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A B S T R A C T  

In the isolated and binary systems, matter accretion is taking place from the 
surrounded medium or from the companion star. This matter forms a disk-like de- 
pository which is widely known as the accretion disk. In the presence of sufficient 
angular momentum, slowly moving matter at the outer edge of the disk gradually 
gains radial velocity while getting accreted towards the compact object and becomes 
super-sonic. At some point, super-sonic matter may make discontinuous transitioa 
to the sub-sonic branch. This discontinuous transition is known as a shock. If 
Rankine-Hugoniot relations are satisfied, this shock is called a standing shock. At 
a shock, matter slows down and piles up. This causes a puffed up torus like struc- 
ture called CENtrifugal pressure supported BOundary Layer (CENBOL) to form. 
Soft-photons originated from the low temperature Keplerian disk are reprocessed by 
the hot electrons of CENBOL through the inverse-Comptonization process. They 
are emitted as hard X-rays. Thermal pressure gradient force at the shock loca- 
tion becomes significant in the transverse direction which drives matter upward and 
downward in the from of jets or outflows. These X-rays and outflows are observed. 
Therefore, it is generally believed that shocks are essential ingredients of the accre- 
tion disks around black holes and neutron stars. 

In Chapter 1, we classify the nature of the compact objects. We demonstrate 
that the order of magnitude estimation of observed luminosities of compact object 
could be explained by assuming the accretion process. Historical study of spherical 
accretion process through various approaches are briefly highlighted. A qualitative 
discussion on the development of disk accretion process is also presented. The 
chapter ends with a short note on the nature of th~ generalized advective accretion 
disk models. 

In Chapter 2, we present a more realistic advective disk model. We present 
the sonic point analysis and compute the standing shock locations. We discuss the 
process of jet formation and estimate the mass outflow rate considering a toy model 
for the disk-jet system. 

In Chapter 3, we compute the location of sonic points and shocks in a hybrid model 
completely analytically in the special case when viscosity and other dissipative pro- 
cesses are negligible. We compare our analytical results with those obtained numer- 
ically. The agreement is generally good. We calculate the frequency of shock oscil- 
lation which is directly related to the quasi-periodic oscillation of hard X-rays. We 
analytically calculate the transonic properties of the accretion flow for different flow 
models. We show that all the flow models are basically identical in nature provided 
the polytropic index is suitably adjusted in different models. We self-consistently 
estimate the outflow rate from the inflow parameters for a two component advective 
model. We show that for a high value of compression ratio (R), the outflow rate 
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is small but significant whereas the outflow rate is negligible for lower compression 
ratio. For an intermediate value of R, the outflow rate is maximum. We also show 
how the spectral state of a black hole is directly related to the outflow rate. 

In the course of development of the accretion disk models we study the effects 
of viscosity which must be present in the differentially rotating accretion disk. In 
Chapter 4, we include different types of cooling mechanisms, such as bremsstrahlung 
and synchrotron coolings, in succession. We show that standing shocks can form in 
an accretion flow having substantial amount of angular momentum and low viscosity. 
We identify the region of parameter space which produces multiple sonic points and 
shocks separately in presence of heating and cooling effects. We quantify two critical 
viscosity parameters and a critical cooling factor which separate the flow topologies. 
We mention that the cooling induces opposite contribution to the heating obtained 
by viscosity as far as the transonic properties are concerned. But these two effects 
can never be exactly balanced due to their dissimilar dependence on the dynamic 
and thermodynamic flow variables. We find that the shock moves closer to the black 
hole when the viscosity parameter is increased. This implies an enhancement of the 
quasi-periodic oscillation frequency due to an increase in viscosity. 

In Chapter 5, we draw the conclusions. 

In the Appendix (Chapter 6), the formalism to solve the quartic equation is 
discussed. 
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Chapter 1 

I n t r o d u c t i o n  

The present thesis contains the study of various properties of accretion disk around 
a compact object. In a broad point of view, the analysis of accretion physics is done 
in two different modes-- the first one is for the idealistic non-dissipative accretion 
flow system and the second one is for the more realistic dissipative accretion flow 
system. 

The present Chapter starts by giving an account of wide variety of compact ob- 
jects. In w we point out that  accretion processes could produce the observed 
luminosity of AGNs, quasars and micro-quasars etc. In w we study the dynam- 
ics of the accreted matter. In w we demonstrate the steady hydrodynamic 
spherical accretion process around a Newtonian star. Subsequently, we repeat the 
similar study around a non-rotating black hole in pure general relativity (w 
In w we obtain a simple pseudo-potential for a non-rotating black hole to avoid 
mathematical  complexity. This pseudo-potential successfully mimics the space-time 
geometry around a non-rotating black hole. The historical developments of disk 
accretion processes are described in w In the same Section, we discuss the prop- 
erties of thin, thick and slim disk respectively. In w we present the nature of 
advective disk models by considering different geometric disk structure. 

1.1 Compact  objects: end products  of normal stars 

'Compact Object's are born when normal stars die. These stars are the ashes of 
the luminous stars. Compact stars are broadly grouped as white dwarfs, neutron 
stars and black holes. The key factor for determining whether a star ends up as a 
white dwarf, neutron star or black hole is believed to be the star's mass. Compact 
stars are created when the massive stars have exhausted most of their nuclear fuel 
in their core. In general, this stars differ from the ordinary stars because of their 
exceedingly small size. Compact stars of comparable mass with normal star are very 
very small in radii that  effectively produce stronger gravitational attraction. 
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On the other hand, since compact stars do not burn nuclear fuel they cannot sup- 
port themselves against the inward gravitational collapse by generating the internal 
thermal pressure. In the case of white dwarfs, inward gravitational pressure at the 
core is supported by the electron degeneracy pressure while for neutron stars the 
same support comes from the pressure of degenerate neutrons. On the other hand, 
black holes are completely collapsed s tars- -  inside it there is nothing to neutralize 
the inward gravitational pull and therefore, collapse to singularity. 

White dwarfs are believed to originate from light stars of mass M ~ 4M e. 
There is a maximum allowed mass limit for white dwarfs which is around 1.4M| 
Neutron stars and black holes are believed to be originated from the more massive 
stars. However, the basic difference between the formation of neutron stars and 
black holes is very uncertain because the final stage of evolution of massive stars is 
poorly understood. Those stars also have some maximum mass limit in the range 
1 .4 -3Mo.  A black hole is probably the fate of the most massive star, an inaccessible 
region of space-time into which the entire star, ashes and everythings, fall at the 
end of the luminous phase. 

1.2 Accret ion  process: general cons iderat ion 

When diffuse gases or matters are accumulated around a compact object under the 
influence of gravity we call this process as 'accretion'. In the early days (twentieth 
century) of astrophysical study, it was widely believed that  non-gravitational process 
(nuclear reaction) was the only conceivable source of energy for the celestial objects. 
Later on, this idea was abandoned while people look for the origin of the most 
energetic sources in the universe. They end up with the conclusion that  extraction 
of the gravitational potential energy from the accreted matter  on to the gravitating 
body is the only source of power supply for luminous objects like active galactic 
nuclei, quasars, micro-quasars, etc. Thus, as a natural process, gravity plays a 
powerful role for the production of the electromagnetic radiations ranging from 
infrared to 7-rays and this shows a new window in observational astronomy. 

Now, we present a simple order of magnitude estimation of energy release through 
the above mentioned process. Let us consider a star of mass M, and radius R,. The 
gravitational potential energy release on  the surface of the star due to the accretion 
of unit mass of matter  is given by, 

GM, 
5Eacc - - - ,  (1.1) 

R, 

where, G is the gravitational constant and c is the speed of light. This energy is 
expected to be released mainly in the form of electromagnetic radiation. 
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For comparison, we consider the energy that  could be extracted by nuclear fu- 
sion process from a unit mass of matter. We assume that  the material is initially 
composed of hydrogen only. Now, if all the hydrogen is converted to helium through 
the nuclear fusion, the burning of unit mass of the hydrogen yields an energy release 
which is given by, 

5E,~c = 0.007c 2 ~ 6.3 x 101Sergs g-1. (1.2) 

At present, it is not easy to make comment about the superiority of the above 
mentioned process as the accretion process strongly depends on the compactness of 
the accreting star; the larger the ratio M,/R , ,  the greater is the efficiency. 

For the Sun, the gravitational potential energy release per unit mass comes out 
to be, 

5Ea~ ~ 1.9 x 191~ergs g- l ,  (1.3) 

where, R, = R| and M, = Mo have been used. This indicates that  (~Ea~ << 
5En~. For a 1M| neutron star of radius R ,  ~ 106cm, the released energy is about 
5E~c ,~ 102~ g-1. This is twenty times greater than the nuclear burning process. 
Accretion on to the black holes produces even higher gravitational potential energy 
as they are more compact than the neutron stars. This released energy would emit 
in the form of electromagnetic radiation from the vicinity of the compact stars. 
Therefore, the accretion process on to the compact stars would be the possible 
explanation for the emission of the high energy radiation as well. 

An accreting object is characterized by it's luminosity which is defined to be the 
amount of radiant power emitted from the star's surroundings. This implies that  
the luminosity is mainly dictated by the amount of matter  accreted on to the star 
surface in unit time, i.e. accretion rate (/I}/~). Thus the formal definition of the 
accretion luminosity ( L ~ )  is given by, 

GM, /occ 
Lace - (1.4) 

R, 

Let us now define a useful benchmark for the luminosity which is known as 
Eddington Luminosity. We consider a steady spherically symmetric accretion on to 
a Newtonian star. The accreting matter is supposed to compose only of hydrogen 
which is fully ionized. Electrons experience an outward force by radiation due to 
momentum deposition through the Thomson scattering process. These electrons are 
also dragging protons by exerting a force via coulomb coupling. On the other hand, 
protons are attracted by the inward gravitational pull. Under this circumstance, this 
two forces would be exactly balanced for a certain limiting accretion rate and the 
accretion process would be ceased. This accretion rate gives a limiting luminosity 
called Eddington Luminosity and is given by, 
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47rGM, mpc 3s M, 
LEdd - -  a T  ~ ' J  1.3 • 10 ~-~oerg s -1. (1.5) 

Although the above estimation is based on some very idealistic approximation, still 
it provides a crude estimate which is acceptable. 

1.2.1 Geometric structure of the accreted matter: accretion disk 

Accretion is a process in which the gas and dust are accumulated around massive 
celestial object which could be stars, planets or any massive objects. These matters 
are collected in a relatively fiat sheet on the equatorial plane of the attracting object. 

Figure 1.1: Artist 's visualization of a binary system. Figure has been taken from 
http:/ /antwrp.gsfc.nasa.gov/apod/ap991219.html 

Fig. I.I shows an accretion disk in a binary system. Blue star at the left is 
filling its Roche lobe and matter is therefore streaming over the compact object at 
the right. Since accreted matter possesses significant amount of angular momentum, 
it cannot fall directly on to the compact object, instead it forms an accretion disk 
surrounding the compact object. 

In general, the matter is rotated in Keplerian orbits inside an accretion disk. This 
implies that the matter is in a perfect equilibrium by the balance between the gravity 
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and the centrifugal force. If this were all, nothing would have ever happened inside 
the accretion disk. In this situation, matter  would just go on revolving around the 
accreting star forever. But there is always some viscosity present inside the disk. 
The role of the viscosity is to transfer angular momentum from one gas layer to 
another gas layer which is further out from the accreting object. The first gas layer 
will then move a bit closer to the accreting object as it 's new angular momentum 
corresponds to a smaller orbit. Repeating this process many times, the gas element 
eventually falls down to the central object and forms an accretion disk. 

1.2.2 E f f i c i e n c y  of  t h e  a c c r e t i o n  p r o c e s s e s  

Let us now make an order of magnitude estimation for the luminosity using Eq. 
(1.5). Considering the typical values of mass and radius for white dwarfs (MwD 
Me, RWD ~ 109 cm) and neutron stars (MNs "~ M e , R N s  "~ 106 cm), one could 
easily ob ta in  the luminosity LWD ~ 1033 ergs s -1 for white dwarfs and LNS 
1036 ergs s -1 for neutron stars. In fact, in the above luminosity approximation, the 
accretion rate is chosen to be of the order of 1016 gm s -1 which is the typical value 
of accretion rate for a close binary system that  includes the similar kind of stars. 

In the case of a black hole accretion, the situation is rather different as the black 
holes do not have any hard surface boundary. The black hole boundary is defined by 

2GMsH where MBH represents it 's 'event horizon' and is given by the distance rg = ~2 , 
the mass of the black hole and rg denotes the Schwarzschild radius. Accretion 
on to the black hole does not produce much of the radiated energy as significant 
amount of accreted matter  is sucked by the hole itself. Therefore, it is useful to re- 
express Eq. (1.4) for the accretion on to the black hole through the introduction of a 
dimensionless parameter, ~?, known as efficiency factor, that  measures the conversion 
efficiency of energy from gravitational head to radiation head. Thus, Eq. (1.4) takes 
the form as, 

Locc =  'CM.Mocc =  Moj, (1.6) 
R. 

where, ~ = ~ , M .  = MBH and R. = rg. Now it is important to estimate the 
realistic value of the conversion factor, ~. The acceptable value of ~ for a non- 
rotat ing blackhole is ~ 0.06 and for a extremely rotating black hole ~ is ~ 0.42. So 
it is reasonable to estimate the value of ~ is around 0.1. This value is comparable 
to the value ~? ~ 0.15 that  comes from Eq. (1.6) assuming a 1Mo neutron star. 
This indicates that  a neutron star of similar mass as a black hole is more efficient 
for converting energy from one head (gravitation) to other (radiation) though a 
neutron star is less compact than a black hole. 

In fact, the accretion luminosity plays an important role while investigating the 
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core structure of the celestial objects, like active galaxies, quasars etc. For these 
systems, luminosity is very large (L~c ,-~ 1047 ergs s- l) .  At the sub-Eddington 
accretion rate limit, such a high luminosity would be possible if the mass of the 
central object exceeds it 's value around 109Mo or more. White dwarfs and neutron 
stars do not have such extreme mass limits. Therefore, it would automatically 
indicate the presence of super-massive black holes at the centre of active galactic 
nuclei. 

1.2.3 Emitted spectra 

Let us now proceed to classify the different varieties of the compact stars by ana- 
lyzing their various observed features. It is assumed that  the photon energy, hE, 
would be the order of kTrad, where Trad characterizes the continuum spectrum of 
the emitted radiation. 

Now one can define the black body temperature, Tb, for a source of radius R and 
luminosity L~cc. If the total power which corresponds to the source itself radiates 
through the black body radiation, then the effective temperature of the source will 
be, 

L~c~ ) 1/4 

Tb= \47rR2.a �9 (1.7) 

Finally, we assume that  each electron-proton pair (of masses me and mp, where 
me << mp) is accreted on to the compact object where the potential energy release 
is ~ GMmp/R. .  Simultaneously, the thermal energy is 2 x ~kT for the same ac- 
creted pair. Now, if all the gravitational energy of the accreted matter  is completely 
converted to the thermal energy, this will result a temperature, Tth, which is given 
by, 

T t h -  GMmp (1.8) 
3kR. 

Let us now look at the extreme limit of temperature for the matter  that  is 
accreting on to the compact stars. In an optically thick accretion flow, radiation 
achieves thermal equilibrium with the accreted material before escaping from the 
system which implies that  Tra d "~ T b. On the other hand, when the intervening ma- 
terial is optically thin, the accretion energy is converted to radiation which escapes 
from the system without further interaction and we have, Tra d ~ Tth .  So it is clear 
that  radiation temperature lie in between the thermal and the black body temper- 
atures, TD <_ Trad <_ Tth. For one solar mass (M = Mo) neutron star or black hole 
the upper limit of temperature comes about Tth ~ 5.5 x 1 0 n K  which is equivalent 
to the energy, kTth ~ 50MeV. The lower limit can be estimated by considering 
a typical luminosity (La~ "~ 1036 ergs s -1) of a 1Mo neutron star and it will be 
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around Tb "~ 10~K or kTb ,,~ 1KeV. Therefore, the photon which is emitted from 
the accreted matter  belongs to the energy band ranging from 1KeV to 50MeV. 

This result gives a hint that  a 1M| neutron star or a black hole may be the 
source of hard X-ray photons. In a similar way, one could easily show that  a stellar 
mass white dwarf is responsible for the emission of optical and ultraviolet radiations. 

1.3 Fluid dynamics  

In an accretion disk, matter  is composed of constituent particles, such as free elec- 
trons and ions. These particles exert forces onto each other only by collision. In 
general, particles are expected to maintain their original state of motion up to a 
certain distance before colliding with some other particles. This collision free dis- 
tance is called as mean free path, I. If the gas particles travel uniformly upto a 
certain distance which is of the order of several mean free path distance, it is possi- 
ble to characterize the particles by a mean velocity, v. Under these circumstances, a 
gaseous system with length scale L >> l can be treated as a continuous fluid having 
velocity (v), temperature (T) and density (p). Here onwards, our goal is to study 
the dynamics of the fluid flow where the flow variables, such as velocity, temper- 
ature, density etc., will be expressed in terms of position and time by considering 
conservation law of mass, momentum and energy. 

1.3.1 Basic equation 

In the present Section, we briefly discuss the various conservation laws in fluid dy- 
namics. These conservation laws explicitly describe the nature of the flow dynamics 
when the equation of state of the fluid is known. Of course, the flow characteristics 
must depend on the initial boundary conditions of the system under consideration. 

The conservation of mass of the fluid flow is described by the continuity equation 
for the density p and fluid velocity v which is given by, 

Op 
a---t + V.(pv) = 0. (1.9) 

The momentum conservation of gas elements can be expressed by the Newton's 
second law for the continuous fluid and is obtained from Euler equation as, 

0v 
p ~ -  + pv .Vv = - V P  4- f,  (1.10) 

where, P is the gas pressure at each point aroused because of the thermal motion 
of the gas particles and f denotes the external forces like gravity, viscosity etc. 
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The energy equation for the gas element is given by, 

0 ( l p v 2 + p c ) + V . [ ( ~ p v 2 + p ~ + P ) v ]  = f . v - V . F r a d - V . q ,  (1.11) 

1 pv 2 and pc measure the kinetic energy density and internal energy where, the terms 5 
density respectively. In the right hand side, Frad represents the radiative flux vector 
and q denotes the conductive heat flux. In general, q estimates the rate of transport 
of thermal energy inside the gas due to random motions. 

Apart from these conservation laws, an equation of state is necessary to describe 
an astrophysical gas flow. The most useful idea for this purpose is to assume the 
astrophysical flow as a perfect gas and the so called equation of state of the perfect 
gas is given by, 

p = pk~,  (1.12) 
#rap 

where, k is the Boltzmann constant, r% is the mass of the hydrogen atom and It 
is the mean molecular weight--for neutral hydrogen, It = 1 and for fully ionized 

_ _  1 hydrogen, I t -  3" 

The set of Eqs. (1.9--1.12) along with the specific form of f give a complete 
description of the behaviour of the flow when the appropriate boundary conditions 
are known. Of course, it is really difficult to solve these set of equations retaining all 
the generalities. In the subsequent Sections we shall highlight some of the solutions 
of these set of equations considering reasonable approximations. 

1.3.2 Steady flow: adiabatic & isothermal 

In the present thesis, we are concentrating on the stationary flow in which flow 
variables are not varying with time. Here, we consider a special fluid flow for which 
no heat flows into or out of the gas element. Then the first law of thermodynamics 
takes the following form, 

dU = - P d Y ;  dQ = 0, (1.13) 

where, U is the internal energy and V is the volume involved into the system. 
Specific heats of the gas element are connected by the relations which are given by, 

Cp C V R and Cp - = = 7 ,  ( 1 . 1 4 )  Cv 

where, R and 7 denote the universal gas constant and adiabatic index respectively. 
In the ideal gas law, pressure (P) is expressed in term of volume (V) and temperature 
(T) and is given by, 

P V  = RT. 
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After some simple manipulation with Eqs (1.13) we have, 

dV dP 
7 V - p 

Solution of the above differential equation leads to the adiabatic gas law for a fluid 
of unit mass which is given by, 

P = g p  "Y, (1.15) 

where, K is a constant that  measures the entropy of the flow. 

Another special type of a flow could be obtained from the assumption that  the 
gas temperature T remains constant throughout the region of interest. This is 
called isothermal flow. In a similar way expressed above, one can easily obtain the 
isothermal gas law as P = K p  with 7 = 1. In future, we shall use both the flows 
separately while studying the flow characteristics. 

1.4 Steady hydrodynamic spherical accretion 

In 1939, Hoyel & Lyttleton first studied the problem of axisymmetric particle accre- 
tion through a shock front. The problem was to quantify the amount of matter  which 
was accumulated on the star surface while coming from the interstellar medium. The 
result was not satisfactory as the pressure effect was ignored. Several years later, 
Bondi (1952) published his pioneering work on spherical accretion process. He con- 
sidered the situation where an isolated star was at ,rest inside an ambient medium 
and matter  was accreted onto the star's surface spherically symmetrically due to the 
gravitational at traction of the isolated star. He studied the effect of finite pressure 
in more detail and concluded that  the temperature of the accreted matter  had a 
vital role in this problem. In the next Section, we present a short review on the 
Bondi flow problem. 

1.4.1 Bondi flow in Newtonian geometry 

Here, we briefly illustrate the Bondi accretion flow problem (Bondi 1952). We start  
with a Newtonian star of mass M. which is accreting matter  spherically symmetri- 
cally from an infinite cloud. This cloud is at rest at infinity with uniform density p~ 
and pressure P ~  in a Newtonian force field. The motion of the gas is steady and the 
gas dose not possess any angular momentum or magnetic field. The increase of mass 
of the central star due to the matter  accretion on to the star surface is neglected. 
This leaves the external force field unchanged. 

The equation of motion for an unit mass which is accreted towards the central 
star in the steady state condition is obtained from the Euler equation. Here, gravity 
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gives the only contribution to the external force, f .  Due to the spherical symmetry 
the flow variables have only radial component and then, the equation of motion 
reduces to a form which is given by, 

dv i dP 1 
V ~ r r + p - ~ r  + ~ = 0  , (1.16) 

where, v is the radial velocity, r is the radial distance, p is the matter  density and 
P is the isotropic pressure. 

The mass flux conservation is ensured by the continuity equation and in the 
spherical polar geometry it is given by, 

1 d ( p y r e ) = 0 .  (1.17) 
r 2 dr 

While writing these equations we have chosen the geometric units G = c = 
M, = 1, where G is the gravitational constant, c is the velocity of light and M, is 
the mass of the central star. Thus the unit of length, mass, velocity and time would 
be G M , / c  2, M, ,  c and G M , / c  3 respectively. 

Moreover, matter  is considered to be adiabatic in nature that  follows from the 
equation of state P = K p  ~, where 7 is the adiabatic index and K is a constant 
measures the specific entropy of the matter. We integrate radial momentum equation 
using adiabatic sound speed, a = X / ~ / P ,  to obtain the Bernoulli integral which is 
given by, 

1 2 1 
$ = -~v + ha2 r - n.a~, (1.16a) 

where, E and n [= (7 - 1) -1] denote the specific energy and polytropic index of the 
flow respectively. 

Integrating Eq. (1.17) we get the mass flux equation as, 

= pvr 2, (1.17a) 

where, /~/ is a constant called as mass accretion rate. We re-express polytropic 
equation of state in terms of adiabatic sound speed as 

( (11s) 
P =  \ T K /  " 

Using Eq.(1.18), Eq.(1.17a) can be written as, 

J~ ~ a2nvr 2. (1.19) 

The new term A~(= 7nK~h;/) first introduced by Chakrabarti  (1989a) is also a 
conserved quantity in the flow known as the entropy accretion rate. 
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Differentiating Eqs. (1.16a) and (1.17a) and eliminating da/dr, we get the gra- 
dient of radial velocity as 

dv 2a2 1 
_ r ~ N 

a2 = -~ ,  (1.20) 
dr v - - -  

V 

where, N and D stand for numerator and denominator respectively. 

According to the boundary conditions flow must be smooth at every point. Inter- 
estingly, if at some point the denominator vanishes, the numerator must also vanish 
there as dv/dr is finite always. Such a special point is called as critical point of the 
flow. We, therefore, have the critical point conditions which are given by, 

1 
v2(rc) = a2c(rc) and rc = 2a 2. (1.21) 

The subscript 'c' identifies the flow variables at the critical point. In fluid dy- 
namics, the Mach number is defined as the ratio of the flow radial velocity to 
the sound speed at the same location. In fact, at the critical point Mach num- 
ber M(rc)(= vc/a~) is unity and therefore, the critical point is renamed as the 
sonic point (r~). This sonic point, r~, would then correspond to a spherical surface 
called sound horizon, as any acoustic disturbance created at downstream region 
(r < r~, u < a) will not be carried out to the upstream (r > re, u > a). 

Let us concentrate on the length scale of the accretion flow problem. Define the 
'accretion radius', ra~, to be that  radius at which 'the kinetic energy of matter  is 
balanced by its potential energy. Thus, the accretion radius is given by, 

2 
racc- vO.~ (1.22) 

This length scale gives the range of influence of the central star onto the gas cloud. 

From Eq. (1.16a), it is clear that  for r --+ cx~, contribution of gravity is negligible 
and flow does not feel any inward pull as gravity is the only responsible attracting 
force there. But at the same location sound speed have some considerable value 
which asymptotically approaches to a~.  As one now proceeds towards the central 
star the flow velocity increases and the flow must be sub-sonic at a large r. In an 
accretion process, the gradient of radial velocity must be negative throughout the 
flow. I n  the vicinity of the accreting star, since gravity dominates over all other 
forces numerator becomes negative as well. Therefore, accretion is possible if D > 0 
that  implies v > a, i.e. flow is super-sonic in nature at that  region. Thus accretion 
flow solutions are always transonic and transonic transition between sub- and super- 
sonic branches occurs at the sonic point. Limitation of the transonic flow solutions 
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could be clearly understood when flow variables (u or a) at the critical point are 
expressed in terms of aoo which is given by, 

ac = - aoo. (1.23) 

This indicates that  transonic flow exits if and only if n > 3/2, i.e., for 7 < 5/3. 
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Figure 1.2: Plot of the phase space diagram of the Bondi flow around a Newtonian 
star for n = 3 and E = 0.01. Solid, dotted and dashed curves are the contours of 
constant/V/. The solid curve represents the accretion flow solution while the dotted 
curve is drawn for wind solution. Solid and dotted curves are the only physically 
acceptable solutions as they are transonic in nature while the dashed curves are not 
transonic anyway. Among the dashed curves, one branch is sub-sonic at every point 
and the other branch is super-sonic always and could be excluded for any realistic 
flOW. 

More importantly, the conserved quantities g and JQ can be expressed in terms 
of a unknown variable, re, by using two critical point conditions. Therefore, C 
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and A)/ cannot be independent and this will provide a single parameter family of 
solutions. Beside this, the accretion rate A)i can be estimated from ao~ as, 

~(4~= # \ n - 3 / 2 ]  (1.24) 

In Fig. 1.2, we present the variation of Mach number with logarithmic radial 
distance for a set of fixed input parameters n = 3 and $ = 0.01. The solid and 
dotted curves connect the flow solution from infinity to the star surface and hence 
consider to be physically significant. Details of figure descriptions are given in the 
Figure captions. 

The nature of the Bondi solutions can be understood by studying the radial 
velocity gradient [(dv/dr)c] at the critical point. At this point dv/dr = 0/0, so one 
must apply l 'Hospital rule to understand the behaviour of the flow properly. Thus, 
using the critical point conditions one obtains the radial velocity gradient at r~ as, 

( d v )  _ 4a~ [ 1 ~  ~/n(n-3/2)]. (1.25) 
~r  c 2 n + 1  

The nature of the critical point is dictated by the discriminant :D = n(n-  
3/2). A transonic flow solution is possible when velocity gradient at the critical 
point becomes real and it happens for n > 3/2. Classification of the critical points 
mainly depends on the exact value of the discriminant (l)) and Chakrabarti  (1990a, 
hereafter C90a) have done a detail, study on it which will not be repeated here 
once again. For n > 2, saddle type sonic point exists since derivatives (dv/dr)c 
at the critical point are real and of opposite sign. When n < 3/2, 1) < 0 and 
the critical point is of spiral type. Critical point becomes nodal when n lie in the 
range 2 > n > 3/2. Therefore, in Bondi flow, the behaviour of the critical point 
strongly depends on the polytropic index (n) and it's nature is highly sensitive on 
the numerical value of n. 

1.4.2 Limitations of spherical symmetry 

Now it is clear that  the accretion flow variables could be expressed in terms of 
radial distance only and using these variables one can easily understand the emission 
properties of the flow. Due to the fact that  black hole does not have its own hard 
surface, the outgoing radiation is produced by the accreted matter  and the radiation 
spectrum is determined by the various radiation processes. 

In general, most of the radiations are originated from the vicinity of the region 
just outside the event horizon. The flow variables, such as velocity , density etc., 
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possess the i r  maximum values at the region close to the black hole. In this par- 
ticular environment, thermal bremsstrahlung radiation process will be important  
where relativistic electrons collide with heavy ions inelastically and generate radia- 
tion spectrum. Considering the relativistic effect due to the motion of the infalling 
gas, the so called total  luminosity (Lb~em) is computed and the efficiency of con- 
version of rest mass energy into radiation is estimated (Shapiro & Teukolsky, 1983) 
as, 

Lb~e,~ 6• ( n~ ) ( T ~ ) - 3 ~ 2 ( M s )  (1.26) 
= 1  m-3 , 

where, n ~  and T~ represent the number density and temperature o f  the gas at 
continuum. Eq. (1.26) represents a very low efficiency for the conversion of rest- 
mass energy into the radiation. This efficiency may increase only by 15% when 
the central object rotates with its maximum allowed angular momentum. In this 
scenario, spherical accretion of interstellar gas by a stellar mass black hole gives 
minimal contribution to the emitted radiation and cannot be treated as a possible 
mechanism of radiation process for quasar and AGN as their efficiency factor ranges 
from 0.057-0.42 for Schwarzschild and maximally rotating Kerr black hole. 

1.4.3 General relativistic Bondi flow 

It is worthwhile to study the stationary spherical accretion flow problem for a non- 
rotating black hole in pure general relativity. The 'metr ic  around a Schwarzschild 
black hole is given by, 

ds2= - ( 1 -  2)  dt2 + ( 1 -  ! ) - l d r2  +r2dO2 +r2sin2Odr 2. (1.27) 

Here, we have used geometrical units similar to the earlier Section. Presently we are 
dealing with a steady, radial flow where 0/0t = 0/00 = 0 /0 r  = 0 and u ~ = u r = 0 
as well. The radial velocity is defined as, 

v 2 - -  - ~  UrUr (1.28) 
Utct t  ' 

where, u t and u r denote the time- and radial-component of four velocity. Using the 
normalization relation, u,u ~ = -1 ,  and Eq. (1.27) one can easily compute ut and 
u r which are given by, 

( 2 ) 1 / 2  
1 - 7  (1.29) 

ut = 1 - v 2 ' 
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and 
f -  V 2 (1.3o) 
~ r" 

In our present study, we consider the accretion flow which has negligible viscosity. 
Therefore, the conserved energy equation (Chakrabarti 1996a, hereafter C96a) is 
obtain as, 

h u t  - p + ~ - u t  = $ ,  (1.31) 
P 

where, h [= (p + e)/p] is the specific enthalpy, c is the mass energy density, p is 
the mass density and p is the isotropic pressure of the flow respectively. Here, ut 
represents the time-component of velocity which is also considered as the specific 
binding energy of the flow. 

In the steady state, the conserved mass flux equation is calculated from the 
continuity equation as, 

= pr2u r. (1.32) 

Using the Chakrabarti's definition for entropy accretion rate (C90a) we get, 

( a2 ) vr2 ~/1 2 (1.33) 
2~I=TnKnil~/= 1 -  na 2 ~ V - r'  

where, ~ and n denote the adiabatic index and the polytropic index respectively. 
Here, we have used the definition of sound speed as a = v/Tp/(c § Since no 
energy exchange is taken place in the flow we consider the flow to be adiabatic in 
nature. Therefore, the flow follows the adiabatic equation of state, p = Kp "~, where 
K is a constant measures the change of entropy of the flow. 

Differentiating Eqs. (1.31 and 1.32) and eliminating da/dr, we get, 

dV_dr "2a2(1-V2)r (l-a2)(1-v2)]r-~-~ / [ ~ -  v] (1.34) 

Similar to Newtonian approach, Eq. (1.34) is integrated to obtain the solution 
topologies for different flow parameters. In Fig. 1.3a, we show the variation of 
radial velocity of the accreted matter (solid curve) as a function of logarithmic 
radial distance around a non-rotating black hole. The corresponding wind velocity 
variation is denoted by dotted curve. The specific energy of the flow is chosen as 
S - 1.02 which identifies the sonic point (re) at 41.53. Polytropic index n -- 3 
is used here. Note that, matter velocity approaches to unity (in units of c) while 
crossing the black hole horizon (2GMBH/C2). We plot the phase space diagram of 
spherically symmetric accreted matter for the same flow parameters used in Fig.l.3b. 
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Figure 1.3: Spherically symmetric transonic flow solutions obtain from pure general 
relativistic calculation. Fig. (a) show the velocity variation with logarithmic radial 
distance for both the accretion (solid) and the win d solution (dotted). We present 
the Mach number (M = v/a) variation as a function of the logarithmic radial 
distance for accretion (solid) and wind (dotted) for the same set of flow parameters 
in Fig. (b). The figure details are mentioned in the text. 

There we show both the transonic flow solutions for wind (dotted) and accretion 
(solid) separately. The important point is that the nature of solutions obtained 
from Newtonian approach are exactly identical with the pure general relativistic 
calculations. But the only difference is that sonic point forms further away from the 
black hole horizon in the Newtonian case. 

1.4.4 Space-time around Black holes and pseudo-Newtonian poten- 
tial 

The physics of black holes is described by the space-time geometry around it. Due 
to compactness, the black hole geometry differs from the ordinary star and it can 
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be successfully described by the general theory of relativity. In most of the astro- 
physical systems where a neutron star or a black hole is involved, one can avoid 
complicated full general relativistic treatment when the interesting astrophysical 
processes are not occurring extremely close (within r ~< 2rg) to the black hole hori- 
zon. Accordingly, accretion disk problem can be tackled with Newtonian concept 
by introducing pseudo-Newtonian potential which retains all the salient features 
of black hole geometry well out side the black hole horizon. In 1980, Paczyfisky 
& Wiita  (Paczyfiski & Wiita, 1980, hereafter PW80) suggested the expression of 
pseudo-Newtonian potential which mimics the black hole environment quite satis- 
factorily within the acceptable error bar. Therefore, from now and onwards, we shall 
use this potential to account the general relativistic effects around the black hole 
surroundings. 

In the present study, we are interested to find out a suitable pseudo-potential 
which successfully mimics the basic features of actual non-rotating black hole geom- 
etry. For this, we explore Schwarzschild metric which properly describes the external 
field of a non-rotating black hole. The so called metric with - ,+ ,+ ,+  signature is 
given by, 

ds 2 = -  1 -  dt 2 +  1 -  dr 2 + r2d92 + r2sin29dr 2. (1.35) 

Here, we choose the geometric units G = MBH ---- C = 1, where G is the universal 
gravitational constant, MBH is the mass of the black hole and c is the velocity of 
light respectively. We use r, 9 and r as the coordinates of spherical geometry. The 
motion of a freely moving test particle will be a longthe  geodesics of space time and 
the geodesic equations are obtained from the Lagrangian which is given by, 

2L = - 1 - i 2 + 1 - 72 + r2~2 + r 2 s i n 2 9 r  (1.36) 

where, t - dr~dr = u t is the t-component of 4-momentum and so on, for a particle 
of unit mass and r is simply the proper time. 

The equation of motions corresponding to O, r and t coordinates are respectively 
given by, 

due d 7 -- (r2ue).= r2sinOcosg(ur 2 (1.37) 

dur _ d (r2sin29u~) = O, ( 1 . 3 8 )  
dr dr 

d----~ dr 1 -- u t = 0. (1.39) 

Taking integration of Eqs.(1.37--1.39) we get u ,  as a constant of motion. Eq. 
(1.37) clearly indicates that  if we orient the coordinate system so that  initially the 
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particle is moving in a equatorial plane (i. e. 0 = ~r/2, 0 = 0), then the particle 
remains in the equatorial plane. Therefore, it gives u ~ = 0 all throughout. Now 
with 0 = ~/2,  Eqs.(1.38) and (1.39) become 

ur = r2u r = 1 = constant of motion (1.40) 

and 

- u t  = ( 1 -  2 )  ut = E = constant of motion. (1.41) 

The above set of equations and the normalization relation of four-velocities 
( u , u  ~ = - 1 )  together give us, 

The general nature of a freely moving test particle orbit could be ascertained 
while considering the second term of the r.h.s, of Eq. (1.42) as an 'effective potential '  
of the particle and is given by, 

Eq.(1.43) identifies a remarkable feature that  V~ff = 0 at the event horizon of 
the Schwarzschild black hole (r = 2). Fig. 1.4 shows the plot of V~ff as a function 
of radial distance (r) where we compare the effective potentials obtained from dif- 
ferent approaches. In Fig. 1.4, the solid curves are drawn for general relativistic 
effective potential for (from bottom curve to top one) l = 0, 3, 2v~,  4, and 4.5 re- 
spectively. Long dashed curves represent pseudo-Newtonian effective potential for 
I = 4 (bottom) and l = 4.5 (top) and the dotted curve indicates the Newtonian 
inverse square law. The incoming matter  with sufficient energy (E > V~ff) does 
not feel any obstruction from the pseudo-Newtonian and general relativistic poten- 
tial barrier--implies that  matter  can fall into a black hole as easily as a spherical 
flow. On the other hand, a Newtonian potential presents an infinitely high barrier 
to the flow even when matter  possesses a significant amount angular momentum. 
The particles that  enter into the black hole travel in a trajectory which is known as 
'capture orbit'. Presently we focus on these bound particles. Particles on a 'circu- 
lar orbit' can also be captured into the black hole even with a slight perturbation. 
Mathematically, circular orbit could be derived by setting the conditions, namely, 

~ (B~ Or (A) or - - 0 and ~ J or : 0. Accordingly, from condition (A) we have the relation, 

r 2 - 12r + 312 = O. (1.44) 
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Figure 1.4: Plot of the effective potential V~/: with radial distance for the a set of 
values of specific angular momentum marked in the figure. The dotted curve denotes 
the Newtonian inverse square law. Solid curves are drawn for general relativistic 
effective potential while long dashed curves represent the pseudo-Newtonian effective 
potential. 

The real value of radial distance, r, is possible whenever l __> 2x/3 and the potential 
has a extremity for 1 > 2x/3. lm~ = 2v/3 is known as marginally stable angular 
momentum, since closed orbits can not be formed below this 1. At r = rm~ = 
6GMBH/C 2, V~I:(l = l ,~),  specially indicated in the Fig 1.4, has a point of inflection 
called the marginally stable orbit (rm~). This closed orbit is the last stable orbit 
nearer to the black hole horizon. For r < rm~, matter  cannot stay in a stable 
orbit and must dive into the black hole. For Imb = 4GMBH/C 2, V~I: = 1 at rmb = 
2GMBH/C 2 and the orbits are marginally bound located at rmb. 

Angular momentum of the test particle can be calculated from Eq.(1.44) which 
is given by, 
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r 2 
12 - (1.45) (r-3)" 

Moreover, specific angular momentum is defined as - u r  and the Keplerian 
angular momentum distribution is obtained by joining the locus of the extremity of 
Ve]] which is written as, 

\ u t /  (r : 2) 2. (1.46) 

Using Eq. (1.45) and condition (B) we get the energy of the particle after some 
simplified algebra as 

E2 - ( r -  2) 2 (1.47) 
r(r- 3)' 

The numerical value of the effective potential [V~/i(rm~)] at the marginally stable 
orbit is obtained by using r = 6 and l -- 2v~  in Eq. (1.43) and is given by, 

Vo::(r,,,)= (1.48) 

Thus, using Eq. (1.48), one can easily compute the binding energy per unit mass 
of a particle at the last stable orbit, r = rms = 6, which is obtain as, 

Ebind -~ 1 -- Ve/:(rms) = 1 - V ~ 9  = 5.72%. (1.49) 

Therefore, when a particle at rest at infinity plunges into the black hole through 
the inner most stable circular orbit it will release the above fraction (~ 6%) of its 
rest-mass energy in the form of radiation. 

Black hole space-time environment could also be described by using pseudo- 
Newtonian potential first proposed by Paczyfiski and Wiita in 1980. This pseudo 
potential roughly reproduces the essential features of a black hole space-time and 
also allow us to avoid the more complicated general relativistic treatment. The 
prescribed effective potential along with the matter  rest mass energy is given by, 

g2 1 
V~/I(PW) = 1 + 2r 2 ( r -  2)' (1.50) 

where, the last term in the r.h.s, represents the pseudo-Newtonian potential ('~PW = 
(r~2)) and t is the angular momentum of the matter  which plays a similar role 

of l used earlier. The two different notations are used to indicate the different 
approaches. 
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Setting the condition (A) in Eq. (1.50), one can easily obtain the expression of 
Keplerian angular momentum distribution as, 

?.3 
g2KeP- ( r -  2) 2. (1.51) 

This indicates that pseudo-Newtonian potential (~PW) gives exactly identical 
expression for the Keplerian angular momentum distribution as obtained in GR 
approach. Moreover, the minimum of the Keplerian angular momentum distribution 
also occurs at the marginally stable orbit, (r~8). The efficiency of energy conversion 
in pseudo-Newtonian description is obtain as, 

= 1 -  V~ff(PW)]rm,= 6.25%. (1.52) 

Note that ~? is also very close to the earlier result. Thus, from the above discussion 
it is clear that pseudo-Newtonian approach is quite correct and the error lies within 
the acceptable range. Therefore, satisfactory results are expected if we restrict our 
interest in a region well outside the black hole horizon. In the next part of the thesis, 
we shall use this pseudo-Newtonian potential to take care of the general relativistic 
effects. 

1.4.5 Bondi flow in pseudo-Newtonian geometry 

In w we have studied the transonic astrophysical flow on to a Newtonian star. 
In reality, astrophysical flow cannot be so simple which can be tackled with New- 
tonian geometry--instead, the general relativistic approach must be incorporated. 
So far, we have dealt with a very simple system using the general relativity and the 
governing equations of the flow are not very tedious. However, in general, a rigorous 
study of a more complex system, such as the flow with angular momentum, viscos- 
ity, magnetic field etc. is almost impossible in full general relativity. The problem 
is solved by incorporating a pseudo-Newtonian potential (~PW - x~2) often used 
in the literature (PW80). This pseudo-Newtonian potential successfully takes care 
the essential features of Schwarzschild geometry. This treatment is very similar but 
little bit harder compared to the Newtonian approach. In this Section, we shall 
revisit the Bondi flow problem with pseudo-Newtonian potential. Accordingly, one 
could obtain Schwarzschild solutions without going through the general relativistic 
treatment. 

In the present context, we assume that the adiabatic matter is collected spheri- 
cally symmetrically around a non-rotating black hole. In addition, we consider that 
the viscosity and other dissipative processes are negligible. Therefore, the energy of 
the flow remains constant all throughout. The flow is governed by the energy and 
mass conservation equations which are given by, 
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Energy  Equat ion  : 

and, Mass  Flux  Equat ion  : 

v 2 1 
g = -2  + ha2 r -  2' (1.53) 

2~I = pvr2; apart  from the geometrical factor. (1.54a) 

Entropy-accretion rate is calculated from the relation JQ -- 7~K~21)/and is obtained 
from Eq. (1.54a) as, 

2Q = a2'~vr 2, (1.54b) 

where, the quantities carry the same meaning mentioned previously. 

Following the similar procedure as described in w 1.4.1, the rad{al velocity gradient 
at any point can be obtained as, 

1 2 a  2 

dv _ (r-2)2 r _ N (1.55) 
dr a--2 - v D " 

V 

According to the boundary conditions, since the flow is smooth everywhere, radial 
velocity gradient must be finite always at each point of the flow. This indicates that  
whenever denominator vanishes numerator must also vanish simultaneously at the 
same point. Such a special point is called as sonic point. Under this consideration, 
one can easily derive the sonic point conditions as, 

and 

vc = ac, ~ M(r~)  = 1, (1.56a) 

1 v/16a  + 1 (1.56b) ro = 2 + + 

Eq. (1.56b) represents the location of the sonic point which could be anywhere 
ranging from inner boundary to outer edge of the disk depending on the value of 
sound speed. In Newtonian geometry, sound speed is allowed to become infinity 
at its maximum value. This indicates a closest approach of sonic point at the 
black hole horizon (r -- 2) which is consistent with the result obtained from the 
pure Schwarzchild geometry (w The flow solutions obtained from the present 
approach are very similar to the original Bondi solution in the Newtonian geometry. 

1.5 Disk  accret ion  

In the earlier Section, we have pointed out that  emitted radiation which originates 
from the rapidly infalling matter  onto a compact object, is not found to be strong 
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enough to explain the high luminosity of AGNs and quasars. However, the presence 
of tangled magnetic field, leading to the synchrotron radiation in addition with 
bremsstrahlung radiation can improve luminosity but the result does not reach in 
the highest expectation level. In this floating age, accreted material was found to 
produce a disk like temporary depositary around the compact objects. Later on, 
disk like structure of such accreted flow around the compact object was suggested 
to resolve the mystery of high luminous radiation sources (Lynden-Bell, 1969 and 
Pendergest & Burbidge, 1968). 

In the early days of accretion disk physics, accretion in a binary system was 
first investigated where one of the components of the binary system was treated as a 
compact object (primary component). In the present study, we are mainly interested 
in the accretion process on to a black hole. In what follows, primary component 
would strip out matter due to tidal disruption either from the ambient wind of the 
surrounding stars or through the Roche lobe overflow from the binary companion. 
Hence, the accreted matter would possess substantial amount of intrinsic angular 
momentum with respect to the black hole. As the accreting matter does have a 
significant amount of angular momentum it would revolve around the black hole 
that results lower infall velocity and much higher density compared to the spherical 
accretion. Therefore, the infall timescale becomes longer. This would help the flow 
to dissipate angular momentum and energy well outside the event horizon through 
the viscosity. Actually, viscosity automatically comes into play due to the differential 
rotation of the infalling matter inside the disk. Moreover, since angular momentum is 
a conserved quantity, loss of angular momentum through the viscosity drifts matter 
into a closer orbit with larger infall velocity towards the black hole. Therefore, 
the infalling matter gradually falls into the black hole following a spiral trajectory 
before forming a temporary depositary of disk like structure around the black hole 
and preferably settles down into an orbital plane of it. As more and more matter 
dives into the deeper gravitational potential well of the black hole, it would radiate 
more efficiently corresponds to high luminosity radiation spectra. In the case of the 
Schwarzschild black hole, an accreting disk can radiate up to 6% of the rest mass of 
the infalling matter and for Kerr black hole it could be around 40% depending upon 
the rotation parameter of the black hole. In fact, the real energy conversion efficiency 
factor does depend upon the heating and cooling processes inside the accretion disk. 
This energy is released through the entire electromagnetic spectrum and the success 
of the disk model depends on it's ability to describe the emitted energy which is 
distributed in various frequency bands. The temperature, density as well as the 
geometrical shape of the disk dictate the nature of the emerging radiation spectrum 
as well. The disk variables explicitly depend on the outer boundary conditions, 
namely, the rate of matter supply, specific angular momentum as well as the energy 
content of the matter. 
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In a binary system, in general, accreting matter encircles around a compact star 
and forms a quasi-stationary structure of matter around it which is widely known 
as accretion disk. Due to viscosity, matte r transports angular momentum from the 
inner part to the outer part of the disk. Therefore, the accreted matter has an 
angular momentum distribution inside the disk. In general, this accreted matter 
settles down in the equatorial plane of the gravitating object. This kind of matter 
distribution is usualy described by the standard 'thin' disk model which is commonly 
known as the Keplerain disl~. Of course, some matter will be accreted by the black 
hole from the winds of the companion star. Therefore, a Keplerian flow could become 
sub- or super-Keplerian close to the black hole when the terms', such as, advection, 
pressure, cooling factor etc. are included in the flow equations. Thus, the flow close 
to the compact object will be a mixture of Keplerian and sub-Keplarian matter. 
Behavior of such disk will be discussed in w However, the accretion mechanism 
on to AGNs and quasars is intrinsically different where infalling matter is supplied to 
the central star from the winds of the ambient star cluster. Therefore, the infalling 
matter possesses angular momentum sufficiently lower than the Keplerian value. 
Thus, the flow is expected to have a higher infall velocity, i.e., the matter is mostly 
advecting. Matter travels with almost free fall velocity until it interacts with the 
centrifugal barrier that causes a sharp discontinuous transition of the flow variables. 
This sharp discontinuity is called a shock. At the base of the shock, the post-shock 
flow has a negligible infall velocity and relatively high temperature. In this region, 
the infall velocity is dominated by the orbital motion of the flow and flow density 
becomes high. Such special type of matter distribution can be described by the 
so-called 'thick' accretion disk model. This disk model has very little viscosity and 
radiation efficiency which could be somewhat intermediate between a spherical flow 
and a Keplerian thin disk model. Properties of all such disks will be discussed in 
the subsequent Section. 

1.5.1 S t a n d a r d  t h i n  d i sk  

In general, standard accretion disk forms in a binary system where the companion 
feeds gas to the compact star via Roche-lobe overflow. In this Section, the structure 
of such a disk around a central star will be briefly discussed. Usually this disk is 
known as the Keplerian accretion disk. Prendergast et al. (1968) first realized the 
importance of angular momentum of accretion flow in the binary system. They in- 
corporated it to visualize the system precisely. Meanwhile, Lynden-Bell (1969) gave 
a tentative suggestion that super-massive black hole might be centered at the galaxy 
core surrounded by the accreted matter. Subsequently, Shakura (1972), Pringle & 
Rees (1972), Shakura & Sunyaev (1973, SS73 from here onwards) and Novikov & 
Thorne (1973) proposed several accretion disk models around the compact objects 
considering Newtonian geometry. In 1973, Novikov & Thorne (1973) extended their 
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work in general relativity while solving the inner part of the accretion disk. In addi- 
tion, Shapiro & Teukolsky (1983) reviewed the thin accretion disk model in a great 
detail. In the next, we present a brief note on the thin accretion disk model. 

Let us begin with a qualitative overview of a disk accretion where the matter  
is accreted onto a black hole very slowly. Accreted matter  possesses substantial 
amount of intrinsic angular momentum. Therefore, matter  will be distributed in 
Keplerian orbit and will not be drifted further inward as angular momentum is 
a conserved quantity. But the viscosity is always present inside the disk which 
transports angular momentum outwards and allows matter  to move in. Following 
this process matter  ultimately dives into the black hole. As the matter  moves 
in a Keplerian orbit, it settles down in an equatorial plane of the black hole and 
forms a disk which is assumed to be thin, i.e. the local height of the disk is much 
smaller than the local radial distance (h(r) << r). In this thin disk approximation, 
it is reasonable to ignore the vertical velocity component compared to the radial 
or orbital velocities. So, the vertical equations could be solved separately from 
the radial equations. Along with this, accretion rate is assumed to lie in the sub- 
Eddington regime. Local heat is produced due to viscosity which is easily radiated 
away through the disk surface. As a result, the disk becomes cooler compared to 
the spherical accretion. Therefore, we assume that  the disk is highly non-adiabatic 
in nature. In addition, the pressure effect is also ignored which implies that  the 
angular momentum distribution of matter  is purely Keplerian. Thus, the radial 
velocity is negligible compared to the orbital velocity (vr << vr Therefore, the 
angular velocity of matter  around an accreting star of m a s s  MBH is given by, 

= = V 
which gives the Keplerian orbital velocity, 

(1.57) 

(1.58) 

In presence of significant viscosity, the gas is assumed to possess a small inward 
radial drift velocity vr which ensures that  matter  is being accreted. The angular 
momentum of the gas element at the same radius r is obtained as, 

)~k = v/GMBHr. (1.59) 

Eq.(1.59) clearly indicates that  angular m o m e n t u m  [/~K(rms)] at the marginally sta- 
ble orbit (rms) is very very less than the same [Ag(ro~t)] at the outer edge (rout) of 
the disk. Therefore, in the steady state, the rate of angular momentum transport 
from the disk would be, 

J = ~/GMBHro~tM, (1.60) 
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where, 2~/represents a constant gas deposition rate into the disk in the steady state. 
Moreover, disk is characterized by 'it's surface density (E) which measures the mass 
per unit surface area of the disk, obtained by integrating the gas density p at the 
equatorial plane (z=O) in the vertical direction (z-direction) and is given by, 

E = pdz ,.~ 2hp, (1.61) 
h 

where, h is considered to be the half thickness of the disk. 

For a Keplerian disk, viscous stress tensor is obtained as, 

d~ 3 
trr = fir dr = - - 2 ~ '  (1.62) 

where, ~ denotes the dynamic viscosity coefficient. The viscous stress, re, acted 
in the r direction between the adjacent fluid layers is related to the viscous stress 
tensor as, 

3 
f r = - t r r  = -~? v/G MBH /r  a. (1.63) 

A detail overview of a steady state thin disk structure could be computed by 
solving the four conservation equations, namely, the conservation of mass, specific 
energy, specific angular momentum and vertical momentum respectively. In ad- 
dition, possible dissipation processes (i.e. viscosity, radiation etc.) must also be 
specified for the shake of completeness of the problem. 

