, Mitra T. and Thakur P.K., 
Phys. Rev. B53 9895 (1996) 

2. Characterization of the transmission resonances in different energy regimes 
by the multifractal scaling analysis of the electronic transmittance in a one- 
dimensional random dimer potential, Thakur P.K. and Mitra T., J. Phys.: 
Condens. Matter 9 8985 (1997) 

3. Electronic transmittance and localisation in quasi-lD systems of coupled iden- 
tical n-met chains, Mitra T. and Thakur P.K., Int. J. Mod. Phys. B 1773 
(1998) 



C o ~ e ~ s  

iv 

2 

4 

5 

I n t r o d u c t i o n  

1.1 

1.2 

1.3 

1.4 

1 

In t roduc t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

The  Measurement  of Conductance  . . . . . . . . . . . . . . . . . . . .  5 

The  Scat ter ing formulat ion . . . . . . . . . . . . . . . . . . . . . . . .  9 

Specific Models Studied . . . . . . . . . . . . . . . . . . . . . . . . .  15 

E f f e c t  o f  i n t e r c h a i n  c o u p l i n g  o n  t r a n s m i t t a n c e  in  c o u p l e d  r a n d o m  

d i m e r  c h a i n s  23 

2.1 In t roduct ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

2.2 Model of Two coupled Random-Dimer  Chains . . . . . . . . . . . . .  26 

2.3 Vector Recursion Algor i thm . . . . . . . . . . . . . . . . . . . . . . .  27 

2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

2.5 S u m m a r y  and Conclusion . . . . . . . . . . . . . . . . . . . . . . . .  40 

C h a r a c t e r i z a t i o n  o f  t r a n s m i s s i o n  r e s o n a n c e s  

3.1 

3.2 

3.3 

3.4 

3.5 

42 

In t roduc t ion  42 

Electronic  t r ansmi t t ance  in the transfer mat r ix  me thod  . . . . . . . .  45 

Mult i f ractal  Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

Results  and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

S u m m a r y  and Conclusions 59 

E l e c t r o n i c  T r a n s m i t t a n c e  a n d  L o c a l i z a t i o n  in  q u a s i - l d  s y s t e m s  o f  

c o u p l e d  i d e n t i c a l  n - m e r  c h a i n s  61 

4.1 In t roduc t ion  . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . .  61 

4.2 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

A M o d e  B a s e d  F o r m u l a t i o n  o f  t h e  V e c t o r  R e c u r s i o n  T e c h n i q u e  

5.1 

5:2 

69 

Introduction ................................ 69 

Formulation. .......................... . .... 71 

5.211 The mode propagation picture .................. 71 

5.2.2 Mode-mode scattering ...................... 75 



V 

5.2.3 Vector recursion in a mode basis ................. 78 

5.3 Discussion ................................. 83 



List of Figures 

I.i The Landauer scattering picture ..................... 6 

2.1 Transmittance vs Energy for (a) s CB--0.25, c---010, Vc-0.001, 
V=I.O and N=2256 sites. (b) CA=0.42, CB=0.3, C=0.2, Vc=0.001, 
V = I . 0  and N-3256 sites . . . . . . . . . . . . . . .  . . . . . . . . . . . .  33 

2.2 Logarithm of Transmittance vs Energy for CA=0.5, ~B=0.25, c=010, 
Vc----0,35, Y - - l . 0  (a) N-2256 and (b) N-3256 sites . . . . . . . . . . .  35 

2.3 Logarithm of Transmittance vs Energy for CA--0.42, eB--0.3, C--0.2, 
Y = l . 0  N=2256 (a) Vc=0.125 (b) V~=0.25 and (c) V~=0.5 . . . . . . .  36 

2.4 Logarithm of Transmittance vs Energy for eA----0.42, CB--'0.3, C=0.2, 
V=I .O N=3256 Vc=0.045 (a) leads attached to corners (b) leads at- 
tached to two end of the lower lead . . . . . . . . . . . . . . . . . . . .  38 

2.5 Logarithm of Transmittance vs Energy for (a) CA=0.5, CB=0.25, C=0.1, 
V = I . 0  N=3256 V~=I,O and (b) CA=0.42, eB-=0.3, C=0.2, V----1.0 N=3256 
Vc=l.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

3.1 Transmittance vs Energy for (a) ~A----0.45, cs=0.145, c=010 and (a) 
N=2 • 103 and  (b) N=2 • 105 sites. In this figure the upper graph 
has been vertically shifted by one unit in order to distinguish it from 
the one below . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 

3.2 Transmittance vs Sample Size for the same set of parameters as figure 
3.1 for (top) E=0.452 28 (b) E=0.472 16 and (c) E-0.471 92 units. 
In this figure the upper graphs has been vertically shifted by one unit 
and two units respectively in order to distinguish it from the one below 55 

3.3 The f ( a )  vs o~ curve for the same parameters as figure 3.1 for the state 
at (a) E=0.452 28 (b) E=0.472 16 (c) E=0.47192 units for N=5 • 104 
(bold), N = I  • 105 (dashed) and N=2 • 105 (dotted) . . . . . . . . .  57 

vi 



vii 

3.4 T h e . f ( ~ )  v s  o~ curve for CA = 0.15, CB--0.045 and c=0.15 for the 

state es at (a) E=0,15246 and (b) E=0.18992. The three curves are 
for same sizes as in figure 3.3 . . . . . . . . . . . . . . . . . . . . . .  58 

4.1 Transmittance v s  Energy for eA = 0.01 unit (host), eB = 0.11 unit (im- 

purity), c=0.15 (impurity concentration), N=6000 sites, and inter- 
chain couplings (solid,bottom) Vc=0.15 unit, (dashed, middle) Vc=0.45 

unit and (dashed, top) V c = l . O ,  for a case for two coupled 4-met chains. 

The intrachain coupling in all cases was 1.0 . . . . . . . . . . . . . . .  64 

4.2 Transmittance v s  Energy for CA = 0.01 unit (host), r  = 0.11 unit 

(impurity), c--0.15 (impurity concentration), (bottom) N-2000  sites, 
and (top) N - 6 0 0 0  sites. V c = l . O ,  for a case for two coupled 4-met 
chains. The intrachain coupling in all cases was 1.0 . . . . . . . . . . .  66 

4.3 Transmittance v s  Energy for the same site energies for the host and 
the impurity and for the same impurity concentration as in the pre- 

vious figure but for Vc = 0.5 unit and N=6000 sites (dashed) and 
N=2000 sites (solid) for a 4-met in four c h a i n s . .  . . . . . . .  . . . . .  67 

5.1 A two-dimensional scatterer with two-dimensional leads ........ 71 

5.2 Some mode profiles along the finite section of a two-dimensional lead 73 

5.3 An illustration of 'ghost' leads . . . . . . . . . . . . . . . . . . . . . . .  74 

5.4 A mode propagating along a lead . . . .  ': . . . . . . . . . . . . . . .  76 

5.5 Scattering in a L-geometry and a Star-geometry . . . . . . . . . . . .  82 



E R R A T A  

. T h e  b o t t o m  s e n t e n c e  o f  p a g e  21 and  t h e  top  s e n t e n c e  

o f  p a g e  22 s h o u l d  be r e p l a c e d  b y  " T h i s  i s  why  t h e  

m e t h o d  c a n  be  a p p l i e d  t o  t h e  c a s e  w h e r e  s o m e  l e a d s  

a r e  a t t a c h e d  t o  i n t e r m e d i a t e  p o s i t i o n s  o f  t h e  

s a m p l e s  ( w h i c h  a r e  n o t  n e c e s s a r i l y  on t h e  two 

o p p o s i t e  e n d s ) ,  f o r  e x a m p l e  t o  t h e  c a s e s  o f  4 - 

l e a d s  s y s t e m s  ( ( G o d i n  a n d  H a y d o c k  ( 1 9 8 8 ) ) ,  G o p a r  e t  

a l  ( 1 9 9 4 ) ,  ( T e r u c h a  e t  a l  i n  K i r k  and  R e e d  ( 1 9 9 2 ) ) .  

. P a g e  3 4 ,  l i n e s  11 and  1 2 ,  t h e  s e n t e n c e  " h e r e  t h e  

l n T  vs  E p l o t  s h o w s  t h e  g r o w t h  . . . . . . . . .  w h o l e  

e n e r g y  r e g i o n  c o n c e r n e d "  s h o u l d  be d r o p p e d .  

. C h a p t e r  3 ,  " v i c i n i t y "  s h o u l d  be 

" v i c i n i t y  o f  d i m e r  o n - s i t e  e n e r g y " .  

r e p  l a c e d  b y  



Chapter  1 

Introduct ion  

1.1 Introduct ion .  

Studies of electronic eigenstates and their effect on the transport properties of sys- 

tems where the potential has broken translational symmetry either because of dis- 

order or incommensuration and inhomogeneity, have been the subject of a large 

body of work since the publication of Anderson's seminal paper in 1958 ( Ander- 

son (1958)). He showed that, contrary to the extended character of the electronic 

eigenstates in periodic potentials, under certain conditions, there is the possibility 

of localization of electronic eigenstates in random potentials. The degree of disorder 

is usually defined by a parameter A which measures the width of the probability 

distribution of potential parameters. The elastic mean free path level fez, which at 

T-0 is the only characterization of scattering, is a function of A and depends on 

the dimension of the system. 

For strong disorder A, the random potential scattering cuts off the wave function 

tail at some characteristic length .~ called the localization length. For such strong 

disorders, it is intuitively clear that the electron is contained within local wells. For 

very weak disorder it would seem plausible that the wavefunctions recover infinite 
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span, but this does not happen in one dimensional (l-D) and possibly in two di- 

mensional (2-D) systems, of course, in absence of short-ranged correlation in the 

distribution of the potential parameters or applied external fields. 

The importance of localization depends on the ratio of ~ to the sample length 

L. If ~ >> L, then even though the impurity potential localizes the wavefunction 

(at least it would in an infinitely long sample of the same material), the measured 

dimensionless conductance g >> 1, where g = (h/e2)G, G being the conductance. 

In this case, even though the wavefunction spans the sample the conductance is 

still not impervious to localization. As the temperature T decreases, the coher- 

ence length Lr for the wave-function increases. This happens because the electron 

rarely encounters a phase randomizing scattering by the phononic oscillations in 

the system. When Lr >> l~l , the carrier has some likelihood of bouncing around 

and then returning back to its starting point. If phase coherence is maintained, the 

two sets of (time-reversed) paths clockwise and anti-clockwise around the loop of 

impurities interfere at the origin. The two partial waves arrive in phase (the path 

is of the same length in either direction so that r - r = 0) and interfere construc- 

tively. Constructive interference implies that less current flows away from the origin 

and the resistance rises. As the temperature, T, decreases and Lr increases, loops 

of larger and larger circumference contribute to the interference and resistance in- 

creases Bergmann (1983). The mechanism is referred to as weak localization and the 

time-reversed pairs of paths are sometimes called cooperons because they bear formal 

similarity to superconducting pair excitations ( Al'tshuler and Aronov (1985)). An 

applied external magnetic field reduces the effect of weak localization by destroying 

time-reversal symmetry. One standard method of obtaining transport co-efficients, 



Chapter 1. Introduction 3 

taking above mentioned quantum-mechanical corrections into consideration is that 

formulated by Kubo and Greenwood ( Kubo (1956-7), Greenwood (1958)). The 

Kubo method underlies almost all of theperturbation calculations of conductance. 

Conductance calculated via Kubo's formula yields the Drude conductivity (which 

can be more directly obtained via classical Boltzmann transport Formalism) only if 

one assumes tha t  the electron wavefunction is randomized between collisions with 

impurities. There is a parallel formulation by Landauer (Landauer (1970)), whose 

correspondence with the Kubo-Greenword formula is described by Fisher and Lee 

(1981)) 

In the oppositetimit, where the disorder is strong, g ~ 1 and the resistance tends 

to scale to infinity as T ~ 0 and the sample tends to become an electrical insulator. 

