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Chapter  1 

Introduct ion  and Overv iew 

Field theories defined in 2+1 dimensional space-time (planar field theories) are of 

importance in theoretical physics in many ways [1, 2, 3, 4, 5, 6, 7]. One of the 

chief reasons for the usefulness of planar theories iS that they serve as simplified 

versions of more complicated 3+1 dimensional ones that involve formidable math- 

ematical and conceptual difficulties. In such instances, a study of planar theories 

may provide valuable insights and informations for developing possible methods of 

dealing with their more realistic 3+1 dimensional counterparts. A famous example 

for such a theory is the quantum gravity which is soluble in 2+1 dimensions [1, 2]. 

Another important reason for the widespread interest in the study of planar mod- 

els is that they can describe the physics, of 2+1 dimensional systems like surfaces 

and thin films in condensed matter physics.. Elementary particles confined to two 

spatial dimensions behave in distinctly different ways compared to the their usual 

behavior in the familiar 3+1 dimensions [7]. Such difference in behavior gives rise to 

interesting observable phenomenon thus making the study of planar theories highly 

interesting both from theoretical and experimental points of view. For example, one 



such important application of planar theories is the well known fractional statistics 

and fractional quantum Hall effect [7, 8]. 

In this thesis we deal with certain planar field theoretical models uncovering 

various aspects of these theories and their interrelationships. A major part of the 

work is devoted to the study topologically massive gauge theories which possess the 

interesting property of gauge invariance co-existing with mass. The Maxwell-Chern- 

Simons (MCS) and Einstein-Chern-Simons (ECS) theories in 2+1 dimensions are 

typical examples of such theories and have evinced tremendous interest among the- 

oretical physicists in recent times [9]. While MCS theory is a vector field theory, the 

ECS theory has a symmetric second rank tensor as its basic field. We have investi- 

gated certain aspects of MCS theory and the linearized version of ECS theory. The 

massive nongauge vector theories, namely Proca and Maxwell-Chern-Simons-Proca 

(MCSP) theories, are known to be equivalent to doublets of MCS theories [9, 10, 11]. 

Also, MCS theories are equivalent to self and anti-self dual models in 2+1 dimen- 

sions [12, 13, 14]. Similarly, certain studies have suggested the existence of a similar 

connection between linearized versions of ECS theory and the Einstein-Pauli-Fierz 

(EPF) theory [9]. We attempt to provide some.fresh insight into the interrelationship 

between these various theories through the maximally reduced form of the polar- 

ization vectors/tensors of these theories. The polarization vectors and tensors are 

of importance in phenomenological calculations [15, 16, 17]. Further usefulness of 

these polarization vectors/tensors become more transparent when we consider the 

gauge transformations generated by the translational subgroup of Wigner's little 

group for massless particles [18]. It is quite well known that the polarization tensor 

of free Maxwell theory in 3+1 dimensions when acted upon by this translational 

subgroup undergoes gauge transformations [19, 20, 21, 22, 23, 24]. It has also been 

recently extended to linearized gravity which has a second rank symmetric tensor as 
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the underlying gauge field [25, 26] and Kalb-Ramond (KR) theory involving 2-form 

gauge field [27]. It has also been shown that the translational group T(3), group of 

translations in 3-dimensional space, in a particular representation acts as generator 

of gauge transformations in B A F theory [27] which is obtained by topologically 

coupling Maxwell field to the KR field. Analogous to MCS and ECS theories, B A F 

model is a topologically massive gauge theory, but in 3+1 dimensions [28, 29, 30, 31]. 

It was later discovered that one can in fact systematically derive this representation 

of T(3) which generate gauge transformations in a massive gauge theory in 3+1 

dimensions, using the gauge transformation properties of 4+1 dimensional Maxwell 

and massless KR theories by a method known as 'dimensional descent' [32]. In 

the present work, we not only unravel many new and interesting points pertaining 

to the gauge generation by translational groups in 3+1 dimensional theories, but 

extend them to planar gauge theories also. We show that a particular representa- 

tion of the 1-dimensional translational group T(1) generate gauge transformations 

in the topologically massive MCS and ECS theories [26, 32, 33]. Connection of 

this representation of T(1) with the representation of T(2) (group of translations in 

2-dimensions) that generate gauge transformations in 3+1 dimensional massless the- 

ories is demonstrated explicitly by dimensional descent from 3+1 to 2+1 dimensions 

[26, 32]. 

We considered only Abelian theories in this work and the calculation of the po- 

larization vector (or tensor) of these theories is of crucial importance in our context. 

In general, polarization vectors/tensors capture the Lorentz transformation property 

of the basic fields when expressed as a mode expansion. In the usual field theoretical 

models such as Maxwell theory or Proca theory, the components of the polarization 

vectors can be independent of each other and are real [34, 35]. However, the com- 

ponents of the polarization vector (tensor) of the topologically massive MCS (ECS) 



theory are necessarily complex and cannot be chosen independently, manifesting the 

internal structure of the theory [26, 36]. This is true also for MCSP theory and a 

comparison of the polarization vectors of MCSP theory with those of a pair of MCS 

theories with opposite helicities explicitly shows that the former can be considered 

to be equivalent to the MCS doublet [36]. This equivalence between a pair of MCS 

theories and MCSP theories was earlier studied at the level of the basic fields of the 

models [10, 11]. As we shall see later in this report, the polarization tensor of ECS 

theory is the tensor product of the polarization vectors of a pair of MCS theories 

with the same helicity. We take recourse to explicit expressions of the polarization 

vector or tensor of the theory under consideration in order to show how the ap- 

propriate translational group generate gauge transformation in the theory. For this 

purpose we consider only a single mode in the Fourier expansion of the basic field 

of the theory and restrict ourselves to a particular reference frame. We then use the 

Euler-Lagrange equation to derive the maximally reduced form of the polarization 

vector or tensor which is devoid of any spurious degrees of freedom and represent 

only the physical sector of the theory [35]. This procedure is named 'plane wave 

method' and it can be used, with a great economy of effort, to study the gauge 

generating nature of translational groups in various theories. Another important 

feature of this 'plane wave method' is that it yields the mass of the quanta of the 

theory under consideration rather effortlessly. Apart from the usual massive non- 

gauge theories, this method of extracting the masses (zero or nonzero) of the quanta 

can be applied to ordinary gauge theories having massless excitations, topologically 

massive theories having massive quanta and nongauge theories elevated to gauge 

theories by Stiickelberg mechanism [26, 27, 36, 37]. 

In chapter 2, we establish the equivalence of the MCSP model to a doublet of 

MCS models defined in a variety of covariant gauges. This equivalence is shown to 
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hold at the level of polarization vectors of the basic fields. The analysis is done in 

both Lagrangian and Hamiltonian formalisms and compatible results are obtained 

[36]. A similar equivalence with a doublet of self and anti self dual models is briefly 

discussed. 

In chapter 3, we review the role of translational subgroup T(2) of Wigner's little 

group for massless particle as a generator of gauge transformations in 3+1 dimen- 

sional theories. First it is shown, following Kim et.al. [22], how the gauge transfor- 

mation in Maxwell theory is generated by the defining representation of T(2). It is 

then shown that the same representation of T(2) generates gauge transformations in 

3+1 dimensional linearized gravity [25, 26] and massless KR theory [27]. The gauge 

transformations generated by translational group form only a subset of the full range 

of gauge transformations available to linearized gravity and KR theories [37]. We 

also see in chapter 3 that the reducibility of gauge transformations in KR theory is 

clearly manifested in the gauge transformations generated by T(2). Furthermore, in 

the case of the topologically massive B A F theory, the gauge transformations are 

generated by T(3) [37]. 

We discuss in chapter 4, the role of T(1) as generator of gauge transformations 

the topologically massive MCS theory as well the linearized ECS theory in 2+1 di- 

mensions. Using plane wave method, we drive the maximally reduced form of the 

polarization vector and tensor of these theories and show that a suitable representa- 

tion of T(1) generates gauge transformation in these theories [26, 33]. Polarization 

vector of the ECS theory is clearly shown to be the tensor product of the polarization 

vector of MCS theory with itself [26]. 

The method of dimensional descent [32] is reviewed in chapter 5 and the represen- 

tation of T(1) that acts as gauge generator for MCS and ECS theories are derived 



using this method by starting from gauge transformation properties of massless 

gauge theories (Maxwell and linearized gravity) in 3+1 dimensions [26]. Finally, 

the polarization tensor of EPF theory in 2+1 dimensions is shown to split into the 

polarization tensors of a pair of ECS theories with opposite helicities suggesting a 

doublet structure for EPF theory [26]. 

One may also construct massive gauge theories by converting second class con- 

strained systems (in the language of Dirac's theory of constraint dynamics [38, 39]) to 

first class (gauge) systems using the generalized embedding prescription of Batalin, 

Fradkin and Tyutin [40, 41, 42]. On the other hand, in the Lagrangian framework, 

one can convert the massive nongauge theories to gauge theories by the generalized 

Stfickelberg extension mechanism [43, 44]. It is pointed out in [45] that there ex- 

ists a one to one correspondence between this Hamiltonian embedding prescription 

and the Stfickelberg extension mechanism based on Lagrangian formalism. By such 

embedding prescriptions, one may elevate gauge noninvariant Proca, massive KR 

[46] and EPF theories to gauge theories and obtain the corresponding Stuckelberg 

extended versions of these models. Chapter 6 is devoted to the study of the connec- 

tion between gauge generation and translational groups in such embedded massive 

gauge theories. Though the models considered in chapter 6 belong to 3+1 dimen- 

sional space-time, with suitable modifications these methods and results can be 

easily applied also to planar theories. We show that the same representation of T(3) 

that generate gauge transformation in B A F theory also acts as gauge generator in 

the above mentioned Stiickelberg extended models [37]. 

A brief description of the major results and conclusions are given in chapter 7. 

Nota t ion :  We use subscripts/superscripts in Greek letters for denoting indices 

in 2+1 dimensional space-time. The letters a, b, c etc. from the beginning of Latin 



alphabet are used for indices in 3+1 dimensional space-time whereas x, y, z etc. from 

the end of the alphabet denote 4+1 dimensions. Letters like i, j, k from the middle 

of Latin alphabet represent spatial components of vectors/tensors in any dimension. 

Signature of the metrics used are mostly negative. 

We adopt the following nomenclature for gauge theories having massive excita- 

tions. We discuss two types of gauge theories where the gauge fields are massive. 

When a massless gauge theory is coupled to a topological term, the theory acquires 

mass while retaining the gauge symmetry. The MCS, ECS [9] and B A F [29, 30] 

theories are examples of sudh gauge theories where the origin of mass is due to the 

presence of topological terms in their actions. These theories are clearly referred 

to as 'topologically massive gauge theories'. The term 'massive gauge theories' are 

used for those gauge theories obtained elevating the massive second class theories to 

first class (gauge) theories by the prevously mentioned embedding prescription given 

by Batalin, Fradkin and Tyutin [40, 41, 42]. Such massive gauge theories are also 

called Stiickelberg extended theories of the corresponding massive nongauge theories 

because they can also be obtained by generalized Stfickelberg extension mechanism 

[43, 44, 45]. 

This thesis is based on the following publications. 

1. Polarization vectors and doublet structure in planar field theory [36] 

R. Banerjee, B. Chakraborty and Tomy Scaria 

Int. J. Mod. Phys. A16 (2001) 3967. 

. On the role of Wigner's little group as a generator of gauge transformation in 

Maxwell-Chern-Simons theory [33] 

R. Banerjee, B. Chakraborty and Tomy Scaria 
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Mod. Phys. Lett. A16 (2001)853. 

3. Wigner's little group as a gauge generator in linearized gravity theories [26] 

Tomy Scaria and B. Chakraborty 

Class. Quant. Gray. 19 (2002) 4445. 

4. Translational groups as generators of gauge transformations [37] 

archive report hep-th/0302130 

(Communicated). 



C h a p t e r  2 

Po lar i za t ion  Vectors  and D o u b l e t  

S truc ture  in Planar  Theor ies  

The polarization vectors or tensors contained in the mode expansions of the ba- 

sic fields of field theoretical models usually capture the Lorentz transformation 

properties of the fields under consideration. In some theories the polarization vec- 

tors/tensors may carry more information on the structure of the theory itself. In such 

cases, a simple analysis of the polarization vectors of the theories provide valuable 

information regarding these theories. In the present chapter, we study two such 

models, namely Maxwell-Chern-Simons theory and Maxwell-Chern-Simons-Proca 

theory. The topic of this chapter is the relationship between these models and we 

also consider the self and antiself dual model which have a close connection with 

these theories. As mentioned before MCS theory is topologically massive gauge the- 

ory where the gauge invariant mass occurring already at the classical (tree) level. 

Now, it is intriguing to note that the MCSP theory can be regarded as the em- 

bedding of a doublet of topologically massive gauge theories [10, 11]. Earlier, this 



was studied at the level of the basic fields in the two theories [10, 11]. Here we 

shall pursue this mapping at the more fundamental level involving polarization vec- 

tors associated with different modes of these fields. This is all the more important 

since proper evaluation of these vectors is crucial for reduction formulae and the 

study of the massless limit of the MCSP theory [15]. Besides, as stated before, the 

transformation properties of the polarization vectors of various gauge theories under 

the action of the translational subgroup of Wigner's little group display the precise 

gauge symmetry of the theory. Therefore, it is obvious that polarization vectors play 

a fundamentally important role in the momentum space analysis of these theories. 

This motivates us to compute the polarization vectors of these theories in the La- 

grangian and Hamiltonian formulations and make a comparison between them. A 

difference in the Hamiltonian approach, in contrast to the Lagrangian approach, is 

the need to introduce a "new set" of polarization vectors for canonically conjugate 

momentum variables (Tr ") along with those of the basic vector fields (Ag). 

2.1 Polarization vectors in Lagrangian formalism 

2 .1 .1  Maxwell-Chern-Simons theory 

We first review the calculation of the polarization vectors in the Maxwell-Chern- 

Simons theory pointing out the differences from the corresponding analysis for the 

Maxwell theory. Apart from reviewing the standard analysis [34, 50] where im- 

position of Lorentz gauge is required, an alternative analysis depending only on 

the symmetries of the theory will also be discussed. The Lorentz gauge condition 

emerges naturally in the latter method. 
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The MCS Lagrangian in 2+1 dimensions is given by 

E-. =. - 4 Ft'~' Ft,~, + ~ d'~' ~ At, Ov A ~ . (2.1) 

This is the well known topological gauge theory with a single mode of mass Ivgl and 

spin ~ [9]. The corresponding equation of motion is given by, 

v F m - 0  ~ + r  ~ O. (2.2) 

Imposing the Lorentz gauge, 

the above equation reduces to 

O,A t' = 0 (2.3) 

( Og ~ + O@~0x) A~ = 0. (2.4) 

Substituting the solution 

A~'(x) - ~t'(k) exp ( i k . x )  (2.5) 

for the negative energy component I in terms of the polarization vector ~'(k) in the 

above two equations, gives, respectively, 

= 0 (2.6) 

and 

where, 

~tV 
= 0 (2.7)  

E~MCS ) -- _k2  g, ,  , + ir  (2.s) 

1Here we simply suppressed the positive energy component which is just the complex conjugate 

of the negative energy component appearing in (2.5). Its presence is required to make A ~ ( x )  real. 

However, this suppression of the positive frequency part is of no consequence to our analysis. 
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For a non trivial solution to exist, we must  have 

det ~ ' ] (MCS)  " -  - k 4 ( k  s - ~s) = O. (2.9) 

It follows therefore that,  we must  have either k s = 0 or k 2 - #~. W h e n  k 2 - 0, the  

solution is, 

~ ' ( k )  = k"  :f(k) (2.10) 

where f ( k )  is an arbitrary function. Therefore massless excitations are pure gauge 

artefacts, which may be ignored. 

Now consider the case k s = 02, which implies that  the quanta  has mass 2 101. 

This enables a passage to the rest frame with k ~' = (1~1, 0, 0). Then  the equat ion of 

mot ion  (2.7) yields, 

-OSr = o 

o2~1(o) + i~( -IOl)~s(o)  = o 

o26(0)  + iOlOl~ (o) - o 

(2.11) 

(2.12) 

(2.13) 

where ~ ( 0 )  s tands for the MCS polarization in the rest frame. The  above set yields, 

~~ = 0 (2.14) 

~2(0 ) = _ ~ 1 ( 0 ) .  (2.15) 

~This can also be seen by rewriting the motion (2.2) of MCS theory in terms of the gauge 
1 invariant pseudo vector dual f i e ld /~  _= ~e~,v~,Fv~,: 

(o + ~2)~, = 0. 

This equation clearly shows that MCS theory has massive excitations. Yet another way to arrive 

this result is by calculating the gauge field propagator whose pole gives the mass at k 2 = #2 [9]. 
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Therefore in the rest frame the polarization vector is given by, 

~'(0) = (0, ~1 (0), - i  ~--~1(0)) (2.16) 

and is the maximally reduce~ form of the polarization vector ~ in the rest frame 

representing just the single physical degree of freedom of the MCS theory a. The 

above expressions are determined modulo a normalization factor. This can be fixed 

from the normalization condition, 

~*~(0)~A0 ) = - 1  (2.17) 

following essentially from the space-like nature of the vector ~ ,  as follows from 

(2.6) using the fact that k ~' is time-like. An important point of distinction from the 

Maxwell case is that ~ has complex entries while the x and y components of the 

polarization vectors bear a simple ratio between them in the rest frame (2.15), so that 

the number of degrees of freedom reduces to one. Furthermore, the normalization 

condition(2.17) reveals a U(1) invariance in the e~pression for ~ ;  i.e., if ~ '  is a 

solution, then eir ~' is also a solution. This observation will be used later on to show 

the equivalence among different forms for ~'. 

1 Hence, The normalization condition fixes I~1(0)12 - ~. 

= . ( 2 . 1 s )  

Now we present another derivation of this result where only the symmetries of 

the model are used. Consider again the equation (2.2) and assume solutions of the 

form (2.5). Substituting (2.5) in (2.2) yields, 

~,k~'k ~ - k2~  ~ + iOd'~~ = O. (2.19) 

3This method of obtaining the maximally reduced form of the polarization vector (or tensor) of 

a theory by starting from a plane wave solution of the Euler-Lagrange equation for the basic field 

is named plane wave method and is used extensively in this thesis 
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The two possibilities for k s, corresponding to massless or massive modes are ( i )k  2 - 0 

a n d  ( i i ) k  s ~ O. We first take up the case case (i). Using k 2 - 0 in (2.19) gives, 

kt '(~ �9 k)  - - i z g @  ~'~'k~,~, (2.20) 

Multiplying both sides with e~,,~k a one arrives at, 

which implies that  the momentum space Lorentz condition 

~ . k = O (2.21) 

holds automatically. Using k 2 = 0 and (2.21) in (2.19), we get ~ -- f ( k ) k  ~ which, 

as mentioned earlier, shows that  massless excitations axe pure gauge artefacts. 

Next we consider the case k s r 0, from (2.19) we have, 

= k)k .  + (2.22) 

and we axe allowed to go to a rest frame where k" = (m, O, O) and k 2 = ms. Let ~ 

in this frame be given by, 

~t'(O)---- (,~~ (2.23) 

Then (2.22) gives, 

and 

~1(0) = ~-~s(0) (2.24) 

~S(o) = -~-~1(0). 

Substituting for ~2(0) from (2.25)in (2.24) gives 

~92 ~ ~ 2  
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from which it follows, 

= I'01. (2.26) 

From the gauge invariance of the model it follows that ~0 (0) can be set equal to zero. 

Therefore from (2.24), (2.25) and (2.26), we reproduce the earlier result (2.16). It is 

important to note that the result is compatible with the covariance condition (2.6) 

although it was not used explicitly in the analysis. This is also true for Maxwell 

theory where the polarization vector automatically satisfies this condition; but there 

k" corresponds to the massless physical excitations(k 2 - 0). On the other hand, the 

massive excitations in the Maxwell theory are pure gauge artefacts, as can be easily 

seen from (2.19) by setting ~ --- 0. Thus the roles of massive and massless excitations 

in MCS theory is just the opposite of Maxwell theory. It is now straightforward to 

calculate the polarization vector in a moving frame by giving a Lorentz boost [64] 

to the result in the rest frame, 

r  ) __ ,),~1 1 -t-- (')'-l)(fl')2 (q'-l)~'fl2 r (~)~ (~)~ 

r ~2  (~-~)~'~ 1 + ('r-~)(~) ~, ~ ( o )  (Z)~ (Z)* 

(2.27) 

~o 
where ~ = ~ and 7 = ~ .  The ensuing polarization vector is given by, 

k ((o).k 
,~,(k) -- k, I'Ol ,((o) + (ko + i,Ol)1,o1~ 

(2.28) 

where ((0) stands for the space part of the vector in (2.18). Thus, 

k 1 - i ~ k  2 ~ k 1-~k" ~ 2 ok'- k ' ,  
r = ~, 4~1~1 ' ~ + v~(k0u I~1)1~1 -*~-~-/+ 4~(k0 + I~1)1~1 

k2) 
(2.29) 

which agrees with the expression given in [50] calculated in the Lorentz gauge. 
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2 . 1 . 2  M a x w e l l - C h e r n - S i m o n s - P r o c a  t h e o r y  

The Maxwell-Chern,Simons-Proca(MCSP) Lagrangian is given by, 

m 2 

The equation of motion is, 

-OVFt,~, + Oet,~,~,a~'A ~' + m2At` = 0 (2.31) 

which automatically satisfies the transversality condition at, At` = 0. Using this, the 

equation of motion simplifies to, 

[(O + rn2)9 t̀ ~ + Oet`~a~] A~ = 0 (2.32) 

Substitution of the solution A t` = et`(k)exp(ik.x) yields, 

[(_k2 + m2)gt`~ + ioe~k~] ~ = 0 (2.33) 

From the transversality relation we get kt`et` = 0. Let us define, 

ttu E(MCSP) -- ( - k  2 q- m2)g t̀ ~' + iOet`~'"k~, (2.34) 

Then the equation of motion can be written as, 

t`u 
~(MCSP)eV --  O. (2.35) 

For e~ to have a non trivial solution the determinant of ~"(MCSP) should vanish. 

