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Chapter 1 

Introduct ion 

1.1 Mesoscopic Physics 

In 1947, with the invention of world's first transistor [i], a trend towards miniaturization 
started. In his seminal lecture entitled "There's plenty of room at the bottom" [2] delivered 
on 29th December 1959 at the annual meeting of the American Physical Society at the 
California Institute of Technology, R. P. Feynman discussed, predicted and challenged the 
future generations of physicists to unravel the beauty and huge potential utility lying in the 
realm of 'small' world. Mesoscopic physics is the branch of solid state physics that deals 
with this world of 'small', the system sizes intermediate between the length scale regimes 
of atoms and molecules and the macroscopic world. Since the building of first transistors, 
the size of the devices have steadily shrunk, coming down to the micrometer scale in 1980's. 
The technological drive of miniaturization is to make new devices which occupy less space, 
can contain more information, can perform operations faster and also cost effective. This 
drive of miniaturization has lead us into the world of 'nanoscience'. Besides technological 
aspects this leads us to several fundamental issues of quantum mechanics, possibilities and 
experimental verifications of new phenomena. Furthermore, the measurements of most of 
the basic effects requires little more than a conductance measurement. 

Massive industrial research and development efforts towards the miniaturization of semi- 
conductor devices has produced sophisticated crystal growth and lithographic techniques, 
which allow fabrication of artificial structures, or devices having dimensions of a few atomic 
spacings. Nowadays it is possible to confine electrons in a conductor with a lateral extent 
of I00 nm or less, resulting in narrow quantum wires, constrictions and quantum dots. The 
small size of these structures largely eliminates the defect scattering and one can get ex- 
tremely high mobility conducting channels, thus motivating interest in ballistic transport. 
Physical properties of such systems can differ significantly from what one would expect on 
the basis of classical description. These systems exhibit several new phenomena as their di- 
mension become shorter than some relevant physical length scales. The only relevant process 
in mesoscopic systems having dimensions less than the phase coherence length Ir is elastic 
scattering. This Ir is the typical length on which a wave packet can travel without loosing 
its phase coherence. Ir depends on coupling of electron to other degrees of freedom like 
phonons, electromagnetic fluctuations, other electrons, magnetic impurities etc. The phase 
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FIGURE 1.1: Schematic cross section of a GaAs/A1GaAs heterostructure. The 2DEG is located 
at the interface. 

breaking scattering of electrons due to these other degrees of freedom decreases with decreas- 
ing temperature, thereby increasing 1r If system size is much much larger than 1r we recover 
classical behaviour, due to average over several phase-breaking processes. One can by tuning 
temperature, observe quantum effects at low temperatures which crossover to classical re- 
sults at high temperatures. In low temperature properties of mesoscopic systems, quantum 
interference plays the most crucial role. Except for quantum interference, discreteness of 
charge, electron numbers being even or odd, specific techniques (two or four probe) of con- 
ductance measurement, system lead coupling strength etc. control the observed mesoscopic 
phenomena. As the phase coherence is maintained over the entire sample, several intrin- 
sic quantum mechanical phenomena have been observed [3, 4]. Convincing demonstrations 
of quantum transport regime have come from experiments in thin metal or semiconductor 
films or multiply connected structures. Some of the observed quantum phenomena include 
breakdown of Ohm's law [5], quantized conductance in the point contact [6, 7], breakdown 
of Onsager's symmetry relation [8], Integral and Fractional Quantum Hall Effect (IQHE 
and FQHE) [5, 9], Aharonov-Bohm oscillations in the magnetoresistence [10, 11], universal 
conductance fluctuations, persistent current, reproducible sample specific non self-averaging 
fluctuations in conductance as the magnetic field or the chemical potential is varied. A 
few such notable mesoscopic phenomena are described below following the 'fabrication of 
mesoscopic samples'. 