In this regime of strong or Anderson localization, let(A, D) ~ A ( where A is the 

Fermi wavelength)and the electronic eigenstate corresponding to the Fermi Level 

is exponentially localized (the transmittance T, discussed later is also exponentially 

localized). If the random potential is not strong enough then it cannot localize the 

states far away from the band edge to finite regions of space. Instead, the amplitude 

of the states, although fluctuating more or less randomly, will be non-zero essentially 

everywhere. Consequently, these states will be called extended. Within the energy 

region of extended states no localized states can exist. To see this, let us assume 

that there is a localized state in the extended region for some configuration of the 

disorder. Then by infinitesimally changing the disordered potential, a coupling 

between the localized and extended states is introduced and the localized state 

hybridizes with the extended states into new extended states. As a consequence 

two energies denoted by Ec and Etc must exist within the spectrum separating the 
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extended from the localized states. Localized states do not contribute to transport  

even if they are situated at the Fermi Level, whereas extended states do. Thus E~: 

and Ec, are called mobility edges. In general, the mobility edges depend on the 

degree of disorder. If disorder A is large enough, then the mobility edges will merge 

into the centre of the band. The system becomes an insulator and the transition 

is called the Anderson Transition and is characterized by a critical value A c of the 

disorder. A < A c means weak localization for at least some states and .( -+ c~ that 

is the wave-function is not exponentially localized for those states I. It is noteworthy 

that determination of the exact spatial nature of an electronic eigenstate has been 

attempted in various ways by numerous authors (see references in Chapter 3). 

In the above discussion, the electron-electron interaction has been assumed to 

be negligible. This assumption is justified in many situations. It may be noted that, 

although previously it was thought that interaction enhances localization, in some 

recent works, electron interaction has been found to be responsible for delocalization 

in some situations~Shepelyanski (1994), RSmer and Schreiber M. (1997), Evangelou 

(1996)) 
The study of electronic transport in translationally non-invariant systems has 

been going through a rapid advance since the eighties. On the one hand, this 

advance has been because of the fabrication of smaller and smaller samples from a 

wide variety of materials and the development of measurement techniques on these 

samples at very low temperatures. On the other hand, new theoretical concepts 

like universal conduction fluctuation and weak localization, new theoretical tools 

1 Note, that this may not mean that the state is extended. It could be algebraically localized,for 
example 



Chapter 1. Introduction 5 

and availability of bigger and faster computers have facilitated the advance. One 

unforeseen benefit of this development that  has started to emerge from tim study 

of the small samples in the quantum mechanically coherent regime is that  we are 

better able to understand some of the deep issues of quantum mechanics. We have 

experimentally seen the non-local nature of conductance and we now know what we 

measure depends upon how we measure it. 

1.2 T h e  M e a s u r e m e n t  of  C o n d u c t a n c e  

Now I turn my attention to our work. We have attempted to study the steady-state 

electrical conductance by taking into account contributions of elementary quantum 

scattering events following Landauer approach and its generalizations ( Landauer 

(1970)). In this formalism, perfectly conducting incoming and outgoing leads are 

attached to the sample. These leads serve as 'support space' for incoming and 

outgoing quantum states. In order to support asymptotically free-from-scattering 

incoming and outgoing quantum states, the leads have to be free of scattering centres 

and hence must be considered perfect conductors. 

The scatteringapproach to the motion of electrons in disordered conductors, 

pioneered by Landauer, expresses the conductance solely in terms of the total trans- 

mission coefficients of the sample, considered as a single, complex scattering center. 

We summarize here briefly the arguments leading to the simplest expression of this 

type, which applies to the ideal two-probe conductance measurement (Imry (1986)) 

described below. 

We note that any derivation of this type is to some extent heuristic , because 

no theorist had attempted to model the full complex interaction Hamiltonian cot- 
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chemical potentials 

. . . . . . . .  i v  

f 

incoming leaa .utgomg ~eau 
scatterer 

Figure 1.1: The Landauer scattering picture 

responding to an experimental resistance measurement. 

An ideal two-probe measurement is one in which the sample is attached between 

two perfect reservoirs with electro-chemical potentials, #1 and #2 = #1 + eV respec- 

tively (where V is the applied voltage) and these reservoirs serve both as current 

source and sink and as voltage terminals. A perfect reservoir is defined to have the 

following properties: 

1. It is initially in equilibrium at electro-chemical potential # and this equilibrium 

is negligibly disturbed by the current flow. 

2. Particles entering the reservoirs never return without loss of phase memory. 

3. The connection between the reservoir and the sample generates no additional 

resistance. 

Because of the imbalance of chemical potentials current will flow from reservoir 

i to 2. The total current which flows can be obtained from a counting argument. 

In the energy interval eV between tt2 and #t electrons are injected into right-going 

states emerging from reservoir 1, but none are injected into left-going states emerging 

from reservoir 2. Thus there is a net right-going current proportional to the number 

of states in the interval #1 - # 2 ,  given by 
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N N 
I = e ~ vi dni 

i j 

= Y (1 .1 )  
z3 

where N is the number of propagating channels in the sample, vi is the longitudinal 

velocity for the i-th momentum channel at the Fermi surface, Tit is the transmission 

probability from j to i, and we have used the fact that for a quasi-lD density of 

states, drip~de = (1/h)vi.  

If we assume that  the conductance is measured by dividing the induced current 

by the chemical potential difference between two regions deep within the reservoir8 

(where by assumption equilibrium is negligibly disturbed), then equation (1.1) yields 

an expression for the two-probe conductance, g (measured in units of e2/h),  

N 

g-" ~ T i j  = Tr[tt  t] (1.2) 
ij 

where t is the transmission matrix, a sub-matrix of the scattering S-matrix whose 

standard definition is given below. Thus the two-probe conductance is expressible 

solely in terms of the eigenvalues of the matrix t t  t, bu t  note that these eigenval- 

ues are not simply related to those of the complete scattering S-matrix (which are 

modulus unity and mix up reflecting and transmitting channels). 

Equation (1.2) can also be obtained from a more formal derivation from quantum 

linear response theory ( Fisher and Lee (1981), Stone and Szafer (1988), Baranger 

and Stone (1989)), except that the heuristic construction of perfect reservoirs is 

hidden in the choice of boundary conditions : the reservoirs are replaced by semi- 



Chapter 1. Introduction 8 

infinite perfect leads at fixed potentials. A useful intermediate result in such a 

derivation is that  the two-probe conductance is given by the  flux of the conductivity 

tensor through the two surfaces connecting the sample to the leads, 

g - / / dSl.a(xi,x2).dS2 

this expression can be transformed using the integral equation of scattering theory 

to yield equation (1.2). Since the conductivity tensor for a non-interacting system 

is given by the well-known expression involving the energies and current matrix el- 

ements of the exact eigenstates ( Baranger and Stone (1989)), this emphasizes that 

the conductance is not determined solely by the eigenvalues of the Hamiltonian. 

Therefore we find the approach developed below more natural and potentially more 

powerful than arguments applying random matrix theory to the ensemble of disor- 

dered Hamiltonians. Nonetheless, Al'tschuler and Shklovskii (1986) have certainly 

given further insight into the origin of the universal conductance fluctuations using 

the latter approach combined with microscopic calculations. 

The two-probe conductance measurement described by equation (1.2) does cor- 

respond reasonably well to one common type of experimental measurement, even 

in the limit of zero disorder in which it predicts a qua~tized contact resistance ( 

Imry (1986)) very similar to that recently observed experimentally ( van Wees et 

al (1988), Wharam et al (1988)). It was assumed in the derivation of equation 

(1.2) that  the current through the sample and the voltage across the sample are 

measured at the same reservoir. However, the majority of experiments performed 

on mesoscopic conductors are so-called four-probe measurements in which a current 

is injected from a source into a sink, and the voltage induced across the sample is 
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measured by separate voltage probes connected with a separate pair of reservoirs. 

This is done to avoid contact resistance and other spurious effects. It is now clear 

that the behaviour in this situation can differ substantially from the predicted by 

equation (1.1), particularly when the voltage probes are spaced' much less than an 

inelastic scattering length .apart, and an adequate extension of the theory ( Stone 

and Szafer (1988)), based upon a multi-probe Landauer formula ( Biittiker et al 

(1985), Landauer (1970)) has recently been developed. 

However for the general questions addressed here, relating to the minimal phys- 

ical assumptions necessary to generate the universal statistical properties of dis- 

ordered conductors, we do not need to consider the additional complications in- 

troduced by the multi-probe approach. Moreover, in the more general theory, the 

fundamental statistical quantities are still moments of the transmission matrix, so 

that the information Obtained from the two-probe theory should still be of relevance 

in that context. Extensions of our approach to the multi-probe situation have not 

yet been made. We do however remind the reader of the necessity of using the multi- 

probe theory if one wishes to obtain a quantitative description (or even in some cases 

qualitative a~eement ) with many experiments on mesoscopic conductors. 

2 1.3 The Scattering formulation 

We have just seen that the calculation of the quantum-mechanical conductance 

is equivalent to the calculation of the transmission matrix t through a disordered 

medium. The disordered medium generates multiple scattering, and the full scatter- 

2The contents of this portion has been described by Stone et al in Al'tschuler et al (1991) 
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ing S-matrix must describe these complex scattering processes. Unfortunately, the 

scattering S-matrix itself does not satisfy a simple composition rule which allows one 

to easily determine the full scattering S-matrix if that describing a single scattering 

event is known. Therefore we consider a different but related matrix, the transfer 

matrix M, which has a simple multiplicative composition rule. We shall see below 

that this approach has both computational and conceptual advantages. We now 

define these quantities carefully for the system of interest, disordered conductors 

with only elastic scattering from the random potential. 

Employing the two-probe model described above, we imagine the disordered 

system of interest to be placed between two semi-infinite perfectly conducting leads 

of finite width. We assume the existence of boundary conditions at the transverse 

surfaces which quantize the energy of the transverse part of the wavefunction; the 

theory is not sensitive to the detailed nature of the boundary conditions and so we 

take them to be infinite hard-walls for definiteness. Then in the perfect conductors, 

the scattering states at the Fermi energy satisfy the relation k~ = k~ + k 2, where 

k/ is the Fermi momentum, k the longitudinal momentum and k~ the quantized 

transverse momentum. The various k ~ ( n  = 1 , . . . , N ) ,  which satisfy this relation 

such that k 2 > 0 define the N channels. Since each channel can carry two waves 

traveling in opposite directions, the wave function on either side of the disordered 

region is specified by a 2 N  - component vector: the first N components are the 

amplitudes of the waves propagating to the right, and the remaining N components 

are the amplitudes of the waves traveling to the left. The scattering matrix S relates 

the incoming flux to the outgoing flux 
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( , )  (o) ,13, 
S 1' = O'  

where I, O, I ' ,  O' are the N-component vectors describing the wave amplitudes on 

left and right, respectively: In this quasi-one-dimensional geometry, the scattering 

S-matrix is a~2N x 2N matrix of the form 

(r t ) (1.4) 
S - tt  rl 

where t is the N x N transmission matrix which yields the conductance in equa- 

tion (1.2) and r is the N x N reflection matrix. (Throughout this work we shall 

frequently represent 2N x 2N in terms of their N x N blocks, hence all 2 x 2 ma- 

trices with boldface entries will represent N x N block decompositions of 2N x 2N 

matrices.) Current conservation implies that  

III ~ + I r l  ~ = IOl ~ + Io'12 (1.5) 

which is equivalent to the unitarity of the scattering S-matrix. 

Although the scattering S-matrix determines the conductance through equa- 

tion (1.2), it does not satisfy a simple composition rule suitable for introducing a 

scaling approach. Therefore, we instead consider the transfer matrix which contains 

the same information in a different form. 