That  is, 

( - k '  + ,~') [ ( - k '  + ,~ ' ) '  - 0 'k ' ]  = 0. (2.36) 

This implies, either, 

- k  2 + m 2 = 0 

16 

(2.37) 



or  

( - k  ~ + m~) ~ - 82k ~ = o. (2.38)  

Using (2.37) in (2.33), it follows that the solution must have the form, 6it(k) - 

k"f (k), which is however incompatible with the transversality relation and is there- 

fore ignored. The second case leads to 

k ~ = 8 ~ (2.39)  

where, 

~/2m2 + 82 • x/84 + 4m282 ~/_~_ 8 (2.40) 
/7+ = 2 = + m 2  • 2" 

Two useful relations follow from this identification, 

8 = 8 + - 8 _  (2.41) 

and 

m 2 = 8+8_. (2.42) 

We use the notation ~• for the polarization vectors corresponding to k 2 = 8• 2 

and let e+(0) denote the polarization vectors in the rest frame. Taking the rest 

frames to be the ones in which k" = (k~ 0, 0) T = ([84-1,0, 0) T we have from the 

equation of motion (2.33), 

( m  ~ - e •  = O, 

_ ( . ~ 2  _ e 2 ) ~ 1 ( o )  - i e e ~ ( o )  = o 

_ ( , ~ 2  _ e J ) ~ 2 ( o )  + i e e ~ l ( o )  = o 

where e~ = (e~177 ~i., 6~:). From the above set of equations we arrive at, 

~ o ( O )  = o (2.43)  
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r177 = miO-~•177 - (0) = ~:ie• (0) (2.44) 

where the connection among various parameters has been used. Using a normaliza- 

tion condition analogous to (2.17) 

e*d'(O)e+~,(O) = - 1  (2.45) 

gives, 

Hence, 

1 
1r177 = 2" (2.46) 

1 
er = ~ (0,1, ~ i ) .  (2.47) 

The transversality condition kue u = 0 is preserved which acts as a consistency check. 

The polarization vectors in a moving frame corresponding to the two massive modes 

with masses 0+ are easily found, as before, by giving, a Lorentz boost, 

( k  1 ::F ik 2 1 k 1 T ik 2 1 i k 1 ::F ik 2 k2~ (2.48) 
4:(k:~) = \ -~6~ ' ~ + v~(ko~ + o:~)o:~ k ' ~:-~ + v~(k~ + o:~)o:~ ] 

The pair of polarization vectors are related by the parity transformation in two 

space dimensions k 1 -+ k 1, k 2 --~ - k  2 augmented by k ~ -~ k~ also implies 

O+ -~ e_), 

0 0 _ (k  0_ _~ _~ , _~ _ k  2) e+(k+, k 1, k 2) = e ~ k~ k 1 k 1 k 2 

e l ( k  o k 1,k 2 ) = r  k o ~ k  1, .. .+_k 2) + ~ + ,  - ( - ~ k  ~  1 k 2 (2.49) 

2 0 _ (ko  _~ _~ , _+ _k2) .  e+(k+, k 1, k 2) = _~2 k o, kl k 1 k2 

Also, the pair is related by complex conjugation, 

~r = ~'_"(k_). (2.50) 
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where it is implied that this operation flips the parameter ~+ --+ ~_. Now it may be 

pointed out that the polarization vectors satisfy the conditions, 

= 0. 

These polarization vectors are therefore light-like. Here however, it is possible to 

interpret these conditions as a consequence of the usual orthogonality relations, 

= o. 

together with the parity law (2.50). These observations suggest an inbuilt doublet 

structure in the MCSP model. The embedded doublet structure, related by the 

augmented parity transformations, in the MCSP theory will be further explored in 

the next subsection. 

2 . 2  A p p l i c a t i o n  o f  p o l a r i z a t i o n  v e c t o r s  

2.2.1 U(1) invariance and doublet  structure 

The above methods of calculating the polarization vectors depend on the existence of 

a rest frame. The results obtained in this frame are Lorentz boosted to an arbitrary 

moving frame. There is another approach which directly yields the polarization 

vectors from a solution of the free field equations of motion. We now discuss this 

and compare with the previous analysis. 

Let us consider the MCS theory (with z9 > 0). Since it has a single physical mode 

of mass ~9, it is possible to write a general expression for the polarization vector, 
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satisfying the Lorentz gauge condition (2.6) and the equation of motion (2.7), 

~. (k)  = N k" - g . 0  _ i ~ " ~ 1 7 6  (2.51) 

with, w = ko = ~/02+ [kl 2 and N is the normalization. This is fixed from the 

condition ((*"(. = - 1), 
1 co 

N =  

This expression for the polarization vector was given in [15]. Though (2.51) appears 

quite different from the previous result (2.29) they only differ by a U(1) phase factor. 

To see this, we express (2.51) in component form as follows. 

By introducing a phase angle r we can write the spatial components of k ~ as 

k 1 = Ikl cos r (2.53) 

k 2 = ]k[ s i n e  (2.54) 

Using (2.53, 2.54), since ~ = 1 + Ikl2 (2.52) can be rewritten as (w+#)# ' 

~'(k)=--~ , 1+ (w+r162162162 l+ (w+vg)~jsinr162 

- ~ e  r e - i r  r  (w+#)zge -iCsin 0 (W )0 e-is COS Ikl2 

= e ~ r  

(We have used (2.53, 2.54) again in the last step.) Up to a U(1) phase, this exactly 

coincides with (2.29) thereby proving the equivalence of the two results. However, 

one may notice that the representation (2.51) does not have smooth rest frame limit 

whereas for (2.29) this limit is a well behaved one. 
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Following identical techniques the polarization vectors for MCSP theory turn 

out as, 

i W• (k+t _ 9t~OW~ -- ,k,2 w 2 -  - ) = - - "  - -  i • l k l 2  m2 
g~' v~lkl~/w~: -[k[ 2 w~ ~ %.ok ~ (2.55) 

where, w+ = ~/8~ + ]kl 2. Once again this does not have a smooth transition to the 

rest frame. But we can show its equivalence with the expressions (2.48) by adopting 

the previous procedure. Expressions similar to (2.51) and (2.55) were reported 

earlier in 115]. 

Different representations of the polarization vectors find uses in different con- 

texts. For instance when MCS theory is coupled to fermions (MCS-QED), the 

infra-red singularities of the 2-+-1 dimensional model leads to gauge dependence of 

the one-loop fermion mass-shell [9]. The expressions (2.51) and (2.55) are used in 

[15] for analyzing this fermion mass variance in the MCS-QED mentioned above. 

On the other hand, the expressions given in (2.29) and (2.48) reveal the presence of 

a doublet structure in the MCSP model. Specifically, the pair of polarization vectors 

r corresponding to the distinct massive modes 8• can be exactly identified with 

the polarization vectors for a doublet of MCS models, 

L+ = (2.56) 

s  - -4Ft '~ ' (B)Ft , , , (B)  - ~d'~'~'B.O~,B~. (2.57) 

The necessary symmetry features are preserved provided both 8• > 0 or 8+ < 0. It 

then follows from (2.29) that the polarization vectors of the MCS doublet exactly 

match with (2.48). The two massive modes 8• of the doublet are exactly identified 

with the pair found in the MCSP model. 

Yet another way of understanding the doublet structure is to look at the m 2 --~ 0 

limit of the MCSP model (2.30), which then reduces to the MCS model. From (2.41) 

21 



and (2.42) we see that this limit corresponds to two possibilities; 

(i) 8+ -~ O; 0 --+ -0_  

(ii) O_ -+ 0; ~ ~ 8+ 

(2.58) 

(2.59) 

These two cases (9 ~ -4-9• exactly correspond to the MCS doublet (2.56) and 

(2.57). Likewise the polarization vectors(2.48) also map to the corresponding dou- 

blet structure. Note that this expression is divergent for 8+ ~ 0 or 0_ --~ 0, but this 

mode does not corresponds to the physical scattering amplitude when fermions are 

coupled [15]. 

It is worthwhile to mention that the limit m 2 ~ 0 takes a second class system 

to a first class one. From the view point of a constrained system, such a limit is 

generally not smooth. However, the polarization vector shows a perfectly smooth 

transition. We might also recall that the m 2 -+ 0 limit in the second class Proca 

model, to pass to the Maxwell theory, is problematic due to the change in the nature 

of the constraints. This is also manifested in the structure of the polarization vectors. 

Setting the m 2 -+ 0 limit in the relevant expressions for the Proca model does not 

yield the Maxwell theory polarization vector. In this way, therefore, the massless 

limit in the MCSP theory is quite distinctive. Since a pair of MCS theories get 

mapped to the MCSP theory, such a smooth transition exists. 

It is interesting to compare the above discussed relation between the second class 

MCSP theory and a doublet of first class MCS theories to the previously (chapter 1) 

mentioned embedding prescription due to Batalin, Fradkin and Tyutin [40, 41, 42]. 

In their prescription, a second class system is embedded in a first class system. In 

contrast, in the present context a pair of first class (MCS) theories gets embedded 

in a second class (MCSP) theory. Therefore, the mapping between MCSP is model 

and the doublet of MCS models is, in some sense, the opposite of the embedding 
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procedure described in [40, 41, 42]. 

Another point worth mentioning is that, if 0+ = 0_, then 0 - 0 from (2.41). 

This means that a doublet of MCS theories having the same topological mass but 

with opposite helicities, maps to a Proca model, i.e., massive Maxwell model, with 

mass m 2 - 0 2  - 02_. In this case parity is a symmetry which is also seen from the 
- -  4 -  

generalized transformations (2.49). This mapping was discussed earlier [57, 59] in 

terms of the basic fields of the respective models. 

2.2.2 M a p p i n g  w i t h  a doublet  of self  dual mode l s  

We have shown how a doublet of MCS theories can be mapped to a MCSP theory 

using the explicit expressions for the polarization vectors of the theories. This 

subsection is devoted to a discussion of this seemingly paradoxical mapping between 

a doublet of gauge (MCS) theories and a non-gauge (MCSP) theory. We provide the 

justification for such a mapping and elucidate its physical interpretation and other 

related issues. 

In order to explain the various subtleties regarding the mapping mentioned 

above, we begin by noting the well established equivalence between a self-dual model 

and the MCS theory [12, 13, 14]. The Lagrangian of the self-dual model is given by 

An obvious difference between the two theories is that, whereas the MCS theory is 

manifestly a gauge theory, possessing only first class constraints, the self dual model 

is a non-gauge theory and has second class constraints. It has been shown [13], using 

both operator and path integral techniques, that the gauge invariant sector of the 
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MCS theory given by L:+ (2.56) gets mapped to the self dual model 4. Specifically, 

the fundamental field f~ of the self dual model and the dual field P~ = ~tl _~v~r~ of 

the MCS theory get identified, so that f"  - .~'. Likewise the mass parameters in 

the two theories are also equated (0+ = M). 

In the present context the connection between the self dual and MCS theories 

will be discussed in terms of the polarization vectors. Indeed it can be verified 

explicitly that the polarization vector of the self dual model matches with the phys- 

ical polarization vector [(2.18) and (2.28)] of MCS theory. The equation of motion 

following from (2.60) is 

f~ - Me~V~O~f~ = 0. (2.61) 

As was done before, we consider a solution of the form 

f ~ -  ~(k )e  ik'x (2.62) 

where ~ (k )  stands for the polarization vector of the self dual theory. Substitution 

of (2.62) in (2.61) yields the equation 

which will have a nontrivial solution only if 

4This situation is just analogous to the well known equivalence between gauge non-invariant 

nonlinear sigma model(NLSM) and CP 1 model which is a U(1) gauge theory. Here the mapping 

between the NLSM fields n a satisfying n~n a = l (a  -- 1,2,3) and the gauge-variant CP 1 field 

d ~  s a t i s f y i n g Z t z = l i s g i v e n b y t h e H ~  

Pauli matrices. 
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Now, (2.64) leads to the condition k 2 -- M 2 which in turn implies that the excitations 

are massive and that there exists a rest frame for the quanta. Proceeding exactly as 

was done in the case of MCS and MCSP theory before, one can find the rest frame 

polarization vector of the self dual model as 

1 (0, 1 , - i )  (2.65) ~"(o )  = 

To make a comparison, we now calculate the polarization vector ~z(k) for the dual 

field ~"~' - ~ ' ( k ) e  ik'x in the MCS theory given by the Lagrangian g+ (2.56). This 

is done by using the structure (2.5) for the A~, field and passing to the momentum 

frame. 

~o  = ei~OiAj = i k  x ( e  ik'~ 

~1 = el,,~O~,A~ = i(k2~0 - ko~2)e ik'~ 

~-,2 = e2~,~O~,A~ = i(ko~l - k l~o)e ik'~ 

In the rest frame (where k ~ = (~+, 0, 0)) the above set of equations reduces to 

p0 = 0, ~1 = O+e~k.x, ~-,2 = _iO+eik.z 

where use has been made of the explicit form for ~ given in (2.18). Therefore, the 

polarization vector ~'(0) in the rest frame is given by 

= o+(o, 1 , - i )  (2.66) 

We thus find that the polarization vector for f~ matches (up to a normalization 

factor) with that o f / ~  thereby providing an alternative interpretation of the equiv- 

alence between the self dual and MCS theories. Moreover since the polarization 

vector for F~ matches with that of A ~' calculated in the covariant gauge, this shows 

the equivalence of f~' with A ~' taken in the covariant gauge. Clearly, the polarization 
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vectors of f~' and _P" will match in a moving frame also. Similarly one can show 

that the polarization vector of the anti self dual model whose Lagrangian is given 

by 

corresponds to that of the dual field in the MCS model given by L:_. 

The expressions for the polarization vectors in the self and anti self dual models 

obviously agree with the doublet structure found in the MCSP model. This shows 

the mapping of the self dual and anti self dual models with the MCSP theory 5. A 

pair of gauge noninvariant models is mapped to a composite gauge noninvariant 

model. Since the self (or anti self) dual model is equivalent to the gauge invariant 

sector of the MCS theory, this clarifies the equivalence of the MCS doublet with the 

MCSP model. This equivalence should be interpreted as the mapping of the gauge 

invariant sector of the MCS doublet with the MCSP theory. Furthermore,since the 

mapping involves only the gauge invariant sector, the purported equivalence will 

hold in any gauge. Here it has been explicitly shown for a covariant gauge. For a 

proof in a noncovariant gauge like the Coulomb gauge we take recourse to an indirect 

argument. The equivalence of the self dual model with the MCS theory in different 

gauges including the Coulomb gauge has been shown in [13]. Since the mapping of 

the self dual and anti self dual pair with the MCSP has been illustrated, this shows 

that an analogous mapping must also hold for the MCS doublet in the Coulomb 

gauge. 

One may also note that it is not possible to consider the two excitations in MCSP 

theory as arising from two scalar bosons. It was explicitly shown in [11] that the 

spins of the two excitations of MCSP theory are 4-1. Furthermore, group theoretical 

5Such a mapping was also analysed in [11]. 

26 



analysis of 2+1 dimensional theories shows that massive excitations arising due to 

the presence of parity violating terms(eg, the Chern-Simons term) have spin -4-1 

[53]. For MCS theory it was shown that the spin of the massive excitation in / :+  

is +1 while that in s the spin is -1 [9]. This is also consistent with the mapping 

analysed here. 

2.3 Po lar i za t ion  vec tors  in H a m i l t o n i a n  formal-  

i sm 

The analysis of the polarization vectors of MCS theory in the Lagrangian formal- 

ism presented above is restricted to a single covariant gauge - the Lorentz gauge. 

However it is possible to obtain the polarization vectors with other gauge choices 

also. For example, Devecchi et. al.[50] studied the case of polarization vector of 

MCS theory in the Coulomb gauge which turned out to be of a different structure in 

comparison to (2.29). The MCSP theory not being a gauge theory, the form (2.48) 

of the polarization vectors of the theory is unique and corresponds to the fact that 

the Lorentz condition O~,A ~ = 0 is automatically satisfied here, unlike MCS theory 

where it is imposed by hand. In this context one might wonder if it is possible to es- 

tablish the doublet structure of MCSP theory in any other Lorentz covariant gauge. 

Furthermore, Lagrangian framework is a manifestly covariant formalism while the 

Hamiltonian formulation does not possess this covariance because of its very nature 

of singling out time. Also, because of the presence of momenta Ir~'(x) conjugate to 

the field variables A~,(x) in the Hamiltonian formalism, one has to introduce ad- 

ditional polarization vectors (~r~(x)) for to implement the mode expansion of the 

momenta. Hence it is not clear if the results obtained in the Lagrangian and the 
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Hamiltonian formalisms are mutually compatible. To settle these issues we compute 

the polarization vectors in the Hamiltonian formalism based on Dirac's constrained 

algorithm. Different covariant gauge conditions will be considered. 

2.3.1 Maxwell -Chern-Simons theory 

In this subsection we again consider the MCS field in the Lorentz gauge, but with 

the difference that the Lorentz gauge condition is now imposed at the level of the 

Lagrangian of the model itself. Consider the Lagrangian, 

t̀ v~ 1 (0. A) 2 (2.68) s = -1Ft'~'Ft,v + -~e At`O~,A~, - ~a 

which is obtained from (2.1) by adding an extra gauge fixing term - ~ ( 0 .  A) 2. (In 

this subsection a represents the gauge parameter). For simplicity, the parameter 

is taken positive. If the vector field A t̀  satisfies the Lorentz constraint (2.3), the 

Lagrangian L:~ is equivalent to the MCS Lagrangian given by (2.1). The value of 

the gauge parameter ~ being arbitrary, we make the choice a -- 1 (Feynman gauge). 

With this choice, after an integration by part s in the action, s transforms to, 

1 
[A~(a~A t`) (O~At`)At`] + ~et`~At`avA~. s = - l  ot`A~,Ot`A~' + ~Ot` 

Ignoring the total divergence term we write, 

The conjugate momenta are given by, 

rt` = 0s oat` = ( - A ~  + (2.70) 

The Hamiltonian corresponding to (2.69) is given by 

H,=fd%[_lt` l k v  -~r rt` + 50 A OkAy,] 

28 



[ #i~ AoOiAj AiOjAo)+I#2A 2] + f + 
The Hamilton's equations following from 

(2.71) 

Ai, = {At,, H1) 

and 

~# -- {Trt`, H1 } 

are explicitly given as follows. 

A0 __ _~.0 (2.72) 

.41= _ r l  _ ~ A  2 (2.73) 
2 

~ 1 (2.74) A 2 "- --71-2 + ~A 

~.0 _ _V2A0 -b #eiJOiAj (2.75) 

7~1 : _V2A1 _ vqO2A 0 zr V92A1 ~ 2 4 - ~  (2.76) 

~2.._ _V2A2  -Jy ~01A 0 -Jv ~2A24-- + ~ 71"1 (2.77) 

Since our aim is to obtain the explicit form of the polarization vectors of the field, 

we consider solutions of the form, 

2 
A t  ̀- ~ ~#(~, k)ak~ exp[ik, x] + c.c (2.78) 

:k=l 
2 

~t` = Z r k)bk~ exp[ik, x] + c.c (2.79) 

Note that the polarization vectors ~t`(k) used in the previous section have been 

expanded in terms of their basis vectors ~t`(A,k). Since ~t`(k) is space-like there 

are utmost two linearly independent vectors ~t`(,k, k) characterized by A, which are 

used in the expansion of A t  ̀. The justification for using only the two space-like basis 

vectors ~t`(A, k) for the mode expansion of ~rt̀  is that the defining relation (2.70) of lrt` 
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involves components of A" (which can be written in terms of space-like polarization 

vectors) and their time derivatives. Therefore, r ~ also can be written in terms of 

the same space-like polarization vectors. The above solutions when substituted in 

(2.72) and (2.75) give, in the rest frame (k0, 0, 0) of the quanta of excitations, 

and 

(ikoal + bl )~~ O) + (ikoa2 + b2)~~ 0) - 0 

(ikobl)~~ O) + (ikob2)~~ O) = O. 

In these equations, the symbol k in ak~ and bk~ has been suppressed. It can be seen 

that the determinant (alb2 - a2bl) of the coefficients does not vanish, since in that 

case A" would be proportional to r~. Hence the only solutions to the above set of 

two equations are the trivial ones. That is 

~~ 0 ) = 0  (2.80) 

Similar substitution of (2.78,2.79) in (2.73), (2.74)'(2.76) and (2.77) gives, in the 

rest frame, 

where 

and 

sMos(.) (0) = 0 (2.81) 

I ikoal + bl ~al ikoa2 + b2 ~a2 

-~al  ikoal + bl -~a2 ikoa2 + b2 
EMCS(~) = . ~ (2.82) 

zkobl - ~-al ~bl " ~2 *kob2 - -~-a2 ~b2 

-~bt ikobt - ~at  -~b2 zkob2" - -ya2#2 

I  1(1,o) 
=  2(1,o) 

 2(2,o) 

(2.s3) 
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The solutions of (2.81) are given by, 

= (2.84) 

For v~ > 0, (2.80) and (2.84) agree with the result (2.14) and (2.15) obtained in the 

Lagrangian approach. The agreement clearly will be preserved for the polarizations 

vectors in a moving frame also. 