Inside the disk, matter experiences more and more compression due to the ge- 
ometric structure of the disk as it gradually moves in towards the compact star. 
Hence, density is increased and the variation of density can be identified from the 
integral of the continuity equation in the steady state. Under this circumstances, 
the mass accretion rate (M) is obtained as, 

= 2~rrvrE. (1.64) 

The factor 2~r appears in the r.h.s, due to the geometric structure of the disk. 

As the matter approaches the black hole, a fraction of angular momentum is 
consumed by the star itself and the rest is transported outwards. Let us denote 
J+ = ~/Ix/GMBHr as the inward rate of angular momentum transported across the 
radius r in the disk due to infalling matter. Since the angular momentum consumed 
by the black hole cannot exceed the value A(rms) at the inner edge of the disk, the 
rate at which angular momentum is deposited in the compact star is given by, 

J -  =/3~/[v/GMBHrm8 (~ << 1;for black hole/5 = 1). (1.65) 

We have already mentioned that viscosity distributes angular momentum of gas 
element in a Keplerian value. Conservation of angular momentum demands that 
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the net change of rate of angular momentum within a fluid element at r must be 
balanced with the torque exerted by the viscous stress and we may have 

G = fr 2r r = J+ - J -  = M [v /GMBHr  -- ~ v / G M B H r m s ] .  (1.66) 

Eq.(1.66) indicates that  fr could be identified uniquely in the steady state as a func- 
tion of MBH and M respectively. In addition, viscous dissipation process generates 
heat at a rate 

ds ( t , , )  ~ _ / , t , ,  (1.67) (~+=pT-~,.~ ~ 
After some simplified algebra with Eq.(1.63), Eq. (1.66) and Eq. (1.67) one obtains, 

2hl~+ - 3/~/ G MB [ 1 - , ~  (rms'~l/2] (1.68) 
4--~r 2 r \ r / " 

Since the disk is thin, heat easily radiated away vertically through the disk surface 
and the radiated heat flux from the either side of the disk is given by, 

1 F(r) = ~ x hQ+ - 1 - ~ . (1.69) 
s-~,2 7 , , r /  

An important  point is that  the radiated heat flux does not depend on the nature of 
the viscosity prescription. The total disk luminosit); is thus given by, 

L = 2F(r)•  = _ ~ a M s l ~  (1.70) 
Tin, r m s  

For a black hole, luminosity L = G M B g l ~ / 2 r m s  and it is exactly half of the potential 
energy of matter  at the marginally stable orbit. 

In the thin disk approximation, vertical velocity component vr is negligible with 
respect to other velocity components that  puts matter  in a hydrostatic equilibrium 
in the vertical direction. Thus, one can drop the advection term in the vertical 
component of the momentum balance equation and one obtains, 

l d P _  d [ GMBH 

p dz  dz L~ 
For a thin disk, z << r and the above expression reduces to 

I dP  GMBH Z 
p dz r 2 r" (1.71) 
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If the typical scale height of the disk in the z-direction is h, one may set d P / d z  ~ P / h  
and z ~ h and obtains 

(p  r 3 )1/2 as (1.72) 
h ~ GMBH "~ -~' 

where, as(= P /p )  denotes the sound speed of matter. Now, we can rewrite Eq. 
(1.5s)  as 

h as 

r vr 

Therefore, the thin disk approximation (h << r) requires that the local Keplerian 
velocity should be highly super - sonic with respect to the azimuthal velocity (vr 

It is evident that a complete theory of disk accretion requires a prior knowledge 
of the nature of viscosity. Unfortunately the exact nature of viscosity prescription 
inside the accretion disk is still not very well known. One of the major problems is to 
explain the origin of large viscosity which is usually present inside the accretion disk. 
Moreover, in general, most of the well understood momentum transfer mechanisms, 
such as the molecular viscosity, radiative viscosity etc., are very slow processes 
compared to the viscosity that is estimated from observation. The most promising 
possibility is that the viscosity may be originated due to the magnetic transport 
of angular momentum or due to small scale turbulence in the gas-dynamical flow. 
Random magnetic fields may also contribute significantly to the viscosity as the fields 
are sheared by the disk differential motion and again reconnect at the boundary of 
the chaotic cells. Velikhov (1959), Chandrasekar (t960), Fricke (1969) and Balbus 
& Hawley (1991) intensely investigated the proper explanation of viscosity through 
the study of magnetic instability known as the Balbus - Hawley instability. This 
instability is responsible to give rise to a turbulence motion. Therefore, it is generally 
believed that the viscosity may be originated due to the small scale turbulence in a 
gas dynamical flow. With this consideration, the coefficient of dynamic viscosity 
is estimated as, 

?7 ~ pVturblturb, (1.73) 

where, Vt~rb denotes the velocity of the turbulent cells relative to the mean gas 
motion and Iturb represents the size of the largest turbulent cells. For the super- 
sonic motion of the gas, the turbulent kinetic energy is converted into heat at the 
shock which is possible when vt~rb << as. Due to scale height restriction, turbulent 
cell size (It~rb) must be less than the disk height (h) as well. Hence, we may express 
the viscous stress as, 

fr = t~r <~ pash~ ~ pc28 ~ P. (1.74) 

Thus, in general, the viscous stress may be approximated as, 

fo= p, (1.75) 
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where, c~ is the non-dimensional viscosity parameter and c~ ~ i to maintain causality 
condition. This is the well known c~-disk prescription of Shakura & Sunyeav (1973). 

Let us focus on the opacity property of the standard accretion disk model that  
contains a compact star of mass M ~ 11//o. Most of the gravitational energy is 
released at the innermost part of the disk closest to the compact star which pro- 
duces a high temperature in that  region. Thus the disk becomes fully ionized there. 
Accordingly, opacity may be assumed to be dominated by the Thomson electron 
scattering process with the coefficient 

I%cat t ~-- 0.4 c m  2 g - 1 .  

The frequency averaged Rossland mean absorption opacity is given by (Shapiro & 
Teukolsky, 1983), 

aabs ~ a / / ~  0.64 • 1023pT -7/2 cm 2 g-1. 

At the outer edge of the disk, the temperature of the gas is relatively lower 
compared to the inner edge. So absorption dominates over scattering in the outer 
regions. However, close to the accreting star the situation is completely opposite. 
Therefore, on an average, the Rossland mean opacity for the whole disk is obtain as 

1 1 1 
= - - - + - - .  (1.76) 

t~mean I%catt I~abs 

The accreting matter  experiences a total pressure which is sum of the radiation 
and thermal gas pressure. For a fully ionized hydrogen gas, the total pressure is 
given by, 

p pkT 
: - -  + Brad,  (1.77) 

~ m p  

where, # = 0.5 for fully ionized hydrogen. When the gas is in a thermodynamical 
equilibrium, the radiation pressure can be estimated a s  Bra d ~ aT4~3. In general, 
gas pressure dominates over the radiation pressure all over the disk except at the 
innermost region where temperature is relatively high. 

Inside the disk, radiation process plays an important role. Viscosity generates 
heat which is transported vertically through the disk before being radiated away from 
the disk surface. In the optically thick region, ~- >> 1, radiations are transported via 
diffusion. Thus, in local thermodynamical equilibrium, the radiation flux F(r, z) in 
the vertical direction is expressed by the following differential equation as 

C 
F ( r , z ) -  3 ST (aT4). (1.78) 
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Here, ~- (= fh  t~m~npdz ~ ~ m ~ E )  is the optical depth computed from the Rossland- 
mean opacity and it is measured in the vertical direction only. Replacing differentials 
by finite differences, Eq. (1.78) takes the form at the surface of the disk as 

act  4 ac t  4 
F ( r ) ~  - - -  (1.79) 

Here, the flow variables are" calculated at the disk equatorial plan (z=0). When 
the disk becomes optically thin, the radiations can escape almost freely from their 
emission point without suffering any scattering or absorption. In this particular 
situation, radiation flux strongly depends on the radiation emissivity which may 
arise due to the free-free emission or Comptonization. 

Structure of a standard disk 

In the previous Section, we have discussed about the various physical processes which 
occur inside the disk. We solve Eqs. (1.63, 1.64, 1.66, 1.69, 1.72, 1.75, 1.76, 1.79) for 
nine unknown disk variables, namely, p(r), h(r), E(r), v,(r), P(r), T(r), fr ~mean(r) 
and F(r) as a function of radial distance (r), mass of the central s ta r  (MBH) and 
mass accretion rate (21}/) following the prescription proposed by Shakura & Sunyeav 
(1973) and Novikov & Throne (1973). For specified values of (MBH) and (M) the 
solutions are distinctly subdivided in three different region, depending on r. Far 
away from the central star, i.e., at the outer edge, contribution to the total pressure 
mainly comes from gas pressure and free-free absorption controls the disk opacity. 
In the intermediate location, gas pressure still dominates over the radiation pres- 
sure but opacity is dictated by the electron scattering. The condition n / /  ~ nab8 
identifies the transition radius between these two regions. At the innermost region, 
radiation pressure is high enough with respect to the gas pressure and scattering is 
the main cause for opacity. The boundary of the these regions is described by the 
condition Pga8 ~ Brad. 

The final expression of the flow variables are as follows: 

F(r) = 5.0 • 1026Ms~2t;/17r-3[1 -- X/r6-~]erg am -2 s -1, 

F.(r) = 7.0a-l MsH ]~/I~71r3/2[1- ~ / ~ ] - l g m  am -2, 

h(r) = 1.0 • 10-5/~/1711 - X / ~ ]  cm, 

p(r) = 3.0 • 10-5 -lM,,,M52r-3/211 - V ]-2g cm -3, 

T(r) : 5.0 • 107oz-1/4MB1H/4r-3/4K, 
~-~b~(r) = 3.0a -1MBHM~lr3/2[1-  V/-6-~] -1, where, MBH is measured in units of 

the mass of the Sun (Mo) , IV/17 is in units of 1017gm s -1 and r is measured in units 
of GMBHM| 2. 
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Emi t ted  spectrum 

So far, we have mentioned about the temperature (T) of the disk that  belongs to 
the disk equatorial plane (z=0). In reality, surface temperature (Ts) of the disk is 
always somewhat lower than the temperature at the equatorial plan (T). For an 
optically thin disk, T and Ts are roughly comparable but for absorption dominated 
optically thick disk the emission process is followed by the black body radiation and 
the surface temperature of the disk is computed from the local effective temperature 
which given by, 

Ts(r) -= .~ 5.0 • 107 \ - ~ e ]  M17 - L- - 

where, a = ac/4,  and a is the radiation density constant. Therefore, whenever we 
know the temperature profile it is easy to estimate the emitted spectrum. 

The standard thin disk model is thus able to explain the observational features 
of close binaries, quasars, AGNs etc. (Frank et al. 2002, Shapiro & Teukolsky, 
1983) successfully. The drawback of this model is that  disk is terminated at the 
marginally stable orbit (rm~) and the inner boundary conditions are not satisfied as 
the advection term is ignored in the momentum balance equation. However, this 
disk model gives an insight that  matter  has to deviate from the Keplerian orbit 
to maintain the inner boundary conditions. In the subsequent Sections, we shall 
present more realistic disk model considering advection term and show that  all the 
boundary conditions are perfectly satisfied there. 

1.5.2 Thick accretion disk 

In the previous Section, we have extensively discussed the theory of thin accretion 
disk model. The simplified assumptions accounted for the thin disk model are in- 
adequate at the innermost region of the accretion disk around the black holes as 
the radiation pressure may cause disk to be thicken (h(r) ,,~ r) for super-Eddington 
accretion rate. Indeed, the inner part of the disk is usually called as accretion torus. 
Therefore, pressure effect (either due to radiation or hot ion) must be included to 
understand the behaviour of thermodynamical flow variables inside the disk which 
are believed to be responsible for determining the disk structure. Moreover, this 
model must also incorporate the significant infall velocity which ensures that  mat- 
ter should accrete more rapidly while falling into the black holes. Simultaneously, 
disk should also be shifted from Keplerian orbit to below the marginally stable or- 
bit (r = rms) as well. The angular momentum distribution of the infalling matter  
would be modified from the Keplerian value when radiation pressure is included 
in the radial momentum equation - -  the angular momentum is super (sub) Keple- 
rian wherever the pressure gradient term is positive (negative). Lynden-Bell (1978) 
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constructed a qualitative model with constant angular momentum considering the 
effect of radiation pressure and showed that disk is puffed up close to the black hole. 
They also pointed out that matter with considerable amount of angular momentum 
could not reach the vicinity of spinning axis of the disk and a funnel wall would 
be created around the rotation axis of the black hole. In that region, radiation 
pressure is sufficiently high which drives the accreted matter vertically outward and 
downward. This region is considered to be the suitable place to accelerate matter 
in the form of outflows or jets often observed in powerful radio sources. Latter 
on, Paczyfiski (Paczyfiski 1982) studied thick accretion disk model by incorporating 
rotation and advection terms together with various combinations of angular momen- 
tum in ad hoc basis. They studied the thick accretion disk model under a potential 
r = --GMBH/(r  -- 2GMBH/C2), where G and MBH a r e  the universal gravitational 
constant and mass of the black hole respectively and c is the velocity of light. This 
potential provides exactly identical Keplerian angular momentum distribution as 
obtained in Schwarzchild geometry. They also found that the thick disk smoothly 
merges with the standard thin disk at the outer edge. In some of the astrophysical 
models, accretion disks are equipped with coronae similar to solar surfaces where 
matter is anchored by magnetic flux tubes inside the disk. Isothermal thick accre- 
tion disk could successfully explain this structure. But the dynamical structure of 
the thick accretion disk is highly insensitive to the viscosity and the efficiency of 
accretion reduces sharply. However, for a stellar mass black hole, the temperature 
of the radiation pressure dominated disk is sufficiently high to ignite the possible nu- 
clear reaction inside the disk. It is observed (Chakrabarti 1986a, 1988a, 1988b and 
Chakrabarti et al. 1987) that the nuclear reaction around the black hole is signifi- 
cant when the disk viscosity is negligible. Accordingly, nuclear reaction may change 
the composition of disk materials and outgoing jets for a stellar mass black hole 
(Chakrabarti et al. 1987 and Chakrabarti 1988b) and the observed metalicity of the 
galaxy which must contains number of stellar mass black holes could be understood. 
The qualitative nature of the angular momentum distribution is changed when mass 
of the disk is comparable or more than the central black hole, i.e. self-gravity can- 
not be neglected. A stable thick accretion disk is expected to be much hotter when 
self-gravity is important since the deviation of matter from the Keplerian origin is 
going to be higher. More realistic model of radiation supported thick accretion disk 
including self-gravity has recently been studied in full general relativity (Wiita 1982; 
Chakrabarti 1985, 1988b; Lanza, 1992) and similar conclusion is drawn. Indeed, one 
of the most attractive features of the thick accretion disk model is that it produces 
super-Eddington luminosity as the effective gravity is very strong compared to the 
centrifugal force close to the black hole horizon and therefore, the luminosity ex- 
ceeds several times the Eddington luminosity. The spectrum emitted from the thick 
accretion disk is obtained in an identical manner as in the case of thin accretion 
disk by adding local black body contributions and it is slightly shifted towards the 
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higher effective temperature region due to opacity effects. Relativistic jet electrons 
Comptonize the ambient radiations and produce soft X-rays. This soft X-rays are 
observed in some optically selected radio quiet QSO sources which are believed to 
be originated due to this effect. Under this circumstances, an optical/UV bump 
is observed when the accretion torus is viewed at an high inclination (i.e. nearly 
perpendicular to the jet axis), whereas at low inclinations an excess in the UV/soft 
X-ray band is detected (Frank et al. 2002). 

The effect of magneti c field in the form of the' axisymmetric flux tube inside the 
thick accretion disk has recently been studied analytically (Nandi et al. 2001 and 
references therein). The toroidal flux tubes are expected to move along with the 
infalling matter and the extraction of magnetic flux tubes are taking place through 
the funnel due to the combined effects of drag force, Coriolis force, magnetic tension, 
buoyancy force and of course gravity force. Therefore, a significant amount of matter 
is supposed to emerge out vertically from the inner part of the disk in the form of jets. 
Since the inner part of the disk is disappeared by this magnetic activity, reduction 
of the emitted flux is expected. Observational result of the black hole candidate, 
GRS 1915+105, shows this feature clearly (Mirabel and Rodriguez 1994). 

From the above discussion it is clear that the thick accretion disk model has a cou- 
ple of interesting features such as the ability to collimate jet, to produce metalicity in 
galaxy by nucleosynthesis, activity in the funnel for the explanation of the rapid vari- 
ability in BL-Lacs, production of supercritical luminosity etc. (Chakrabarti 1985). 
However, the strong anisotropic nature of the emission properties of a thick accre- 
tion disk is still a major disadvantage. And also non-accreting thick disk is found 
to be dynamically and globally unstable due to non-axisymmetric perturbations. 
Moreover, an ideal thick accretion disk requires the flow to have sufficiently high 
accretion rate involving very low angular momentum and negligible infall velocity. 
This picture could be constructed by including shock wave in an accreting matter 
of low angular momentum. At the shock, matter has very high temperature. This 
causes a puffed up torus which resembles the standard thick accretion disk. In the 
present context, we are not discussing this issue further. 

Meanwhile, Abramowicz et al. (1988) proposed a treatment of accretion disk 
model assuming optically thick cooling with electron scattering and free-free opaci- 
ties. In this model, the local solution instabilities at the inner most part of the disk 
are removed by introducing the advection term. The local vertical disk thickness 
is computed from the solution of this model - -  it produces small thickness for low 
accretion rate and tends to become of the order of radial distance (h ~ r) as the 
accretion rate approaches to the critical Eddington limit. In fact, the solution of 
this model makes the disk thickness intermediate between the standard thin and 
thick disk and is widely known as 'slim' disk. 
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In the earlier Section, we have already investigated the two extremity of the accretion 
models, namely, the Bondi flow and Keplerian disk model. In a Bondi flow, the 
matter  does not possess any rotation but it has significant advection while in the 
Keplerian, the disk matter  is mainly rotation dominated with a negligible advection. 
In reality, accretion flow mu~t possesses both rotation and advection terms together. 
Thus, a self-consistent approach is required for exact modeling of the accretion flow 
problem. Now, we discuss the foundation of such a model in a qualitative manner. 

So far, we focused our attention on to a more idealistic spherically symmetric 
model to keep our first step on to the subject. However, a realistic astrophysical 
flow is more complex and a number of different physical processes must be taken 
into account for the detailed study of the flow. In general, the flow must contain a 
significant amount of angular momentum that  could be transported outwards due to 
presence of viscosity inside the flow. When the amount of the accumulating matter  
is comparable with the central star, self-gravity becomes important. In fact, flow 
may have dynamical magnetic fields and it may interact with radiations also. Since 
the flow is sufficiently hot close to the central star, thermonuclear reactions must 
play an important  role inside the disk. Thus we improve the theory of accretion 
flow problem by considering many such physical processes in order of increasing 
complexity. 

The fundamental criteria which must be satisfied is that  the matter  has to enter 
into the black hole super-sonically and it must be' sub-Keplerian in nature at the 
black hole horizon. In fact, matter  crosses the black hole boundary with the velocity 
of light, c. In a flow with a realistic equation of state, the maximum allowed value 
of sound speed is c/v~-3. On the other hand, both the standard thin and thick disk 
models are terminated before or at the marginally stable radius (rm8 = 6) and do 
not satisfy the inner boundary conditions. Inner boundary conditions demand that 
disk has to deviate from the Keplerian origin and matter must enter into the black 
hole with the super-sonic speed. To take care the inner boundary conditions we, 
therefore, include the advection term in the momentum balance equation which was 
absent in both these models. 

Self-consistent study of the accretion disk problem was started in the late eighties 
by Chakrabarti and his collaborators. In 1989, Chakrabarti (Chakrabarti 1989a, 
hereafter C89a) presented a global solution for the astrophysical flow which is widely 
known as 'Chakrabarti solution'. Indeed, the present thesis is developed on the 
basis of such solutions. According to Chakrabarti's approach, the various properties 
of astrophysical flow can be understood through a systematic study of the basic 
flow equations. This is done through the several steps. Firstly, the initial flow 
parameters, namely, specific energy, specific angular momentum, accretion rate, 
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viscosity parameter etc., determine the number, nature and location of the sonic 
points of the accreted flow. This separates a region of parameter space for multiple 
sonic points from the single sonic point. The parameter space is spanned by the 
specific energy and specific angular momentum of the flow. Secondly, we look all the 
possible flow topologies for different set of initial parameters which specifically show 
how the flow originating from the outer edge of the disk is connected with the inner 
boundary of the black hole. And finally, we seek a special solution where the local 
flow variables make a discontinuous transition from the super-sonic branch to the 
sub-sonic branch and this discontinuous transition of flow variables is widely known 
as the 'shock'. In general, this shock is believed to be the fundamental ingredient for 
explaining the various aspects of the astrophysical observations around black holes. 

Non-dissipative accretion disk around a black hole could be modeled in different 
ways depending on the flow geometry. In the astrophysical literature, three models, 
namely, Conical model, Constant Height model and Vertical Equilibrium model 
(C90a) are mostly highlighted. In the next two Sections, we shall briefly discuss 
the properties of Conical and Constant Height models and in Chapter 3, we shall 
illustrate the superiority of Vertical Equilibrium model over the other models when 
the transonic property of the accretion flow is considered. 

1.6.1 Conical model 

This toy model is specially designed in such a way that  the accreted matter  is 
confined within a conical shape container. We assume that  non-viscous adiabatic 
matter  accretes axisymetrically around a non-rotating black hole. We study the 
accretion flow problem within this frame work following the traditional approach, 
i.e., finding sonic points, shock locations and its strengths etc. We use geometrical 
units (G = MBH = C = 1) all throughout where radial distance is measured in units 
of G M / c  2 and so on. The basic equations in this model is described as (C90a), 

(a) Energy equations: 

and 

(b) accretion 

v 2 A2 1 
g = -2 + ha2 + 2x 2 z - 2 (1.80) 

rate equations: 

2~4 = a2nvx 2, (1.81a) 

where, the quantities have the same meaning as mentioned before. 
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We deduce the radial velocity gradient term by differentiating Eqs. (1.80-1.81a) 
and eliminating sound speed gradient which is given by, 

2a 2 X 2 1 
dv T + ~ - (x-2p 

o~ (1.82) 
dx v - - -  

V 

Sonic point conditions are obtained when both the numerator and the denominator 
vanish simultaneously at the same location and setting this criteria one gets the 
sonic point conditions which are given by, 

vc = a~; M(xc)  = 1, (1.83a) 

and 
2 _ x A 2 A~( - A 2 (1.83b) 

ac 2 ( x - 2 )  2 2x 2 - 2x 2 ' 

where, AK is Keplerian angular momentum which is defined as AK = v /X3/ (x  -- 2) 2. 
Eq. (1.83a) shows that  in the phase space plot Mach number of the flow becomes 
unity at the location of the sonic point. Eq. (1.83b) gives the expression of sound 
speed at the sonic point which must be positive for any initial flow parameters. This 
indicates that  angular momentum of the flow at the sonic point must be always lower 
than the Keplerian value, i.e., matter angular momentum must be sub-Keplerian 
always. 

More importantly, the behaviour of the flow variables at the critical points could 
be illustrated by using the sonic point conditions in the governing equations [Eq. 
(1.80)]. Following this criteria one could express specific energy of the flow in terms 
of angular momentum and location of the sonic points which is given by, 

s ( 2 n + l ) x c  1 ( 2 n - l )  A 2 
4 ( x c -  2)2 x c -  2 4 (1.84) 

Fig. 1.5 shows a three dimensional plot of a function C = $(xc, A) where vari- 
ation of specific energy at the sonic points is shown for different values of angular 
momentum and sonic point locations when polytropic index is set at n = 3. Note 
that  in the higher angular momentum regime, specific energy of the flow has both the 
minima (s and maxima (s This indicates that  flow may possess multiple 
sonic points when angular momentum of the flow is chosen beyond a critical value. 
Among these sonic points two are 'X'-type flanking a 'O'-type one. An 'X'-type 
point closer to the black hole horizon is called as inner sonic point and the furthest 
one is termed as outer sonic point. All these sonic points merge at a single point 
which is known as cusp for a particular angular momentum called as critical angular 
momentum of the flow. Moreover, existence of the 'X'-type sonic point ensures a 
topological connection in between the black hole horizon and infinity through this 
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Figure 1.5: Plot of the surface E -- C(xc, A). Note that, energy of the flow is not in 
the proper scale. 

point provides a unique solution of the problem. The two 'X'-type sonic points may 
also be linked through the shock which forms in between them. We shall present a 
detail shock study in the next Chapter. 

1.6.2 Constant height model 

The description of this model is very similar to the Conical model. It differs from the 
earlier one only from the geometrical structure of the disk under consideration. Here 
we assume that the disk height remains constant irrespective of the radial distance 
of the disk (C90a and Chakrabarti & Molteni 1993). Since the geometry of the 
present model is different form the earlier one, the entropy-accretion rate equation 
will be modified but the energy equation will remain unchanged. 
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In the cylindrical coordinate system, the entropy-accretion rate equation becomes 

JQ = a2nvx. (1.81b) 

Now, one can easily calculate the accretion flow properties using the governing 
equations of the flow following the similar method discussed in the earlier Section. 
In this model, multiple sonic points as well as shocks form for relatively higher 
values of initial flow parameters compared to the Conical model. Interestingly, 
Constant Height model also provides much larger area in the parameter space, which 
is spanned by the energy and the angular momentum of the flow, for multiple sonic 
points and shocks. 

So far, we have discussed astrophysical flows with different toy models which 
do not have any real physical importance. In spite of that it successfully gives 
some important insight of the transonic behaviour of the flow. In the next Chap- 
ter, we shall rigorously study a more realistic astrophysical flow considering most 
successful accretion disk model in the literature which is commonly known as the 
Vertical Equilibrium Model. 



C h a p t e r  2 

Hybrid Model  for Advect ive  Flow 

In Chapter I, we have discussed various accretion disk models which are very sim- 
plistic in nature. In this Chapter, we study a more complex astrophysical system 
for explaining the essential observational features of the black hole candidates. A 
self-consistent study of the astrophysical flow around the black holes comes in the 
literature in the late eighties. Chakrabarti (C89a) presented a most general tran- 
sonic flow model usually called as hybrid model which started a new era in accretion 
disk physics. A solution is easily obtained following the general method described 
earlier and the problem associated with the thick accretion flow is circumvented by 
the proper choice of the shock conditions. Modeling of a three dimensional flow 
around a back hole is done by assuming the flow to be rotating, thin, axisymmet- 
ric, and non-dissipative in nature. Moreover, in the present model, accreted matter 
is supposed to be mostly advection dominated, i.e.,i radial velocity dominated. In 
addition, we consider that the flow may be in a hydrostatic equilibrium in a di- 
rection transverse to the flow motion. The governing equations are written down 
in the disk equatorial plane where vertically averaged pressure and density at the 
equatorial plane identify their exact values at the disk surface. In this context, we 
investigate all the stationary flow solutions of this model with or without shock. 
This flow solutions strictly depend on the initial flow parameters, such as specific 
energy, specific angular momentum, accretion rate etc. and successfully illustrate 
the different properties of the astrophysical flow. 

2 .1  G o v e r n i n g  e q u a t i o n s  and the sonic point a n a l y s i s  

We begin with the assumption that non-dissipative, adiabatic, sub-Keplerian, in- 
viscid matter is accreted on to a Schwarzschild black hole. The general relativistic 
effect is taken care of by the Paczyhski-Wiita (PW80) potential. Basic equations 
are written on the equatorial plane of the accretion disk while the radial momentum 
balance equation which must be satisfied at the shock is vertically integrated (Mat- 

39 
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sumoto et al., 1984). Flow equations are made dimensionless considering unit of 
length, time and the mass as 2GMBH/C 2, 2GMBH/C 3 and MBH respectively where 
G, MBH and c represent their usual meaning mentioned earlier. 

In the steady state, the dimensionless energy equation can be written as (C90a) 

1 2 A2 1 
= ~ v  2 +  a~e + (2.1) E 

7 -  1 2x 2 2(x - 1)' 

where, $ is the specific energy, ve is the radial velocity and ae is the adiabatic sound 
speed defined as a~ = 7X/-~e/P~. Since the viscosity is considered to be negligible in 
the present study, specific angular momentum (A) of the flow will remain conserved 
all throughout. Here, x represents the radial distance from the black hole when the 
black hole itself is considered to be located at the origin of the cylindrical coordinate 
system. The subscript 'e' refers to the quantities measured on the equatorial plane. 
The mass flux conservation equation (C90a) in the steady state apart from the 
geometric factor is given by, 

l~/I= v~p~xh, (2.2) 

where, M is the mass accretion rate considered to be constant, pe is the density 
of the flow and h represents the half-thickness of the flow at a radial distance x. 
The present model is constructed in such a way that  the disk is assumed to be in 
hydrostatic equilibrium in the vertical direction and therefore, local disk height is 
obtained by equating the pressure gradient force in the vertical direction with the 
component of the gravitational force in that  direction. The analytical expression of 
half thickness of the disk is thus obtained as, 

h = aexU2(x - 1). (2.3) 

In Eq. (2.3), we drop a constant factor V/2-/7 since the adiabatic index (7) is 
considered to be a constant all throughout. Hydrostatic equilibrium condition of 
matter  in the vertical direction is justified as the infall time exceeds the local sound 
crossing time in the transverse direction of the flow. Since the flow is adiabatic 
in nature, the flow is characterized by the polytropic equation of state, P = K p  ~, 
where K is a constant related to the specific entropy of the flow which can vary only 
at the shock. For a non-dissipative accretion flow, Chakrabarti  (C89a) defines a new 
conserved quantity of the flow which is connected with the mass accretion rate (3;/) 
through the relation JQ = 7nK~h;/. The new conserved quantity is known as the 
'entropy-accretion rate' and it is expressed in terms of the flow variables as, 

./(4 = veaVex3/2(x - 1), (2.4) 

where, u = (7 + 1)/(7 - 1). In the present thesis, we are interested to study the 
properties of the shock wave. In an accretion flow, shock forms when the flow 
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becomes supersonic at some point, i.e., stationary flow definitely passes through the 
sonic point. We derive the sonic point conditions following the traditional way. We, 
therefore, differentiate Eq. (2.1) and E q .  (2.4) and eliminate da/dx from them to 
obtain radial velocity gradient which is given by, 

{ .  
d x -  ( ' 7 + l )  2 x ( x - 1 )  dx 2-~ 2(x-  1) v ( ' 7+ l )vJ  ' 

where, we drop the subscript 'e' to avoid confusion. In order to have the flow 
smooth everywhere, the numerator and the denominator in Eq. (2.5) must vanish 
simultaneously which give the sonic point conditions. Setting denominator equal to 
zero, we may have, 

2 2 2 _ 2 ( 2 . 6 a )  
v~(x~) -- ('7+l)a~(x~) =~ Mg "7+1" 

The subscripts 'c' denotes the quantity at the sonic points. Note that the Mach 
number [M(xc)] at the sonic point is not unity as in the other models since the 
vertical equilibrium model is considered. The other condition comes while setting 
the numerator equal to zero and is given by, 

a (xc) = ('7 + 1 ) ( x c -  - 
(hx - 3)" 

(2.6b) 

Here, AK is the Keplerian angular momentum defined as AK ---- ~/~x3/(x -- 1) 2. From 

Eq. (2.6b) one can easily calculate the sound speed at the sonic point and it must 
be always positive. This demands that angular momentum of the stationary flow 
must be sub-Keplerian at the sonic point, i.e., A(xc) < ,~g. We solve Eqs.(2.1-2.6b) 
to obtain a full set of flow solutions where shock may present. 

In order to model the astrophysical flow, we have introduced three conserved 
quantities, namely, specific energy (C), accretion rate (JQ) and specific angular 
momentum (,~) respectively. These three conserved quantities are not strictly inde- 
pendent to each other as we have two additional conditions (sonic point conditions) 
which must be obeyed by the stationary flow. Hence, either the energy or the accre- 
tion rate can be expressed in terms of the other two conserved quantities. Therefore, 
the parameter space for a steady astrophysical flow solution lie on a hyper surface, 

Y(E, ~ ,  ~ ) = 0 .  (2.7) 

This indicates that the conserved quantities are the 'eigenvalues' of the problem. 

Sub-sonic matter coming from infinity becomes super-sonic while passing through 
the sonic point before entering into the black hole. Thus, black hole accretion flow 
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solutions are always transonic. In the present context, we discuss the behaviour of 
sonic points in a great detail. The specific angular momentum of the flow at the 
sonic point can be evaluated using sonic point conditions [Eqs. (2.6a-b)] in Eq. (2.1) 
and is given by, 

A2 = { 2 $ ( x c -  1) + 1} (5xc- 3)x 2 - 2(n + 1)x 3 
{ ( 5 x ~ - 3 ) - 4 ( n +  1 ) ( x ~ -  1)} ( x ~ -  1) 

(2.8a) 
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Figure 2.1: Plot of A2 with the sonic point for a set of different energies. Details of 
the figure are described inside the text. 

Fig. 2.1 describes the variation of A2 with logarithmic location of the sonic point, 
log(xc), as obtained from Eq. (2.8a) for a set of energies of the flow. The dot-long 
dashed curve is plotted for the Keplerian angular momentum distribution. The dot- 
ted curve is drawn for the marginally stable energy, $ = -0 .0625 which touches the 
Keplarian value at the marginally stable orbit, Xm~ -- xc -- 3 (in units of rg). Solid 
curves (top to bottom) correspond to the energy $ -- -0 .005,  0.0, 0.0055, 0.01, 0.023 
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and 0.03 respectively while the dot-short dashed curve represents a critical plot for 
$cri = 0.017176. Negative energy curves are drawn for the bound solutions. It is 
clear that  the flow has multiple sonic points when 0 _< $ < gcri and all the sonic 
points merge to a single point when the flow energy matches exactly with critical 
energy parameter gcri = 0.017176. Above this critical energy g > g~i, the flow has 
only one sonic point (Bondi like solution). In addition, the locus of the extrema of 
the curves is indicated by the short-dashed curve. In the present context, polytropic 
index is chosen as n = 3 and we use this value in the rest of the discussion. 

r 
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Figure 2.2: Plot of (A2) with the sonic point for various accretion rates. Details of 
the figure are illustrated inside the text. 

On the other hand, specific angular' momentum of the flow at the sonic point 
can also be expressed in terms of the other flow parameter, namely, the accretion 
rate (M) and is obtained as, 

5xc - 3 - IV  ( 
- 1  ( 2 n + l )  x c - 1 ]  

(2.sb) 
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Fig. 2.2 shows a similar plot [A 2 - log(x~)] as in Fig. 2.1 for a set of constant 
accretion rates (.h~). The lower value of the accretion rate in transonic accretion 
flow is obviously zero which provides the Keplerian angular momentum distribution 
identified with the dotted curve. The solid curves (from top to bottom) are drawn 
for various accretion rates (in units of 10-5), namely, A~I = 0.1, 0.6, 1.2, 1.7, 3.2 and 
4.0 respectively while the dot-dashed curve corresponds to the critical accretion rate 
AA~ri = 2.731 above which (.h)I > A~i~ri) flow does not have multiple critical points. 
Moreover, the short-dashed 'curve represents the locus of the extrema of the curves 
as described earlier. 
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Figure 2.3: Variation of specific energy (g) as a function of logarithmic sonic point 
locations [log(xc)] for a set of A. 

The specific energy of the flow at the sonic point is obtained from Eq. (2.8a) 
while the  specific angular momentum (A) of the flow is treated as a flow parameter. 
Thus, we have the expression of specific energy as, 

= (n+l)xc A 2 [ 4 ( n + l ) ( x c - 1 )  
( x ~ - l ) ( 5 x r  + ~  1 -  (5xc-3 

1 

2(xc-1)" (2.so) 
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Figure 2.4: Variation of accretion rate is plotted against logarithmic sonic point 
locations for a set of A. 

The generic behavior of Eq. (2.8c) could be understood well when the specific en- 
ergy of the flow is plotted against the location of the sonic points. This is done in Fig. 
2.3 where energy distribution is shown for a set of constant angular momentum (A). 
Similarly, in Fig. 2.4, variation of accretion rate at the sonic point for a set of fixed 

is also presented. Solid curves are drawn for a set of A = 1.4, 1.6, 1.65, 1.7, 1.75, 1.8 
respectively (from top to bottom curve) and the dashed curve corresponds to the 
critical angular momentum ~cr /= 1.491 in both the Figures. Dotted curve (ABC) 
represents the locus of the extrema of the curves. Note that,  for a given angular 
momentum (A) multiple critical points exist for a distinct energy or accretion rate 
range which is given by Smi~ < g < Smax or ,t~imi~ < A4 < ,~4,~ax. Moreover, a 
flow with A < Acri has only one critical point (Bondi like). The locus of the extrema 
(ABC) of the curves can be identified separately when it is viewed from the different 
angles in a A2 _ A~i plane. 

Fig. 2.5 shows the projection of such a plot where the region bounded by ABC 



Chapter 2. Hybrid Model for Advective Flow 46 

• 

3 

q) 

~V 

C 

\ D 
0 

2 3 A 4 5 

h2 

Figure 2.5: Division of the parameter space for multiple sonic points region for 
accretion and winds. 

separates the multiple sonic points region from the single sonic point region. For 
a given set of initial flow parameter (E, A) one can uniquely determine the multi- 
ple sonic points. Among the multiple sonic points two are 'X'-type sonic points. 
The point closer to the black hole horizon is known as the inner sonic point (xci) 
and the farthest one is termed as the outer sonic point (Xco). At these two sonic 
points entropy is not in general equal and consequently, the entropy accretion rate 
is also different there. It is already mentioned that  the entropy accretion rate of 
the stationary transonic flow can be obtained as a function of specific energy and 
specific angular momentum (Eq: 2.7) of the flow. Moreover, for a given A, there 
ex is t san  ene.rgy Es, such that  A/[8(C~, ~, x~i) = JQ~(E~, ~, X~o). Thus the stationary 
flow with (.h48, Es) has the same entropy at the inner and the outer sonic points 
and the flow will cross both the sonic points before falling into the black hole. In 
Fig. 2.5, such a special locus of accretion rates (A~i~) is indicated by the curve BD 
and at the same time this curve also divides the multiple sonic points boundary 
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in two regions--the region bounded by the curves BD and BC corresponds to the 
multiple sonic points for wind (14;) where 2~(E, )~, xci) < cO(E, )~, xco) whereas the 
curves BA and BD separate the region of parameter space for accretion (,4) where 
cO(g, )~, x~i) > cO($, )~, x~o). In the region 2; above BC, the flow possesses a single 
sonic point nearer to the black hole horizon and in region (9 below AB, the flow has 
only outer sonic points (Bondi like). 
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Figure 2.6: Variation of the energy with the accretion rate for a fixed angular 
momentum (A -- 1.675). Details of the figure are described inside the text. 

For the shake of completeness of the sonic point analysis, we further study the 
variation of $ as a function of A/t for a given/~ for all possible stationary solutions. 
Fig. 2.6 shows such plot when A = 1.675 is chosen. A transonic flow with initial 
flow parameters which lies on the branch AB passes through the inner 'X'-type sonic 
point and a flow with parameters belonging to the branch CD has the outer 'X'-type 
sonic point. The parameters chosen from BC branch give the 'O'-type sonic point. 
A stationary flow avoids to have the 'O'-type sonic point as radial velocity gradient 
at this point becomes complex. The branches AD and CD intersect at a common 
point where the accretion rates at both the sonic points are equal. Such a critical 
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accretion rate is denoted by A~Im and the corresponding energy is represented by 
gin. Note that  the flow with energy $ > $ /has  only one inner sonic point whereas 
flow with energy $ < $8 p.asses through the outer sonic points. For gm _< $ _< g/, 
the accretion rate A~lo __ A/I/and for g8 _< $ <_ Sin, A~io _< A/I/, where, the subscripts 
'i ' and 'o' denote the quantities at the inner and outer sonic points respectively. A 
similar divisions can be made in terms of the accretion rates also. 

2 . 2  S h o c k  w a v e s  

Before going to discuss the implication of shock waves we first highlight the basic 
physics involved in the formation of shocks in an astrophysical flow. Rotating matter  
accreted around a black hole experiences mainly two forces which dictate the notion 
of the particle trajectory. The first one is the inward gravitational force, Fg c< 
1/(x  - 1) 2 and the second one is the outward centrifugal force, Fcen c< 1/x  3 for a 
flow having constant angular momentum. Both the principal forces strictly depend 
on the radial distance. Therefore, the gravity dominates over the centrifugal force 
at a distance either close to or far away from the black hole whereas the centrifugal 
force becomes comparable to gravity at intermediate locations. Accordingly, mat ter  
at infinity feels the gravitational pull due to the black hole and accretes toward it 
with increasing inward velocity which becomes super-sonic at some point. Since 
mat ter  moves with super-sonic velocity, no information can travel back. As a result, 
incoming mat ter  is piled up in this region. At a distance of few tens of rg outward 
centrifugal force starts to dominate over gravity and thus matter  slows down. In 
fact, the matter  virtually stops there. Therefore, density goes up and matter  makes 
a discontinuous transition from super-sonic branch to sub-sonic branch which is 
termed as a shock. Just after the shock, sub-sonic matter  is again attracted towards 
the black hole due to gravity and it crosses the inner sonic point to become super- 
sonic before crossing the black hole horizon. At the shock, kinetic energy of the 
pre-shock mat ter  is dissipated which makes the post-shock matter  hot. Thus, at the 
post-shock region disk puffs up in the form of a torus due to the combined effects of 
mat ter  accumulation and the heat generation and the inner part of the disk behaves 
like an 'effective boundary layer' (C96a) of the black hole which is widely known as 
the CENBOL (CENtrifugal pressure supported BOundary Layer). 

2.2.1 Shock conditions 

In order to have a shock, the flow velocity must jump discontinuously from super- 
sonic to sub-sonic branch. This discontinuous shock jump is characterized by four 
flow variables, namely, shock location (xs), radial velocity (v), sound speed (a) and 
entropy constant (K) respectively and are given by, 
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and 

X ~ X s ,  

= - 

Aa=a+(xs)-a_(xs),  

(2.9a) 

( Z 9 b )  

(2.9c) 

A K  = K +  - K _ ,  (2.9d) 

where, the subscripts '-' and '+ '  denote the quantities before and after the shock. 
Moreover, the conservation of mass flux and momentum flux are guaranteed at the 
shock transition which impose two extra constraints on the above mentioned flow 
variables. The conserved quantities at the shock are (C89a and Chakrabarti 1990b, 
hereafter C90b) given by, 

il}/+ =/l;/_, (2.10a) 

and 
t5+ + t5+v~_ =/5_ + ~_v2_, (2.10b) 

where, /5 and t5 represent the average pressure and the density of the flow respec- 
tively. Under this circumstances, three different type of shocks are of special in- 
terest corresponding to three extreme physical considerations. These are named as 
Rankine-Hugoniot shock ($+ = $_), isentropic compression wave (A)[+ = A)I_) and 
isothermal shock (a+ = a_) (C90b). 

In case of a Rankine-Hugoniot shock (Landau & Lifshitz 1959), the energy is not 
radiated away through the surface boundaries of the flow as the radiative cooling 
processes are not sufficiently efficient inside the disk. However, since the post-shock 
temperature is significantly higher than the pre-shock flow, the disk thickness at this 
region is more compared to the pre-shock disk. The basic condition for this type of 
shock is $+ = $_, T+ > T_ and s+ > s_(JQ+ > A)[_) where s denotes the entropy 
of the flow. 

In case of an isentropic compression wave, the entropy does not change in the 
flow but a considerable part of the energy is lost at the shock. The amount of 
entropy at the shock front is comparable to the entropy radiated away from the disk 
which may help to maintain a proper balance of entropy. For this type of shock, 
s+ = s_, $+ < $_ and T+ > T_. 

I n a n  isothermal shock, the radiative cooling processes are highly efficient. Some 
energy and entropy are lost from the surface of the flow at the shock front to main- 
rain uniform pre-shock surface temperature identical to its post-shock value. Ac- 
cordingly, sound speed and the flow thickness remain unchanged across the shock. 
For this type of shock, T+ = T_, $+ < $_ and s+ < s_. 



Chapter 2. Hybrid Model for  Advective Flow 50 

So far, we have classified different types of shock waves depending on various 
flow constraints. However, presently we are specially interested to study the non- 
dissipative inviscid adiabatic flow near a non-rotating black hole. Therefore, at this 
moment we concentrate on the Rankine-Hugoniot shock conditions which will serve 
our purpose successfully. We are dealing with a quasi two dimensional flow where 
pressure and density are averaged over in the vertical direction. In this regards, we 
recapitulate the Rankine-Hugoniot shock conditions (Landau & Lifshitz 1959) once 
again which are given by, 

(I) the energy conservation equation, 

E+ = E _ ,  (2.11a) 

(II) the self-consistent pressure condition, 

W+ + E+v~ = W_ + E_v2_, (2.11b) 

and (III) the baryon number conservation equation, 

M§ = f /_ .  (2.11c) 

Here, W and E denote the vertically averaged pressure and density of the flow 
(Matsumoto et al. 1984) and is given by, 

W = P d z  = 2PeIn+lh, 
h ' 

and 

f_' E = pdz = 2peInh, 
h 

where, In = (2'~nl)2/(2n + 1)! and n is the polytropic index defined earlier. The 
subscript 'e' denotes the quantities at the equatorial plane and in the subsequent 
analysis we drop it to avoid further confusion. Note that,  in the hybrid model, some 
equations are written down in the disk equatorial plane and the rest are written 
with vertically integrated quantities. 

2.2.2 Shock solut ions 

In theearl ier  Section, we have extensively studied different parts of parameter space 
for the rotating stationary transonic flow. Suitable flow parameters confirm the 
existence of multiple sonic points and also provided a possibility of shock formation 
in a flow. In a stationary accretion flow with shock, the flow must cross the outer 
sonic point first, then pass through a discontinuity known as the shock and finally 
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Figure 2.7: Contours of constant J~t_ and J~+ in C - log(xc) plane for a set of 
flow parameters ($ -- 0.0047, A = 1.69) which satisfy the shock conditions in 
accretion flow. Solid and dotted curves are drawn for J~I_ -- 5.66 x 10 -o6 and 
J~+ = 4.88 x 10 -~ The intersection points represent the shock locations and Xin 
and xo~t corresponds to the inner and the outer sonic points respectively. 

crosses the inner sonic point before entering into the black hole. In the case of shock 
in wind, the situation is completely opposite. A typical example of such solution are 
shown in Fig. 2.6 where the shock transition is indicated by the solid (accretion) 
and dotted (wind) arrows. 

In order to have the shock, flow has to satisfy the shock conditions along with 
all the other criteria mentioned earlier.' Using the governing equations and shock 
conditions, Chakrabarti  (C89a) computed an invariant relation at the shock which 
is given by, 

2]2 
C = [ M + ( 3 7 -  1) + 7++ _ _ [M_'(3~/- 1) + ~-5_] 2 (2.12) 

2 + ( 7 -  1)M~ 2 + ( 7 -  1) M2- ' 

where, M's  are the Mach numbers of the flow. We solve the problem in terms of the 
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initial flow parameters (t;, A) for shock. Shocks are formed for a suitable set of flow 
parameters. In Fig. 2.7, we have shown four possible shock locations denoted by 
x81, x82, x~3 and x84 respectively for a given set of flow parameters (S -- 0.047, A -- 
1.69). Details of the figure description are presented in the Figure captions. In a 
black hole accretion flow, x~2 and x~3 are the only possible shock locations. 

Recently Das et al. (2001, hereafter, DCC01) have extensively studied the hybrid 
model analytically considering a two component flow. In the next Chapter, we shall 
present the analytical solution for the hybrid model in detail. 

1 

log(Xo) 

Figure 2.8: Phase space diagram of the accretion flow for the parameters same as 

C-log(xc). The inner (1) and outer (O) sonic points are located at 2.634 and 54.88. 

The shock locations are: x81 = 2.233,xs2 -- 3.434, x83 = 19.71 and xs4 = 126.71 
respectively. The vertical dashed lines represent the possible shock transitions in an 

accretion flow. 

In the case of accretion, matter at rest at infinity accretes toward the black 
hole due to gravity and gradually gains inward radial velocity up to its maximum 
value. Thus the sub-sonic matter at the outer edge of the disk becomes super-sonic 
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Figure 2.9: Phase space diagram of the wind flow for the parameter $ = 0.006 
and /~ = 1.69. The inner (I) and outer (O) sonic points are at 2.6201 and 40.604 
respectively. The vertical dashed lines represent the possible shock transitions in 

the wind flow. 

while passing through the outer sonic point (O) and makes a discontinuous jump 
from super-sonic to sub-sonic branch depending on whether the Rankine-Hugoniot 
shock conditions (hereafter referred to as the R-H conditions) are satisfied or not. 
After the discontinuous transition, the accreted matter again becomes super-sonic 
while crossing the inner sonic point (I). before falling into the black hole. If the 
R-H conditions are not satisfied, the super-sonic matter enters into the black hole 
directly without making any transition. Fig. 2.8 shows the phase space trajectory 
of such a flow where the logarithmic radial distance is plotted along the X-axis and 
the Mach number is plotted along the Y-axis. The vertical dashed lines denote the 
possible shock locations. Indeed, Chakrabarti & Molteni (1993) showed that the 
shock location close to the outer sonic point (O) is stable whereas the other one is 
unstable. Details of the input parameters for Fig. 2.8 are illustrated in the Figure 
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captions. A similar plot is drawn in Fig. 2.9 for a wind solution where the situation 
is completely reversed due to the inner boundary condition of the flow. Here, the 
sub-sonic matter originated from the star surface first passes through the inner sonic 
point (I) to become super-sonic and makes a shock jump to the sub-sonic branch 
if the R-H conditions hold and finally becomes supersonic while passing through 
the outer sonic point (O). Details of figure descriptions are presented in the Figure 
captions. 

2.3 Outflow and jet formation 

In the astrophysical context, when a highly collimated matter with relativistic speed 
emerges out from the vicinity of celestial object, namely micro-quasars, AGNs etc., 
this ejected matter is usually called the outflows or jets. In 1953, Jenison & Das- 
gupta (Jenison & Dasgupta (1953)) first identified double radio lobes originated from 
Cygnus A. In the early eighties, radio and X-ray observations of SS 433 confirm the 
presence of jets (Watson et al. 1986; Hjellming & Johnston 1981). In the mid 
nineties, Mirabel & Rodriguez (1994) reported the existence of outflows in stellar 
mass micro-quasars GRS 1915+105. In addition, jets in X-ray binary like Cygnus 
X3 are also very common (Schalinski et al. 1995). In this Section, we shall briefly 
discuss the generation mechanism of outflows and jets from the accretion disks itself 
(Chakrabarti 1999, hereafter C99; Das & Chakrabarti 1999). Chakrabarti (C99) 
presented a simple toy model where he considered that accreting matter close to the 
black hole falls freely with roughly constant angula~ momentum. In reality, close to 
the black hole, the infall time scale becomes much smaller compared to the viscous 
time scale and therefore, matter does not have enough time to transport angular 
momentum outwards. As pointed out earlier, when matter with sufficient angular 
momentum accretes towards the black hole, centrifugal force becomes comparable to 
gravity. This causes a puffed up torus like structure to form where the flow suffers a 
discontinuous shock transition. At the shock, an excess of thermal pressure gradient 
force is generated due to the compression of matter which drives some parts of ac- 
creting matter in vertical direction in the form of outflows or jets. Chakrabarti (C99) 
modeled a system which consists of a dense boundary layer (CENBOL) and both 
the infalling and outflowing matters are confined within a conical shape structure. 

A schematic diagram of such a toy model is shown in Fig. 2.10. The incoming 
flow is compressed and heated in the post-shock region (within CENBOL) and also 
efficiently radiates the extra heat to maintain the isothermality conditions. Since 
the outflows are originated from the CENBOL region, it is reasonable to consider 
the outflows to be isothermal in nature. Following all these considerations, one can 
easily compute the expression for ratio of mass outflow rate to the inflow rate (R,~) 
as a function of compression ratio (R) of the infalling matter. Compression ratio is 
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Figure 2.10: Cartoon diagram of the toy model to estimate the outflow rate from 
the inflow parameter (C99). 

usually defined as the ratio of post-shock to pre-shock density and explicitly related 
with the inflow parameters ($ and A). Therefore, the ratio of outflow and inflow 
rate is given by (C99), 

Mo~t Oin R [ R2 ] 3/2 (~ R 2 ) (2.13) 
R m -  Min - Oout 4 ~ exp R - 1  ' 

where, bin and Oo~ are the solid angles subtended by the inflow and outflow re- 
spectively. 

Eq. (2.13) indicates that outflow rate can be estimated self-consistently only 
knowing the initial inflow parameters. Figure 2.11 shows the variation of Rm with 
compression ratio R for comparable solid angles subtended by the inflow and outflow 
(Oi~ ~ Oo~t). When a shock is not formed in the accretion flow (R -+ 1), the outflow 
rate R,~ -- 0 [Eq. (2.13)]. On the other hand, for a strong shock (R -+ 7) the outflow 
rate is negligible. For the intermediate shock strength (R ~ 4) the outflow rate is 
maximum. Thus it is clear that an outflow is possible when there is a shock in 
the inflow and it is observed that outflows or jets are originated only in the hard 
states. This features show the originality of the Chakrabarti's model. In 1999, Das 
& Chakrabarti (Das & Chakrabarti 1999) presented another self-consistent inflow- 
outflow model where they extensively showed that jets are originated from the inner 
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Figure 2.11: Variation of the ratio of outflow to inflow rate (R~) as a function of 
compression ratio R (C99). 

part of the disk i.e., mainly from CENBOL. Recently Das et al. 2001 (hereafter 
DCNC01) presented a more advanced disk-jet model where rotation of matter inside 
the accretion disk is also considered. In the next Chapter, we shall discuss this model 
in detail. 