By definition, the 2N x 2N transfer matrix M relates the flux amplitudes on the 

left-hand side of the disordered region to those on the right, 
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I 

Just  as with S, we can write M in terms of four N x N blocks 

(1.6) 

M=(ml m2) 
m3 m4 

and from the definitions (1.3), (1.4) and (1.6) one finds the relations 

(1.7) 

m l  = (tt) -1 m2 = r ' ( t ' )  -1 

m3 = - ( t ' ) - l r  m4 -- (t ') -1 
t -- (m~) -1 r = m~-lm3 

The flux conservation constraint on the transfer matrix is easily found by re- 

expressing equation (1.5) in the form 

III 2 -  IOl 2 - I O ' l  2 -  Ir l  ~ (1.8) 

which means from equation (1.5) that  M preserves the hyperbolic norm of the vector 
/ 

(~o) ~ i ~  ~ e ~ e s  ~ ~ ( ~ ,  ~) ( ~ o - u ~ )  m~tr~x. ~ ~te~n~tive w~y of 

\ 

expressing the flux conservation constraint on M is 

M t E ~ M  = E~ 

or equivalently, 

Here E~ denotes the mat r ix  

ME,Mr = E~ (1.9) 
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(Io) 
Ez = 0 - I  

Here and below 1 designates the unit matrix, which will be either 2N x 2N or N x N 

depending on context, and Ei, i = x, y, z denotes the 2N x 2N analog of the Pauli 

matrices satisfying ~ijkEiEj = rEk, E~ = I. We see that  the requirement of flux 

conservation implies that  the transfer matrices, M, form a pseudo-unitary group 

U(N, N);/2  = (2N) 2 is the number of independent parameters specifying such a 

matrix, just as for the more a familiar unitary group U(2N). If the Hamiltonian 

governing the system is invariant under the operation of time-reversal and we neglect 

spin (as we shall do throughout), then a second solution to equation (1.6) is obtained 

by interchanging incoming and outgoing channels and complex conjugating the wave 

function amplitudes. This implies that our transfer matrices M must also satisfly 

the requirement 

where 

M*= (1.10) 

~ oX) 
To implement this further constraint, we could perform a unitary transformation 

on each M of the form 

P = U~MUs (1 .11)  
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where 

l(i _i) 
U~ = ~. - i  I 

It is easy to show that the new matrices P satisfy the relation ptjp = j, where, 

J = - i E Y = (  0I - I ) 0  

This means that  the matrices P are symplectic. This mapping from U(N, N) 

becomes useful in the presence of time-reversal symmetry since it can be checked 

that  the condition (1.10) on M implies that the P matrices of equation (1.11) must 

be real, P = P*, i.e. they form a real symplectic group SP(2N, R), which is specified 

by I1 = N ( 2 N +  1) parameters. This mapping to the real symplectic group was used 

by Muttalib et al (1987) and Mello et al (1988). It has the advantage of simplifying 

the time-reversal symmetry constraint used in the derivation of the relevant invariant 

measures, but the disadvantage of introducing a new set of matrices with no simple 

physical interpretation 3. We shall not use this mapping in the present work. Transfer 

matrices M with time-reversal symmetry, i.e. satisfying both equations (1.9) and 

(1.10) , are the relevant quantities to study when the sample is not a subject to 

a magnetic field, and the scattering is spin-independent. This case is analogous to 

the well-studied orthogonal ensembles ( Dyson (1962), Mehta (1967), Brody et al 

(1981)) and is characterized by a symmetry parameter ~ = 1. If a magnetic field 

is present, time-reversal symmetry is broken and our transfer matrices satisfy the 

3Note, the matrix P here is not to be confused with the real-space transfer matrix which connects 
the real-space wavefunction amplitudes on either side of the disordered region. The latter matrix 
has a dimension equal to the number of lattice sites in the transverse direction, whereas the former 
has a dimension equal to N, the number of propagating channels. In general, these two dimensions 
are not equal. 
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requirement (1.9) alone; this case is analogous to the unitary (fl = 2) ensembles 

( Dyson (1962)). The origin of this terminology and of the parameter ~ which 

measures the strength of the statistical correlations (level repulsion) in the ensemble 

( Dyson (1962)) will be explained shortly, when we review the properties of the 

standard ensembles. Throughout this work we will assume exact spin degeneracy of 

the channels, and therefore only mention briefly the effect of spin-orbit scattering 

which leads to the third and final universality class, the symplectic ensemble (/3 = 4). 

For the ensemble of disordered conductors, this case has been studied thoroughly 

by Zanon and Pichard (1988), and it shows the behaviour expected by the standard 

extrapolation from the orthogonal and unitary cases discussed here. 

The correspondence between the Kubo formalism mentioned earlier and the Lan- 

dauer approach has been discussed by Lee and Fisher ( Fisher and Lee (1981)). 

I now focus my attention to the specific topics that I have studied. 

1.4 Specific Models  Studied 

Mott and Twose (1961), Borland (1961) and later Ishii (1973), in a more rigorous 

work, showed that almost all electronic eigenstates of a one-dimensional random 

potential are localized, even if the randomness is infinitesimally small. Localization 

takes place because of coherent multiple backscattering of electrons by the random 

variations of the potential. Later, it was found there some zero-measure configura- 

tion dependent extended states, randomly situated in the energy spectrum, ( Azbel 

(1983-84), Azbel and Soven (1983), Basu et al (1991)). 

However, these zero-measure states do not contribute to conductance in real 
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systems due to the fact that these states have zero-width. Conducting states in real 

material must have some width due to the finite life-time arising from the presence of 

different scattering agents. The scaling theory of Abrahams et al (1979) confirmed 

that almost all electronic eigenstates are localized in one dimension even in the 

presence of infinitesimal disorder. In these studies, the Renormalization Group 

Technique was used, the conductance was considered to be the only scaling variable 

and it was shown that disorder turns a one dimensional solid into an insulator. 

Numerical calculations also supported this view ( Ramakrishnan and Lee (1985)). 

However in all these studies mentioned above, it was assumed that there was no 

spatial correlation between the randomness at different sites. The introduction 

of a correlation in the randomness of potential at different sites might make the 

single parameter inadequate for the purpose of scaling because of the introduction of 

another length scale in the Hamiltonian. However, people overlooked this limitation 

and consequently there was surprise when it was shown that, if there is short range 

correlation in the random potential, a regime of extended electronic states existed 

on the spectrum and various models were studied in this context (see the footnote 

2 of chapter 2). Among all the models studied so far, the Random-Dimer Model 

(RDM) has gained special importance since Wu and Phillips (1991) showed that it 

has a direct connection with the anomalous electrical conductivity in polymers of 

the kind of the polyaniline. RDM is a particular type of Anderson's Tight Binding 

Hamiltonian (TBH). Since its introduction by Anderson (1958), TBH has been used 

widely in the literature of electronic states in disordered solids to capture the essence 

of physics in these systems. The TBH is written as, 
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H -- ~ ei[i)(j[ q- ~ V/j [i) (Jl 
i i j  

We shall take Vii r 0 only for nearest neighbours. Here [i) is a localized basis, 

localized at the i-th atomic the e's are called the site-energies and V's are called the 

hopping terms. As a wave-function at time t is given by r  = exp{-(i/h)gt} r 

Vii causes electrons to hop to adjacent sites. So a TBH describes a solid as an array 

of potential wells and an electron in a well has a finite probability of tunnelling to 

adjacent wells. For a periodic solid, e's and V's are same throughout the solid and 

the eigenstates are Bloch states which form a band of a width proportional to ~.  

Now a Random Dimer Model is a TBH where impurity site energies occur in 

pairs in the host. We shall take, the hopping term Vii to be the same for all the 

sites. Let us consider the  stationary state solution of a TBH /:/ having energy E, 

HIe> = EIr 

If 

Ir = Cml. ) 

then projections r of the state [r on the site-labelled bases, Ira), satisfy the 

following relation if we consider the 1-D case, 

Here the matrix M(m) is called the Transfer Matrix and is given by 

M(m)= [ (E-era)/V1 -1]0 
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where V is the nearest neighbour hopping term taken to be constant throughout the 

chain. 

In the particular case of the RDM, pairs of impurity atoms having site energies 

e~mp are injected randomly in the host having site energy ep. It is seen that  M 2 = ] 

when E - eimp so an extended state will be obtained with the energy eigen-value 

E it lies within the band of the host. For the one-dimensional chain, the band of 

the host extends from the energy value % - 2V to ep § 2V. It is to be noted that  

we analytically obtain this extended state for one particular value E = eimp. The 

system will show metallic property if the Fermi Energy of the system coincides with 

this energy and also, as discussed earlier, the state must have some finite width i.e. 

a number of states around that  energy have also to be non-scattered around the 

energy. Although there is no analytical result for the e:~ i~t~.nce of these states a few 

studies have indicated the existence of these non-scattered states ( Wu and Phillips 

(1991), Wu et al (1992), Phillips et al (1990), Dunlap et al (1989)). 

All the studies described above have been done in the context of one-dimensional 

RDM which is the correct description of the polyaniline systems if the contribution 

from the sideways coupling between individual chains is neglected. Wu and Phillips 

(1991) have pointed towards the necessity of taking the coupling from sideways into 

account in the the consideration of conductance of real world polyaniline systems. 

There had been no analytical or numerical result on the effect of finite inter-chain 

coupling on the resonance pattern of one-dimensional RDM before we looked into 

the problem. 

In the Chapter 2, we have studied the outstanding and important issue of whether 

and how the resonance pattern of I-D RDM model survives under the presence of 
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finite inter-chain coupling. We have used the Vector Recursion Method ( Godin 

and Haydock (1988), Godon and Haydock (1991), which was previously shown to 

be numerically stable in l-D, 2-D and 3-D systems ( Basu et al (1991), Dasgupta et 

al (1992), Saha et al (1994)) to calculate electronic transmittance. 

I have already mentioned of the necessity of the existence of extended states 

which have finite width for the observation of metallic behaviour in a system. So 

the determination of the nature of the resonance states in the Random Dimer Model 

is a matter of immense interest. We have used the formalism of Multifractal Analy- 

sis for this purpose in Chapter 3. It is to be noted that extended states (which have 

finite width), exponentially localized states, Resonance states having zero measure 

(of zero width) and the states which are neither extended nor exponentially localized 

behave differently under Multifractal Analysis ( Fujiwara et al (1989), Schreiber and 

Grussbach (1991), Basu et al (1991), Thakur et al (1992), Grussbach and Schreiber 

(1993), Basu and Thakur (1995), Yakubo and Goto (1996)) A noteworthy feature 

of our way of doing Multifractal Analysis is that we have used normalized transmit- 

tance which is directly observable (since it is related to the conductance through 

Landaner Formalism) as our measure. This way of doing Multifractal Analysis has 

been previously applied successfully to distinguish between electronic states of dif- 

ferent types (Basu et al (1991), Thakur et al (1992), Basu and Thakur (1995)) 

Random n~ Models are generalizations of the Random Dimer Model. 1-D 

Random n-mer model is an Anderson's Tight Binding Hamiltonian where the impu- 

rity site energy,eA occur in blocks containing n number of sites and these blocks are 

injected randomly into he host sample having site energyes,. The hopping param- 

eterV is taken to be constant throughout the sample. It has been shown recently 
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that there are at least ( n -  1) number extended states in 1-D Random n-mer mod- 

els provided that the energies of these are within the band of the host ( Sil et al 

(1993),Chen and Xiong (1993)). The energies of these extended states are given by 

It has been shown using the properties of 2 x 2 unimodular matrices that at these 

energy values the transfer matrix M given by 

1~= ( (E-e*)/V1 -1)0  

satisfy the following relation. M ~ = (-1)~/~ where/* is the identity matrix. Since 

the matrix (-1)zI has no effect on the amplitudes of the wave function, we get 

an extended state provided Ez is within the range from e s - 2 V  upto es + 2V. In 

Chapter 4 we have studied the effect of finite inter:chain coupling an electronic 

transmittance pattern in quasi-lD systems where impurity blocks of the types ( i ) ~ l ~  

and (ii),~are present. The Vector Recursion method has been used for calculating 

electronic transmittance. It is to be noted that the results for Random n-mer models 

can be verified by fabricating appropriate layered hetero-junction and by coupling 

quantum dots ( Giri et al (1993)). Recently Bellani et al (1999) have built random 

dimer superlattices and have seen the inhibition of localization and formation of 

extended states. 

Our studies may be important for designing new quantum devices due to the 

possibility of merger of several resonances and for understanding the anomalous 

electrical conductivity in polyaniline and other related systems. 

Recently there has been considerable development in the field of micro lithogra- 
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phy and layer growth technique of semiconductor quantum heterostructures. These  

developments have made it possible to develop systems that have characteristic 

scales less than the phase coherence length Ir and the small size of these struc- 

tures greatly reduces the defect scattering. The motion of electrons in these systems 

is similar to that of the electro-magnetic waves in waveguides. In these systems, 

both changes of shapes of the samples and defects in the underlying potential the 

important sources of scattering. The interplay of these two types of scattering is 

the essence of the physics of electronic transmittance in these systems. Studying 

electronic transmittance of these samples of different shapes is an important field 

of research. This investigation may lead to the development of new quantum inter- 

ference devices, like quantum transistors, which are analogous to the corresponding 

optical devices. Also important quantum mechanical phenomena like quantization 

of conductance and Botm-Aha~anov oscillation in these system~, Studying of elec- 

tronic transmittance in these system~is also important from the point of view of 

quantum manifestation of classical chaos. 

In chapter 5, we develop a new formalism for calculating electronic transmittance 

in these samples. We generalize the vector recursion method in this formalism and 

we consider the 3-dimensional character of the incoming and the outgoing leads. 

With this formalism we are able to calculate elegantly the total transmittance and 

reflectance. A distinct advantage of this formalism is that the states which are 

known exactlY to match the boundary conditions are included a priori in the basis. 