Now we show that the above result is a special case of a more general one in 

which we introduce a Nakanishi-Lautrup auxiliary field B in the MCS Lagrangian 

and linearize the gauge fixing term [51]. In this covariant gauge formalism the 

Lagrangian (2.68) is expressed as, 

Notice that s does not contain/~ and that it is linear in AO. The Euler-Lagrange 

equations of motion which follow from (2.85) are, 

O A  t` - O'(O,,A " + B) + Od'"~O~A;, = 0 ( 2 . 8 6 )  

and 

B = - I o ~ , A " .  (2.87) 

Note that with the choice a - 1 and eliminating B using the equation of motion 

(2.87), one can get s The momenta conjugate to the fields A ~  ~ and B are, 

respectively, given by 

% = B  

O 
~ri = OiAo - Ai  + -~% 

~'B=O 
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The Hamiltonian obtained from s is 

H,~ = -~ d=x (77,)= + Oe'Sr'A' + T + "2 (f~j)= 

+ s.. [.0..,_ .._.,o,.,,_.r 
The constraints of the model are, 

(2.88) 

(I) 1 =71" 0 - - B ~ - '  0 (2.89) 

and 

r = 77B ~ 0 (2.90) 

which form a second class pair. Setting the second class constraints strongly equal 

to zero, one obtains 770 = B, using which one can eliminate the auxiliary field B 

from the Hamiltonian: 

Ha -- -~ d2x (77i) 2 + 0e's77'A' + -~- + (FiJ) 2 

+ f d2x A~ ~e'JO'AJ) -r~ - l (T~~ 2] (2.91) 

The Poisson brackets between the fields A u and their conjugate momenta lr~ are 

given by, 

{ d ' ( x ,  t), 77v(y, t)} = g'~,a(x- y). (2.92) 

It should be mentioned that  the Dirac brackets in the (A ~', r~) sector are identical to 

their Poisson brackets. Hence the Hamilton's equations for A ~ and 77~ are obtained 

from 

J ~ = {A~',ga}, /r u = {r~, g, ,} 
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and axe the following. 

ir i = ~-~ A i 

j i  ~ = OiA i _ o~Ir ~ 

= ~e iJ l r iA  j _ ir o O~ Ir i 

= _ r  ~ _ ~ e i J A  j + s a*A o 

(2.93) 

(2.94) 

(2.95) 

(2.96) 

Substitution of the expansions (2.78) and (2.79) in (2.93) and (2.94), in the rest 

frame (ko, 0,0) leads to, 

[~~ 0)al + ~~ 0)a2] iko + [~~ 0)bl + ~~ 0)b2] o~ -- 0 

and 

[~~ o)b~ + ~~ o)b~] iko = o 

If ~ r oc we can rewrite the above set as 

(al a2) 
bl b2 ~~ 0 ) = 0  

The above equation does not have any nontrivial solution as alb2 - a2bl ~ 0 for the 

same reason mentioned earlier in the case of a - 1. Hence, 

r176  = 0 

if c~ is finite. When c~ = oc there is no unambiguous solution. This case corresponds 

to the fact that when c~ - c~, the gauge fixing term in Z:a (2.68) vanishes. The 

expansions (2.78), (2.79) when substituted in (2.95,2.96) yields, 

~2(~,o) = - i~1(~,o)  
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These results are independent of the gauge parameter and naturally agree with the 

previous a = 1 calculation and are identical to the results (2.14, 2.15) obtained in 

the Lagrangian framework. Clearly the results will agree in a boosted frame also. 

Therefore one can conclude that the form (2.29,) of the physical polarization vector 

of MCS theory holds for the different Lorentz covariant gauge conditions considered 

here. 

2.3.2 Maxwel l -Chern-Simons-Proca  theory 

Taking the MCSP Lagrangian (2.30) the canonical momenta are defined as, 

and 

- O.Ai F~ + ~iJAJ (2.97) 

~.o ~ 0 (2.98) 

is the primary constraint. The canonical Hamiltonian is, 

HMCSP = f d2x i 2 

where, 

+ f d2xAo ~'l 

0 A f l  = Oilri - -~ei~Oi ~ - m2Ao ,~ 0 

+ m2Ao 2] 

(2.99) 

(2.1oo) 

is the secondary constraint. Using (2.100) to eliminate A0 from (2.99), we obtain 

the reduced Hamiltonian, 

HR -- ~ d~z ~r~ 2 + + ~ F~j 2 + ( -s  + m~)A~ 2 - Oe~A~r~ 

+~-~1 f d2x [(o,~,)~ - o o , ~ , ~ , . , o , A . , ]  . ( 2 . 1 O l )  
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The only non vanishing bracket between the phase space variables is, 

(Ai(x, t ) , lrJ(y, t )}  = -5 i JS(x-  y) (2.1o2) 

Therefore the Hamilton's equations are given by 

2m 2 (2.103) 

and 

~ = {r*, HR} = 1 + 

(2.104) 

We consider solutions (in terms of the polarization vectors e(k, A)) of the form, 

2 

A i = ~ ei(A, k)ak~ exp[ik, x] + c.c (2.105) 
)~----1 

2 

~r' = ~ r k)bk~ exp[ik, x] ,+ c.c (2.106) 
)~-----1 

Substitution of the above solutions in the Hamilton's equations (2.103) and (2.104) 

yields, respectively, 

and 

2 2 

-ikoei(A,k)ak~ = ~{[e i (A,k)+  kikJ6J(A,k)]bk~ 
)~=I ~ = I  

+~[eiJeJ(A, k ) -  -~elmkikZem(A,k)]akA} (2.1o7) 

2 2 ~2 

-ikor - ~ ([kiMeJ(A, k) - kJMei(A,k) - m2ei(A, k)](1 + ~-~m2)ak~ 
X = I  A = I  

m 2 
(2.1os) 
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In the rest frame (k ~ O, 0), the above set of four equations can be written in the 

matrix form as, 

~-~MCSP(H)~ --" 0 (2.109) 

where 

and 

~']MCSP(H) - "  

bl + ikoai ~al b2 + ikoa2 ~a2 
--~al bl + ikoai -~a2 b2 Jr ikoa2 

J -Dm2al + ikobi ~bi -Dm2a2 + ikob2 ~b2 
-~bl -Dm2al + ikobl -~b2 -Dm2a2 + ikob2 

(2.iio) 

61(1,o) 

= (2.iii) 

o) 
0" with D = (i + 4m-~)" For a nontrivial solution of (2.109), det EMCSP(H) = 0. This 

condition, after a straightforward algebra, reduces to 

(alb2 a2bl)2 [k 4 02 ] - - 2k](~- + m2) + m 4 _ 0 (2.112) 

from which it follows that 

[kO 4- 2k~(~-~ m2)-b rr~4] -" 0 (2.113) 

That is, 

0 
ko = + m 2 + ~ = 04- (2.114) 

Replacing ko with 0+ in (2.109) we obtain, after suitable manipulations, the following 

relationship between the components of g(A, 0); 
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62(~,o) = -i61(~,o) 

For k0 - 8_ the corresponding relationship is given by 

62(~, o) = +i61(~, o). 

Denoting the rest frame polarization vectors corresponding to k0 "" 9~- by 6+ (0), the 

above two expressions can be written as, 

~. (o) = Ti6~. (o). (2.115) 

which agrees with the relationship obtained from the Lagrangian formalism. The 

polarization vectors in moving frames are obtained by boosting the rest frame vectors 

appropriately, and the result obviously agrees with that obtained earlier within the 

Lagrangian framework. 

2 . 4  S u m m a r y  

A detailed analysis of the polarization vectors in planar field theories involving both 

a topological mass and a usual mass has been done. The structure of these vectors 

is crucial for the reduction formulae, the study of unitarity in topologically massive 

gauge theories[15], as well as for considering the massless limit of these theories 

augmented by a normal mass term. Our general approach using either Lagrangian 

or Hamiltonian techniques, has shown a U(1) invariance (in the k-space) in the form 

of the polarization vectors. This is quite distinct from the usual Abelian invariance 

associated with gauge theories. The U(1) invariance reported here is connected 

with the presence of the Chern-Simons(CS) term and has nothing to do with the 

presence or absence of gauge freedom in the action. The CS term leads to complex 
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entries in the polarization vector, thereby manifesting a U(1) invariance. This can 

be contrasted with the pure Maxwell theory where all entries are real so that there 

is no U(1) invariance of this type. It was seen that in MCS theories, the massive 

modes were physical while the massless ones could be gauged away and hence were 

unphysical. This is the exact counterpart of the Maxwell theory where the roles of 

the massive and massless modes are reversed. The structures found here naturally 

revealed a mapping between the Maxwell-Chern-Simons-Proca model and a doublet 

of Maxwell-Chern-Simons theories with opposite helicities. This was also helpful in 

studying the massless limit of the MCSP model. A mapping between the MCSP 

model and a pair of self and anti self dual models is shown, once again on the basis 

of the polarization vectors. The Hamiltonian analysis of MCS theory with various 

covariant gauge conditions revealed that the structure of the physical polarization 

vector for the theory is the same for all these gauge choices. For MCSP theory 

also both Lagrangian and Hamiltonian analyses produced identical results. This 

enables one to conclude that the mapping between MCSP theory to a doublet of 

MCS theories is manifested at the level of polarization vectors of the basic fields for 

arbitrary gauge parameter. 
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C h a p t e r  3 

T r a n s l a t i o n a l  groups  as g e n e r a t o r s  

of  g a u g e  t r a n s f o r m a t i o n s  

Wigner's little group is quite familiar to physicists mainly because of its role in the 

classification of elementary particles. Wigner introduced the concept of little group 

in a seminal paper [52] published in 1939 and showed how particles can be classified 

on the basis of their spin/ helicity quantum numbers using the little group. Sev- 

eral decades later Wigner along with Kim showed that the little group relates the 

internal symmetries of massive and massless particles [54, 55, 56]. A comparatively 

less known facet of the little group, namely its role as a generator of gauge trans- 

formations in various Abelian gauge theories, was also unraveled in the mean time. 

Historically, the first attempts to study this aspect of little group were in the con- 

texts of free Maxwell theory [19, 22, 23] and linearized Einstein gravity [25]. These 

studies revealed that the defining representation of 3+1 dimensional Wigner's little 

group for massless particles (which is isomorphic to E(2) - Euclidean group in two 
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dimensions) 1, or more precisely its translational subgroup T(2), acts as generators 

of gauge transformations in 3+1 dimensional Maxwell theory and linearized gravity. 

Recently, this gauge generating property of the little group received more attention 

[27, 32, 33]. Moreover, it was shown that the same translational group was found 

to be generating gauge transformation in the 3+1 dimensional Kalb-Ramond (KR) 

theory involving a massless 2-form gauge field [27]. (A further study on the gauge 

generating property of Wigner's little group in the context of massless KR theory 

can be found in [58] where its connection with BRST cohomology is e~plored.) On 

the other hand, the same study [27] showed that for the B A F theory which is ob- 

tained by topologically coupling Maxwell field to a KR field, the generator of gauge 

transformation is a particular representation of the three dimensional translational 

group T(3). Note that B A F theory is a topologically massive gauge theory where 

gauge invariance co-exist with mass [28, 29, 30]. Thus we see that different trans- 

lational groups in their appropriate representations generate gauge transformations 

in various Abelian gauge theories in 3+1 dimensions. In this chapter we provide a 

review of the gauge generating property of translational group T(2) and T(3) with 

necessary details. All the theories considered in this chapter belong to 3+1 dimen- 

sional space-time. In later chapters, we borrow some of the techniques developed 

in the context of these 3§ dimensional theories for similar investigations in planar 

theories. 

1A brief review of the essential properties of this little group is given in appendix A. 
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3.1 Translational subgroup of Wigner's little group 

A brief review of the essential aspects of Wigner's little group for massless particles 

[19, 22, 70] which are relevant to the present study is provided in appendix A. 

Wigner's little group is defined as the subgroup of homogeneous Lorentz group that 

preserves the energy-momentum vector of a particle. For a massive particle, it is 

trivial to see that the little group is given by SO(3) as one makes the transition 

to rest frame. As discussed in appendix A, an element of the little group that 

preserves the four-momentum k a = (w, O, O, w) T of a massless particle moving in the 

z-direction is given by 

W(p,q; r = W ( p , q ) R ( r  (3.1) 

where 

w ( p , q )  = w(p,q; 0)= 

1 + f+q2 2 

P 

q 
p2-t-q2 

2 

P q 

1 0 

0 1 

P 

_f+q2 
2 

- p  

- q  

q 1 - f+q2 
2 

(3.2) 

is a particular representation of the translational subgroup T(2) of the little group 

and R(r represents a SO (2) rotation about the z-axis. Note that the representation 

W ( p , q )  satisfies the relation W ( p , q ) W ( ~ , q )  = W ( p +  ~,q + 7t). 

3.2 Maxwell  theory 

We now discuss how this representation of T(2) generates gauge transformation in 

Maxwell theory which has the well known Lagrangian, 

1 ab 
f~ = - '~  FabF �9 (3.3) 
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Maxwell theory is invariant under the gauge transformation 

A,~(x) ---> A'.(x) = Aa(x)  + O,J(x)  (3.4) 

where ] (x )  is an arbitrary scalar function. The Lagrangian (3.3) leads to following 

equation of motion: 

OoF b=O. (3.5) 

Denoting the polarization vector of a photon by ca(k), the gauge field Aa(x)  can be 

written as 

Aa(x) - e'~(k)e ik'x. (3.6) 

In terms of the polarization vector, the gauge transformation (3.4) is expressed as 

e,~(k) --+ e'a(k ) = ea(k) + i f ( k )ka .  (3.7) 

where ] (x )  has been written as ] (x)  = f ( k ) e  ik'x. The equation of motion, in terms 

of the polarization vector, will now be given by 

k2e '~ - kakbe b = O. (3.8) 

The massive excitations corresponding to k296 0 leads to a solution e a o( k ~ which 

can therefore be gauged away by a suitable choice of f ( k )  in (3.7). For massless 

excitations (k 2 = 0), the Lorentz condition k,~e '~ = 0 follows immediately from (3.8). 

For a photon of energy w propagating in the z-direction (i.e., k a = (w, O, O, w) T, it 

follows from (3.8) that  the corresponding polarization tensor e~'(k) takes the form 

(e ~ e 1 , e 2, e ~ which can be reduced to the maximally reduced form 

e:(k) = (0,e1,r 2, 0) T (3.9) 

by a suitable gauge transformation (3.7) with f ( k )  = ~o Note that  the maximally -G-" 

reduced form displays just the two transverse physical degrees of freedom ~1 and 
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e 2. Under the action (3.2) of the translational group T(2) this polarization vector 

transforms as follows: 

ea -+ ~'a = Wab(p'q)eb = ea + (Pel + qe2) ka (3.10) 

Clearly, this can be identified as a gauge transformation of the form (3.7) by choosing 

Pc1 + qe2 (3.11) 
f ( k )  = 

Hence one says that  the translational subgroup of Wigner's little group for massless 

particles acts as a gauge generator in Maxwell theory. 

3.3 Linearized gravity 

The pure Einstein-Hilbert action in 3+1 dimensions is given by 

I E = - f d4xE E, f..~ = v/-~R-- vf~gabRab (3.12) 

where s is the Einstein Lagrangian and Rab is the Ricci tensor. In the linearized 

approximation the metric gab is assumed to be close to the flat background part ~?~b 

and therefore 

gab -- ~?ab § hab (3.13) 

where hab is the deviation such that  tha~[ < <  1. When the deviation is small one 

considers only terms up to first order in hab. The raising and lowering of indices is 

done using T ab and 7?ab respectively. 

The linearized version of Einstein-Hilbert Lagrangian is 

~._1 ~hab [R~ b - 1 ab 1 (3.14) 
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Here R~, b is the linearized Ricci tensor given by 

R~Lb = 1 Dhab obOchC a 5 ( - -  + OaOch ~ + - oaObh) (3.15) 

with h = h%. Similarly RL "- ROLe. As mentioned before, the translational subgroup 

of Wigner's little group for massless particles generates gauge transformations in 

linearized Einstein gravity also [25, 26]. However, the gauge transformations gener- 

ated by the translational group constitute only a subset of the entire set of gauge 

transformations available in linearized gravity. Here we give a detailed review of 

this partial gauge generation in linearized gravity by the translational group T(2). 

Gravity (linearized) in d space-time dimensions is described by a symmetric 

second rank tensor gauge field and has �89 - 3) degrees of freedom 2. Therefore 

general relativity in 3+1 dimensions has two degrees of freedom. The field equations 

for h '~b following from the Lagrangian (3.14) is given by 

- [ : ]h  ab + O'~Och ~b + ObOch ca -- oaObh + rlab(Dh -- CgcCgdh cd) - -  O. (3.16) 

The above equation is invariant under the following gauge transformation: 

h ,~b _.+ h 'ab _ h,~b + Oath(x) + Ob~'~(x) (3.17) 

Here ~'~(x) are completely arbitrary except that they are considered to be small. 

2The degree of freedom counting can be done by following Weinberg [60]. To start with, note 

that a symmetric second rank tensor in d dimensions has �89 + 1) independent components. 

Analogous to the Lorentz gauge condition (0~A~ = 0) of Maxwell theory, in general relativity we 

have the harmonic gauge condition gt'vr~'~,v = 0 which amounts to d constraints on the components 

of g~v. These along with the d independent components of the gauge parameter (which by itself is 

a d-vector now; see the ensuing discussion below, particularly (3.17)), in the linearized version of 

the theory, reduces the number of independent components of the tensor field to �89 + 1) - 2d = 

 d(d - 3). 
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Following the plane wave method, we now adopt the ansatz 

h ab = xab(k)e i~'x + c.c. (3.1s) 

where X~'b(k) is the symmetric polarization tensor. With the choice 

r  = - i r  + c.c. (3.19) 

the gauge transformation in h ~b can be written in terms of the polarization tensor 

a s  

X"b(k) -+ X"b(k) = Xab(k) + k"(b(k) + kb~C'(k). (3.20) 

Just as in the Maxwell case, hereafter we will consider only the negative frequency 

part  for simplicity. Substituting the ansatz in the equation of motion yields 

k2x "b - kakcx cb - kbkcX ca + kakb X + ~?ab(-k2 X + kckax ~a) = O. (3.21) 

As was done in the previous cases, we separately consider the two possibilities 

k 2 r 0 and k 2 = 0. Choosing the massive ( k 2 r 0) case first, we contract the 

equation of motion (3.21) with ~ab to ob ta in  

k2x - kckdX cd = 0 ; X = Xab �9 (3.22) 

A general solution to this equation is given by 

Xab(k) = k'~fb(k) + kbf"(k)  (3.23) 

with fa  (k) being arbitrary functions of k. Therefore, it can be easily seen that  this 

solution can be 'gauged away' by appropriate choice of the variables Ca(k) in (3.20) 

as this corresponds to pure gauge. Thus, analogous to Maxwell theory, the massive 

excitations of linearized Einstein gravity are gauge artefacts. 
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For massless (k 2 = 0) excitations, the equation of motion (3.21) reduces to 

- k a k c x  ~ - kbkcx ~' + kakbx + ~7"bkckdx cd = O. (3.24) 

In a frame of reference where k" = (w, 0, 0, w) T the above equation can be written 

a s  

- ~ [ k ~  ~  x 3~) + k~(x ~176 - x~~ + k~ + ~2r176176 + x ~ - 2x ~ = o. (3.25) 

Various components of the above equation together with the symmetricity of X ab 

leads to the reduction in the number of independent components of X ab. In (3.25), 

a = b = 0 1 e a d s t o x  11 = - X 2 2 ; a = 0 ,  b = i t o x  ~  3 i a n d a = b = i t o X  ~ 1 7 6  33. 