Chapter  3 

Properties of Non-dissipative Accretion Flow 

The basic features of the advective accretion flow around a black hole are extensively 
discussed in Chapter 2. In a non-dissipative accretion system, the stationary flow 
characteristics are mainly dictated by the flow parameters, namely, specific energy 
and specific angular momentum. For a suitable set of parameters, the flow possesses 
multiple sonic points and forms a shock if the Rankine-Hugonoit shock conditions 
are satisfied. So far, all the attempts are made by numerical means for obtaining 
the desired solutions. Presently we proceed further to obtain the shock locations 
solely analytically from which one can easily estimate the other shock properties, 
such as shock strength, compression ratio etc. There are two motivations for the 
analytical work--first, from the theoretical point of view it is challenging to find 
solutions of a large number of non-linear equations that must satisfy a number of 
conditions mentioned in Chapter 2 and second, from the observer's point of view, 
any observation which could require standing shock waves could be explained using 
more fundamental parameters, such as specific energy and angular momentum or 
even better, using accretion rates of Keplerian and sub-Keplerian flows as in a two- 
component flow solution of Chakrabarti and Titarchuk (Chakrabarti and Titarchuk 
1995, hereafter CT95). Analytical work also gives insight into why the shocks form in 
the first place. Under this circumstances, we start with a set of governing equations 
of the flow and look for the analytical solution of these equations for the appropriate 
boundary conditions. A detail formalism for computing analytical shock solution is 
presented in the next Section. 

3 .1  A n a l y t i c a l  s t u d y  o f  shock waves  

The analytical solution of the hybrid model flow is based on few simplified assump- 
tions. We consider a steady, thin, axisymmetric, inviscid, rotating flow around a 
non-rotating black hole. The flow is confined in a special geometrical structure 
where the flow variables remain in hydrostatic equilibrium in a direction transverse 

57 
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to the flow motion. In the present Section, we choose similar geometrical units, 
MBH = c = 1; G = 1/2, used in Chapter 2. 

3.1.1 Model equations 

The model equations that  govern the motion of matter  accreted on to a black hole are 
usually written down in the disk equatorial plane which are already presented in w 
In the present context, our goal is to compute the flow solutions solely analytically 
and therefore, we proceed with a brief introduction of the flow governing equations 
once again (C89a, DCC2001). The radial momentum equation for a stationary flow 
is expressed as, 

~d~) 1 dP A 2 1 
dx + p--~x + -~ + 2(x - 1) 2 - 0. (3.1) 

In a non-dissipated advective flow, integration of Eq. (3.1) leads to the energy 
conservation equation which is given by, 

0 2 a 2 A 2 

$ = -2 + --~/-1 + ~ + g(x), (3.2) 

where, 0 and a are the dimensionless radial and sound velocities and x represents 
the dimensionless radial distance. Here, P and p denote the isotropic pressure and 
the mass density of the flow respectively. The adiabatic index is denoted by 7 and it 
is related to the polytropic index by the relation n = 1/( 7 - 1). Effect of gravity is 
taken care of by the pseudo-Newtonian potential introduced by Paczyfiski & Wiita 

1 (x - 1) -1 In addition, P = K p  "r is considered (PW80), which is given by g(x) = - ~  
to be the equation of state of the flow where K is the measure of the specific entropy. 
In general, specific entropy remain constant throughout the flow except at the shock 
location where local turbulence generates some entropy enabling the flow to pass 
through the inner sonic point. 

In the steady state, the flow continuity is dictated by the following equation: 

d(•)pxh) = 0 ,  (3.3) 

which is integrated to obtain the mass conservation equation in the cylindrical ge- 
ometry: 

l~l = Opxh, (3.4) 

where, h is the half-thickness of the flow at radial coordinate x and the analyti- 
cal expression of local disk height, h, is presented in Eq. (2.3). Here, M is the 
mass accretion rate apart from a geometric constant. Chakrabarti  (C89a) defines a 
new conserved quantity A)i, known as entropy accretion rate which is linked with 



Chapter 3. Properties of non-Dissipative Accretion Flow 59 

the actual accretion rate as ~ = KnT~it;/. Therefore, )Q remains constant for a 
flow passing through a given sonic point whereas M is always constant all through- 
out independent of flow trajectory. The advantage of this prescription is that jk4 
makes a sharp transition at the discontinuities and also identifies the shock location 
successfully. Subsequently, we write ~ in terms of the flow variables and obtain: 

2~4 = Oaq f ( x ) ,  (3.5) 

where, q = (~/+ 1 ) / ( 7 -  1) and f ( x )  = x3/2(x - 1). However, the definition of the 
adiabatic sound speed, a 2 = 7P /p ,  is used in this calculation. In the next Section, 
we present an account of sonic point analysis following the traditional approach and 
also discuss shock invariants. 

3.1.2 Sonic point analysis and shock invariants 

In order to satisfy the inner boundary conditions of the black hole accretion process, 
the flow must be super-sonic at least once at some point of its trajectory. Indeed, 
the stationary sub-sonic flow becomes super-sonic at a special point known as a 
sonic point. In the next Section, we present a detail study of the various properties 
of the sonic point. 

Sonic point conditions 

Following the usual approach, we derive the sonic point conditions from radial mo- 
mentum and continuity equations (Eqs. 3.1 and 3.4b) (C89a, C90a). The first 
derivative of radial velocity with respect to radial distance is given by, 

dO [ 2a z d l n f  (3.6) 
dx L~u dx ~xx 0 (3 ,7 ] )0J  

Here, G(x)  1 2 ~2 = ~/~ /.~ 1) -1 is the effective potential associated with the 
present problem. Since the denominator must vanish at the sonic points, if the flow 
is assumed to be smooth everywhere, the numerator must vanish simultaneously. 
The vanishing of the denominator gives, 

- 1 
$ ( 3 . 7 )  

The factor in front of a2(x~) arises because the flow is assumed to be in vertical 
equilibrium. The vanishing of the numerator gives, 

a~(xc) = ('7 + 1 ) ( x c -  1)[,k~- - )~2] (3.8) 
x~ 5 x c  - 3 ' 
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where, /~K represents the Keplerian angular momentum. Notice that since sound 
speed is always positive, flow angular momentum at the sonic point must be sub- 
Keplerian, i.e., A(xc) < AK (C90a and reference therein). Here, the quantities with 
the subscript 'c' denote their values at the sonic point. 

In order to have a shock, the flow must satisfy certain boundary conditions. 
Since the accretion disk under consideration is non-dissipative, we shall incorporate 
Rankine-Hugoniot conditions for shock transition. In Chapter 2, we already pre- 
sented a elaborate discussion on R-H conditions and therefore, will not be repeated 
here (C89a). 

Mach number relation at the shock 

We now derive an invariant quantity that must be satisfied at the shock using basic 
flow equations. At the beginning, we write the shock conditions (Landau and Lifshitz 
1959) and Eqs. (3.7-3.8) in terms of Mach number (M = ~)/a) of the flow which are 
given by, 

1,.2 2 a~_ _ ! M  2a 2 a2 
~lvlsa+ + + - -  (3.9) 

7 - 1  2 7 - 1 '  

~,.~_ VI V t 
M+a +f(xs); .M- (3.10) = = M _ a  _f(xs), 

where, v' = 27/(7 - 1) and xs is the shock location and 

aV ( 2 ) aV ( 2 ) 
+ - M:_ 3--4:-i_1+M (3.11) 

2~+ 3 V - I  

where, v = (3V - 1 ) / ( 7 -  1). Using Eqs. (3.9-3.11), one obtains the following 
equation relating the pre- and post-shock Mach numbers of the flow at the shock 
(C89a) as, 

C = [M+(3V- 1) + 2/M+] 2 = [M - (37 -  1) + 2/M_] 2 (3.12) 
2 + ( 7 -  1)M~ 2 + (9 ' -  1) M2- 

Here, the constant C remains invariant across the shock. Subsequently, one can 
rewrite the Mach number of the flow just before and after the shock in terms of C 
a s  

M2 ' = 2 ( 3 7 - 1 ) - C ~ v / C  2 - 8 C 7  
( 7 -  1 ) C -  ( 3 7 -  1) 2 ' 

and the product of the Mach numbers is given by, 

2 
M+M_ = - 

V/(3V- 1) 2 -  (G-  1)C" 

(3.13) 

(3.14) 
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So far, we have derived sonic point conditions and shock invariant relations for a 
flow which possesses a finite amount of angular momentum. Presently, we intend to 
investigate the location of the sonic point s in terms of the flow parameters such as 
specific energy ($) and specific angular momentum (A) and also identify the region of 
the parameter space for multiple sonic points. In w we present this calculations 
in detail. 

3.1.3 Analytical expression of the sonic points and behavior in the 
parameter space 

In order to obtain the shock locations, we first compute the locations of the sonic 
points and ensure that  at least two of them are X-type (C90a). In w we 
have derived the sonic point conditions. Using the definition of the Mach number 
M = O/a and sonic point conditions (Eqs. 3.7-3.8), we obtain an algebraic equation 
for the location of sonic points (x~) as a function of flow parameters which is given 
by, 

- Ox3  + - + n = o ,  (3.15) 

where, Af = 10$, (9 = 1 6 $ + 2 n - 3 ,  P = 6 $ + A 2 ( 4 n - 1 ) -  3, Q = 8hA 2, 
= (1 + 4n)A 2 and n is the polytropic index. 

We solve Eq. (3.15) analytically (Abramowitz and Stegun, 1970) and obtain the 
location of the sonic points. Detail formalisms are given in the Appendix. For the 
purpose of sonic points, D of the Appendix is denoted as De. Eq. (3.15) has four 
roots and equation (A6) can be used to check whether all of them are complex (a 
pair of complex conjugates). At least two are real and two are complex, or all four 
are real. A necessary condition to form a shock wave is to have four real roots. Of 
course, only one would be inside the black hole horizon, and the other three would 
be outside; out of these, for topological reasons, only two would be X-type or saddle 
type, and the one in between must be O-type or center type. This is determined 
by computing derivative dO/dx at the sonic point by using.l 'Hospital 's rule and 
checking whether they are real. For our purpose, two derivatives at each sonic point 
must be real and of opposite signs in order to have the X-type sonic points. 

Fig. 3.1 shows the division of the parameter space. Denoting the discriminant D 
(of Appendix) by De, we find that  the condition Dc < 0 is the necessary condition 
for having three sonic points. The boundary Dc = 0 separates this region, on which 
two sonic points merge and the third one remains separate. Outside of this region 
D~ > 0, and only one sonic point is possible and the other two roots are complex 
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Figure 3.1: Division of the parameter space as spanned by the pair (g, A) according 
to the number of sonic points. Solid curve represents Dc = 0 which divides the 
region into Dc > 0 (one sonic point) and D~ < 0 (three sonic points) regions. The 
dashed curve further divides the region into two regions where entropy accretion rate 
A:4 at the two saddle type sonic points behave differently (inner point is denoted by 
i and outer point is denoted by o). 

conjugates of one another. The dotted curve in the middle represents the condition, 

J ~ o  --~ -A~i ,  

where A~i and JQo are the entropy accretion rates at the inner and outer sonic 
points, respectively. The region above it contains parameters with 2Qi < A~o and 
the region below it contains parameters with A/t~ > A/to. This latter region is 
suitable for shock formation in accretion flows. 

Moreover, one can easily show from Eq. (3.7) that  the locations where dM/dx = 
0 exactly coincide with the sonic points of the flow. Thus, the number of extrema 
of M = M(x) is the same as that  of the sonic points. Therefore, the division in Fig. 
3.1 could give an idea about the behaviour of M = M(x) as well. 
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3.1.4 Analytical expression for the shock location and behavior in 
the parameter space 

A black hole accretion flow, being transonic, must satisfy two sonic point conditions 
at the cost of one extra unknown, namely, the sonic point. Because of this extra 
conditions, out of the three constants of motion, namely, $, M and )~, only two are 
supposed to be supplied as free parameters. We deduce shock locations using our 
past experience derived from numerical methods where we found that  only one of 
the shocks, x83 (see, Chapter 2) is stable. Accordingly our procedure as delineated 
below at tempts  to compute only this location. 

The flow will have a shock only at those point where the shock invariant condition 
is satisfied. Simplifying the shock invariant relation (Eq. 3.12), we obtain, 

2(-), - 1)(M 2 + M_ 2) - [(3"), - 1) 2 - 2(3"), - 1)('7 - 1)]M2M 2_ + 4 = 0. (3.16) 

We consider a relativistic flow with 7 = 4/3 so that  the polytropic index n = 3. 
Then from Eq. (3.16), we obtain, 

2(M_~ + M2_)- 21M2M 2_ + 12 = 0. (3.17) 

We now expand the post-shock Mach number M~ by a polynomial which must 
satisfy the following conditions: 

1. The derivative dM/dx is zero at the central O-type sonic point. This is a 
general property of the flow (see discussion at the end of the previous Section). 

2. The Mach number M+ at the location of ~he middle sonic point matches 
with the value that  derived from approximate analytical solution obtained using the 
energy equation (Eqs. 3.2 and 3.4). 

3. The Solution passes through the position where dM/dx is c~ and a good guess 
of this the location (say, from the location of the sonic points) is known. 

Similarly, we expand M 2_ by a polynomial that  must satisfy the following condi- 
tions: 

1. The derivative dM/dx is zero at the outer sonic point (location of which has 
already been determined above). This is a general condition (see discussion at the 
end of the previous Section). 

2. The Mach Number at the outei" sonic point matches the analytical value 
obtained from the sonic point condition (Eq. 3.7). 

3. The Mach Number M_ at the location of the middle sonic point matches with 
the analytical value derived from approximate analytical solution obtained using the 
energy equation (Eq. 3.2 and 3.4). 

Keeping in mind that  an algebraic equation that  is beyond quartic cannot be 
solved analytically (Abramowitz and Stegun 1970), we expand M? as quadratic 
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equation so that  Eq. (3.17) may become quartic. We will show, a posteriori, that  
such an assumption introduces a very small and tolerable error in our computation. 

If xs denotes the shock location, we assume 

M2' = E A[q,• xq' 
q----0 

(3.18) 

where, A[q,• are constant co-efficients to be determined from the conditions men- 
tioned above. We find them to be, 

M 2 1 - (  +)mid ( M2 )mid - 1  
AE2'+I = (* ' i n s  - a: ,~id)  2 '  A [ 2 ' - ]  = (Xo , , t  - a :mid)  2 '  

A[1,+] = --2XmidA[2,+], A[1,-] = --2XmidA[2,-], 

2 A[0,+] = 1 + (2X,udXi,~/-- xi,~/) A[2,+], A[0,-] = 1 + X2outA[2,_], 

where, Xmid, Xi,~/ and xo~t are the middle (O-type) sonic point, the position where 
first derivative of Mach Number is infinity, and the outer sonic point respectively. 

We now substitute the above expression (Eq. 3.18) of the Mach number in the 
Mach invariant relation (Eq. 3.17) to obtain the following algebraic equation for 
shock (x~) and obtain as algebraic equation which is given by, 

Ax', + Bx3s + Cx2s + V x ,  + 7 = 0, (3.19) 

where, 

y = (39' - 1)(9' + 1), 
Z = 2(9' - 1), A = YA[2,+IA[2,_], 

B = 3; (A[1,+]A[z,-] + A[2,+]A[1,_]), 

C = Y (A[o,+]A[2,-] + A[1,+]A[1,-] + A[2,+]A[o,-]) - Z (A[2,+] + A[2,-]), 

D = y (A[o,+]A[1,-] + A[1,+]A[o,-]) - Z (All,+] + All,-]), 

9 v = YA[o,+]A[o,-] - Z (A[o,+] + A[0,-]) - 4. 

We solve this equation for x~ analyti'cally using the same procedure as in w 
(details are described in the Appendix). We denote the discriminant D by D~, and 
Q and R-values as Q~ and Rs respectively for our discussion on the parameter-space 
behaviour of shocks. 

In Fig. 3.2, we redraw the parameter space as in Figure 3.1, but consider the 
formation of shocks alone. We find that  Q, > 0 produces no shock from above, 
and Q~ = 0 with R~ r 0 gives the boundary of the weakest shock (shocks with 
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Figure 3.2: Division of the parameter space as spanned by the pair (8, A) according 
to whether shocks can form or not. The solid curve represents Dc = 0 as in Fig. 3.1. 
The dashed curve (Ds = 0) surrounds the region with shocks in accretion. When 
D~ < 0 and yet there are three sonic points, the shocks are oscillatory, giving rise 
to quasi-periodicMly varying hard X-rays. 

unit compression ratio). This boundary, although obtained using our approximate 
analytical method, generally coincides with the dashed curve of Figure 3.1. The edge 
of the boundary is obtained with an extra condition Rs = 0. Thus, Rs progressively 
decreases towards the edge along the dashed curve. This edge (denoted by D~ = 
R~ = 0) ought to have coincided with the cusp of the Dc = 0 curve drawn for the 
sonic point (see, Fig. 3.1 also) obtained by analytical method. A small shift is the 
evidence that a small error is present at this corner of the parameter space. We also 
provide the region of the oscillating shocks (Q~ < 0 and D~ < 0). Here the shock 
location is imaginary and therefore, shock continuously oscillates back and forth, 
causing a very interesting astrophysical effect known as quasi-periodic oscillations, 
which will be discussed in the next Section. The boundary between the shock and 
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no-shock region from below is denoted by the dashed curve marked by D~ -- 0. 
Below the no-shock region, where the energy and angular momentum of the flow are 
very low, the flow has only one sonic point. 
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Figure 3.3: Variation of shock location (xs) with specific energy (g) of the flow. 
Each curve is drawn for a specific angular momentum A. From right to left curves 
are drawn for A = 1.51, 1.52, 1.53,... until 1.84. For a given specific energy g, 
shock location increases with increasing centrifugal force (through A). Similarly, for 
a given A, shock location increases with energy. 

In Figure 3.3, we draw shock location (xs) as a function of specific energy (g). 
Different curves are drawn for different specific angular momentum of the flow. The 
rightmost one is for A = 1.51 and the leftmost one is for A = 1.84, with the remainder 
drawn at interval of A is 0.01. As angular momentum increases, the shock is located 
further from the black hole. Comparing the shock locations from those obtained 
analytically, one may note that  the same shock location is obtained for a specific 
angular momentum slightly more (~ 3%) than that  used in the numerical method. 
We, therefore, believe that  the obtained results are very much reliable. 
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Figure 3.4: Comparison of the boundary of the parameter space in the (g, A) plane 
using the numerical (solid curve) and the analytical ('dotted region) methods. Except 
for the region near the cusp (upper left corner) the agreement is very strong. 

In Figure 3.4, we present a comparison of the boundary of the parameter space for 
which standing shocks may form as obtained by our analytical solution (dotted region) 
and by the numerical means (solid curve) existing in the literature (C89a). The 
agreement is very good except in a region near the cusp (as also noted while dis- 
cussing Fig. 3.2). Since very little parameter space is involved at this edge, we think 
that this small mismatch is tolerable. 

3.1.5 Astrophysical applications 

Even though a black hole has no hard surface, it is remarkable that matter forms 
standing shock around it in the same way a shock is formed when a super-sonic flow 
encounters a hard boundary. Shock waves heat up a gas and puff it up. This post- 
shock region intercepts soft photons from the pre-shock matter, particularly from 
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the Keplerian disk located on the equatorial plane (CT95). In this scenario, the 
nature of the Comptonized radiation depends on the amount of matter in the sub- 
Keplerian and in the Keplerian flow: if the intensity of soft photon is very low, they 
cannot cool the post-shock region by an inverse ComPton process, and the spectrum 
remains very hot. On the other hand, if the intensity of soft photon is very high 
(i.e., the Keplerian rate is large), they cool down the post-shock region to the extent 
that the shock cannot be sustained (pressure balance condition breaks down). This 
produces a soft-state spectrum with a hard tail due to bulk motion Comptonization 
(CT95). There are several models in the literature which perhaps explain the soft 
and hard states. However, no model other than CT95 explains the power-law hard- 
tail in the soft state. Similarly, regarding the question of quasi-periodic oscillations, 
shock-oscillation model turns out to be a sufficiently satisfactory one (Chakrabarti 
and Manickam 2000, hereafter CM00). 

When the parameters fall in the 'no shock' region of Figure 3.2, the shock location 
becomes imaginary. However, three sonic points are still present and the entropy of 
the flow at the inner sonic point continues to be higher compared with that at the 
outer sonic point. In this case, shock starts oscillating with a time period T8 compa- 
rable to the infall time from the post-shock region (Ryu, Chakrabarti and Molteni 
1997). Even when shock forms, if the infall time-scale turns out to be comparable 
to the cooling time, then the resonance condition is satisfied (Molteni, Sponholz 
and Chakrabarti 1996, hereafter MSC96; CM00) and shock starts oscillation in a 
timescales of, 

Ts~x /v , 

where, v~ ~ R-lx-~ 1/2 is the infall velocity and R is the compression ratio at the 
shock (easily obtained analytically from our equations). However, observed QPO 
frequencies are comparable to 1/T~. 

So far, we have dealt with a single component flow having a sub-Keplerian angu- 
lar momentum. Indeed, an accreted flow is originated at the outer edge of the disk 
almost with a Keplerian angular momentum. Therefore, in reality, accretion flow 
initially contains only the Keplerian matter. In the intermediate stage, some part of 
the Keplerian matter are converted to sub-Keplerian. This implies that the matter 
contains both the components and at few hundred of rg all matters become com- 
pletely sub-Keplerian. Under this circumstances, we present an ad hoc prescription 
for obtaining a single component sub-Keplerian flow from the mixture of matter of 
both the species. When a mixture of the Keplerian and the sub-Keplerian matter 
is accreted, it is easy to obtain the parameters ~ and $ in terms of the Keplerian 
(/~/d) and sub-Keplerian (21}/h) accretion rates. Suppose, the viscosity parameter is 
such that the flow is deviated from a Keplerian disk at x = XK where its energy 
and angular momentum were Ed and Ad respectively. Further suppose that the sub- 
Keplerian halo has a constant energy t; ~ 0 ~ Eh and constant angular momentum 
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,~h, then the average angular momentum and energy of the transonic flow would be, 

<C>= and <A>= 

Therefore, it is easy to compute the shock location of the resultant flow using our 
formalism given above. 

Fig. 3.3 indicates that  shock solution exists when the flow possesses positive 
specific energy. In other words, if a flow deviates from a cool Keplerian disk on 
the equatorial plane, the flow cannot have shocks since the specific energy in such a 
flow would be negative unless the flow is mixed with a substantial amount of sub- 
Keplerian matter  with positive energy. Typically, h/h >> Md, and even with a small 
energy, the specific energy of the mixture becomes positive, giving rise to shocks 
and (unbound) winds. In the case when magnetic dissipation is present, flow energy 
could increase to a positive value, and a solution with a shock would be allowed. The 
prospect of magnetic energy dissipation has been discussed by several workers in the 
literature (Shapiro 1973; Bisnovatyi-Kogan and Blinnikov 1976; Bisnovatyi-Kogan 
1998). Briefly, since the magnetic field rises as Br c< r -2 and, therefore, magnetic 
pressure rises as Pmag c< r -4, while the gas pressure in the sub-Keplerian matter  
goes as Pga8 o( r -~/2, any magnetic field in excess of the equipartition value would 
escape from the disk buoyantly and may dissipate at the atmosphere, as in the case 
of the Sun. If the flow has specific energy Eh at, say r = 100rg, where the flow is in 
equipartition, then at the shock, the energy would be at least 24 = 16 times larger if 
all the magnetic energy is dissipated into the flow. Thus, a basically free-fall matter  
of • ,-~ 10 -4 would have an energy ~ 10 -3 and a shock at a few tens of Schwarzschild 
radii would be expected. 

Another interesting feature is that  an accreting flow can, in principle, intercept 
hard X-ray photons emitted from the inner edge of the disk. In a certain circum- 
stances, this pre-heating effect need not be negligible. For instance, a flow emitting 
isotropically with 6% efficiency will definitely intercept ~ ,,~ O~n/4~r fraction of radi- 
ation in between the shocked region and the Keplerian disk. Here, 0 ~  denotes the 
solid angle subtended by the inflow. Assuming 0 ~ 0.1, the energy deposition due 
to pre-heating is 0.6%, which is significant. This would energize Keplerian matter  
as well, and consequently shocks in the sub-Keplerian flow would be expected. 

3.2 Model  dependence  of transonic accretion flow proper- 
ties 

So far, we have studied the shock properties analytically for vertical equilibrium 
model. In this Section, we analytically investigate how the behaviour of an accre- 
tion flow changes when the flow model is varied. Indeed, we study the transonic 
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properties of the accretion flow in the conical flow model, the constant height model 
and the vertical equilibrium model respectively and show that all these models are 
basically identical provided the polytropic constant is suitably adjusted from one 
model to another. We show that this behaviour continues even when standing 
shocks are produced in the flow. The parameter space where the shocks are formed 
remain roughly identical in all these models when the same transformation among 
the polytropic indices is used. At the end of this Section we present applications of 
these findings. 

A fully self-consistent study of any astrophysical system is generally prohibitive. 
Very often, for simplicity, it is necessary to construct models which have all the 
salient features of the original problem. However, these models need not be unique. 
In this part of the thesis, we make a pedagogical review of three different models of 
rotating accretion flow and show that even though they are based on fundamentally 
different assumptions, they have identical physical properties. What is more, results 
of one model could be obtained from the other by changing a physical parameter, 
namely, the polytropic constant. In other words, all these models are identical. 

Chakrabarti (C89a and C90a) studied transonic properties of accretion flows in 
different models. One of such models is conical in shape in the meridional plane 
('Wedge-shaped Flow') and in the other model flows are in vertical equilibrium. 
Subsequently, Chakrabarti and Molteni (Chakrabarti and Molteni 1993) studied 
flows of constant height and also verified by time dependent numerical simulations 
that the flow indeed allows standing shocks in it. In a Bondi (Bondi 1952) flow, to 
specify a solution one requires exactly one parameter, namely the specific energy 
(E) of the flow. This is in turn determined by the temperature of the flow at a large 
distance. In an inviscid, rotating axisymmetric accretion flow, one requires two 
parameters, namely, specific energy (E) and specific angular momentum (~). Once 
they are specified, all the crucial properties of the flow, namely the locations of the 
sonic points, shock locations, as well as the complete global solutions are determined. 
C89 numerically studied the properties of the parameter space rather extensively, 
and divided the parameter space in terms of whether standing shocks can form 
or not. In the present context, we compare these models completely analytically 
through the study of these flow properties and show, very interestingly, that one 
could easily 'map' one model onto another by suitably changing the polytropic index 
of the flow. 

In the next Section, we present a set of equations which govern a steady state 
flow in all the three models. In w we present the sonic point analysis in dif- 
ferent models and obtain the expressions for the energy of the flow in terms of the 
sonic points. We observe that these expressions are identical provided there is a 
unique relation among the polytropic indices of these model flows. In w we 
compare shock locations in all the three models. We also compare the parameter 
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space which allows shock formation in these models with the regions obtained using 
purely numerical method. In the same Section, we show that  in fact if the relations 
between the polytropic indices are used, the shock locations in all these models are 
also roughly identical. Therefore, the apparently disjoint parameter spaces drawn 
with the same polytropic index overlap almost completely when the aforementioned 
relations among polytropic indices are used. This remarkable behaviour shows un- 
derlying unity in these apparently diverse models. 

Figure 3.5: Cartoon diagram of three different models discussed in the text. In 
constant height flow (H) disk thickness is constant (upper). In a conical flow (C), 
the cross-section in the meridional plane is conical (middle). In a vertical equilibrium 
flow (V), matter  is in locally in vertical equilibrium at every point of the disk (lower). 

3.2.t- Model equations 

In the present Section, we concern about three axisymmetric and inviscid models: 
(a) Model H: the flow has a constant height everywhere; (b) Model C: the flow 
cross-section in meridional plane is conical in shape and (c) Model V: the flow is in 
equilibrium in the transverse direction. Fig. 3.5 shows a cartoon diagram of these 



Chapter 3. Properties of non-Dissipative Accretion Flow 72 

three models. Filled circle at the centre corresponds to the black hole. Region of the 
disk shaded in light corresponds to the pre-shock flow while the region shaded in dark 
corresponds to the post-shock flow. We assume that  flow variables are measured in 
the traditional dimensionless units described earlier. 

In all the three models, the dimensionless energy conservation equation can be 
written as, 

~)2 a 2 A2 
$ ' =  ~- + - - 7  - 1  + ~ + g(x),  (3.20) 

where, quantities denote their usual meanings as before. This energy equation is 
the integral from of the radial momentum balance equation. 

The mass flux conservation equation, which comes directly from the continu- 
ity equation depends on specific geometry of the models. Apart from a geometric 
constant, the mass conservation equation (Chakrabarti & Das 2001) is given by, 

= ~)paCxZ(x - 1) 5, (3.21) 

where, 13, ~ and 5 are constants. For Model V (Chakrabarti, 1989a),/~ = 3/2, ~ = 
I, 6 = I. For ModeIC (Chakrabarti, 1990a), ~ = 2,~ = 0,6 = 0. For ModeIH 
(Chakrabarti, 1992; Chakrabarti ~ Molteni, 1993), /~ = I, ~ = 0, 6 = 0. Note that 
since the local disc height h(x) depends on sound speed h(x) ~ axl/2(x - I), so a 
factor of a r is applicable for this model. 

Though it is customary to deal with the conserved mass accretion rate of the 
flow and since we incorporate shock formation where entropy is increased, it is more 
convenient to re-write the mass flux conservation equation in terms of v~ and a in 
the following way (Chakrabarti ~ Das 2001), 

J(4 = O a " x Z ( x  - 1) a = a a " f ( x ) ,  (3.22) 
where, c~ -- 2n + ~, ~ -- 2n and (~ -- 2n for Models V, C and H respectively and 
f i x )  = x ~ ( x - 1 )  5. We shall use the phrase "entropy-accretion rate" for the quantity, 
J~4 - 2t;/Kn7 ~. In a flow without a shock, this quantity remains constant, but in 
presence of a shock it changes because of the generation of entropy. 

3.2.2 Sonic point analysis and relation among the models 

Since the flow is expected to be sub-soni'c at a large distance and super-sonic on the 
horizon, the flow must pass through sonic points. At the sonic point a few conditions 
are to be satisfied. They can be derived using general procedure. 

First, we differentiate the energy equation and the mass conservation equation 
and eliminate da/dx from them to obtain, 

dx __ { #x - (3.23) - - - -  x ( x - I ) }  ~-~]/ o~) 7 
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Here, G(x) = ~2 1 /~ + 6 (Chakrabarti  2(x-1) is the effective potential and/~' = 
Das 2001). Since the flow is assumed to be smooth everywhere, if at any point of the 
flow denominator vanishes, the numerator must  also vanish there. The vanishing of 
the denominator gives, 

~)~(xc) = 2na~(x~). (3.24a) 
a 

The vanishing of the numerator gives, 

a2(x~ ) = a ( x ~ -  1)[A~:(xc) - A 2] (3.24b) 
2nx  #] 

The subscript 'c' denotes quantities at the sonic points as before and ,~g represents 
the Keplerian angular momentum. It is to be noted that  since square of the sound 
speed (Eq. 3.24b) is always positive, angular momentum at the sonic point must 
be sub-Keplerian. When the above expression for the velocity of sound is inserted 
in the expression for the specific energy, we get, for the Vertical Equilibrium (17) 
Model, 

S v  = 
nv + 1 xc 

5 

for the Conical Flow (C) Model, 

"4(nv + I) ( x c -  I) ] A 2 
5 x ~ -  3/5 - 1  

1 
1)' 

(3.25a) 

2 n c + l  xc 2 n c - 1  A 2 1 
$r = 8 ( x ~ -  1) 2 - 2 2,~ 2 ( x ~ -  1)' (3.25b) 

and for Constant Height Flow (H) Model, 

2nil + 1 Xc •2 1 
~H 4 (xc -  1)2 - 2n"2x--  2( c- 1)" (3.25c) 

Here, we have used the subscripts V, C and H under specific energy ($) and poly- 
tropic index (n) to denote specific models. For a given angular momentum and at 
the same sonic point, the energy expression will be the same provided (Chakrabarti  

Das 2001), 
2nc + 1 _ 2nil + 1 nv + 1 (3.26) 

8 ' 4  5 ' 
where, we have used 

(xc- l)/(xc- 3/5)~  1 (3.26a) 

for Model V. 
The relations in Eq. (3.26) are very important. If these relations are satisfied, 

then transonic properties of Model C with polytropic index nc would be identical to 
those of Model H with index nH and those of Model V with index nv respectively. 
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3.2.3 Shock invariants and locations in different models 

In between two sonic points, the flow can undergo a standing shock transition, in 
general. For an inviscid flow, at the shock, a set of conditions are to be satisfied. 
These are known as the Rankine-Hugoniot conditions (Landau and Lifshitz, 1959). 
These conditions are different for different models (C89a, C90a). For Model V, the 
shock conditions are as follows: 

(A) The energy flux conservation equation, 

$+ = s (27.a) 

(B) The pressure balance condition, 

w+ + = w_ + r _oL. (27.b) 

(C) the baryon flux conservation equation, 

M+ = M_ 

where, subscripts ' - '  and '+ '  refer, respectively, to quantities before and after the 
shock. Here, W and E denote the pressure and the density, integrated in the vertical 
direction (Matsumoto et al. 1984). 

For Models C and H, energy flux conservation equation and the baryon number 
conservation equation for shock are exactly ident{cal with the Model V but the 
pressure balance condition differs a bit from Model V which is given by, 

p+ + p+02+ = p_ + p_02 . (3.28) 

Here, P and p denote the local pressure and the local density measured at the disk 
equatorial plane. 

The expressions for the conserved quantities could be combined to obtain the 
so-called Mach number relation, which must be satisfied at the shock. For Model V, 
we obtain a useful equation relating the pre- and post-shock Mach number of the 
flow at the shock (C89a) which is given.by, 

C = [M+(37-  1) + (2/M+)] 2 = [M-(39 ' -  1) + (2/M_)] 2 (3.29) 
2 + ( 7 -  1)M_~ 2 + (9 ' -  1) M2 

The constant C is invariant across the shock irrespective with the input parameters. 

Similarly, one can obtain the Mach-number relations for the other two models, 
i.e., Model C and H. The relation between the pre- and the post-shock Mach numbers 
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Figure 3.6: Comparison of the parameter space in three different models in which 
shocks form. nv = n n  ---- n c  = 3 is chosen throughout. Solid boundaries are 
obtained using numerical method and shaded regions are obtained using analytical 
method. 

of the flow at the shock for Models C and H has identical expression and is given 
by, 

C = [TM+ + (l/M+)] 2 = [7M- + ( l /M-)]  2 (3.30) 
2 + ( 7 -  1)M~_ 2 + ( 7 -  1) M2 

So far, in the literature, analytical shock studies have been carried out in vertical 
equilibrium model (DCC01) by using the Mach invariant i~elation (Eq. 3.29) when 
two parameters, namely, the specific energy and the specific angular momentum are 
given. Presently we carry out the same analysis using Eq. 3.30 for Models H and C 
respectively and obtain shock locations and parameter space boundaries for all the 
three models. 

Fig. 3.6 compares these results where plots of specific energy is given as function 
of specific angular momentum. Solid boundaries mark regions for which standing 
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shocks form in different models which is obtained numerically. Shaded regions are 
obtained from the analytical method (DCC01) and results of these two methods 
roughly agree. We note that constant height flows occupy much larger region than 
that  of the Conical or vertical equilibrium model. 
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Figure 3.7: Variations of shock locations as function of the specific energy and 
angular momenta. The left most curve is drawn for A = 2 and other curves are for 
decreasing angular momentum with an interval of (~/~ = 0.02. Solid curves, filled 
circles and crosses are drawn for Models V, H and C respectively with nv = 31/4, 
nc = 13/2 and n H =  3 which obey Eq. (3.26). 

3.2.4 Results of mapping of one model to another 

We have already noticed that one could use a relation (Eq. 3.26) which maps 
one model on to another, as far as the transonic properties are concerned. If, for 
instance, we choose nH = 3, we find from Eq. (3.26) that  nv = 31/4 and nc = 13/2 
respectively. This means that for a given energy and angular momentum a model 
H flow of polytropic index 3 would have sonic points exactly at the same place as a 
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Model V flow of polytropic index 31/4 and Model C flow of polytropic index 13/2 
respectively. Corresponding polytropic exponents are 9'H = 4/3, 7V ---- 1.129 and 
7c = 1.15385 respectively. In physical terms, a relativistic flow of constant height 
would have same properties as more or less isothermal flows in a conical flow and a 
flow in vertical equilibrium. 
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Figure 3.8: Nature of the boundary of the parameter space for the three models 
of the accretion flows. Solid, short-dashed, and long-dashed curves are drawn for 
Models C, H and V respectively with polytropic indices nv = 31/4, nc = 13/2 and 
n H =  3 which obey Eq. (3.26). The roughly similar parameter space shows that  
the mapping of the indices based on the transonic properties remain roughly the 
same even when standing shocks are considered. The asterisk mark on 'Vertical 
Equilibrium Flow' indicates that  condition Eq.(3.26a) has been utilized. 

What  about the shock locations? In Fig. 3.7, we compare the locations of the 
standing shocks around a black in these three models. Solid curves are for Model 
V, small circles are for Model H and crosses are for Model C respectively. The 
polytropic indices nv, nc and nH are chosen as above. We note that  though models 
are different, the shock locations are also remarkably close to one another. In Fig. 
3.8, a comparison of the parameter space is shown once more (cf. Fig. 3.6) using 
the same polytropic indices mentioned above. Unlike disjoint regions in Fig. 3.6, we 
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find that the regions are almost completely over-lapping when Eq. (3.26) is used. 
This also shows that the Eq. (3.26) is valid even for the study of shock waves. We 
thus believe that generally speaking, the three models are identical when the Eq. 
(3.26) is taken into account. 

What could be the possible applications of the pedagogical exercise we carried 
out? One could imagine that certain models are easier to study (say, using numerical 
simulations) than the others. For instance, Chakrabarti & Molteni (1993), Molteni, 
Gerardi & Chakrabarti (1994) and Chakrabarti & Molteni (1995) studied constant 
height disk using Smoothed Particle Hydrodynamics. This was done because a flow 
in vertical equilibrium cannot be forced on a time dependent study. However, one 
could question whether one can draw any conclusion about the behaviour of flows in 
vertical equilibrium using a simulation of constant height. Our present study shows 
that it does. Since three models are shown to be identical, running simulation for one 
model would give results for other models in a straight forward manner. Similarly, 
study of stability analysis of a model of constant height may be simpler and stability 
of one model would imply stability of others. 

3.3 C o m p u t a t i o n  of outf low rates from accret ion  disks around 
Black holes  

In this Section, we self-consistently estimate the outflow rate from the accretion rate 
of a disk around a black hole in which both the Keplerian and the sub-Keplerian 
matter flows simultaneously. While Keplerian matter supplies soft-photons, hot sub- 
Keplerian matter supplies thermal electrons. The temperature of the hot electrons is 
decided by the degree of inverse Comptonization of the soft photons. If we consider 
only thermally-driven flows from the centrifugal pressure-supported boundary layer 
(CENBOL) around a black hole, we find that when the thermal electrons are cooled 
down, either because of the absence of the boundary layer (low compression ratio), 
or when the surface of the boundary layer is formed very far away, the outflow rate 
is negligible. For an intermediate size of this boundary layer the outflow rate is 
maximum. Since the temperature of the thermal electrons also decides the spectral 
state of a black hole, we predict that the outflow rate should be directly related to 
the spectral state. 

Most of the galactic black hole candidates are known to undergo spectral state 
transitions (Tanaka & Lewin, 1985; CT95; Ebisawa et al. 1996). Two such common 
states are known as the hard state and the soft state. In the former, soft X-ray 
luminosity is low and the energy spectral index a ~ 0.5 (E~ c< ~-~) in the 2-10keV 
range. In the latter state, the soft X-ray luminosity is very high, and hard X-ray 
intensity is negligible. There is also a weak power-law hard-tail component with an 
energy spectral slope a ,,~ 1.5. In the two component advective flow (TCAF) model 
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(CT95), the viscous Keplerian disk resides in the equatorial plane, while the weakly 
viscous sub-Keplerian flow flanks the Keplerian component both above and below 
the equatorial plane. The two components merge into a single component when 
the Keplerian disk also becomes sub-Keplerian. It is suggested (C90a) that close to 
a black hole, at around 10 - 15 rg, (rg - -  2GMBH/C 2 is the Schwarzschild radius, 
MBH and c are the mass of the black hole and the velocity of light respectively) the 
sub-Keplerian flow slows down due to the centrifugal barrier and becomes hotter. 
Chakrabarti (C99) showed that this centrifugal pressure-supported boundary layer 
region could be responsible for the generation of thermally-driven outflowing winds 
and jets and one could compute the ratio of the outflow to the inflow rate assuming 
a simple conical accretion disk model. 

In the present study, we compute the absolute value of the outflow rate as a func- 
tion of the rates of the two inflow components, namely, Keplerian and sub-Keplerian 
matter. This we do analytically following the similar procedure of obtaining shock 
locations described in w (DCC01). By dynamically mixing of these two compo- 
nents using solutions of the viscous transonic flows we obtain the specific energy and 
angular momentum of the sub-Keplerian region. We use these pair of parameters 
to locate shocks in the flow, compute the corresponding compression ratio and from 
this, the outflow rate. We note that as Keplerian matter is increased in the mixture, 
the shock compression ratio goes down, and the outflow rate decreases. This is also 
the case even from a radiative transfer point of view - when the Keplerian rate is 
high, the CENBOL region is completely cooled down and the shock compression 
ratio R ~ 1. Hence in the soft state, which is due to increase of the Keplerian rate, 
the outflow should be negligible. 

3.3.1 Model equations 

We consider matter accreting on the equatorial plane of a Schwarzschild black hole. 
As before, the space-time around the black hole is described by the Paczyfiski- 
Wiita pseudo-Newtonian potential r = --r_~M~%/c~ (PW80), where MBH is the 
mass of the black hole and G, c are the gravitational constant and velocity of light 
respectively. Here, r is the radial distance from the origin of the co-ordinate in 
which the black hole is treated at the. centre. Here also, we use geometric unit 
(MBH = c ---- i; G -- 1/2) to express flow variables in dimensionless manner and 
then Paczyfiski-Wiita pseudo-Newtonian potential reduces to the familiar form as 
r = -I/{2(x - I)} where x represents the non-dimensional radial distance. In 
accretion Or wind, we assume that the viscous stress is negligible so that matter 
moves with a constant specific angular momentum. Indeed, even if viscosity is 
not negligible, the transport of angular momentum is slow compared to the infall 
timescale. Hence, matter can have almost constant specific angular momentum. 
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Under this circumstances, the radial momentum equation (Eq. 3.1) and the 
corresponding conserved energy equation (Eq. 3.2) for a non-dissipative vertical 
equilibrium flow will take the identical form presented in w 

In the steady state, the corresponding mass flux conservation equation in a flow 
which is in vertical equilibrium is given by, 

Mi~ = 47cpv~xh(x) = e~,~ps~)sx~, (3.31) 

~n~47casx~ ) is the solid angle subtended by the inflow at the CEN- where Oi l (= 2~ 1/2 

BOL boundary (DCNC01). Subscript 's' denotes the quantities at shock (CENBOL 

boundary) and h(x) = Vf~axl/2(x - 1) is the half-thickness of the disk at a radial 

distance x. 
A sub-Keplerian flow with a positive energy will pass through the outer sonic 

point and depending on whether the Rankine-Hugoniot conditions are satisfied or 
not, a standing shock may form (C90a; C96a). If a standing shock forms, then the 
post-shock flow would become hot and would emit hard X-ray radiation. This post- 
shock (CENBOL) region behaves similarly to the boundary of a normal star and it 
would be expected to drive outflows. Using Eqs. (3.1 and 3.31), one can compute 
the shock locations (i.e., outer surface of the CENBOL) analytically following the 
formalism discussed in w 

In the present study, since the outflow is expected to produce in the presence 
of shock, we consider only the region of the inflow parameter space (g, A) that 
is able to produce standing shocks. In the pre-shoc k region, matter is cooler and 
sub-Keplerian. Assuming $ ~ 0 (freely falling condition) and a ~ 0 (cool gas) in 
the presence of angular momentum, matter will fall with a velocity, 

~)(X) = [ 1 A2] 1/2 
x -  1 (3.32) 

Using Eq. (3.32) in Eq. (3.33) one can obtain the density distribution of the flow. 

At the shock x -- x~, i.e., the boundary of the CENBOL, the compression ratio 
is given by, 

R -  E+ _ h+(x~)p+(x~) = 0_ (3.33) 
E_ h_(xs)p_(x~) ~)+' 

where subscripts ' - '  and '+ '  refer, respectively, to quantities before and after the 
shock. Here, E is the density of matter integrated vertically (E ~ ph) (Matsumoto 
et al. 1984) and the second '= '  sign was written using the mass flux conservation 
equation given above (Eq. 3.31). 

At the shock, the total pressure (thermal and ram pressure) must be balanced 
and we have, 

W_(x~) + E_(x~)v92_(x~) = W+(xs) + E+(x~)v~_(x~), (3.34) 
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where, W is the vertically integrated pressure of the flow (Matsumoto et al. 1984). 

We assume that  in the pre-shock region, the thermal pressure is small compared 
to the ram pressure. Therefore, we get 

W+(x~) -  R -  1E_(x,)v~2_(x~)" (3.35) 
R 

Accordingly, the isothermal sound speed in the post-shock region is obtained as 
(DCNC01): 

c~ - W+ - R -  I~2 = I [ xe* - A2(x~- l)] (3.36) 
E+ R 2 fo x ~ ( x s -  1)  ' 

R 2 
where, f0 = R----I has been used. 

Up to the sonic point matter  moves slowly and the density is higher. Since the 
outflow would take place in a sea of radiation, the momentum deposition is likely 
to be effective. With the electron number density n, c< x -a/2, yet photon number 
density n7 c< x -2, it is easier to deposit momentum only close to the black hole. In 
radiation driven outflows from the stellar surface, it is customary to assume flows 
to be isothermal until the sonic point. We first compute outflow rates making this 
assumption. Later we drop this assumption and show that  the general behaviour 
remains similar. In addition, we assume that  there is very little rotation in the out- 
flow. There is no a priori reason to assume this, except that  there is no observational 
support of rotation in the jet and it is possible that  due to radiative viscosity most 
of the angular momentum is transported very close to the black hole. Furthermore, 
it has been observed that  the effect of angular momentum in the outflow is to bring 
the sonic points closer to the black hole, especially away from the axis (Sakurai 
1985; Chakrabarti  1986b). The general effect would produce a transverse structure 
in the jet which we ignore in the present solution. It was shown (Das & Chakrabarti  
1999) that  in presence of angular motion the conical outflow is to be replaced by 
an annular flow confined by the centrifugal barrier and the funnel wall. Generally 
speaking, the outflow surface varies as x a/2. However, the inflow surface area is still 
proportional to x 2. Because of this asymmetry, the problem is no longer tractable 
analytically and is beyond the scope of the present study. 

3.3.2 When the outflow is isothermal 

The radial momentum balance equation in the outflow is given by 

~g d~) 1 dP 1 
dr + p ~ r  + 2(r - 1) 2 - 0, (3.37) 

where, v~ and r are respectively the non-dimensional radial velocity and radial dis- 
tance of the outflow. The so-called continuity equation in the steady state is given 
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by, 
1 d (pzgr2) = O. 

r 2 dr 
Eliminating dp/dr from above two equation we get 

(3.38) 

dO N 
- (3.39) 

dr D'  

where, 

N -  2Cy 1 and D = - 0  C~ 
r 2(r - 1) 2 0 " 

To obtain the sonic point conditions, we put N = 0 and D = 0 and get, 0(re) = 

Cs, and rc = l + s c ~ + ~ ,  where, the subscript 'c' denotes the quantities at the sc~ 
sonic point in the outflow. 

Integrating the radial momentum equation (Eq. 3.37) and considering the sonic 
point conditions we have, 

1 1 2 C2lnpc 1 ( 3 . 4 0 )  
C21np+ 2 ( r e -  1) -- 2 C~ + 2 ( r e -  1)" 

Here, we have ignored the radial velocity in the outflow at the boundary of the 
shock location (xs) in the inflow. Using the notations p(rc) = Pc and p(x,) = p+, 
we obtain, 

Pc = p+exp[-f], (3.41) 

where, 
1 

f 2 
1 Xs - -  rc  

2C 2 (x8 - 1 ) ( r e -  1)" 

Indeed, the outflow rate is given by 

Mo~t = Oo~,tpcOcr~, (3.42) 

where, Oo,t is the solid angle subtended by the outflow. 

From Eq.(3.31) & Eq. (3.42) we get. the ratio of the outflow rates to the inflow 
rates (DCNC01) as, 

Y/io~t Oo~t [ x ~ ( x s - 1 ) ] - 1 / 2  RCsr 2 
/I;/i----~ - R~ = Oi~ x~ -- ~-(x~ - 1) x ~ ( x , -  1) exp[-f].  (3.43) 

The above relation is very similar to that obtained in C99 when the effects of rotation 
in the inflow were ignored. However, there the ratio R,~ was a function of R alone. 
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In the present analysis, R is computed self-consistently from the specific energy and 
the specific angular momentum of the flow and is obtained as 

5M~ + (3.44) 
= 1/2 

-- I 2 ' R -  E_ v~+ ~ M _ +  

where, pre-shock and post-shock Mach numbers M_($,A) and M+($,A) are com- 
puted analytically using the 'method presented in w 

3.3.3 When  the outflow is adiabatic 

At the other extreme, when the energy of the outflow does not change, one can also 
obtain an analytical expression for the outflow rate assuming x8 > >  A 2. In this 
case, the entropy density of the flow in the post-shock region is same at the entropy 
density of the entire outflow and the specific energy is also conserved along the 
outflow. We assume that  the turbulence generated at the CENBOL has effectively 
transported angular momentum away. Thus, the energy conservation equation gives 

1 2n + 1 2 1 (3.45) 
- - -  a ~  - - - ,  

na~ 2r8 2 2r~ 

where, the left hand side is the energy at the CENBOL (x = xs) and the right hand 
side is at the sonic point (r = r~) of the outflow where uc = ac has been used. In 

2 C 2 2 1~2re. At the CENBOL, a 8 7 8, where C8 is the a Bondi (in or out) flow, a~ = = 
isothermal sound speed (Eq. 3.36). Using these, one obtains (assuming x8 > >  A 2) 

r__~ _ 2n - 3 (3.46a) 
x8 4 ( ~  ~ - 1)' 

and 
2 fox8 ac - (3.46b) 

a~ 47rc" 

In an adiabatic flow with an equation of state P = K p  "y (where K is a constant and 
a measure of entropy), one obtains, assuming, Kc =/48  , 

P~ = [ac2'~ ~ (3.47) 
P8 ' \a2~] " 

From these relations one obtains the ratio of the outflow to the inflow rate (DCNC01) 
a s  

Rm (3.48) 

Here, we have used n -- 3 for a relativistic flow. The nature of this function will be 
discussed latter. 
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Figure 3.9: Variation of the compression ratio of the shocks as a function of specific 
energy E and angular momentum /~ as obtained from the analytical solution. 
varies from 1.57 (right) to 1.79 (left). Curves are drawn at intervals of dA = 0.02. 

3.3.4 Outflow rates from inflow parameters 

In Eq. (3.43), we presented the outflow-inflow rate ratio as a function of the com- 
pression ratio of the flow at shock. The compression ratio is obtained from the 
specific energy and angular momentum using Eq. (3.44). First, we employ analyt- 
ical means to obtain this for a single component sub-Keplerian disk. Second, we 
use a two component Keplerian and sub-Keplerian disk to actually compute these 
parameters from more fundamental parameters such as accretion rates and viscosity. 

3.3.5 Single component sub-Keplerian advective flows 

In Fig. 3.9, we plot the analytical solution of the compression ratio R as a function 
of the inflow parameters such as the specific energy ($) and the specific angular 
momentum ()~) (DCNC01). The shock strength generally increases when energy 
decreases and the angular momentum increases. This is because for low energy, 
the outer sonic point and the shock form very far away from the black hole and 
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the Mach number jumps from a very large number to a very small number. If the 
angular momentum is decreased, shock is produced only if the specific energy is 
high, i.e., if the sonic points and the shocks are formed very close to the black hole. 
Here, flow becomes sub-sonic before its Mach number could be very high. 
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Figure 3.10: Variation of the ratio of outflow to inflow rates R~ as a function of 
compression ratio for various specific angular momenta ranging from A = 1.57 ( inner  
most) to 1.83 (outer most). Curves are drawn at intervals of dA = 0.02. Outflow 
rate is maximum at some intermediate compression ratio. 