1.1.1 Fabrication of high mobility samples 
In a modulation-doped GaAs/AlxGal_xAs heterostructure the two-dimensional electron gas 
(2DEG) is formed at the interface (see Fig.l.1) [9]. On the GaAs substrate a layer of typically 
100nm AlxGal_xAs is grown. Somewhere halfway in the AlxGal_~As layer there is a thin 
layer where the Ga atoms are replaced by Si donor atoms. With a proper amount of Si one 
finds that at low temperature the only mobile electrons are located at the GaAs/Al~Gal_~As 
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interface. These free electrons are attracted by the GaAs since they can lower their energy 
in this smaller band gap material. They are also held as close as possible to their ionized 
Si + donors and thus they form a thin conducting layer near the interface. Since GaAs 
and AlxGai_xAs can form a nearly perfect interface'on the atomic scale and since the Si 
donors are spatially separated, the electrons experience very little scattering. In n-type or 
p-type semiconductor where the sample is doped with impurities which are necessary to 
create carriers, the sample looses the periodicity and scattering at these impurities reduces 
mobility. But in the 2DEG the donors are spatially separated from the region of carriers and 
hence the high mobility. This 2DEG has a low electron density which implies a large Fermi- 
wavelength, comparable to the dimensions of the smallest structures that can be fabricated. 
For example, at low temperature in GaAs/AI.3Ga.rAs semiconductor heterostructure, it is 
possible to reach mobilities of 106cm2/V8, which leads to an elastic mean-free-path of the 
order of 10#m and an inelastic mean-free path even larger. A unique feature of a 2DEG is 
that it can be given any desired shape using lithographic techniques, The shape is defined 
by ,etching a pattern (resulting in permanent removal of the electron gas), or by electrostatic 
depletion using a patterned gate electrode (which is reversible). A local (partial) depletion 
of the 2DEG below a gate is associated with a local increase of the electrostatic potential, 
relative to the undepleted region. At the boundaries of the gate a potential step is thus 
induced in the 2DEG. The potential step is smooth, because of the large lateral depletion 
length (of the order of i00 nm for a step height of 10 meV). This large depletion length is 
at the basis of the split-gate technique [12, 13], used to define narrow channels of variable 
width with smooth boundaries. 

One of the simplest devices that may be fabricated using this technique is the quantum 
point contact (QPC), which basically is a very short and narrow constriction in the 2DEG. 
The width of this constriction being comparable to the Fermi wavelength, this is called QPC. 
At low temperatures, the conductance of such a QPC is appr6ximately quantized in units of 
2e2 / h. 

1 .1 .2  O b s e r v e d  Q u a n t u m  p h e n o m e n a  in  M e s o s c o p i c  C o n d u c t o r  

Quantized conductance : In 1988, van Wees et al. [6, 14] and Wharam et al. [7] inde- 
pendently observed the two-probe conductance of a QPC at sub-Kelvin temperature. In 
absence of applied magnetic field i.e. B -- 0, they measured the conductance G as a func- 
tion of the gate voltage Vg. Assuming the linear dependence of the width on Vg, they showed 
the conductance decreases with narrowing constriction. However, around this classical de- 

2~2 These data exhibited conductance plateaus pendence, G changes in quantized steps of --h-" 

quantized in integer multiples of fundamental coriductance Go -- ~-~ as G = N G o .  Typically 
all these measurements were performed in a two-terminal configuration where voltage and 
current measured through the same set of source-drain contacts. The number N increases 
with the decrease in gate voltage i.e. as the gate-voltage is made less negative. As the gate 
voltage is made more negative, the potential in the narrow region of the QPC squeezes the 
2DEG, pushing successive 1D sub-bands through the Fermi energy. As each 1D sub-band 
is depopulated, the conductance drops by an amount. Go until finally all the sub-bands are 
completely depopulated and conductance approaches zero. The conductance quantization is 
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not as exact as the Hall effect. A series resistance originating from the wide 2DEG regions 
has been subtracted [6] to line up the plateaus at their quantized values and the plateaus 
are not completely fiat. 
Integer and Fractional Quantum Hall Effect : 'Hall measurement' or measurement of con- 
ductivity in presence of weak magnetic field is useful for characterizing semiconducting thin 
films because both the electron density and mobility can be measured simultaneously. When 
a magnetic field (B) is applied in perpendicular direction to the current (~ through a rect- 