Therefore, one can write the polarization tensor X ab in a reduced form as 

X 00 X 01 X 02 X 00 

X 01 X 11 X 12 X 01 

(X~ :~o2 X12 _ X ~  ;,,:02' " (3.26) 

X00 :)(01 X02 X00 

Now if we make a momentum space gauge transformation with the choice (0 = (a = 

_ ~2~ 42 _ xol 42 _ xo2 2~, = u , = u , the polarization tensor (X ~ )  can be written in the 

maximally reduced form as follows: 

r 0 0 0 

( X ab ) - -  
0 X It X 12 0 

0 X 12 - X  11 0 

0 0 0 0 

(3.2~) 

Here X 11 and X 12 represent the two physical degrees of freedom for the theory. (This 

form of the polarization tensor of linearized Einstein gravity in 3+1 dimensions is 
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derived in [60] following a different approach.) In this form (3.27), the polarization 

tensor (X ~b} satisfies the harmonic gauge condition, 

l b a  
kox ~ = ~k xo (3.28) 

in momentum space, automatically. Using the maximally reduced form (3.27) of 

the polarization tensor, it is now straightforward to show that the group W(p, q) 

in (3.2) generate gauge transformations in linearized Einstein gravity also. For this 

purpose consider the action of W(p,q) on {X ab} in (3.27), 

= { x ~ } +  

(X ab } -.+ (X 'ab} = W (p, q)(xab } wT (p, q) 
(p2 q2)xll / 

q.2pqx12 ) (pxll q- qx 12) 

(pX 11 + qx 12) 0 

(px 12 - qx 11) 0 

( p x 1 2 - q x l l ) (  (p2-q2)xll)+2pqxl 2 

0 (px 11 q'- qx 12) 

0 (pX 12 - qx 11) 

(px 12 '-- qx H) 
(p2__ q2)xll ) 

-t-2pqx 12 
(3.29) 

The above transformation can be cast in the form of a gauge transformation (3.20) 

with the following choice for the arbitrary functions (~(k): 

C0_. (3._ (p2 -  q2)xll q_ 2pqx 12 , ( 1  --- pX 11 "d-qx 12 , ( 2  = pX12 --qxll  (3.30) 
63 63 63 

However, since k ~ = (63, O, O, 63)T, a general gauge transformation for this polariza- 

tion tensor (3.27) has the form 

{x ob } - ,  {x ,o~ } = {x o~ } + (k~ ~} + {k~r ~ } 

= (x  "b} + 63 

2~o ~ ~2 (~o+(3) 

(1 0 0 (1 

(2 0 0 (2 

((0 + (3) (1 (2 2(3 

(3.31) 
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Upon comparing the above form of general gauge transformation with the one gener- 

ated by W(p, q) given in (3.29), it becomes clear that the latter is only a special case 

of the former as the relation ~C ~ = C 3 in (3.30) restricts the number of independent 

components of the arbitrary vector C a. Therefore, the translational subgroup T(2) of 

Wigner's little group for massless particles generates only a subset of the full set of 

gauge transformations in linearized gravity. The reason for this partial gauge trans- 

formation is as follows. We must notice that our starting point of gauge generation 

by W(p, q) in linearized gravity is the maximally reduced polarization tensor (3.27) 

which contains just the physical sector of the theory (in the reference frame where 

k p = (b3, 0, 0, ~3) T) and is devoid of any arbitrary variables to begin with. Hence 

in the gauge generation by W(p,q), we must rely entirely on the two parameters 

p and q of the translational group to manufacture the gauge equivalence class of 

the state corresponding the polarization tensor (3.27). However, the gauge freedom 

in linearized gravity is represented by the arbitrary vector variable C a having four 

components. Naturally, in the gauge generation by W(p, q) in linearized gravity, 

only two of the four components of C a remain independent (as is evident from(3.30)) 

when expressed in terms of the two parameters (p, q) of the translational group and 

therefore the gauge generation is only partial. It was noted in [25] that the gauge 

generation by the little group in linearized gravity is subject to the 'Lorentz condi- 

tion' kaCa(k) "- O. This also can be seen from the first relation C ~ -- C 3 in (3.30). 

Thus, we have unraveled all the constraints behind the partial gauge generation by 

Wigner's little group in linearized gravity. In contrast, we may note that the gauge 

freedom in free Maxwell theory is represented by a single arbitrary scalar variable 

.f(k) (3.11) which can be expressed (without any restrictions) in terms of the two 

parameter s of W(p, q) in the gauge generation by little group as is evident from 

(3.10). Hence translational subgroup of Wigner's little group generates the full set 
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of gauge transformations in Maxwell theory. 

3 . 4  M a s s l e s s  K a i b - R a m o n d  t h e o r y  

By similar methods it can be shown that gauge transformations are generated by 

T(2) in the 3§ dimensional Kalb-Ramond(KR) theory [27] which has a second 

rank antisymmetric tensor as its basic field. The KR theory is described by the 

Lagrangian 

L = 1 HobcHObO; Hobc = OoBbo + ObBoo + O~Bob (3.32) 
1"2 

where B~b is a 2-form gauge field: 

Bab = --Bba. (3.33) 

The equation of motion is 

OaH abe O. (3.34) 

The KR theory is invariant under the gauge transformation 

B,~b(X) --'+ B'b(X) -- Bab(X) § OaFb(x) --ObFa(x) (3.35) 

where Fa(x) are arbitrary functions. However, these gauge transformations are not 

all independent. One can see that under the transformation 

Fo(x) -+ F'(x) = Fo(~) + 0oZ(~) (3.36) 

(where ~(x) is an arbitrary scalar function) the gauge transformation (3.35) remains 

invariant. In particular, if Fa - 0aA, the gauge transformation vanish trivially. 

This is known as the 'gauge invariance of gauge transformations' and is a typical 

property of reducible gauge theories where the generators of gauge transformation 
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are not all independent [49]. Since the components of the arbitrary field Fa(x) 

(which represents the gauge freedom in the KR theory) are not all independent, 

there exists some superfluity in the gauge transformation (3.35). 

In order to obtain the maximally reduced form of the antisymmetric polarization 

tensor e~b(k) of the massless KR theory, as was done in the previous models, we 

employ the plane wave method using the ansatz 

Bo~(x) = ~o~(k)e ~'~. (3.37) 

(3.38) 

while the counterpart of (3.36) is given by 

fo(k) -~ f (k )  + iko~ (3.39) 

(where we have written F,~(x) = f,~(k)e ik'x and fl(x) = ~(k)e  ~k'x) a n d  the equation 

of motion (3.34) as 

ka[kae bc + kbe Ca + k% ab] = 0. (3.40) 

For massive excitations (i.e., when massive k 2 # 0), we have 

1 
ebb(k) = ~[kb(koe ~176 - k~176 (3.41) 

Using (3.38), this can be gauged away by choosing 

/c(k) = ~,vo~ (3.42) 

We thus find that massive excitations of KR theory are gauge artefacts. 
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In terms of the polarization tensor eab, the gauge transformation (3.35) can be 

written in the momentum space as 



For massless excitations (k 2 

(3.40) reduces to 

- 0), the momentum-space equation of motion 

kaeab=o (3.43) 

which is equivalent to the "Lorentz condition" OaB ab "" O. Using this condition, the 

six independent components of the antisymmetric polarization matrix {eab} can be 

reduced further. In the reference frame where the light-like vector k a takes the form 

k a = (w, 0, 0, w) T, the condition (3.43) can be written as 

--C ~ 0 C12 C13 ) / 0 

--c ~ --c m 0 c 23 0 

--E 03 --C 13 --C 23 0 OJ 

(C ab) �9 p - -  

The above equation can easily be simplified to 

= 0 .  (3.44) 

c ~  c ~  13, c ~  2a (3.45) 

so that  the polarization tensor e ab can now be written as 

{g ab } --  

0 e ~ e ~ 0 

- - g  01 0 g 12 g 01 

--C 02 --C 12 0 E 02 

0 - e  ~ - e  ~ 0 

(3.46) 

With the gauge choice f l  i ~ol and f2 i so2 = 5~ = 5 , if we now make a gauge transforma- 

tion (3.38), the above form of the polarization tensor yields the following maximally 

reduced form: 

s ab} ~ C 12 

0 0 0 0 

0 0 1 0 

0 - 1  0 0 

0 0 0 0 

(3.47) 
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The transformation of this maximally reduced polarization tensor (3.47) of the mass- 

less KR theory under the translational subgroup W(p ,  q) (3.2) of Wigner's little 

group, can be written as 

(eob) __+ (e,~ = W(p ,q ) (e .~ , }WT(p ,q )  = {eob} + ~12 

This can be cast in the form of (3.38) with 

0 - q  p 0 

q 0 0 q 

- p  0 0 - p  

0 - q  p 0 

(3.48) 

f l  .__ _qe12 f2 ----. pE.12 fz _. fo. (3.49) 
iw ' iw ' 

Hence we can say that defining representation W(p,  q) of the translational subgroup 

T(2) of Wigner's little group for massless particles generate gauge transformations 

in massless KR theory also. However, as in the case of linearized gravity, on account 

of the requirement fa _ f0 the gauge transformations, generated by the translational 

group T(2) fails to include the entire set of gauge transformations in KR theory. The 

general form of gauge transformation (3.38) in the matrix form is 

0 f l  f2 fO -- f3 

__fl 0 0 __fl 
( ob} + = + (3.50) 

- f  2 0 0 _f2  

fa _ fO f l  f2 0 

which makes it quite explicit that the transformation (3.48) does not exhaust (3.50), 

but is only a special case (where f0 = f3) of it. Here again, for the case of gauge 

transformation (3.48) generated by the translational group W(p ,  q), the arbitrary 

vector function f~ (k) which correspond to the gauge freedom of Kl:t theory satisfy 

the 'Lorentz condition' kafa(k)  = 0 since k ~ = (w,O,O,w) T corresponds to a KR 

quantum propagating in the z-direction. 
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Similar to the gauge generation (3.29) in linearized gravity, the transformation 

(3.48) is an attempt to generate the gauge equivalence class of the completely phys- 

ical (maximally reduced) polarization tensor (3.47) of KR theory using only the two 

parameters of the translational group W(p, q) while the full gauge freedom of the 

theory is represented by the four arbitrary components of the vector fa. Here again, 

the components f l  and f2 of f~ can be expressed in terms of the parameters p, q of 

the translational group W(p, q) and they remain independent of each other as can 

be seen from (3.49). However, unlike in the case of linearized gravity, the other two 

components (f0, f3) are independent of the parameters (and of the components of 

maximally reduced polarization tensor) and are left completely undetermined sub- 

ject only to the constraint f0 = f3. Thus, in the gauge generation by W(p, q) in 

KR theory, corresponding to any given pair (fl, f2) there exists a continuum of al- 

lowed choices for f0 (= f3) represent.ative of the invariance of gauge transformations 

(3.38) under (3.39). Therefore, the partial gauge generation by W(p, q) in mass- 

less KR theory clearly exhibits the reducibility of its gauge transformations. The 

reducibility of the gauge transformation (3.35) is manifested in the special choice 

(3.49) which makes the transformation (3.48)of the maximally reduced polarization 

tensor e a5 effected by W(p, q), a gauge transformation of the KR theory. This may 

be compared to the gauge generation (3.29) in linearized gravity by W(p, q) where 

all the components of the arbitrary vector variable ~'  are expressed in terms of the 

parameters (p, q) (see (3.30)) hence indicating the absence of any reducibility in the 

gauge transformation of the theory. 

Notice that the transformation (3.36) is of same form as the gauge transformation 

(3.4) of Maxwell theory where the generator of gauge transformations is W(p, q). 

Hence, one may consider that the 'gauge transformation (3.36) of gauge transfor- 

mations' in KR theory as being generated by a translational subgroup W(p, q) of 
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little group for massless particles. Therefore, in KR theory which is a 2-form gauge 

theory, two independent elements of the translational group W(p, q) are involved 

in generating gauge transformations, one for the underlying 2-form field Bt,~ and 

the other for the field F,. In the gauge generation for massless theories by the 

translational group W(p, q), we therefore perceive an appealing hierarchical struc- 

ture, namely in a n-form theory, n elements of the translational group W(p, q) being 

involved in gauge generation. 

3.5 B A F t h e o r y  

B A F theory [28, 29, 30, 31] is obtained by topologically coupling the B~b field 

of Kalb-Ramond theory (3.32) with the Maxwell field A~ and is described by the 

Lagrangian 

= --1--:FabFab -{- 1HabcHabc meabcdH A 4 1"2 -~ abc d. (3.51) 

The equations for motion for Aa(x) and Bab(X) fields are given by 

m ~abcdH OaF ad - --~t abc= 0 (3.52) 

and 

aaHabc i debc,~ ~m~ ed~. (3.53) 

The gauge transformations of the fields As (x) and Bab (x) are respectively of the same 

form as (3.4) and (3.35). Just like the massless KR theory discussed in section 3.4, 

the gauge transformation of the Bab is reducible for B A F theory also. Substituting 

for A~ and B~b respectively from (3.6) and (3.37), we obtain the momentum space 

version of the above equations of motion in terms of the polarization vector ~a and 
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r as follows; 

$ ~ ~abcdL k26 d -- kdkae"  + -~11~t ~,a~bc = 0 

k26 "b + e ~ l ~ k  b - eCbkck" + i m k d e e e  d~"b = O. 

(3.54) 

(3.55) 

The momentum space gauge transformations of the fields are obviously of the form 

(3.7) and (3.38). Considering the massless case k 2 = 0, we see using (3.54) that  

ed,b~kdk~e ~ = i m ( k ,  eb~ -- kbeac + kce,b) (3.56) 

Contracting with k b on either side of (3.56) yields, 

kakb gbc "b kckb gab - -  O. (3.57) 

Using (3.57) and the masslessness condition (k 2 = 0), one can immediately see using 

(3.55) that  

kde , e  d"bc = 0 (3.58) 

so that  any general solution of e, can now be written as, 

e ,  = f ( k ) k ,  (3.59) 

for some function f ( k ) .  Therefore, using (3.7), one can easily see that  massless 

excitations, if any, are gauge artefacts. This is in contrast with the Maxwell and 

KR models considered earlier, where the massive excitations are gauge artefacts. 

Next let us consider the massive case (k 2 = M2). Going to the rest frame with 

k" = (M, 0, 0, 0) T, one can relate the spatial components of 6" and eab by making 

use of (3.54) and (3.55) to get the following coupled equations 

ci = ~m eOijke" (3.60) 
- -  2 M  ~k 

~ij = Zm_oijk_ (3.61) 
- M  e ck 
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whereas G ~ and G ~ remain arbitrary which can be trivially gauged away by making 

use of the gauge transformations (3.7) and (3.38) and the form k a --- (M, 0, 0, 0) T for 

the four-momentum in the rest frame. On the other hand, the mutual compatibility 

of the pair of equations (3.60) and (3.61) implies that  we must have 

M 2 -- m 2. (3.62) 

This indicates that  the strength 'm' (taking m to be positive) of BAF term in (3.51) 

can be identified as the mass of the quanta in BAF model. With this, (3.60) and 

(3.61) simplify further and one can write G ~b and e ~ in terms of the three independent 

parameters, 

(G ab } --. 

0 0 0 0 

0 0 c - b  

0 - c  0 a 

0 b - a  O j 

G ~ ---- ~ i  l 
0 

a 

b 

C 

(3.63) 

displaying a dual structure. Another way of understanding the degree of freedom 

count is to recall that  the BAF Lagrangian (3.51) can be regarded either as a massive 

Maxwell (i.e., Proca) theory or a massive KR theory [46, 47, 48]. This can be 

achieved by eliminating once the KR field or, alternatively, the vector field from the 

coupled set of equations (3.52, 3.53). Both these theories have three massive degrees 

of freedom. It is interesting to note that  the polarization tensor/vector in (3.63), 

satisfy an orthogonality relation, 

cabcb=O. (3.64) 

By a straightforward calculation involving the explicit forms of the polarization 

tensor eab and vector ea (3.63), one can see tl~at W ( p , q )  fails to be a generator in 

B A F theory. Therefore, it appears that  the translational T(2) in the representation 

56 



W(p, q) , in contrast to the Maxwell and KR examples, is not a generator of gauge 

transformation in the BAF theory. So, what would be generator of gauge transfor- 

mations in the topologically massive BAF theory? In order to answer this question 

consider the matrix, 

D(p, q, r) = 
0 1 0 0  

0 0 1 0  

0 0 0 1  

(3.65) 

involving three real parameters p, q, r. This generates gauge transformations (3.7) 

and (3.38) acting on the polarization tensor and polarization vector (3.63): 

ea ._~ e,a = D~b(p, q, r)eb _ c a _  ~--(pa + qb + rc)k u, 
m 

(3.66) 

{e ~b} ~ {e '~b} = D(p,q,r){eab}DT(p,q,r) 

= ( ob) + 

0 (rb-qc)  (pc - ra )  (qa-pb)  

-(rb - qc) 0 0 0 

-(pc - ra) 0 0 0 

- ( q a - p b )  0 0 0 

(3.67) 

as both (3.66) and (3.67) can be easily cast into the form (3.7) and (3.38) with the 

proper choices of f (k)  and fa(k) given by 

f (k) = pa + qb + rc 
ira (3.68) 

f l ( k  ) _ rbira_.- qc, f2(k ) = PCim_.- ra, fa(k ) = qa.__irn- pb (3.69) 

while the component f~ of fa(k) remain completely undetermined manifesting 

the reducible nature of the gauge transformation of the B ab field as explained in 

the previous section in the context of KR theory. However, unlike KR theory, the 

gauge transformations generated by D(p, q, r) (3.65)exhaust the entire set of gauge 
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transformations in B A F theory. This is because the components of f~ (k) as given 

in (3.69) are independent of one another: the three spatial components f l ,  f2, fa 

are expressed in terms of the three parameters (p, q, r) while f0 is left completely 

undetermined. This is unlike massless KR theory where the gauge transformations 

generated by D(p, q, r) is restricted by the condition f0 = fa. 

We can now identify the group in which D(p, q, r) belongs. One can easily show 

that 

D(p, q, r) . n(p' ,  q', r') = D(p + p', q + q', r + r') (3.70) 

and 

where 

[T1, T2] = [T1, T3] = T3] = O (3.71) 

T1 = OD(p,O,O) OD(O,q,O) OD(O,O,r) (3.72) 
Op ; T2= Oq ; T 3 -  Or 

can be thought of as three mutually commuting "translational" generators. The 

group can therefore be identified with T(3) - the invariant subgroup of E(3) or 

ISO(3) [70]. Although this gauge generating representation of D(p, q, r) has been 

obtained here in a somewhat empirical manner, it can be derived systematically 

from Wigner's little group in a space-time of one higher dimension, i.e. in 4+1 

dimensions through dimensional descent. We shall elaborate on this in a subsequent 

chapter. 

3.6 Summary 

In this chapter we have reviewed the gauge generating nature of the translational 

subgroup T(2) of Wigner's little group for massless particle. We have seen that the 
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representation of T(2) inherited from the defining representation of Wigner's little 

group generates gauge transformations in several massless Abelian gauge theories 

in 3+1 dimensions. Our illustrative examples consisted of free Maxwell theory, 

Kalb-Ramond theory and linearized gravity. In the case of Maxwell theory T(2) 

is found to generate the entire spectrum of gauge transformations while in KR 

and linearized gravity, it generates only a subset of the whole range of available 

gauge transformations. In KalboRamond theory theory, the reducibility of the gauge 

transformation is clearly manifested in the gauge generation by T(2). When it comes 

to the topologically massive B A F theory, one has to go beyond the Wigner's little 

group and it is the translational group T(3) that generates the full set of gauge 

transformation in this theory. The generation by T(3) also explicitly manifest the 

reducibility of the gauge transformation in the antisymmetric tensor field in B A F 

theory. 
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C h a p t e r  4 

Trans la t iona l  groups  as gauge  

g e n e r a t o r s  in planar theor ies  

We have seen in the previous chapter that the translational subgroup of Wigner's 

little group generate gauge transformations in 3+1 dimensional massless gauge the- 

ories. However, the 2+1 dimensional little group for massless particles has only 

one parameter and is isomorphic to the translational group T(1) in 1-dimension. 

Nevertheless, this little group will generate gauge transformation in Maxwell theory 

in 2+1 dimensions 1. As we know, there exist topologically massive gauge theories 

in 2+1 dimensions, namely the MCS and ECS theories. The question now is if the 

translational group T(1) generate gauge 'transformations in these theories as well. 

The present chapter addresses this question. We first discuss the 2+1 dimensional 

little group briefly and then go on to study the relationship between the little group 

and gauge transformations in the topologically massive theories. 

1The linearized gravity and massless KR theories do not have any propagating degree of freedom 

in 2+1 dimensions. 
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4 . 1  W i g n e r ' s  l i t t l e  g r o u p  i n  2 + 1  d i m e n s i o n s  

Following identical techniques as in 3+1 dimensions, one can derive the 2+1 dimen- 

sional Wigner's little group that preserves the momentum 3-vector k t' - (w, 0, 09) T 

for a massless particle [33] as (i+Pi -~- ] 
2 a p  2 

{W~v}(P) = p a - p  (4.1) 

~_ i _ ~  2 ap 2 

where a = 4-1. For a = +1, one can easily show that, 

w(p) . w(p') = w(p  + A (4.2) 

and therefore the little group represented by (4.1) is isomorphic to 7~, the additive 

group of real numbers. It is well known that the Wigner's little group for massless 

particles (in 2+1 dimensions) is isomorphic to 7~ x Za [53]. The Z2 factor is required 

to take into account of the fact that the value of a is restricted to 4-1. 

The generator G in the representation W(p)  in (4.1) is clearly given (with a - 

+1) by, 

I O  1 0 / 

G = ~ O W  ip:o = 1 0 - i  (4.3) 
Op 

0 1 0 

satisfying, 

I 
1 0 -1  / 

G 2 =  0 0 0 

1 0 - 1  

so that W(p) can be re-expressed as, 

; c 3 = 0 (4.4) 

1 2 - 2  W (p) = e pa --- 1 + pG + -~p G (4.5) 
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One can thus construct various representations of Wigner's little group for mass- 

less particles in 2+1 dimensions just as in the usual 3+1 dimensions. The important 

point is that  although the various representations are, by definition, isomorphic to 

each other, not all of them belong to the Lorentz group. In the following section we 

construct another representation of the little group in 2+1 dimensions, not inher- 

ited from SO( l ,  2), which will be shown to act as a gauge generator in topologically 

massive MCS theory. 

The little group for the massive particle, which in this case can be trivially seen 

to be O (2), however, does not have any role as a generator of gauge transformation. 

This does not mean however that  they are completely unrelated. In fact, one can 

write W(p) for IPl < 1, as a product of three matrices; 

W(p) = B;l(p)R(p)B~(p) 

where 

[ / (1) 2-~ 2~ 1 0 0 ; ~ 0 

1 Byl(P) - 0 1 0 ;R(p) -" 0 ~ - p  ;Bx(p) -- ~ ~ 0 

_ d  2-~ 0 2-z'~2~ 0 p 7 0 0 1 

(4.6) 

(4.7) 
with ~ = x / F : - ~ .  These matrices are themselves the elements of the Lorentz 

group SO(1, 2); B~ represents a boost along the x-direction, R represents a spatial 

rotation in the x - y  plane and B~ -1 represents a boost along the negative y-direction. 