Figure 3.10 shows the principle result of our work when only one sub-Keplerian 
accretion flow is chosen as inflow (DCNC01). We plot the ratio P~  for a large 
number of specific angular momenta of. the flow ranging from 1.57 (innermost) to 
1.83 (outermost) at intervals of dA = 0.02. The curves are drawn for all ranges of 
specific energy (g) for which shocks are formed. Along the X-axis the compression 
ratio R of these shocks are plotted. Here, to compute solid angles of the inflow and 
the outflow, we assume the half opening angle of the outflow to be 10 ~ Therefore, 
Oo~t = ~3/162. Oi~ is estimated from the discussion following Eq. (3.31). In 
Chakrabarti 's  (C99) work, the compression ratio R was assumed to be a parameter 
and no angular momentum was assumed a priori. Presently, we specifically show 
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the dependence of Rm on angular momentum. However, the general character, 
namely, that  the outflow rate is negligible when the shock is weak (R ~ 1) and 
falls off gradually for strongest shock (R --~ 7), remains the same as in Chakrabarti  
(1999). There is a peak at about R,~ ~ 2.8%. Note that  for a given R, P~  
increases monotonically with specific angular momentum A. This is because density 
of CENBOL rises with A. The curves corresponding to A -- 1.71 and 1.73 are 
specially marked since there.is a clear difference in tendency of the variation of Rm. 
For instance, below A ~ 1.72, very strong shocks are not possible at all and as a 
result the outflow rate has a lower limit. For A > 1.72 such a limit does not exist. 
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Figure 3.11: Same as Fig. 3.10 except that  curves are drawn for the exact numerical 
solution. 

The general behaviour of the outflow rate can be understood in the following way: 
when shocks are strong, they form very far out, and thus, even though the CENBOL 
area (which is basically the area of the base of the jet) increases, the net outflow 
rate is low. When the shock forms very close to the black hole, the temperature is 
high, and thus the outflow velocity is larger, but the CENBOL surface area goes 
down. Thus the product is low. For the intermediate cases the net effect is larger. 

For comparison with the analytical work presented in Fig. 3.10, in Fig. 3.11 
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we present a similar diagram drawn using a numerical computation of the shock 
locations (C89a). Excellent agreement between these two figures implies that the 
approximations on which the analytical work was based are justified. All the features 
are reproduced well in Fig. 3.10, except that for the weakest shocks outflow rate is 
not as low as in the numerical calculation of Fig. 3.11. 
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Figure 3.12: Ratio of the Outflow and the Inflow rates as a function of the com- 
pression ratio of the inflow when the outflow is adiabatic in nature. The general 
behavior of the function remains the same as that of the isothermal outflow. 

We now present the nature of Rm when the outflow is also chosen to be adiabatic 
in Fig. 3.12 (DCNC01). We used Oo/O~ ~ 0.I for reference. We observe that the 
peak is still located at around R ~ 4 and the outflow rate drops for very strong 
(R ~ 7) and very weak (R ~ I) shocks. We, therefore, believe that our conclusion 

about the behaviour of R~n is generic. 

3.3.6 Two component advective flows 

Chakrabarti & Titarchuk (CT95) proposed that the spectral properties are better 
understood if the disk solutions of sub-Keplerian flows are included along with the 
Keplerian flows. Recently, Smith, Heindl and Swank (2001a), Smith et al. (2001b) 
and Miller et al. (2002) found conclusive evidence of these two components in many 
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Figure 3.13: Schematic diagram of the meridional cross section of two-component 
accretion flow. Details of the figure are described inside the text. 

of the black hole candidate accretion flows. While the matter with higher viscosity 
flows along the equatorial plane as a Keplerian" disk (of rate MK), sub-Keplerian halo 
matter (of rate Mh) with lower viscosity flanks the Keplerian disk above and below 
(Fig. 3.13). Since the inner boundary conditions on the black hole horizon force 
the flow to be sub-Keplerian, irrespective of their origin (C90a, C96a) matter mixes 
(at say, r = rtr) from both the Keplerian and sub-Keplerian flows before entering 
into a black hole to form a single component sub-Keplerian with an average energy 
and angular momentum of s and ~ respectively. In w we already discussed this 
issue briefly. Subsequently, the specific energy, and angular momentum of the mixed 
flow is computed as (DCNC01): 

E = M~EK + MhEh 
/I~/K + Jl)/h ' (3.49) 

and 

= MK + ~ ' (3.50) 

where, SK, Sh, AK and Ah are the specific energies and specific angular momentum 
of the Keplerian and the sub-Keplerian components at x = xt~ respectively. 
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Figure 3.14: Solution of the two-component flow equations for two different viscosi- 
ties. They are merged to form a single solution as depicted in Fig. 3.13. 

Fig. 3.13 shows a schematic diagram of the cross-section of a two-component 
accretion flow. The transition radius (x -- xtr) where the Keplerian disk becomes 
sub-Keplerian, and the shock location x = xs, are indicated in the Figure. Fig. 3.14 
shows two solutions (marked I and II) of the equations governing a two-component 
flow (C96a) where Ad/)~K (Sub-Keplerian matter from the Keplerian disk) and Ah/)~K 
(Sub-Keplerian halo) are plotted as a function of the logarithmic radial distance 
(DCNC01). Viscosities chosen for these two components are c~ -- 0.04 and ~ = 
0.01 respectively. For x < xtr = 45 (lightly shaded region) the two component 
flow, namely, Keplerian and sub-Keplerian flow mix to create a single component 
sub-Keplerian flow. For simplicity, we assume viscosity to be negligible in this 
region. Thus, the specific angular momentum and specific energy computed at 
x = xtr from Eqs. (3.49 ~z 3.50) remain constant for x < Xtr. Dark solid curve 
(marked III) shows the angular momentum distribution .~/.~g of all possible mixtures 
of the two components which allows shock formation. We choose a case where 
Md + IVIh = 2.0MEdd and vary the Keplerian component 21~/d where MEdd is the 
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Eddington accretion rate. 
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Figure 3.15: Variation of outflow rates (left axis) with compression ratio at shocks 
(lower axis). The upper axis gives the variation of sub-Keplerian accretion rate and 
right axis gives the same for Keplerian accretion rate. 

In Fig. 3.15, the computed outflow rates are shown when the half opening angle 

of the outflow is 10 ~ In this case, ~ ~ nf~-~ ~ 2~ o~ V 2~ 6asa--~/~" The left axis shows the rate 

of outflow rhout = Mout/J~lEdd as a function of the Keplerian disk rate (right panel) 
(dUd = J~d/iEdd) and the halo rate (upper panel) (rhh = Mh/l~/IEdd). The lower 
axis gives the compression ratio at the shock. The most important  conclusion that  
can be drawn here is that  the outflow rate steadily goes up as the Keplerian disk 
rate rhd decreases and the spectrum goes to a harder state. When the Keplerian 
rate is higher, the compression ratio is lower and the outflow rate is also lower. 
This conclusion, drawn completely from dynamical considerations, is also found to 
be true from the spectral studies (CT95) where it was shown that  the post-shock 
region cools down and the shock disappears (R -+ 1). Our work therefore hints that  
the outflow would be negligible in softer states. 
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3.4 M e c h a n i s m  of e ject ion of mat ter  in SS 433 

So far, we discussed the propeties of accretion flows. Our next goal is to explain 
various observational features on the basis of these theoretical results. In this thesis, 
we shall discuss the possible mechanisms to produce clumpy jets (so called bullets) 
ejected from an enigmatic object called SS 433. Even 25 years after its discovery this 
object is yet not well understood in terms of whether the compact object is a black 
hole or a neutron star. However, it is believed that the companion is an OB-type 
star with an orbital period of 13.1 days which is losing mass at the rate of about 
10 -4 M o yr -1, corresponding to the extremely super-Eddington accretion rate. More 
surprisingly, the jets of SS 433 are apparently ejected as bullets with nearly constant 
radial velocity of about 26% of velocity of light. Interestingly, variable H a  line 
emission demand the confirmation of presence of jets in SS 433 where the time 
variation of red- and blue-shifts of Ha line from the jets occurs in a period of 162 
days. Moreover, it is well known (C99 and Das & Chakrabarti 1999) that significant 
outflows are produced when the central source is in the low/hard state though it 
is difficult to remain in a low/hard state with 10 -4 M| yr -1 accretion rate. The 
only possibility of sustaining such situation is that most of the incoming matter is 
expelled either by the centrifugal barrier (Chakrabarti et al. 2002) or by radiation 
force far outside the accretion disk and thus the compact object accrets only few 
times the Eddington rate (J~Edd) which produces kinematic luminosity of the jet is 
around 1039 ergs sec -1 for a 10M o compact object. In fact, numerical simulations 
(Molteni et al. 1994) suggested that about 15%-20% of matter could be ejected as 
an outflow for at most few MEg d of accretion matt~er. Moreover, matter accreted 
around the compact object of SS 433 with the low angular momentum sub-Keplerian 
flow since it is supplied from the winds of companion star. In addition, the bullets 
of mass range 1019 - 1021 gm in the jets of SS 433 are expected to ejected in 50-1000 
sec time intervals under normal circumstances. Along with this, some occasional 
flaring with an anti-correlation of radio and X-ray emission in jets of SS 433 is 
observed. Therefore, theoretical description must explain these essential features 
when attempting to produce bullets out of the accretion disk. Presently we briefly 
discuss several probable scenarios to understand the ejection mechanism of bullets 
in SS 433 system (Chakrabarti et al. 2002). 

It is already established in the literature that the sub-sonic outflows are gener- 
ated from the inner part of the accretion disk (C99 and Molteni et al. 1994) and 
immediately becomes super-sonic after passing through the sonic point. In fact, at 
the base of the jet density is high and optical depth is large enough (T > 1) to 
undergo Compton cooling. Therefore, the sub-sonic jet rapidly cools down due to 
interaction with soft photons supplied from the Keplerian disk and separates jet 
matter from the base of the jet as a blob. This mechanism, though attractive, does 
not work in our present context as SS 433 is a wind accreter which indicates the 
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absence of Keplerian disk for supplying the soft photon in the system. 

Several authors (Langer, Chanmugam & Shaviv 1982; MSC96) already showed by 
numerical simulation that outflows may be ejected quasi-periodically when cooling 
time scale matches with the infall time scale inside the accretion disk. With this 
mechanism, outflow of similar order of the mass of the bullets observed in SS 433 
may be ejected with the 50 sec oscillation period but such an oscillation requires very 
high specific angular momentum of the inflow compared to the marginally bound 
value (~ 30 times). Therefore, it is unlikely that this mechanism works in SS 433. 

In order to have a standing shock in a sub-Keplerian flow there must be two 
X-type sonic points and in between these two sonic points Rankine-Hugoniot shock 
conditions are satisfied at some point (C89a). Indeed, there is a large region of 
parameter space where the flow has two X-type sonic points but shock conditions 
are not satisfied (C90a). In this situation, when the entropy of the inner sonic point 
is higher than the outer sonic point, the flow tries to make a shock transition but is 
unable to find the solution and then starts to oscillate (Ryu, Chakrabarti & molteni 
1997). Therefore, periodic ejection of matter takes place in the form of outflow due 
to this non-steady shock oscillation. This mechanism has stronger possibility for 
blob ejection due to its generic nature as once the oscillation established could be 
sustained indefinitely. 

In the recent development of accretion disk physics Nandi et al. (2001) showed 
that magnetic field from the companion star is first intercepted into the accretion 
disk in the form of a flux tube and then it is advected toward the inner edge of the 
disk. Subsequently, due to the shearing effect in the rotating flow, the magnetic 
field becomes toroidal and the acceleration due to magnetic tension becomes the 
dominant force in the post-shock region of the sub-Keplerian flow. Meanwhile, flux 
tubes catastrophically collapse and evacuate the inner part of the disk in the Alfv~n 
time scale. Therefore, evacuation of the inner part of the disk is associated with 
flaring in the radio jets. Simultaneous observations in 2 GHz radio and 2-10 keV 
X-ray fluxes from SS 433 show clear dip in X-ray flux and at the same time strong 
radio flare is detected (Safi-Harb & Kotani 2002). Indeed, this mechanism could be 
another possibility for jet ejection in SS 433 in the form of bullets. 



Chapter 4 

Propert ies  of Shock Waves in Diss ipat ive  
Accret ion  Flow 

In order to study the different properties of dissipative accretion flow around a black 
hole, we consider various heating and cooling processes that may impose significant 
contribution to the flow. Accordingly, we begin our study by incorporating viscosity 
as the heating process inside the accretion disk. For the shake of completeness, 
we further include different cooling mechanism, namely, bremsstrahlung and syn- 
chrotron cooling in succession. 

4 . 1  Viscous  accretion f l o w  

In the standard theory of thin accretion flow arour~d a black hole (SS73), viscosity 
transports angular momentum outwards and allows matter to sink into the black 
hole potential well. In this model, the flow angular momentum is assumed to be 
Keplerian and this is the standard notion about how matter is accreted. Mean- 
while, Chakrabarti & Molteni (1995) and Lanzafame, Chakrabarti & Molteni (1998) 
showed by numerical simulation that the angular momentum distribution of accreted 
matter solely depends on the viscosity prescription and close to the black hole matter 
deviates from Keplerian to sub-Keplerian distribution since it has to be supersonic 
at the black hole horizon according to the inner boundary conditions. Presently we 
start with Chakrabarti 's (C96a) modified viscosity prescription and ignore all the 
cooling effects. In the following Sections, we shall extensively carry out the sonic 
point analysis and study global solution topologies, shock properties and critical 
viscosity parameters. 

4.1.1 G o v e r n i n g  e q u a t i o n s  

We begin with a steady, thin, viscous, axisymmetric accretion flow on to a Schwarzschilc 
black hole. The space-time geometry around a Schwarzschild black hole is dictated 
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by the pseudo-Newtonian potential introduced by Paczyfiski & Wiita (PW80) to 
avoid complexity. The expression for the pseudo-Newtonian potential given by, 

GMBH g ( r ) =  [r , 

where, the quantities have their usual meanings as before. 

In the steady state, the dimensionless hydrodynamic equations that govern the 
notion of infalling matter are the followings (C96a). 

(a) Radial Momentum equation : 

~ d~) 1 dP A(x) 2 1 
dx  + - -  + - O, (4.1a) p dx  x 3 2(x  - 1) 2 

(b) Baryon number conservation equation : 

2~/= E#x, 

apart from a geometric constant. 

(c) Angular momentum conservation equation : 

(4.1b) 

vgd)ffx),, 1 d (x2Wxo) =O, 
dx  + E---x d--x 

and finally, 

(d) The entropy generation equation : 

(4.1c) 

Ev~T ~x  x = Q+ - Q - ,  (4.1d) 

where, flow variables ~), p, P and A(x) in the above equations are the radial velocity, 
density, isotropic pressure and specific angular momentum of the flow respectively. 
Here E and Wxr denote the vertically integrated density (Matsumoto et al. 1984) 
and the viscous stress, s is the entropy density of the flow, T is the local temperature. 
Q+ and Q- are the heat gained and lost by the flow (integrated in the vertical 
direction) respectively. 

The present model is constructed in such a way that the disk is assumed to be 
in hydrostatic equilibrium in the vertical direction and therefore, local disk height 
is obtained as (w Eq. 2.3) 

h = ax l /2 (x  - 1). 

Here, a is the adiabatic sound speed defined as a = X / ~ / P .  
Chakrabarti's viscosity prescription (C96a) which is valid for flows with significant 

(4.2) 

We shall use the 
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radial motion. Since accretion flow possesses substantial amount of angular momen- 
tum, flow must be centrifugally supported and the knowledge of angular momentum 
distribution is important. We, therefore, explore the nature of shear stress which 
governs the transport of angular momentum, indeed, the viscous stress is given by, 

Wxr = -arIH,  (4.3) 

where, II (= W + EO 2) is the total pressure of the flow. This special viscosity 
prescription will ensure that the viscous stress is continuous across the axisymmetric 
shock wave that we are studying here. It is to be noted that in SS73 prescription, 
W,r was not continuous across the shock. Therefore, the stress would transport 
angular momentum at different rates on both sides of the shock which would always 
move the shock one way or the other. This is unphysical, since in the absence of 
viscosity, a standing, axisymmetric shock is perfectly stable. It is impossible that 
an infinitesimal viscosity will destabilize the shock. However, this would have been 
the case if SS73 prescription were absolutely correct. Moreover, viscosity not only 
transport angular momentum, it heats the gas also. We include this effect in the 
present study. 

4.1.2 Sonic point analysis 

In Chapter 3, we mentioned the basic idea of the accretion procedure. Matter with 
almost negligible radial velocity at the outer edge of the accretion disk enters into 
the black hole with velocity of light c. Thus, during accretion, at some point, matter 
velocity should exactly match with the sound speed. This point is called a critical 
point or a sonic point and depending on the initial parameters a flow may have 
multiple sonic points (C89a, C89b, C90a and C90b). We carry out the sonic point 
analysis for dissipative accretion system by solving the governing equations [Eqs. 
(4.1a-4.1d)] using a general method similar to that used in C89b. The detailed 
discussions of sonic point analysis is presented in the following Sections. 

Sonic point conditions 

In the present analysis, we use the MISStress prescription (C96a) for computing Q+ 
and obtain Wxr from Eq. (4.1c). For the accretion flow, the entropy equation (Eq. 
4.1d) can be simplified as, 

0 [ l d P  7 P d p ]  Q - - Q +  
7 - 1 [-p ~ p2 -~x] - ph - C - H, (4.4) 

and then H ( =  Q+/ph) takes the form, 

H = Ax(ga 2 + 7v ~2) d~ 
dx ' 

(4.5) 
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where, 7 is the adiabatic index, A = -anIn/" /  and g = In+l/I,~. Here, f~ is the 
angular velocity of the accreting matter at the radial distance x, n is the polytropic 
index, In and In+l come from the definition of the vertically averaged density and 
pressure (Matsumoto et al. 1984) respectively. 

In the present analysis, we use Q_ = 0, i.e., the cooling effect is ignored. This 
would be strictly valid if the accretion rate is low, so that the loss of energy by 
bremsstrahlung and synchratron cooling is insignificant compared to the rest mass 
energy. 

After some simple algebra with the governing Eqs. (4.1a-4.1d) and Eq. (4.2) we 
get the following first order linear differential equation (Chakrabarti & Das 2004) 
as, 

dO N 
- ( 4 . 6 )  

dx D'  
where, the numerator N is, 

- -fi - ' 2 ( x  - 1) 2. 2angA(a2g + ")'02) + 
-yx 

('y + 1)02 ] 

1) 

a2a2(5x-3)  oaigAa2(5x - 3)(a2g + -yv ~2) 

x ( 7 -  1 ) ( x -  1) 7x(x- I) x 2 

and the denominator D is 

2AAO(a2g + 702) 
+ , (4.7) 

a2gl (4.8) D -  (,7_ 2a2-------~1) ('7(7 +-  1)v~31) Aan~)(a2g + ~Y02') (2g - 1) - ~-~j 

Both N and D are algebraic equations which make this model easily tractable. 

At the sonic point, both the numerator and the denominator must vanish simul- 
taneously to keep the velocity gradient finite. For D = 0, one can get the expression 
for the Mach Number M(xc) at the sonic point and is given by, 

where, 

M(xc) = ] i / - m b -  V/m 2 - 4 m a m c  (4.9) 
2ma V 

ma = --AaH-y2(7 -- 1)(2g -- 1) -- 7(7 + 1), 

mb= 2 7 -  2Aa~gT('Y- 1 ) (g -  1), 

mc = Aa~g2("Y - 1). 

In the weak viscosity limit, aH --+ 0, the Mach number at the sonic point is obtained 
V/2 which matches with the exact result obtained in C89b. as M ( xc ) ,~ #-4-f 
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Setting N = 0, we get an algebraic equation for the sound speed at the sonic 
point which is given by, 

 (Ec, = - 
"aHA{g + 7M2} 2 

7x 

aliA(5x - 3){g + 7M 2} + 
 x(x- 1) 

M2(5x - 
+ x(~---~)(x 3)1)] a 2 

_ 2 A A M ( g + T M  2) [A~ 1 ] [ 
x2 a -  ~ 2(x 1) 2 2 a i I g A ( g + T M  2)+  ( 7 + 1 )  M2. - =0.  

(4.10) 

We solve the above quadratic equation to obtain the sound speed at the sonic 
point. Das et al. 2001 (DCC01) suggested that depending on a given set of initial 
parameters accretion flow may have a maximum of four sonic points where one of the 
sonic points always lies inside the black hole horizon for non-dissipative accretion 
flow. In our present study, we also expect a similar result at least in the weak 
viscosity limit. 

Nature of the sonic points 

In Fig. 4.1, we show the variation of specific angular momentum (Ac) as a function of 
the logarithmic sonic point location, log(xc), for a given viscosity parameter (an = 
0.1) (Chakrabarti & Das 2004). Here, different curves are drawn for a set of different 
specific energies at the sonic points. The energies, from the uppermost curve to the 
lowermost one, are given by $~ = 0.0007, 0.001, 0.003, 0.005, 0.007, 0.011, 0.015, 
0.019, 0.023 and 0.027 respectively. The long-dashed curve at the top represents the 
Keplerian angular momentum distribution which is completely independent of the 
initial flow parameters and depends only on the flow geometry. Solid curves represent 
the saddle type sonic points, dotted curves represent the nodal type sonic points and 
the short-dashed curves are drawn for the spiral type sonic points. Fig. 4.1 indicates 
that sonic points always occur at angular momentum below the Keplerian value. 
Notice that for lower values of specific energy at the sonic point, an accretion flow 
contains all the three types of sonic points in a systematic order: saddle - -  nodal 
- -  spiral - -  nodal - -  saddle for monotonic increase of location of sonic point. With 
the increase of energy $~ the region of spiral type sonic points gradually decreases 
and finally replaced by the nodal type sonic points though multiple sonic points still 
exist. Shaded area separates the nodal type sonic point region in the A~ - log(x~) 
plane: With further increase of energy all the nodal type sonic points also disappear 
and are replaced by saddle type sonic points. In this case, the flow has only one 
sonic point for a given sub-Keplerian angular momentum. Thus, for a given angular 
momentum of the flow, there exists an energy range Stain < $c < Smax such that the 
flow allows multiple sonic points. In the inset, we zoom a small portion of the curve 
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close the Keplerian value to highlight the fact that the angular momentum at the 
sonic point always remains sub-Keplerian when cooling process is ignored. 

3 

0.25 0.5 0.75 1 1.25 1.5 1.75 2 z .25  

log(xo) 

Figure 4.1: Variation of specific angular momentum (Ac) as a function of the loga- 
rithmic sonic point location [log(xc)] for the viscosity parameter (an = 0.1). Long- 
dashed curve is the Keplerian angular momentum distribution. Solid curves rep- 
resent the saddle type sonic points, dotted curves represent the nodal type sonic 
points and the short-dashed curves are for the spiral type sonic points. Shaded area 
represents the nodal type sonic point region. 

A very important aspect of viscous transonic flow is shown in Fig. 4.2 where 
the angular momentum distribution at the sonic point is plotted as a function of 
logarithmic sonic point locations for a set of viscosity parameters, an (Chakrabarti 
& Das 2004). The specific energy at the sonic point are kept fixed at E/n = 0.006. 
In the absence of viscosity (an = 0, the uppermost curve), the flow has all the 
three types of sonic points. Similar to Fig. 4.1, here also we indicate the saddle, 
nodal and spiral type sonic points by the solid, dotted and short-dashed curves 
respectively. The uppermost long dashed curve represents the Keplerian angular 
momentum distribution. With the increase of an, more and more inner saddle type 
sonic points are replaced by nodal type sonic points and similarly nodal type are also 
replaced by spiral type sonic points. The curves, from the topmost to the bottom 
one, are for an = 0, 0.2, 0.4, 0.6, and 0.7 respectively. Note that for an = 0.7, all 
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Figure 4.2: Variation of angular momentum at the sonic point as the viscosity 
parameter is varied. Specific energy at the inner sonic point is held fixed at 0.006. 
From top to the bottom curve: an  = 0,0.2, 0.4,0.6 and 0.7 respectively. Other 
notations are the same as in Fig. 4.1. 

the inner saddle type sonic points disappear and only the spiral type points remain. 
Therefore, there exists a critical viscosity parameter C~n(c,0 at a given ~:c for which 
all the inner saddle type sonic points are completely replaced by the spiral type 
ones. Under this situation, the flow has no choice but has to pass through the outer 
sonic point only. Existence of such critical viscosity gives an intuitive hints that  
the parameter space for the multiple transonic flow may shrink with the increase of 
viscosity. 

In Fig. 4.3, we plot the variation of Ec with logarithmic sonic point [log(x~)] for 
various c~n while keeping the specific angular momentum at the inner sonic point to 
be fixed A~ = 1.65. Values of C~n are set as, from the uppermost to the lowermost 
curve, C~n = 0, 0.25, 0.35, 0.5, 0.6 and 0.7 respectively. Solid, dotted and short- 
dashed lines denote similar meaning as mentioned in the earlier figures. Long-dashed 
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Figure 4.3: Variation of the specific energy at the inner sonic point as a function 
of the viscosity parameter C~n. From the uppermost curve to the lowermost curve, 
an  = 0, 0.25, 0.35, 0.5, 0.6 and 0.7 respectively. Other notations are the same as 
in Fig. 4.1. 

line separates the positive and negative energy regions in the Ec - log(xc) plane. 
Notice that ,  for increasing an,  saddle type sonic points are gradually replaced by 
the nodal and spiral type sonic points: outer saddle type sonic points recede further 
away and the inner saddle sonic points proceed toward the black hole horizon. For 
C~n -- 0.7, the inner saddle type sonic points completely disappear and become spiral 
type. This behaviour points to a critical value of viscosity parameter (an,c) which 
separates the accretion flow from the multiple sonic points regime to the single sonic 
point regime at a given Ac. Fig. 4.3 also indicates that  at the same sonic point, 
specific energy steadily decreases for increasing an  (Chakrabarti & Das 2004). The 
reason behind it is that  when an  is increased, the accreting matter  tends to become 
a Keplerian disk closer to the black hole and becomes more strongly bound with 
lower energy. More importantly, the energy at the outer sonic point remains always 
positive for all initial parameters. 

For the shake of completeness of sonic point analysis, we chose the polytropic 
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Figure 4.4: Variation of the specific angular momentum at the inner sonic point as 
a function of the polytropic index n (marked on each curve). Generally, the number 
of sonic points decreases with decreasing n. Specific energy has been kept fixed 
at 0.001 except for the dashed curve where it is 0.0015 to show that  for a given 
polytropic index, number of sonic points increases with decreasing energy. 

index (n) as a free parameter for further study. A mono-atomic, non-relativistic 
gas is identified with n = 3/2 while in the other extreme, i.e., for very relativistic 
or a radiation dominated flow polytropic index is set at n -- 3. In Fig. 4.4, we 
plot the variation of Ac with logarithmic sonic point location, log(xc), where specific 
energy at the sonic point is chosen as $~ = 0.001 (Chakrabarti  & Das 2004). The 
long-dashed curve is the Keplerian distribution as before. We note that  with the 
increase of the adiabatic index 7, i.e., decrease of the polytropic index n, the number 
of sonic points decreases from three to one. In this example, in the extreme non- 
relativistic regime (n = 1.5) the accretion flow has a single saddle type sonic point 
for any specific angular momentum. For the same energy, for n = 1.75, there are 
three sonic points, indicating that  a standing or an oscillating shock in the flow may 
be possible. In this Figure, we also show that  for a given n (such as for n = 1.75) if 
we increase energy at the sonic point (E~ = 0.0015), multiple sonic points disappear 
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and a single sonic point forms. This indicates that  there must be a critical value of 
C~ associated with each n above which multiple sonic points do not exist when all 
other parameters are kept fixed. 

/ 

Figure 4.5: Gradual change in the number of physical sonic points is easily seen 
in this three-dimensional view of F($~, Ac, x~) = 0 (Eq. 4.10) surface. At high 
angular momenta, there are three sonic points, but they merge to become one at 
lower angular momenta, an = 0.01 has been chosen. 

The most general behaviour of the flow at the sonic point is best seen in Fig. 4.5, 
where we depict the surface F($c, Ac, xc) = 0 (Eq. 4.10) for an  = 0.01 (Chakrabarti  
& Das 2004). Sonic points x~ are plotted along X-axis in the logarithmic scale, Ac is 
plotted along the Y-axis and $~ is plotted along the Z-axis. Note that,  multiple sonic 
points appear at the relatively higher values of angular momentum whereas single 
sonic point solutions are obtained for lower angular momentum values. Therefore, 
below a critical value A~ri, the flow does not have more than one sonic point. 
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4.1.3 Global solution topologies 

In order to form shocks in an astrophysical system, flow must possess more than one 
X-type sonic points and flow solutions passing through these sonic points are con- 
nected by the discontinuous shock transition provided Rankine-Hugonoit relations 
are satisfied. In this Section we present a detail discussion about solution topologies 
which usually follow different pathways. 
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Figure 4.6: Variation of global solution topologies of the viscous accretion flow 
around black holes. In (a), drawn for Ai~(x~ = 2.665) = 1.68, four panels show how 
open topology at lower viscosity becomes closed at higher viscosity. In (b), drawn 
for Ain(x~ = 2.359) = 1.78, closed topology opens up again. 

Figure 4.6(a-b) shows the variation of flow topologies with the constant viscosity 
parameter c~n and the specific angular momentum Ain at the inner sonic point x~ 
(Chakrabarti & Das 2004). Indeed, different flow behaviours are distinctly high- 
lighted in two separate panels for lower (Fig. 4.6a) and higher angular momentum 
regime (Fig. 4.6b). In fact, Fig. 4.6a is drawn for the inner sonic point at xin -- 2.665 
and the specific angular momentum at this point is Ai~ = 1.68. At low angular mo- 
mentum and without viscosity (the box at extreme left in Fig. 4.6a) the sub-sonic 
flow enters into the black hole after passing through the inner sonic point. In the 
second box, viscosity is slightly higher and the topologies are closed for the same 
inner sonic point. So, for a given set of parameter, there must be a critical viscosity 
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parameter (ancri) for which open topologies become closed ones. Accretion with 
parameters causing this kind of topology never joins with any Keplerian disk unless 
a shock is formed. Moreover, when an accretion flow cannot make a shock transi- 
tion, the flow directly passes through the outer sonic point before falling into the 
black hole. With the further increase of an (next two boxes) closed topology shrinks 
gradually and finally disappears leaving behind only the outer sonic point (Bondi 
Type). This is directly ana!ogous to the shrinking of the phase space of a simple 
harmonic oscillator in presence of damping (C90a). These solutions are basically 
the same as the f = 1 case of Fig. 2a of C96a. 

Fig. 4.6b is drawn with a higher specific angular momentum at the inner sonic 
point (x~ = 2.359 and Ai,~ = 1.78) where the explanations of first and second box 
are similar to the earlier ones (Fig. 4.6a), but in the third box (an = 0.05), the 
accretion flow topology changes its spiraling direction and the flow can join with a 
Keplerian disk very close to a black hole. Interestingly, the basic differences between 
this two figures (Fig. 4.6a. and Fig. 4.6b) occur mainly due to the difference of 
specific angular momentum at the sonic point rather than the change of sonic point 
locations. In fact, a strong dependence of the accretion flow topologies on angular 
momentum at the sonic point will be presented in the subsequent Section (Fig. 4.18). 
For a higher an (next two boxes) Keplerian disk comes even closer to the black hole 
and topologies passing through the inner sonic point become that of Bondi type. 
We suspect that two limits of viscosity parameters would cause an oscillation of 
the inner part of the Keplerian disk, but we cannot be certain about it without a 
time dependent numerical simulation. Details of this idea is beyond the scope of the 
present thesis. 

To identify the new pathways of the solution topologies from the existing one 
(C96a) we have plotted in Fig. 4.7 the flow topologies passing through the outer 
sonic point. The input parameters are chosen as xo~t = 25 and .~(Xo~t) = 1.8 for 
different viscosity parameters marked in the Figure (Chakrabarti & Das 2004). For 
a lower an, the topologies are closed as in Fig. 4 of C96a and the flow having this 
topology cannot be transonic anyway. For gradual increase of an closed topologies 
monotonically open up (unlike C96a where xout = 35 was chosen and the opening 
of topologies did not occur) and if the shock condition is satisfied, the accretion 
flow passing through the outer sonic point jumps into the subsonic branch and go 
through the inner sonic point before entering into the black hole. For higher an, the 
same outer sonic point no longer remains saddle type--first it becomes nodal type 
and then it reduces to spiral type (Fig. 4.1). This receding nature of sonic points 
for increasing viscosity parameter an are not surprising as we already pointed this 
issue in the earlier Section. This, together with Fig. 4 of C96a show that there 
could be more than one way of reaching nodal topology. 
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Figure 4.7: Variation of global solution topologies of the viscous accretion fiow when 
the outer sonic point is kept fixed at xo~t -- 30rg while the viscosity parameter is 
varied. The closed topologies (with one saddle type'and a spiral type at the center) 
at lower aH become open for higher c~n. Eventually, the saddle type also disappears 
to produce a nodal type sonic point. 

4.1.4 Classification of the parameter space 

For details understanding of the viscous accretion flow it is important to classify the 
parameter space in terms of viscosity parameter. However, Fig. 4.8 separates the 
region of parameter space in an accretion flow for closed topologies passed through 
the inner sonic point (Chakrabarti & Das 2004). The parameter space is obtained by 
varying angular momentum at the inner sonic point (Ain) along the X-axis and the 
corresponding specific energy at the inner sonic point (Ein) along the Y-axis. The 
bounded region with a given curve contains parameters in which multiple saddle 
type sonic points exist. For instance, for an = 0, the region bounded by the solid 
curve is exactly identical to the region found by C89b. With the increase of aM, the 
region of multiple saddle type sonic points is reduced near high angular momentum 
side while it increases in the lower angular momentum side. It may be recalled (C89b 
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Figure 4.8: Classification of the parameter space spanned by the specific energy and 
the specific angular momentum of the flow at the inner sonic point. The bounded 
regions drawn for different viscosity parameters (marked at the inset) contain allowed 
solutions which may pass through the inner sonic p,0int. As viscosity increases, the 
region shifts towards lower angular momentum and higher energy. 

and Fig. la) that at low angular momentum, the number of sonic point is just one. 
With the rise of c~n, the angular momentum at the sonic point is also increased which 
results the increase of number of sonic points. At a higher angular momentum, the 
situation is just the opposite. In this case, there are already multiple sonic points 
for an ~ 0 and for high enough an, viscosity transports angular momentum very 
rapidly causing a steep rise in angular momentum itself. This, in turn, means that 
the flow can have only one saddle type sonic point in tl~is case. 

4.1.5 Standing shocks and further classification of the parameter 
space 

It is widely believed that shocks are ubiquitous in the astrophysical system and most 
likely they are non-stationary. However, in an accretion flow, the shock properties, 
namely, the shock location, strength and it's various thermodynamic properties 
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could be quantified very accurately by using Rankine-Hugoniot conditions (RHCs). 
In the present context, this study is very similar to the study of shocks in solar 
winds (Holzer & Axford, 1970) and white-dwarf surfaces. 

The shock conditions which we employ here are the usual RHCs presented in 
C89b (see also, Landau & Lifshitz 1959), i.e., (a) the local energy flux is continuous 
across the shock; (b) the mass flux is continuous across the shock (c) the momen- 
tum balance condition is satisfied and finally, (d) angular momentum should be 
continuous across the axisymmetric shock. 

Our consideration of satisfying RHCs at a given location holds only if the shock is 
thin, i.e., viscosity is low. Nevertheless, we continue to use this prescription at higher 
viscosities to have a first order guess of the shock location. Similarly, we assume that 
there is no excess source of torque at the shock itself, so that the angular momentum 
may be assumed to be continuous across it although this condition may be violated 
when magnetic fields are included. In the presence of large scale poloidal magnetic 
field, there could be magnetic torque which could make the flow angular momentum 
discontinuous. But at present, we are neglecting this issue. 

Method of calculating the shock locations 

Accretion flow originated at the outer edge of the disk with almost negligible radial 
velocity becomes super-sonic after passing through outer sonic point and makes a 
discontinuous jump (shock) into sub-sonic branch and again becomes super-sonic 
while crossing inner sonic point before entering into the black hole. In the present 
context, we begin numerical integration from inner sonic point and proceed towards 
the outer edge of the accretion disk to look for shock location (Chakrabarti & Das 
2004). During integration along the sub-sonic branch, it is possible to calculate all 
the local flow variables (i. e., v~, a, M, p) at the post-shock region in terms of the initial 
flow parameters. We calculate total pressure, local flow energy, specific angular 
momentum at the shock using these sub-sonic local variables. According to the 
Rankine-Hugoniot shock conditions at the shock, total pressure, local flow energy, 
mass accretion rate (one of the flow parameters) and specific angular momentum 
must be conserved. These conserved quantities at the shock give the other set of 
local variables for the super-sonic branch. This set of super-sonic local variables 
help to get outer sonic point uniquely for a accretion flow with fixed inner sonic 
point and other initial flow parameters when integration takes place towards the 
outer edge of the black hole. Thus, the accretion flow can be connected with both 



Chapter 4. Dissipative Accretion Flow 108 

the inner and outer saddle type sonic points through shock for dissipative system 
and this uniquely determines the standing shock location for a given set of initial 
flow parameters. 

At the shock, super-sonic flow variables could be quantified as a function of 
sub-sonic local flow variables in the following way: 

The model, of our interest, are constructed by considering the flow is to be 
in vertical equilibrium and total pressure of the accretion flow at any given radial 
distance is given by, 

H = W + Ev ~2, (4.11) 

where, W and E are the vertically averaged thermal pressure and density respectively 
(Matsumoto et at. 1984). 

We use the mass flux conservation equation (Eq. 4.1b) in the Eq. (4.11) and 
calculate the sound speed a in terms of radial velocity (v~) at the shock (x,) in the 
super-sonic branch which is given by, 

a 2 = C1C2v Q -- C2 •2, (4.12) 

where, C1 = 47rHxs/(MI,~) and C2 = 7/g. 
However, at the shock, radial velocity v~ in the super-sonic branch is estimated 

by using Eq. 4.12 in the local flow energy equation and is given by, 

v~ = --V~b + ~ / ~ -  4V~aOc (4.13) 
2~a 

where, V~a = 2nC1C2, ~9b = -2nC1C2, ~)c = 2E-[A2(Xs)/X2s]+[1/(Xs- 1)] and E is the 
local flow energy. In fact, total pressure and flow energy at the shock is calculated 
with the help of the sub-sonic flow variables. In this context, we consider only the 
'+ '  sign as we are interested to obtain the local flow variables in the super-sonic 
branch. This radial velocity is used to calculate the sound speed (Eq. 4.12) in the 
super-sonic branch of the flow. Under this circumstances, we use super-sonic flow 
variables (t9 and a) to account the outer sonic point by numerical integration and a 
complete accretion flow solution with shock is obtained (Chakrabarti  & Das 2004). 

In a general shock solution, two different flow solutions, one with a lower entropy 
passing through the outer sonic point, and the other with a higher entropy passing 
through the inner sonic point are connected by the shock transition. A similar 
solution is presented in Fig. 4.9 (Chakrabarti & Das 2004). Two curves are drawn 
for two different energies (marked in the Figure). gin and gout are the energies at 
the inner and outer sonic points for a shocked accretion flow which has a standing 
shock. Due to viscous heating process, flow energy increased and the shock wave is 
formed when flow jump from the lower energy solution to higher energy solution. 
If we include cooling processes only, the situation would have been reversed. The 
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Figure 4.9: An example of how a standing shock might form in a viscous transonic flow 
is depicted here. Flow passing through the outer sonic point at Xout = 39.7 and energy 
gout = 6.08 • 10 -3 has a shock and passes through the inner sonic point at xin = 2.78 
where its energy is gin -- 7.555 x 10 -3.  Inset shows the' details. 

flow parameters are xout = 39.7, Ai,~ = 1.65, an = 0.05 and 7 = 4/3. The shock 
conditions uniquely determine the inner sonic point xin = 2.78 and shock location 
xs = 18.2 respectively. The end positions of the long arrow mark the locations of 
the sonic points. In the inset ,  we zoom a selected region in the/~c - log(xc) plane to 
show explicitly that  the angular momentum is indeed decreased which is expected 
due to presence of viscosity. 

Fig. 4.10 presents a complete solution of the flow which includes a standing shock 
in a viscous flow for the same set of parameters used in Fig. 4.9 (Chakrabarti ~ Das 
2004). Arrows indicate the directions of the accreting flow. Sub-sonic accreting flow 
passes through the outer sonic point (O) and becomes super-sonic. At x8 = 18.2 
(vertical dotted line), shock conditions are satisfied - -  the flow jumps from the 
super-sonic branch to the sub-sonic branch and subsequently pass through the inner 
sonic point (I). 
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Figure 4.10: Actual solution topology for the case discussed in Fig. 4.9 is shown 
here which, along with the outer (O) and inner (I) sonic points, also showed the 
shock transition at x8 -- 18.2 (vertical dotted line). The arrowed curve is followed 
by a flow while entering into the black hole. 

Parameter space which allows standing shocks 

In Fig. 4.8, we have already separated the region of the parameter space in terms 
of the number of sonic points present in the flow. Presently, in Fig. 4.11, we further 
classify the same parameter space on the region which allows only standing shocks 
in a viscous flow (Chakrabarti & Das 2004). The viscosity parameters are marked in 
the Figure. The region with an = 0 coincides with that in C89b and in Chakrabarti 
(C96b and Chakrabarti 1998) when appropriate models are considered. Compared 
to the inviscid case, the effective region of the parameter space shrinks in the high 
angular momentum side when the viscous effect is increased. However, exactly the 
opposite situation is observed at the lower angular momentum side. Notice that 
even at an angular momentum as low as A = 1.4, standing shocks could be formed 
if the viscosity is high enough. Above a critical viscosity (which depends on other 
parameters as will be shown in Fig. 4.18 below), this region completely disappears. 
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Figure 4.11: Variation of the region of the parameter space which forms a standing 
shock as a function of the viscosity parameter all. The region shrinks with the 
increase of viscosity parameter. 

We continue our study of the parameter space which may allow multiple sonic 
points as well as standing shocks. In Fig. 4.12, a curious feature is shown: the map- 
ping between the post-shock parameters and the pre-shock parameters (Chakrabarti 

Das 2004). We draw the region of the post-shock parameters at the inner sonic 
point (Cin, Aim) (bounded by the solid curve) and the region of the pre-shock param- 
eters at the outer sonic point ($o~t, Ao~t) (bounded by the long dashed-curve) for a 
shock which is determined through RHCs for an = 0.01. For each and every point in 
the pre-shock parameter space region, there exists a point in the post-shock param- 
eter space region and therefore we have a complete solution. For definitiveness, we 
also show vertical dashed and dotted lines in the two different angular momentum 
range in the post-shock parameter space region in which Ain is kept fixed but Ein 
is varied. The corresponding pre-shock parameters form a curve, indicating that 
both the angular momentum and the energy had to be adjusted to get the self- 
consistent solution. In a non-dissipative flow, there is no variation of energy and 
angular momentum in the accretion flow as both of these quantities are conserved 
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Figure 4.12: Mapping of the parameter space of the pre-shock region (solid bound- 
ary) spanned by (Sin, Ain) onto the parameter space in the post-shock region (dashed 
boundary) spanned by ($o~t, Aout) in a viscous flow (an = 0.01). 

all throughout. As a result, both the inner and the outer sonic point parameter 
spaces merge (C89b, Chakrabarti 1998) there. 

Parameter space which may allow oscillating shocks 

The remarkable feature of quasi-periodic variation of X-ray intensity originated from 
the vicinity of galactic black hole candidates is believed to be the outcome of os- 
cillating shocks formed around the inner edge of the accretion disk. Such type of 
oscillating shock solutions are obtained for the flow parameters belonging to a large 
region of the parameter space for inviscid flow where the flow produces multiple sonic 
points but RHCs were not satisfied (Ryu, Chakrabarti & Molteni, 1997). However, 
the winds are also produced sporadically from the post-shock region. In presence of 
cooling, especially when the cooling time scale roughly agrees with the infall time- 
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scale, standing shocks may start to oscillate (Molteni, Sponholz and Chakrabarti,  
1996). However, in a general flow, it is very difficult to divide the parameter space 
in terms of whether the shock will exist or not. This is because, when there is a 
shock, at least the RHCs allow us to map the pre-shock and the post-shock flow 
parameters (see, Fig. 4.12). But when there is no shock, it is not straight forward 
to map these two sets of parameters. Thus, one has to rely on global topological 
behaviour of the flow solutions and whether they allow multiple sonic points or not. 
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Figure 4.13: Example of variation of the outer sonic point energy Eo~,t as a function 
of the inner sonic point energy Ein when the flow has a shock, an  = 0.1 and 
)~(xi~) = 1.50 for the topmost curve. Curves have an increment of AA(xi~) = 0.02 
while going towards the bottom. 

In a viscous dissipative system, it is important to identify the parameter space 
that  would allow one to have the inner sonic point energy to be larger compared 
with the outer sonic point energy. In Fig. 4.13, we plot inner sonic point energy 
(Ei,~) along X-axis and the outer sonic point energy (Eo~t) along the Y-axis for a set 
of inner sonic point angular momentum ()~i~) when accretion flow passes through 
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shock. Fig. 4.13 shows a linear variation of these two energies and the nature of this 
variation strongly depends on Aim (Chakrabarti & Das 2004). It is not unwarranted 
to assume that a similar linear variation will continue for shock-free solutions also 
at least for the low viscosity limit. Therefore, we extrapolate this variation for the 
shock-free solution with the lower values of Eim till when Eo~t ~ 0 for the same Aim 
keeping in mind that the accretion flow topology passing through the inner sonic 
point must remain closed (Fig. 4.6a-b). Accordingly, we quantify the cut-off Cin 
for different Aim following the similar procedure mentioned above and identify the 
region in the parameter space where the accretion flow does possess multiple saddle 
type sonic points. 
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Figure 4.14: Division of the parameter space (Ei~, Ai~) for a viscosity parameter 
(an = 0.01) on the basis of number of sonic points. Region separated by the dotted 
line has more than one X-type (saddle type) sonic points and flows in this region 
form standing shocks. The region surrounded by the dashed curve has more than 
one X-type sonic points but the Rankine-Hugoniot conditions are not satisfied here. 

We proceed further to divide the parameter space (Sire, Aim) for the viscosity 
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parameter an = 0.01 on the basis of the number of sonic points. Such a plot is 
presented in Fig. 4.14 (Chakrabarti & Das 2004). A flow with initial parameters 
chosen from a region separated by the boundary ACD in the parameter space has 
multiple saddle type sonic points and also forms a shock as RHCs are satisfied there. 
A flow with parameters from the region ABC has more than one X-type sonic points 
but RHCs are not satisfied here. From our previous experience with non-dissipating 
flows, we predict that those solutions with multiple sonic points which do not form 
standing shocks must be responsible for producing oscillating shocks. This region 
becomes bigger when the viscosity parameter is reduced. Rest of the parameter space 
bounded by the solid curve gives solutions with closed topology passing through the 
inner sonic point. 

4.1.6 Parameter space for all possible solutions 

In Fig. 4.15, we present at a glance classification of the parameter space in the 
energy-angular momentum (Gin,)~in) plane in terms different accretion flow topolo- 
gies (small box) for a~ = 0.01 (Chakrabarti & Das 2004). As before, solid boundary 
separates the region of the parameter space for the closed topology passing through 
the inner sonic point. Further classification is made depending on the nature of 
the solution topologies and is indicated by dotted, dashed and dot-dashed curves. 
Examples of solution topologies with initial parameters taken from different regions 
(marked) of the parameter space are plotted in seven small boxes (marked). All the 
small boxes depict Mach number variation as a function of the logarithmic radial 
distance. The box labeled S shows an accretion flow solution which passes through 
a shock. Dotted vertical line with an arrow indicates the location of the standing 
shock. The solution drawn in the box marked OS represents an accretion flow which 
has multiple sonic points but does not satisfy RHCs when the flow becomes super- 
sonic. From our earlier experience with an inviscid flow, this topology is expected to 
give rise to an oscillating shock solution. The box marked OAC shows a new type of 
solution topology having multiple sonic points. One branch of the topology is closed 
and the other branch is open. This kind of solution is available in a small region of 
the parameter space shown in the inset on the upper-right corner. Solution inside 
the CI1 box has closed topology (inner spiral going anti-clockwise) having only one 
saddle type sonic point and this kind of solution belongs to a large region of the pa- 
rameter space with relatively lower angular momentum region. The box CI2 shows 
a similar result as CI1 but here the nature of the topology is different (inner spiral 
going clockwise) and this type of solution exists at higher angular momentum re- 
gion. The box labeled I* represents an accretion flow solution which passes through 
only the inner sonic point. This solution could be for an accretion or a wind and 
the initial parameters for this type of topology belongs to the region indicated by 
I* in the parameter space. Topology with parameters taken from O* region of the 
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Figure 4.15: Division of the parameter space (C/n, Ain) (marked) for a viscosity 
parameter (an = 0.01) on the basis of solution topologies shown in boxes (marked). 
Details of the figure are described inside the text. 

parameter space is also plotted in the box marked O*. An accretion flow solution 
with these parameters passes only through the outer sonic point before falling onto 
the black hole (similar to a Bondi flow). 

An important  property of the shock wave is its strength which may be defined 
as the ratio of the post-shock Mach number to the pre-shock Mach number. In fact, 
shock strength determines the jump in temperature and density at the shock and 
thus it may be worthwhile to study the shock strength as well. For instance, in Fig. 
4.16, we draw the variation of shock strength as a function of viscosity parameter 
an  for xi~ - 2.795 and Ai~ -- 1.65 (Chakrabarti & Das 2004). At the lower viscosity 
limit, shock strength is relatively weak and it increases smoothly with the gradual 
increase of the viscosity parameter. Indeed, there is a cut off at a critical viscosity 
limit where the shock ceases to exist for the chosen set of initial flow parameters. 
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Figure 4.16: Variation of the ratio of the pre-shock to post-shock Mach numbers as 
a function of viscosity parameters for a fixed set of initial parameters (xi~ = 2.795 
and A~ = 1.65). The shock disappears beyond the critical parameter c~n ~ 0.017. 

4.1.7 Dependence of the critical viscosity parameter 

We have already mentioned in our earlier discussion that  there must be a critical 
viscosity parameter for which the flow topology must change its nature from an 
open topology to a closed one. In our present study, we compute the nature of 
this critical viscosity (Chakrabarti  & Das 2004). Here, we find that  there are in 
effect of two critical viscosity parameters: one at the boundary which separates 
the closed topology from the open topology while the other splits region of closed 
topology in terms of whether shocks can form or not. Not surprisingly, these are 
inflow parameter dependent, and thus do not have universal values. Nevertheless, 
these are useful, since they give us insights into the cases in which shocks may be 
possible. 

In Fig. 4.17, we present the variation of the critical viscosity parameter as a 
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Figure 4.17: Critical viscosities separating standing from oscillating shocks and 
closed topologies from open topologies. 

function of angular momentum at the inner sonic point. However, different regions 
of special interest are marked in the Figure. The vertical dotted line indicates the 
lower boundary of the angular momentum for the closed topology passing through 
the inner sonic point and notice that an universal lower boundary in angular mo- 
mentum exist irrespective to the any values of viscosity parameter. Notice that 
shocks are formed even in the lower angular momentum domain for higher viscosity 
parameter (an). This is not surprising according to our previous discussion (Fig. 
4.3). Subsequently, shock disappears irrespective of any value of viscosity parameter 
at the higher angular momentum range. 

4.1.8 Dependence of the shock location on viscosity parameter 

We have already hinted that  shock ceases to exist when viscosity is more than a 
critical value. For instance, in Fig. 4.18 (a-b), we show the dependence of shock 
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Figure 4.18: Variation of shock location with viscosity parameter and (a) inner 
sonic point and (b) specific angular momentum. Shock location always decreases 
with increase of viscosity till the critical viscosity parameter is reached beyond which 
the shock ceases to exist. 

location on the viscosity parameter when the other two free parameters, i.e., the 
shock location (xs) and angular momentum (Ain) are kept fixed (Chakrabarti & 
Das 2004). In Fig. 4.18a, variation with the inner sonic point is presented when 
the angular momentum is kept fixed, while in Fig. 4.18b, the variation with the 
angular momentum is plotted keeping the inner sonic point fixed. In all the cases, 
the shock location is reduced with the increase in viscosity parameter till the critical 
viscosity parameter is reached beyond which the shocks disappear. This is significant 
because in an accretion flow, when viscosity is increased, the accretion rate is also 
increased and a black hole candidate goes from spectrally hard to spectrally soft 
state (CT95). Thus if the shock oscillation is indeed the cause of quasi-periodic 
oscillations (QPOs), then the frequency should increase with the accretion rate and 
finally as the shock ceases to exist, the QPOs also should disappear in softer states. 
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Observation of such features could be used to verify if the shock oscillations may be 
the prime cause of the QPOs in black hole candidates. 

4.2 Effects  of bremss trah lung  cool ing on a v i scous  accret ion  
flow 

In w we have investigatect the basic properties of viscous accretion flow around 
the black holes. In the present Section, we include both the viscous heating and 
bremsstrahlung cooling together as energy dissipative processes and carry on the 
similar study in a comprehensive way as presented in the earlier Section. Indeed, 
the study of the accretion flow problem in presence of heating and cooling processes, 
which usually give rise to opposite contributions to the total energy of the flow, 
present more realistic and sophisticated theoretical results that successfully explain 
the observational evidences. In fact, viscosity alone transports angular momentum 
and increases the possibility of shock formation at a larger distance from the black 
hole while cooling reduces the post-shock pressure and therefore, the possibility of 
shock formation becomes low. Moreover, various cooling processes will and should 
change the parameter space in which shocks form. In more recent years, it has 
become evident that the standing shocks may be very important in explaining the 
spectral properties of black hole candidates (CT95) as the post-shock region behaves 
as the boundary layer where accreting matter dissipates its thermal energy and 
generates hard X-ray by inverse Comptonization process. This region is also found 
to be responsible to produce relativistic outflows. Furthermore, numerical simulation 
indicates that the shocks may be oscillating at nearby regions of the parameter space 
in presence of cooling effects (MSC96) and the shock oscillations can also explain 
intricate properties of quasi-periodic oscillations (CM00). 