This is why the method can be applied to the case where some leads are attached to 

intermediate positions Of the samples (which are not necessary in the two opposite 
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ends). As an example, waves from two perpendicular direction enter the sample TM 

and to the 4-leads systems are discussed in the reference number [75-76]. Another 

distinct advantage of this formalism is that it is applicable even to the case where 

the long-range hopping is non zero. 
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Chapter  2 

Effect  of  in terchain  coupl ing  on t r a n s m i t t a n c e  in 

c o u p l e d  r a n d o m  d imer  chains ~ 

2.1 Introduct ion 

Electronic states in random potentials were known to be localized both  in one 

and two dimensions even for infinitesimally small disorder (See Mott  and Twose 

(1961),Borland (1961), Ishii (1973),Ramakrishnan and Lee (1985)). However, in the 

past Azbel and Soven (1983), Pendry (1987) and Basu et al (1991) have reported 

the existence of extended states appearing in the form of exponentially narrow res- 

onances in electronic transmission through random potentials at energy points ran- 

domly positioned in the spectrum. But these zero-measure states do not contribute 

to the conductance. In recent years much effort has been devoted to the study 

of electronic transport in disordered systems which have some kind of short-range 

correlation in the potential 2 In these works the existence of extended states in 

1This chapter is partly based on the published paper : Mitra and Thakur, Phys. Rev. B53 
9895 (1996) 

2Dunlap et al (1989),Dunlap et al (1990), Phillips et al (1990),Wu and Phillips (1991), Wu et al 

(1992), Sil et al (1993),Gangopadhyay and Sen (1992), Datta et al (1993),Giri et al (1993),Sanchez 

23 



Chapter 2. Coupled random dimer chains 24 

a disordered potential in one dimension with a short-ranged spatial correlation is 

predicted, in contrast to the all-states-localized situation for a random potential 

without any spatial correlation. In this context ma~y models have been proposed 

to describe some realistic situation, as one can have, for example, in the transport 
4 

mechanism for conducting polymers (Dunlap et al (1989),Dunlap et al (1990),Wu 

and Phillips (1991),Wu et al (1992),Phillips et al (1990)) or quasi-one-dimensional 

(quasi-lD) superlattices (Sanchez (1994),Hilke (1994),Ducker et al (1992),Stafstrom 

(1995),Progodin and Efetov (1993)). The simplest of these models is the random- 

dimer model (RDM) of Dunlap et al (1990). It has been sown by Wu and Phillips 

(1991) that a single protonated strand of conducting polymeric polyaniline can be 

described by the RDM. Recently, attempts have been made to describe the electronic 

transport mechanism in some super-lattice structures by Kr5nig-Penny-type models 

for random-dimer potentials (Sanchez (1994)). It has been realized that RDM's 

support a band of non-scattered states which can account for the enhanced con- 

ductivity in these materials (Wu and Phillips (1991),Wu et al (1992),Phillips et al 

(1990)). It has been shown that delocalization, even in the dense defect limit, arises 

from the single-impurity resonance effect and eventually forms a broad resonance 

of finite width (where transmittance is unity) around the dimer defect resonance 

energy. However, the detailed numerical calculation by Datta et al (1993) for fi- 

nite concentrations of dimer defects have shown that the width is sensitive to the 

choice of site energies and concentration. In all these physically relevant systems, in 

which randomness as well as some short-ranged correlation is present, it was hoped 

that transport would be dominant only in one direction. Thus the result of the 

(1994),Soukoulis et al (1994),Basu and Thakur (1995),Chen and Xiong (1993),Heinrichs (1995). 
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one-dimensional Hamiltonian was thought to be sufficient to describe the physical 

situation one observes in polyaniline or in other relevant systems. However, the idea 

of modeling a real system by coupled chains with small inter-chain coupling or b y  

an effectively decoupled single chains may break down in some situations. Wu and 

Phillips (1991) think that  the dynamics will be inherently two dimensional if the 

transverse hopping distance is comparable, to the single-chain length. This chapter 

addresses an important  outstanding issue with the random dimer model, namely 

the role of interchain coupling. This is a key issue that  should be resolved in the 

application of the dimer model to conducting polymers. The effect of electron tun- 

neling in the transverse direction may become important in general in many realistic 

quasi- lD systems 3. 

It is to be noted that nowadays it has been possible to build nanoscale materials 

with intentional and short-ranged correlated disorder and Bellani et al (1999) have 

found the inhibition of localization and formation of extended states in random 

dimer superlattices. 

This motivated us to study electronic transport in a system of two coupled ran- 

dom chains with short-range correlation with the RDM. As we will see, our inves- 

tigation will throw some light on transport characteristics influenced by the inter- 

chain hopping contributions. The idea is to check, for small or moderate values of 

inter-chain hopping, whether the resonant features within a broad band are really 

preserved. We will also investigate whether different localization-delocalization be- 

haviour may set in due to the same inter-chain tunneling but with different lead 

configurations. 

3Hilke (1994),Ducker et at (1992),Stafstrom (1995),Progodin and Efetov (1993) 
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2.2 M o d e l  of Two coupled R a n d o m - D i m e r  Chains  

26 

Here we describe the electron motion in a geometry of two coupled chains, by an 

Anderson tight-binding Hamiltonian. The Hamiltonian can be written as 

/ / =  ~ (P~c~P,, + PI, VT,,7,+IP~+I + PI,+IV,,+I,~P~ ) (2.1) 

where e,~, V~,~+! , and P~ are the following matrices with site and chain indices: 

e~ V~ 
2 ~ ~r~ - -  Yc s  

V n ,  n't-I : tn'n+t 2 0 0 tr~,r~+ 1 = Vn+ 1 ,n, 

) 
The superscripts 1 and 2 refer to the two chains. 

The two chains have been considered to be idehticai. Thus here an arrangement 

of sites in a single chain is all that is necessary. We generate the random-dimer 

model by assigning the site energy to a pair, called a dimer, distributed randomly 

1 is selected from the value generated from a along the chain. The site energy e~, 

random number sequence (0 <: R < 1) in the following way: If R < c, then 

•1,2 - -  EI,2 
n n-i-1 - -  ~A, 

while for, R > c, 

•1,2 1,2 
n ~ Cnq-[ -- gB 

where c is a fraction between 0 and 1. 
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This is a quasi-lD system, where short-ranged correlation is due to the block 

of four impurity sites, and the inter-chain hopping Vc is considered to be finite in 

contrast to the decoupled random-dimer chain where a pair of sites occupied by the 

same species produces short-ranged correlation. The model of two identical coupled 

random-dimer chains simulates a quasi-lD wire where the impurity atoms appear 

within a block in the host. 

We focus our main interest to the regime V~ < V, which constitutes a different 

physically distinct regime as compared to the decoupled chain limit, i.e. V~ ~ V. 

2.3 Vector Recursion Algorithm 

We employ the vector recursion algorithm of Godin and Haydock (1988) to calculate 

quantum electronic transmittance. This method has also been used elsewhere by 

Basu et al (1991), Dasgupta et al (1992) and Saha et al (1994) and has proven to 

be numerically stable in ID, 2D, and 3D systems. The Hamiltonian of the sample is 

usually taken to be a tight-binding model, where only nearest:neighbour overlaps are 

nonzero. We attach M number of ID incoming leads on one side of the sample, and 

M number of ID outgoing leads on the opposite side of the sample. The Hamiltonian 

of the perfectly conducting leads is : 

f-IL = VL E E ]i)(Jl (2.2) 
i j 

VL can be adjusted to make the lead bandwidth comparable to or larger than that of 

the sample. These leads support incoming and outgoingwaves into and away from 

the sample. 
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The aim of the method is to calculate transmittance and reflectance (which are 

related to the square modulus of non-diagonal and diagonal elements of the S-matrix, 

S, for the stationary state problem 

Hie> = EIr > (2.3) 

In this method, a basis is calculated recursively in which the sample Hamiltonian 

becomes block tridiagonal, i.e., if we partition the sample Hamiltonian into matrix 

blocks of size 2M • 2M then only diagonal and sub-diagonal blocks are nonzero. 

The first element ]r of this basis is The lead Hamiltonian is kept unchanged. 

chosen to be 

U~ r! 

where u's refer to those orbitals of the samples where leads are attached�9 Here I 

and O refer to incoming and outgoing channels. Subsequent elements of the basis 

are generated from the following relations: 

B+]r = (/7/-  A1)1r 

+ (2.4) 

for n > 2. 

If the original basis of the sample containing N orbitals was represented by N 

row vectors of size N, then the basis is represented by matrices of size 2M x N. 

A~'s and B~'s are 2M x 2M matrices, 
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B1 = diag(VL, VL,...VL) 

The solution of the stationary-state problem in equation (2.3) within the sample 

is given by 

~b 

The projections r of the stationary-state solution 19} into the basis {1r is 

calculated from the relation 

i t 
Ul 
u (  

where Ir 

~+I 

o, 
U2M 

and u~ and ur-ts refer to the orbitals at M outgoing and incoming lead ends (re- 

spectively) coupled to the sample via matrix element VL. r is the projection of 

into Ir X~'s and Y~'s are 2M x 2M matrices calculated by the same recursion 

relation that was used to calculate the basis, with EI replacing the Hamiltonian _f-/ 

and with the initiaJ choices, Xo= I, Y0 = 6, X1 = (), and Y! = _T. X's and Y's and 

and ] are 2M x 2M matrices. 
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As the sample basis space is of rank N, our basis is spanned by N / 2 M  = p 

independent elements. This leads to the boundary condition 

r = Xp+lr  + Yp+1r = 0 (2.~) 

The solution of equation(2.3) in the leads are Bloch waves of the form 

r = ~_, Ae•176 (2.6) 
m 

where 0 is the relative phase between the projections of eL into the ruth and (m+ 1)th 

site orbitals of the leads, and cos ~ = E/2VL. The second boundary condition comes 

from the known solution in the leads, 

e im~ ~_ r l , l e  -imo ~- rl ,2e -imO ~- . . .  -4- f i l m  e- imo 

Cm -- 

r e -imO ~ -irnO e imO Jr 2,1 -~- r2,2e -imo ~- . . . .  ~- r2,M~ 

tM+l , l e  imO ~- tM+l,2 eimO ~- . . .  -~- tM+l ,Me  imO 
~imO 1 eimO tM+2,1 eimO ~- ~M+2,2~ ~- �9 �9 �9 -~- ~M§ 

t2M,1 eimO ~- t2M,2 eimo ~- . . .  -~ t2M,M eimO 

(2.7) 

rn being 0 or i. Here r stands for the reflection coefficient, and t stands for the 

transmission coefficient. If we now interchange the incoming and outgoing leads we 

obtain another set of boundary conditions. 
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m is 0 o r  1. 

t e- imO 1 , M + 1  Jr t l ,M+2 e-~mO "[- �9 �9 �9 -~ t l ,2M e- imO 

t ~-iraO 2 , M + 1 ~  + t2,M+2e -imO -b . . .  q- t2 ,2Me -imO 

M,M+I ~ "~ VM,M+2~ ~ . . . -[- tM,2M e-r 
�9 _ ~ i m O  _ ~imO e -imO '~  I 'M+I,M+I e~mO Jr / M + I , M + 2 ~  ~ �9 �9 �9 ~ I M + I , 2 M V  

e -imO -b TM+21M+le imO "b rMT2,M+2 eiraO "Jr" �9 �9 �9 -~- rM+2,2M eimO 

e - im9 -J- T2M,M+I e iraO 2v r2M,M+2 eimO "~ �9 �9 �9 �9 T2M,2M eimO 

and 

(2.s) 

r = xp+lr + %+1r = 0 (2.9) 

From the boundary conditions written in expressions (2.5-2.9), we obtain the ex- 

pression for the S matrix: 

r t )  
S = t' r' = - [ X v + l  + Yv+l exp(-iO)] -1 [X,+I + Yp+I exp(iO)] (2.10) 

The total transmittance and reflectance are given b y  

~0I 2 
T =  

T 0 

R = ~ l r r r , / 2 M I  2 
T P 

(2.11) 

Here we have R + T = 1 due to current conservation. Furthermore, as there is no 

applied magnetic field, the time-reversal symmetry holds good, and so Sij = Sji. 
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The relation between conductance and transmittance has been obtained in many 

contexts regarding both single-channel and multi-channel situations, either from the 

Kubo-Greenwood formula or from the Landauer formula (Kubo (1956-7),Greenwood 

(1958),Fisher and Lee (1981),Landauer (1970)). 

2.4 Resu l t s  and Discuss ion  

In our calculations we have chosen the site energy in the lead Hamiltonian to be zero 

and the intra-chain hopping in the leads and the sample to be unity. The inter-chain 

hopping of the sample is small for V~ << V, and large when Vc becomes of the order 

of V. 