Appropriate transformations in this order can preserve the energy-momentum 3- 

vector of a massless particle moving in the y-direction. Here R clearly corresponds to 

the little group of a massive particle. Thus (4.6) relates the elements of the connected 

parts of identity element of the little group of massless particles with massive ones 

as long as [Pl < 1. But this does not provide the natural homomorphism existing 
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between/'4 (the additive group of real numbers) with SO (2). 

4 . 2  L i t t l e  g r o u p  as  g a u g e  g e n e r a t o r  

C h e r n - S i m o n s  t h e o r y  

i n  M a x w e l l -  

It is easy to see that the little group W(p) in (4.1) with a = +1, generate gauge 

transformations in 2+1 dimensional Maxwell theory. For that consider a photon 

of energy w moving in the y-direction and polarized in the x-direction so that the 

potential 3-vector takes the form 

A~(x) = ~ exp(-ik.x) = ~ exp(-i03(t - y)), (4.s) 

where / ~ ~$= i 

0 

(4.9) 

is the polarization vector and the subscript denotes that this vector is in the x- 

direction. Under the action of W(p) (4.1), ~ undergoes the transformation 

~t V ~ -~ ~ = w vG = ~ + Pk,. (4.10) 
03 

This can be identified as the gauge transformation as the corresponding gauge field 

undergoes the transformation 

(4.11) 

In contrast to Maxwell theory, MCS excitations are massive as we have seen 

in section 2.1.1 and the rest frame polarization vector ~ ( 0 )  takes the simple form 

63 



(2.18) in the rest frame. That  is, l/~ / 
~a(0) = ~ 1 �9 (4.12) 

.0  - z ~  

where ~ is the CS parameter. Note that it has complex entries having both x and 

y components unlike the Maxwell photon polarization ~ .  In fact in their Coulomb 

gauge analysis Devecchi et. al.[50] have pointed out that the spin ( ~ )  of the MCS 

quanta stems from this particular complex structure of the polarization vector. 

We shall now investigate whether this same little group can generate similar 

gauge transformation on the MCS polarization vector (4.12). To that end, let us 

apply W(p) on ~ ( 0 )  (4.12). Without loss of generality, henceforth we shall consider 

~) < 0 case only. We find that it undergoes the following transformation, 

P - - 2  
1 ' 

~"(0) ~ ~"(0) - W%(p)~(0 )  - ~ 1 - i p  (4.13) 

p+i(1- 
Clearly this cannot be cast in the form of (4.10). One cannot therefore interpret 

this transformation as a gauge transformation. However, taking advantage of the 

fact that  this little group involves a single parameter only, we can easily construct 

a (non-unique) representation which does the required job. This is given by, 

I 1 p -ip I D ( p ) =  0 1 0 ; pen 
0 0 1 

(4.14) 

so that in place of (4.13) one has the desirable form in the sense that it can now be 

put in the form of (4.10); 

(4.15) ~"(0) --+ ~"(0) -- D z ~ ( 0 )  = ~z(0) + - ~  
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where k" = (1r 0) T is the energy-momentum 3-vector of a MCS particle in the 

rest frame. This shows that D(p) acts a generator of gauge transformation in the 

MCS theory. 

By denoting the rest frame polarization vectors of a doublet s ((2.56)and ( 

2.57)) of MCS theories with helicities 4-1 by {~: and the corresponding elements of 

2+1 dimensional little group that generate their gauge transformation by D+(p+) 

respectively, we may write 

{~: --+ D.(p . ){~ = {~: + ~ k  ~ 

1(0 / 
D•177  0 1 0 { + ~ = ~  1 �9 

0 0 1 =t=i 

where 

(4.16) 

(4.17) 

with p+ representing the parameters of the little group elements D+. In the next 

chapter we show how we can derive these representations of Wigner's little group 

in 2+1 dimensions from the gauge generating representation W(p, q) of T(2) for 

Maxwell theory in 3-+-1 dimensions by a method called dimensional descent. 

Now, certain comments on some subtle points regarding representation D(p) 

(4.14) are in order. Although D(p) is not an element of the Lorentz group, it 

is perfectly admissible to regard it as a representation 2 of the little group for a 

massless particle in 2+1 dimensions. This is because it satisfies D(p) �9 D(p') = 

D(p + p'), so that there exists a natural isomorphism between W(p) (4.1) and D(p) 

(4.14). This is analogous to 3+1 dimensional case of Wigner's little group (3.1) 

for massless particles. The Lie algebra of this little group (which acts as gauge 

2Note that this representation is different from the defining representation, the latter can only 

be obtained as a subgroup of the Lorentz group SO(l, 2). 
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generators [22, 23, 24, 27, 33, 26]) is isomorphic to the algebra of the Euclidean 

group E(2) as explained in appendix A. However, notice that the algebra of the little 

group, being a combination of boost and rotation generators (A.24), is a subalgebra 

of the homogeneous Lorentz algebra whereas the defining representation of E(2) 

algebra (comprising of two translational generators and a rotational generator in 

a plane), is a subalgebra of Poincare algebra but not of the homogeneous Lorentz 

algebra. 

Coming back to the issue of similarities and dissimilarities between the polariza- 

tion vectors of pure Maxwell theory and that of MCS theory, note that a photon 

state is entirely characterized by (4.9) where both the "spatial" transversality con- 

dition, k.(x - 0 and the temporal gauge condition ~o _.. 0 are trivially satisfied. 

Therefore the gauge field configuration (4.8) corresponds to the radiation gauge. 

Clearly the same gauge condition will no longer be valid under a Lorentz boost. 

However, we shall show now that the radiation gauge condition can still be satisfied, 

provided the gauge field undergoes an appropriate gauge transformation preceding 

the Lorentz boost. Considering the Maxwell case first, the gauge transformed field 

configuration Art'(x) corresponding to a photon polarized along the x-direction and 

propagating along the y-direction can be written as, 

A't'(x) = A~(x) + O'~(x) = At'(x) + pkt'e -ik' '  (4.18) 

where the scalar function iS(x)is taken to be of the form i p ( k ) .  A Lorentz boost of 

velocity v -- tanh r for example, in the x-direction yields, /c~ ~ / ( 
2't, -- sinh r cosh r 0 1 e -~k''~' - 

0 0 1 p 

\ 
p cosh r + sinh r 

p s i n h r 1 6 2  ) e -~k''~' (4.19) 

P 
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where k " is the appropriate energy-momentum 3-vector in the new boosted co- 

ordinate frame x ~ and is given by, 

cosh r / 
k " = w sinh r (4.20) 

1 

Preservation of spatial transversality condition implies that we must have, 

T 

~.'(x') . k ' = ~  = 0  (4.21) 
p 1 

Solving for p, one gets, 

p = - t a n h r  = - v  

This solution, when substituted back in (4.19) yields, 

(4.22) 

2~  ') = 0  (4.23) 

which is nothing but the temporal gauge condition. Thus with an appropriate 

gauge transformation preceding a Lorentz boost, the radiation gauge condition can 

be satisfied. But, as we shall see now, the same is not true for MCS Theory. Upon 

a gauge transformation, the polarization vector (4.12), in the rest frame, becomes (lp p//o / 
0 1  0 1 --~-~ 1 

0 0 1 i i 

(4.24) 
1 ~(x) ~ ~t'(x)--- D(p)~'(x)-- --~ 

Then a Lorentz boost like (4.19) along x-axis, for example transforms this to, 

sinh r + 2p cosh r ) 

cosh r + 2p sinh r (4.25) 
1 
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Simultaneously, the k ' -- (1, O, O) T, associated to the rest frame, transforms to, 

k ~' --~ k"  = sinh r (4.26) 

0 

Demanding that the spatial transverality condition is satisfied in an arbitrary boosted 

frame (i.e., r r 0) and using r and (4.26) we get, 

( s i n h r  ( c o s h r 1 6 2  i = 0 ,  (4.27) 

which when solved for the gauge transformation parameter p in terms of the boost 

parameter r yields, 
1 1 

= - - -  (4.28) 
P =  2 tanhr  2v" 

So just like in the Maxwell case the spatial transversality condition can be main- 

tained in any boosted frame, provided the boost is preceded by a suitable gauge 

transformation. However, in contrast to Maxwell case (4.23), the temporal gauge 

condition (A ~ = 0) is not satisfied simultaneously since for p satisfying (4.28) 

~10= 1 
vf~ sin h r (4.29) 

Nevertheless, ~0 (4.29) can be made to vanish in the infinite momentum frame (in 

the limit ~b --+ oc), i.e., when p --+ - ~  and tanh r --+ 1. 

For a boost along the x-direction, one can write 

k 1 
tanh r = ~-6" (4.30) 

Using (4.28), (4.30) and the mass-shell condition k 2 = v~ 2, one can simplify (4.25) 
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to get the polarization vector as, 

~ t ~ = _ ~  0 (4.31) 

i 

At this stage, we can see clearly that although the spatial transversality ( k . ( =  0) 

holds trivially in the rest frame, the temporal gauge condition is not well defined 

(since ~0 __~ c~ as k 1 --+ 0). This is expected from the simple consideration that a 

Lorentz transformation (to the rest frame) alone should not also lead to a complete 

gauge fixing. Note that, unlike MCS theory, a rest frame is not available in Maxwell 

theory. 

4.3 Linearized Eins te in -Chern-S imons  theory  

As explained in section 3.3, pure gravity in 2+1 dimensions is a null theory in 

the sense that it does not have a propagating degree of freedom. However, 2+1 

dimensional gravity coupled to a non-Abelian Chern-Simons topological term, with 

gauge group being the Lorentz group itself, possesses a single propagating massive 

degree of freedom [9]. Just like the MCS theory, the gauge invariance coexists with 

mass in the linearized version of this theory too where the gauge group reduces 

to Abelian group T(1). In this section we study the role of translational group 

in generating gauge transformations in the linearized version of gravity coupled to 

Chern-Simons term 2+1 dimensions [26]. 

The full action of the topologically massive gravity in 2+1 dimensions is 

I E C S  _ i ~ + I c s  (4.32) 
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where the 2+1 dimensional Einstein action here is 

I ~ -- f d3xv~R (4.33) 

and the Chern-Simons action Ics is given by 

2 ics  _ _ 1  / daxd,~,~[Rt,~,a~w~a~ + _~wt,,yw~, ~ w~a/3]" (4.34) 
4# 

The w,~ z are the components of the spin connection one-form and are related to the 

curvature two-form by the second Cartan's equation of structure ( R ~  = dw~ + 

w ~  A wz~). Note that the sign in front of the Einstein action is now opposite to the 

conventional one (3.12) and is required to make the full theory free of ghosts [9]. 

The linearization, gt,~ = ~,~ + ht,~, of the ECS theory (4.32) results in the Abelian 

theory [9, 61] given by 

= f d3xL[~ (4.35) 

where 

z [  c~ = z [  + L~ ~. (4.36) 

Here 

L[ 1 -~hu~ [R~ ~ - (4.37) 

now is the Lagrangian for linearized version of pure gravity in 2+1 dimensions and 

is the same as (3.14) except that it has the opposite sign and the indices, in this 

case, vary over 0, 1, 2. Similarly, 

s s = 1 

is the linearized Chern-Simons term with the Chern-Simons parameter #. Under 

the gauge transformation hu~, -+ h~, -- hu~, + Ot,(~,(x ) + 0~(u(x), the Chern-Simons 

part s cs changes by a total derivative: 

1 a 
~c~ ~ = ;%~ ~ ( ~ 0 . ~  ~) (4.39) 
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The equation of motion corresponding to f_.~L c s  is given by [9, 66] 

rn h t,~ _ O~, O.~ h ~," _ O~ O.~ h ' ,  , + Ot' O" h _ rfW ( rn h - O.r O 6 h'~ ~ ) 

1 e~Ov(rnh~  _ O~Ol, h~) _ ~__~e~.y~Ov(r_nh ~ _ OrOt, h~) = 0. (4.40) 
2# 

With  the ansatz h ~'~ = X " ( k ) e  ~k'~, the above equation of motion can be written 

in terms of the symmetric polarization tensor Xt,~(k) and the 3-momentum k t' as 

follows 

- k 2 x  .~ + k.k~x ~ + k~k~x ~" _ k.k~X - ,.~(-k2X + k~k6X ~ )  

i [eaV~k,y(_k2x~ + k~-k"x~) + d"Y6k,y(-k2x~ + krkax~)] = 0. (4.41) 

Analogous to (3.20), the expression for the gauge transformation for ECS theory in 

terms of its polarization tensors X "~ (k) is given by 

XaV(k) -.+ X'a"(k) = X"~'(k) + ka;~,,(k) + k";~'(k) (4.42) 

where ca(k) are small arbitrary functions of k. Depending on whether the excita- 

tions are massless or massive, we have two options for k2: 

(i) k 2 = 0 or (ii) k 2 ~ O. 

case (i): k 2 = 0 

Contracting the (4.41) with r/g~ gives 

k~k~,x "~' = 0 .  (4.43) 

A general solution to this equation consistent with the equation of motion (4.41) is 

X ~" = k ~ f " ( k )  + k"f~ ' (k)  (4.44) 
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where f~ (k )  are arbitrary functions of k. However, with f~' = - ~  we can 'gauge 

away' these solutions. Therefore, massless excitations of ECS theory are pure gauge 

artefacts. We now proceed to the other option: 

case (ii) k 2 ~ 0 

Let k 2 = m 2. On contraction with r],~ (4.41) gives 

k~k~,x "v = m2x  (4.45) 

where X = X ' ,  �9 With k a = (m, 0, 0) T, this yields 

Xll + X22 = 0. (4.46) 

By considering the spatial part of (4.41) one can show that  the mass m of the 

excitations can be identified with the Chern-Simons parameter # as follows. The 

spatial part of (4.41) is 

- m 2 x  ij + k~k,x  ~'j + kJk~,x ~'~ - kikJ X _ ~ J ( - k 2 x  + k ,k , , x  ~') 

i [eer~k,~(_k2)~ + k~.kJxr ) + ej~,~k,y(_kUx~ + krkix~)] = 0. (4.47) 

In this equation i , j  takes values 1 and 2. On passing to the rest frame the above 

equation simplifies to 

im  
[e'k~k + eJkX~] - 0 (4.48) - X  ~3 + z]~3X~ k - - ~  

from which we obtain (for i = j = 1 and i = j = 2 respectively) 

X 11 = ~--x-im 12 ; X22 = - i m x 1 2  (4.49) 
# # 

With  i = i and j = 2 we have 

X 12 = +zmx22. (4.50) 
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This relation together with (4.49) implies that m 2 = p2. The remaining components 

can be made to vanish by a suitable gauge choice. Finally, for the Chern-Simons 

parameter # > 0, the polarization tensor X+ of the gravity coupled to Chern-Simons 

theory in 2+1 dimensions in the rest frame can be written as 

O 0 0 / 
x +  --- = 0 1 - i  (4 .51)  

0 - i  - 1  

where ~- is an arbitrary real parameter. Notice that the ECS theory has only a 

single degree of freedom corresponding to the parameter ~-. Similarly, the rest frame 

polarization tensor for an ECS theory having the Chern-Simons parameter # < 0 is 

0 0 O )  

X - - - { X  ~ : } =  0 1 i ~. (4.52) 

0 i -1  

It is important to note that these rest frame polarization tensors X• of ECS the- 

ories (with T = �89 can be obtained as direct products of the rest frame polarization 

vectors ~ (4.17) of MCS theories, i.e., 

X~: ~ = ~.~:. (4.53) 

This suggests that we adopt orthonormality conditions for X+ which are similar to 

the ones (2.17) used for ~t,. Hence we require 

(4 .54)  

Therefore, we have the following maximally reduced form for the polarization tensors 
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of a pair of ECS theories with opposite helicities 1/000 / 
x •  0 1 =Fi �9 (4.55) 

0 Ti -1  

Note that these polarization matrices of ECS theories are traceless and singular. We 

are now equipped to study the role played by the translational group in generating 

the gauge transformation in this theory. The representations of T(1) that generates 

gauge transformation in pair of MCS theories with opposite helicities is given by 

D• (4.17). On account of the relation (4.53) it is expected that the same rep- 

resentations will generate gauge transformations in ECS theories also. Indeed one 

can easily see that D• are the gauge generators in ECS theories: 

X• -'+ X~: = D•177177177 -- X+ + 

( 2p~ p• ~ip. ) 
~,~ o o �9 (4.56) 

~ip• 0 0 

This transformation can be cast in the form of the gauge transformation (4.42) with 

the following choice of ~'s; 

~o = p~ P~: ~:ip• (4.57) 

One can obtain the moving frame expression for polarization tensors X• (k) from the 

above rest frame results by applying appropriate Lorentz boost as follows: 

x• = AT(k)x• 

k 2 _ ~2 kOkl ::~ i l # lk2  

1 kOkl il#lk2 (k%~§ lk2)2 

k~ 2 • il#lk 1 (k%i~:~lalk2)(k%2• k~) 
k~-#2 

k ~  2 i i [ # l k  1 

(k~176 / e• 
k~-tt 2 

(kOk2+ilt~lkl) 2 
k~-tt 2 

(4.5s) 
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where r = arctan(~) and the momentum space boost matrix [64] 

('1'--1)(f]1) 2 (ff--1)/~l# 2 A(k) --" "y,81 1 -+- (~)~ (~)2 (4.59) 

k o with f l - -  ~ and 7 - 1~i as given in (2.27). Results identical to (4.53) and (4.58) 

were obtained in other contexts [66] by different methods. Here, we have shown 

how these results can be obtained in a simpler and straightforward manner just 

by considering the momentum space expression of the equation of motion in the 

rest frame using the plane wave method with a subsequent boost transformation. 

Obviously, the relation (4.53) holds true in the moving frame also. 

4.4 S u m m a r y  

Though, the defining representation of Wigner's little group for massless particles 

in 2+1 dimension generate gauge transformations for Maxwell theory, the same rep- 

resentation does not generate gauge transformations in the topologically massive 

Maxwell-Chern-Simons and Einstein-Chern-Simons theories. However, using the 

fact that this little group has only one parameter, we have obtained a different rep- 

resentation of the little group that generate gauge transformations in these theories. 

The similarities and dissimilarities between the Maxwell and Maxwell-Chern-Simons 

theories in the context of gauge fixing (spatial transversality and temporal gauge) are 

also analyzed. Detailed analysis of the polarization tensor of Einstein-Chern-Simons 

theory is carried out and the polarization tensor is found to be a tensor product of a 

pair of polarization vectors of Maxwell-Chern-Simons theory with the same helicity. 

This is quite natural since Maxwell-Chern-Simons (spin +1) and Einstein-Chern- 
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Simons (spin +2) theories correspond to different spin representations of the 2+1 

dimensional Poincare algebra 3 [65] and these spin representations are related by a 

tensor product [9, 66]. 

SNore that spin is a scalar in 2+1 dimensions. 
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Chapter 5 

Dimensional  descent 

As introduced in [32], dimensional descent is a method by which one can obtain 

the energy-momentum vector, polarization vector/tensor and the gauge generating 

representation of the translational subgroup of Wigner's little group etc, in a topo- 

logically massive gauge theory living in a certain space-time dimension from similar 

results for massless gauge theories inhabiting a space-time of one higher dimension. 

In this sense, dimensional descent is a unification scheme for the results presented 

in the previous chapters regarding various gauge theories. In the present chapter, 

we discuss dimensional descent as applied to topologically massive gauge theories 

[26, 32]. Dimensional descent is also applicable to massive gauge theories [37] ob- 

tained by the previously mentioned embedding procedure of Batalin, Fradkin and 

Tyutin and we provide a short account of dimensional descent for such theories 

in the following chapter. It may be noted in this connection that the relationship 

between massless gauge theories in a given space-time dimension and lower dimen- 

sional gauge theories having massive excitations can be studied using other methods 

also (for example, see [68, 69]). 

77 



Dimensional descent 

d imens ions  

4 + 1  to 3 + 1  

We begin our discussion of dimensional descent by noting that, the translational 

group T(3) which generates gauge transformation in 3+1 dimensional B A F the- 

ory is an invariant subgroup of E(3). Now, just as E(2 / is the generator of gauge 

transformation in 4-dimensional Maxwell and massless KR theories, E(3) gener- 

ates gauge transformation in the 5-dimensional versions of these massless theories. 

This indicates that the generators of gauge transformations in B A F theory and 

5-dimensional massless gauge theories are related. This relationship is explicitly 

demonstrated through the method of dimensional descent [32] which we will de- 

scribe below. 

An element of Wigner's little group in 5 dimensions can be written as 

= 

( 1 ~- P~+q2+r2 P2+q2+r2 
2 P q r - 2 

P - p  

q R(r162 - q  (5.1) 

p2 +q2 +r2 p2+q2-t-r2 
2 p q r 1 -  2 

where p, q, r are any real numbers, while R(r r 71 e SO(3), with (r r 7) being a 

triplet of Euler angles. The above result can be derived by following the standard 

treatment (see, for example [191/adopted in appendix A for 3+1 dimensional case. 