angular conducting bar, the charge carriers experience a Lorentz force (q~ • B) in the 
perpendicular direction to both the current and applied magnetic field. These charge car- 
riers are accumulated in the direction of force. As a result, an electric field is generated in 
the system. This effect is named after its discoverer as 'Hall effect'. From Classical Drude 
model, the longitudinal resistance is independent of the applied magnetic field whereas the 
Hall resistance is a linear function of B. As long as the magnetic field is very low, this Drude 
model for 'Hall effect' is valid. At cryogenic temperatures (_~ 4K) for stronger magnetic 
fields, the longitudinal resistance shows oscillations in B and the Hall resistance exhibits 
plateau corresponding to the minima in longitudinal resistance. These features can be ex- 
plained in terms of Landau levels which are purely quantum effect. Thus two-dimensional 
electron gas (2DEG) shows Quantum Hall effect (QHE) [5] when it is placed under a strong 
perpendicular magnetic field. QHE was discovered in 1980 by Klaus von Klitzingi Michael 
Pepper, and Gerhard Dorda. In an isolated 2DEG in Quantum Hall state, the Hall current 
is carried by the edge channels as all the bulk states are localized. These edge channels are 
free from backscattering because of chirality. The most striking feature of the QHE is the 
precise quantization of the Hall resistance. The plateaus are precisely quantized at integer 
and fractional multiples of ~. The integer plateaus are known as the integer quantum Hall 
effect (IQHE). The precision of the IQHE is so accurate that it now forms the international 
standard of resistance. An important quantity in the quantum Hall regime is the filling 
factor which is defined as number of electrons divided by the flux quanta per magnetic field 

h~. For filling factor y ~ I, the system is in the center of the first plateau at h/e 2, i.e. ~ eB 
for ~ = 2, in the center of the second plateau at h/2e 2. and so forth. The filling factor is con- 
venient for determining the electron density. The oscillations in the longitudinal resistance 
which have minima at the same magnetic fields where Hall resistance shows plateaus, are 
called the Shubnikov-de Hass oscillations. The temperature dependence of the oscillation 
minima is an accurate determination of the mobility and mean free path of the 2DEG. In 
1982, Daniel Tsui and Horst Stormer discovered the FQHE. It refers to fractional plateaus 
i.e. ~ = 1/3, 1/5 etc. 
Aharonov-Bohm oscillations in magnetoresistance : Aharonov and Bohm [i0] first proposed 
an experiment to show that there exist effects of potentials on charged particles, even in the 
region where all the fields (electric or magnetic) vanish. This effect is named after Aharonov 
and Bohm. In Fig. 1.2 an experimental set-up, suited for verifying the prediction of Aharonov 
and Bohm, is given schematically. To see the interference pattern for the electron traversing 
the ring, the circumference of the ring should be smaller than the phase coherence length. 
One of the pioneering experiments in mesoscopic physics was performed by Washburn et. 
al. [II] using a small ring, 820nm in diameter, etched out of a high quality gold film. They 
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lead 1 O 