We have studied the total transmittance (T) for the two coupled random-dimer 

chains with the same hopping V along the chains and different choices of the site 

energies e, i.e., (CA, eB), and concentration (c) of dimer impurities in the chains. We 

first choose a set of parameters eA -" 0.5, EB ---- 0.25, C---- 0.i0, and Vc -- 0.001 for 

the calculation of transmittance for a wide range of energies, namely from -i.0 to 

1.5 in units of hopping parameters in the lead Hamiltonian. First we attach two 

decoupled ID leads on either side of each chain, that is, the calculation is done in 

the four-lead geometry. In figures (.2.1 a and b) T vs energy (E) is plotted for the 

first set of parameters for a system size N - 3256 sites. One can clearly see that for 

a wide range of energy values around E = 0.50 the transmittance becomes almost 

fiat, i.e., (T N i). We can consider this value of V~ to be small enough to produce 

the single random-dimer chain result. This is indicative of the fact that there are 

extended states, which is at least true for such finite sample sizes. 

We do the calculations for another set of parameters, i.e. eA -- 0.42, CB --- 
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Figure 2.1: Transmittance vs Energy for (a) CA=0.5, cB=0.25, C=Q10, Vc=0.00t, 
V=I.0 and N=3256 sites. (b) CA=0.42, cB=0.3, c=0.2, Vc=0.001, V=I.O and 
N-3256 sites. 
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0.30, Vc = 0.001, c = 0.20, and N = 3256 sites. The transmittance T vs energy plot 

for this case is shown in figure 2.1(b), clearly showing again the single-chain dimer 

result, i.e., the existence of non-scattered states for a range of energy values around 

E = 0.42. 

Next we choose the inter-chain hopping parameter V~ to be comparatively large, 

to make the electron motion in the transverse direction significant so that  transport  

sport characteristics change from the strictly 1D situation. We calculate the trans- 

mittance for EA = 0.5, EB = 0.25, C = 0.10, and V~ = 0.25, for two different system 

sizes N = 2256 and 3256 sites. In figure 2.2 the lnT vs E plot is shown for two 

different sizes. One can hardly distinguish the two curves since the resonant features 

do not change much with the increase of system size. Here the lnT vs E plot shows 

the growth of lnT fro the left or right of the whole energy region concerned. It has a 

different delocalization nature for the states having lnT ,-~ 0 than the non-scattered 

state one observes in figures 2.1 (a) and (b). The regime of energies where lnT ~ 0 

corresponds to states with large localization lengths. 

Now we go to a regime of transverse hopping, where the parameter V~ = 0.125, 

0.25, and 0.50 for CA = 0.42 eB = 0.30, C = 0.20, and N =  2256 sites. Transmittance 

versus energy graphs have been shown in figures 2.3 (a)-(c), for these parameters, 

and in the four-lead geometry as before. Here the input and output leads are at- 

tached to the ends along the chain direction. As before, we have studied the lnT vs 

energy E plot for finite chain coupling Vc. In this situation, the motion of electrons 

in the transverse direction also becomes significant and the total transmittance gives 

a clear signature of the combined interference effects due to the motion of electrons 

along the chain direction as well as in the transverse direction. Thus, with the in- 
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Figure 2.2: Logarithm of Transmittance vs Energy for ~A-" 0.5, EB'--0,25, C---~0.1, 
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crease of inter-chain hoping parameters from 0.125 to 0.50, the overall resonance 

features in the transmittance drastically changes to a fluctuating pattern over all 

energy scales. In the resonant region (where lnT ,-~ 0) it shows almost uniform fluc- 

tuations. Thus for a wide range of energies, the delocalization of states is manifested 

as before, with an underlying fluctuation pattern in contrast to the extended states 

(transmittance is flat and T ~ 1 2) in the single random-dimer chain. Now we will 

analyze situations where electronic transmittance has been calculated in different 

measurement geometries and where, for the first case, the input and output leads 

are at the corners of the sample, and for the second, they are on the two sides of a 

single chain. We see how resonance features may become different in such different 

input-output  lead configurations. In rigA(a) a transmittance vs energy plot has been 

shown when input and output leads are at the corners and the inter-chain coupling 

V~ is finite; here we choose V~ - 0.045. However, the other chain parameters are the 

same as in figures 2.3 (a)-(c) but the system size is N = 3256 sites. 

Figure 2.4(b) shows the same plot but with input-output leads attached to the 

left and right sides of the lower chain respectively, for the same set of parameters as 

in figure 2.4(a). If we compare figures 2.4 (a) and (b) we find that  different nature 

of the localization-delocalization aspects have been reflected through the lnT vs E 

curve for the same sample but with different lead configurations. In both figures 

the lnT vs. E plot gives a clear signature for regions of many delocalized states 

as well as sharp dips which occur in an irregular fashion. As we see 

increasing the coupling Vc will lead to more and more dips appearing in an 

irregular fashion in the vicinity of states having lnT ,.~ 0. This is attributable to the 

underlying quantum interference effects under different lead configurations. 
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Next we go over to a situation where the inter-chain coupling V~ becomes the 

same as the intra-chain coupling V. Results for lnT vs. energy E have been shown 

in figures 2.5 (a) and (b) for two different set of parameters. Since more dips appear 

in this situation~electronic states seem to become more localized at many energy 

points as compared to previous cases where Vc is less than V. The transmittance 

pattern become more fluctuating as one increases Vc. 

Thus, as weincrease the coupling Vc shown in the figures 2.3-2.5, one can clearly 

observe larger fluctuations appearing in the regime of delocalized states in the pre- 

vious case. As the fluctuations grow with increasing coupling Vc, one can see that 

localization and delocalization compete with each other at many of the energy val- 

ues. These transmittance patterns in the coupled chain case have different resonant 

features altogether than those in a single chain of same length. 

2.5 Summary and Conclusion 

In these electronic transport calculations, an attempt has been made to explore the 

possibility of the existence of delocalized or resonance states in two coupled chains 

with random dimer-type short-range correlation in the on-site potential. Calculation 

of the transmittance for the system has been carried out numerically using the Vector 

recursion algorithm of Godin and Haydock for the nearest-neighbour Anderson tight- 

binding model. Calculation has been done for different inter-chain coupling while the 

hopping along the chain has been kept constant. The calculation shows a fluctuating 

pattern for the transmittance (for non-zero Vc) in contrast to the single-chain case, 

where one observes the signature of extended states without any fluctuation. Our 

studies show that in the weak interchain coupling limit the single dimer chain results 
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still hold. However, in the strong coupling limit, quantum interference leads to 

fluctuations in the conductance in the vicinity of the resonance. The pattern for the 

four-lead geometry has resonance features (lnT ~ 0) over a wide range of energies, 

while for other lead configurations the pattern has a different signature altogether. 

This is reminiscent of the typicality of quantum interference effects originating from 

the arrangement of input and output leads attached in a particular fashion to the 

sample. We think that essential features of our results also remain valid where the 

two chains have different configurations with same chain parameters. 

This calculation highlights the different signatures of typical resonance features 

in the electronic states in a pair of coupled chains, with different ranges of 

couplings and lead configurations. The analysis draws serious attention to issues 

such as whether inter-chain tunneling effects are really important when dealing with 

electronic transport properties in realistic systems with both finite and infinite chain 

lengths. We do hope that the model of coupled random-dimer chains may provide 

some insight into modeling more realistic systems where short- ranged order may be 

present. 



Chapter  3 

C h a r a c t e r i z a t i o n  of  t r a n s m i s s i o n  r e s o n a n c e s  

3.1 Introduct ion  

Various one dimensional models of potentials which are neither completely random 

nor periodic have been studied, and people have claimed that extended states exist 

within the spectrum (all models referred in Chapter 2 and Macia and Dominguez 

(1996)). Among all of the models studied so far, the random-dimer model (RDM), 

introduced in the previous chapter (Wu and Phillips (1991), Phillips and Wu (1991), 

Dunlap et al (1990), Datta et al (1993), Datta et al (1993), Gangopadhyay and Sen 

(1992), Basu and Thakur (1995)) has gained importance since Wu and Phillips 

claimed that it has a direct connection with the electronic transport of the polyani- 

line system. It has been shown by many authors that the random-dimer-type im- 

purity potential yields electronic states which are drastically different from those of 

the random potential (i.e. without any short-range or long-range correlation) where 

one expects all states to be exponentially localized, except a few exponentially nar- 

1 This chapter is partly based on the published paper : Thakur  and Mitra, ,1. Phys.: Condens. 
Matter 9 8985 (1997) 

42 



Chapter 3. Characterization of transmission resonances 43 

row resonances. Here we will recall some important physical aspects related to the 

RDM and we will confine our discussion to the context of the Anderson tight-binding 

model. In the case of the RDM, Anderson's tight-binding Hamiltonian is taken in 

such a manner that the impurity on-site energy e~ occurs only in pairs embedded 

randomly in the host sample having on-site energy eb. Dunlop, Wu and Phillips 

(1991) showed that the reflection coefficient of a system containing a single dimer 

vanishes when the incoming electron energy becomes the same as the dimer on-site 

energy, provided that le~ - ebl _< 2V, where V is the nearest-neighbour hopping 

integral. They also claimed that v/N states get extended over the whole sample 

if it contains N sites. However, Gangopadhyay and Sen (1992) claimed that for a 

system containing randomly placed dimers there are N 1/3 ballistic states. Datta et 

al (1993) claimed that the number of non-scattered states depends also on the dimer 

on-site energy and its concentration in the chain. In a later publication, Datta et al 

(1993) studied the nature of states in a RDM through bandwidth scaling analysis. 

They claimed that the scaling behaviour of the bandwidths shows that the system 

contains extended states in the vicinity of the dimer on-site energy. 

It has been established analytically that the electronic transmittance or wave- 

function corresponding to the dimer on-site energy will always satisfy the non- 

scattering condition, and hence the transmittance will be unity even for an infinitely 

large system. However, the nature of the electronic transmittance for other energy 

values has not been analytically established yet. There is still some controversy 

regarding the nature of the electron delocalization or metallic behaviour around the 

dimer on-site energy (Datta et al (1993), Gangopadhyay and Sen (1992)). A de- 

tailed numerical study of the transmittance resonances at different energies may be 
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one possibility for resolving the controversy. Also, we think that in order to un- 

derstand the electronic transport in the RDM more directly, one should at tempt to 

construct a formalism of multifractal analysis for the normalized electronic trans- 

mittance to investigate different states around the dimer on-site energy. It is to be 

noted that  the direct connection between the results that  one obtains from the band- 

width scaling analysis for the RDM and the transmittance resonances for the RDM 

is not obvious. It should also be noted that the multifractal scaling analysis for the 

normalized transmittance has been previously successfully performed to make the 

distinction between critical, extended and localized states in the generalized Aubry 

model (Thakur et al (1992)) and also to analyze the nature of Azbel resonances in 

1-D random potentials (Azbel and Soven (1983)). 

We have carefully studied the spatial variation of the electronic transmittance 

through a multifractal scaling formalism to analyze the nature of the electron de- 

localization in the immediate vicinity of the dimer on-site energy and in a regime 

which is slightly away from the immediate vicinity. In an earlier work,  a distinction 

between the states at the centre of the plateau region and stochastic resonances far 

away from the plateau region was made through multifractal scaling analysis (Basu 

and Thakur (1995)). In contrast, here, a distinction is made between different states 

in the immediate vicinity of the dimer on-site energy and states slightly away from 

this region. Also, we use the tight-binding Hamiltonian instead of the arrays of 

delta-function potential models used by Thakur et al (1992) and Basu and Thakur 

(1995). 
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3.2 E l e c t r o n i c  t r a n s m i t t a n c e  in t h e  trans fer  m a t r i x  m e t h o d  

Here we consider, as before, the Anderson tight-binding Hamiltonian (/7) with 

nearest-neighbour overlaps : 

i i , j  

For the stationary-state solution of the above Hamiltonian corresponding to the 

energy eigenvalue E, we can write 

[~,(E)) - ~ c~[i) 
i 

Substituting this in the SchrSdinger equation we get, 

(E - ~)C~ = Vi,i+lCi+l + ~,i- lC~-1 (3.1) 

Now we .consider a situation where the first and the (N + 1)th sites of a RDM 

chain are attached to two perfectly conducting semi-infinite leads. Following Thakur 

et al (1992) the site amplitudes in the leads are 

{ A+e ik~ + A~e -ik~ 
Ci = ~+,~ikn B~e-ikn "-'k ~" "+" 

for i >__ (N + 1) (3.2) 
for i < 1. 

m 

Then, using the standard transfer matrix procedure, one can connect the incom- 

ing and outgoing solutions as follows: 

A+ ] - T(kjN) I + (3.3) 

where 
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0 e -~k(N+~) Pi S 
L i--1 

and 

I e-ik elk I 
S =  1 1 

p _ [(E-ei)/V1 -1]0 (3.4) 

Now, to calculate the transmittance, we take A~- to be zero. The reflectance can 

be obtained from 

r ( E , N ) -  B[ 2 (3.5) 
B,+ 

and the transmittance t(E, N) from the relation t(E, N) = 1 - r(E, N). 