The element of the translational subgroup T(3) of Ws(p, q, r; r r 71 can be trivially 

obtained by setting R(r r to be the identity matrix and will be denoted by 
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W ( p , q , r ) = -  Ws(p ,q , r ;O)  = 

]" "~" P2+q2+r22 p q r -- P2+q2+r22 

p 1 0 0  - p  

q 0 1 0 - q  

r 0 0 1 - r  
p2-bq2+r2 p2 +q2 +r2 

2 p q r l -  2 

(5.2) 

Let us now consider free Maxwell theory in 5-dimensions, 

E = -1F~UF~y;  x , y  = O, 1,2,3,4.  (5.3) 

For a photon of energy w (in 5-dimensional space-time) propagating in the x - 4 

direction, the momentum 5-vector is given by 

k s = (w, 0, 0, 0, w) ~. (5.4) 

By following the plane wave method and proceedir~g exactly as in section 3.2, one 

can show that  the maximally reduced form of the polarization vector of the photon 

is 

= (0, a, b, c, o) (5.5) 

where a, b, c represent the three transverse degrees of freedom (since the polarization 

vector satisfies the 'Lorentz gauge' e~k~ - 0). If we now suppress the last rows of 

the column matrices k s (5.4) and e~ (5.5), we end up respectively with the energy- 

momentum 4-vector and the polarization vector of 3+1 dimensional Proca theory in 

the rest frame of the quanta if we make the identification w = m (m being the mass 

of the Proca particle), or equivalently, of B A F theory since the gauge invariant 

sector of the latter is equivalent to the former. This is equivalent to applying the 

projection operator given by the matrix 

P = diag(1, 1, 1, 1, 0) (5.6) 
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to the momentum 5-vector (5.4) and the polarization vector (5.5). 

Similarly, to reproduce the polarization tensor of B A F or equivalently, massive 

Kalb-Ramond theory in 3+1 dimensions let us consider free massless KR model in 

5-dimensions, 

i (5.7) s  Hxyz 

Analogous to (3.47) (for massless KR theory in 3+1 dimensions), the maximally 

reduced form of the polarization tensor e xy of the  4+1 dimensional massless KR 

model can be obtained by plane wave method as, 

g x Y }  --. 

( 0  0 0 0 0 

0 0 e ~2 e 13 0 

0 - - e  12 0 e 23 0 

0 - - e  13 - -e  23 0 0 

o o ,o o 

(5.8) 

Again deleting the last row and column, one gets the polarization tensor(e ab) in 

(3.63) of the B A F model or of massive KR theory. This is equivalent to applying 

the projection operator as "PEP. Thus the polarization vector and tensor of the 

Proca and massive KR models respectively, or B A F theory have been reproduced. 

This is quite natural since, as mentioned in section 3.5, the gauge invariant physical 

sector of B A F theory can be considered equivalent either to Proca theory or to 

massive KR theory in 3+1 dimensions. 

Now coming to the gauge transformation properties of polarization vector (5.5) 

and polarization tensor (5.8) under the translational subgroup T(3), let W(p, q, r) 

act on these objects one by one. First, acting on ex(5.5), one gets 

e �9 _+e '~ - - W ( p , q , r ) X e u = e ~ + S e  �9 - - e  �9 + ( p a + q b + r c )  k~ (5.9) 
w 
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which is indeed a gauge transformation in (4+1) dimensional Maxwell theory. Ap- 

plying the projection operator P (5.6) on (5.9) yields 

1 
6r a ' -  "P6r ~ -- w (Pa + qb + rc )k  a (5.10) 

where r = (0, a, b, c) T and, modulus the/-factor, corresponds to the expression in 

(3.63) of B A F theory. This is precisely how the polarization vector in B A F theory 

transforms under gauge transformation [27]. In fact we can write 

~ ~  = D~ b - ~ = i-(pa + q b +  ~c)k o (5.11) 
W 

where D(p, q, r) is a representation of the translational group T(3)  given in (3.65), 

D ( p , q , r )  = 

l p q r  

0 1 0 0  

0 0 1 0  

0 0 0 1  

(5.12) 

In terms of the generators (3.72) of T(3), the change in the polarization vector (5.11) 

can be expressed as the action of a Lie algebra element: 

C a 
5~ ~ --- (pT1 + qT2 + r T 3 ) - - .  (5.13) 

w 

Coming next to the polarization matrix {r its transformation law is given by, 

{~} -~ {~,~} = W ( p , q , r ) { ~ } W ~ ( p , q , r )  { ~ }  + { ~ }  

where, 

0 0/1 0/2 O~ 3 0 

-c~i 0 0 0 - a l  

-a2 0 0 0 - a 2  

-a3 0 0 0 - a 3  

0 a l  a 2 0 Z 3  0 

(5.14) 
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and cg 1 " - -  - ( q c  + rb), a2 = (pc - ra)), a3 = (pb + qa). Again this can be easily 

recognized as a gauge transformation in (4+1) dimensional KR theory involving 

massless quanta, as 5e xy can. be expressed as ..~ (k~fY(k)  - kUf~(k)) with suitable 

choice for fX(k) ,  where k x is of the form (5.4). Now applying the projection operator 

7 ) (5.6) on (5.14), we get the change in the 3+1 dimensional polarization matr ix  

{6ab}, by the formula, {Se ~b} -'- P{Sex~}P  T. This simply amounts to a deletion of 

the last row and column of {SexY}. The result can be expressed more compactly as 

(Seab) -- (D(p ,q , r ) (e~b}DT((p ,q , r )  -- (eab}). (5.15) 

Again this has the precise form of gauge transformation of the polarization matr ix  

of B A F model, since it can be cast in the form 

{5c ̀~b} = i(k'~fb(k) - k b r ( k ) )  (5.16) 

for a suitable fa (k) ,  where k a -- (m, 0, 0, 0) T. 

Thus we have shown that  the gauge generation representation D(p, q, r) of T(3) 

for topologically massive B A F gauge theory in 3+1 dimensions can be connected 

to the Wigner's little group for massless particle in 4+1 dimensions through di- 

mensional descent. This involved appropriate projections in the intermediate steps, 

where the massless particles moving in 4+1 dimensions can be associated with a 

massive particle at rest in 3+1 dimensions. Similarly the polarization vector and 

tensor respectively of B A F theory in 3+1 dimensions can be associated with po- 

larization vector and polarization tensor of free Maxwell and KR theories in 4+1 

dimensions. 
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5.2 D i m e n s i o n a l  descent:  3 + 1  to 2 + 1  d i m e n s i o n s  

We have seen from the previous discussion that using dimensional descent one can 

obtain several properties regarding the gauge transformation in 3+1 dimensional 

topologically massive gauge theory (the B A F theory) by starting from higher di- 

mensional massless gauge theories. We have also seen earlier that the MCS and 

ECS theories are topologically massive theories in 2+1 dimensions. Therefore one 

is naturally led to the question as to what would be the role of dimensional de- 

scent in these 2+1 dimensional topologically massive gauge theories with respect 

to the massless gauge theories (Maxwell and linearized gravity) in 3-}-1 dimensions. 

This section is devoted to a detailed discussion of this issue and the application of 

dimensional descent from 3+1 dimensions to 2+1 dimensions [26, 32]. 

5.2.1 Proca  theory  and doublet  of Maxwe l l -Chern-S imons  

theories  

Here we describe the method of dimensional descent from 3§ to 2+1 dimensions for 

vector theories [32]. Let us recapitulate certain properties of free Maxwell theory in 

3+1 dimensions from section 3.2, which are essential in the present context. The 3+1 

dimensional Maxwell theory has two transverse degrees of freedom. Correspondingly 

the polarization vector 6 ~ takes the maximally reduced form 6 a = (0,, 61, 62, 0) T 

(3.9), if the 4-momentum is k '~ = (w, 0, O, w) T. We have seen earlier (section 3.2, 

(3.10)) that the generator of gauge transformation in this case is T(2), which is a 

subgroup of E(2): 

k_~ ~ 
= w % ( p ,  = + 

03" (5.17) 
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We now proceed forth to discuss dimensional descent from 3+1 dimensions to 2+1 

dimensions. By applying the projection operator 7) = diag(1, 1, 1, 0) on ~ and k ~, 

and then suppressing the last rows of e ~ and k ~, we obtain the descended objects 

6" - (0, a, b) T (with ~1 _ a and e 2 = b) and k t~ -- (w, 0, 0) T. These can be considered 

to be the polarization vector and momentum 3-vector in the rest frame of 2+1 

dimensional Proca theory described by the Lagrangian  

m 2 
f_. = -1Ft'~'Ft,v + ---~-- A t' At, (5.18) 

provided we make the identification w = m,  the mass of Proca excitations. Anal- 

ogous to (5.10), the projection operator 7 ) = diag(1, 1, 1, 0) when applied on the 

gauge transformation (5.17) yields 

= = l_(p  + qb)k" (5.19) 
5d 

Since Proca theory is not a gauge theory, (5.19) cannot be considered as a gauge 

transformation. We have, however, seen earlier that  Proca theory in 2+1 dimensions 

is actually a doublet of Maxwell-Chern-Simons theories [36, 57, 59] 

= L+ �9 (5.20) 

where 

s  = - 4 F t ' V F ~ ,  + ~d'~'~At, O~,A~ (5.21) 

with v9 > 0 and each of s  or s  being a topologically massive gauge theory. The 

mass of the MCS quanta is m -- 0, where m is the parameter entering in (5.18). We 

can therefore study the gauge transformation generated in this doublet. For this 

purpose, analogous to (5.12), it is essential to provide a 3 x 3 representation of T(2) 
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(denoted by D(p,q)) ,  

D ( p , q ) =  0 1 0 �9 

0 0 1  

The corresponding generators are given by, /010) (001) 
OD(p, q) OD(p, q) 

T I =  cOp - 0 0 0 ; T2 = cOq = 0 0 0  

0 0 0  0 0 0  

In analogy with (5.13), here also one can rewrite (5.19) as, 

(5.22) 

(5.23) 

56" = (pT1 + qT2)",,6 ~ (5.24) 

so that  the change in the polarization vector e" is obtained as the actoin of a Lie 

algebra element. Proca polarization vector 6" is just a linear combination of the two 

real orthonormal canonical vectors 61 and 6 5 where, 

6" = a6 O) + b6(2); 6(1) = (o, 1,o)L6(~) = (o ,o ,1)  7 (5.25) 

Correspondingly the generators T1 and T2 (5.23), form an orthonormal basis as they 

satisfy t r (T]Tj)  - 5~j. Furthermore, 

T16 (1) T26 (2) (1, 0, 0) T k" = = = - - ,  T 1 6  (2) = T 2 6  (1) = 0 (5.26) 
m 

On the other hand, the rest frame polarization vectors for s177 with only one 

degree of freedom for each of s  and E_ (section 2.1.1), as given by 

110) r = ~ 1 (5.27) 

q=i 
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also provide an orthonormal basis (complex) in the plane as 

( ~ ) t ( ~ )  = o; ( ~ ) t ( ~ )  = (~ . ) t ( e . )  = 1. (5.28) 

Here we note that spatial part ( .  of ~q_ can be obtained from the space part of 

the above mentioned canonical ones by appropriate SU(2) transformation. That 

i s ' U = ~ 2 (  li l i )  ESU(2) w h e n a c t s ~  yields 

respectively the vect~ ~- -- ~2 ( 1 ) i  

factor of i) 1: 

i~'+ = u ~  ~), 

(1)  ands2 : (~  o 1 

( to an r e eva t a~d ~+ = ~ - i  

~'_ -- Ue -'fl) . (5.29) 

This suggests that we consider the following orthonormal basis for the Lie algebra 

of T(2): 

1 1 
T~ = ~(T1 • iTs)= 

O 1 • 
0 0 0 

0 0 0 

(5.3o) 

instead of T1 and T~. Note that they also satisfy relations similar to the (T1 - T2) 

basis, 

tr(Tf+T+) = tr(Tf_T_) = 1; tr(Tt+T_) = 0 (5.31) 

One can now easily see that 

k# 
T+~+ = T_~_ = - - ,  T+~_ = T_~+ -- 0 (5.32) 

m 

analogous to (5.26). Furthermore , 

5 ~  -- p ~ T ~  = P-~-~ k ~. (5.33) 
m 

1This ambiguity of i factor is related to the U(1) phase arbitrariness of the polarization vector 

discussed in section 2.1.1. 
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This indicates that T• - the generators of the Lie algebra of T(2) in the rotated 

(complex) basis - generate independent gauge transformations in E• respectively. 

One therefore can understand how the appropriate representation of the generator 

of gauge transformation in the doublet of MCS theory can be obtained from higher 

3+1 dimensional Wigner's group through dimensional descent. A finite gauge trans- 

formation is obtained by integrating (5.33) i.e., exponentiating the corresponding 

Lie algebra element. This gives two representations of Wigner's little group for 

massless particles in 2 + 1 dimensions, which is isomorphic to 7~ • Z2, although here 

we are just considering the component which is connected to the identity, 

D•  (p• = e p-T* = 1 + p•177  = 

v~ 

0 1 0 

0 0 1 

(5.34) 

Note that D • 1 7 7  generates gauge transformation in the doublet s177 

(5.35)  = + I l'" 

and are related by complex conjugation. This complex conjugation is also a sym- 

metry of the doublet as we saw in section 2.2. 

Therefore, it is clear that the gauge generating representation of little group for 

MCS and ECS theories can be obtained by the method of dimensional descent. 

5.2.2 E P F  theory and doublet  of Einste in-Chern-Simons the- 

ories 

Now we discuss dimensional descent from 3+1 dimensions to 2+1 dimensions for 

theories with symmetric second rank tensor fields [26]. For this, it is essential to 
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discuss the relevant aspects of 2+1 dimensional Einstein-Panli-Fierz (EPF) theory 

[9, 62, 63] whose action is given by 

IF'PF = ' /  d3x ( -x / '~R-  ~2(h 2 - h2)) (5.36) -4-~'-/~v 

Note that the usual sign in front of Einstein action has been restored to avoid 

ghosts and tachyons, as hasbeen observed recently by Deser and Tekin [67]. As 

noted in [67], both the relative and overall signs of the two terms in (5.36) have to 

be of conventional Einstein and Pauli-Feirz mass terms in order to have a physically 

meaningful theory. On the other hand in the ECS theory, sign of the Einstein 

term has to be opposite to that of the conventional one for the theory to be viable. 

Therefore, if one attempts to couple the ECS theory with a Panli-Fierz term, one is 

faced with an unavoidable conflict of signs. Upon linearization, (5.36) reduces to 

f_..fPF l h 1 ,, _ #2 

Analogous to the doublet structure of Proca theory discussed above, the EPF theory 

is a doublet, as was suggested in [9], comprising of a pair of ECS theories having 

opposite helicities. And just like the Proca theory, EPF theory does not possess 

any gauge symmetry. The equation of motion following from the EPF Lagrangian 

is given by 

- [ ] h  = o. (5.3s) 

With the ansatz h "~ = xUUe ik'x, where X "~ is the polarization tensor in this case, 

this equation can be written as 

k2x"-k"k,yX'Y~'-k"k,~x'r"+k"k"x+rl~"(-k2x+k.yk~x'Y~)-#2(X~'~'-~"~X) = 0 (5.39) 

We now proceed along the same lines as was done in the previous cases to arrive 

at the physical polarization tensor of EPF theory. By a heuristic argument we can 
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easily see that  the EPF theory does not possess any massless excitations. (It can 

also be seen from the propagator of the h ~ field that  the EPF theory has massive 

excitations [62, 63].) If we choose k 2 -- 0, the equation of motion (5.39) leads, upon 

contraction with k~, to the condition 

k ,x  "~ = kVx. (5.40) 

On the other hand, the contraction of (5.40) with k~ leads to 

k~,k,,X ~" = O. (5.41) 

A solution of the above pair of equations (5.40, 5.41) is given by X ~w = k'~fb(k) + 

kbf'~(k) where f ' s  are arbitrary functions of k which satisfies the  condition k . f  = O. 

However, such a solution is compatible with the equation of motion (5.39) if and 

only if the f ' s  vanish identically thus demonstrating that  EPF theory does not have 

massless excitations. 

Now for k ~ r 0, in the rest frame k ~' -- (m, 0, 0) T and so the (00) component of 

the equation of motion yields 1~2(X ~176 - X) = 0 which in turn gives 

X 11 + X 22 = 0. (5.42) 

Therefore, one is  free to arbitrarily choose either X 11 or X 2~. 

component in the rest frame becomes #~X ~ = 0 implying 

Similarly, the (0i) 

The space part ((ij)-components) of the equation of motion with i -- j = 1 and 

i -- j -- 2, respectively yields in the rest frame, 

-~2(X~ + X22) + m2X H = 0 (5.44) 
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x ~ = 0 .  (5.43) 



-#2(X~ o + Xll) + m2x 22 

Adding the above two equation gives, 

= o. (5.45) 

= 0 .  (5.46) 

Substituting (5.46) back in (5.44) and using (5.42) one arrives at 

(m 2 - t J )Xll  = 0. (5.47) 

Finally, the spatial component (# -- i, v = j)  of (5.39) for i r j in the rest frame 

becomes 

(m 2 - #2)X12 = 0. (5.48) 

The equations (5.47) and (5.48) can be satisfied if either (m 2 - #2) = 0 or xl l  = 

X12 = 0. On account of (5.42), (5.43) and (5.46), the latter choice will lead to a null 

theory and can be ruled out. Therefore, we must have 

m 2 = #2 (5.49) 

thus establishing that  the mass of the EPF excitation to be I#]. This choice leaves 

the two components X H and X ~2 arbitrary representing the  two physical degrees of 

freedom in the theory. 

On the other hand, if the Einstein term in (5.36) were +ve  (i.e., the same as the 

Einstein term in (4.32)), instead of (5.48) we would have had 

+ , 2 ) x l  2 = o. (5.50) 

This in term would have meant m 2 -- _#2 leading to an unphysical tachyonic mode 

for theory. Thus, in EPF theory, the sign of the Einstein term must necessarily be 

negative, i.e., the conventional one. Therefore, our analysis also shows the unvia- 

bility of coupling both Chern-Simons and Pauli-Fierz terms to Einstein gravity in 
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2+1 dimensions since such a coupling pu t s  conflicting demands on the sign on the 

Einstein term. 

Therefore, it is obvious that  we can write the polarization tensor of EPF  model 

in the rest frame as IO0 O )  
(Xt~} -" 0 a b �9 

0 b -a 

(5.51) 

where X 11 - - X  22 - a and X 12 - X 21 = b. With the aid of the expressions 

(5.51) for X "~ of EPF theory and (4.55) for {X+} of a pair of ECS theories, we now 

embark on a discussion of dimensional descent for the case of second rank symmetric 

tensor gauge fields emphasizing the near exact parallel with the case of vector gauge 

fields discussed in the previous subsection. One can obtain the momentum 3-vector 

k ~ and polarization tensor (X ~ }  (5.51) of EPF model in 2+1 dimensions from 

those of linearized gravity in 3§ dimensions as follows. By applying the projection 

operator ~ =diag(1, 1, 1, 0) on momentum 4-vector k a = (w, 0, 0,w) T of a massless 

graviton moving in the z-direction of 3§ dimensional linearized Einstein gravity 

and subsequently deleting the last row of the resulting vector, one get momentum 

3-vector k t' of 2+1 dimensional EPF quanta at rest. By a similar application of 

P on {X ab} (3.27) and deleting the last row and column, one gets the polarization 

tensor {X "~} (5.51) in the rest frame of the EPF quanta. Next we notice that,  just 

like the way Proca polarization vector ~" is written as a linear combination of two 

orthonormal canonical vectors (5.25), one can write the EPF polarization tensor 

{X ~v} = aX1 + bX2 -- a 

(ooo) (ooo) 
O 1  0 + b  0 0 1  �9 

0 0 - 1  0 1 0  

(5.52) 

{X ~ } as 
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We may consider the above equation to be the EPF analogue of (5.25) in the case 

Proca theory. Notice that the space parts of the matrices appearing in the above 

linear combination are nothing but the Panli matrices 

5 1 =  , a 3 =  . ( 5 . 5 3 )  
1 0 0 -1  

Clearly, the space part {X• ij} of the ECS polarization tensors {X~: ~} (4.55) can be 

expressed in terms of al and 53 as follows: 

1 1 i 
= �9  o11. (5.54/ 

This amounts to an SU(2) transformation in the 2-dimensional subspace (of the 
1 1 SU(2) Lie algebra in an orthonormal basis) spanned by )-~'1 --- ~ O ' 1  and Eu - ~ a a  

as can be seen from the following2: 

1 ( 1  / )  ( E l )  = ( i { x + i j } ) .  (5.55) 
i i {x_'t}  

It should be noticed that (5.54) is the analogue of (5.29) in the case of Proca and 

MCS theories. In the case of vector (Proca and MCS) field theories, the basis vectors 

~(1) and e (2) (5.25) of the Proca polarization vector, when transformed by a suitable 

SU(2) transformation yield the polarization vectors ~• of a pair of MCS theories. 

We can see an exact analogy of this in the EPF theory as follows. Similarly, in 

the case of tensor (EPF and ECS) field theories, the same SU(2) transformation 

when acted on the X1 and X2 provides the polarization tensors {X~ ~} of a doublet 

of ECS theories with opposite helicities just as Proca theory is a doublet of MCS 

theories having opposite spins. This corroborates the proposition that EPF theory 

2Note that the {X~} obtained in (5.54) differs from the one obtained by SU(2) rotation by an 
irrelevant i factor just as in the vector case. 
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is consisted of a doublet of ECS theories with opposite spins at least at the level 

of polarization tensor. Moreover, as we have discussed earlier, the polarization 

tensor and momentum vector of (2+1 dimensional) EPF theory can be obtained 

from those of linearized Einstein gravity (in 3+1 dimensions) by applying suitable 

projection operator. This relationship between EPF and ECS theories resemble the 

one between Proca and MCS theories. Therefore we expect that the procedure of 

dimensional descent to be valid here as well. As described in section 5.2.1, the 

generator of the representations of T(1), obtained by dimensional descent, that 

generate gauge transformation in a pair of MCS theories with opposite helicities are 

given by T ,  (5.30). Also, the ECS polarization tensors X-~ can be made to satisfy the 

orthonormality relations (4.54) similar to (5.28) for MCS case owing to the fact that 

the former is a tensor product of MCS polarization vectors. Hence it is natural to 

expect that the T(1) group representation D• (p• (5.34) obtained by exponentiation 

of T• generates gauge transformation in ECS doublet, which in fact it does, as we 

have shown in (4.56). Therefore, it is evident that by a dimensional descent from 

3+1 dimensional linearized gravity one could obtain the representations of T(1) that 

generate gauge transformations in the doublet of topologically massive ECS theories 

in 2+1 dimensions. This is similar to the dimensional descent from 3+1 dimensional 

Maxwell theory to 2+1 dimensional MCS theory discussed in the subsection 5.2.1. 