4.2.1 Model equations 

As far as the cooling processes are concerned, they could be due to various physi- 
cal reasons, such as thermal and non-thermal bremsstrahlung, synchrotron, Comp- 
ionization etc. For simplicity, we assume that Comptonization enhances the injected 
photon intensity due to bremsstrahlung by a factor of 4 which can take any value 
from I to ~ few x i00 depending on the availability of soft photons (CT95). In 
other words, we use ~ as a parameter to represent the net cooling. 

In order to study the effect of cooling mechanism in the accretion flow, we 
start with the same model as mentioned in w and add a cooling term in the 
entropy equation (Das ~ Chakrabarti 2004). The present work is done around a 
Schwarzschild black hole by using pseudo-Newtonian potential (PW80). We use a 
similar viscosity prescription as used in C96a. Thus, all the governing equations re- 
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main exactly identical as before except the entropy equation. The modified entropy 
generation equation is thus given by, 

E~)T ~x = Q+ - Q- , (4.14) 

where, s is the entropy density of the flow, T is the local temperature, Q+ and Q- 
represent the heat gained and lost by the flow respectively. 

4.2.2 Sonic point analysis 

We study the sonic point analysis for the dissipative accretion flow system following 
the general approach where gradient of radial velocity is expressed in terms of local 
flow variables. 

For an accretion flow, entropy Eq. (4.14) can be simplified as (Das & Chakrabarti 
2004), 

~ [~dP 7Pdp]  Q - - Q +  
7 - 1 dx -~ ~ - -ph - C - H, (4.15) 

and then H(=  Q+/ph) takes the form, 

H = A x ( g J  + 7~ 2) dr2 (4.16) 
dx ' 

where, the quantities have their usual meaning as mentioned in w In presence 
of viscous heating, we simultaneously use Comptonization of the bremsstrahlung 
radiation as the physical cooling process. Therefore, the non-dimensional cooling 
term C = Cbr (= Q-/ph)  may be written as, 

(B (4.17) 
Cbr  = ~ x 3 / 2 (  x _ 1)' 

with 
B = 1.4 • 10 -27 (#mp] 1/2 /~/ 1 (4.18) 

\ 2k ] 2~rm2p 2GcMBH' 

where, ~ is the cooling enhancement factor, # is the mean molecular weight, mp 
is the mass of the proton and k is the Boltzmann constant respectively (Das & 
Chakrabarti 2004). 

Sonic point condition 

We use the governing Eqs. 4.1(a-c) and Eq. 4.14 to obtain the sonic point conditions 
following the general procedure (C89a). Therefore, the gradient of radial velocity of 
the accreted matter may be obtained as, 
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dO N 
dx D' 

(4.19) 

where the numerator N is 

N = 
oqzA(a2 9 + '702) 2 

7x 

i ] [  
x-3 2(x - 1) 2 2~ + 7a2) + ('7(0,_1) + 1)a2. 

02a2(5x - 3) a n g A a 2 ( 5 x  - 3) (a2g + 702) 2AAO(a2g + "702) B 
x(-y-  l )(x - 1) - 7x(x- 1) + x 2 + xa/2(x - 1) 

and the denominator D is, 
(4.20a) 

2a20 (9' + 1) 03 V 
D -  ( 7 -  1) (7 - 1) Aa,O(a2g+702) [ ( 2 g -  1 ) -  ~-~j.a2gl (4.20b) 

Note that, Eq. 4.20b is exactly identical with Eq. 4.8 as newly added cooling term 
does not change the radial velocity gradient in Eq. (4.19) as well (Das & Chakrabarti 
2004). 

Since accreted flow is smooth everywhere, both the numerator and the denomi- 
nator must vanish simultaneously at the sonic point. Setting D = 0, one can obtain 
the expression for the Mach Number M(xc) at the sonic point which is exactly iden- 
tical to Eq. 4.9 calculated in w In the weak viscosity limit it, Mach number at 
the sonic point reduces to the result obtained in C89a as, 

/ 2 
M(x~) = ~/ for an --+ 0. (4.21) 

7 + 1  V 

Setting N = 0, we get an algebraic equation for sound speed at the sonic point 
which is given by, 

F(Cc, Ac, xc) = ~4a4(x) -F •a3(x) -F Ca2(x) + V = O, (4.22) 

where, 

J4 ~ 
"anA{g + 7M2} 2 anA(5x -.3){g + ~yM:} M e ( 5 x  - 3) + + 

7x 7 x ( x -  1) x ( ' y -  1 ) ( x -  1) 
, (4.23a) 

B = 2AAM(g + "7M 2) (4.23b) 
X 2 

[A 2 1 ] [  (4.23c) C = x3 2(x 1) 2 2angA(g + "7M 2) + ('7 + 1) M2] 
- - j, 
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and 
~B (4.23d) 

I )  - x312(x _ 1)" 

We use sonic point condition (Eq. 4.21) in Eq. 4.22 to calculate the sound speed 
at the sonic point following the similar method described by DCC01 for the non- 
dissipative system and also expect the similar result if we restrict ourself only in 
the weak viscosity and weak. cooling limit. Below, we study the nature of the sonic 
points in detail. 
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Figure 4.19: Variation of specific angular momentum (Ac) as a function of the loga- 
rithmic sonic point location [log(xc)] for the viscosity parameter (a) an = 0.1 (left 
panel) and (b) an = 0.5 (right panel). Long-short dashed curve in the upper part 
represents the Keplerian angular momentum distribution. As before, solid curves 
represent the saddle type sonic points, dotted curves represent the nodal type sonic 
points and the short-dashed curves are for the spiral type sonic points. 

Nature of the sonic points 

In w we discussed in detail the nature of the sonic points for viscous transonic 
flows. In fact, the nature of sonic points mainly depends on the values of velocity 
gradients at the sonic points. Presently, we study the effect of bremsstrahlung 
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cooling on the nature of sonic points when viscosity is sufficiently effective into the 
flow (Das & Chakrabarti 2004). 

In Fig. 4.19a, the variation of specific angular momentum (Ac) as a function of 
the logarithmic sonic point location, log(xc), is shown for a given viscosity parameter 
an = 0.i and dimensionless accretion rate (made dimensionless by the Eddington 
rate) rh -- 1.0 when specific energy at the sonic points is chosen as Ec -- 0.013 
(Das ~ Chakrabarti 2004).. A set of 4 (Eq. 4.17) values are used while drawing 
the different curves. From the bottom curve to the top, 4 = I, 20, 40, 60, 80 
and i00 respectively. In Fig. 4.19b, we plot the same curve for an -- 0.5 when 
other parameters remain unchanged. The upper long-dashed curve corresponds to 
the Keplerian angular momentum distribution which is determined only by the flow 
geometry. Solid part of the curves are drawn for the saddle type sonic points while 
dotted curves represent the nodal type sonic points and the short-dashed curves 
are for the spiral type sonic points. Indeed, at a higher viscosity limit, the number 
of sonic points becomes three even with a very low angular momentum. For no 
Comptonization (lowermost curve), the viscous heating is so strong that only the 
outermost sonic point (solid part of the curve at large radius) exists. Only a large 
degree of cooling can compensate the viscous heating to bring back the innermost 
sonic point. Eventually, the matter becomes Keplerian passing through the inner 
sonic point. From Fig. 4.19(a-b), it is clear that the sonic point occurs at an 
angular momentum below Keplerian value, i.e., flow angular momentum is always 
sub-Keplerian in nature. For lower degree of cooling (small 4 value) at the sonic 
point, an accretion flow contains all the three types of sonic points in a systematic 
order: saddle -- nodal --spiral -- nodal -- saddle for monotonic increase of location 
of sonic points. With the increase of the value of 4, the region of spiral type sonic 
points gradually decreases and finally it is replaced by the nodal type sonic points 
though multiple sonic points still exist. For further increase of 4, all the nodal type 
sonic points also disappear and they are replaced by saddle type sonic points. More 
importantly, sonic points can form even for the super-Keplerian angular momentum 
when effect of cooling is sufficiently strong. We shall discuss this issue later. 

In our further study, the transonic nature of the flow can be investigated from 
another point of view where a series of curves are plotted for a set of different specific 
energy (Co) (marked) at the sonic point. In Fig. 4.20, such a plot is presented where 
angular momentum (Ac) at the sonic point is expressed as a function of logarith- 
mic sonic point location (Das & Chakrabarti 2004). The long-short dashed curve is 
drawn for the Keplerian angular momentum distribution. Solid, dashed and dotted 
curves denote similar meaning as in Fig. 4.19. Note that, negative energies corre- 
spond to two sonic points where the inner one is saddle type and the furthest one 
represent the spiral type. For each energy, two curves are drawn. The thick curve is 
drawn when both the heating and cooling are included while the thin curve is drawn 
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Figure 4.20: Variation of the specific angular momentum (A~) at the sonic point (xr 
as a function of the specific energy (C~) of the flow. For each energy, two curves are 
drawn. The thick curves are drawn for the cases when both the heating and cooling 
are included while the thin curves are drawn when only the heating is included. For 
negative energies, there are only two sonic points. 

when cooling effect is ignored. An important point is that the character of solution 
can be changed by incorporating the cooling effect. For instance, as an example, the 
solution for Cc -- 0.019 with heating and cooling has no spiral or nodal sonic points. 
But when the cooling is turned off, the saddle type sonic point becomes nodal type. 

We continue the study of nature of sonic points in Fig. 4.21(a-b) by plotting the 
specific energy at the sonic point ($c) as a function of location of sonic point (xc) for 
a set of cooling factors (~) (Das & Chakrabarti 2004). In the left panel we present 
the results for low viscosity (C~n -- 0.i) while in the right panel, high viscosity 
(C~n -- 0.5) is used. In both the figures, the other parameters are: Ain -- 1.65 
and rh -- I. The curves are drawn from bottom to the top for the cooling factors 

-- I, 20, 40, 60, 80, i00 and 120 respectively. Notice that three sonic points occur 
only when the specific energy is positive, i.e., for sufficiently hot Keplerian disks or 
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Figure 4.21: Variation of the specific energy ($c) at the sonic point (xc) as a function 
of the cooling rate of the flow drawn for (a) an  = 0.1 (left panel) and (b) C~H = 0.5 
(right panel). For high viscosity, the outer sonic points almost disappear. 

sub-Keplerian flows. However, outer sonic points almost disappear from the region 
close to the black hole at the high viscosity limit. 

In Fig. 4.22, we show how the number of sonic points, reduced due to vis- 
cous heating process, is recovered back with the introduction of cooling (Das 
Chakrabart i  2004). The curves are drawn, from the bottom to the top, for ~ = 
1, 20, 60, 80 100 and 140 respectively while other parameters are marked in the 
inset. Solid and dotted curves represent saddle and nodal type sonic points respec- 
tively and short-long dashed curve corresponds to the Keplerian angular momentum 
distribution. The horizontal long dashed curve denotes the critical boundary of the 
angular momentum ~cri ---- 1.1733 and cooling factor ~ = 4.2 below which multiple 
sonic points do not exist, i.e., shock is not formed in steady flows. 
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Figure 4.22: Recovery of outer sonic point points as cooling processes are introduced. 
Solid and dotted curves are for saddle and nodal type sonic points respectively. 
Parameters are marked on the plot. Long dashed curve at Ac = 1.1733 gives a 
boundary below which there are no triple sonic points. 

4.2.3 Global solution topology 

The basic criteria for the study of the shock properties demands that  flow has 
to be multi-transonic in nature. In fact, effect of viscous heating on the solution 
topology has already been presented in w In the following Section, we shall 
discuss the nature of solution topology 'in presence of both the of viscous heating 
and bremsstrahlung cooling together (Das & Chakrabarti  2004). 

In  Fig. 4.23(a-b), we investigate the modification of solution topology for dif- 
ferent cooling factors. In Fig. 4.23a, Mach number is plotted as a function of the 
logarithmic radial distance for ~ = 1, 10, 25 and 50 respectively while other param- 
eters are considered as: Xin = 2.71, Ai~ = 1.68, c~H = 0.01, rh -- 0.5. Notice that  
topology opens up with the gradual increase of cooling factor to allow the flows to 
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Figure 4.23: Solution topologies in presence of heating and cooling. In (a), the 
parameters are ~ = 1, 10, 25 and 50 respectively. Qther parameters are Xin = 2.71, 
Ai~ = 1.68, C~n = 0.01, rh = 0.5. In (b), the parameters are ~ = 1, 10, 25, 33.1, 50 
and 70 respectively. Other parameters are; xi~ = 3.5, A~ = 1.68, c~n = 0.01, 
rh = 2.0. 

enter into the black holes through the inner sonic point. In Fig. 4.23b, we present 
solution topology in six panels in which relatively higher accretion rate and higher 
inner sonic point locations are chosen. The cooling factors of our interest are con- 
sidered as: ~ -- 1, 10, 25, 33.1, 50 and 70 respectively. Other parameters are: 
xin -- 3.5,/~in = 1.68, C~H --- 0.01, rh = 0.2. Important point is that,  as the cooling is 
increased, the topologies open up similarly, but the route to opening up is different. 
For instance, the solution in the fourth panel, with ~ = 33.1 is completely new and 
intriguing. In this case, the flow has the potential to join with a Keplerian disk far 
away (with low Mach number), while at the same time, it also passes through the 
inner sonic point. But it has multi-valued solution: there are two Mach numbers 
at a given radial distance in some region. We conjecture that  this type of solution 
should be unstable and would cause non-steady accretion. 



Chapter 4. Dissipative Accretion Flow 129 

Entropy 

0.3 

0.25 

0.2 

0,15 

0.1 

0.05 

0 

........ iiiii  
J 

2.2 

Figure 4.24: Three-dimensional plot of the second panel (( -- 10) of Fig. 5a in which 
the specific entropy is also plotted as it varies along the flow. The boxes represent 
the pseudo-intersection point of that panel at around M ~ 0.5. The two branches 
have different entropies. 

In Fig. 4.23(a-b), all the closed topologies show 'multiple crossings' very similar 
to what was found in the study of spiral shocks (Chakrabarti 1990c). Actually, in 
dissipative system, since entropy is changing along the flow, the two dimensional 
plot of phase space diagram in Fig. 4.23(a-b) is slightly misleading. We resolve this 
illusion in Fig. 4.24 where we show a 3-dimensional plot of the second panel (~ -- 10) 
of Fig. 4.23a in which the specific entropy is also plotted as it varies along the flow 
(Das & Chakrabarti 2004). More importantly, this diagram shows that at the true 
sonic point, the specific entropy is exactly identical in both the incoming (solid) and 
the outgoing (dotted) branches. But at the 'intersection' (at around M ~ 0.5) in 
2-dimensional plot marked by two squares, the entropies are completely different. 
Thus, there is no 'sonic point' around M ~ 0.5. 
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Figure 4.25: Region of the parameter space in which the solution passing through 
the inner sonic point contains a closed spiraling topology. The solid, dashed, dot- 
dashed and dot-long-dashed regions are plotted for cooling parameter 1, 10, 30, and 
50 respectively. Other parameters are an -- 0.01 and rh = 0.1. 

4.2.4 Parameter  space description 

As before, we classify the region of parameter space spanned by the specific angular 
momentum ()~) and energy (E~n) at the sonic point. In Fig. 4.25, such classifications 
of parameter space are presented for various cooling factors (Das & Chakrabarti 
2004). For instance, the parameter space is separated for the solutions passing 
through the inner sonic point containing a closed spiraling topology as in panel 1 
of Fig. 4.23a. In particular, such solutions indicate that a stationary or oscillatory 
shock may form depending on whether the Rankine-Hugoniot relation is satisfied 
(Landau & Lifshitz 1959) or not. The solid, dashed, dot-dashed and dot-long-dashed 
regions are for cooling parameter 1, 10, 30, and 50 respectively. In fact, with the 
increase of the cooling factor, the region shrinks and becomes smaller and smaller. 
This indicates that there exists a critical cooling parameter (~cr~), beyond which 
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a flow will cease to have mult iple sonic points. Other  parameters  are chosen as 
(~ri -- 0.01 and da -- 0.1. When  the viscosity and cooling are reduced to zero, this 
region merges exactly to the corresponding region in C894. 

3 

2 

1 

I ~ I , I , I , 0 I 
0.5 1 1.5 2 0.5 

log(x) 
4 

3 

1 

0 ~ 
0.5 1.5 2 2.5 3 

log(x) 

1 1.5 2 2.5 

log(x) 

Figure 4.26: A few complete solutions which are drawn with the parameters  at 
Aim = 1.7, an  = 0.05, rh = 0.2 and ~ = 5 and only the inner sonic point is varied: 
(a) Xin = 2 .545,  (b) ---- 2 .55 and (c) xi~ = 2.555. ' The corresponding shock 
locations are (a) x8 -- 48.199, (b) xs -- 27.8854 and (c) x8 = 18.6445 respectively. 
Vertical dashed lines show the shock transitions. 

It is customary to investigate a complete flow solution where shocks are in- 
evitable. Accordingly, in Fig. 4.26(a-c), we present a few shock solutions which are 
drawn with the parameters  at Ain = 1.7, c~n = 0.05, rh = 0.2 and ~ = 5 and only 
the  inner sonic point  is varied: (a) xi~ = 2.545, (b) Xin = 2.55 and (c) xi,~ = 2.555 
(Das & Chakrabar t i  2004). The corresponding shock locations are obtained as (a) 
x8 = 48.199, (b) x8 = 27.8854 and (c) x8 = 18.6445 respectively. Vertical dot ted  ar- 
rows indicate the discontinuous shock transi t ion which connects two solutions: one 
is passing through the inner sonic point and the other is passing through the outer  
sonic point.  The  spiral loop through the inner sonic point  rapidly shrinks with the 
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increase in the sonic point location and shock location also comes closer. This shows 
that even though the shock location may change by orders of magnitude, the inner 
sonic point virtually remains at the same place. 
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Figure 4.27: Division of the parameter space according to the solution topologies 
shown in the inset. Details of the figure are described inside the text. 

In Fig. 4.27, we show the sub-division of the parameter space in terms of na- 
ture of solution topologies for a viscous flow once again where the cooling effect is 
included (Das & Chakrabarti 2004). A similar set of topologies seen in w are 
presented along with a new topology (Fig. 4.23b) which occurs when the cooling 
factor is especially strong. Indeed, the sub-divisions of the parameter space are la- 
beled and the corresponding topologies are drawn in the bottom left. Meanwhile, 
for strong cooling effect, the curve ,ABC is further sub-divided and a new topology 
with parameters chosen from a region very close to the curve ,ABC occurs which is 
plotted in the box C13. 

We continue our investigation to identify the possible modification of the pa- 
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rameter space for shock formation when cooling is enhanced. Accordingly, in Figs. 
4.28(a-b), such a parameter space plot is presented. In Fig. 4.28a, an  = 0.01 is 
chosen and the cooling factors are r = 0.01 (dot-dashed), 0.1 (long-dashed) and 1 
(solid) respectively (Das & Chakrabarti  2004). Note that,  in particular, the region 
of the parameter  space shifts to include negative energy regions as well due to the 
enhancement of cooling factor (for instance, for an  -- 0 and r = 0, the parameter 
space contains only positive energy). However, in Fig. 4.28b, viscosity parameter is 
increased to an  -- 0.05 which causes a general shrinkage in the parameter space at 
its own coast. In this particular plot, the cooling parameters are chosen as ~ = 1 
(dot-dashed), 5 (long-dashed) and 10 (solid) respectively. Effectively the parameter 
space further shrinks drastically when cooling factor is enhanced. 

4.2.5 Sonic points for super-Keplerian flows? 
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Figure 4.29: Example of parameters which produce transonic solutions with super- 
Keplerian angular momentum. The dot-dashed curve is the Keplerian distribution. 
Solid curves, from the bottom to the top, are for r -- 400,500 and 600 respectively. 

In the literature, it is generally believed that  originally Keplerian matter  at the 
outer edge of the disk becomes sub-Keplerian while crossing the sonic points before 
entering into the black hole horizon. However, this generic picture may be violated 
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when the cooling process is very efficient (Das & Chakrabarti 2004). In Fig. 4.29, 
we show that when ~ is very high, of the order of a few hundreds, the sonic point 
may have angular momentum above the Keplerian distribution (dotted curve). In 
particular, sonic point in super-Keplerian flow is formed when it is located closed to 
the black hole horizon. The implication of this is not obvious. Does it mean that 
very cold flow can be Keplerian or super-Keplerian throughout its journey? If so, 
can it spin up the black hole faster that what is presumed so far? The discussion 
about this issue is beyond tl~e scope of this thesis. 
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Figure 4.30: The variation of the critical cooling parameter as a function of the 
specific angular momentum at the inner sonic point for two different viscosity pa- 
rameters. Solid curve is for an = 0.01 and the dashed curve is for an = 0.05. The 
region below the curve contains topologies which are closed and therefore stand- 
ing or oscillating shocks could be possible while the region above the curve allows 
solutions with open topologies. 

4.2.6 Critical cooling and sub-division of the parameter space 

In the previous discussion, we have already pointed out that cooling and heating 
processes have opposite effects in deciding the solution topologies, but one can not 
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exactly compensate the other effect. When the cooling is enhanced for a given vis- 
cosity parameter,  the possibility of shock formation is eventually reduced (Das 
Chakrabart i  2004). This is shown in Fig. 4.30, where the critical cooling parameter 

= ~cri is plotted against the specific angular momentum for two different viscosity 
parameters. Solid curve is for an  = 0.01 and the dashed curve is for an  = 0.05. 
All possible inner sonic points are considered. The region below the curve contains 
topologies which are closed and therefore, standing or oscillating shocks could be 
possible while the region above the curve allows solutions with open topologies. No- 
tice that  for smaller Aim, the critical cooling factor is smaller. This is expected since 
the possibility of shock formation is enhanced with larger Ain in general. When C~H 
is higher ~cri is lower. This indicates that  general reduction of the parameter space 
due to higher viscosity (Chakrabarti  & Das 2004) which is not totally compensated 
for by cooling effects. 
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4.3 Effects of synchrotron cooling on viscous accretion flow 

Several at tempts have been made for further development of the theory of accretion 
disk to emphasize the more realistic physical processes including angular momentum, 
heating and cooling effects. Unfortunately, no theoretical description of accretion 
flow including synchrotron cooling is presented in the  literature so far. Similar to 
bremsstrahlung cooling, synchrotron cooling also has the same status on the basis 
of energy dissipation processes but technically the later one has stronger effect than 
the former one on the transonic accretion flow. In the following Section we briefly 
address this issue. 

4.3.1 Basic equations and sonic point conditions 

The effects of synchrotron cooling is well understood when it is considered as an 
isolated cooling process similar to bremsstrahlung cooling in a viscous transonic 
accretion flow. The magnetic field is obtained by equating the magnetic pressure to 
a certain percentage of the thermal pressure of the gas under consideration and is 
given by, 

S/ -pkT (4.24) 
V , 

where, p is the density of the flow, k is the Boltzmann constant, T is the flow 
temperature, # is the mean molecular weight and mp is the mass of the proton 
respectively. Here, ~ is a non-dimensional constant factor. In an electron-proton 
plasma, we use the equipartition magnetic field (Eq. 4.24) to account for the non- 
dimensional synchrotron cooling effect which is obtained in a convenient form as 
(Shapiro & Teukolsky 1983): 

~ S a 5  (2.25a) 
Csy = 0x3 /2 (  x _ 1)' 

with 

M'rnp#2e 4 1 
S = 7.542 x (2.25b) 

m4,.,/5/2 2GMsHC 3' 

where, 0 denotes the radial velocity, x is the radial distance and a is the flow 
sound speed. Here, J~/, e and me represent the accretion rate, electronic charge 
and mass of the electron respectively. The factor ~ controls the cooling effect since 
certain percentage of equipartition is considered for computing the stray magnetic 
field inside the disk. Therefore, it is useful to treat/~ as an input parameter while 
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solving the present problem. Indeed, we incorporate the newly specified cooling 
process in the entropy equation while treating it at the same footing similar to other 
dissipation processes. Thus, the flow experiences combined cooling effects which 
come from the individual contribution of bremsstrahlung and synchrotron cooling 
processes (C = Cbr + Csy). However, following the standard sonic point analysis 
one can easily compute the sonic point conditions for a transonic flow where most 
of the major energy dissipat!ve processes, namely, viscous heating, bremsstrahlung 
and synchrotron cooling are included. Since synchrotron cooling does not explicitly 
depends on the gradient of radial velocity (dO/dx), one of the sonic point conditions 
which usually obtained by vanishing the denominator of dvg/dx will be identical 
to Eq. (4.9). On the other extent, when numerator vanishes, we get an algebraic 
equation for the sound speed at the sonic point which is given by, 

F(Ec, Ac, xc) = Aah(x)+ Ba4(x)+ Ca3(x) + 7:)a2(x)+ G = 0, 

where, 

(4.26) 

,,4 -- /~S (4.26a) 
x 3 / 2 ( x  - 1)' 

anA(hx -- 3){g + -yM~} M2(hx - 3) anA{g + 'TM2} 2 + + 

7x 7 x ( x -  1) x ( 7 -  1 ) ( x -  1) 
, (4.26b) 

C = 2.~AM(g + 7M 2) (4.26c) 
X 2 

and 

1][ 
~5 2(x - 1) 2 2angA(g + 7M 2) + (7(7_ + 1)M2"1) (4.26d) 

_ 4B (4.26e) 
x 3 / 2 ( x  - 1)" 

The nature of sonic points could be easily understood with the sonic point anal- 
ysis. In fact, one can illustrate the detail properties of sonic point with the extensive 
study of Eqs. (4.26) when the flow parameters are known. A discussion of sonic 
point analysis have already been presented in the earlier Sections and thus will not 
be repeated here once again. 
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4.3.2 Shock solutions and its properties 

In the last two decades, improvement of accretion disk physics advances rapidly. In 
the present thesis, this features repeatedly highlighted since we gradually include 
more realistic physical processes that  are supposed to be effective inside the disk. 
The last but not the least, such process is the synchrotron cooling process, since 
magnetic filed is undoubtedly existed in the accretion disk though the nature of 
such magnetic field is still nbt well known. However, as a first step we are equating 
the magnetic energy density with the ideal gas pressure following the equipartition 
technique and incorporate the synchrotron cooling effect in the flow solution. Note 
that  for the transonic property of the flow, a fraction of the ideal gas pressure is 
used at the equipartition and this is controlled by a non-dimensional factor/~ which 
is usually treated as an input parameter. 
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Figure 4.31: Plot of shock location against synchrotron cooling factor ~ for a set of inner 
sonic point locations for an = 0.001, rh = 0.1 and ),~n = 1.70. 

In what follows, the outflows or jets, canonical spectrum, quasi-periodic oscilla- 
tion of the X-ray etc. are successfully explained by the TCAF model and all these 
features strongly depend on the various properties of the shock wave. However, it 
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Figure 4.32: Plot of shock strength variation as a function of/~ for the same set of 
parameters used in Fig 4.31. 

is necessary to understand the effect of synchrotron cooling on the shock proper- 
ties in a viscous transonic flow, since the presence of magnetic field is inevitable 
inside the disk. In Fig. 4.31, we present the variation of shock locations with the 
synchrotron cooling parameter/~ for a given angular momentum at the inner sonic 
point ~in = 1.70. Here, we set an  = 0.001 and rh = 0.1 (measured in Eddington 
unit). The individual curve is drawn for fixed inner sonic point locations marked at 
the top of the line. Notice that  at a giyen inner sonic point, shock forms only for 
a particular range of/~ and this range of/~ gradually decreases with the monotonic 
increase of sonic point location. It is clear from the figure that  when the inner 
sonicpoint  location increases, the flow suffers shock transition for relatively higher 
cooling factor/~. In addition, the upper limit of the shock location decreases with 
the increase of the sonic point location whereas the lower limit of the shock location 
is generally insensitive with the inner sonic point location. This indicates that  the 
cooling factor/~ has a critical value for shock and beyond this critical value the flow 
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ceases to have shock when the rest of the parameters are kept fixed. 
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Figure 4.33: Variation of shock location as specific energy at the inner sonic point 
is changed for a set of/~. The rest of the initial parameters are unchanged. 

An important  property of the shock waves is it's compression ratio that  measures 
the strength of the shock. Compression ratio (R) is defined as the ratio of density at 
the pre-shock to post-shock flow. In Fig. 4.32, we plotted the variation of compres- 
sion ratio with the cooling factor/~ for given set of inner sonic point locations. Same 
set of initial parameters as in Fig. 4.31 are used here. At the top of the curves, the 
locations of the inner sonic points are marked. The Figure shows that  strong shocks 
(R ~ 4) are formed for a large region of the cooling factor ~. Therefore, a significant 
amount of outflow and jet is expected to produce even when the synchrotron cooling 
is effective in the accretion system. 

In Fig. 4.33, we show the variation of shock locations as a function of specific 
energy (tin) at the inner sonic point when the synchrotron cooling is turned on 
inside the flow. Separate lines are plotted for a fixed value of cooling factor starting 
from ~ = 1.0 x 10 -07 (rightmost) to/~ = 1.21 x 10 -05 (leftmost) with an interval 
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Figure 4.34: Variation of shock strength with specific energy at the inner sonic point 
for the same set of initial parameters used in Fig. 4.31. 

of A~ = 1.0 • 10 -~ With the gradual increase of cooling factor (/~), upper limit 
of the shock location proceeds towards the black hole horizon and finally disappear 
when ~ exceeds its critical value. Shocks are formed even for negative energy at 
the inner sonic point (though a shocked flow is supposed to have a positive energy) 
indicates that  due to the cooling, the flow looses significant amount of energy while 
falling towards the black hole. 

In Fig. 4.34, we draw the variation of the compression ratio (R) as a function of 
specific energy (gin) at the inner sonic point for the same set of initial parameters 
used in Fig. 4.33. Different curves are drawn for different 13 ranging from /~ - 
1 .0•  -07 (rightmost) to/~ = 1.21 • 10 -05 (leftmost) with an interval of A/~ = 
1.0 • 10 -~ Fig. 4.34 clearly shows that  the upper and lower limit of compression 
ratio monotonically decrease for the gradual increase of the synchrotron cooling 
factor (8) and finally compression ratio merges to the intermediate value (R ~ 3.5) 
upto a critical cooling factor beyond which shock disappear. 



Chapter 5 

Conclus ions  and Discuss ions  

In the introduction, we have pointed out that the present thesis illustrates the de- 
velopment of accretion disk physics right from the beginning. We started with a 
brief introduction of 'compact objects' and also presented a simple classifications of 
such objects based on their mass limit. We mentioned the importance of accretion 
process around a compact object and pointed out that this process is believed to 
be the possible source of power supply for high luminous celestial objects like active 
galactic nuclei, quasars, micro-quasars etc. We identified the extreme limits of ef- 
ficiency of accretion processes around a rotating and non-rotating black holes. We 
discussed the historical development of accretion process in w In this Section, 
first, we presented spherical accretion model in both the Newtonian and general 
relativistic approach. Second, to avoid complexity, we studied accretion processes 
in a strong gravitational field by considering pseudo-Newtonian potential which 
successfully mimics the space-time geometry of a Schwarzschild black hole. A dis- 
cussion of this potential was presented in w We pointed out that black hole 
accretion is always transonic independent to the nature of central potential under 
consideration. We stressed that spherical accretion of interstellar gas gives minimal 
contribution of emitted radiation and can not be treated as a most general accre- 
tion disk model. In w we proceeded further for the improvement of the theory 
of accretion physics considering disk accretion. This Section started with a path 
breaking work of accretion process where a useful description of thin accretion disk 
model, commonly known as 'Keplerian disk' is presented. This model successfully 
explains the multi-colour black body component spectrum which is observed in the 
spectra of several accretion disk in the galactic and extra-galactic system but unable 
to produce power low emission at the higher energy limit shown by most of the black 
hole candidates. More importantly, in this model, accretion disk is terminated at 
the marginally stable orbit and the inner boundary conditions are not satisfied since 
the advection of flow was completely ignored. Therefore, the basic requirement of 
the accretion process around black hole, i.e., the transonic property, is not satisfied 
in this model and we proceeded further for future development of this subject. In 
w we presented another disk model, known as the 'Thick disk' which have a 
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couple of interesting features such as the production of supercritical luminosity, ex- 
planation of rapid variability of sources, it's ability of jet collimation etc. However, 
the strong anisotropic nature of the emission properties of this model is a major 
disadvantage and this model is also dynamically as well as globally unstable due to 
non-axisymmetric perturbation. To avoid these difficulties, we launched a couple of 
advective accretion disk models which only differ from their geometrical shape. In 
w we discussed two such models--the first one is the conical flow model and the 
second is the flow of constant height. We explained the properties of the accretion 
disk using these models and showed that this flow properties strongly depends on 
the initial flow parameters. 

Chapter 2 started by giving a description of most general non-dissipative ac- 
cretion disk model where flow is supposed to be in hydrostatic equilibrium in the 
direction transverse to the radial motion. The results obtained from this model are 
the actual mathematical solutions of governing equations which depend, of course, 
on the flow parameters as well as model geometry. We showed that multiple sonic 
points are produced only for a particular range of initial flow parameters rather 
than their arbitrary values. We presented shock conditions in different limits and 
studied the nature of Rankine-Hugoniot shocks in this model for the accretion and 
the winds around a compact object. In w we mentioned that jets are originated 
only from the post shock region. In addition, we estimated the outflow rate as a 
function of compression ratio by considering a toy model. We also pointed out that 
outflows and jets are produced only in the hard state. 

In an accretion flow, the study of standing and oscillatory shocks are of great 
importance. In Chapter 3, we showed that shocl~s could be studied completely 
analytically for a non-dissipative accretion flow system. We mentioned that shock 
locations strongly depend on the initial flow parameters and they form further from 
the black hole horizon when angular momentum is increased. This demands that 
shocks are mainly centrifugal pressure supported. We identified that post-shock 
locations are the ideal place for production of hard X-rays when the soft-photons 
are processed by the hot electron of the post-shock region through the inverse- 
Comptonization process. Accordingly, the spectral states and the time dependent 
behaviour of the hard X-rays are directly related to nature of this region. In fact, 
CT95 established the steady state spectra with the post-shock region as the source 
of hot Comptonizing electrons whereas. CM00 showed that QPOs are due to the 
oscillation of this region, since only hard X-rays are seen to exhibit QPOs. Therefore, 
the above features demand that the shocks are essential ingredients of an accretion 
disk. Moreover, observationally, the present work has a great importance since the 
steady spectra, QPO frequencies, etc. are determined analytically from a few free 
physical parameters. 

In w we identified a unique relation among the polytropic indices of three 
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different models of axisymmetric accretion flow which ensures identical transonic 
properties of these models for a set of given flow parameters. We further investigated 
the shock locations using the same unique relation of polytropic indices with fixed 
flow parameters and found that shocks are also formed roughly at the same place 
in three different models. We showed that disjoint parameter space for shock with 
same value of polytropic index in three different models exhibits considerable overlap 
when the same unique relation is used. This proves that the models are virtually 
identical in nature and various disk models belong to a single parameter family, 
namely, polytropic indices. It is well known that linear and non-linear stability 
analysis and time-dependent numerical simulations are easier to perform for a flow 
of constant disk height. Therefore, once certain properties are computed in one flow 
model, it would be valid for other models also, provided that the unique relations 
of polytropic index is maintained. 

In w we analytically showed how the properties of centrifugal pressure sup- 
ported boundary layer (CENBOL) control the observed spectral behaviour and the 
outflow rate of a black hole candidate. We computed that outflow rate is strongly 
dependent on the inflow parameters. We showed analytically that in the hard 
state when the shocks are strong, the outflow rate is small but significant while 
in the very soft state when the shocks disappear due to collapse of post-shock 
pressure, the outflow rate is negligible. Similar behaviour is obtained in both the 
adiabatic and isothermal flow. In the intermediate strength, the outflow rate is 
highest which monotonically increases for gradual increase of angular momentum. 
We also presented some interesting results obtained from a realistic two-component 
flow (TCAF) model. TCAF consisting of Kepleriafi and sub-Keplerian component 
produces a significant amount of outflow. We showed that as the Keplerian rate 
is raised, the outflow rate is decreased as the compression ratio approaches unity. 
When the Keplerian rate is increased the supply of soft-photon is also increased 
which immediately cools down the post-shock region by inverse Comptonisation 
process and shock disappears. This reduces the thermal pressure drive and the 
resulting outflow rate would be negligible. 

In w we discussed various possible scenarios for the quasi-periodic ejection 
of massive bullets in SS 433 system. We mentioned that the shock oscillation due 
to inherent unsteady accretion solution may be one possible mechanism for bullet 
creation because of it's generic nature.. However, intense magnetic tension of the 
toroidal flux tubes could be responsible for the occasional flaring events. 

We demonstrated the dissipative polytropic accretion flow system in Chapter 4 
where we included various independent energy dissipative processes (heating and 
cooling) in succession. Accordingly, in w we began with a very difficult yet 
more realistic case of viscous polytropic flow. We presented a detail study of the 
parameter space for shock formation in presence of viscosity. We showed that the 
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accretion flow possesses two critical viscosity parameters that separate the region 
of parameter space into three distinct domains--in the first domain, the flow is 
Bondi type, the flow belongs to the second domain has multiple sonic points but 
Rankine-Hugoniot relations are not satisfied and finally when Rankine-Hugoniot 
relations hold (shock forms). We found that these critical viscosity parameters 
are mainly inflow parameter dependent--when the specific angular momentum at 
the inner sonic point increases, critical viscosity parameters decrease gradually. We 
pointed out that shocks, standing or oscillating, may form even for very little angular 
momentum at the inner sonic point when the viscosity parameters is sufficiently high. 
We showed explicit dependence of shock properties on the flow parameters. We 
pointed out that shock location is reduced with enhancement of viscosity parameter 
for a given inner sonic point which implies the increase of QPO frequency. This result 
is consistent with the observational result since high frequency QPO is detected when 
the spectral slope becomes soften whose origin is believed to be due to an increase 
of viscosity and accretion rate (CM00). 

In w we studied the Viscous accretion flow in presence of bremsstrahlung 
cooling. We mentioned that the Mach number of the flow significantly reduces 
due to viscosity as it tends to heat the flow whereas cooling usually decrease the 
flow temperature enhances Mach number. Therefore, heating and cooling processes 
strongly affect the flow properties, namely, transonic property, shock formation and 
it's strength etc. We presented classification of parameter space in terms of presence 
of multiple sonic points and shock formation separately. We discovered a completely 
new multiple valued Mach number solution that connects matter from the outer edge 
of the disk to the black hole horizon. We showed that cooling can compensate the 
heating effect on the topological properties only to a certain extent. But, for high 
viscosity limit, no matter how much cooling is used, parameter space shrinks. We 
identified the critical cooling factor that separates the parameter space into closed 
region, one with a closed and the other with an open topology. It is believed that 
flow crossing through the sonic points are usually sub-Keplerian in nature. However, 
we found that super-Keplerian flow can even pass through the sonic point when the 
flow is strongly cooled. 

In w we presented the solutions of viscous accretion flow when both bremsstrahlung 
and synchrotron cooling are effective into the flow. We mentioned that while estimat- 
ing the stray magnetic field inside the disk one should equate the magnetic energy 
density with a few percentage of the gas pressure at equipartition for studying the 
transonic properties of the accreted flow. We found that shock forms in presence 
synchrotron cooling and it's location recedes away from the black hole horizon when 
synchrotron cooling is increased for a given inner sonic point. We also computed 
the strength of the shock and showed that it strongly depends on the synchrotron 
cooling factor. 
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Let us look into the works developed in this Thesis in proper perspective. First 
of all, it is abundantly clear that the Keplerian disk is unable to explain most of 
the observational facts. For instance, Smith et al. (2001a, 2001b) have concluded 
that they definitely required two components in the accretion flow to explain the 
observational features of a half a dozen of black holes. Therefore the study of 
the properties of the sub-Keplerian component becomes as essesntial, and perhaps 
more essential than the Keplerian component itself. Second, the Quasi-Periodic 
Oscillation (QPO) of the black hole candidates showed so much of power-modulation 
that simple models which involve vibrations of seismological activities inside the 
disk will not do. A Keplerian disk is never able to explain such QPO activities. 
The power in the variable component definitely require a dynamically oscillating 
component of the disk it self which we claim to the CENBOL. Thus the presence 
of CENBOL is required even to explain short-timescale variations. Third, before 
the development of the present picture, it was assumed that the whole disk was 
participating in forming jets and outflows. All types of self-similar models were 
developed to produce jets. However, observations showed that the jets are produced 
mostly if hard spectral states, and the jet activity is strongly related to the activities 
of the hard X-rays which are also produced at the CENBOL. So, it was natural to 
assume that CENBOL IS the origin of the jets and outflows and not the whole disk. 

The work developed in the thesis thus addresses very important and relevant 
issues of modern day black hole astrophysics. In future this work is to be evolved by 
more self-consistent work including the magnetic fields and radiative transfer and 
perhaps some numerical simulations of such disks. 



Chapter 6 

A P P E N D I X  

The procedure of obtaining an analytical solution of a quartic equation, 

q4 q_ blq3 "b b2q 2 "b b3q + b4 = 0 

is to first obtain a solution of the following cubic equation: 

p3 + alp2 + a2p + a3 = 0, 

where, 
al = -b2 ,  a2 = bib3 - 4b4, and a3 = 4b2b4 - b] - b2b4 . 

Let, 

Q : 3a2-a~9 , R : 9ala~-27a3-2a~54 ' 

The d i scr iminan t  is defined as 

A.1 

A.2 

D = Q3 + R 2. 

If D > 0, one root is real and two roots are complex conjugate.  
real solution is, 

1 
Pl = S + T - ~al .  

If D ---- 0, all roots are real and at least two are equal. 

If D < 0, all roots are real and unequal. They are: 

pl = 2 X/%-Q cos( ~O) - ~a l ,  

A.3 

In this case, the 

A.4 

A.5 

1 
;~ = 2 ~ cos(}O + 12o ~ - ~a~, A.6 
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and, 

where, cos ~ -- R / v / - ~ .  

One can now write a quadratic equation using any one of the real solutions of 
the cubic equation (see, Spiegel, 1968) as follows: 

z~ + ~ ,~  �9 i ~  - 4~ + 4 ~ z  + ~ 1  ~ ~ - 4 ~  = 0 ~ 

This is a quadratic equation which can be solved easily. Since we applied this 
procedure both of the sonic points and shocks, we denoted quantities like, D,Q 
and R by Dc,Qc and Rc for sonic (critical) points and Ds,Q8 and R8 for shocks 
respectively. 
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ABSTRACT 
We compute locations of sonic points and standing shock waves in a thin, axisymmetric, adiabatic 

flow around a Schwarzschild black hole. We use a completely analytical method to achieve our goal. 
Our results are compared with those obtained numerically, and good agreement is seen. Our results 
prove the existence of shocks in centrifugal pressure-dominated flows. We indicate how our results can 
be used to obtain spectral properties and frequencies of shock oscillations, which may be directly related 
to the quasi-periodic oscillations of hard X-rays. 
Subject headings: accretion, accretion disks - -  black hole physics - -  hydrodynamics - -  shock waves 

1. INTRODUCTION 

In recent years, the study of standing and oscillating 
shocks in accretion flows has become very important, since 
it is recognized that the spectral states of black holes, as well 
as quasi-periodic oscillations (QPOs) observed in light 
curves of black hole candidates, are directly related to the 
radiative transfer properties of a compact Comptonizing 
region close to a black hole (e.g., Chakrabarti & Titarchuk 
1995, hereafter CT95; Ling et aL 1997; Chakrabarti & 
Manickam 2000; Muno, Morgan, & Remillard 1999; Feroei 
et at. 1999; Homan et at. 2001). These shocks have been 
studied very extensively in the literature (Chakrabarti 1989, 
hereafter C89; Chakrabarti 1990), and their properties have 
been verified by several independent groups of workers 
CYang & Kafatos 1995; Nobuta & Hanawa 1994; Lu & 
Yuan 1997). If the standing shocks exist analytically for a 
given set of initial parameters, numerical simulations do 
find them (Chakrabarti & Molteni 1993; Molteni, Lanza- 
fame, & Chakrabarti 1994; Ryu et al. 1995; Molteni, Ryu, & 
Chakrabarti 1996); otherwise, the shock would be oscil- 
lating (Molteni, Sponholz, & Chakrabarti 1996; Ryu, Chak- 
rabarti, & Molteni 1997), causing QPOs in the X-rays 
emitted from the postshock region. Furthermore, it has 
been observed that in at least some of the black hole candi- 
dates, such as GRS 1915 + 105, outflows are produced from 
the same region that emits the Comptonized photons 
(Fender et al. 2000; Dhawan, Mirabel, & Rodriguez 2000), 
i.e., the postshock region or the centrifugal barrier- 
dominated region, according to our present understanding 
of the flow solutions. 

It is therefore pertinent to ask whether the properties of 
the shocks, such as location, strength, compression ratio, 
and so on, could be understood solely analytically. The 
solutions obtained thus far by Chakrabarti and collabo- 
rators and other groups have always resorted to numerical 
means. Roughly, the method has been as follows: For a 
given set of parameters (such as the specific energy and 
specific angular momentum), it is first determined whether 
the flow allows more than one X-type sonic point (C89). 
This is because, at the horizon, matter must have a velocity 

i Honorary Scientist, Centre for Space Physics, l l4/v/lA Raja S. C. 
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equal to the velocity of light and, from causality arguments, 
the flow must be supersonic. Thus, once the flow becomes 
supersonic through the outermost sonic point and forms a 
shock (i.e., jumps to a subsonic branch), it must pass 
through the inner sonic point to become supersonic at the 
horizon. The next question is whether the specific entropy 
at the inner sonic point is higher compared with that at the 
outer sonic point. This is because, at the shock, entropy 
must be generated and the postshock flow that passes 
through the inner sonic must have higher entropy. The final 
and most important question is whether all the Rankine- 
Hugoniot conditions (also known as the shock conditions) 
are satisfied somewhere between the two X-type sonic 
points. The three Rankine-Hugoniot conditions could be 
combined to  obtain a combination of Mach numbers 
(shock invariant). C89 obtained this expression, which is 
continuous across the shock, and used it to obtain the 
shock location via an iterative technique. 

In the present paper we follow the same philosophy but 
obtain the shock locations analytically. There were two 
motivations for this. First, from the theoretical point of view 
it is challenging to find solutions of a large number of non- 
linear equations that must satisfy the number of conditions 
mentioned above. Second, from the observer's point of view, 
any observation that could require standing shock waves 
could be explained using more fundamental parameters, 
such as specific energy and angular momentum or, even 
better, accretion rates of Keplerian and sub-Keplerian 
flows, as in the two-component flow solution of CT95. Ana- 
lytical work also provides insight into why the shocks form 
in the first place. The boundary of the parameter space for 
shock formation is also obtained by analytical means. These 
findings are important, as they can tell us when QPOs may 
or may not be seen. These details will be discussed in a 
future paper. 

In the next section, we present the model equations and 
shock conditions. In w 3, we present the sonic point analysis 
and include the expression for the shock invariant (C89) for 
the sake of completeness. In w 4, we present the analytical 
expressions for the sonic points and discuss how the param- 
eter space is divided into regions of one or three sonic 
points. In w 5, we present the expression for the shock loca- 
tions and again divide the parameter space into regions that 
may or may not have shocks. We also compare our solu- 
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tions with numerical work. In w 6, we discuss some of the 
astrophysical implications of our solutions, and finally, in 
w 7 we make concluding remarks. 

2. MODEL EQUATIONS AND SHOCK CONDmONS 

We start with a thin, axisymmetric, inviscid steady flow 
that is in equilibrium in a direction transverse to the flow. 
The model equations that govern the motion of matter ac- 
creting onto a black hole are as follows (C89). 

1. The radial momentum equation: 

d~ 1 dP 22 1 
d9 ~xx + p ~x-x + ~-3 + 2(x _ 1)----------q - 0 .  (I) 

In a nonviscous flow, integration of this equation leads to 
the energy conservation equation: 

2 42 ae 
8 = + ~ + ~ x  2 + O(x), (2) 

where g(x) is the pseudo-Newtonian potential introduced 
by Paczyhski & Wiita (1980), which is given by g(x) = - � 8 9  
- 1)- t. Here p is the mass density, P is the isotropic pres- 

sure, $~ and a, are the nondimensioual radial and sound 
velocities measured in units of the velocity of light c, x is the 
nondimensional radial distance measured in units of the 
Schwarzschild radius rg = 2GM/c 2 with M the mass of the 
black hole and G the gravitational constant, ~ is the adia- 
batic index of the flow, and P -- K p  ~ is assumed to be the 
equation of state. K is the measure of the specific entropy, 
which is constant except at the shock location, where local 
turbulence generates some entropy, enabling the flow to 
pass through the inner sonic point. The subscript e refers to 
the quantities measured on the equatorial plane. 

2. The continuity equation, 

d 
- 0 ,  (3) 

dx(O e pxh) 

is integrated to obtain the mass conservation equation: 

lf/1 = tg,~ pxh , (4) 

where h is the half-thickness of the flow at radial coordinate 
x. Here Jr/is the mass accretion rate apart from a geometric 
constant. If we assume that the flow is in hydrostatic equi- 
librium in the transverse direction, then the vertical com- 
ponent of gravitational force balances the pressure gradient 
force. Hence, the expression for the half-thickness of the 
disk is given by (C89), 

h(x) = a, xt/=(x - I). (5) 

We write the mass flux conservation equation m" terms .~ 
and the sound speed on the equatorial plane, a, = (~P/p) , 
in the following way: 

.tr = ,9,a~x3/2(x -- 1) = , g e ~ / ( x ) ,  (4a) 

where q = y + 1/~ - 1 and f ( x )  = x3/2(x - 1). The shock 
conditions we employ here are (C89) 

The continuity of energy flux across the shock, 

+ = Z_. (6) 

(7) 

The continuity of mass flux across the shock, 

~+=~_ ; 
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and finally, the momentum balance condition, 

IV+ + Z+ S L  = W_ + Z_ ,92 �9 (8) 

Here subscripts" - " a n d "  + "refer, respectively, to quan- 
tifies before and after the shock. A shock satisfying these 
conditions is termed a Rankine-Hugoniot shock (Landau & 
Lifshitz 1959). Here, W and Z denote the pressure and the 
density integrated in the vertical direction (see, e.g., Matsu- 
moto et al. 1984); that is, 

Z =  f ~ h p d z = 2 p ,  l ,h ,  w =  f : h P d z = 2 P ,  l , + t h ,  (9) 

where 1, = (2"n !)2/(2n + 1)l and n is the polytropie index 
defined previously. In the subsequent analysis, we drop the 
subscript e if no confusion arises in doing so. 

3. SONIC POINT ANALYSIS AND SHOCK INVARIAN'I~ 

In order to have a shock, the flow must be supersonic, i.e., 
the stationary flow must pass from a subsonic flow to a 
supersonic flow. Discussions in this section are based on 
earlier works (see C89, Chakrabarti  1990). 

3.1. Sonic Point Conditions 

From the radial momentum and continuity equations 
(eqs. [1] and [3]), we derive the sonic point condition (or 
critical point condition) in the usual way (C89). The first 
derivative of the radial velocity with respect to radial dis- 
tance is given by 

dx y + 1 dx d x / U  (y + l ~ J "  (10) 

Here G(x) = �89 2 - ~(x - 1)-l  is the effective potential. 
Since the denominator must vanish at the sonic points, if 
the flow is assumed to be smooth everywhere, the numer- 
ator must vanish simultaneously. The vanishing of the 
denominator gives 

8~(x,) = 2(~ + I)-ta~(xc). (11) 

The factor (which is unity only in isothermal flows) in front 
of a~(x~) arises because the flow is assumed to be in vertical 
equilibrium. The vanishing of the numerator gives 

a~(x~) = (y + 1)(x, - 1) [i~(x,) - 2 2] (12) 
x ~, 5 x ,  - 3 

The subscript c denotes quantities at the critical points. 
Here 4g is the Keplerian angular momentum, defined as 
2~ = �89 - 1) 2. It is to be noted that since the left-hand 
side of this equation is always positive, angular momentum 
at the sonic point must be sub-Keplerian, that is, 4(x~) < 4K 
(see, e.g., Chakrabarti  1990 and references therein). 

3.2. Much Number Relation at the Shock 

From the equations given in w 2, we now seek an invari- 
ant relation that must be satisfied at the shock (C89). We 
rewrite the condition of energy flux continuity (eq. [6]) and 
the pressure balance condition (eq. [8]) in terms of the 
Mach number M = 8/a of the flow, 

a 2_ 
_ a2+ 1 M 2  - a 2  + (13)  1 M ~  a~ + = -  ~ ,  
2 y - 1  2 y - 1  
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..r162 = M+ ar f(xs), ..r = M_ a r f(x~), (14) 

where v' = 2r / ( r  - 1), and 

aV+ ( 3 y 2 ~ _ 1 )  aL ( 3 y 2 - ~ _ 1 )  j/~+ + M  2 = ~ _  + M  2_ , (15) 

where v = (3T - 1)/(~ - 1) and x, is the location of the 
shock. From equations (13) through (15), one obtains the 
following equation relating the pre- and postshock Mach 
numbers of the flow at the shock (C89): 

c = [ M + ( 3 r  - 1) + (2 /M+) ]  2 

2 + (y - 1)M2+ 

= [M_(3T - 1) + (2/M_)] 2 
2 + (y - 1)M 2_ (16) 

The constant C is invariant across the shock. The Mach 
number of the flow just before and after the shock can be 
written in terms of C as 

2(3y - 1) - C + ~ - 8CT 
M~ (y - 1)C - (3y - 1) 2 (17) 

The product of the Mach number is given by 

M+ M_ = -2 /x / (3  ~ -- 1) 2 - (y - 1)C. (18) 

4. ANALYTICAL EXPRESSION OF SONIC POINTS AND 
BEHAVIOR IN PARAMETER SPACE 

To obtain shock locations, we first need to obtain the 
locations of the sonic points and ensure that at least two of 
them are X type (Chakrabarti 1990). In w 3.1 we presented 
the sonic point conditions. Using the definition M = O/a of 
the Mach number and substituting a2(xc) from equation 
(12) into equation (2), we obtain the following algebraic 
equation for xc : 

.A/'x~ - d)x~ a + ~x~ - -~x c + ~t = 0 ,  (19) 

where Jr" = 108, ~ = 16~f + 2n - 3, ~ = 6dr + 
2 2 ( 4 n - 1 ) - 3 ,  9 .=8n22,  ~ = ( 1 + 4 n ) 2 2 ,  and n =  
(V - I ) -  ~ is the polytropic index. 