FIGURE 1.2: Schematic diagram of a circular loop connected to semi infinite leads. The conductor 
exhibits periodic oscillations in its conductance as a function of enclosed magnetic flux r 

observed that the conductance of the normal metal ring oscillates as a function of the mag- 
netic flux enclosed by the ring. The fundamental period of the oscillations is found out to 
be the flux quantum D0 = -~. Classically no such oscillation can occur. This is because 
the quantum phase memory of the electron is not randomized during a travel around the 
whole circumference. A quantum wave associated to such an electron separates into two 
partial waves at the entrance of the ring and recombines at the exit point. These electron 
waves moving along fixed paths acquire a phase difference because of monotonically changing 
magnetic field. The interference between these two partis;l waves traversing two arms of the 
ring leads to this oscillatory behaviour of the conductance. In presence of the magnetic field 

using proper gauge for the vector potential in which the magnetic field appears only in 
the boundary conditions rather than explicitly in the Hamiltonian [15, 16], the transmission 

coefficient becomes tj(B) = tj(O) exp[i~ fj A.d~], where A is the vector potential defined by 

/~ _- ~ • z~. Here j denotes the upper (say j -- i) or lower (j -= 2) arms of the ring. While 
interfering the resultant transmission probability will be proportional to the phase difference 
between two transmission coefficients correspond to waves traversing two arms of the ring. 
Thus the probability of resultant transmission coefficient becomes IT(B)I ~ cos(Aa), where 

the phase difference Aa = ~ ~ .A.dl .= ~ f s  .B.dS = 2~r Do = h._.c.c is the quantum unit of 
~ 0  ' e 

flux. Conductance being proportional to transmission probability [Landaiier formula] is also 
periodic in flux. This is known as 'r oscillation. Note that  here we have not considered 
all possible paths while calculating transmission from a mode in lead 1 to another mode in 
lead 2. Depending on the nature of the 'beam-splitters' at J1 and J2 there will be more 
complicated paths such as one going through the upper arm, transmitt ing into the lower 
arm at J2, getting reflected back into the lower arm at J1 and then exiting into lead 2 at 
J2. These paths would contribute to higher order oscillations that  could be classified as r g 
oscillations, N being an integer. Experimentally the higher order effects are increasingly 
more difficult to observe because they involve longer paths and it is difficult to maintain 
phase coherence over the entire path. Another important point to note is that  randomly 
distributed static non-magnetic impurities do not destroy phase coherence of electrons. So 
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the Aharonov-Bohm (AB-) effect holds in presence of these impurities. 
Universal conductance fluctuations : At low temperatures quantum interference gives rise 
to fluctuations in conductance. In 1986, Washburn and Webb [17] measured the fluctua- 
tion in conductance of an Au wire as a function of applied magnetic field at 10inK. These 
fluctuations are not time dependent noise as they are completely reproducible. Supporting 
the earlier theory on conduction fluctuations [6] these data showed that  the magnitude 

e 2 of fluctuation is of order ~-. These fluctuations are universal in nature because firstly the 

variance of conductance is of order , independent of the sample size and the strength 

of the impurities and secondly this variance decreases precisely by a factor of two when 
time reversal symmetry is broken. This variance of conductance is weakly dependent on the 
shape of the conductor. At zero temperature, for a quantum wire the variance ~aa__~ - ~ -  2/3-1. 
This is independent of the mean free path l~, wire length L or the number of transverse 
modes N as long as the wire is much longer than the mean free path but much shorter 
than the localization length i.e. le < <  L < <  Nl~. Various explanations came after the 
discovery of the universality of conductance fluctuations. Imry's argument was in terms of 
transmission eigenvalues [18]. Most transmission eigenvalues are exponentially small in a 
disordered conductor while a fraction ~ of the total number N of transmission eigenvalues 

L 

is of order unity. Depending on these transmission eigenvalues, the corresponding channels 
are referred as closed and open channels. Only the open channels contribute to the con- 
ductance: a _ Nop~n ~ N ~  Thus the fluctuations in conductance can be interpreted as 