5.3 Summary 

We presented a review of how the gauge transformations in the 3+1 dimensional 

B A F theory is related through the method of dimensional descent to the gauge 

transformations in Maxwell and massless Kalb-Ramond theories in 4+1 dimensions. 

93 



In the same fashion, dimensional descent relates the gauge transformations in 3+1 

dimensional Maxwell theory to those in the doublet of Maxwell-Chern-Simons the- 

ories which is the equivalen~ to a Proca theory in 2+1 dimensions. There exists 

an analogous relationship between the gauge transformation in 3+1 dimensional 

linearized gravity and in a doublet of Einstein-Chern-Simons theories in 2§ di- 

mensions. Analysis of the polarization tensors of the Einstein-Pauli-Fierz theory 

and of a doublet of Einstein-Chern-Simons theories with opposite helicities suggests 

that the EPF theory is the doublet of ECS theories just like the Proca theory is a 

doublet of MCS theories. However, the analogy between EPF and Proca theories 

with their respective doublet structures breaks down if one considers the fact that 

sign of the Einstein term flips from EPF to ECS theories in contrast to Proca theory 

where the sign of the Maxwell term remains unchanged irrespective of whether it is 

coupled to a Chern-Simons term or a usual mass term. Therefore, further investi- 

gations are necessary in order to rigorously establish the doublet structure, if any, 

of EPF theory beyond the level of polarization tensors. 
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Chapter 6 

Massive Gauge theories 

In the preceding chapters we have seen that various translational groups in their 

appropriate representations act as generators of gauge transformations in a vari- 

ety of Abelian gauge theories. We have demonstrated this for theories which have 

vector, symmetric and antisymmetric second rank tensors as the underlying gauge 

fields. Such theories considered so far are either massless or topologically massive 

gauge theories. However, there are other types of gauge theories which are obtained 

by converting second class constrained systems(in the language of Dirac's theory of 

constraint dynamics) to first class (gauge) systems using the generalized prescription 

of Batalin, Fradkin and Tyutin [40, 41, 42, 43, 45]. By such a prescription, one can 

obtain from the massive Proca theory, the Stiickelberg model for vector field that 

is massive while possessing a gauge invariance [46]. Similarly one can obtain the 

Stiickelberg extended versions of massive KR and EPF theories. The discussion in 

this chapter is confined to 3+1 dimensions since the Stiickelberg embedded theories 

are usually studied in that space-time. Nevertheless, with suitable modifications, all 

the methods as well as results of this chapter are equally valid in 2+1 dimensions 
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also. This chapter consists of the study of the gauge transformations in such theo- 

ries and their relationship with translational groups. Here we show that the same 

representation of the translational group T(3) that generates gauge transformation 

in the topologically massive B/~ F theory also generates gauge transformation in 

the Stiickelberg extended first class version of Proca, massive KK and EPF theories 

in 3+1 dimensions. 

6.1 Mass ive  vector gauge theory  

One can convert the 4-dimensional Proca theory (which does not possess any gauge 

symmetry) into a gauge theory by Stiickelberg mechanism with the introduction of 

a new scalar field a(x) as follows; 

1 ab m2 
1: = --~FabF + ---~(A,~ + O,~a)(d '~ + Oaa) (6.1) 

The Lagrangian remains invariant under the transformations 

Aa(x) ~ A ' (x)  = Aa(x) + 0aA(x), a(x) -+ a'(x) = a(x) - A(x) (6.2) 

where A(x) is an arbitrary scalar function. The equations of motion for the theory 

are 

-ObF "b + m2(A '~ + O~a) = O, O'~(A,~ + Oaa) = 0. (6.3) 

One must notice that by operating 0~ on the first equation in (6.3) one yields the 

second. Hence the latter is consequence of the former. This implies that the gauge 

transformation of the a-field can be deduced by knowing that of the A"-field. Similar 

to (3.6), here we adopt the ansatz A'~(x) = e '~ exp(ik.x) and a(x) = &(k) exp(ik.x). 

As before, e~(k) is the polarization vector of the field Aa(x) and &(k) is a particular 
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Fourier component of c~(x). In terms of the polarization vector e ~ (k), the equations 

of motion become respectively, 

kb(k%b _ kb~o) + ,~2(~o  + ikoa) = 0, ik~(~b + ik~a) = 0. (6.4) 

Analogous to (6.3), the second equation in (6.4) is a consequence of the first one. 

For massless excitations k 2 - 0, the second equation of the above pair of equations 

gives the Lorentz condition kbe b = 0 which when substituted in the first gives, 

~~ = - i k ~  (6.5) 

Since this is a solution proportional to the 4-momentum k s, it can be gauged away by 

an appropriate choice of the gauge. Thus, massless excitations are gauge artefacts. 

For k 2 = M 2 (massive excitations), the equations of motion (6.4) becomes, 

ikbe b 
(m 2 - M2)e a + kakb eb + im2k a& = O, 6z - 

M 2" 
(6.6) 

Substituting the second equation in (6.6) in the first yields, 

( m 2 ,  M21 [r/~b k~kb] M2 ] eb = 0 (6.7) 

In this equation, the expression inside the parenthesis is a projection operator which 

projects out the transverse component of eb. Since longitudinal component can be 

gauged away, transverse part  of eb should be nonvanishing in order to avoid having 

no physical excitations. Therefore we must have m 2 - M 2 -- 0. Therefore, one can 

conclude that  the mass of the excitation is given by m itself and the rest frame 

momentum 4-vector of the theory can be written as k b -- (m, 0, 0, 0). In the rest 

frame, the second equation in (6.4) gives 

~~ = - i , ~ a .  (6.8) 
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Therefore, the polarization vector of Aa(x) field of (6.1) can be written as 

6.a = (- im(~,  6 "1 , 6.2, 6.3)T (6.9) 

The maximally reduced form of the polarization vector can be obtained from (6.9), 

by a gauge transformation with the choice A(x) -- a(x)  and is given by 

6.'~ = (0, a, b, c) :r (6.10) 

with the free components a = c 1, b = 6.2, c = 6.3 representing the three physical 

degrees of freedom of the theory. One must note that  (6.10) is of the same form 

as that  of the B A F theory polarization vector (section 3.5). Therefore, just as 

in the case of B A F theory, the action of representation D(p ,q , r )  (3.65) of T(3) 

on the polarization vector (6.10) amounts to a gauge transformation in Stiickelberg 

extended Proca theory: 

~~ -~ 6.'~ = D~ q, r)6. b = 6.~ + •  + qb + rc)k ~ (6.11) 
m 

The above transformation can be cast in the form of the momentum space gauge 

transformation 

6.~ -~ 6.~ + ik~ (6.12) 

(where A(x) = )~(k)e ik'~) corresponding to the field A(x) ,  by choosing the field A(x) 

such that  

,~(k) -- (pa + qb + rc) (6.13) 
m 

As mentioned before, it is possible to obtain the gauge transformation property of 

a-field from that  of the Aa-field for which we now proceed as follows. 
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Consider the second relation in (6.6); 

ik~176 (6.1a) 
& -  m--- ~ . 

and let e ~ undergo the gauge transformation (6.12) which has the effect of making 

a corresponding transformation in a-field as 

& -+ &~ ik,~( e'~ + ika)~) ika6 '~ 
m2 = m-- 5- A = & - A. (6.15) 

Here A is given by (6.13) corresponding to the gauge transformation generated by 

the translational group T(3) in the Aa(x) field. Notice that the above equation 

(6.15) corresponds to the second equation in (6.2). We have thus obtained the 

gauge transformation generated in the a field by T(3) from that in the Aa(x)-field. 

It follows therefore that a-field can be gauged away completely by a suitable gauge 

fixing condition (unitary gauge) and it does not appear in the physical spectrum of 

the theory. Hence it is obvious that the representation D(p, q, r) of T(3) generates 

gauge transformation in the massive vector gauge theory governed by (6.1). 

We noticed that the maximally reduced polarization vector ca (6.10) of the 

Stiickelberg embedded Proca model takes the same form as that of B A F theory 

(3.63). Also both are massive gauge theories and the gauge transformations in both 

cases are generated by the representation D(p, q, r) of T(3). Therefore, by starting 

from 4+1 dimensional Maxwell theory, the dimensional descent can be employed 

to study gauge transformations in Stiickelberg embedded Proca model just as the 

gauge transformation of the vector field in B A F theory is studied using dimensional 

descent in section 5.1. 
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6 . 1  M a s s i v e  v e c t o r  g a u g e  t h e o r y  

Consider the massive and non-gauge Einstein-Panli-Fierz (EPF) theory in 3+1 di- 

mension as given by the Lagrangian, 

~:~'~ -- 5' ho~ [ R~ - 5,,~ ~ R,~jl - T'~ ((ho~)~ - h~) . (~.18) 

The EPF theory does not posses any gauge invariance. Just as the Proca theory was 

elevated to a gauge theory (section 6.1) by Stiickelberg mechanism, the linearized 

EPF theory also can be provided with a gauge symmetry by introducing the an 

additional vector field A a as follows: 

s 1 ~ho~ [R~ ~ - ~ o~ ~ ~'~ ((ho~ + OoA~ + O~Ao) ~ - (h + 20. A) ~) (6.~7) = 5" R'~] - T 

The transformations 

hab "~ h'ab -- hab + 0aAb + 0bAa (6.18) 

g a ( x )  ~ A : ( x )  = g a ( x )  - ha(x) (6.19) 

represent the gauge symmetry of the theory described by (6.17). The equation of 

motion for hab is 

- D h  ab + oaoch ~ + obOch ~a _ O'~Obh + c b ( Q h  -- O~Odh ~d) 

_~2 [(hab + 0aAb + 0bAa) _ r  + 20" A)] = 0 

and that for Aa is 

D A  a + Obh ba -- Oah - oa(o  �9 A)  -- O. (6.21) 

Analogous to the case of massive vector gauge theory discussed before, the equation 

of motion (6.21) for Aa can be obtained from (6.20) by applying the operator 0b. 

Therefore, gauge transformation of A a is obtainable by knowing the gauge transfor- 

mation of the h ab field. As in the previous cases, we employ the plane wave method 

(6.2o) 
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to obtain the maximally reduced polarization tensor Xab and vector ~ involved in 

h,~b and A~ respectively. Considering only the negative frequency part of a single 

mode in the corresponding mode expansions, we write, 

h,~b(X) = X,~b(k)e 'k'x (6.22) 

Aa(x) =e~(k )e  ~k'x. (6.23) 

In terms of the polarization tensor Xab and vector ea the gauge transformations 

(6.18) and (6.19) respectively can be written as 

X,~b -'+ X',~b = Xab + ikaG + ikb(a (6.24) 

! 
e, -+ e a -- ea - Ca (6.25) 

where A,(x) = ~a(k)exp(ik.x) .  Substituting (6.22) and (6.23) in (6.20), one gets 

k2x ab _ k,~kcx cb _ kbkcx ~ + kakb X + rfb(--k2x + k~kdX ~)  

-,~ Ix o~ + ~ko~ + ik~"  - ,7o~(x + 2iko~c)] = o. (6.26) 

Contracting with r/ab and considering only massless (k 2 = 0) excitations the above 

equation reduces to 

2kokbX ~ + d [3(X+ 2iko~~ = 0. (6.27) 

The solution of the above equation is 

~ab = _ i (  ka 6b "4- kb c'~). (6.28) 

Hence it is also the solution of (6.26) with k 2 = 0. It is obvious that  this solution 

is a gauge artefact since one can choose the arbitrary vector field A~ = A~ in (6.19) 

so as to make this solution vanish. 
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Next we consider the massive case (k 2 - M 2, M r 0) and consider the (00) 

component of the equation of motion (6.26) which, by a straightforward algebra, 

can be reduced to 

Xll + X22 Jr- X33 = 0 (6.29) 

Similarly the (0i) component of (6.26) gives 

Xoi = - i M e i  (6.30) 

Now, the ( i j )  component of (6.26) is given by 

k 2 x i j  - ~ i j M 2 ( x  - X ~176 - #2[Xij - r]ij(X + 2iMe~ - 0 (6.31) 

Using (6.29), the above equation can be reduced to 

M 2 X i j  - #2[Xij  - r]ij( X + 2iM6~ - 0 (6.32) 

For i = j -- 1, 2, 3 respectively in (6.32), we have the following set of equations; 

M2Xll - #2[Xo0 - X22 - X33] - 2 i M e o  = O, 

M2X22 - #2[Xoo - Xll - X3a] - 2 i M ~ o  = O, 

M 2 x a a  - #2[Xoo - Xll - X22] - 2 i M e o  = O. 

Adding the above three equations together and subsequently using (6.29), we arrive 

X o o = - 2 i M e o  (6.33) 

When i r j ,  the equation (6.32) reduces to 

(#2 _ M 2 ) X i j  = O. (6.34) 

At this juncture notice that  only two of the three components X i i , i  - 1,2,3 are 

independent on account of the equation (6.29). Also, the X00 and Xoi components 
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can be set equal to zero by choosing the arbitrary field A, to be A,.  Therefore, 

if X~j -- 0 (for i r j )  in the above equation (6.34), the number of independent 

components of Xab will be o~ly two. Since this is not the case, we can satisfy the 

equation (6.34) only if #2 _ M 2. Thus we see that the parameter # represents the 

mass of the physical excitations of the field hub and that  its polarization tensor is 

I - 2i#eo - ipe l  --i#e2 --i#~3 

{Xab} = --i#el Xll X12 X13 (6.35) 

-i#e2 X12 X22 X23 

- ipe3 X13 X23 X33 

where Xll + X22 + Xa3 = 0 (see (6.29)). As mentioned before, by choosing the field 

Aa to be A~ and making a gauge transformation, the above form of the polarization 

tensor can be converted to its maximally reduced form given by 

0 0 0 0 

0 Xn X12 Xla 
{Xab} = ; X l l  + X22 + X33 = O. (6.36) 

0 X12 X22 X23 

0 X13 X2a X33) 

Our next task is to show explicitly that  it is possible to obtain the gauge trans- 

formation of A" from that  of h "b. For this purpose we consider now the equation of 

motion (6.21) corresponding to the vector field A. and the associated polarization 

tensor e.. Substituting (6.22) and (6.23) in (6.21)(or by contracting (6.26) with kb 

) we get, 

k2e a - kakbe b -- ikbX ba -F ik'~x = 0. (6.37) 

On making a gauge transformation (6.24) in the polarization tensor Xab, the polar- 

ization vector e,  in (6.37) automatically undergoes a gauge transformation. 

2 t k e, - kakb e'b - ikb(Xba + ika( b + ikb~a) -- ik,~(X + 2ikb(b). (6.38) 
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This implies 

2 t tb k e~ - k~kbe = [ikbxb~ -ik~x]- k2~ + k~(k.~) (6.39) 

From equation (6.37), substitute for the expression inside the square bracket in 

(6.39) to obtain 

[k2~" - kokbJ b] -- [k2~. -- kokb~ b] = - k k o  + ko(k.r  (6.40) 

! It is now easy to see that  this relation can be satisfied only if 6 a - 6~ = - ~  in 

agreement with the previous relation (6.25). Therefore a knowledge of the gauge 

transformation of h~b is enough to deduce the gauge transformation property of 

A~-field. Like the a-field in Stiickelberg extended Proca theory, this A~-field too 

disappears from the physical spectrum. 

Now we study the gauge transformation properties of the field h~b under the 

action of translational group T(3). It is easy to see that,  similar to the case of B A F 

theory, the representation D(p, q, r) (3.65) of T(3) generates gauge transformation 

of the massive field (hab). The action of D(p, q, r) on the polarization tensor {X~b} 

(6.36) is given by, 

+ 

{Xab} -+ {X,~} ' =  D(p,q,r){Xab}DT(p,q, r) = {X•b} 

+q(PXt2 + qx22 + rX23) PXn + qx12 PXt2 + qx22 

+r(px13 + qx23 Jr" rX33) +rx13 +rX23 

PXll + qx12 + rx13 0 0 

PX12 Jr" qx22 -~ rx23 0 0 

PX13 -~ qx23 -~ rX33 0 0 

) (p 13+q  3) +rx33 
0 

0 

0 
(6.41 / 
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By choosing 

1 
G = 5(pG + qG + rG) 

('1 = I ( px ,1  + qx12 + rx,a) 

1 
G -- --(PX12 "~ qx22 + rx23) # 

43 = !(px13 +qx23 + rx33); Xll + x~2 + ~33 = 0 
# 

it is straightforward to see that (6.41) is of the form (6.24) which is the gauge trans- 

formation of Xab. Notice that when one makes the above choices for the components 

41, 42, G in terms of the parameters p, q, r of the translational group T(3), the com- 

ponent 40 gets automatically fixed. Therefore, in the gauge transformation (6.41) 

generated by the representation D(p, q, r) of T(3) only the three space components of 

the field r remain arbitrary. However, in the complete set of gauge transformations 

(6.24) all the four components of ~, should be chosen independent of one another. 

Hence, the above gauge transformations (6.41) generated by the translational group 

D(p, q, r) does not exhaust the complete set of gauge transformations available to 

the massive symmetric tensor gauge theory (6.17). This is because of the fact that 

in order to generate the entire gauge equivalence class of the maximally reduced po- 

larization tensor (6.36) we require four independent variables (corresponding to the 

four components of the arbitrary vector function 4,(k) which represents the gauge 

freedom) whereas the translational group T(3) provides only three independent pa- 

rameters. 

Therefore, in the present case (6.17) of massive tensor gauge theory, a partial 

set of gauge transformations are generated the representation D(p, q, r) (3.65) of the 

translational group T(3). The gauge transformation of the A~-field can be obtained 
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from that  of the hab-field, though the former one does not appear in the physical 

spectrum of the theory. 

By considering the linearized gravity in 4-{-1 dimensions, one may obtain through 

the method of dimensional descent, the above discussed results concerning the gauge 

transformation properties of Stiickelberg extended version of EPF theory. The max- 

imally reduced form of the polarization tensor for linearized gravity in 4+1 dimen- 

sion can be obtained using plane wave method by proceeding exactly as in the 3+1 

dimensional case (section 3.3) and is given by 

(X ay} =- 

o o o o 

0 X u X 12 X 13 0 

0 X 12 X 22 X 23 0 

0 X ~3 X 2a X 33 0 

0 0 0 0 0 

; X u + X 22 + X 33 = 0. (6.42) 

Notice now that  by suitably applying the projection operator 7 ) =diagonal( i ,  1, 1, 1,0) 

on this polarization tensor, one can get the maximally reduced polarization tensor 

(6,36). Also by a similar application of this 7 ~ on the energy-momentum vector 

k ~ --- (w, 0, 0, 0, w) of a five dimensional particle propagating along the x = 4 direc- 

tion yields the rest frame momentum 4-vector of particle belonging to Stiickelberg 

extended version of EPF theory. Therefore it is clear that  the dimensional descent 

connects these two theories also. 

6.3 Massive  ant isymmetric  tensor gauge theory 

Here we show that  the translational group T(3) generates the full range of gauge 

transformations in the Stiickelberg extended massive Kalb-Ramond theory. Similar 
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to the massless KR theory discussed in section 3.4, the gauge transformation in 

Stiickelberg extended massive KR theory is also reducible. Though the analysis 

in this case closely resembles that of Stiickelberg extended EPF theory detailed 

before, here the reducibility of the gauge transformation is manifested in the gauge 

generation by T(3). 

The Lagrangian of the Stfickelberg extended massive KR theory is 

s = 1HabcH'~b~ 
m 2 
4 (B,~b + OaAb - ObAa)(S ~b + O~A b - ObA '~) (6.43) 

with B,~b = - B b a  and H,~bc = O,~Bb~ + ObB~a + O~B,~b. It can be easily verified that 

the above Lagrangian is invariant under the joint gauge transformations 

B,~b(x) ~ Bah(X) + OaFb(x) - ObF,~(x) 

and 

(6.44) 

A,~(x) ~ A , ~ ( x ) -  Fa(x) .  (6.45) 

Here we must notice that the transformation (6.44) is reducible exactly as in the case 

of massless KR theory; i.e., the transformation (6.44) remains invariant if we make 

the change F,~(x) ~ Fa(x)  + O,~fl(x). Therefore, there exist a 'gauge invariance 

of gauge transformation' in the theory described by (6.43) also. The equation of 

motion corresponding to Bb~(x) is given by 

OaH abe q- m2(Bbc'q - ObA c -- OCA b) - 0 

and that corresponding to A b is 

G ( B  ~ + OCA b - ObA ~) = O. 

(6.46) 

(6.47) 

As in the case of the Stiickelberg extended massive theories considered previously 

in sections 6.1 and 6.2, the equation of motion (6.47) for A b can be obtained from 
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the equation (6.46) by the application of the operator 0c upon the latter equation. 

Hence, one can obtain the gauge transformation property (6.45) of the Ab-field from 

that  of the BbC-field. (This ~can be easily achieved by a straightforward procedure 

similar to the ones adopted before in the cases of Stiickelberg extended Proca and 

EPF theories for the same purpose and hence is not elaborated here again.) 