We solve this equation analytically (Abramowitz & 
Stegun 1970) and obtain the location of the sonic points. 
Details are given in the Appendix. For the purpose of criti- 
cal or sonic points, D of the Appendix is denoted as D,. The 
equation has four roots, and equation (A6) can be used to 
cheek whether all of them are complex (a pair of complex 
conjugates). At least two are real and two are complex, or 
all four are real. A necessary condition to form a shock 
wave is to have four real roots. Of  course, only one would 
be inside the black hole, and the other three would be 
outside; out of these, for topological reasons, only two 
would be X type or saddle type, and the one in between 
must be either O or center type. This is determined by 
computing the derivative dd~/dx at the sonic point by using 
l'H6pital's role and checking whether they are real. For our 
purpose, two derivatives at each sonic point must be real 
and of opposite signs in order for the sonic point to be of X 
type or saddle type. 

Figure 1 shows the division of the parameter space. 
Denoting the diseriminant D (of the Appendix) by D,, we 
find that the condition D, < 0 is a necessary condition for 
having three sonic points. The boundary D, = 0 separates 
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1~O. 1.--Division of the parameter space as spanned by the pair (dr, 2) 
according to the number of sonic points. The solid curve represents D, = 0, 
which divides the region into a D e > 0 (one sonic point) and D~ < 0 (three 
sonic points) region. The plot is for 7 ffi 4/3. For 7 ~ 1.5, D e is always 
positive, suggesting that no shocks are possible in a flow with vertical 
equilibrium. The dashed curve further divides the region into two regions 
where the entropy accretion rate .~  at the two saddle-type sonic points 
behave differently (the inner point is denoted by i and the outer point by o). 

this region, on which two sonic points merge and the third 
remains separate. Outside the region D c > 0, only one sonic 
point is possible, and the other two roots are the complex 
conjugates of one another. The dashed curve in the middle 
represents the condition 

~ o  = ~ , ,  

where .~l and ~f~o are the entropy accretion rates at the 
inner and outer sonic points, respectively. The region above 
it contains parameters with ~ t  < ~ o ,  and the region below 
contains parameters with ~ t  > J~o. This latter region is 
suitable for shock formation in accretion flows. 

In passing, we wish to point out that from equation (10) 
one can easily show that locations where dM/dx = 0 exactly 
coincide with the sonic points of the flow. Thus, the number 
of extrema of M = M(x) is the same as that of the sonic 
points. Hence, the division in Figure 1 could give an idea 
about the behavior of M = M(x) as well. 

5. ANALYTICAL EXPRESSION FOR SHOCK LOCATION AND 

BEHAVIOR IN PARAMETER SPACE 

A black hole accretion flow, being transonic, must satisfy 
two sonic point conditions at the cost of one extra 
unknown, namely, the sonic point. Because of this extra 
condition, out of the three constants of the motion, namely, 
dr, ~/, and 2, only two are to be supplied as free parameters. 
We used past experience derived from numerical methods 
to compute shock locations where we found that only one 
of the shocks, x83 (C89 notation), is stable. Accordingly, our 
procedure as delineated below attempts to compute only 
this location. 

The flow will have a shock only at the point where the 
shock-invariant condition is satisfied. Simplifying the 
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shoek-invariant relation (eq. [16]), we obtain 

2 ( r  - 1 ) ( M  2 + M2- )  - [ (37 - 1) 2 - 2(37 - 1) 

x (T -- 1)]M2+ M2- + 4 = 0 .  (20) 

We consider a relativistic flow with 7 = 4/3, so that the 
polytropic index n = 3. Then, from equation (20), we obtain 

2(M2+ + M2_) - 21M 2 M 2 _ + 12 = 0 .  (21) 

We now expand the postshock Maeh number M2+ by a 
polynomial that must satisfy the following conditions: 

1. The derivative dM/dx is zero at the central O-type 
sonic point. This is a general property of the flow (see dis- 
cussion at the end of the previous section). 

2. The Math number M+ at the location of the middle 
sonic point matches that derived from the approximate 
analytical solution obtained using the energy equation (eqs. 
[2] and [A4]). 

3. The solution passes through the position where 
dM/dx = ~ and a good guess for this location (say, from 
the location of the sonic points) is known. 

Similarly, we expand M 2 _ by a polynomial that must 
satisfy the following conditions: 

1. The derivative dM/dx is zero at the outer sonic point 
(the location of which has already been determined above). 
This is a general condition (see discussion at the end of the 
previous section). 

2. The Math number at the outer sonic point matches 
the analytical value obtained from the sonic point condition 
(eq. [11]). 

3. The Mach number M_ at the location of the middle 
sonic point matches the analytical value derived from the 
approximate analytical solution obtained using the energy 
equation (eqs. [2] and [A4]). 

Keeping in mind that an algebraic equation that is 
beyond quartic cannot be solved analytically (see Abramo- 
witz & Stegun 1970), we expand M~= as a quadratic equa- 
tion so that equation (21) may become quartic. We will 
show, a posteriori, that such an assumption introduces a 
very small and tolerable error in our computation. 

If x~ denotes the shock location, we assume 
2 

M ~  = E Ac~ ,~jxg ,  (22) 
q=0 

where the Ate.• ] are constant coefficients to be determined 
from the conditions mentioned above. We find them to be 

1 - -  (M2)mld  (M2)mtd  -- 1 

At2,+ l = (Xin f - -  Xmld) 2 '  A[2,-1 = (Xou t - -  Xmid) 2 '  

A [ I , +  ] = - -2XmtdA[2,+] ,  A [ I , - ]  = - -2XmldA[2,_] ,  

Ate,+ ] = 1 + (2Xmld Xlnf __ Xlnf)A[2,+ ] 2  , 

= + Xout A t 2 , - ]  , Ate.-] 1 2 

where Xmid, Xt,f, and Xo,t are, respectively, the middle (O- 
type) sonic point, the position where the first derivative of 
the Mach number is infinity, and the outer sonic point. 

We now substitute the above expression (eq. [22]) for the 
Mach number in the Mach invariant relation (eq. [21]) to 
obtain the following algebraic equation: 

~r + ~x~ 3 + ~fx 2 + ~x~ + ~" = 0 ,  (23) 

where 

= (3v - 1)(7 + 1 ) ,  

= 2(7 - I ) ,  

.~/= ~JAt2,+IA[2 _ I , 

= ~(AtL+]A[2.- 1 + At2.+]A[t.-]), 

c~ = ~(A[o.+]A[2.-] + A[1.+]A[L- ] + At2.+]A[o.- ]) 

- - ~ ( A [ 2 , + ]  + A[2,-~, 
= ~J(At0,+]A[I.-] + A[t.+]A[o.-]) - ~(Atl.+] + AtL-]), 

~r = @At0.+]Ato._ ] _ -~(A[o.+] + Ate.-]) - 4 .  

We solve for x~ analytically using the same procedure as 
in w 4 (details are described in the Appendix). We denote the 
discriminant D by D,, and Q- and R-values as Q, and R,, 
respectively, for our discussion of the parameter-space 
behavior of shocks. 

In Figure 2 we redraw the parameter space as in Figure l 
but consider the formation of shocks alone. We find that 
Q~ > 0 produces no shock from above, and Q~ = 0 with 
R, ~ 0 gives the boundary of the weakest shock (shocks 
with unit compression ratio). This boundary, although 
obtained using our approximate analytical method, gener- 
ally coincides with the dashed curve of Figure 1. The edge of 
the boundary is obtained with an extra condition R, = 0. 
Thus, R~ progressively decreases toward the edge along the 
dashed curve. This edge (denoted by D, = R~ = 0) ought to 
have coincided with the cusp of the D~ = 0 curve drawn for 
the sonic point (see also Fig. 1), had the analytical method 
been exact. A small shift is the evidence that a small error is 
present at this comer of the parameter space. We also 
provide the region of the oscillating shocks (Q~ < 0 and 
D, < 0). Here th~ shock location is imaginary, and therefore 
the shock continuously oscillates back and forth, causing a 

0.02 
m D,ffi0 

0.015 "D,-R,=O ~ ( ~ §  

0.01 

0.005 \ \ \ \  q.>o 
\ \ No Shock 

\ q.~o \~ Q.<o \ 
~D.<O \ " ,  . . . . .  " ,  . . . . .  ~ \ S h o c k  X 
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FtG. 2.--Division of the parameter space as spanned by the pair (r 2) 
according to whether shocks can form or not. The solid curve represents 
D c = 0, as in Fig. 1. The dashed curve (D~ = 0) surrounds the region with 
shocks in accretion. When Dj < 0 and yet there are three sonic points, the 
shocks arc oscillatory, giving rise to quasi-periodically varying hard 
X-rays. 
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FIG. 3.--Variation of shock location (x, along the y-axis) with specific 
energy (~ along the x-axis) of the flow. Each curve is drawn for a specific 
angular momentum 4. From right to left, curves are drawn for 4 = 1.51, 
1.52, 1.53, ..., until 1.84. For a given specific energy 8, shock location 
increases with increasing centrifugal force (through 4). Similarly, for a given 
4, shock location increases with energy. 

very interesting astrophysical effect known as quasi- 
periodic oscillations, which are discussed in the next 
section. The boundary between the shock and the no-shock 
region from below is denoted by the dashed curve marked 
D~ = 0. Below the no-shock region, where the energy and 
angular momentum of the flow are very low, the flow has 
only one sonic point. 
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FIe. 4.--Comparison of the boundary of the parameter space in the 
(8, 4)-plane using numerical and analytical methods. Except for the region 
near the cusp (upper left), the agreement is very strong. 

In Figure 3, we draw shock location x, (along the y-axis) 
as a function of energy (along the x-axis). Different curves 
are drawn for different specific angular momenta  of the 
flow. The rightmost curve is for ~ = 1.51 and the leftmost is 
for ~--1.84,  with the remainder drawn at intervals of 

= 0.01. As the angular momentum increases, the shock is 
located farther from the black hole. Comparing the loca- 
tions from those obtained analytically, one may note that 
the same location is obtained for a specific angular momen- 
turn slightly more (,,, 3%) than that used in the numerical 
method. We therefore believe that the results obtained are 
very reliable. 

In Figure 4, we present a comparison of the boundary of 
the parameter space for which standing shocks may form as 
obtained from our analytical solution (dotted region) and by 
the numerical means (solid curve) existing in the literature 
(C89). The agreement is very good aside from a region near 
the cusp (as also noted while discussing Fig. 2, previously). 
Since very little parameter space is involved at this edge, we 
think that this small mismatch is tolerable. 

6. ASTROPHYSICAL APPLICATIONS 

Even though a black hole has no hard surface, it is 
remarkable that matter forms standing shocks around it in 
the same way a shock is formed when a supersonic flow 
encounters a hard boundary. Shock waves heat a gas and 
puff it up. This postshock region intercepts soft photons 
from the preshock matter, particularly from the Keplerian 
disk located on the equatorial plane (CT95). In this sce- 
nario, the nature of the Comptonized radiation depends on 
the amount of matter in the sub-Keplerian and Keplerian 
flow: if the intensity of soft photons is very low, they cannot 
cool the postshock region by an inverse Compton process, 
and the spectrum remains very hot. On the other hand, if 
the intensity of soft photons is very high (i.e., the Keplerian 
rate is large), they cool down the postshock region to the 
extent that the shock cannot be sustained (the pressure 
balance condition breaks down). This produces a soft-state 
spectrum with a hard tail due to bulk motion Comp- 
tonization (CT95). There are several models in the liter- 
ature that perhaps explain the soft and hard states. 
However, no model other than that of CT95 explains the 
power-law hard tail in the soft state. Similarly, regarding the 
question of quasi-periodic oscillations, the shock oscillation 
model turns out to be a sufficiently satisfactory one 
(Chakrabarti & Manickam 2000). 

When the parameters fall in the "no-shock"  region of 
Figure 2, the shock location becomes imaginary. However, 
three sonic points are still present, and the entropy of the 
flow at the inner sonic point continues to be higher com- 
pared with that at the outer sonic point. In this case, the 
shock starts oscillating with a time period T, comparable to 
the infall time from the postshock region (Ryu et al. 1997). 
Even when shocks form, if the infaU timescale turns out to 
be comparable to the cooling time, then the resonance con- 
dition is satisfied (Molteni et aL 1996; Chakrabarti  & 
Manickam 2000) and shocks oscillate on timescales of 

T~ ~ x # s ,  

where v s ~ 1 / R ~ / - ~  is the infall velocity and R is the com- 
pression ratio at the shock (easily obtained analytically 
from our equations). Observed QPO frequencies are com- 
parable to 1/T~. 
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When a mixture of Keplerian and sub-Keplerian matter 
is accreted, it is easy to obtain the parameters 2 and de in 
terms of the Keplerian (~/d) and sub-Keplerian (Mh) accre- 
tion rates. Suppose the viscosity parameter is such that the 
flow deviates from a Keplerian disk at x = XK, where its 
energy and angular momentum are ded and ~K, respectively. 
Further suppose that the sub-Keplerian halo has a constant 
energy de ~ 0 ~ deh and constant angular momentum 2h; 
then the average angular momentum and energy of the 
transonic flow would be 

de = Md dea + ~ h  deh ~ = ~/d ha + Mh Ah 

It is easy to compute the shock location of the resultant flow 
using our formalism given above. 

It should be noted from Figure 3 that shock solutions are 
allowed only if the specific energy is positive. In other 
words, if a flow deviates from a cool Keplerian disk on the 
equatorial plane, the flow cannot have shocks, since the 
specific energy in such a flow would be negative unless the 
flow is mixed with a substantial amount of sub-Keplerian 
matter  with a positive energy. Typically, M ~ h 2~/d, and 
even with a small energy, the specific energy of the mixture 
becomes positive, giving rise to shocks and (unbound) 
winds. In the case that magnetic dissipation is present, flow 
energy could increase to a positive value, and a solution 
with a shock would be allowed. The prospect of magnetic 
energy dissipation has been discussed several times in the 
literature (Shapiro 1973; Bisnovatyi-Kogan & Blinnikov 
1976; Bisnovatyi-Kogan 1998). Briefly, since the magnetic 
field rises as B, ~ r -  2 and, therefore, magnetic pressure rises 
as  Pmag oC r - a ,  while the gas pressure in the sub-Keplerian 
matter varies as P~., oc r -  2/2, any magnetic field in excess of 
the equipartition value will escape from the disk buoyantly 
and may dissipate at the atmosphere, as in the case of the 
Sun. If the flow has specific energy deh at, say, r = 100r o, 
where the flow is in equipartition, then at the shock the 
energy will be at least 24 times larger if all the magnetic 
energy is dissipated into the flow. ThUS, a basically free fall 
of matter of de ~ 10 -4 would have an energy ~ 10 -3 and a 
shock at a few tens of Schwarzschild radii would be 
expected. 

An accreting flow can intercept hard X-rays emitted at 
the inner edge. This preheating effect need not be negligible. 
For instance, a flow emitting isotropically with 6% effi- 
ciency will definitely intercept a fraction 0 ~ |  of the 

radiation in between the shocked region and the Keplerian 
disk. Assuming 0 ~ 0.1, the energy deposition due to pre- 
heating is 0.6%, which is significant. This would energize 
Keplerian matter as well, and shocks in the sub-Keplerian 
flow would be expected. 

7. CONCLUDING REMARKS 

ThUS far in the astrophysical literature, the existence of 
shocks in accretion flows has been indicated by steady and 
time-dependent numerical simulations. Study of these 
standing and oscillatory shocks in accretion flows has been 
shown to be of great importance. Here we have shown that 
the shocks can be studied completely analytically, at least in 
the case of thin, axisymmetric, inviscid flows with positive 
energy. We note that shock locations vary with flow param- 
eters in a simple way-- they form farther from a black hole 
when angular momentum is increased. This proves that 
they are mainly supported by centrifugal pressure. 

Given that the shocks, especially the standing shocks, are 
ideal locations for a flow to be heated up, hard X-rays are 
produced from the postshock region after the soft photons 
are processed by the flow by an inverse Comptonization 
process. Thus, the spectral states and time-dependent 
behavior of the hard X-rays are directly related to the 
behavior of this region. For instance, CT95 computed 
steady state spectra using postshock regions as the source of 
hot Comptonizing electrons. Chakrabarti  & Manickam 
(2000) have established that QPOs are a result of oscil- 
lations of this region, since only hard X-rays are seen to 
exhibit QPOs. We therefore believe that shocks should be 
an important ingredient in an accreting system. However, if 
the disk is cool and Keplerian far in its periphery, the spe- 
cific energy must be negative. Therefore, the problem is not 
whether shocks should exist, but how to energize Keplerian 
matter as it becomes sub-Keplerian by, for example, mag- 
netic energy dissipation or preheating. This work is in 
progress and will be reported separately. 

From the observer's point of view, our work could also 
be useful because the steady spectra, QPO frequencies, and 
so on are, in principle, determined analytically from a few 
free physical parameters. In the future, we will focUS our 
efforts on obtaining spectral properties and QPO behaviors 
more quantitatively. 

This work was partly supported by grant SP/S2/K-14/98, 
funded by the Department of Science and Technology, 
India. 

APPENDIX 

M E T H O D  FOR THE ANALYTICAL SOLUTION 

The procedure for obtaining an analytical solution of a quartic equation, 

q4 + blq3 + b2q2 + baq + b4 = O, 

is to first obtain a solution of the following cubic equation: 

pa +alp2 + a 2 p + a  a = 0 ,  

where at = - b 2 ,  a2 = bl b3 - 4b,, and a 3 = 4b 2 b 4 - b 2 - b 2 b4. 
Let 

Q _ 3a2 - a 2 R = 9a1 a2 - 27a3 - 2aat S = (R + a x / ~  + R2) 1/2, 
9 ' 54 ' 

T = (e - ~ + R~) '/~. 

(A1) 

(A2) 
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The discriminant is defined as 

D -~ Q3 + 8 2 . (A3) 

IfD > 0, one root is real and two roots are complex conjugates. In this case, the real solution is 

Pl = S + T -  ~al �9 (A4) 

IfD = 0, all roots are real and at least two are equal. IfD < 0, all roots are real and unequal. They are 

pt = 2 , / - ~  cos (J0) - Jar, P2 = 2 x / t ~  cos (J0 + 120) - Jal,  P3 = 2 x / ' ~  cos (~0 + 240) - Jar ,  (AS) 

where cos 0 = R / , f - ~ .  
One can now write a quadratic equation using any one of the real solutions of the cubic equation (see Abramowitz & 

Stegun 1970) as follows: 

z 2 + �89 (bl _ x/b 2 - 4b2 + 4pt)z + �89 (p~ -T- ,v/~t 2 - 464) = 0 .  (A6) 

This quadratic equation can be solved easily. Since we applied this procedure to both the sonic points and shocks, we denoted 
quantities such as D, Q, and R by D c, Q,, and R, for sonic (critical) points and D,, Qs, and Rs for shocks, respectively. 
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A B S T R A C T  

We analytically study how the behaviour of  accretion flows changes when the flow model is 

varied. We study the transonic properties of  the conical flow, a flow of constant height and a 
flow in vertical equilibrium, and show that all these models are basically identical, provided 

that the polytropic constant is suitably changed from one model  to another. We show that this 

behaviour is extendible even when standing shocks are produced in the flow. The parameter 
space where shocks are produced remains roughly identical in all these models when the same 

transformation among the polytropic indices is used. We present applications of  these 

findings. 

Key words :  accretion, accretion discs - black hole physics - hydrodynamics - shock waves. 

1 I N T R O D U C T I O N  

Fully self-consistent study of any astrophysical system is generally 
prohibitive. Very often, for simplicity, it is necessary to construct 
models which have all the salient features of the original problem. 
However, these models need not be unique. In the present paper we 
make a pedagogical review of three different models of rotating 
accretion flows, and show that even though they are based on 
fundamentally different assumptions, they have identical physical 
properties. What is more, results of one model could be obtained 
from the other by changing a physical parameter, namely the 
polytropic constant. In other words, all these models are identical. 

Accretion disc physics has undergone major changes in the last 
50 years. Bondi (1952) studied spherical accretion and found the 
existence of only one saddle-type sonic point in an adiabatic flow. 
Later, for the Keplerian disc model of Shakura & Sunyaev (1973) 
and the thick disc model of Paczyfiski & Wiita (1980) the disc 
solutions became more realistic, although none of them was 
transonic, i.e., none was passing through any sonic point. 
Meanwhile, Liang & Thompson (1980) generalized this work for 
a flow which included angular momentum, and discovered that 
there could be three sonic points. Matsumoto et al. (1984) tried to 
let the flow pass through the inner sonic point only, and found that 
the flow could pass through nodal type sonic points. 

Chakrabarti (1989, 1990, hereafter C89 and C90 respectively) 
studied transonic properties of accretion flows which are conical in 
shape in the meridional plane ('Wedge-shaped Flow'), and also 
flows which are in vertical equilibrium. Subsequently, Chakrabarti 

*E-mail: chakraba@boson.bose.res.in (SKC); sbdas@boson.bose.res.in 
(SD) 
t Honorary scientist at the Centre for Space Physics, 114/v/IA Raja S.C. 
Mullick Road, Kolkata 700047, India. 

& Molteni (1993) studied flows of constant height, and also 
verified by time-dependent numerical simulations that the flow 
indeed allows standing shocks in it. In a Bondi (1952) flow, to 
specify a solution one requires exactly one parameter, namely the 
specific energy ~ of the flow. This is in turn determined by the 
temperature of the flow at a large distance. In an inviscid, rotating 
axisymmetric accretion flow, one requires two parameters, namely 
specific energy g and specific angular momentum A. Once they are 
specified, all the crucial properties of the flow, namely the locations 
of the sonic points, the shocks, as well as the complete global 
solution, are determined. C89 numerically studied the properties of 
the parameter space rather extensively, and divided the parameter 
space in terms of whether standing shocks can form or not. In the 
present paper we compare these models completely analytically 
and show, very interestingly, that one could easily 'map' one model 
on to another by suitably changing the polytropic index of the flow. 
In other words, we show that these models are roughly identical to 
one another as far as the transonic properties go. 

In the next section we present a set of equations which govern 
the  steady state flow in all the three models. In Section 3, we 
present the sonic point analysis, and provide the expressions for the 
energy of the flow in terms of the sonic points. We observe that 
these expressions are identical, provided that there is a unique 
relation among the polytropic indices of these model flows. In 
Section 4 we compare shock locations in all the three models. We 
also compare the parameter space which "allows shock formation in 
these models with the regions obtained using purely numerical 
methods. In Section 5 we show that in fact if the relations between 
the polytropic indices are used, the shock locations in all these 
models are also roughly identical. Consequently, the apparently 
disjoint parameter spaces drawn with the same polytropic index 
overlap almost completely when the above-mentioned relations 
among polytropic indices is used. This remarkable behaviour 
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shows an underlying unity in these apparently diverse models. 
Finally, in Section 6 we draw our conclusions. 

2 M O D E L  E Q U A T I O N S  

As discussed in the introduction, we shall be concerned with three 
axisymmetric and inviscid models: (a) Model H: the flow has a 
constant height everywhere; (b) Model C: the flow cross-section in 
meridional plane is conical in shape, and (c) Model V'. the flow is in 
equil ibrium in the transverse direction. Fig. 1 shows a cartoon 
diagram of these three models. The filled circle at the centre 
corresponds to the black hole. The lightly shaded region of the disc 
corresponds to the pre-shock flow, while the heavily shaded region 
corresponds to the post ,shock flow. We also assume that the 
distances are measured in units of  rs = 2GMBn/c 2, where G is 
the gravitational constant, c is the velocity of light, and Mint is the 
mass of the black hole. Velocities and angular momenta  are 
measured in units of  c and crs = 2GMen/c respectively. In all the 
three models, the dimensionless energy conservation law can be 
written as 

~2 a 2 A2 
e = - ~  + ~ _  l + - ~ +  g(x), (1) 

where g(x) is the pseudo-Newtonian potential introduced by 
Paczyrlski & Wiita (1980) and is given by g(x) = - ~ .  Here Oe 
and ae = ~ are the non-dimensional  radial and the sound 
velocities respectively, x is the non-dimensional  radial distance, 
and the subscript e refers to the quantities measured on the 
equatorial plane. The flow has been chosen to be adiabatic with 
equation of state, P = Kp ~', where K is a constant which measures 
the entropy of the flow, and 3' is the polytropic exponent. The 
energy equation is the integral form of the radial momentum 
balance equation. 

The mass flux conservation equation, which comes directly from 
the continuity equation, depends on specific geometry of the 
models. Apart from a geometric constant, the conservation 
equation is given by, 

M = Oepa~xa(x- 1) 8, (2) 

where/3,  ff and 6 are constants; For Model V (see C89), /3 = 3/2, 
= 1, 6 = 1. For Model C (see C90) , /3  = 2, ~ = 0, 6 = 0. For 

Model H (Chakrabarti 1992; Chakrabarti  & Molteni 1993),/3 --  1, 
= 0, 6 = 0. Note that since the local disc height h(x) depends on 

sound speed, h(x)~  aexl/2(x- 1), and so a factor of a~ is 
applicable for this model. 

I I i 

C o n s t a n t  H e i g h t  

C o n i c a l  How 

Ver t i ca l  E q u i h ' b f i u m  

Figure L Cartoon diagram of three different models discussed in the text. 
In a constant-height flow (H), the disc thickness is constant (top). In a 
conical flow (C), the cross-section in the meridional plane is conical 
(middle). In a vertical equilibrium flow (V), matter is locally in vertical 
equilibrium at every point of the disc (bottom). 

�9 2001 RAS, MNRAS 327, 808-812 

Accretion flows around black holes 8 0 9  

Although it is customary to deal with the conserved mass 
accretion rate of the flow, since we incorporate shock formation 
where entropy is increased, it is more convenient to rewrite the 
mass flux conservation equation in terms of O~ and a~ in the 
following way: 

fcf = Oea~xO(x- 1) 8 = Oea~f(x), (3) 

where a = 2n + ~', a = 2n and a = 2n for Models V, C and H 
respectively, and f ( x ) =  x a ( x -  1) 8. We shall use the phrase 
'entropy-accretion rate'  for the quantity 3 > / =  MKn7 n. In a flow 
without a shock this quantity remains constant, but in the presence 
of a shock it changes because of the generation of entropy. 

3 S O N I C  P O I N T  A N A L Y S I S  A N D  R E L A T I O N  
B E T W E E N  M O D E L S  

Since the flow is expected to be subsonic at a long distance and 
supersonic on the horizon, the flow must  pass through sonic points. 
At the sonic point a few conditions are to be satisfied. They can be 
derived in the following way. 

First, we differentiate the energy equation and the mass 
conservation equation, and eliminate da /dx  from them to obtain 

2na2 r f f x -  fl] dG 
dO -~ Lx(x - 1)J - -~" 
--~ ( 0  2na2"~ (4) 

--  x2 - ~ is the effective potential and f f  = / 3  + 8. Here, G(x) -- ~-r 
Since the flow is assumed to be smooth everywhere if  at any point 
of the flow denominator vanishes, the numerator must also vanish 
there. The vanishing of the denominator gives 

2n 2" x 
~ ( x c )  = - h - a t ( o ) .  (5) 

The vanishing of the numerator gives 

ae2(Xc ) = ct(Xc - 1) [A~(xc) - A 21 
2nx 2 (ffxr - /3 )  ' (6) 

The subscript c denotes quantities at the critical points. Here, AK is 
the Keplerian angular momentum defined as A 2 = x3/[2(Xc - 1)21. 
It is to be noted that since the square of  the sound speed (equation 
6) is always positive, the angular momentum at the sonic point 
must  be sub-Keplerian, i.e., A < AK. When  the above expression 
for the velocity of sound is inserted in the expression for the 
specific energy, we get, for the Vertical Equilibrium (V) Model, 

n v + l  Xc 
s  = 5 (xr - 3/5)(x~ - 1) 

[ 4 ( n 5 +  1) (xc - 1 ) ] A  2 1 (7a) 
- ~c " - -3~  1 ~2c2 - 2 (xc ' -  1); 

for the Conical Flow (C) Model, 

2nc + 1 Xc 2nc - 1 A 2 1 
Ec = 8 (xr - 1) 2 2 2Xc 2 2(xc - 1) '  (7b) 

and for Constant Height Flow (H) Model, 

A 2 1 
s 2nil + 1 Xc -- 2nil . (7C) 

= 4 ( X e -  1) 2 ~ c  2 2(Xc -- 1) 

Here, we have used the subscripts V, C and H under specific energy 
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and polytropic index n to denote specific models. For a given 
angular momentum and at the same sonic point, the energy 
expression will be the same, provided that 

2 n c +  l _ 2 n n + l _ n v + l  
8 4 5 ' (8) 

where we have used 

(xc - 1)/(xc - 3/5) -- 1 (8a) 

for Model V. 
The relations in equation (8) are very important. If these 

relations are satisfied, then transonic properties of Model C with 
polytropic index nc would be identical to those of Model H with 
index nn and those of Model V with index nv respectively. 

4 S H O C K  I N V A R I A N T S  A N D  L O C A T I O N S  IN 
D I F F E R E N T  M O D E L S  

In between two sonic points, the flow can undergo a standing shock 
transition. For an inviscid flow, at the shock, a set of conditions are 
to be satisfied. These are known as the Rankine-Hugoniot 
conditions (Landau & Lifshitz 1959). These conditions are 
different for different models (C89; C90). For Model V, the shock 
conditions are as follows: the energy flux conservation equation, 

g+ = g - ,  (9a) 

the pressure balance condition, 

W+ + E+ O~e+ = W- + ~ -  0~_, (9b) 

and the baryon flux conservation equation, 

,~/+ = ~/_, (9c) 

where subscripts ' - '  and ' + '  refer, respectively, to quantities 
before and after the shock. Here, Wand X denote the pressure and 
the density, integrated in the vertical direction (see, e.g., 
Matsumoto et al. 1984), i.e., 

f E = pdz = 2pelnh, (10a) 
- h  

and 

W = J  h-h Pdz=2Peln+th, (10b) 

where, In = ~(2,,+1)!, n being the polytropic index as defined 
previously. 

For Models C and H, the shock conditions are as follows: the 
energy flux conservation equation, 

g +  .--- g _ ,  ( l l a )  

the pressure balance condition, 

P+ + P + ~ +  = P -  + P - G - ,  ( l ib )  

and the baryon number conservation equation, 

M+ = M_. (l Ic) 

The subscripts '-' and '+' have the same interpretation as before. 
Here, P and p denote the local pressure and the local density. In the 
subsequent analysis we drop the subscript e if no confusion arises 
in doing so. 

The expressions for the conserved quantities could be combined 

to obtain the so-called Mach number relation, which must be 
satisfied at the shock. For Model V, we obtain this relation as 
follows. We rewrite the energy conservation equation (9a) and the 
pressure balance equation (9b) in terms of the Mach number M = 
O/a of the flow: 

1 . .2 2 a2+ = _l M2 a2 a 2 _ 
~m+a+ + + . - -  (12a) 

5 " - 1  2 - - 5 ' - 1 '  

v I M+ = M+a+f(xs), (12b) 

v t A4- = M- a_f(xs), (12c) 

where v t = 2__~1 ' and 

~-+a~ (3__.~.~_1+M2 + 2  ) =~-~--aU- ( ~ 2  +M2_) ,  (12d) 

where, v = 3y-~_-i1. and x, is the location of the shock, f(xs)= 
~ t 2 ( x , -  1) is the term in accretion rate which is explicitly a 
function ofx and is the same both before and after the shock. From 
equations 12(a)-(d) one obtains the following equation relating the 
pre- and post-shock Mach numbers of the flow of Model V at the 
shock (C89a): 

C = [M+(3y - 1) + (2/M+)] 2 
2 + ( 5 ' -  1)M2+ 

= [M_(35" - 1) + (2/M-)]  2 
2 + (5"-  l ) g  2 _ (13) 

The constant C is invariant across the shock. The Mach number of 
the flow just before and after the shock can be written down in 
terms of C as 

M2 = 2(35, - l) - C "4" ~ - 8C5, 
( 5 , -  1)C - ( 3 3 ' -  1) 2 (14) 

The product of the Mach number is given by 

2 
M+M- -- - [ ( 3 y -  1) 2 - ( 5 , -  1)C] It2" (15) 

Similarly, one can obtain the Mach-number relations and the 
expression for Mach numbers for the other two models. The 
relation between the pre- and the post-shock Mach numbers of the 
flow at the shock for Models C and H are given by. 

C -- [yM+ + (I/M+)] 2 _ [5,M_ + ( l /M- ) ]  2 (16) 
2 + ( 5 ' -  I)M2+ 2 + ( 5 ' -  1)M 2_ " 

So far, in the literature, analytical shock studies have been carried 
out in models of vertical equilibrium (Das, Chattopadhyay & 
Chakrabarti 2001) by using the Mach-invariant relations (equation 
13) when two parameters, namely the specific energy and the 
specific angular momentum, are given. We carried out the same 
analysis using equation (16) for Models H and C respectively, and 
obtained shock locations and parameter space boundaries for all 
the three models. Fig. 2 compares these results where plots of 
specific energy (y-axis) is given as function of specific angular 
momentum (x-axis). Solid boundaries mark regions for which 
standing shocks form in different models. Shaded regions are 
obtained from the analytical method (Das et al. 2001), and the 
results of these two methods roughly agree. We note that constant 
height flows occupy much a larger region than that of the conical or 
vertical equilibrium. 
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Figure 2. Comparison of the parameter space in three different models in 
which shocks form. nv--nH----nc----3 is chosen throughout. Solid 
boundaries are obtained using the numerical method, and shaded regions 
are obtained using the analytical method. 

5 R E S U L T S  O F  M A P P I N G  O F  O N E  M O D E L  T O  
A N O T H E R  

We have already noticed that one could use a relation (equation 8) 
which maps one model on to another, as far as the transonic 
properties go. If, for instance, we choose nn ---- 3, we find that 
nv = 31/4 and nc = 13/2 respectively. This means that for a given 
energy and angular momentum a model H flow of  polytropic index 
3 would have sonic points exactly at the same place as a Model V 
flow of  polytropic index 31/4 and Model C flow of  polytropic index 
13/2 respectively. Corresponding polytropic exponents  are 
7H = 4/3, 7V ---- 1.129 and Yc = 1.15385 respectively. In physical 
terms, a relativistic flow of  constant height would have same 
properties as more or less isothermal flows in a conical flow and a 
flow in vertical equilibrium. 

What about the shock locations? In Fig. 3 we compare the 
locations of  the standing shocks around a black hole in these 
three models. Solid curves are for Model V, small circles are for 
Model H, and crosses are for Model C. The polytropic indices nv, 
nc and nH are as above. We note that although the models are 
different, the shock locations are also remarkably close to one 
another. In Fig. 4 a comparison of  the parameter space is shown 
once more (cf. Fig. 2). However, the polytropic indices are chosen 
as above. Unlike disjoint regions in Fig. 2, we find that the 
regions are almost completely overlapping when equation (8) was 
used. This also shows that the equation (8) is valid even for the 
study of  shock waves. We thus believe that, generally speaking, the 
three models are identical when the equation (8) is taken into 
account. 

What  could be possible applications of  the pedagogical exercise 
we carried out? One could imagine that certain models are easier to 
study (say, using numerical simulations) than the others. For 
instance, Chakrabarti & Molteni (1993), Molteni, Gerardi & 
Chakrabarti (1994) and Chakrabarti & Molteni (1995) studied 
constant-height discs using smoothed particle hydrodynamics. 
This was done because a flow in vertical equilibrium cannot be 
forced on a time-dependent study. However, one could question 
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Figure 3. Variations of shock locations (y-axis) as functions of the specific 
energy (x-axis) and angular momenta. The leftmost curve is drawn for 
A = 2, and other curves are for decreasing angular momentum with an 
interval of 8A = 0.02. Solid curves, filled circles and crosses are drawn for 
Models V, H and C respectively with nv -- 31/4, nc -- 13/2 and n8 = 3, 
which obey equation (8). 
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Figure 4. Nature of the boundary of the parameter space for the three 
models of the accretion flows. Solid, short-dashed, and long-dashed curves 
are drawn for Models C, H and V respectively with polytropic indices 
nv = 31/4, nc -- 13/2 and nH= 3 which obey equation (8). The roughly 
similar parameter space shows that the mapping of the indices based on the 
transonic properties remain roughly the same even when standing shocks 
are considered. The asterisk mark on 'Vertical Equilibrium Flow' indicates 
that condition (8a) has been utilized. 

whether one can draw any conclusion about the behaviour of  flows 
in vertical equilibrium using a simulation of  constant height. Our 
present study shows that it does. Since the three models are shown 
to be identical, running a simulation for one model would give 
results for other models in a straightforward manner. Similarly, a 
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study of the stability of a model of constant height may be simpler, 
and stability of one model would imply stability of others. 

6 C O N C L U D I N G  R E M A R K S  

In this paper we discovered a unique relation among the polytropic 
indices of three different models of the axisymmetric accretion 
flows which ensures identical transonic properties in the sense that 
if all these models have the same conserved energies and angular 
momenta, then the sonic points also form exactly at the same place. 
When we proceeded further to compute the shock locations, we 
found that even the shocks form roughly at the same places. 
Apparently, disjoint parameter spaces for shock formation with the 
same value of polytropic index in three different models exhibit 
considerable overlap when the same unique relation (equation 8) 
was used. This shows that the models are virtually identical in 
properties, and various disc models belong to a one-parameter 
family. Our finding has given some insight into the relation 
between the nature of a flow with its equation of state. It seems that 
the relativistic equation of state in a flow in vertical equilibrium 
behaves similarly to a roughly isothermal flow in a disc of constant 
height or in a conical flow. It is possible that in the latter models 
(Models C and H) the geometric compression is smaller, and hence 
it is easier to keep them roughly isothermal while conserving 
energy as well. 

Although our work has been mainly pedagogical, we believe that 
it could have several applications. For instance, linear and non- 
linear stability analysis and time-dependent calculations (numeri- 
cal simulations) are easier to perform when the disc is of constant 
thickness, Our work indicates that once certain properties 

regarding stability are established in one flow model, they would 
remain valid in other models also, provided that the relation among 
the polytropic indices is incorporated. 
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Abstract. W'e self-consistently estimate the outflow rate from the accretion rates of an accretion disk around 
a black hole in which both the Keplerian and the sub-Keplerian matter flows simultaneously. While Keplerian 
matter supplies soft-photons, hot sub-Keplerian matter supplies thermal electrons. The temperature of the hot 
electrons is decided by the degree of inverse Comptonization of the soft photons. If we consider only thermally- 
driven flows from the centrifugal pressure-supported boundary layer around a black hole, we find that when the 
thermal electrons are cooled down, either because of the absence of the boundary layer (low compression ratio), or 
when the surface of the boundary layer is formed very far away, the outflow rate is negligible. For an intermediate 
size of this boundary layer the outflow rate is maximal. Since the temperature of the thermal electrons also decides 
the spectral state of a black hole, we predict that the outflow rate should be directly related to the spectral state. 

Key words. X-rays: stars - stars: winds, outflows - black hole physics 

1. Introduction 

Most of the galactic black hole candidates are known to 
undergo spectral s ta te  transitions (Tanaka ~z Lewin 1995; 
Chakrabart i  & Ti tarchuk 1995, hereafter CT95; Ebisawa 
et al. 1996). Two common states are the so-called hard 
state and the soft state. In the former, soft-X-ray lu- 
minosity is low and the energy spectral  index a ~,- 0.5 
(E~ c c v  -~)  in the 2-10 keV range. In the lat ter  state, 
the soft-X-ray luminosity is very high, and hard-X-ray in- 
tensity is negligible. There  is also a weak power-law hard- 
tail component  with an energy spectral  slope a -,~ 1.5. In 
the two component  advective flow (TCAF) model (CT95), 
the viscous Keplerian disk resides in the equatorial plane, 
while the weakly viscous sub-Keplerian flow flanks the 
Keplerian component  both  above and below the equatorial 
plane. The  two components  merge into a single component  
when the Keplerian disk also become sub-Keplerian. It  is 
suggested (Chakrabar t i  1990) tha t  close to a black hole, at 
around 10-15  rg, (rg = 2GMBH/C 2 is the Schwarzschild 
radius, MBH and c are the mass of the black hole and the 
velocity of light respectively) the sub-Keplerian flow slows 
down due to the centrifugal barrier and becomes hotter.  
Chakrabar t i  (1999, hereafter Paper  I) shows tha t  this cen- 
trifugal pressure-supported boundary  layer (CENBOL for 

Send offprint requests to: S. K. Cl~krabarti, 
e-maih chakraba�9 bose.  res .  in 

" Honorary Scientist, Centre for Space Physics, l l4 /v /1A 
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short) region could be responsible for the generation of 
thermally-driven outflowing winds and jets and computed 
the ratio of the outflow to the inflow rate assuming a sim- 
ple conical accretion disk model. 

In the present paper,  we compute  the absolute value 
of the outflow rate as a function of the rates of the two 
inflow components,  Keplerian and sub-Keplerian. This we 
do analytically following the recently developed procedure 
of obtaining shock locations (Das et al. 2001). By dynam- 
ically mixing these two components  using solutions of the 
viscous transonic flows we obtain the specific energy and 
angular momentum of the sub-Keplerian region. We use 
these pair of parameters  to locate shocks in the flow, com- 
pute the compression ratio and from this, the outflow rate. 
We note tha t  as Keplerian ma t t e r  is increased in the mix- 
ture, the shock compression ratio goes down, and the out- 
flow rate decreases. This is also the case even from a ra- 
diative transfer point of view - when the Keplerian rate 
is high, the CENBOL region is completely cooled and the 
shock compression ratio R ~ 1. Hence in the soft state,  
which is due to increase of the Keplerian rate,  outflow 
should be negligible. 

In the next section, we present the governing equations 
to compute  the outflow rates using a purely analytical 
method.  We compute results for both the isothermal and 
adiabatic outflows. In Sect. 3, we present our results for a 
single component  sub-Keplerian flow. We also produce ex- 
amples of realistic disks with Keplerian and sub-Keplerian 
components  and obtain outflow rates as functions of the 
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inflow parameters.  In Sect. 4, we discuss our results and 
draw conclusions. 
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2. Model equations 

We consider mat ter  accreting on the equatorial plane of a 
Schwarzschild black hole. Spacetime around the black hole 
is described by the Paczyfiski-Wiita pseudo-Newtonian 

GMBH (Paczyfiski & Wiita  1980) potential  r = ~_2CMB~/~ 
where MBH is the mass of the black hole and G, c are the 
gravitational constant and velocity of light respectively. 
Here, r is the radial distance from the origin bf the co- 
ordinate in which the black hole is t reated at the cen- 
tre. We use geometric units in which all the length, time 
and velocity scales are measured in units of 2GMBH/C 2, 
2G_hlnH/C 3 and c respectively. In future, we use r to de- 
note non-dimensional distance, d and a to denote the non- 
dimensional radial velocity and adiabatic speed of sound 
respectively. In accretion or outflow, we assume that  the 
viscous stress is negligible so that  mat ter  moves with a 
constant specific angular momentum. Indeed, even if vis- 
cosity is not negligible, the t ransport  of angular momen- 
tum is slow compared to the infall timescale. Hence, mat- 
ter can have almost constant specific angular momentum. 

In this case, the radial momentum equation for a 
non-dissipative flow in vertical equilibrium is given by 
(Chakrabart i  1989), 

~)d~ 1 dP A 2 I 
dr  + 4- = 0. (1) p dr  r 3 2(r - 1) 2 

Integrating this, we obtain the conserved specific energy 
of the flow, 

A 2 I 

$' = O~ + ha2 + 2r 2 2(r  - 1) '  (2) 

where n is the polytropic index of the inflow and A is 
the specific angular momentum. In Eq. (1), P and p are 
thermal pressure and density respectively, v is the infall 
velocity and a = V/((~/P/p) is the adiabatic sound speed. 

The mass flux conservation equation in a flow which is 
in vertical equilibrium is given by, 

1~,. = 47rpOrh(r) = e~.p,O~r~, (3) 

2n 1/2 where 81~(= ~ /~4~rasr~  ) is the solid angle subtended 

by the inflow at the CENBOL boundary. Subscripts "s" 
denote the quantities at shock (CENBOL boundary) and 

h(r)  = J 2 a r U 2 ( r  - 1) is the half-thickness of the disk in 

vertical equilibrium at a radial distance r. 
A sub-Keplerian flow with a positive energy will pass 

through the outer  sonic point and depending on whether 
the Rankine-Hugoniot condition is satisfied or not, a 
standing shock may form (Chakrabarti  1990; Chakrabart i  
1996). If a standing shock forms, then the post-shock 
flow would become hot ter  and would emit hard X-ray ra- 
diation. This CENBOL region behaves similarly to the 
boundary  of a normal star; it would be expected to drive 

outflows. Using Eqs. (2) and (3), it is easy to obtain shock 
locations (i.e., outer surface of the CENBOL) analytically. 
Briefly, the procedure to obtain shocks involves the follow- 
ing steps: 
(a) For a given pair of specific energy Cv and angular mo- 
mentum A, one obtains a quartic equation for the sonic 
point and solves it for the three sonic points located out- 
side the horizon. Two of them are saddle type or "X" 
type sonic points and one is a centre type or "O" type 
sonic point. 
(b) From the inner and the outer "X" type points. Mach 
numbers are expressed as polynomials of radial distance r. 
These Mach number expressions satisfy constraints that  
they must have appropriate values at the sonic points. 
(c) In addition, it is enforced that  the Mach number in- 
variants at the shock location are also satisfied (rs). 
(d) The resulting equation becomes quartic in rs and the 
shock locations are obtained from its solution. 

Details are discussed in Das et al. (2001). We consider 
only the region of the inflow parameter  space (~v, A) that  
is able to produce standing shocks. 

In the pre-shock region, mat ter  is cooler and is sub- 
Keplerian. Assuming Cv ~ 0 (freely falling condition) and 
a ~ 0 (cool gas) in presence of angular momentum, mat ter  
will fall with a velocity, 

r -  1 7 (4) 

Using this, from Eq. (3) the density distribution can be 
obtained. 

At the shpck r = rs, i.e., the boundary of the 
CENBOL, the compression ratio is given by, 

R = E+ h+(rs)p+(rs) ~)- 
E~_ = h_(rs)p_(r~) = 0-'~' (5) 

where subscripts "-:" and "+" refer, respectively, to quan- 
tities before and after the shock. Here, E is the density of 
mat ter  integrated vertically (E ..~ ph) and the second "=" 
sign was written using the mass flux conservation equation 
given above (Eq. (3)). 

At the shock, the total pressure (thermal and ram pres- 
sure) is balanced: 

+ = w+(r,) + (6) 

where W is the pressure of the gas integrated vertically. 
We assume that  in the pre-shock region, the thermal 

pressure is small in comparison to the ram pressure, 

R -  I E_ (rs)v~ (rs) . L _  
= - - f i -  

(T) 

The isothermal sound speed in the post-shock region is 
obtained from: 

C2s = W+ R - 1  2 1 [ r 2 - A 2 ( r s - 1 ) ]  
= = 7;0 , ( 8 )  

R 2 
where, f0 = ~ "  

R - 1  
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Up to the sonic point mat ter  moves slowly and the 
density is higher. Since the outflow would take place in a 
sea of radiation, the momentum deposition is likely to be 
effective. With the electron number density ne o( r -3/2, 
yet photon number density n~ (x r -u,  it is easier to de- 
posit momentum only close to tile black hole. In radiation 
driven outflows from the stellar surface, it is customary 
to assume flows to be isothermal until the sonic point. We 
first compute outflow rates making this assumption. Later 
we drop this assumption and show that  the general be- 
haviour remains similar. In addition, we assume that  there 
is very little rotat ion in the outflow. There is no a priori 
reason to assume this, except that  there is no ~)bserva- 
tional support  of rotat ion in the jet  and it is possible that 
due to radiative viscosity most of the angular momentum 
is transported very close to the black hole. Furthermore, 
it has been observed that  the effect of angular momentum 
in the outflow is to bring the sonic points closer to the 
black hole, especially away from the axis (Sakurai 1985; 
Chakrabarti  1986). The general effect would produce a 
transverse structure in the jet which we ignore in the 
present solution. It was shown (Das & Chakrabarti  1999) 
that ill presence of angular motion the conical outflow is to 
be replaced by an annular flow confined by the centrifu- 
gal barrier and the funnel wall. Generally speaking, the 
outflow surface varies a s  r 3/2.  However, the inflow surface 
area is still proportional to r 2. Because of this asymme- 
try, the problem is no longer tractable analytically and is 
beyond the scope of the present paper. 

Here, we have ignored the radial velocity in the outflow at 
the boundary of the shock. Using the notations p(r,:) = pc 
and p(rs) = p+, we obtain, 

pc = p+ exp [ - f ] ,  (14) 

1 1 rs - re 
wl~ere f = 

2 2C 2 (% - 1)(re - 1) 
The outflow rate is given by 

where Oout is the solid angle subtended by the outflow. 
From Eqs. (2) and (15) we get, 

J~'/OUt eOut [ r ~ ( r s - l ) ] - 1 / 2  RCr 

h)ljn - R,~ = 0,--"~ r ~ - - - ~ ( ~ - -  1) %(r~ - 1) 
• exp [ - f ] .  (16) 

The above relation is very similar to that  obtained in 
Paper I when the effects of rotation in the inflow were 
ignored. However, there the ratio R m  was a function of 
R alone. In the present analysis, R is computed self- 
consistently from the specific energy and the specific an- 
gular momentum of the flow: 

R=- -E+  _ fl_ = 7 + + , (17) 
�89 + 

where pre-shock and post-shock Mach numbers M_ (s A) 
and M+(s A) are computed analytically from Das et al. 
(2001). 

2.1. When the out f low is isothermal 

The radial momentum balance equation in the outflow is 
given by 

v9 don 1 d P  1 
dr + p ~ r  + 2 ( r -  1) 2 - 0, (9) 

and tile continuity equation is given by 

1 d (pOr2) = O. (10) 
r 2 dr 

From above equations we get 

d0 N 
dr  - D '  (11) 

where 

N -  2Cs2 1 Cs 2 
and D = 0 -  - - .  (12) 

r 2(r - 1) 2 O 

To obtain the sonic point condition, we put  N = 0 and 

D = 0 and get, 0(re) = Cs, and re = 8c,~ , 
where the subscript c denotes the quantities at the sonic 
point in the outflow. 

Integrating the radial momentum equation, consider- 
ing the sonic point condition, we have, 

1 1 2 1 
Cs21np+ 2 ( r s -  1 - - - - - - - )  - { C ;  +C2~lnpc - 2 ( r r  (13) 

2.2. When the out f low is adiabatic 

At the other extreme, when the energy of the outflow does 
not change, one can also obtain an analytical expression 
for the outflow rate assuming the rs > >  )~2. In this case, 
the entropy density of the flow in the post-shock region 
is the same at the entropy density of the entire outflow 
and the specific energy is also conserved along the out- 
flow. We assume that  the turbulence generated at the 
CENBOL has effectively transported angular momentum 
away. Thus, the energy conservation equation gives 

1 2n + 1 2 1 (18) 
h a 2 -  2r---s = - - - 7 - a r  2re '  

where the left hand side is the energy at the CENBOL 
(r = rs) and the right hand side is at the sonic point 
(r = re) of the outflow where ur = ac has been used. 
n = ~ is the polytropic constant. In a Bondi (in or out) 

2 1/4rr At the CENBOL, a s flow, ar = 2 = "yC~, where Cs 
is the isothermal sound speed (Eq. (8)). Using these, one 

and 
2 

ae fors 
a-'~ ----- ~ (19b) 

obtains (assuming rs > >  A 2) 

re 2n - 3 
(19a) *')n rs 4( 0 - 1) 



0 . 0 3  

O 

4 
OJ 
L 

E 
0 

L~ 

1 
S. Das et al.: Computation of outflow rates from accretion disks around black holes 

I , , , I , , , I , , , I l , , I , , , 

0 . 0 0 2  0 . 0 0 4  0 . 0 0 6  0 . 0 0 8  0 . 0 1  0 . 0 1 2  

Energy (~) 

0 , 0 2  

Fig. 1. Variation of the compression ratio of the shocks as a 
function of specific energy E and angular momentum A as ob- 
tained from the analytical solution. A varies from 1.57 (right) 
to 1.79 (left). Curves are drawn at intervals of dA = 0.02. 
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tn an adiabatic  flow with an equation of s ta te  P = Kp "~ 
(where K is a constant  and a measure of entropy),  one 
obtains, assuming, Kc = Ks, ~ 00e 

/ 2 \  n 

From these relations one obtains the ratio of the outflow 
to the inflow rate  as ~ 0.01 

R (3o [ f o \ U R ( 4  [ 8 ( R -  1) ] - ] 3 / 2  . . 