Go 
the fluctuations in number Nop~n of the open channels in the sample. If the transmission 
eigenvalues were uncorrelated, one would calculate that  the fluctuations in Nop~,~ would have 
been of the order ~/~-oop~ which would imply the variance in conductance ~a would be of ~ 0  
order Nop~,~ (>-- 1). Due to the strong suppression of fluctuations in Nop~n by eigenvalue 
repulsion the variance of conductance is of order unity. 
Violation of Onsager's symmetry relation : The Onsager-Casimir relations was originally 
derived for macroscopic conductors using thermodynamic arguments. These are symme- 
try conditions for correlation functions. In electronic transport measurements, microscopic 
reversibility requires that  in the presence of a magnetic field /~ the conductance obeys 
Gij(B) = Gj i ( -B)  between contacts i and j .  In particular, for a two-probe conductor 
the conductance is an even function of magnetic field G(B) = G(-B) .  Such relations 
generally hold for macroscopic systems near thermodynamic equilibrium. Experimentally 
[19], there is no evidence that  this relation is ever violated in the linear response regime 
regardless of the nature of the transport. When transport is phase coherent as it occurs in 
mesoscopic conductors, the conductance is not just material specific but also depends on 
the probe configuration. Four probe conductance of a sample is not symmetric under flux 
reversal i.e. G ij,kl(B) ~ Gij,kl(--B). Herein, the first pair of indices represent the probes 
used to supply and draw current, while the last pair of indices denote the probes used to 
measure the potential difference. Though Onsager's symmetry relations fail in this regime 
but it holds Onsager's reciprocity relations. The reciprocity relations tell us the conductance 
of a mesoscopic sample is invariant under the magnetic field reversal accompanied by the 
exchange of voltage and current probes i.e. G~j,kl(B) = Gkz#j(-B). This also prove that  
unlike bulk sample there is no material specific quantities like resistivity (or conductivity). 
Instead there are only global properties like resistance [20]. 
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1.2 T h i s  T h e s i s  

In this thesis, some novel low dimensional electronic transport problems are discussed. All 
through phase coherence is assumed as low temperature behaviours of mesoscopic conductors 
are dominated by phase coherence. 

Chapter 2 describes some basic concepts and theoretical frameworks which will be exten- 
sively used throughout the thesis. Mesoscopic samples being finite the system-environment 
coupling often have strong effect on system properties. In section 2.2 we discuss this effect. 
In section 2.3 we introduce the generalized Landauer-Biittiker formula. The importance of 
scattering phase-shifts, Fano lineshapes etc. have been discussed in context of a couple of 
experiments in section 2.4. In sections 2.5, 2.6 and 2.7 we introduce the important concepts 
of tunneling phase time, persistent current and current magnification. In section 2.8 we 
discuss the framework of scattering matrix. 

Chapter 3 addresses Friedel-Sum-Rule (FSR) which connects the experimentally measur- 
able scattering phase shifts to the density of states (DOS) of a given system. We derive the 
canonical form of FSR in section 3.1.1. In section 3.2 we generalize FSR to incorporate the 
effect of system-environment coupling through a self-energy term. In following sections we 
show that the impact of this term is appreciable for a quasi-one dimensional (QID) quantum 
wire (in presence of elastic scattering) even in those energy regimes where transport occurs. 
We show this, in the energy regime where a single channel is propagating [21], in section 3.4. 
We digress a bit and show in section 3.3 that the impact of self energy term is negligible 
in higher energies for a truly one dimensional wire. We return to multi-channel transport 
in 01D wire in section 3.5.1 and in section 3.5.2 we prove the non-negligible effect of self- 
energy in FSR for transport through multi-channel QID c[uantum wires [22], in general. We 
generally observe the Fano lineshapes in various transmission amplitudes for multi-channel 
quantum transport eg. in section 3.5.1. We discuss Fano resonance for a simple model 
system [23] in section 3.6 to obtain better understanding of the underlying phenomenon. In 
the appendix of this chapter except for the other derivations required in its main body we 
present the mode rescaling technique for a singular potential in a multi-moded QID system. 
This will, in general, be required for calculations of any such QID transport properties eg. 
current magnification in chapter 4. 