3.3 Multifractal Scaling 

The formalism of Multifractal Analysis has been used fruitfully to analyze the spa- 

tial form and to capture the degree of fluctuations at different length scales of the 

wavefunctions in systems where there is either a randomness or a inhomogeneity in 

the underlying potential. 

In general, Multifractal Analysis is used to characterize a geometrical object or 

a probability distribution taken as a suitable measure and has wide application in 

different fields of theoretical physics. 
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First of all, we give an introduction to this formalism (see Hilborn (1994)). 

What  has come as a surprise to most scientists and mathematicians is that  geo- 

metric objects with dimentionalities that one not integers play a fundamental role in 

different physical systems like the wavefunctions in a translationally non-invariant 

potential or a growing surface film. These geometric objects have been named frac- 

tals Mandelbrot (1982) because their dimensionality is not integer. Unfortunately, 

there are many apparently different definitions of dimensionality in the literature. 

We restrict our discussion to a measure called the box counting dimension (often 

called the capacity dimension) because a set of boxes is used in the calculation. The 

box-counting dimension Db of a geometric objects is determined by constructing 

boxes of side length R to cover the space occupied by the geometric object under 

consideration. For 1-D sets, the boxes are lines segments of length R and in 2-D, 

they would be squares of length R. We now count the number of boxes N(R) needed 

to contain all the points of the geometric object. The box-counting dimension Db is 

defined to be the number that  satisfies 

N(R) = l i m  K'R -Db 
R-+O 

where K is a proportionality constant. In practice, we find Db by taking the loga- 

rithm. 

Db "- l i ra  logN(R) l o g / ( |  ] 
n~0 logR + lo--'-~] 

As/~ --+ 0, the last term goes to zero. If we consider a number of isolated points as 

our geometric object, then Db equals to 0, and for a line segment, Db equals to 1. 

It is illuminating to consider the case of the cantor set to have a feel for a fractal 

object. A Cantor set is constructed in the following way : a line segment is taken 
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and the middle third of it is deleted. We delete the middle third of each of the 

remaining line segments. If we repeat this process M times and let M ~ c~, then 

what is left is the cantor set. It can be shown that Db for this set is 0.63. So the 

cantor set is more than isolated points but less than a line segment. 

The box counting dimension is an average over the whole geometric object. Now 

two geometric objects or two statistical distributions may have the same value for 

an average value but the local contributions from different parts of the two objects 

may vary considerably. So it is necessary to calculate the s0-called moments of the 

distribution to fully capture the statistical distribution. This motivates to introduce 

the generalized box counting dimension D a. 

Probably the most extensive application of Multifractal Formalism has been in 

the field of non-linear dynamics and it is easy to get a feel for the Multifractal 

formalism if we consider the attractor of a dissipative classical dynamical system as 

our geometric object to be characterized. An attractor is that  set of points to which 

trajectories approach as the t i . ~ t  --~ oc. Suppose we have N trajectory points on 

an attractor. As before, we divide the attractor region of state space into cells of 

size R labelled i = 1, 2, 3 . . .  N(_R). In general N :/: N(R) and also the number of 

cells depends on R. If Ni be the number of trajectory points in the i th cell then we 

define the probability Pi to be the relative number of trajectory points r in the ith 

E~ The generalized (Box-counting) dimension Dq is then defined by cell Pi = N" 

( q _ ~ )  1"~ V'N(R).q 
Dq = lim ,~,~ a-,i=1 ~'i 

R~o log R 

Here q can be any real number. Above, the case when q equals to 1 has to be 
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taken for q ~ 1. Here it is possible to characterize the fluctuations upto a minimum 

length scale R. As q ~ c~, the largest probability value, say pmax will dominate the 

sum in the above equations. 

Dec = lim logPmax 
R-*0 10g R 

Again, when q --~ - oc ,  the smallest probability value Pmin will dominate the sum. 

Hence we find that  D~  is associated with the most densely occupied region of the 

at tractor while D_~  is associated with the most rarefied region of the attractor. We 

can visualize this object as a collection of overlapping fractal objects each with its 

own fractal dimension. Such an object is called a Multifractal. It is clear that  in the 

case of translationally non-invariant potential, the wavefunctions may have the same 

power-law or exponential form but still may be very different in their appearance. 

This is why the multifractal description seems to be an appropriate description for 

an electronic state. 

Now a natural question to ask is how many regions have a particular value on 

range of values of the fractal dimension. A very powerful scheme has been developed 

to answer that  question. That  scheme provides a distribution function, usually 

denoted by f ( a )  and called the 'singularity spectrum' which gives the distribution 

of the 'scaling exponents' (also known as Lipshitz-HSlder exponent) which in turn 

characterizes the singularity strength of the fractal. So here we assume that  pi(Ri) 

satisfies a scaling relation 

pi(Ri) = K R [  a'  

where K is same (unimportant) proportionality constant and Ri is the size of the 
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ith cell. The crucial assumption is that  we expect the number of cells with o in the 

range o to o + do to scale with the size of the cells with a characteristic exponent, 

which we call f (o ) .  i.e. n(o) ~ R/(~). The relation f (o )  completely characterizes 

the multifractal. 

The connection between f (o )  and Dq is most easily established by looking at 

the probability sum, known as the partition function Zq(R) = ~ ( 1  n) pq. 

In order to make the connection to f (o ) ,  we write the probabilities in terms of 

o and then integrate over the distribution of o values to get the partition function 

Zq(R) = C / do R/(~)-q~ 

where C is an unimportant proportionality constant. The first factor in the 

integrand tells how many cells have scaling index o while the second factor is the 

qth power of the probability associated with index o. One can how show after some 

mathematical manipulations that 

( q - 1 ) D q  = - q o + f ( o )  

d 
o(q) - ~a[( q -  1)Dq] 

= _ q d [ ( q _  1)Dq] + ( q -  1)Dq f (o )  
uq 

(3.6) 

To summarize, we see that  once we have found Dq as a function of q, we can 

compute f (o )  and o~. This change from the variables q and Dq to o and f(c~) 

is an example of an Legendre Transformation commonly used in the formalism of 

thermodynamics. Although f (o )  and o are based on the Dq's the necessity of going 
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through the extra computational trouble to get c~ and f (~)  arises due to relatively 

simple interpretation of various aspects of the f (~)  curve and due to the fact that  

this curve displays in a straightforward manner some expected universal features. 

In our studies, we define the measure Pi in terms of the normalized transmittance 

a s  

T (E) 
E =,N T (E) (3.7) 

where Ti is the transmittance from one end of the chain upto the ith segment when 

the length of the chain is divided into N equal .segments such that transmittance 

for a given size is obtained by always increasing the previous size by adding one 

segment. 

We shall use a formalism due to Chhabra and Jensen (1989) where one need not 

calculate the generalized Dq to get the f(~) singularity spectrum. This algorithm 

has been used to carry out multifractal analysis for characterization of states in the 

Aubry model and a continuous correlated disorder model~asu and Thakur (1995)). 

According to Chhabra and Jensen (1989) if one defines the Q-th moment of the 

probabilitY measure by the following expression , 

N )  - (3.8) 

then a comPlete characterization of the fractal singularities can be made in terms 

of this function and one can derive the spectrum of the fractal singularities defined 

by {a, f ( a )}  as :  
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f(c~) = lim 
N.--+c~ 

a = lim 
N--+oo 

I N  ] 
log N E #i(Q; N)log#i(Q; N) 

i--.=t 

] log N Z N) logp  
i=1  

(3.9) 

From the definition of transmittance Pi >_ 0 and N ~i=iPi = i. The singularity 

strength c~ is found from the scaling behaviour pi ~ N-a and the corresponding 

'singularity spectrum' f(c~) is given by 

No ~N/(a)  

where Na be the number of boxes (segments) which cover the measure having expo- 

nents between a and a+da.  The Multifractal analysis of the measure defined in (3.7) 

has been previously done to characterize successfully the states in random potential 

Basu et al (1991)and also the critical states in generalized Aubry Models(Thakur 

et al (I 992)). 

It follows that for an extended state, f(~) vs a curve should converge inwards 

and asymptotically it converge~into the point (~ = i, f(a) = i). On the other hand 

for a localized state, c~ minimum should get smaller and smaller with the increase 

of system size corresponding to a large probability for getting the electron within 

the localization length (ideally =i, so that one has f(c~ = O) = O) Also, ~ma~ should 

become larger and larger, implying that the other sites have probability O, so ~ - c~ 

and f(c~ = 6r - I. For the states which are not extended and not exponentially 

localized one should get a smooth f (a) curve asymptotically having a rich singularity 

spectrum. 
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3.4 Resu l t s  and Di scuss ion  

53 

In our numerical work, we have considered the hopping parameter to be unity in the 

lead as well as in the sample and all other energy parameters have been considered in 

units of the hopping term'throughout the calculations. First of all, we numerically 

compute the electronic transmittance for a chain having the dimer on-site energy 

~A ---- 0.45 units and the host on-site energy cB -- 0.145 units, the concentration c of 

the dimer impurity being 0.i0 for the two different system sizes. The transmittance 

T(E) versus energy (E)plot for N -- 2 x 104 sites is shown as the upper curve in 

figure 3.1. The lower curve shows the transmittance T(E) versus energy E plot for 

a large size - N - 2 x 105 sites. Here, due to the increase of the system size, we see 

that the energy region around the dimer on-site energy over which the transmittance 

T(E) is nearly fiat, forming a plateau, and that region shrinks. 

We have analyzed the spatial characteristics of the transmittance in the vicinity 

of the dimer on-site energy and have gradually crossed these nearby energies to 

establish whether the behaviour of the spatial form of the transmittance changes 

from the behaviour in the immediate vicinity. We have shown this by plotting the 

transmittance T(E) for different lengths for these energy values in figure 3.2. The top 

curve shows the transmittance versus length plot for the transmission resonance at 

E -- 0.45228 units. The middle curve is the same plot but for the resonance state at 

E -- 0.47216 units, i.e. the energy value is chosen slightly away from the immediate 

vicinity, where one can see some changes, a~d a new pattern starts showing up. The 

lowest curve shows the variation of the transmittance T(E) with length (N) for E -- 

0.47192 units. It is to be noted that the value of the transmittance for E - 0.47192 
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units is lower than that  for the energy value E = 0.47216 units. One can think of 

this energy region as being a physically different region, where a new pattern in the 

transmittance versus length plot emerges, as compared to the region immediately 

around the dimer on-site energy. We have performed a multifractal scaling analysis 

i.e. produced ~. (~, f (a)) .p lotbfor  these states, as described below. 

In figure 3.3(a) the f(oL) versus o~ plot is shown for E = 0.45228 units for three 

different system sizes : N --- 5 • 104, 105 and 2 • 105 sites. One can notice that  with 

the increase of the system size, the f (~)  versus o~ curves contract systematically. 

This is a clear signature of a Bloch-like extended state. 

In figure 3.3(b), we have shown an f(oL) versus o~ curve for E = 0.47216 units 

and for N = 1.5 • 105, 2 • 105, and 3 • 105 sites, where we see that  both the OLmi n 

and O~max values are now increased in magnitude, but it does not shown any definite 

trend of either a contraction or a systematic increase with system size. However, the 

o~min values do not change significantly. Here clearly the w, f (~)  spectrum signifies 

the deviation from both the typical Bloch-like extended character and from the 

exponentially localized nature. In this sense, this is a region that  is physically 

different from the immediate  vicinity, where the Bloch-like extended character is 

observed. 