We now proceed to obtain the maximally reduced polarization tensor eab (k) cor- 

responding to the antisymmetric field B'~b(x) so that  the role of T(3) as a generator 

of gauge transformations in (6.43) can be studied. For this purpose, as usual we use 

the ansatz 

Bab(x) -- cab(k)e ik'x, Aa(x) = ca(k)e ik'x, Fa(x) ~-- fa(k)eik'x (6.48) 

and employ the plane wave method. The momentum space gauge transformation 

corresponding to (6.44) now has the same form as (3.38); 

~ob(k) ~ ~ob(k) + i(koh(k) - k~A(k)) (6.49) 

Then the equation of motion (6.46) can be written (in the momentum space) as 

- k 2 ~  ~ - k~ko~ ~ - k % ~  ob + . ~ 2 ( ~  + ~kb~ ~ - ik% b) = 0. (6 .50)  

If k 2 = 0 (massless excitations), the above equations reduces to 

_k%eCo _ k%~O~ + , ~ 2 ( ~  + i k ~  _ ik%~) = 0 (6.51) 

whose solution must be of the form 

ebC(k) = C(ikbe ~ -  ik~e b) + n(cbr (6.52) 

where C and D are constants to be fixed. Substituting (6.52) in (6.51), we can 

easily see that  C - - 1  and D = 0. Therefore, the solution to (6.50) corresponding 

to massless excitations is 

e~(k) = -ikb~ c + ik% ~. (6.53) 
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However, such solutions can be gauged away by choosing the arbitrary field F ~ (x) = 

A'~(x) in (6.45), which shows that  massless excitations are gauge artefacts. 

Next we consider the massive case, k 2 = M 2, (M r 0) where it is possible to 

go to the rest frame and one has the momentum 4-vector k ~ - (M, 0, 0, 0) T. In the 

rest frame, the equation of motion (6.50) reduces to 

(m 2 - 'M2)6  bc - M(kb6 ~~ + k~c ~ + m2(ikb6 ~ - ikC6 b) = 0. (6.54) 

Note that,  since the polarization tensor ~bc is antisymmetric, all its diagonal entries 

are automatical ly zero. Considering the components of (6.54) for which (b = 0, c = 

i), we have 

~o = iM6i (6.55) 

For (b - i, c = j )  with i r j ,  the equation (6.54) gives 

( m  2 -- M 2 ) c  ij = 0. (6.56) 

This leads to two possibilities; either ~ij = 0 or M 2 = m 2. The former possibility 

can be ruled out by the following reasoning. Since (6.43) is the first class version 

(obtained by a Stfickelberg extension mechanism) of massive KR theory possessing 

three physical degrees of freedom, the former too must inherit the same number of 

degrees of freedom. However, the 6 i~ elements can all be made to vanish by the 

gauge choice Fa = Aa. Therefore the possibility 6 ~j = 0 leads to a null theory and 

hence should be discounted. Therefore, we have M 2 = m 2 which is also consistent 

with the degrees of freedom counting. Finally, analogous to (6.36), the maximally 
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reduced form of the polarization tensor corresponding to (6.43) is given by., 

I 
O 0 0 0 

{6~b } =  0 0 612 613 

0 -612 0 653 

0 -613 -623 0 

(6.57) 

As in the case of Stiickelberg extended EPF theory, the Aa-field disappears from the 

physical spectrum in this case also. Here it must be emphasized that the maximally 

reduced form of polarization tensor of B A F theory also has the same form (6.57). 

This is not surprising since the physical sector of B A F theory is equivalent to 

massive KR theory whose first class version is the theory (6.43) under consideration 

now. It is now straight forward to see that the translational group T(3) in the 

representation D(p, q, r) (3.65) generates the full set of gauge transformations in the 

theory described by (6.43) also. The action of D(p, g, r) on (6.57) is given by, 

{6 ~b) ~ {6 '~b} = D(p ,q , r ) {6~b}DT(p ,q , r )  

= {6 ~ + 

0 --q612-r613 p612-r623 p613+q623 

q612 + r613 0 0 0 

--p612 + r623 0 0 0 

-p613 - q623 0 0 0 

(6.58) 

Since in the rest frame k a = (M, 0, 0, 0) T, (6.58) can be considered to be the gauge 

transformations of the form (6.49) if 

f l  1 , 12 f2 = 1 (_p612+r623) f3 = --1" 13 i,  q6 + r613), ' + q6 (6.59) 

Here one must clearly note that the component f0 remains completely undeter- 

mined and does not depend at all either on the parameters p, q, r of T(3) or on 

the components of maximally reduced polarization tensor of the theory whereas the 
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other components f l ,  f2, fa are determined by these parameters and the elements 

of the polarization tensor. Interestingly, it is exactly in the same fashion as in the 

present case (of Stiickelberg extended massive KR theory) that gauge transforma- 

tions of B A F theory are generated by the translational group D(p, q, r) (section 

3.5). Hence, analogous to the gauge transformation generated by W(p, q) in mass- 

less KR theory, for any given set of (fl, f2, f3) we have a continuum of values for f0, 

representing the reducibility of the gauge transformation in the underlying 2-form 

field both in Stiickelberg extended first class version of massive KR theory and in 

the B A F theory. Therefore, the complete independence of the time-component of 

fa on the maximally reduced polarization tensor or on the parameters of the group 

D(p, q, r) is a consequence of the reducibility of the gauge transformations of these 

theories. 

Dimensional descent relates the gauge transformations in 5§ dimensional mass- 

less KR theory to those in the presently discussed Stfickelberg extended massive KR 

theory just the same way it is related to the gauge transformation of the antisym- 

metric field of B A F theory. 

6 .4  s u m m a r y  

We showed that, just like in the case of topologically massive B A F theory, trans- 

lational group T(3) acts as generators of gauge transformations in gauge theories 

obtained by Stfickelberg embeddings of massive theories having no gauge symmetry. 

We-illustrate these with the examples of Stfickelberg extended first class versions of 

Proca, Einstein-Pauli-Fierz and massive Kalb-Ramond theories in 3+1 dimensions. 

In each of these cases, we have shown that the representation D(p, q, r) of T(3) gen- 
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erates gauge transformation when acted suitably on the corresponding maximally 

reduced polarization tensor. The reducibility of the gauge transformations transfor- 

mation in Stiickelberg extended massive Kalb-Ramond theory is manifested clearly 

in the gauge generation by the translational group T(3). With suitable 4§ dimen- 

sional theories as the respective starting points, dimensional descent can be applied 

consistently in all the Stfickelberg embedded models considered here. 
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Chapter 7 

Conclusions 

We have studied several aspects of a variety of planar field theories with particu- 

lar emphasis on topologically massive gauge theories and the role of translational 

groups in generating gauge transformations. Attention is also focused on the in- 

terrelationship between the different theories. We considered Abelian models with 

vector, symmetric and antisymmetric second rank tensors as underlying fields. Our 

methodology relied crucially on the maximally reduced form (i.e., representing just 

the physical sector) of the polarization vectors and tensors of these theories. The 

maximally reduced polarization vector/tensor is usually derived by considering a 

plane wave solution corresponding to a single component in the mode expansion of 

the basic field of the respective theory. 'Hence this method of derivation is named 

the 'plane wave method. In this method, the plane wave solution is substituted in 

the equation of motion of the theory and confining to a particular reference frame 

we obtain the explicit form of the maximally reduced polarization vector/tensor 

corresponding to that frame, using mainly the structure of equation motion itself 

and finally making a gauge transformation. The plane wave method is used for the 

113 



derivation of the maximally reduced form of the polarization vector/tensor of every 

model considered in this work. 

To begin with we obtained, using the plane wave method, the polarization vec- 

tors of Maxwell-Chern-Simons and Maxwell-Chern-Simons-Proca models in both 

Lagrangian Hamiltonian frameworks with compatible results. In Lagrangian for- 

malism the polarization vector of MCS theory is calculated in the Lorentz gauge 

while in the Hamiltonian formalism, the calculation is done in a variety of covari- 

ant gauges and it is found that the maximally reduced polarization vector has the 

same form in all these gauges. The structure of the polarization vectors explicitly 

display the doublet structure of Maxwell-Chern-Simons-Proca theory consisting o f  

a pair of Maxwell-Chern-Simons models with opposite helicities and different mass 

parameters. The polarization vector of self-dual model is of exactly the same form 

as the maximally reduced polarization vector of a Maxwell-Chern-Simons theory 

with positive helicity whereas there is a similar correspondence between antiself- 

dual model and a Maxwell-Chern-Simons theory with negative helicity. This is in 

agreement with the well known equivalence of self and antiself-dual models with a 

pair of Maxwell-Chern-Simons theories with opposite parities. 

We have also made a comparison of the polarization vectors of Maxwell and 

Maxwell-Chern-Simons theories in different gauge choices and in different reference 

frames. The time component of the Coulomb gauge polarization vector of Maxwell- 

Chern-Simons theory is undefined in the rest frame. Like Maxwell theory, basic field 

in Maxwell-Chern-Simons model can be made to satisfy the spatial transversality 

condition k .  A - 0 in a boosted frame provided it undergoes a suitable gauge 

transformation. However, unlike Maxwell theory, the temporal gauge condition 

A ~ - 0 cannot be satisfied simultaneously by Maxwell-Chern-Simons field except in 
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the ultra-relativistic limit, whereas it blows UP in the rest frame. In comparison, 

the Maxwell-Chern-Simons polarization vector satisfying Lorentz gauge condition is 

well defined in all reference frames including the rest frame. Notice that rest frame 

is not available in Maxwell theory. 

We reviewed, with necessary details, the role of translational subgroup T(2) of 

Wigner's little group for massless particles in generating gauge transformations in 

3+1 dimensional massless gauge theories - Maxwell, massless Kalb-Ramond and lin- 

earized gravity theories. In all these cases, it is demonstrated that the transformation 

of the respective maximally reduced polarization vector/tensor under the represen- 

tation of T(2) inherited from defining representation of the little group amounts to 

a gauge transformation in momentum space. Our analysis, however showed that, 

the gauge transformations generated by the translational group in massless Kalb- 

Ramond and linearized gravity constitute only certain subsets of the full spectra 

of gauge transformations available in these two theories. This is attributed to the 

fact that the gauge freedoms in these second rank tensor theories are represented 

by arbitrary vector fields with four components while the translational group pro- 

vides only two parameters. Because of this deficit in the number of parameters 

the range of gauge transformations generated by T(2) become restricted. We also 

reviewed the gauge generation by the translational group T(3) in the 3+1 dimen- 

sional topologically massive B A F gauge theory. Both massless Kalb-Ramond and 

B A F theories have reducible gauge transformations. We have shown that the re- 

ducibility of gauge transformations is manifested clearly in the gauge generation by 

translational groups. 

Just like T(2) generates gauge transformations in 3+1 dimensional massless the- 

ories, translational group T(1) acts as generator of gauge transformations in 2+1 
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dimensional Maxwell theory. (Massless Kalb-Ramond and linearized gravity possess 

no physical degrees of freedom in 2+1 dimensions.) We show that T(1) generate 

gauge transformations in the topologically massive planar gauge theories namely 

Maxwell-Chern-Simons and Einstein-Chern-Simons theories. A suitable representa- 

tion of T(1) when acted on the respective maximally reduced polarization vector and 

tensor generate momentum-space gauge transformations in these theories. The po- 

larization tensor of Einstein-Chern-Simons theory is found to be the direct product 

of the polarization vector of a Maxwell-Chern-Simons theory with itself. 

It has been known that the gauge transformations in a topologically massive 

theory living in a certain space-time dimensions can be related to those of massless 

gauge theories in a space-time of one higher dimension through the method of di- 

mensional descent. We presented a short review of dimensional descent from 4§ 

dimensional Maxwell and massless Kalb-Ramond theories to 3§ dimensional B A F 

theory and derived the gauge generating representation of T(3) with the help of the 

gauge transformation properties of these higher dimensional theories. Subsequently 

we have derived, using dimensional descent, the previously mentioned gauge gener- 

ating representation of T(1) for Maxwell-Chern-Simons and Einstein-Chern-Simons 

theories in 2+1 dimensions by considering the gauge transformation properties of 

3+1 dimensional Maxwell and linearized gravity theories respectively. In this pro- 

cess, we have also considered the massive non-gauge Einstein-Pauli-Fierz theory in 

2+1 dimensions whose basic field transforms like a second rank symmetric tensor. 

A comparison of the polarization tensors of Einstein-Pauli-Fierz theory with those 

of a pair of Einstein-Chern-Simons theories having opposite helicities suggested a 

doublet structure for Einstein-Pauli-Fierz theory. This is analogous to the vector 

case in which Proca theory in 2+1 dimensions is equivalent to a doublet of Maxwell- 

Chern-Simons theories with opposite helicities, In connection with this analogy, it 
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should be noted that the relative and overall signs of the Einstein term as well as 

the Pauli-Fierz term in the Einstein-Pauli-Fierz theory should be the same as the 

conventional ones for the theory to be meaningful. However, the sign of the Einstein- 

term in Einstein-Chern-Simons theory should be opposite to that the conventional 

one. Therefore, a theory with all three terms present simultaneously (the tensor 

analogue of Maxwell-Chern-Simons-Proca theory) is not possible because of the un- 

avoidable conflict of requirements on the signs of the Einstein term. Therefore, the 

suggestion that Einstein-Pauli-Fierz theory is a doublet of Einstein-Chern-Simons 

theories needs further investigation. 

Next we have considered, the role of translational group in generating gauge 

transformations in some massive gauge theories obtained by elevating massive non- 

gauge theories to their first class versions by Stfickelberg embedding mechanism. 

Such theories considered in this work are the St/ickelberg extended versions of Proca, 

Einstein-Pauli-Fierz and massive Kalb-Ramond theories which have vector, sym- 

metric and antisymmetric second rank tensors respectively as the basic fields. The 

investigation of these theories is done in 3+1 dimensional space-time in which such 

models are usually studied. However, with suitable modifications the methods and 

results of our study of these theories are applicable to the corresponding 2+1 dimen- 

sional theories as well. We have shown that the representation of T(3) that generates 

gauge transformation in B A F theory also generates gauge transformations in the 

above mentioned massive gauge theories in 3+1 dimensions. Analogous to the case of 

linearized gravity, the gauge transformations generated in the Stiickelberg extended 

Einstein-Pauli-Fierz theory by T(3) constitute only a subgroup of the full set of 

gauge transformations in the theory. The gauge transformations in the Stiickelberg 

extended massive Kalb-Ramond theory are reducible and this reducibility is clearly 

exhibited in the gauge generation by the translational group. 
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Appendix  A 

Wigner's  Little group in 3 ~ 1  

dimensions 

Wigner's little group preserves the energy-momentum vector of a particle and is a 

subgroup of homogeneous Lorentz group. Here we give a derivation of the explicit 

expression for the little group for a 3+1 dimensional massless particle [19]. Let 

m l  

Pl 
W =  

ql 

rl  

m2 m3 m4 

P2 P3 P4 

q2 q3 q4 

r2 r3 r4 

(A.1) 

be a representation of an arbitrary element of the little group that  preserves the 

momentum 4-vector of a massless particle of energy w propagating along the z- 

direction: 

Wabk  b = k a, k ~ - w(1, 0, 0, 1) T. (A.2) 

118 



With 1 a = (1, O, O, l) T, we obviously have Wab lb = I a also. Consider a time-like vector 

c~ ~ = (1, O, O, O) T which has the following obvious Lorentz covariance properties, 

( W a ) a ( W l ) a  = ( w a ) a l a  = aala = 1, (A.3) 

( w ~ ) o ( w ~ ) o  = ~o~o = 1. (AA) 

Since ( W a )  a = (ml ,  p~, ql, r~) T (which is nothing but the first column of W), one 

can see using (A.3) that  rl = ml - 1. Therefore, the form of (Wa)  ~ that  satisfies 

the relation (A.4) is given by 

(w~)~ (1 + -  
\ 

pi ~ + q~ p~ + q ~  
2 ,P l ,q l ,  ~ )  (A.5) 

Now, W acting on the space-like unit vector fl~ = (0, 0, 0, 1) T yields (W~) ~ = 

(m2,p2,  q2, r2) T. Analogous to (A.3) and (A.3) in this case we have 

( W ~ ) a ( W l ) a  = (W~)ala  = flala = - 1 ,  

( W ~ ) a ( W f l ) a  = ~ a ~  = - 1 .  

It is easy to see that  (A.6) and (A.7) restrict the form of (Wfl) a to 
[ p~+q~ ~ 2 2 T 
~,-- 2 ,p4, q 4 , 1 -  P4~2q4 ) 

(A.~) 

(A.7) 

which, along with (A.6), when substituted in the relation 

( W a ) ~ ( W ~ ) ~  = a~fl~ = 0 (A.S) 

yields (Pl + P4) 2 + (ql + q4) 2 = 0. This implies that  Pl = -p4 and q~ = -q4. Thus 

the fourth column of W (A.1)is given by 

( + + / (w~)  o 2 , - P ~ , - q l , 1  2 " (A.9) 
\ / 

In a similar fashion, by considering another space-like unit vector 7 a -- (0, 0, 1, 0) T 

we can obtain (WT) ~ - (m3,p3, q3, r3) T, the third column of W. A simple algebra 

using the properties 

( w T ) ~  = ( w T ) %  = 7olo = o, ( w T ) ~ ( w T ) o  = ~o% = - 1  (A.10) 

119 



leads to the condition p~+q~ = i which enables one to make the parametrization P3 = 

q3 -" cos r Hence we have (WT) a = (m3, sin r cos r m3) T. Furthermore, sin r 

since 

(Wfl)a(wT)a - flaTa = 0 (A.11) 

we obtain the relation m3 = Pl sin r + ql cos r wherein we used (A.9) and the form 

(W7) ~ mentioned above. Therefore 

(W.y)~-(p ls inr162162162162162 T. (A.12) 

Lastly, we introduce the spacelike vector 5~ - (0, 1, 0, 0) T so that  

(Wb) ~ = (m2,pu, q2,r2) T is the second column of W (A.1). Then, just  as in the 

previous case, using the covariance properties 

( w ~ ) ~  = ( w ~ ) %  = ~ %  = o, 

( w ~ ) ~ ( w ~ ) o  = ~o~o = - 1 ,  ( w ~ ) o ( W ~ ) o  = ~o~o = o 

we get (W~) ~ = (pl cos 0 + ql sin 0, cos 0, sin O, pl cos 0 + ql sin O) T. Contracting with 

(Wv)~ and using the relation 

(Wb)~(WT)a = ~ %  = 0  (A.13) 

we deduce that  0 = - r  Therefore we have 

(Wb)~=(p lcosr162  cosr - s i n e ,  p lcos r162  T. (A.14) 

~-u (A.5), (A.9), (A.12) and (A.14) we then obtain the representation of the little 

group for a massless particle in 3+1 dimensions as 

w(p ,  q; r = 

1+v2+q2 p c o s r 1 6 2  

p cos r 

q - sin r 

P~+q~ p cos r - q sin r 
2 

p s i n r  + qcosr  _p~+q2 2 

sin r - p  

cos r - q  

p s i n r 1 6 2  1 - f + q ~  2 

(A.15) 
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dropping the subscripts on p, q which are any real numbers. This little group can 

be written as 

W(p,q; r = W(p,q)R(r (A.16) 

where 

w(p,  q) =- wO , q; O) = 

1 + p2+q22 P q  --2P2+q2 

p 1 0 --p 

q 0 1 --q 
p2 +q~ p2 +q2 

2 p q l -  2 

(A.17) 

is a particular representation of T(2) - the group of translations in a plane and R(r 

represents a SO(2) rotation in the plane. It is clear that W(p, q) and are Abelian 

subgroups of the little group W(p, q; r 

W (p, q) W (/3, q) - W (p +/3, q + q) 

R(r162 - R(r  r 

(A.18) 

(A.19) 

Moreover, the subgroup W(p, q) is invariant since 

R(r W (p, q) R -1  (r - -  W (p  cos  r + q sin r --p sin r + q COS r (A.20) 

Therefore, the little group is not semi-simple. The group generators are given by 

.ow(p,o;o) 
A = - z  Op [v=o = - i  

0 1 0  0 

1 0 0 - 1  

0 0 0  0 

0 1 0  0 

(A.21) 

( 0 0 1  0 

.OW(O,q;O) [q=o = - i  
B = -z  0q 

0 0 0  0 

1 0 0  -1  

0 0 1  0 

(A.22) 
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�9 o w ( o ,  0; r 
J3 = - z  0r ]r = - i  

0 0 0 0 

0 0 1 0 

0 - 1  0 0 

0 0 0 0 

(A.23) 

It is important  to note that  the generators A and B can be expressed as a combi- 

nation of the generators of boosts and rotations1: 

A -  J 2 +  K1, B - - J I  + K2. (A.24) 

The Lie algebra of the little group is given by 

[A,B] - O, [J3, A] = iB ,  [J3, B] =- - i A .  (A.25) 

This is identical to the algebra of E(2) - the Euclidean group in two dimensions, 

comprising of two mutually commuting translation ,generators (corresponding to A 

and B) and a generator of rotation in the plane (J3). Thus, the algebra of the 3+1 

dimensional little group for massless particles is isomorphic to the E(2) algebra [70]. 

1We denote by Ji (i = 1, 2, 3) the generator of rotation about the j-th axis. Similarly, the 

generator of boost along xi-direction is denoted by Ki. In this notation, the algebga of the 

homogeneous Lorentz group is given by [Ji, Jj] = ieqk Jk, [Ji, Kj] = ieijkK~, [Ki, Kj] -= -ieijk Jk. 
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