Chapter 4 discusses a novel effect called quantum 'current magnification' in a QID quan- 
tum ring [24] in presence of time invariant biasing. This effect was earlier predicted for 
purely one dimensional quantum wires. We have shown that the effect persists for multi- 
channel wires despite mode mixing (at scatterer sites) and cancellations. We systematically 
study the effects of ring-lead coupling, scattering potential strength, quasi-bounded states 
and Fano resonances. In section 4.2 we discuss about the possible experiments which can 
verify our predictions. 

In chapter 5 we have described 'phase time' which is one of the well-accepted 'tunneling 
times' in the community. For opaque barrier, the 'phase time' shows saturation as the 
length of the barrier, known as 'Hartman effect'. In section 5.2 we have studied this effect 
even in presence of embedded Aharonov-Bohm (AB) flux in two different ring geometries. In 
section 5.2.1 and section 5.2.2 we have focused on the transmission and reflection phase times 
respectively for a ring connected with two external leads [25] and a single lead [26]. We have 
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seen the effect of different system parameters eg. the strength of the barrier, flux etc. on 
the saturation phase times. In section 5.3 we have considered another geometry, a quantum 
network [27] consisting of several side branches attached to a base arm, to study 'Hartman 
effect'. In addition to this effect, we have studied the saturation phase time through a barrier 
in one arm varying nonlocal parameters eg. strength of the barrier in other arm, shifting 
this barrier from the junction etc. 

Finally we draw overall conclusions in chapter 6. 



Chapter 2 

Basics of electron transport in 
mesoscopic system 

2.1 I n t r o d u c t i o n  

Mesoscopic conductors having dimensions less than the phase coherence length of the elec- 
trons can be treated as phase coherent scatterers and all their conductance related features 
and thermodynamic properties can be studied through underlying scattering phenomena. 
At sufficiently low temperatures, only elastic scattering survives. In this chapter, we provide 
a brief overview of the basics of electronic transport through such phase coherent scatterers. 
In experiments on non-equilibrium electron transport through such a phase coherent con- 
ductor, it is connected to the environment (reservoir) through leads and due to small size 
of the conductor its physical properties get affected by the couplings at the conductor-lead 
interfaces. This will be discussed in the section 2.2. In section 2.3 we shall present the 
Landauer-Bfittiker formula for calculating conductance from the scattering matrix elements. 
This is a key ingredient of transport studies. The conductance is proportional to the avail- 
able density of states (DOS), the measure of the occupied energy states by the electrons in 
the system. This DOS can be obtained from experimentally measurable scattering phase- 
shifts. In section 2.4 we shall describe an experiment on phase measurement in a quantum 
dot by R. Schuster et al. The measurement of phase-shift is connected to another crucial 
concept in scattering, the 'phase time', which is a measure of the time spent by a quasi- 
monochromatic wave in a scatterer region. In section 2.5 we discuss the concept of 'phase 
time' in the context of tunneling particles. 'Persistent current' is one of the experimentally 
observed thermodynamic properties which can be studied using the scattering properties of 
the system, we shall describe the effect briefly in the section 2.6. In the last section 2.8 of this 
chapter we shall discuss the formulation of scattering matrix in context of elastic scattering 
in a typical quasi-one-dimensional (QID) mesoscopic conductor. 

2.2  Ef fec t  o f  e n v i r o n m e n t  on  m e s o s c o p i c  c o n d u c t o r  

Conductance by a mesoscopic system must be considered in the presence of an environment 
provided, for instance, by the leads. The very fact that the system is mesoscopic implies some 

9 
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subtleties in the description of the underlying process�9 In statistical mechanics of thermo- 
dynamically large systems, the probability distribution for the Grand Canonical Ensemble 
can be derived from that of the Canonical Ensemble by hypothetically decomposing the full 
domain of constant (N, V, T) system into a grand canonical system and an environment. 
The total Hamiltonian H(p, q, N) of the canonical system with N particles of coordinates 
and momenta (q, p) can be decomposed as [28], 