In figure 3.3(c), we have shown the f(o~) plotted against v~ for E = 0.47192 units 

and for N = 1.0 x 10 5, 1.5 • 10 5, and 2.5 • 10 5 sites, where with the increase of the 

system size, a tendency towards localization is observed. Here the exponents ~ and 

f(~) do not deviate much from unity, and this is a manifestation of a slow electronic 

localization in the neighbourhood of the actual resonance. 
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Next, we consider the case where the impurity site energy CA = 0.15 units, and 

cs = 0.045 units, and the impurity concentration c - 0.15. In figure 3.4 (a), the 

f (~ )  versus ~ plot has been shown for the energy value E - 0.15240 units and 

for three different system sizes, i.e. N - 5 • 104, 105, and 2.5 • 105 sites. One 

can clearly see that  with the increase of the system size the curves systematically 

contract signifying a Bloch-like extended state. 

Now, if one carefully analyses another set of f ( a )  versus ~ curves as shown in 

figure 3.4(b) for the resonance state at E = 0.18992 units for three system sizes, N = 

5 • 104, 105, and 3 • 10 ~ sites, one can notice that  the curves do not systematically 

contract, but on the other hand the O~ma x and OLmi n values show small oscillations. 

In this situation, the values of ~ and f(c~) are not very different from unity, and 

the deviation from the Bloch-like extended character is much less as compared to 

the resonance s ta te  shown in figure 3.3(b). This is due to the choice of a smaller 

difference of CA and cB i.e. the on-site energies of the dimer and the host, so the 

values of transmittance are always relatively high, i.e. closer to unity. Note that  

both these resonances are characterized by finite energy widths as compared to the 

exponentially narrow Azbel resonances. 

3 . 5  S u m m a r y  a n d  C o n c l u s i o n s  

Our numerical study of the electronic transmittance corresponding to the transmis- 

sion resonances both in the vicinity of the dimer on-site energy and slightly away 

from it brings into focus important physical aspects which have not been properly 

investigated before. The transmission resonances for energies very close to the dimer 

on-site energy exhibit extended character similar to that of Bloch-type wavefunctions. 
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There are also other resonances df finite width away from this region for which the 

spatial variation of the transmittance exhibits a strongly fluctuating pattern which 

persists upto a very large system size. 

In this region there are some energy points where the behaviour of transmittance 

is like that of states undergoing slow localization. This is shown in figure 3.3(c). 

Although Gangopadhyay and Sen (1992) observed the existence of these two 

regions, they did not attempt any rigorous numerical analysis to distinguish the 

two. Also, in contrast to their speculation that the nearby states will behave like 

critical states under multifractal analysis, we find a Bloch-like extended character 

for these states by the same analysis. We claim that the spatial behaviour of the 

electronic transmittance for energies slightly away from the immediate vicinity of 

the dimer on-site energies is different from that of Bloch-like extended states and 

exponentially localized states and also from that of exponentially narrow Azbel 

resonances. 

According to Wu et al (1992), any physical system such as conducting polymers 

or semiconductor heterostructures that can be described by the RDM should exhibit 

transmission resonances and a drastic enhancement in its conductivity when the 

Fermi level coincides with the position of the resonance states. We believe also that 

the transmission resonances where the transmittance shows a behaviour different 

both from Bloch-like extended states and from exponentially localized wavefunction 

may cause enhancement of the conductivity in such systems. 



Chapter  4 

E l e c t r o n i c  T r a n s m i t t a n c e  and Loca l i za t ion  in 

q u a s i - l d  s y s t e m s  of  cou p led  ident ica l  n - m e r  chains  ~ 

4 .1  I n t r o d u c t i o n .  

In one dimensional disordered systems, which have no short-ranged correlation be- 

tween the random potentials, almost all electronic eigenstates are localized, the 

single parameter scaling arguments supports this statement. It came as a mild sur- 

prise that with short-ranged correlations among the random potentials, a regime 

of electronic states do get extended (Basu and Thakur (1995),Datta et al (1993), 

Soukoulis et al (1994), Giri et al (1993), Sil et al (1993), Chakraborti et al (1995), 

Heinrichs (1995) and also those in the footnote in Chapter 2). Disagreement with 

the scaling theory may be attributed to the introduction of another intrinsic scale in 

the Hamiltonian, thus making the single parameter scaling theory inadequate. Of all 

the models studied in this context, the Random Dimer model (RDM) has a special 

feature, as Wu and Phillips have shown, that the Hamittonian of some conducting 

1This chapter is part 'ly based on the published paper : Mitra and Thakur, Int. J. Mod. Phys. 
B12 1773 (1998) 
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aniline derivatives can be related to this model. In RDM model, the Anderson's 

tight-binding Hamiltonian is taken in such a manner that the impurity with site 

energy eA Occurs only in pairs embedded in a host sample having site energy eB. 

The nearest neighbour hopping parameter is kept at a constant V. According to Wu 

and Phillips, the enhanced conductivity of these aniline derivatives is due to these 

extended states. Random n-mer models are generalizations of the above model. In 

this model, chains of n identical atoms are randomly embedded in the host lattice. 

The Hamiltonian is given by, 

H -- ~ ei[i)(i I + ~ Vii (li)(jl + Ij)(il) 
i i j~i 

We wish to solve the SchrSdinger equation : 

(4.1) 

H I(I)> = E I(I)> (4.2) 

The wavefunction can be expanded in the tight-binding basis : 

Ir = Z r li> 
i 

r is the projection of the wavefunction on the i-th position. Rearranging terms, 

IoNs1] M,N,[o I~ ] 
where, 

_t]0 /431 
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Here Vii = V if i, j are nearest neighbours and 0 otherwise. It has been shown (Sil 

et al (1993), Chen and Xiong (1993)) that for a n-mer, if I-In M(n)  = I ,  then there 

are (n - 1) extended states provided the energy E lies within the band of the host 

and the corresponding energy eigenvalues are given by the relation : 

Ei  = eA + 2 V c o s ( - ~ )  

where ~ = 1,2 . . .  ( n -  1). 

The metallic behaviour in electronic transport in conducting polymeric systems 

have been discussed in several earlier works in many contexts(Ducker et al (1992)). 

Wu and Phillips (1991) have pointed out that in order to describe electronic trans- 

port in polyaniline, it is necessary to consider two dimensional aspects if the trans- 

verse hopping distance between two strands is comparable to the sample length. 

Recently Progodin and Efetov (1993) have argued that  the metallic state can exist 

in a network of randomly coupled metallic fibrils. 

In an earlier chapter we have studied the effect of interchain coupling for two 

coupled RDM chains. Here we shall study the effect of finite interchain coupling in 

quasi 1 - d systems consisting of identical random n-met chains. Such models ~ (~be  

important  in understanding the conductance pattern of some conducting polymers. 

In such a random n-met system, there will be conduction if the Fermi energy lies 

within one of the resonance regions on the spectrum. 

The results of these studies may be verified experimentally. These studies may 

be also important for designing new quantum devices based on the possibility of 

merger of several resonances (Bellani et al (1999),Girl et al (1993)). 
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Figure 4.1: Transmittance vs Energy for a 4-mer in 2 chains with eB=O.01, CA = 
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4.2 Resul t s  and discussions 
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In this chapter we present a detailed numerical study of transmittance for two cou- 

pled random 4 - m e t  chains, four coupled random 4 - m e t  chains and two coupled 

3 - m e t  chains. This is~ in order to examine the effect both of coupling to many 

chains and changing size of the impurity n-mer. The reason behind choosing differ- 

ent sized n-mers is to study whether different regimes of extended states may merge 

together to form a wide metallic region. 

We shall use the Vector Recursion technique of Godin and Haydock (1988) for 

the calculation of transmittance and reflectance. The algorithm has been described 

in great detail in Chapter 2. 

In Figure 4.1 we plot the transmittance T ( E )  versus the energy E for two coupled 

chains of 4 - r e e f s .  The size of the chains were 6000 units, all chains were random 

4 - r e e f s .  As the interchain coupling is raised from 0.15 to 1.0 unit, the inherent 

fluctuations also increase. 

In Figure 4.2 we have shown transmittance versus energy for four coupled 4 - m e t  

chains of two different sizes. When the size is increased from 2000 to 6000 units, 

leaving the interchain coupling a constant, the overall pattern contracts and the 

number of dips in the  pattern increases. In Figure 4.3 we have changed the inter- 

chain coupling for two coupled 3 - m e t  chain from 0.15 to 1.0, while keeping the 

intrachain coupling to be a constant 1. In all cases we observe an overall increase in 

fluctuation as the coupling term increases. In fact, due to finite interchain coupling, 

the frequency and amplitude of transmittance fluctuations increase with the increase 

of both  system size as well as interchain coupling. The indication is that  finite 
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interchain coupling has a tendency to localize the states, which were strictly extended 

in this 1-d situation. This phenomenon can be justified by the following argument : 

In the case of a 1 - d n-mer model, contributions to total reflection coefficient from 

individual impurities within a cluster cancel one another at the resonance energies. 

That is they interfere destructively.As a result the total reflectance becomes zero 

and transmittance I at these energy points. Now, in the case of quasi 1 - d random 

n-mer model having a finite interchain coupling, due to the contribution to the 

total reflection coefficient from sideways, the condition for the mutual cancelation 

of reflection coefficients is not achieved at those energy points where resonance is 

observed for the single chain random n-mer model. But if the sample size is not very 

large and the interchain coupling is small as compared with the intrachain coupling, 

then the system will show metallic behaviour and several resonances may merge 

together to form a wide band. 

Numerical studies of transmittance of random n-mer models are important for 

the technological purpose of designing new quantum devices because of the possi- 

bility of merger of several resonance regions producing a broad resonance pattern. 



Chapter 5 

A M o d e  Based Formulation of the Vector 
Recurs ion Technique 

5.1 Introduct ion 

In recent times, spectacular development in lithography and layer growth techniques 

have taken place in the field of micro-fabrication of semiconductor devices. Due to 

these developments, it is now possible to confine electrons in a conductor with a 

lateral extent of i00 mm or less in narrow quantum wires, constrictions and quantum 

dots. 

Owing to the small size of these structures, it is possible to reduce the defect 

scattering and to make the electronic motion ballistic at low temperatures. In these 

mesoscopic systems, the dephasing factors arising from the inelastic scattering from 

phonons is largely suppressed and the phase coherence length of the electrons are 

large compared to the size of the sample and the motion of the electrons in these 

high mobility mesoscopic devices is similar to the propagation of microwaves in a 

wave guide and the idealized sample becomes an electron wave guide where the 

motion of electrons is quantum mechanically determined solely by the impurity 

configuration and the geometry of the conductor. The possibility of fabricating 

69 
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electron wave guides have opened up the path for making quantum devices which 

are quantum analog of well known optical or microwave devices (Al'tschuler et al 

(1991), Weisbuch and Vinter (1991), Buot (1993), Mitin et al (1999)) Also some 

important quantum phenomena like quantized conductance and Aharonov-Bohm 

oscillations in the magneto resistance (Singha Deo and aayannavar (1994), Wash- 

burn and Webb (1986)) have been observed in these ballistic systems. Also the 

dependence of quantum observables like the conductance on the nature of the un- 

derlying classical mechanics (that is its chaotic or integrable character) has been 

experimentally established and much theoretical work has been done on this in re- 

lation to the quantum manifestation of classical chaos. The interplay of geometry 

and impurities is always important to understand the physics of electronic conduc- 

tance of these systems (Sols et al (1989), Kawamura and Leburton (1993), Leng and 

Lent (1993), Singha Deo and Jayannavax (1994), Berthod et al (1994), Nikolic and 

MacKinnon (1994), Haque and Khandekar (1996)). Our aim is to suggest a method 

to numerically calculate the electronic transmittance of these systems. Our method 

is a generalization of the Vector Recursion Method suggested by Godin and Haydock 

(Godin and Haydock (1988)). This algorithm has been found to be numerically sta- 

ble in calculating electronic transmittance in l-D, 2-D and 3-D systems (Godin and 

Haydock (1988), Mitra and Thakur (1996), Saha et al (1994)). However in all these 

applications of the Vector Recursion Method, although the system was taken to be 

either l-D, 2-D or 3-D; the perfectly conducting incoming and outgoing leads were 

independent linear channels. To study the interplay of disorder and geometry in 

the ballistic regime of the electronic motion, it is necessary to generalize the Vector 

Recursion Method to incorporate fully 3-D or 2-D, as the case may be, incoming 
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Figure 5.1: A two-dimensional scatterer with two-dimensional leads 

and outgoing leads. 

5.2 F o r m u l a t i o n  

5.2.1 T h e  mode  p r o p a g a t i o n  p ic ture  

We shall model the scatterer by a three dimensional cubic array of sites with two 

semi-infinite, perfectly conducting, three dimensional leads attached to diametrically 

opposite faces. 