Here, we have used n = 3 for a relativistic flow. The nature 
of this function will be discussed below. 0 

3. Outflow rates from inflow parameters 

In Eq. (16), we presented the outflow/inflow rate  ratio 
as a function of the compression ratio of the flow at the 
shock. The compression rat io is obtained from the specific 
energy and angular momentum using Eq. (17). First, we 
employ analytical means to obtain this for a single compo- 
nent  sub-Keplerian disk. Second, we use a two component  
Kepler ian/sub-Kepler ian disk to actually compute  these 
pa ramete r s  from more fundamental  parameters  such as 
accretion rates and viscosity. 

3.1. 5ingle component sub-Keplerian flows 

In Fig. 1, we plot the analytical solution of the compres- 
sion rat io R as a function of the flow parameters:  spe- 
cific energy s and the specific angular  momentum ~. The 
shock strength generally increases when energy decreases 
and the angular momen tum increases. This is because for 
low energy, the outer  sonic point and the shock form very 

0 i 
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Fig. 2. a) Variation of the ratio of outflow to inflow rates Re, 
as a function of compression ratio for various specific angular 
momenta. A = 1.57 (inner most) to 1.83 (outer most). Curves 
are drawn at intervals of dA = 0.02. Outflow rate is maximum 
at some intermediate compression ratio; b) Same as Fig. 2a 
except that curves are drawn for the exact numerical solution. 

far away and the Mach number  jumps  from a very large 
number  to a very small number.  If  the angular momen-  
tum is decreased, shock is produced only if the specific 
energy is high, i.e., if the sonic points and the shocks are 
very close to the black hole. Here, flow becomes subsonic 
before its Mach number  could be very high. 

Figure 2a shows the principle result of our work when 
only one sub-Keplerian accretion is chosen as the inflow. 
We plot the ratio Rm for a large number  of specific angu- 
lar momenta  of the flow ranging from 1.57 (innermost) to 
1.83 (outermost)  at  intervals of dA --- 0.02. The  curves are 
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drawn for all ranges of specific energy $ for which shocks 
are formed. Along the X-axis the compression ratio R of 
these shocks is written. Here to compute solid angles of the 0.~ 
inflow and the outflow, we assume the half opening angle 
of the outflow to he 10 ~ Therefore, Oout = ~r3/162. Oin is 
given in the discussion following Eq. (2). In Paper I, the 0.0B 
compression ratio R was assumed to be a parameter  and 
no angular momentum was assumed a priori. Presently, R~O.08 

we show the dependence on angular momentum. The gen- 
eral character, namely, that  the outflow rate is negligible 
when the shock is weak (R ~ 1) and falls off gradually for 004 
strongest shock (R --* 7), remains the same as in Paper I, 
however. There  is a peak at about R,~, ~ 2.8%. N()te that  

0.02 
for a given R, R~h increases monotonically with specific an- 
gular momentum A. This is because density of CENBOL 
rises with A. The curves corresponding to A = 1.71 and 0 
1.73 are specially marked since there is a clear difference 
in tendency of the variation of R~.  For instance, below 

~ 1.72, very strong shocks are not possible at all and as 
a result the outflow rate has a lower limit. For A > 1.72 
such a limit does not exist. 

The general behaviour of the outflow rate can be un- 
derstood in the following way: when shocks are strong, 
they form very far out, and thus, even though the 
CENBOL area (which is basically the area of the base 
of the jet) increases, the net outflow rate is low. When 
the shock forms very "close to the black hole, the temper- 
ature is high, and thus the outflow velocity is larger, but 
the CENBOL surface area goes down. Thus the product  
is low. For the intermediate cases the net effect is larger. 

For comparison with the analytical work presented in 
Fig. 2a, in Fig. 2b we present a similar diagram drawn 
using a numerical computation of the shock locations 
(Chakrabarti  1989). Excellent agreement between these s = 
two figures implies that  the approximations on which the 
analytical work was based are justified. All the features and 
are reproduced well in Fig. 2a, except that  for the weak- 
est shocks outflow rate is not as low as in the numerical 
calculation of Fig. 2b. 

We now present the nature of R~ when the outflow is 
also chosen to be adiabatic in Fig. 3. We used Oo/Oi ,,~ 0.1 
for reference. We observe that  the peak is still located at 
around R =,,- 4 and the outflow rate drops for very strong 
(R ~ 7) and very weak (R ,-~ 1) shocks. We therefore 
believe that  our conclusion about the behaviour of R,~ is 
generic. 
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3.2. Two component advective I/ows 

Chakrabart i  & Titarchuk (1995) proposed t ha t  the spec- 
tral properties are bet ter  understood if the disk solu- 
tions of sub-Keplerian flows are included along with the 
Keplerian flows. Recently, Smith et al. (2001a), Smith 
et al. (2001b), Miller et al. (2001) found conclusive evi- 
dence of these two components in many of the black hole 
candidate accretion flows. While the matter  with higher 
viscosity flows along the equatorial plane as a Keplerian 

687 

Fig. 3. Ratio of the outflow and the inflow rates as a function 
of the compression ratio of the inflow when the outflow is adi- 
abatic. The general nature of the function remains the same as 
that of the isothermal outflow. 

disk (of rate 2~/K), sub-Keplerian halo mat ter  (of rate 2Iifh) 
with lower viscosity flanks the Keplerian disk above and 
below (Fig. 4a). Since the inner boundary condition on the 
horizon forces the flow to be sub-Keplerian, irrespective of 
their origin (Chakrabarti  1990, 1996) mat ter  mixes (at say, 
r ---- r t r )  from both the Keplerian and sub-Keplerian flows 
before entering a black hole to form a single component 
sub-Keplerian with an average energy and angular mo- 
mentum of s and A respectively. The specific energy and 
angular momentum of the mixed flow is computed from: 

MKEK + MhEh 
MK + Mh ' (22) 

21}/K + ]I}/h (23) 

Here, s Ca, )~K and ,'~h are  the specific energies and spe- 
cific angular momentum of the Keplerian and the sub- 
Keplerian components at r = rtr respectively. 

Figure 4a shows a schematic diagram of the cross- 
section of a two-component accretion flow. The tran- 
sition radius (r -= r t r )  where the Keplerian disk be- 
comes sub-Keplerian, and the shock location r = rs, 
are indicated. Figure 4b shows two solutions (marked I 
and II) of the equations governing a two-component flow 
(Chakrabarti  1996) where .~d/.,~K (Sub-Keplerian mat ter  
from the Keplerian disk) and Ah/AK (Sub-Keplerian halo) 
are plotted as a function of the logarithmic radial dis- 
tance. Viscosities chosen for these two components are 
a = 0.04 and a =- 0.01 respectively. For r < rtr ---- 45 
(lightly shaded region) the two sub-Keplerian flows mix 
to create a single component. For simplicity, we assume 
viscosity to be negligible in this region. Thus, the spe- 
cific angular momentum and specific energy computed at 



688 S. Das et al.: Computation of outflow rates from accretion disks around black holes 

Winds (l~lou t) 

15 

(a) 

Ad/Xk X~/hk 
| ., �9 �9 ... ., �9 ,. �9 �9 

..' / -  , . . . . . . . /  , . '  ..., .Q  

"1" .-*" *' .-'" ,.'" .,"' / I  
.."" / . . '  .." .," I 

" . /  " ,'" / '  / ' l  

.." / .-"" . . " ' i  

�9 '" . . /  / 1  
.. .," I 

0 .4  "., ""'.1 I 

' I I  

o2 ~ - " ' i . i  ~O.Ol 
�9 ..." / '  /*  ..." / "  .." . . .  . .  .q 

0 """ """ ' / '  """ '"" """ / '  '"'" '"" I 

0 I 2 3 

Radial  D i s t a n c e  [ log(r ) ]  

(b) 

Fig. 4. a) Schematic diagram of the cross section of two- 
component accretion flow. See text for details; b) Solution 
of the two-component flow equations for two different viscosi- 
ties. They are merged to form a single solution as depicted in 
Fig. 4a. 
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r ---- rtr from Eqs. (22) and (23) remain constant (A) for 
r < r t r .  Dark solid curve (marked III) shows the angu- 
lar momentum distribution A/AK of all possible mixtures 
of the two components which allow shock formation. We 
chose a case where Md + A)/h = 2.0/~Edd and vary the 
Keplerian component M d  where MEdal is the Eddington 
accretion rate. 

In Fig. 5, the computed outflow rates are shown when 
the half  opening angle of the outflow is 10 ~ In this case,  
O o u t  ~ 7r 2 . ein "~ V 2h ~ The left axis shows the rate of out- 

flow mout  ---- Mout/MEdd as  a function of the Keplerian 
disk rate  (right panel) (~hd = -~/d./%/Edd) and the halo 
rate (upper panel) (rhh = /t~/h/MEdd). The lower axis 
gives the compression ratio at the shock. The most im- 
por tant  conclusion that  can be drawn here is tha t  the 
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Fig. 5. Variation of outflow rates (left axis) with compression 
ratio at shocks (lower axis). The upper axis gives the variation 
of sub=Keplerian accretion rate and right axis gives the same 
for Keplerian accretion rate. 

outflow rate steadily goes up as the Keplerian disk rate 
md decreases and the spectrum goes to a harder state. 
When the Keplerian rate  is higher, the compression ratio 
is lower and the outflow rate is also lower. This conclusion, 
drawn completely from dynamical considerations, is also 
found to be true from the spectral studies (CT95) where 
it was shown that  the post-shock region cools down and 
the shock disappears (R ~ 1). Our work therefore hints 
that  the outflow would be negligible in softer states. 

4. Discussion and concluding remarks 

CT95 pointed out that  the centrifugal pressure-supported 
boundary layer (CENBOL) of a black hole accretion flow 
is responsible for the spectral properties of a black hole 
candidate. In this Paper, we present analytical results to 
show that  this CENBOL is also responsible for the pro- 
duction of the outflows, and the outflow rate is strongly 
dependent on the inflow parameters,  such as specific en- 
ergy and angular momentum. We showed that  in general, 
the outflow rate is negligible when the shock is absent and 
very small when the shock is very strong. In intermediate 
strength, the outflow rate is the highest. As the specific 
angular momentum is increased, the outflow rate is also 
increased. This conclusion is valid when the flow is either 
isothermal or adiabatic. 

We also demonstrated how a realistic two-component 
flow (TCAF) consisting of Keplerian and sub-Keplerian 
components produces a significant amount  of outflow. 
Since mat ter  close to a black hole is sub-Keplerian by 
nature,  the two components must mix to form a single 
sub-Keplerian flow which has positive specific energy and 
almost constant specific angular  momentum. We showed 
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that  as the Keplerian rate of the disk is increased, the 
outflow rate is decreased as the shock compression ratio 
approaches unity. This conclusion," drawn from a dynam- 
ical point of view, is also corroborated by the spectral 
behavior as well - as the Keplerian rate is raised, the post- 
shock region is cooled due to inverse Comptonization and 
the shock disappears. This reduces the thermal pressure 
drive and the resulting outflow rate is reduced. 
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ABSTRACT 

We discuss plausible mechanisms to produce bulletlike ejecta from the precessing disk in the SS 433 system. 
We show that nonsteady shocks in the sub-Keplerian accretion flow can provide the basic timescale of the ejection 
interval while the magnetic rubber-band effect of the toroidal flux tubes in this disk can yield flaring events. 

Subject headings: accretion, accretion disks - -  hydrodynamics - -  instabil i t ies--  shock waves - -  
stars: individual (SS 433)--s tars :  mass loss 

1. INTRODUCTION 

SS 433 remains one of the most enigmatic objects in the 
sky. Even 25 years after its first appearance in the catalog of 
Stephanson & Sanduleak (1977), it is not clear whether the 
compact object is a black hole or a neutron star. However, there 
is ample evidence that the companion is an OB-type star with 
an orbital period of 13.1 days, which is losing mass at the rate 
of about 10 -4 M| yr -1 (van den Heuvel 1981), corresponding 
to extremely super-Eddington accretion regardless of  the mass 
of the compact object. 

One of the most curious properties of the jets of SS 433, 
which first made their presence distinctly felt through the emis- 
sion of variable Her lines, is that they are apparently ejected 
as bullets (e.g., Borisov & Fabrika 1987; Vermeulen et al. 1993; 
Paragi et al. 1999, 2002; Gies et al. 2002), with a surprisingly 
nearly constant radial velocity of about 0.26c. The absence of 
a significant intrinsic rotational velocity (i.e., v,) component is 
clear from the fact that the kinematic model (e.g., Abell & 
Margon 1979), which assumes only radial injection, quite ac- 
curately explains the time variation of the red- and blueshifts 
of the Hcr emission from the jets with a period of 162 days, 
which is attributed to the precession of the accretion disk about 
the compact object. The radial velocity is less than the maxi- 
mum allowed sound speed of c/,~, and thus hydrodynamic 
acceleration could, in principle, explain it. Therefore one may 
not require a magnetic or electrodynamic acceleration process 
(e.g., Belcher & MacGregor 1976; Lovelace 1976). However, 
the rather good collimation (Margon 1984; Paragi et al. 1999) 
supports the hypothesis that a substantial degree of confinement 
produced by toroidal flux tubes may be present. Gies et al. 
(2002) showed that the ratios of the Hc~ emission equivalent 
widths from the approaching and receding jets as a function 
of precessional phase could be fitted nicely only if these emis- 
sion components are bulletlike. Indeed, the recent Chandra X- 
Ray Observatory discovery of X-rays at a distance of about 
1017 cm from the center may result from the collision of such 
bullets (S. Migliari, R. P. Fender, & M. R. Mendez 2002, in 
preparation). 

SS 433 poses another interesting problem: it was pointed 
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out by Chakrabarti (1999) and Das & Chakrabarti (1999) that 
significant outflows are produced only when the accretion rate 
is such that the X-ray source is in a low/hard state, and all the 
observational indications in other microquasars also suggest 
that the jets are indeed produced in low/hard states (Corbel et 
al. 2001; Klein-Wolt et al. 2001). However, it is difficult to 
imagine how SS 433 manages to remain in the low/hard state 
with 10 -4 M o yr -1 of wind matter ejected from its companion. 
The answer to this quandary probably lies in the recent results 
of Paragi et al. (1999) and Blundell et al. (2000), whose high- 
resolution radio maps show that there is a large region of 
roughly 50 AU in radius that is filled with enough gas and 
dust to obscure the accretion disk and the base of the jets. They 
also found an equatorial outflow. Gies et al. (2002) present 
additional evidence from observations of the "stationary" Ha  
and He i lines for an extended "disk wind." So it is distinctly 
possible that most of the matter from the donor is rejected 
either by centrifugal force (Chakrabarti 2002) or by radiation 
force far outside the central accretion disk, and thus the compact 
object receives only a few times the Eddington rate (MEsa) of 
its companion's wind matter to accrete. This consideration finds 
further support from the fact that the kinematic luminosity of 
the jet itself is around 1039 ergs s -t (Margon 1984), which 
corresponds to about 1 Eddington rate for a 10 M o compact 
object. 

In numerical simulations of supercritical winds by Eggum, 
Coroniti, & Katz (1985) designed to model SS 433, it was 
shown that only a fraction of a percent of the infalling matter 
is ejected from a radiation pressure-supported Keplerian disk, 
which indicates that the accretion rate must be at least 
100MEdal if the accretion takes place through a Keplerian disk. 
On the other hand, numerical simulations of a sub-Keplerian 
disk by Molteni, Lanzafame, & Chakrabarti (1994) suggest that 
about 15%-20% of matter is ejected as an outflow, indicating 
that the accretion rate onto the compact object in SS 433 need 
be at most a few M~,,. Similar simulations with different pa- 
rameters yield situations where no steady shocks can form, 
even though two saddle-type sonic points are present (Ryu, 
Chakrabarti, & Molteni 1997, hereafter RCM); under these 
conditions, large-scale shock oscillations produce intermittent 
outflows instead of continuous outflows. Since the compact 
object is a wind accretor, a low angular momentum, sub- 
Keplerian flow is the most likely description of the accretion 
flow. Indeed, the presence of sub-Keplerian flows in several 
other high-mass X-ray binaries has now been verified (Smith, 
Heindl, & Swank 2002). 

In this Letter, we present a few scenarios leading to ejection 
of matter as bullets in SS 433. We discuss four possible ways 
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to create blobs of matter emerging from the disk and conclude 
that periodic ejection of the blobs by the large-scale oscillation 
of an accretion shock (something like a piston) may be the 
fundamental production mechanism of the "normal" bullets. 
The irregularly observed rapid flaring (Vermeulen et al. 1993) 
could be understood in terms of the catastrophic collapse of 
toroidal magnetic flux tubes, very similar to what has been 
argued to be occurring in GRS 1915+105 (Vadawale et al. 
2001; Nandi et al. 2001). In the next section, we discuss these 
processes and their suitability or unsuitability for SS 433. In 
w 3, we present concluding remarks. 

2. MECHANISMS TO PRODUCE BULLET-LIKE EJECTA 
FROM ACCRETION FLOWS 

In both the works of Eggum et al. (1985) and Molteni et al. 
(1994), continuous ejection was reported when a radiation pres- 
sure-dominated Keplerian disk, or a sub-Keplerian disk ca- 
pable of producing a steady shock, was considered. However, 
in SS 433 the basic ejection is bulletlike, and since the size of 
the X-ray-emitting region is smaller than Ix ~ 1012 cm within 
which the material in the jets is already accelerated to vj~ t ~ 
0.26c (Watson et al. 1986; Stewart et al. 1987), the bullets are 
not expected to be delayed by more than lx#Jje t ~ 100 S. Indeed, 
recent Rossi X-Ray Timing Experiment (RXTE) observations 
of hard X-rays from SS 433 indicated variability on timescales 
of 50-1000 s (Safi-Harb & Kotani 2002), roughly corroborating 
this picture. In fact, a simultaneous measurement of a flare at 
2 GHz in the radio (Kotani & Trushkin 2001) and in hard 
X-rays (Safi-Harb & Kotani 2002) indicated a strong anticor- 
relation of radio and X-ray fluxes, similar to what is observed 
in GRS 1915+105 (Mirabel & Rodriguez 1994). Moreover, 
the X-ray luminosity is very low (~ 1036 ergs s-1) and is believed 
to come from the base of the jets (Watson et al. 1986). It is 
believed to have a thermal origin, and EXOSAT (Watson et al. 
1986) and Ginga (Yuan et al. 1995) observations were ade- 
quately fitted with a thermal bremsstrahlung model with 
kT ~ 30 keV. The overall spectral shape suggests that the 
source has always been in a standard low/hard state, and so 
far no quasi-thermal emission expected from a"Keplerian disk" 
has been detected. From the interaction of the jet with the 
supernovae remnant W50, the lower limit of kinematic lumi- 
nosity is found to be at least 1 0  39 e r g s  s -1 (Biretta et ai. 1983; 
Davidson & McCray 1980). This means that the mean mass 
outflow rate is around 10 TM g s -1, and if most of it is in the form 
of bullets ejected at 50-1000 s intervals, the mass accumulated 
in each bullet should be in the range of 1019-1021 g. 

The above data imply that the essential features that one 
must explain when attempting to produce bullets out of the 
accretion disks are (a) the disk should be a sub-Keplerian flow, 
(b) the object (black hole or a neutron star) and its surround- 
ings should be in a low/hard state, (c) bullets should be ejected 
in 50-1000 s timescales under normal circumstances, (d) the 
mass of each bullet Should be around 10~9-102~ g, and, finally, 
(e) there should be occasional flaring with an anticorrelation 
of radio and X-ray emission. We now discuss several scenarios 
and present what we believe to be the most probable picture 
of what is going on in SS 433. The four processes are sche- 
matically shown in Figures la-ld.  

2.1. Cooling of the Jet Base by Comptonization and 
Separation of Blobs 

It was shown by several numerical simulations that signif- 
icant outflows are produced from regions very close to the 
inner edge of the accretion flow, possibly from the centrifugal 

pressure-dominated region (Molteni et al. 1994, 2001). These 
jets are launched subsonically but quickly pass through the 
inner sonic point to become supersonic. In the subsonic region 
while the matter moves slowly, the density is high and the 
optical depth could be large enough (r > 1) to undergo Comp- 
ton cooling (Fig. la) provided there is a Keplerian disk un- 
derneath to supply soft photons. A part of the outflow, which 
was subsonic previously, becomes supersonic because of this 
rapid cooling and separates from the base of the jet. This sep- 
aration of blobs is expected to occur at the sonic surface r c 
which is ~(2-3)~., where ~ is the size of the centrifugal barrier 
(see Chakrabarti 1999) 

This possibility, though attractive, and in fact likely to be a 
major mechanism for rapid state change in objects like GRS 
1915+105 (Chakrabarti & Manickam 2000), is untenable in 
SS 433 because the latter is a wind accretor: thus no significant 
Keplerian disk is expected in this system to supply the soft 
photons, and indeed none has been detected so far (Watson et 
al. 1986; Yuan et al. 1995). 

2.2. Resonance Oscillation of Accretion Shocks in the 
Presence of Bremsstrahlung Cooling 

Numerical simulations of accretion flow show that in cases 
where the cooling timescale nearly matches the infall timescale, 
a shock forms, but it then starts oscillating and ejects matter 
quasi-periodically (Langer, Chanmugam, & Shaviv 1983; Mol- 
teni, Sponholz, & Chakrabarti 1996, hereafter MSC; see Fig. 
lb). In order to have an oscillation period of around 50 s, the 
shock must be located at the large distance of r~ Msc ~ 6400w 
for a black hole of mass M = 10 M o, where r~ = 2GMIc 2. 
The mass of the postshock region is computed by equating the 
bremsstrahlung (which we assume to be the major cooling 
mechanism) cooling time and the infall time in the postshock 
region (MSC): 

/Rr \3 /2  F. e r,,M~c = |.-,~,Msc} ~ ,  (1) 
TMsc-----~= vl '. r s / c 

where C is the specific thermal energy, v z is the infall velocity, 
and R = (7 + 1)/(7 - 1) = 4 -7  (these limits are for a strong 
shock with 3' = 5/3 and 7 = 4/3, respectively) is the com- 
pression ratio at the shock. Assuming the gas density (n) and 
temperature (T) scale as n ~ r - 3 1 2  and T ~ r -1, respectively, the 
mass of the sub-Keplerian region of r < r, turns out to be 
7 x 1019 g (withM = 10 M o, 7 = 5/3). This is indeed of the 
same order as the mass of the bullets observed in SS 433. 
However, one has to have both the angular momentum and 
energy of the injected material comparable to the marginally 
bound values determined by the central object in order to 
achieve such an oscillation. On the other hand, if the mass 
expulsion from the system takes place at the similar radius of 
r~x ~ 104rs = 2 • 109M/M| cm due to the centrifugal force, 
the specific angular momentum of the flow is approximately 
[rJ(2rs)]U2rsc ~ 70rsc, which is very large compared to the 
marginally bound value of 2rsc. So it is unlikely that this mech- 
anism works in SS 433. 

2.3. Nonsteady and Nonlinear Shock Oscillation 

A standing shock can form in a sub-Keplerian flow only if 
there are two saddle-type sonic points and the Rankine-Hugoniot 
relation is satisfied at least at one point in between these two 
sonic points. However, Chakrabarti (1990) showed that there 
is a large region of the parameter space where there are two 
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Fro. l .--Four scenarios of bullet separation in SS 433 are schematically shown. (a) The base of the jet is cooled down by soft photons from a Keplerian disk 
and detaches when it becomes supersonic. (b) Resonance oscillation of the sub-Keplerian region due to the near matching of the infall time with the cooling time 
produces discrete ejecta during the phase when the centrifugal barrier contracts. (c) Nonsteady motion of the centrifugal barrier due to the inability of the flow 
to find a steady shock solution. (d) Magnetic tension from toroidal flux tubes (shown as shaded narrow tori) causes them to collapse catastrophically in a hot 
ambient medium in rapid succession, which evacuates the centrifugal barrier. The recurrence time of (a) is the viscous timescale in the inner part of the disk, ~10 s; 
(b-c) is ~50 s; and (d) is random and dictated by the enhanced magnetic activity. 

saddle-type sonic points but the shock conditions are not sat- 
isfied. Even an initially supersonic accretion (such as the wind 
from the companion) can fall into this category. 

What will happen to such a realistic flow, especially when 
the specific entropy at the inner sonic point is greater than that 
at the outer sonic point? RCM discovered that a flow injected 
with these parameters exhibits yet another type of shock os- 
cillation (Fig. lc). Here the shock searches for a stable location 
and oscillates without finding it. In the first half of the cycle, 
the shock recedes far away, the postshock region fills up, but 
the accretion is essentially completely blocked. In the second 
half of the cycle, the shock pushes the matter into the black 
hole, thereby evacuating the postshock region. In a realistic 
simulation, RCM find that while the ratio of actually accreted 
matter to the amount available from the companion, Rai = 
/~/acc/,~/~,j, would be around 0.2 during the first half-cycle, 
Rai ~ 1.3 in the second half-cycle. The outflow was also found 
to be very large. The timescale of oscillation was found to be 
TRCM ~ (4000--6000)rs/c for a r, = 20r s whose infall time is 
only about TMsc = (Rrflrg)3/2(rJc) ~ (350-400)r8/c. Thus, this 
type of oscillation takes about a factor of Rr = TRcMITMsc ~ 
15 times longer than the resonance oscillation discussed in 
w 2.2. For a 50 s oscillation, the location of the shock should 
be obtained from (r~.Rcra/rs) 3/2--- (l/R)(50 slRT)(c/rs)~ 10 4, 

which gives r,.RCM ~ 450rs for a 10 M| black hole, a more 
physically reasonable value. Even though the size of the os- 
cillating region goes down by a factor of 10 or so, compared 
with that involved in the resonance oscillation, the ejected mass 
need not go down (even for the same accretion rate as in the 
earlier case). This is because nearly all of the accretion flow 
is accumulated in half the cycle (~25 s in this case) before 
being ejected (see Fig. 2 of RCM). 

Another advantage of this type of nonsteady shock oscilla- 
tion is that it is driven by centrifugal force and not by thermal 
cooling. Hence the result is generally independent of the ac- 
cretion rate. Thus, as long as the viscosity remains low, equiv- 
alent to having the Shakura-Sunyaev.(1973) parameter a < 
t~ c = 0.015 (Chakrabarti 1990), and M~,j remains fairly con- 
stant, this oscillation, once established, could be sustained 
indefinitely. 

2.4. Magnetic Rubber-Band Effect 

In the event of increase in magnetic activity of the disk, as 
could happen for instance when the accretion disk bends toward 
the binary companion during its precessional motion, it is not 
unlikely that a strong magnetic field will be first intercepted, 
and then advected, toward the inner edge of the disk. In this 
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case the field will preferentially become toroidal due to shear 
in the rotating flow. Then, as has already been pointed out 
(Chakrabarti & D'Si lva  1994; Nandi et al. 2001), the accel- 
eration due to magnetic tension, 

~ -  ( 2 )  
aT = - 47rr(p, + Pt) 47rrp~' 

(Safi-Harb & Kotani 2002) where simultaneous observations 
of  2 GHz radio and 2-20 keV X-ray fluxes from SS 433 have 
been made, and a clear dip in X-ray flux is seen at the same 
time a strong radio flare is observed. It is worth noting that 
similar anticorrelated variations are common during flares in 
GRS 1915+105 (Feroci et al. 1999; Naik et al. 2001), and we 
suggest that the flares in SS 433 originate in the same way. 

would be the dominant force in the postshock region of the 
sub-Keplerian flow (Fig. ld). Here r is the major radius of the 
toroidal flux tube and p~ and Oe are the densities of the medium 
internal and external to the flux tube, respectively. The last step 
in equation (2) is written because as "~ P, for a strong flux tube. 
Since B ,  oc 1/r and O~ oc r -s/z, we get 

aT cc r -s/z, (3) 

thus increasing rapidly as the tube comes closer to the black 
hole, and even surpassing the magnetic buoyancy, 

aMB - -  1 + X = r 3 , ( 4 )  

where X = PilPe ~ 0 and h~ep and X are, respectively, the spe- 
cific angular momenta of a Keplerian disk and the disk under 
consideration. The accelerations in equations (3) and (4) do 
cross over, since at a location very close to a black hole, 
)~ ~ )~Kop for a sub-Keplerian flow. 

The effect of magnetic tension is dramatic, and the inner 
part of the disk is evacuated in the Al fv tn  timescale: r/v A ~ 
(r /aT) ~/2 ~ 0,1 s, for a 10 M| black hole with a realistic Alfvtn  
speed, v A --- 0.1c (Nandi et al. 2001). The enhanced plasma 
ejection along the axis presumably causes sporadic magnetic 
flare events that would be observable as radio outbursts, at the 
same time reducing the X-ray emission from the disk that forms 
the base of  the jet. Recently, such effects may have been seen 

3. CONCLUDING REMARKS 

In this Letter, we have studied various competing processes 
for the creation of bullets which move ballistically in the jet 
of SS 433. We showed that blobs may be separated by 
(1) Comptonization, (2) shock oscillations due to resonance, 
(3) oscillations due to inherent unsteady accretion solutions, 
and (4) intense magnetic tension of  the toroidal flux tubes. We 
reject the first possibility because it requires a large Keplerian 
disk, which is unlikely. We are unable to distinguish at this 
stage which type of shock oscillation is more capable of pro- 
ducing bullet formation in SS 433, but we prefer the third 
possibility owing to its impulsive and generic nature and 
smaller involved region. We believe that the fourth possibility 
of the inner disk evacuation should produce flaring events but 
will occur rather rarely, perhaps only once in a single precession 
period, when the magnetic field of  the companion is prefer- 
entially tilted toward the accretion disk during precessional 
motion. This fourth mechanism gives rise to an anticorrelation 
between radio and X-rays, perhaps already observed in SS 433 
(Safi-Harb & Kotani 2002). 
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A B S T R A C T  

Accretion flows having low angular momentum and low viscosity can have standing shock 
waves. These shocks arise because of  the presence of  multiple sonic points in the flow. We 
study the region of  the parameter space in which multiple sonic points occur in viscous flows 

in the absence of  cooling. We also separate the parameter  space into regions allowing steady 
shocks and oscillating shocks. We quantify the nature of two critical viscosities which separate 

the flow topologies. The post-shock region being hotter, it emits harder X-rays and osci l la t ing 

shocks cause oscillating X-ray intensities giving rise to quasi-periodic oscillations. We show 

that with the increase in viscosity parameter, the shock always moves closer to the black 

hole. This implies an enhancement of  the quasi-periodic oscillation frequency as viscosity is 

increased. 

Key  words :  accretion, accretion discs - black hole physics - shock waves. 

1 I N T R O D U C T I O N  

In the standard theoryof thin accretion flows around black holes (Shakura & Sunyaev 1973, hereafter referred to as SS73) viscosity plays a 
major role. Viscosity transports angular momentum outwards and allows matter to sink into the potential well formed by the central compact 
object. In this model, the flow angular momentum is assumed to be Keplerian and this is the standard notion about how matter is accreted. 
However, Chakrabarti & Molteni (1995, hereafter referred to as Paper I), and Lanzafame, Molteni & Chakrabarti (1998, hereafter referred 
to as Paper II), through extensive numerical simulations showed that the angular momentum distribution depends strictly on the viscosity 
parameter and the way the viscous stress is defined. They showed that close to a black hole, the disc does not have a Keplerian distribution. 
l'nis is because the flow must be supersonic on the horizon (Chakrabarti 1990a) whereas a Keplerian disc is always subsonic (SS73). In Papers 
land II, it was shown that for a large region of the parameter space, shocks may form in accretion flows and when viscosity is increased 
beyond a critical value (Chakrabarti 1990a,b, 1996a, hereafter C96a), the shocks disappear. 

Paper I also improved the concept of the viscosity parameter ~t (SS73): it argued that in a generalized flow with significant radial velocity 
0, the viscous stress Wevr should not be equated to -or P as in SS73, where P is the total pressure, but to - u n ( P  + PO E) (actually, its 
vertically integrated value using a thin-disc approximation) where' p is the density and the subscript H is given to a to distinguish it from 
~e Shakura-Sunyaev viscosity parameter. The latter prescription naturally goes over to the original prescription when radial velocity is 
unimportant as in the case of a standard Keplerian disc model (SS73); however, when the radial velocity is important as in the transonic 
bw solutions (Chakrabarti 1990a), the latter definition preserves the angular momentum even across axisymmetric discontinuities, such as 
~retion shocks. The reason is that, according to the Rankine-Hugoniot conditions (Landau & Lifshitz 1959), in a steady flow, the sum of 
~e thermal pressure and ram pressure, i.e. P + pO 2 is continuous across discontinuities. This makes the viscous stress wr~ continuous across 

axisymmetric discontinuities as well. 
In an earlier study, Chakrabarti (1989a, hereafter C89a) considered the transonic properties of isothermal accretion flows and showed 

tat for a large region of the parameter space spanned by the specific angular momentum and the temperature of the flow, an accretion disc 
can have standing shock waves. The specific angular momentum of the disc was smaller than that of a Keplerian disc everywhere. This flow 
comes about especially when the matter is accreted from the winds of a binary companion. Subsequently, Chakrabarti (I 990b, hereafter C90b) 
showed that inclusion of viscosity reduces the region of the parameter space in that, at a sufficiently high viscosity, the Rankine-Hugoniot 
conditions which must be satisfied at a steady shock are not satisfied anywhere in the flow. The existence of standing shocks in sub-Keplerian 
inviscid accretion discs has been tested independently by several groups since then (Nobuta & Hanawa 1994; Yang & Kafatos 1995; Lu & Yuan 
1997). Numerical simulations have also been carried out with several independent codes such as smoothed particle hydrodynamics (SPH) and 

'E-mail: chakraba@bose.res.in 
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total variation diminishing (TVD) and distinct standing shocks were tbund exactly at the predicted locations (Chakrabarti & Molteni 1993: 

Molteni, Ryu & Chakrabarti 1996b). 
In more recent years, it has become evident that the standing shocks may be very important in explaining the spectral properties of black 

hole candidates (Chakrabarti & Titarchuk 1995, hereafter CT95) as the post-shock region behaves as the boundary layer where accreting matter 
dissipates its thermal energy and generate[ hard X-rays by inverse Comptonization. C96a considered the unification of solutions of wind~ 
and accretion around compact objects. However, the cooling was treated in terms of a parameter and no parameter space was studied. The 
post-shock region is also found to be responsible for producing relativistic outflows (Chakrabarti 1999; Chattopadhyay & Chakrabarti 2002) 
Furthermore, numerical simulations indicated that the shocks may be oscillating at nearby regions of the parameter space in the presence of 
cooling effects (Molteni, Sponholz & Chakrabarti 1996a) and the shock oscillations correctly explain intricate properties of quasi-periodic 
oscillations (Chakrabarti & Manickam 2000). Recent observations support the presence of sub-Keplerian flows in accretion discs (Smith et 

al. 2001; Smith, Heindl & Swank 2002). 
In view of the importance of the sub-Keplerian flows we plan to reinvestigate the work done on isothermal flow by C89a and C90b by 

extending them to the study of polytropicf lows to check the properties of shock waves in viscous flows. What is more, unlike C89a and C90~. 
we investigate the behaviour of the solutions in the entire parameter space spanned by the specific energy, angular momentum and viscosity 
Some work was done in C96a, but the parameter space was not explored. We find very important results: even when the viscosity parameter 
is very high, the flow continues to have three sonic points, a prime condition to have a standing or oscillating shock wave. However. the 
parameter space for standing shock waves is gradually reduced with the increase of viscosity. On the other hand, we discover that the shock 

location itself is reduced with the increase in viscosity parameter. 
We wish to emphasize that the problem at hand is by no means a trivial extension of previous work. In an accretion flow, where the 

flow is subsonic at a large distance and is necessarily supersonic on the horizon, the flow has first to become supersonic at a sonic point 
and then, after the shock transition where it becomes subsonic, the flow must again pass through the inner sonic point before entering lhe 
black hole. In studying flows with constant energy (Chakrabarti 1989b, hereafter C89b) or isothermal flows (C89a), both the sonic pomls 
were known when the so-called 'eigenvalues', namely, the specific energy (for polytropic flow) or temperature (for isothermal flow) and the 
specific angular momentum are supplied. In the present situation, neither of these two quantities is constant in the flow since the visco~ib 
will heat up the gas, increase the thermal energy and at the same time reduce the specific angular momentum as the flow proceeds towards 
the black hole. Thus, the inner sonic point, through which the flow will pass after the shock, is not known before the entire problem i~ 
actually solved. We have devised a novel way to solve the entire problem by iterating the location of the inner sonic point till the shock 
condition is satisfied. We have identified the topologies which are essential for shock formation. We have also identified the parameter 
space which will have solutions with three sonic points but need not have standing shocks. These solutions generally produce oscillating 
shocks as shown by Ryu, Chakrabarti & Molteni (1997). In C96a, some effects of viscous heating were studied and the cooling effect 
was chosen to be proportional to the heating effect for simplicity. No parameter space study was made. In the present paper, we ignore 
cooling completely. The exact effects of various cooling processes and their influence on the parameter space will be discussed elsewhere 
(Das & Chakrabarti 2004). 

The plan of the present paper is the following: in the next section, we present the model equations. In Section 3, we present the sonic-point 
analysis. In Section 4, we study the global solution topology. In Section 5, we classify the parameter space in terms of whether a global solution 
has triple sonic points or not. In Section 6, we classify the region with triple sonic points further to indicate which region may allow standing 
shocks and which region may allow oscillating shocks in the presence of viscosity. We show in particular that matter with very low angular 
momentum may allow shocks even when the viscosity parameter is very high. In C96a it was shown that topologies are changed with visco~ily 
and there exists two critical viscosity parameters at which such changes take place. In Section 7, we quantify these critical viscosity parameter. 
Finally, in Section 8 we discuss the relevance of shocks in the context of quasi-periodic oscillations and make concluding remarks. 

2 M O D E L  E Q U A T I O N S  

We consider a steady, thin, viscous, axisymmetric accretion flow on to a Schwarzschild black hole. The space-time geometry around J 
Schwarzschild black hole is described by the pseudo-Newtonian potential introduced by Paczynski & Wiita (1980). Here, one uses the 
pseudo-Newtonian potential given by 

G M  

g(r)  = r -- 2 G M B , / c  2" 

We consider the units of velocity, distance and time to be c, r~ = 2GMan / c  2 and 2GMBH/c 3, respectively, where c is the velocity of light, and 

G and MB, are the gravitational constant and the mass of the black hole, respectively. In these units, defining x = r/rg. we get the [x~tential 
as g(x) = - [2 (x  - l)]-I .  We assume the disc to be in hydrostatic equilibrium in the vertical direction. 

In the steady state, the dimensionless hydrodynamic equations that govern the infalling matter are the following (C96a): 

(i) radial momentum equation, 

d0 1 dP ~.(x) 2 1 
o ~ - +  - - + - -  =0; ila) 

p dx x 3 2(x - 1) 2 

�9 2004 RAS, MNRAS 349,649.4~ 
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(ii) baryon number conservation equation, 

.~ = EOx, (lb) 

apart from a geometric constant; 
(iii) angular momentum conservation equation, 

d~.(X)dx + ~ x x ~ l  d (x2W~) = 0; (lc) 

and finally 

(iv) entropy generation equation, 

EOT~- = Q+ - Q- .  (ld) 

The local variables 0, p, P and )~(x) in the above equations are the radial velocity, density, isotropic pressure and specific angular momentum 
0fthe flow, respectively. Here E and Wxr are the vertically integrated density (Matsumoto et al. 1984) and the viscous stress, s is the entropy 
density of the flow, and T is the local temperature. Q+ and Q-  are the heat gained and lost by the flow (integrated in the vertical direction), 
respectively. 

In our model of the disc which is assumed to be in hydrostatic equilibrium in the vertical direction, the local disc height is obtained by 
equating the pressure gradient force in the vertical direction with the component of the gravitational force in that direction. The half-thickness 
of the disc is obtained as: 

h = axl/2(x - 1). (2) 

Here, a is the adiabatic sound speed defined as a = ~,/-F--PT-p. As discussed in the introduction, we shall use the viscosity prescription of Paper 
Ivalid rigorously for flows with significant radial motion. Thus the viscous stress is: 

W,~ = - ~ n  H, (3) 

where FI = W + ]E02. As mentioned before, this will ensure that the viscous stress is continuous across the axisymmetric shock wave that 
we are studying here. It is to be noted that in the SS73 prescription, Wxr is not continuous across the shock. Thus, the stress would transport 
angular momentum at different rates on two sides of the shock which would always move the shock one way or the other. This is unphysical, 
~ince in the absence of viscosity, a standing, axisymmetric shock is perfectly stable. It'is impossible that an infinitesimal viscosity should 
destabilize the shock. However, this would have been the case if the SS73 prescription were rigorously correct. 

3 S O N I C - P O I N T  A N A L Y S I S  

AI the outer edge of the accretion disc, matter has almost zero radial velocity even though it enters the black hole with the velocity of light 
r Thus, during accretion, at some point, the velocity of matter should exactly match the sound speed. This point is called a critical point or 

as0nic point. When matter crosses a sonic point, it becomes transonic. As Chakrabarti (C89ab, C90ab) pointed out, depending on the initial 
parameters, a flow may have multiple sonic points and therefore, depending on whether the shock conditions are satisfied or not, a flow may 
or may not have a standing shock. 

For the sake of completeness, we carry out the sonic-point analysis by solving the above equations (1)-(3) using a method similar to that 
used in C89b. 

3.1 Sonic-point condit ions  

lnthe present analysis, we use the MISStress prescription (C96a) for computing Q+, and Wxr is obtained from equation (3). For the accretion 
fl0w, the entropy equation (equation 4) can be simplified as 

+ 

y-  I dx p2 p ~  = C - H ,  (4) 

znd then H ( =  Q+/ph) takes the form 

It = Ax(ga z + g 0 a ) ~ ,  (5) 

where g is the adiabatic index, A = - a n I n / y  and g = I~+l/I,. Here, ~(x) is the angular velocity of the accreting matter at the radial 
distance x, n is the polytropic index (n = (y - 1)-l), and In and I,,+l come from the definition of the vertically averaged density and pressure 

IMatsamoto et al. 1984). 
In the present analysis, we use Q_ = 0, i.e. the cooling is ignored. This would be strictly valid if the accretion rate is low, so that the 

~ss of energy by bremsstrahlnng cooling is insignificant compared to the rest-mass energy. 
After some simple algebra and eliminating da/dr, etc. we get from the governing equations l(a-c) and equation (2) the following 

~st-order linear differential equation: 

dO N 
= ~ ,  (6) 
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where the numerator N is 

N = - ~ n A ( a 2 g  + -~5k2 2(x-1 1) 2 2~ngA(a2g  + yO2) + ( y ' -  i~ J 

02a2(5x -- 3) ctngAa2(5x -- 3)(a2g + )/02) 2XAO(a2g + yO 2) 
+ 

x ( y  -- l)(x -- 1) y x ( x  -- 1) x 2 

and the denominator D is 
2a2~ (y + 1)0 .3 

D--~ - -  
(y - 1) (y - l) 

F a2g ] 
Actn0.(a2g + Y02) / ( 2 8 -  1 ) -  

L 
Both N and D are algebraic equations which makes this model easily tractable. 

At the sonic point, both the numerator and the denominator must vanish simultaneously. For D = 0, ,, ,e can get the expression for 
Mach number, M(xc),  at the sonic point and it is given by 

~ - m h  -- v /m~ -- 4mam~ 
M(xc)  = 2m~ (9~ 

where 

m,, = - A c t n y 2 ( y  - 1)(2g - 1) - y ( y  + 1), 

m b =  2y - 2Act ,  g y ( y  - 1)(g - I) 

m,. = Aotng2(): - 1). 

In the weak viscosity limit, a n  -,'- 0 and the Mach number at the sonic point is 

M(x,) ~ ~ /  
2 

V y + l  

for a n ~ 0, a result obtained in C89b. 
Setting N = 0, we get an algebraic equation for the sound speed at the sonic point, which is given by 

r t~nA(5x - 3){g + y M  2} M2(5x - 3) ] a2 F(gc ,~c ,x , . )  = - , ~tnA{g +--YM2}2 F + - 

L - l) x(y-i  x l i  
J 

+ x2 .a - -  2 c t n g A ( g + y M 2 ) +  ( Y + I ) M 2 ]  
- 2(x - j = o. 

We solve the above quadratic equation to obtain the sound speed at the sonic point. Das et al. (2001) .suggested that, depending on a 
given set of initial parameters, the accretion flow may have a maximum of four sonic points where one of the sonic points always lies inside 
the black hole horizon for non-dissipative accretion flow. In our present study, we also expect a similar result. 

3.2  N a t u r e  o f  the  s o n i c  points 

A black hole accretion is always transonic. Thus the originally subsonic matter definitely has to pass through the sonic point to become 
supersonic before entering the black hole. Depending on the initial parameters, a flow may have multiple sonic points. The nature of the sonic 
point depends on the value of the velocity gradients at the sonic point. It is easy to show that dD/dx assumcs two values at the sonic point. 
One of them is valid for the accretion flow and the other is valid for the wind. If both the derivatives are real and of opposite signs, the sonic 
point is saddle type. When the derivatives are real and of the same sign, the sonic point is nodal type. When the derivative is complex, the 
sonic point is spiral type (or O-type, for non-dissipative flow). See C90b for details of the classifications. In order to form a standing shock. 
the flow must have more than one saddle-type sonic point. 

In Fig. l(a) we plot the variation of specific angular momentum (k,.) as a fu0ction of the logarithmic sonic-point location (xc) for a given 
viscosity parameter (an  = 0.1). Here different curves are drawn for different specific energies at the sonic points. The energies, from the 
top curve to the bottom, are given by: ,fc = 0.0007, 0.001, 0.003, 0.005, 0.007, 0.011, 0.015, 0.019, 0.023 and 0.027, respectively. The 

long-dashed curve at the top represents the Keplerian angular momentum distribution which is completely independent of the initial ttow 
parameters and depends only on the geometry. The solid part of the curves represents the saddle-type sonic points, the dotted part of the curves 
represents the nodal-type sonic points and the short-dashed part of the curves are for the spiral-type sonic points. First notice that the sonic 
points always occur at angular momentum below the Keplerian value. Notice that for lower values of the specilic energy at the sonic point, an 
accretion flow contains all three types of sonic points in a systematic order: saddle-nodal-spiral-nodal-saddle for a monotonic increase of the 
location of the sonic points. With the increase of energy s the region of spiral-type sonic points gradually decreases and is finally replaced by 
the nodal-type sonic points, though multiple sonic points still exist. The shaded area separates the nodal-type sonic-point region in the kc-x~ 

plane. With further increase of energy all the nodal-type sonic points also disappear and are replaced by saddle-type sonic points. In this case. 
the flow has only one sonic point for a given sub-Keplerian angular momentum. Thus, for a given angular momentum of the flow, there exists 
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Figure 1, (a) Variation of specific angular momentum (~.c) as a function of the logarithmic sonic-point location (xc) for the viscosity parameter (~ n = 0.1 ). 
The long-dashed curve is the Keplerian angular-momentum distribution. The solid curves represent the saddle-type sonic points, dotted curves represent the 
n0dal-type sonic points and the short-dastaed curves are for the spiral-type sonic points. The shaded area is the nodal-type sonic-point region. (b) Variation of 
angular momentum at the sonic point as the. viscosity parameter is varied. The specific energy at the inner sonic point is held fixed at 0.006. From the uppermost 
to the lowermost curve: ot n = 0, 0.2, 0.4, 0.6 and 0.7, respectively. Other notation is the same as in (a). (c) Variation of the specific energy at the inner sonic 
~int as a function of the viscosity parameter a n. From the uppermost curve to the lowermost curve, ot n = 0, 0.25, 0.35, 0.5, 0.6 and 0.7, respectively. Other 
notation is the same as in (a). (d) Vafiatiot~ of the specific angular momentum at the inner sonic point as a function of the polytropic index n (marked on each 
curve). Generally, the number of sonic points decreases by decreasing n. The specific energy has been kept fixed at 0.001 except for the dashed curve where it 
is0.0015, to show that for a given polytropic index, the number of sonic points increases with decreasing energy. 

a range of  energy ~mi, < ~'c < s such that the flow has multiple sonic points. In the inset, we zoom in on a small portion of the curve 
close the Keplerian value to highlight the fact that the angular momentum at the sonic point always remains sub-Keplerian when the cooling 
process is ignored. In the future (Das & Chakrabarti, 2004),  we shall show that a flow can also be super-Keplerian when cooling is added. 

In Fig. l (b) we  show a very important aspect of  viscous transonic flow. Here we  show how the angular momentum at the sonic point 

varies when the viscosity parameter ot n is increased. We hold the energy at the sonic point fixed at ~r = 0.006. In the absence of  viscosity 

tun = 0, the uppermost curve), the ftow has all three types of  sonic points. Similar to Fig. l(a), here we also indicate the saddle-, nodal- and 

spiral-type sonic points by the solid, dotted and short-dashed curves, respectively; The uppermost long-dashed curve represents the Keplerian 

angular momentum distribution. With the increase of  st n, more and more inner saddle-type sonic'points are replaced by nodal-type sonic 
points and similarly nodal-type sov.ic points are also replaced by spiral-type sonic points. The curves, from the uppermost to the lowermost, 
are for a n  = 0, 0.2, 0.4, 0.6, 0.7, respectively. For a n  = 0.7, all the inner saddle-type sonic points disappear and only the spiral-type points 

remain. Thus there exists a critical viscosity parameter a n(c.i) at a given Ei~ for which all the inner saddle-type sonic points are completely 

converted into spiral-type points. In this case, the flow has no choice but to pass through the outer sonic point only. The existence of such 
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Figure 2. A gradual change in the number of physical sonic points is easily seen in this three-dimensional view of F(Ec, )~c, Xc) = 0 (equation 9) surface. At 
high angular momenta there are three sonic points, but they merge to become one at lower angular momenta, c~ n = 0.01 has been chosen. 

critical viscosities has been predicted in C90ab and C 9 6 a -  below we compute their values exactly as a function of the inflow parameters. This 
behaviour also hints at the conclusion that the parameter space for the existence of a transonic flow may shrink with increase of viscosity. 

We continue our investigation of the transonic nature of the flow and have replotted in Fig. l(c) a figure similar to Fig. l(a) but we 
increase or rl gradually while keeping the specific angular momentum at the sonic point fixed (Lc = 1.65). Values of u n are, from the top to 
the bottom curve, otn = 0, 0.25, 0.35, 0.5, 0.6 and 0.7, respectively. Solid, dotted and short-dashed lines represent the saddle-type, nodal-type 
and spiral-type sonic points, respectively. The long-dashed line separates the positive and negative energy regions in the Cc-x~ plane. Notice 
that, for increasing ot n, saddle-type sonic points are gradually replaced by the nodal- and spiral-type sonic points: outer saddle-type sonic 
points recede further away and the inner saddle sonic points proceed toward the black hole horizon. For otn = 0.7, the inner saddle-type sonic 
points completely disappear and become spiral type. This behaviour points to a critical value of the viscosity parameter (or n.c) which separates 
the accretion flow from the multiple sonic-point regime to the single sonic-point regime at a given Lc. It is also clear that at the same sonic 
point, the specific energy steadily decreases for increasing otn. This is because, when ~ n is increased, the accreting matter tends to become 
a Keplerian disc closer to the black hole and becomes more strongly bound with lower energy. Note-that the energy at the outer sonic point 
always remains positive for all initial parameters. 

In our final study of the nature of the sonic points, we chose n, the polytropic index, to be our free parameter. For a highly relativistic 
flow, or a radiation-dominated flow, n = 3, but for a monatomicl non-relativistic gas, n = 3/2. in Fig. l(d) we show the variation of ~,. with 
sonic-point location xc. We keep the specific energy at the sonic point to be 0.001. The long-dashed curve is the Keplerian distribution as 
before. We note that with the increase of the adiabatic index y, i.e. decrease of the polytropic index n, the number of sonic points decreases 
from three to one. In this example, in the extreme non-relativistic regime (n = 1.5) the accretion flow has a single saddle-type sonic point for 
any specific angular momentum. For the same energy, for n = 1.75 there are three sonic points, indicating that a standing or an oscillating 
shock in the flow may be possible. In this figure, we also show that for a given n (such as for n = 1.75) if we increase the energy at the 
sonic point (8c = 0.0015), multiple sonic points disappear and a single sonic point forms. This indicates that there must be a critical value of 
C,. = Ccri associated with each n above which multiple sonic points do not exist when all other parameters are kept fixed. 

The general behaviour of the flow at the sonic point is best seen in Fig. 2, where we depict the surface F(Sc, ~.c, xD = 0 (equation 9) 
for a n  = 0.01. Sonic points xc are plotted along the X-axis in the logarithmic scale, Lc is plotted along the Y-axis and Cc is plotted along 
the Z-axis. At high angular momenta, there are three sonic points, but they merge to become one at lower angular momenta. Below a critical 
value ~-c~i, the flow does not have more than one sonic point. 

4 G L O B A L  S O L U T I O N  T O P O L O G Y  

A basic criterion for studying shock properties is that the accretion flow must have multiple saddle-type sonic points and the shock should 

join two solutions - one passing through the outer sonic point and the other passing through the inner sonic point. The solution topologies 
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Figllre 3. Variation of global solution topologies of the viscous accretion flow around black holes. In (a), drawn for l(xin = 2.665) = 1.68, the four panels 

show how the open  t o p o l o g y  at lower  v i scos i ty  be c omes  c losed  at h ighe r  viscosi ty.  In (b), d rawn for  L(x in = 2.359)  = 1.78, the c losed  topo logy  opens  up again.  

have already been discussed in C96a~ The current paper studies in greater detail the topologies associated with f = 1 of C96a. In particular, 
we show below new pathways through which topologies may vary. 

In Figs 3(a)-(b) we have shown how the flow topologies change with the viscosity parameter a n and the specific angular momentum Ltn 
at the inner sonic point x i,. Two distirwt types of behaviour have been highlighted here: one at a low angular-momentum regime (Fig. 3a) and 
~e other at a high angular-momentum regime (Fig. 3b). In Fig. 3(a) we keep the inner sonic point fixed at x ~, = 2.665 and the specific angular 
momentum at this point is ~'in = 1.68. At low angular momentum and without viscosity (the box at the extreme left in Fig. 3a) the subsonic 
fl0w enters the black hole after passJ,~g through the inner sonic point. In the second box, the viscosity is slightly higher and topologies are 
closed for the same inner sonic point. So, for a given set of parameters, there must be a,'critical viscosity parameter (a rl,) for which open 
topologies become closed topologies, We will discuss critical viscosity rigorously in Section 7. Accretion with parameters causing this kind 
of topology never joins With any Ke[,~erian disc unless a shock is formed (this will be shown below). When a standing shock formation is 
not possible, an accretion flow passes through the outer sonic point directly before falling into the black hole. For a further increase of a n 
(next two boxes) the closed topology ~hrinks gradually and finally disappears leaving behind only the outer sonic point (Bondi type). This is 
directly analogous to the shrinking of ~he phase space of a simple harmonic oscillator in the presence of damping (C90a). These solutions are 

basically the same as the f = 1 case ~'f fig. 2(a) of C96a. 
In Fig. 3(b), where solutions ar~: 2~lotted with a higher specific angular momentum at the inner sonic point (xi, = 2.359 and )~i, = 1.78), 

the explanations of the first and sec,'nd boxes is similar to the earlier ones (Fig. 3a), but in the third box (an  = 0.05) the accretion flow 
topology reverses its direction of spi~ :,ling and the flow can join with a Keplerian disc very close to a black hole. All the differences between 
these two figures (Figs 3a and b) ar,. ~ !nainly due to the difference of specific angular momentum at the sonic point rather than the change 
of sonic-point locations. In Fig. 11 (!,elow), we will show that the nature of the accretion flow topologies have a strong dependence on the 
angular momentum at the sonic point For a higher a n (next two boxes) the Keplerian disc comes even closer to the black hole and topologies 
passing through the inner sonic poi~: becomes Bondi type. We suspect that two limits of viscosity parameters would cause an oscillation of 
the inner part of the Keplerian disc, ~,~t we cannot be certain about it without a time-dependent numerical simulation. 

In order to show that flow top~,iogies often can take new pathways than what was already known (C96a), in Fig. 4 we have plotted 
solution topologies passing through the outer sonic point chosen at Xo~ = 25r~ and the specific angular momentum ~.(Xoot) is 1.8. The 
viscosity parameter is varied (marh~,:l on each box). For a lower a n ,  the topologies are closed as in fig. 4 of C96a and a flow having this 
topology cannot be transonic anyw~,:~,. When a n is increased, closed topologies gradually open up (unlike C96a where x out = 35 was chosen 
and the opening of the topologies d~!. not occur) and if the shock condition is satisfied, the accretion flow passing through the outer sonic 

point jumps into the subsonic branc~ and goes through the inner sonic point before entering the black hole. For higher a n ,  the same outer 
sonic point no longer remains Sadd~ type. First it becomes nodal type and then it becomes spiral type (Fig. la). Considering that the outer 
sonic point recedes farther away wiii~ the increase of a n, this behaviour is not surprising. This, together with fig. 4 of C96a, shows that there 

could be more than one way of reaching a nodal topology. 

5 C L A S S I F I C A T I O N  O F  T H E  P A R A M E T E R  S P A C E  

An important part of understanding ~ viscous flow is to classify the parameter space as a function of the viscosity parameter. In Fig. 5 we 
have separated the parameter space for the accretion flow which can pass through the inner sonic point. The angular momentum at this sonic 
point (Li,) is varied along the X-ax;~; and the corresponding specific energy at the inner sonic point (s is plotted along the ?'-axis. The 
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Figure $. Classification of the parameter space spanned by the specific energy and the specific angular momentum of the flow at the inner sonic point. The 
bounded regions drawn for different viscosity parameters (marked in the inset) contain allowed solutions which may pass through the inner sonic point. As the 
viscosity increases, the region shifts towards lower angular momentum and higher energy. 

region bounded by a given curve contains a parameter space in which multiple sonic points are possible. For instance, for ot n = 0, the region 

bounded by the solid curve is identical to the region found by C89b. For increasing a n ,  the region of multiple saddle-type sonic points is 

reduced near the high angular-momentum side, while it increases in the lower angular-momentum side. It may be recalled (C89b and Fig. la) 

that at low angular momentum, the number of sonic points is just  one. With the rise of ot n, the angular momentum at the sonic point is 

increased, increasing the number of sonic points. At a higher angular momentum, the situation is just the opposite. In this case, there are 

already multiple sonic points for ot n ~ 0 and for high enough ot n, viscosity transports angular momentum very rapidly causing a steep rise 

in angular momentum itself. This, in turn, means that the flow can have only one saddle-type sonic point in this case. 

(0 2004 RAS, MNRAS 349, 649--664 



A c c r e t i o n  s h o c k  w a v e s  657 

6 S T A N D I N G  S H O C K S  A N D  F U R T H E R  C L A S S I F I C A T I O N  OF T H E  P A R A M E T E R  S P A C E  

.~lthough, in general astrophysical contexts, shocks are ubiquitous and possibly non-stationary, in an accretion flow, the location, strength 
and thermodynamic quantities may be quantified very exactly by using the Rankine-Hugoniot conditions (RHCs). The study is similar to the 
study of shocks in solar winds (e.g. Holzer & Axford 1970) and white-dwarf surfaces. 

The shock conditions which we employ here are the usual RHCs presented in C89b, i.e. (a) the local energy flux is continuous across the 
shock; (b) the mass flux is continuous across the shock; (c) the momentum balance condition is satisfied; and finally (d) angular momentum 
should be continuous across the axisymmetric shock. 

The way an accretion flow moves around a black hole, as seen from the local rotating frame, is as follows. First the flow, subsonic at a 
very large distance, passes through the outer sonic point and becomes supersonic. The RHCs then decide whether a shock will be formed or 
~0t. Of course, our consideration of satisfying the RHCs at a given location holds only if the shock is thin, i.e. viscosity is low. Nevertheless, 
t'e continue to use this prescription at higher viscosities to have a first-order guess of the shock location. Similarly, we assume that there is 
n0 excess source of torque at the shock itself, so that the angular momentum may be assumed to be continuous across it. This condition may 
be violated when magnetic fields are present. In the presence of large-scale poloidal magnetic fields, there could be magnetic torques which 
could make the flow angular momentum discontinuous. 

tl Method of calculating the shock locations 

Accretion flow first passes through the outer sonic point and becomes supersonic. It then jumps to the subsonic branch through a shock. This 
subsequently passes through the inner sonic point before disappearing into the black hole. In our present study we begin a numerical integration 
from the inner sonic point and proceed towards the outer edge of the accretion disc to look for the shock location. During integration along the 
~bsonic branch, it is possible to calculate all the local variables (i.e. 0, a, M, p) at the post-shock region, in terms of the initial flow parameters. 
We calculate the total pressure, local flow energy, and specific angular momentum at the shock using these subsonic local variables. At the 
Lock, the total pressure, local flow energy, mass accretion rate (one of the flow parameters) and specific angular momentum are conserved. 
lhese conserved quantities at the shock give the other set of supersonic local variables for the supersonic branch. This supersonic set of local 
variables helps us to find the outer sonic point uniquely for an accretion flow with fixed inner sonic point and other initial flow parameters 
then integration takes place towards the outer edge of the black hole. Thus, the accretion flow can be connected with both saddle-type sonic 
points through the shock for a dissipative system and this determines the standing shock location for a given set of initial parameters. 

We compute the supersonic local flow variables in terms of the subsonic local flow variables in the following way. 
Our model accretion flow is in vertical equilibrium and the total pressure of the accretion flow at any given point is given by 

l l = W +  ~.02, (11) 

t~here W and ~ are the vertically averaged thermal pressure and density, respectively. 

We use the mass conservation equation (equation lb) in equation (10) and calculate the sound speed a in terms of the radial velocity (0) 
ltthe shock, x ,  in the supersonic branch, which is given by 

a:= CIC20 - C20 2, (12) 

~here 
47fflx~ 

(I --'-- 

Mlo 
~dC2 = • 

From the local flow energy equation, the radial velocity 0 at the shock in the supersonic branch can be calculated using equation (11 ) 
tad is given by 

~= -Oh + ~ / 0 2  -- 4 0 , ~ c  (13) 
20a 

I~ere 0~ = 2nCfC2, Ob = -2nC1C2, 

,~,2(Xs) 1 
1,=2s - -  + - -  

X2s (Xs - 1) 

md E is the local flow energy. 
Here, the total pressure and flow energy at the shock are calculated with the help of the subsonic flow variables. We consider only the 

'+' sign as we are interested in finding the local flow variables in the supersonic branch. This radial velocity is used to get the sound speed 
~luation 12) in the supersonic branch of the flow. This is used to obtain the outer sonic point by using numerical integration. We thus have a 

~plete solution with a standing shock in a viscous flow. 
In Fig. 6(a) we have shown how a shock may be formed by joining two solutions, one with a lower entropy passing through the outer sonic 

~nl, and the other with a higher entropy passing through the inner sonic point. Two curves are drawn for two different energies (marked). 
l, and Co,t are the energies at the inner and outer sonic points for a shocked accretion flow which has a standing shock. Due to viscous 
kating processes, energy is increased and the shock wave is formed when the flow jumps from the lower-energy solution to the higher-energy 
~luti0n. If we included only the cooling process, the situation would have been reversed. The flow parameters are Xout = 39.7, ~.i, = 1.65, 
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Figure 6. (a) An example of how a standing shock might form in viscous transonic flows is depicted here. Flow passing through the outer sonic point at .h,~ = 
39.7 and energy Eout = 0.00608 has a shock and passes through the inner sonic point at Xin = 2.78 where its energy is Ein = 0.007555. The inset showsllw 
details. (b) The actual solution topology for the case discussed in (a) is shown here which, along with the outer (O) and inner (I) sonic points, also shows 
shock transition at xs = 18.2 (vertical dotted line). The arrowed curve is followed by a flow while entering the black hole. 

ot n = 0.05 and y = 4/3. The shock condition uniquely determines the inner sonic point, which is at xl,  = 2.78. The end positions of 
long arrow mark the locations of the sonic points. In the inset, we zoom in on a selected region in the Lc-xc plane to show explicitly that 
angular momentum is indeed decreased. 

In Fig. 6(b) we present the complete solution of the flow which includes a standing shock in a viscous flow for the same set of parametm 
used to draw Fig. 6(a). The arrows indicate the'direction of the accreting flow. Subsonic accreting flow passes through the outer sonic point 
(O) and becomes supersonic. At xs, the shock conditions are satisfied - the flow jumps from the supersonic branch to the subsonic branch and 
subsequently passes through the inner sonic point (I). In this particular case, the shock conditions are satisfied at xs = 18.2 and the shock i~ 
denoted by the dotted vertical line. 

6.2 Parameter space which allows standing shocks 

In Fig. 5 we have already classified the parameter space in terms of the number of sonic,points in the flow. Here, in Fig. 7, we concen- 
trate on the region which allows only standing shocks in a viscous flow. The viscosity parameters are marked. The region marked an = 
0 coincides with that in C89b and in Chakrabarti (1996b, 1998, hereafter C96b and C98, respectively) when appropriate models are consideml. 
Compared to the inviscid case, the effective region of the parameter space shrinks in the high angular-momentum side when the viscosity is 
increased. The situation is exactly the opposite at the lower angular-momentum side. We observe that even at angular momentum as low I 
1.4, standing shocks could be formed if the viscosity is high enough. Above a critical viscosity (which depends on other parameters as will 
be shown in Fig. 13 below), this region disappears completely. 

We continue our study of the parameter space which may allow multiple sonic points. In Fig. 8 we show a curious feature: the mappin I 
between the post-shock parameters and the pre-shock parameters. We plot the region of the post-shock parameters at the inner sonic point 
(Ci,, ~-i.) (bounded by the solid curve) and the region of the pre-shock parameters at the outer sonic point (Eout, Lout) (bounded by the 10nil. 
dashed curve) for a shock which is determined through the RHCs for a n  = 0.01. For each and every point in the pre-shock parameter space 
region, there exists a point in the post-shock parameter space region and therefore we have a complete solution. For definiteness, we aim 
show vertical dashed and dotted lines in the two different angular-momentum ranges in the post-shock parameter space region in which ~,, is 
kept fixed but Ein is varied. The corresponding pre-shock parameters form a curve, indicating that both the angular momentum and the eneq~ 
had to be adjusted to get the self-consistent solution. In a non-dissipative flow, there is no variation of energy and angular momentum in 
accretion flow. As a result, both the inner and outer sonic-point parameter spaces merge (C89b; C98). 

6.3 Parameter space which may allow oscillating shocks 

An important role that is played by oscillating shocks is to produce the so-called quasi-periodic variations of the X-ray intensity from galactic 

black hole candidates. In inviscid flow, the region of the parameter space which produced multiple sonic points, but where the P~Cs wm 
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Figure 7. Variation of the region of the parameter space which forms a standing shock as a function of the viscosity parameter a n. The region shrinks with 
~e increase of viscosity parameter. 
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Figure 8. Mapping of the parameter space of the pre-shock region (solid boundary) spanned by (Gin, ~-in) onto the parameter space in the post-shock region 
tdashed boundary) spanned by (,~out, ~-out) in a viscous flow (a n = 0.01). 

not satisfied, was important for this type of oscillating shocks (Ryu et al. 1997). Here, winds are also produced sporadic from the posi-shock 
r~gion. In the presence of cooling, especially when the cooling time-scale roughly agrees with the infaiI time-scale, a new phenomenon occurs, 
Here, a steady shock may exhibit oscillations when time-dependent simulation is carried out. 

It is to be noted that it is, in a general flow, very difficult to divide the parameter space in terms of whether the shock will exist or not. 
This is because, when there are shocks, at least the RHCs allow us to map the pre-shock and the post-shock flow parameters (see Fig. 8). 
When there are no shocks, however, it is not straightforward to map these two sets of parameters. Thus, one has to rely on global topological 
behaviour of the flow solutions and whether they allow multiple sonic points. 

One of the criteria to use is to check which parameter space allows one to have the inner sonic-point energy larger than the outer 
s0nic-point energy. For instance, in Fig. 9(a) we plotted the inner sonic-point energy (Ci,) along the X-axis and the outer sonic-point energy 
(~0~t) along the Y-axis for a set of inner sonic-point angular momentum (Xi,) when accretion flows pass through shocks. It is clear that Eout 
varies almost linearly, with Cin and the nature of this variation depends only on Li~, It is not unwarranted to assume that a similar linear variation 
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Figure 9. (a) Example of variation of the outer sonic-point energy '~'out as a function of the inner sonic-point energy Ein when the flow has a shock, a n = 0.1 
and ~.(Xin) = 1.50 for the topmost curve. Curves have an increment of A~,(Xin) = 0.02 while going towards the bottom. (b) Division of the parameter space 
(Ein, ~-in) for a viscosity parameter (a n = 0.01) on the basis of the number of sonic points. The region separated by the dotted line has more than one X-type 
(saddle-type) sonic point and flows in this region form standing shocks. The region surrounded by the dashed curve has more than one X-type sonic point but 
the Rankine-Hugoniot conditions are not satisfied here. 

will continue for shock-free solutions also at least if the viscosity is low. Assuming this, we extrapolate this variation in shock-free solutions 
towards lower values of Ei. till Eout ~ 0, keeping Xi, constant. In doing so, we ensured that the accretion flow topology which passes through 
the inner sonic point must remain closed (Figs 3a-b). We follow this procedure to estimate the cut-off Gin for different kin and obtain the 
region in the parameter space where the accretion flow has more than one X-type sonic point. 

In Fig. 9(I)) we show the division of the parameter space (Gin, ~,in) for the viscosity parar0eter Otn = 0.01 on the basis of the number 
of sonic points. Flows with parameters from the region ACD have more than one X-type (saddle-type) sonic point and the RHCs are also 
satisfied. Flows with parameters from the region ABC have more than one X-type sonic point but the RHCs are not satisfied here. From our 
previous experience with non-dissipating flows, we predict that those solutions with multiple sonic points which do not produce standing 
shocks must be producing oscillating shocks. This region becomes bigger when the viscosity parameter is reduced. The rest of the parameter 
space gives solutions with a closed topology passing through the inner sonic point. 

6.4 Parameter space for all possible solutions 

Fig. 10 shows the classification of the parameter space in the energy-angular momentum (Cin, 'kin) plane in terms of different accretion flow 
topologies (small box) for otn = 0.01. The solid boundary separates the region in the parameter space for closed topologies passing through 
the inner sonic point in general. Further subclasses are indicated by the dotted, dashed and dot-dashed curves which classified the solution 
topologies depending on their behaviour. Examples of solution topologies with initial parameters taken from different regions (marked) of the 
parameter space are plotted in seven small boxes (marked). All the small boxes depict Mach number variation as a function of the logarithmic 
radial distance. The box labeUed S shows an accretion flow solution which passes through a shock. The dotted vertical line with an arrow 
indicates the location of the standing shock. The solution drawn in the box marked OS is an accretion flow which has multiple sonic points 
but does not satisfy the RHCs after the flow becomes supersonic. From our earlier experience with an inviscid flow, this topology is expected 
to give rise to an oscillating shock solution. The box marked OAC shows a new type of solution topology having multiple sonic points. One 
branch of the topology is closed and the other branch is open. This kind of solution is available in a small region of the parameter space shown 
in the inset on the upper-right comer. Solutions inside the CI1 box have closed topology (inner spiral going anticlockwise) having only one 
saddle-type sonic point and this kind of solution belongs to a large region of the parameter space with a relatively lower angular-momentum 
region. The box CI2 shows a similar result as CI1 but here the nature of the topology is different (inner spiral going clockwise) and this type 
of solution exists in a higher angular-momentum region. The box labelled I* represents an accretion flow solution which only passes through 
De inner sonic point. This solution could be for an accretion or wind and the initial parameters for this type of topology belong to the region 
indicated by I* in the parameter space. The topology with parameters taken from the O* region of the parameter space is also plotted in the 
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Figure 10, Division of the parameter space '~'in, kin (marked) for a viscosity parameter (a n = 0.01) on the basis of the solution topologies shown in the boxes 
(marked). See text for details. 
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figure 11, Variation of the ratio of the pre-shock to post-shock Mach numbers as a function of viscosity parameters for a fixed set of initial conditions (x in = 
2.795 and kin = 1.65). 'I~he shock disappears beyond the critical parameter ot n ~ 0.017. 

box marked O*. An accretion flow solution with these parameters passes only through the outer sonic point before falling into the black hole 
{similar to a Bondi flow). 

Since the strength of the shock determines the jump in temperature and density, it may be worthwhile to study the shock strength. We 
define this as the ratio of the pre-shock Mach number to the post-shock Mach number. As an example, in Fig. 11 we show the variation of 
~e shock strength as a function of viscosity parameter ct n. This figure is drawn for x i, = 2.795 and ),in = 1.65. For the lower viscosity limit, 
~e strength of the shock is weak. It increases smoothly with the gradual increase of viscosity and there is a cut-off at a critical viscosity limit 
~'here the shock disappears. 
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Figure 12. Critical viscosities separating standing from oscillating shocks and closed topologies from open topologies. 

7 D E P E N D E N C E  O F  T H E  C R I T I C A L  V I S C O S I T Y  P A R A M E T E R  

In our earlier discussion, we already hinted that there must be a critical viscosity parameter for which the flow topology must change its nature 

from an open topology to a closed topology. Here, we quantify the nature of this critical viscosity. Indeed, we find that there are in effect 

two critical viscosity parameters: one at the boundary which separates the closed topology from the open topology while the other splits the 

region of the closed topology in terms of whether shocks can form or not. Not surprisingly, these are dependent on the inflow parameter, and 

thus do not have universal values. Nevertheless, these are useful, since they give us insights into the cases in which shocks may be possible. 

Fig. 12 shows the variation of the critical viscosity parameters with the angular momentum at the inner sonic point. Different regions 

are marked. We note that for higher viscosity parameters (c~ n), shocks are formed in the lower angular-momentum domain. As the angular 

momentum is increased, the shock disappears. This was also expected from our discussion of Fig. 1 (c). 
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Figure 13. Variation of shock location with viscosity parameter and (a) inner sonic point and (b) specific angular momentum. The shock location always 
decreases with increase of viscosity until the critical viscosity parameter is reached, beyond which the shock ceases to exist. 
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$ D E P E N D E N C E  OF T H E  S H O C K  L O C A T I O N  ON V I S C O S I T Y  P A R A M E T E R  

In our study of shock properties, we have already mentioned that the shocks disappear when the viscosity is more than a critical value. In 
Figs 13(a) and (b) we show how the shock location depends on the viscosity parameter when the other two free parameters, i.e. the sonic point 
location (xi,) and angular momentum (~-i,), are kept fixed. In Fig. 13(a), the variation with the inner sonic point is shown when the angular 
momentum is kept fixed, while in Fig. 13(b), the variation with the angular momentum is shown, keeping the inner sonic point fixed. In all 
cases, the shock location is reduced with the increase in viscosity parameter till the critical viscosity parameter is reached, beyond which the 
shock ceases to exist. This is significant because in an accretion flow, when the viscosity is increased, the accretion rate is also increased 
and a black hole candidate goes from a spectrally hard to a spectrally soft state (CT95). Thus if the shock oscillation is indeed the cause of 
quasi-periodic oscillations (QPOs), then the frequency should increase with the accretion rate and finally as the shock ceases to exist, the 
QPOs also should disappear in softer states. Observation of such features could be used to verify if the shock oscillations may be the prime 

cause of the QPOs in black hole candidates. 

9 C O N C L U D I N G  R E M A R K S  

In this paper we have extended our earlier results of the study of shock formation to include the very difficult yet more realistic case of viscous 
polytropic flows. Some of the results have been touched upon in C96a but the new results in our work include a detailed study of the parameter 
space in which shocks form, even in the presence of viscosity. We found a large number of important results. 

(i) There exist two critical viscosity parameters which separate the region of the parameter space into three parts: (1) in which the flow has 
a Bondi-type single sonic point; (2) in which there are three sonic points but no Rankine-Hugoniot relations are satisfied and (3) when the 
Rankine-Hugoniot relations are satisfied. These critical viscosity parameters decrease with the increase of the specific angular momentum of 

the flow at the inner sonic point. 
(ii) At high viscosities, standing and oscillating shocks may form if the flow has very little angular momentum at the inner sonic point, 

while at low viscosities the situation is exactly the opposite. It is widely believed that accreting matter on galactic and extragalactic black 
holes could be of very low angular momentum, especially when the central compact object is accreting winds from a nearby star or stars. This 
brings out the possibility that shocks may be active ingredients of an accretion flow. Our results, with very plausible accretion flow models, 

indicate that standing and oscillating shocks are produced even for large viscosity parameters. 
(iii) The shock location is reduced with enhancement of the viscosity parameter. This, couIJ|ed to earlier results (Chakrabarti & Manickam 

2000) that the infall time is proportional to the period of quasi-periodic oscillation (QPO) of X-rays from black holes, implies that the QPO 
frequency should increase as the viscosity is increased. This is consistent with the observational findings that the QPO frequency is increased 

as the spectral slope softens, widely known to be due to an increase in viscosity and accretion rate. 

One of the questions we have not addressed here is the stability properties of these shocks. A number of authors have pointed out that 
while the shocks are stable they should undergo oscillations, either radially, or vertically, or non-axisymmetrically (Molteni, Toth & Kuznetsov 

1999; Gu & Foglizzo 2003). We anticipate that our shock solutions in viscous flows would suffer similar types of oscillations, especially 
when the viscosity is low. In particular, Gu & Foglizzo (2003) while studying shocks in inviscid, isothermal flows, found such instability and 
interpreted it as being due to cycles of acoustic waves between their corotation radius and the shock. In their interpretation this could be a 
form of Papaloizou-Pringle instability (Papaloizou & Pringle 1984) which is known to destabilize accretion tori when the angular momentum 
gradient is less than a certain value. If so, such an instability could disappear at high enough viscosity. This could have a bearing on the 
quasi-periodic oscillations of observed X-rays in galactic and extragalactic black hole candidates in that QPOs would cease to exist above a 
certain frequency. The interesting aspect is that these so-called 'instabilities~ only cause oscillation of shocks and do not destroy the shock 

(Molteni et al. 1999). 
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Low angular momentum accretion flows can have standing and oscillating shock waves. 
We study the region of the parameter space in which multiple sonic points occur in vis- 
cous flows in presence of various cooling effects such as bremsstrahlung and Comptoniza. 
tion. We also quantify the parameter space in which shocks are steady or oscillating. We 
find that cooling induces effects opposite to heating by viscosity even in modifying the 
topology of the solutions, though one can never be exactly balanced by the other due to 
their dissimilar dependence on dynamic and thermodynamic 'parameters. We show that 
beyond a critical value of cooling, the flow ceases to contain a shock wave. 

Keywords: Black hole physics; accretion; jets and outflows. 

1. I n t r o d u c t i o n  

Cooling and heating processes play an impor tan t  role in studying the accret ion 

disks around compact  objects. In this paper,  we consider both  viscous heating and 

bremsst rahlung cooling as energy dissipative processes. In Chakrabar t i  and Das, 1 

the problem of accretion and winds with small angular momentum was solved in a 

very comprehensive way when viscous heating was included. The entire pa ramete r  

space was scanned and separated in terms of flows with and without shocks. A 

major  scope for further work is to find and separate  the parameter  space which 

allows shock formations when cooling effects are also included. This will allow us to 

s tudy flows with high accretion ra te  as well. The question arises because viscosity 

t ranspor ts  angular  momentum and increases the possibil i ty of shock formation at  

a larger dis tance from the black hole. However, cooling reduces the post-shock 

pressure and therefore the possibility of shock formation. Various cooling processes 

will and should change the parameter  space in which shocks form. 

tAlso at Centre for Space Physics, Chalantika 43, Carla Station Rd., Kolkata 700084. 
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In Chakrabarti, 2 some of the effects of cooling was included. Assuming that 
cooling at a given radius of an accretion disk is proportional to the heating, all pos- 
sible topologies were presented. While cooling will and should depend on heating, 
there is no reason to believe that this proportionality is independent of radial dis- 
tance. It is therefore necessary to re-visit the problem with explicit form of heating 
and cooling included. 

In the present paper, we make these important extensions of the previous work 
and show that shocks axe still possible in a very large part of the parameter space. 
We find topologies of solutions which are similar to what was found for spiral shock 
study, 3 but otherwise new for axisymmetric situation. We also find new topologies 
which were not anticipated before. In more recent years, it has become evident that 
the standing shocks may be very important in explaining the spectral properties of 
black hole candidates 4 as the post-shock region behaves as the boundary layer where 
accreting matter dissipates its thermal energy and generates hard X-ray by inverse 
Comptonization. This region is also found to be responsible to produce relativistic 
outflows. Furthermore, numerical simulations indicated that the shocks may be 
oscillating at nearby regions of the parameter space in presence of cooling effects 5 
and the shock oscillations can also explain intricate properties of quasi-periodic 
oscillations. 6 Recent observations do support the presence of sub-Keplerian flows 
in accretion disks/,s 

The present work is done around a Schwarzschild black hole by using pseudo- 
Newtonian potential. 9 We use a similar viscosity prescription as in Chakrabarti. 2 
In Section 2, we present model equations which included both heating and cooling 
effects. In Section 3, we perform the sonic point analysis. Ih Section 5, we study the 
nature of the sonic points and how they vary with flow parameters. In Section 6, we 
study the global solution topologies with heating and cooling effects. In Section 7, 
we classify the parameter space in terms of whether shocks will form or not and 
how it depends on flow parameters. In Section 8, we briefly report how even the 
super-Keplerian flows may also be transonic. Finally, in Section 9, we discuss the 
importance of these solutions and make concluding remarks. 

2. Model Equations When Cooling Effects are Included 

As far as the cooling processes are concerned, they could be due to various physical 
reasons, such as the thermal and the non-thermal bremsstrahlung, synchrotron, 
Comptonization, etc. For simplicity, we assume that the Comptonization enhances 
the injected photon intensity due to bremsstrahlung by a factor of ~ which can take 
any value from 1 to ,~ few • 100 depending on the availability of soft photons. 4 In 
other words, we use r as a parameter to represent the net cooling. 

We start with a thin, axisymmetric, rotating viscous accretion flow around a 
Schwarzschild black hole. The space-time geometry around a non-rotating black 
hole can be satisfactorily described by the pseudo-Newtonian potential 9 and is 
given by g(x)  = - ~ - - ~ ,  where, x is the radial distance in dimensionless unit. 
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In the steady state, the dimensionless hydrodynamic equations that govern the 
infalling matter are the followings: 2 

(a) Radial momentum equation: 

~ dO 1 dR  A(x) 2 1 

dx  -k- P dx x -'--U" § 2(z - 1) 2 -- 0. (la) 

(b) Baryon number conservation equation: 

,~/= Edz ,  (lb) 

apart from the geometric constant. 
(c) Angular momentum conservation equation: 

dx + ~---x d (x2wx4~) = O" (Iv) 

(d) The entropy generation equation: 

~OTdd-~ = Q+ - Q - .  (ld) 

Here, ~ is the radial velocity and A(x) is the specific angular momentum of the 
flow. The distances, velocities and masses are made dimensionless by using r a = 
2GMBH/C 2, the Schwarzschild radius, c, the velocity of light and MBH, the mass of 
the black hole, respectively. Here ~ and Wx~ are the vertically integrated density 
and viscous stress, s is the entropy density of the flow, T is the local temperature, 
Q+ and Q- are the heat gained and lost by the flow, and ,~/is the mass accretion 
rate. We assume that the accretion flow is in hydrostatic equilibrium in the vertical 
direction and the vertical velocity component is much smaller compared to the radial 
component. With this assumption, the local disk height is obtained by equating the 
pressure gradient force in the vertical direction with the gravitational force. The 
half thickness of the disk is then given by 

h(x) = a z l / 2 ( x  - 1), (2) 

where the sound speed is defined as a = V ~ / P ,  where ~/, P and p being the 
adiabatic index, pressure and density respectively. 

In the present paper, we follow a similar viscosity prescription as given in 
Chakrabarti 2 where Wx, -- - a n H  is used. This prescription ensures that viscous 
stress remain continuous at the flow discontinuity (shock) in presence of significant 
radial motion of the accretion flow. 

3. Sonic Point Analysis 

A black hole accretes matter either from its binary companion or from the sur- 
rounding ambient medium. This matter starts with a negligible radial velocity at 
the outer edge of the disk. But it enters into the black hole with the velocity of 
light. 1~ This ensures that inside the accretion disk there must be at least one point 
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where the radial velocity exactly matches with the sound speed. This point is known 
as the sonic point. Accretion flow which passes through a shock wave must cross 
sonic points at least twice. In other words, the flow may be called multi-transonic. 

For the accretion flow, entropy equation (ld) can be simplified as 

[1 dP "yP dp] Q- - Q +  
- 1 [ p ~ x x "  p2 ~ _  = ph = C - H .  (3) 

and then H ( =  Q+/ph) takes the form, 

H = Ax(ga ~ + 7v~2)-~ - , (4) 

where, A = - a n  ~ and g = L~x. Here, fl(x) is the angular velocity of the accreting 
"7 

matter at the radial distance x, n is the polytropic index (n = ~ ) .  The general 

expression of In is given by 11 
% 

(2nn!) 2 
In = (2n+ 1)!" (5) 

Simultaneously with viscous heating, we use Comptonization of the brems- 
strahlung radiation as the physical cooling process. The following analysis is carried 
out with non-dimensional cooling term C(= Q-/ph) as 

CB (6a) 
C = 0 x 3 / 2 (  x _ 1) ' 

with 

B = l.4 x lO_271"ttmp'~ . M 1 (6b) 
\ - ~ - ]  21rm2p 2GcMBH ' 

where tt is the mean molecular weight, m~ is the mass of the proton and k is the 
Boltzmann constant respectively. 

3.1. Sonic point condition 

From Eqs. ( la)-( ld) ,  the sonic point conditions are derived following the general 
procedure 12 and are given by 

dO N 
dx D '  (7) 

where the numerator N is 

N =  
anA(a2g+~92) 2 [A 2 1 ] 

~x ~ 2 (x -  i) 2. 

+ 1 • 2angA(a'g + ,.),#2) + (-~=-" ~ J 
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02a2(5x - -  3) 

-- 1 ) ( z  - 1) 

2)~AO(a2g + ~,02) 
+ + 

x 2 

and the denominator D is 
2a20 (,~ + 1)03 

D = - -  
('7 - I )  ("y - 1) 

angAa2(5x - 3)(a:~g + "/0 2) 

"yx(x - 1) 

B 
X3/2(X- 1) ' 

F a2g ] . Aa~O(a2g + "),02) |(2g - 1) - 
L 

(8a) 

(8b) 

M(xc)  = i - - m b - -  X/m~ --4mamc 

ma = -Aan~,2(~ ' - 1)(2g - 1) - "),(3, + 1), (10a) 

mb = 23, -- 2Aa,~g~/("/- 1)(g - 1), (10b) 

me = Aa~g2(~/-  1). (10c) 

In order for the Mach number to be physically acceptable, we do not use the 
negative sign within the square root. In the weak viscosity limit, Mach number at 
the sonic point reduces to the result as obtained in Chakrabar t i J  2 

Setting N = 0, we get an algebraic equation for sound speed at the sonic point 
which is given by 

F ( • ,  Ae, xe) = Aa4(x) + •a3(x) + Ca2(x) + T) = 0, (11) 

where, 

A = _ r -~lanA{g__~,M2} 2 + 
L "/x 

B = 2AAM(g + ~ / M  2) 
X2 

c~nA(5x - 3){g + 7 M  2} 
 z(z - 1) 

M 2 ( 5 x -  3) ] 
+ ' 

[ A2 1 1 [  ( 7 +  1)M21 
C = -  x'Z 2 ( x -  1) 2 2angA(g+~/M 2 ) +  - ( ~ - ~  j ,  

B 
7) = x3/2(x _ 1) " (12d) 

We solve the above quadratic equation to obtain the sound speed at the sonic 
point. Das, Chat topadhyay and Chakrabarti  la found that  depending on a given set 
of initial parameters, accretion flow may have a maximum of four sonic points where 
one of the sonic points always lies inside the black hole horizon for non-dissipative 
accretion flow. 1~ In our present study, we also expect a similar result if we are 

(12a) 

(12b) 

(12c) 

for an  ~ 0, (9) 

where, 

At the sonic point, both the numerator and denominator vanish. For D = 0, 
one can get the expression for the Mach Number M(xr at the sonic point which 
is given by, 
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interested in the weak viscosity and weak cooling limit. Below, we study the nature 
of the sonic points. 

4. N a t u r e  of  the  Sonic  Po ints  

Accreting matter begins subsonically from the outer edge of the disk and becomes 
supersonic after passing through the sonic point before entering into black hole. 
A flow may contain multiple sonic points depending on the initial set of input 
parameters. Nature of sonic points depends on the value of the velocity gradients 
(dO/dx) at the sonic points. At each sonic point, (d~/dx)has distinctly two different 
values. If both the velocity gradients are real and of opposite signs, the sonic points 
is saddle type and one is used for accretion and the other used for winds. Nodal type 
sonic point belongs to the class when the derivatives are real and of the same sign. 
When the derivatives are complex, the sonic point is of spiral type. For a standing 
shock to form, an accretion flow must have more than one saddle type sonic point. 

In Fig. l(a), we plot the variation of specific angular momentum (Ac) as a 
function of the logarithmic sonic point location (xc) for a given viscosity parameter 
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Fig. 1. Variation of specific angular momentum (Ac) as a function of the logarithmic sonic point 
location (Xc) for the viscosity parameter (a) a n  = 0.1 (left panel) and (b) a n  -- 0.5 (right panel). 
Dimensionless accretion rate  ~h = 1.0 and energy at the sonic point Ec = 0.0013 are chosen. Long- 
dashed-dotted curve in the upper part is the Keplerian angular momentum distribution. Solid 
curves represent the saddle type sonic points, dotted curves represent the nodal type sonic points 
and the short-dashed curves are for the spiral type sonic points. The Comptonization cooling factor 

is 1 (bottom curve), 20, 40, 60, 80 and 100 (top curve) respectively. Clearly, higher cooling and 
higher viscosity remove the outer sonic points. Eventually the disk becomes a Keplerian disk 
passing through the inner sonic point. 
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(all  = 0.1), and dimensionless accretion rate (made dimensionless by the Eddington 
rate) rh = 1.0 and a given specific energy Ec = 0.013 at the sonic points. The variable 
used in cooling efficiency factor ( (Eq. (6a)). From the bot tom curve to the top, 
( = 1, 20, 40, 60, 80 and 100 respectively. In Fig. l (b) ,  the same curve is shown 
for a n  = 0.5, other parameters remaining the same. The long-dashed curve at the 
top represents the Keplerian angular momentum distribution which is completely 
independent of the initial flow parameters and depends only on the geometry. Solid 
par t  of the curves represents the saddle type sonic points, dotted curve represents 
the nodal type sonic points and the short-dashed curves are for the spiral type 
sonic points. Here, at a higher viscosity, the number of sonic points becomes three 
even with very low angular momentum. For no Comptonization (lowermost curve), 
the viscous heating is so strong that  only outermost sonic point (solid part  of the 
curve at large radius) exists. Only a large degree of cooling can compensate for the 
viscous heating to bring back the innermost sonic point. 

First, notice that  the sonic points occur at angular momentum below Keplerian 
value. For lower values of cooling at the sonic point, an accretion flow contains all 
the three types of sonic points in a systematic order: saddle - -  nodal - -  spiral - -  
nodal - -  saddle for monotonic increase of location of sonic points. With the increase 
of ~, the region of spiral type sonic points gradually decreases and is finally replaced 
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Fig. 2. Variation of the specific angular momentum (Ic) at the sonic point (Xc) as a function 
of the specific energy (s of the flow. For each energy, two curves are drawn. The thick curves 
are drawn for the cases when both the heating and cooling ave included while the thin curves are 
drawn when only the heating is included. For negative energies, there are only two sonic points. 
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by the nodal type sonic points, though multiple sonic points still exist. For further 
increase of r all the nodal type sonic points also disappear and are replaced by 
saddle type sonic points. Note that the angular momentum is always sub-Keplerian. 
Later, we shall show that when the cooing is very strong, sonic points will form 
even for super-Keplerian flows. 

We continue our investigation of the transonic nature of the flow by showing 
in Fig. 2 a series of curves where the specific energy at the sonic point is changed 
(marked). The long dashed curve is the Keplerian distribution as before. Meanings 
of solid, dashed and dotted curves are the same as before. For negative energies there 
are two sonic points, the inner one is saddle type (shown in the solid curve) and the 
dashed curve is the spiral type. For each energy, two curves are drawn. The thick 
curve is drawn when both the heating and cooling are included while the thin curve 
is drawn when only the heating is included. The motivation is to impress that the 
character of a solution can be changed when cooling is included. For instance, the 
solution for ~c = 0.019 with heating and cooling has no spiral or nodal sonic points. 
But when the cooling is turned off, the saddle type sonic point becomes nodal type. 

In our further study of the nature of the sonic points we draw in Figs. 3(a) and 
3(b) the variation of energy at the sonic points with a cooling factor. In Fig. 3(a), 
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Fig. 3. Variation of the specific energy (s at the sonic point (xe) as a function of the cooling 
rate of the flow. (a) o~rI = 0.1 (left panel) and (b) ari = 0.5 (right panel). For high viscosity, the 
outer sonic points almost disappear. 
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Fig. 4. Recovery of outer sonic point points as cooling process is introduced. Solid and dotted 
curves are for saddle and nodal type sonic points respectively. Parameters are marked on the plot. 
Long dashed curve at Ac = 1.1733 gives a boundary below which there are no triple sonic points. 

low viscosity (an  = 0.1) is used, while in Fig. 3(b), high viscosity (an = 0.5) is 
used. Other parameters are: A = 1.65 and rh = 1. The curves from bottom to the 
top are for the cooling factor ~ = 1, 20, 40, 60, 80, 100 and 120. Notice that  three 
sonic points occur only when the specific energy is positive, i.e., for sufficiently hot 
Keplerian disks or sub-Keplerian flows. For high viscosity, outer sonic points almost 
disappear from regions close to the black hole. 

In Fig. 4, we show how the number of sonic points, reduced due to viscous 
heating process, is recovered back with the introduction of cooling. The curves are 
drawn, from the bottom to the top, for ~ = 1, 20, 60, 80 100 and 140 respectively. 
The solid and dotted curves are for saddle and nodal type sonic points respectively. 
Other parameters are a n  = 0.1 and m = 1. Polytropic index n = 1.75 and specific 
energy S = 0.0018 are chosen. The long dashed curve gives the boundary of the 
angular momentum )~crit = 1.1733 and cooling factor r = 4.2, below which there 
are no triple sonic points, i.e., no shocks in steady flows. 

5. G loba l  S o l u t i o n  Topo logy  

Study of shock properties require multi-transonic accretion flow. Accretion flow 
passes through two different saddle type sonic points and discontinuous jump of the 
flow variable joins these two different branches - -  one passes through the inner sonic 
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Fig. 5. Solution topologies in presence of heating and cooling. In (a), the parameters axe ~ -- 1, 
10, 25 and 50 respectively. Other parameters are Xin = 2.71, Aln ---- 1.68, o~ ----- 0.01, r ---- 0.5. In (b), 
the parameters are ~ -- 1, 10, 25, 33.1, 50 and 70 respectively. Other parameters are; Xin ---- 3.5, 
Ain = 1.68, a = 0.01, r = 2.0. 

point  and the  o ther  passes t h rough  the outer  sonic point .  This discontinuous j u m p  

usually known as s tanding shock transi t ion.  In this paper ,  we discuss the  na tu re  of 

solution topo logy  in presence of  viscous heat ing and bremss t rah lung  cooling. 

In  Fig. 5(a),  we show how the  solution topologies change wi th  cooling. Here we 

plot ted the Mach  number  as a function of  the  logari thmic radial dis tance for r = 1, 

10, 25 and" 50 respectively. Other  chosen parameters  are: xin = 2.71, Ain = 1.68, 
c~n -- 0.01, m -- 0.5 respectively. We note  tha t  the topology  opens up to allow flows 
to enter into black holes th rough  the inner sonic points.  

In  Fig. 5(b), we show six panels in which we assume higher accret ion ra te  and 

higher inner sonic point  locations. The  parameters  are: r -- 1, 10, 25, 33.1, 50 and 

70 respectively. Other  parameters  are: Xin = 3.5, )~in = 1.68, ~n  = 0.01, m = 0.2. 

Here, as the cooling is increased, the  topologies open up similarly, bu t  the  route  to 

opening up is different. For instance, the solution in the  fourth panel, with ~ = 33.1 

is completely  new and intriguing. In this case, the flow has the  potent ia l  to  join 
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Fig. 6. Three-dimensional plot of the second panel (~ = 10) of Fig. 5(a) in which the specific 
entropy is also plotted as it varies along the flow. The boxes represent the pseudo-intersection 
point of that panel at around M ~ 0.5. The two breaches have different entropies. 

with a Keplerian disk far away (with low Mach number), while at the same time, 
it a ~  passes through the inner sonic point. But it has multi-valued solution: there 
a re two Mach numbers at a given radial distance in some region. We conjecture that  
this type of solution should be unstable and would cause non-steady accretion. 

Many of these topologies show 'multiple crossings' .very similar to what  was 
found in the s tudy of spiral shocks, a Actually, since entropy is changing along the 
flow, the two-dimensional nature of the plots in Fig. 5 is slightly misleading. In 
Fig. 6, we show a three-dimensiona2 plot of the second panel (~ = 10) of Fig. 5(a) 
in which the specific entropy is also plotted as it varies along the flow. In particular, 
this diagram shows that at the true sonic point, the specific entropy is identical in 
both the incoming (solid) and outgoing (dotted) branches. But  at the 'intersection' 
(at around M ,,- 0.5) marked by two squares, the entropies are completely different. 
Thus, there is no 'sonic point '  around M ~, 0.5. 

6. P a r a m e t e r  Space  D e s c r i p t i o n  

It is useful to s tudy the global behaviour of the accretion solutions. For this we 
classify the parameter  space spanned by the specific angular momentum and energy 
at the sonic point. Figure 7 shows the parameter  spaces in which the solution 
passing through the inner sonic point contains a closed spiraling topology as in 
panel 1 of Fig. 5(a). This means that  whether the 'Rankine-Hugoniot relation is 
satisfied or not, a shock could form in this region. The shock will be stat ionary if 
the Rankine-Hugoniot relation is satisfied 14 and will be oscillating if the relation 
is not satisfied. The solid, dashed, dot-dashed and dot-long-dashed regions are for 
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Fig. 7. Region of the parameter space in which the solution passing through the inner sonic point 
contains a closed spiraling topology. The solid, dashed, dot-dashed and dot-long-dashed regions 
a r e  for cooling parameter 1, 10, 30, and 50 respectively. Other parameters are a n  = 0.01 and 
rh = 0.1. 

cooling parameter  1, 10, 30, and 50, respectively. As the cooling is increased, the 
region shrinks and becomes smaller and smaller. This indicates that  there exists 
a critical cooling parameter,  beyond which a flow will cease to have three sonic 
points. Other parameters used are a n  = 0.01 and rh = 0.1. When the viscosity and 
cooling are reduced to zero, this region merges exactly to the corresponding region 
in Ref. 12. 

In Figs. 8(a)--(c), we p r ~ e n t  a few complete solutions which are drawn with 
the parameters at Ain = 1.7, a n  = 0.05, rh = 0.2 and ff = 5 and only the inner 
sonic point is varied: (a) zi,, = 2.545, (b) xln = 2.55 and (c) xin = 2.555. The 
corresponding shock locations are (a) x s  = 48.199, (b) xa = 27.8854 and (c) xs = 
18.6445, respectively. Vertical dashed lines show the shock transitions which connect 
two solutions, one passing through the inner sonic point and the other  passing 
through the outer sonic point. The  spiral loop through the inner sonic point rapidly 
shrinks with the increase in the sonic point location. The shock location also comes 
closer. This shows that  even though the shock location may change by orders of 
magnitude, the inner sonic point virtually remains at the same place. 
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Fig. 8. A few complete solutions which are drawn with the parameters at Ain = 1.7, an  ---- 0.05, 
rh = 0.2 and r = 5 and only the inner sonic point is varied: (a) Xin = 2.545, (b) Xin = 2.55 and 
(c) xin = 2.555. The corresponding shock locations are (a) x~ = 48.199, (b) xa = 27.8854 and 
(c) xa = 18.6445, respectively. Vertical dashed lines show the shock transitions. 

I t  is instruct ive to know the  sub-division of the pa ramete r  space in terms of the  

topologies of  the  solutions. All the  topologies seen in P a p e r  I are also present in 

this case, bu t  a new topology occurs  (see, Fig. 5(b)) when  the  cooling is especially 

strong.  F igure  9 shows the sub-division of  the  pa ramete r  space which are marked 

and the  corresponding topologies are shown in the b o t t o m  left. W h e n  the cooling 

is very  s t rong,  the curve .4BC shows fur ther  sub-divisions and a new topology  

shown in the  box C13 occur.  The  number  of  loops in the  inflow may  increase 

depending  on the cooling. T he  dot ted  curves indicate t ha t  the  figure is drawn for 

different (high) cooling factors ~. The  regions marked S, OS, C l l ,  C12, OAC,  I*, O* 
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Fig.  9. D i v i s i o n  of  t h e  p a r a m e t e r  s p a c e  acco rd ing  to  t h e  s o l u t i o n  t opo log ie s  s h o w n  in t h e  inse t .  
De t a i l s  a re  in  t h e  t ex t .  

produce topologies which produce standing shocks in accretion, oscillating shocks 
in accretion, region which produces one type of closed topology (clockwise turn), 
region which produces the other type of closed topology (anti-clockwise turn), region 
which produces one open and the other closed topology, region which produces open 
solutions passing only through the outer saddle type sonic point, and the region 
which produces open solutions passing only through the inner saddle type sonic 
point respectively. The region producing the new dotted topology C13 is very close 
to the curve .AJ~C and can be discernible only when cooling is strong. 
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Fig. 10. Modification of the parameter space for shock formation when cooling is varied. (a) an -- 
0.01 is chosen and r = 0.01, (dot-dashed) 0.1 (long-dashed) and 1 (solid) (left panel). (b) an = 0.05 
is chosen and r = 1 (dot-dashed), 5 (long-dashed) and 10 (solid) (right panel). 

It would be of interest, to concentrate on the modification of the parameter  space 
for shock formation when cooling is enhanced. In Figs. 10(a) and 10(b) this is shown. 
In Fig. 10(a), an  = 0.01 is chosen and the cooling parameters are r = 0.01, (dot- 
dashed) 0.1 (long-dashed) and 1 (solid). We note tha t  the region of the parameter 
space shifts to include negative energy regions as well. (For instance, for c~n = 0 and 

= 0, the parameter  space contains only positive energy.) In Fig. 10(b), viscosity 
parameter  is increased to a n  -- 0.05. This causes a shrinkage in the parameter space. 
The  cooling parameters are ~ = 1 (dot-dashed), 5 (long-dashed) and 10 (solid) 
respectively. In this case, the parameter  space shrinks drastically when cooling is 
enhanced. 

7. Sonic  Po in t s  for  S u p e r - K e p l e r i a n  Flows? 

It  is generally accepted that  at the sonic points, the flow must be sub-Keplerian. 3 
However, if the cooling is very efficient, this requirement may be violated. In Fig. 11, 
we show that  when ~ is very high, of the order of a few hundreds, the sonic point 
may have angular momentum above the Keplerian distribution (dotted curve). Par- 
ticularly important  is that this is possible if the sonic point is located near the black 
hole horizon. The implication of this is not obvious. Does it mean that  very cold 
flow can be Keplerian or super-Keplerian throughout its journey? If so, can it spin 
up the black hole faster that  what  is presumed so far? This point is to be addressed 
in future. 
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Fig. 11. Example of parameters which produce transonic solutions with super-Keplerian angular 
momentum. The dot-dashed curve is the Keplerian distribution. Solid curves, from the bottom to 
the top, are for ~ ---- 400, 500 and 600 respectively. 

8. Cri t ica l  C o o l i n g  and  S u b - D i v i s i o n  o f  t h e  P a r a m e t e r  Space  

We have already indicated that  cooling and heating have opposite effects in decid- 
ing the solution topologies, but one does not exactly cancel the other effect. When  
the cooling is enhanced for a given viscosity parameter,  the possibility of shock 
formation is eventually reduced. This is shown in Fig. 12. Here the critical cool- 
ing parameter ~ ---- ~crit is plotted against the specific angular momentum for two 
different viscosity parameters.  Solid curve is for c~n -- 0.01 and the dashed curve 
is for aH ---- 0.05. All possible inner sonic points are considered. The region below 
the curve contains topologies which are closed and therefore standing or oscillating 
shocks could be possible while the region above the curve allows solutions with open 
topologies. We note tha t  for smaller )~in, the critical cooling factor is smaller. This 
is expected since the possibility of shock formation is enhanced with larger )~in in 
general. When c~n is higher ~crit is lower. This indicates a' general reduction of the 
parameter  space due to higher viscosity 1 which is not totally compensated for by 
cooling effects. 
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Fig. 12. The  variation of the critical cooling parameter as a function of the specific angular 
momentum at  the  inner sonic point for two different viscosity parameters .  Solid curve is for 
a n  --- 0.01 and the  dashed curve is for a n  --- 0.05. The region below the  curve contains topologies 
which are closed and therefore standing or oscillating shocks could be possible while the  region 
above the  curve allows solutions with open topologies. 

9. Concluding R e m a r k s  

In this paper, we studied the dissipative accretion flow in presence of viscous heating 
and bremsstrahlung cooling processes. Viscosity tends to heat the flow, thereby 
reducing the Mach number. Cooling, on the other hand, increases the Mach number. 
Thus, formation of shock, which involves a supersonic to subsonic transition is 
affected by heating and cooling. We classified the parameter space in terms of 
whether three sonic points or shocks can form or not. We discovered a completely 
new topology in which matter, coming from a large distance, is connected to the 
black hole horizon as a normal solution, but it has multiple valued Mach number 
solution. We find that cooling can 'undo' the effect of heating on topological proper- 
ties, only to a certain extent. If the viscosity is high enough, then no matter how 
much cooling is used, the parameter space shrinks. We have also found that for a 
given set of flow parameters, there is always a critical cooling factor which separates 
the parameter space into closed regions, one with a closed and the other with an 
open topology. 
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It is generally believed that only the sub-Keplerian flows can pass through the 
sonic points. However, we find that when the flow is very strongly cooled, even 
super-Keplerian flows can also pass through the inner sonic point. This is a new 
result and may be significant in evolution of the spin of the accretion black holes. 
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