A simple Hamiltonian for the motion of an electron in these perfectly conducting 

leads will be given by: 

H = ~_, ~_, VL (]n)(rnl + Im)(nl} (5.1) 
Tt m 

here {In >} = {In1, n2, n3)} forms a complete, orthonormal, tight-binding like basis 

spanning a Hilbert space 7-l. 

In case the leads were 1.-I) chains, the SchrSdinger equation in the leads 

can be immediately solved to obtain Bloch-like incoming and outgoing solutions: 

Ik) = Z v (k) 
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such that  

1 
Cr,(k) = ~ exp(:i:ikn) (5.2) 

The Bloch label k is related to the energy of the travelling electrons through the 

dispersion relation: E/2VL = cos k. Non-evanescent states therefore travel through 

the leads in the energy window --2VL <_ E <_ 2VL. 

For a full three-dimensional lead, we have to impose boundary conditions on the 

four finite faces of the lead. The simplest boundary conditions are periodic ones. In 

this case, the solution becomes: 

~I  ~2  ~3  

such that  

( 21riv ~ ( 21rip "~ 
~nl,,~,,,,(k,,t,,v,#) = Nt, v e x p ( •  k~,nl) exp ~ - - L ~ n 2 )  exp (M- 1 n3 ) 

-- Nt,,, exp ( • i k,,t, nl ) F(#, v, n2, na) 

(5.3) 

N,. is the normalization factor associated with the Fourier basis in euqation 5.3. 

The cross-section of the leads have N • M sites. The indeces v -- 0, 1..., N - 1 and 

# - 0, i,..., M- 1 label the various allowed modes that can propagate in the leads. 

Note that there are as many modes as there are sites in the lead cross-sections. The 

dispersion relation will be given by: 

E/2VL = cos k~ t, + cos \ N  - 1 + cos 1 (5.4) 
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V~-I 

Figure 5.2: Some mode profiles along the finite section of a two-dimensional lead 

The k label in the direction of motion of the electron depends on the particular 

mode labelled by {v#} and the energy window too, depends on the mode: 

( 27cy < E/2VL < r +  cos \ N  - 1 ]  + cos \]VI - 1 ]  - l + C O S k / k  7 - 1  + c O s  1 - - 

(5.5) 

The figure 5.2 shows some cross-sectional profiles of the travelling modes in a two 

dimensional lead with nine atoms along the finite cross-section. Since the modes 

are eigenfunctions of the lead Hamiltonian, the shape of the cross-sections remain 

unchanged An alternative boundary condition is to use the condition that the wave- 

function of the travelling modes vanish on the faces. 

In case the shapes of the scatterer and the leads do not match, that is, if the 

number of sites on their cross-sections are different, a slight difficulty arises. The 
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Figure 5.3: An illustration of 'ghost' leads 

trick is to append ghost leads on either side of the faces and make the wavefunction 

vanish on these. There are hence N t x M t leads and as before N x M distinct 

non-trivial modes. Figure 5.3 illustrates this. 

The wavefunction in this case is given by: 

such that  

qJ,~,,.2,,~3(k,.u,u,#) = Nu~ exp(4-i k~.unl) sin ~ - - ~ - n ~ j  sin M + 1 n3 

here n2, n3 = 0, 1 , . . . ,  (N + 1)(M + 1), but #, u = 1, 2 , . . .  N(M). It is easy to check 

that  the dispersion relation remains the same. 

Let us know consider the modes to be labelled by a composite index ~ = 

{ku~ , #, u}. The first thing we note is that  the mode wavefunctions Ikt, ~) are eigen- 

functions of the lead Hamiltonian. Within the energy window, k~ is real, so the 

modes propagate without attenuation or decay along the x-direction in the leads. 
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Moreover their profiles in the y-z direction remain unchanged in shape and are simply 

modulated by the exponential function along the x-direction. Figure 5.4 illustrates 

one of these propagating modes travelling along a leas. 

From equations (5-3) we write, for a particular mode labelled by 

= ~ - ~ - ~ _ ~ 1  exp(ik~nl) F(~,n2, n3) nl,n2,n3) 

i exp(ik n )In , l (5.7) 

The normalization factors have been absorbed into the definition of F(~, n2, n3). 

Using the orthogonality of the exponential and Fourier like functions, 

5.2.2 M o d e - m o d e  s c a t t e r i n g  

When this travelling mode enters the scatter, the Hamiltonian inside is : 

Here ~_ are the nearest neighbour vectors in the scatterer and n = {nl,n2, n3}. 

Now, looking at the effect of the scatter Hamiltonian acting on a lead mode, we 

immediately see that within the scatterer these lead modes do not propagate without 

change of cross-sectional shape : 
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. . . .  

Figure 5.4: A mode propagating along a lead 

We can now change the label _n + ~_ to n'. Take an example, for a cubic scatterer, 

there are six nearest neighbour vectors (• (0 • 10) and (00 • 1) and : 

H In1, c) 

Define, 

~-~"~ F(~,n2, n3)[v(Z)(n__) I~1 § 1,n2, n 3 ) + . . .  
~ 2  rb3 

+v(~)(~_) Inl - i, ~ ,  n31 + . . .  

f + V (3) (_n_) exp < N - 1 ] exp ~,- N - 1 ] + . . .  

+V(5)(n) exp \ /~ - I - - i )  + V(6)(n-)exp (. ~ ='1] } ,nl,n2, 
J 

V(1)(nl,n2,n3)F(~,n2, n3) = E 4(1) ~,(nl)F([',n2,n3) 

V(2)(nl,n2, n3)F(~,n2, n3) X: (2) , = A~,(nl)F(~, n2, n3) 

{v(3)(~) exp ,N-~) + v(4)(-~)exp ( ~-~, + . . .  

+v(~)(~_) exp ( i~• ~- ~ + V(~ { ~i~..~ I \ M - l /  exp\ M - l J J  F(r n3) 

- -  ~ ( [ , n l , n 2 , n 3 )  F ( ~ , n 2 ,  n3) (3) , --  -- E A~,(nl)F([ ,n2, n3) 
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Using the orthonormality of the Fourier functions, 

77 

(1) A~,(nl) 

(2) A~,(nl) 

A(3) 

= E E  VO)(nl,n2, na)F(~,n2, n3)F*(~',n2,n3) 
n2 7%3 

= ~v(2l(n~,n2, na)F(~,n2, na)F*(~',n2, na) 
~2 ~3 

= ~ - ~  +(~,nl,n2, n3)F(~,n2, n3)F*(~',n2, n3) 
~2 ~3 

Thus, 

H In1, ~> 
(~) s (1) i,5'> + ACf,(nl) Inl,~'>} 

(5.9) 

From the above equations it immediately follows that if all the Hamiltonian 

matrix elements are VL then any mode wavefunction 

1 
I~> - v~ ~ e x p ( i k ~ n l )  ]nl,~> 

n l  

is an eigenfunction of H with eigenvalue 

f f 2VL ]cos(k,) + cos ~ ,N-  1] § 
2~# 

However, once inside the scatterer, the off-diagonal elements of the Hamiltonian 

in a mode-mode basis (equation 5.9) causes scattering into other modes, so that the 

pure mode cannot propagate in the scatterer with its cross-sectional shape intact. 
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In terms of the mode-mode representation of the scatterer Hamiltonian, the problem 

has been reduced to one with multiple individual leads. We may now apply the 

vector recursion method] described earlier, to obtain the scattering S-matrix and 

consequently the transmittance and reflectance. 

We now set up the equations for the scattering problem. Suppose an incoming 

pure mode (labelled by .~) travels through the left lead, meets the scatterer and a 

mixed mode reflected wave travels back along the left lead and another mixed mode 

transmitted wave comes out into the right lead and then propagates in it. The waves 

in the left and right leads in this problem are : 

ILeft(~)) = E E  [5~,expik~nl + r~,exp(-ik~nl)] Inl,~'} 
•I f s 

IRight(~)) = ~ te~,exp(-ik~nl)Inl,~') (5.10) 
~1 ~t 

We now turn to the vector recursion of Godin and Haydock on the scatter itself. 

As discussed earlier, the aim of this method is to obtain the scattering S-matrix of 

the sample. The representations of the set of kets {ILeft(~)} and {IRight(~)} are 

now lumped together in column vectors of length 2N • M as follows : 
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I (nl ILeft(~l)> 
I (nl ILeft(~:)> 

I (n, IRight(~,)> 
I (n~ IRight(~2)) 

I(nl IRight(~gM)) 

A new basis is calculated recursively in which the sample Hamiltonian becomes 

block tridiagonal i.e. if we partition the sample Hamiltonian into matrix blocks of 

size 2 N M  x 2NM then only the diagonal and sub-diagonal blocks are nonzero. The 

lead Hamiltonian is kept unchanged�9 The first element qll of this basis is chosen to 

be 

~ 1  --  ttLNM 

R 
. ~ N M  

Subsequent elements of the basis are generated from the following relations: 

= ( S -  (5.11) 

where n >_ 2. The original basis of the sample containing N8 orbitals is represented 
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by N, now vectors of size N, and the new basis is represented by matrices of size 

2NM x N,. Ar~'s and B,~'s are 2NM • 2NM matrices, 

A8 = ~ I : I~ ,  

B, = kI/~ + 1 I-~I xI/s 

B1 = V L I  (5.12) 

In the mode basis the boundary conditions satisfied by the set {K 8} are : 

K 0) = 

1 + ~ ,  ri,~, 
1 + ~ ,  r2,~, 

g(O) = 1 § Y~,~, ?'NM,~' 
Ee' t1,r 
~ ,  t2,r 

E~, tNM,~, 

exp(ik l) + rl, , 
exp(ik 2) + r2, , exp(-ik ') 

exp(ik~NM) + E~' rtCM,r exp(-ik~') 
~ ,  tl,~, exp(ik~') 
~ ,  t2,~, exp(ik~') 

~ ,  tyM,~, exp(ik~') 

(5.13 

(5.14 

where 1, 2 , . . . , L  are the modes in the incoming lead and L + I , L + 2 , . . . , 2 L  are the 

modes in the outgoing lead, with L - N M . r ~  represents the reflection coefficient 

of the electronic wavelet which enters the sample in the mode v and after getting 

scattered in the sample, gets reflected into the mode # into incoming lead, while 



Chapter 5. A mode based formulation of the Vector Recursion Technique 81 

tv~ represents the transmission coefficient of the electronic wavelet which enters the 

sample in the mode v and after getting scattered in the sample, gets transmitted 

into a mode # in the outgoing lead. 

The wavefunction amplitudes are given by : 

K (8) = X~K (~ + YSK(1) (5.15) 

where {X s} and {YS} are solution of the same recurrence relation as the {K (~)} but 

with boundary conditions X ~ = I, X 1 = 0 and y0  = 0, y1  = I. Since the change of 

basis from site to mode does not change the rank of the underlying Hilbert space, 

g (2NM+I) -" x2NM+IK (0) + y2NM+IK(1) = 0 (5.16) 

Interchanging the incoming and outgoing leads we get another set of solutions�9 

Clubbing them together we obtain the S-matrix : 

S -- - - ( X  2NM+I + y2NM+I E * ) - '  (x2NM+I + y2NM+I E) (5.17) 

where 

exp(ik~1) 0 
0 exp(ik~2 ) 

E =  0 0 

0 0 

0 I W 

W I a 

exp(ik~1) 

0 
0 

0 

exp(ik~N,) j 

In the absence of external magnetic fields the $ matrix is symmetric and the 

reflectance and transmittance are given by : 
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L-geometry 

< 
Sta  r geometry 

I 

Figure 5.5: Scattering in a L-geometry and a Star-geometry 

and 

2 

R(E) "- (1/NM) ~_,~, r~[,(E) (5.1s) 

- (1/NM) ~_,~t~,(E)  2 (5.19) T(E) 

The Landauer formula offers the expression for conductance (in units of universal 

conductance) as:  

G=T(EF)  
R(EF) (5.20) 
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5.3 Discuss ion 
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The method discussed above has the distinct advantage that the states which must 

be known exactly to match the boundary conditions are included a priori in the 

basis. This is why the method can also be applied to the case where some of the 

leads are attached at intermediate positions of the sample and not necessarily at the 

two ends. Problems where the electronic waves enter the sample in perpendicular 

directions (L-geometry) or the four-lead star geometry can be tackled within this 

technique. 

It should be noted that resistance is a non-local object in the mesoscopic regime 

and depends on where the leads are attached to the scatterer (Gopar et al (1994), 

Tarucha et al (1992)). Note also that there is no assumption of Vii to be short- 

ranged. We can begin with long-ranged overlaps and set about to block diagonalize 

the Hamiltonian using the Vector Recursion. 
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