H(p, q, N) ='Hc(pl, ql, N1) + Hz(p2, q2, N2) , (2.1) 

where Hc(pl, ql, NI) is Hamiltonian of the grand canonical system with NI particles in 
presence of the environment consisting of N2 (N2 >> NI) particles having Hamiltonian 
Hi(p2, q2, N2). While decomposing in the above fashion, the interactions between particles 
in the system in contact with the environment at the interfaces have been neglected. This 
is plausible if the system size is thermodynamically large. For a finite sized system, instead, 
the interface effect is not negligible and hence the probability distribution of this truncated 
part, called system, has to be in addition a function of the interracial energy. 

In mesoscopic systems, having dimensions of the order of few hundred nanometers, the 
effect of environment is important�9 In this case one needs to incorporate the 'interaction' 
between the system and the environment to obtain correct physical properties�9 In what 
follows we show how this conductor-lead (system-environment) interaction is taken into 
account in mesoscopic transport problems�9 The 'density of states (DOS)' play a crucial role 
in all of quantum statistical physics. In particular it is required to calculate conductance, 
a central quantity in all quantum transports. The DOS of an isolated conductor can be 
expressed in terms of its retarded (advanced) Green's function 

where ]P denotes the principal part in the sense of 

as p = E ,5(E- Tr 
F 9 

is defined 

- I  
(2.2) 

integration on complex plane. The DOS 

�9 Hence the above expression yields 

p = T Im ] . (2.3) 

This ensures that any change in Green's function affects the DOS. Now we show how the 
Green's function of an 'open conductor' (conductor in contact with the environment) is 
affected in presence of interactions with the reservoirs through the leads. The retarded 
Green's function for a conductor-lead composite system can be written as, 

^ - 1  

= [(. + - ao ] (2.4) 

which is infinite dimensional because the total system of conductor plus lead stretch out to 
infinity�9 /-/to t is the Hamiltonian for conductor-lead composite system. In the same spirit as 
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in statistical mechanical case discussed above, we can partition the overall Green's function 
of Eq. (2.4)into submatrices [5] 

[8[ 8[0 ] [(E+/c)~-/t/t @z ]-~ 
8~o~ a[, : ~+ E~ - !< (2.5) 

where the operator (E + ie)~-/2/1 represents the isolated lead, while E~-/2/c represents the 
isolated conductor. @l gives the coupling between the conductor and the lead. This allows us 
to avoid calculation of infinite dimensional G~ and reduces the problem to the conductor's 
(open) Green's function 8~. From Eq. (2.5), using the matrix identity, i.e. 

o] ,26, 
we obtain the explicit expression for ~r in terms of the Green's function of the isolated lead 
and conductor-lead coupling as, 

[ ]-1 
8~: E~-H~-~ r , (2.7) 

with ~r T+gt Tl, called the (retarded)'self-energy'. Here gr [(E-~-if)~--I2Y/] -1 = ^r ^ = is 

the Green's function for the isolated lead. Thus the 'self-energy' ~r provides the effect of 
environment in the conductor's Green's function G~ of a finite sized conductor. Similarly, 

the advanced Green's function 8 a depends on the advanced self-energy ~a (=  ~r*) through 

the relation, 

do ~ 

where E a -- ~+ ~0~' Ft. Now the DOS being a function of the system's Green's function (as 
we see from Eq. (2.3)), it also gets affected in presence of the environment and it becomes 

p = (1/Tr)Irn [Tr (8o~)] , (2.9) 

in the conductor, which is the region of interest, thereby affecting all the conductance prop- 
erties. In Chapter 3 we shall describe in details the effect of environment on DOS and the 
related consequences in the context of the Friedel-sum-rule. 

2 . 3  L a n d a u e r - B i i t t i k e r  c o n d u c t a n c e  f o r m u l a :  

Landauer-Bfittiker (LB) scattering theory provides a powerful approach to multi-terminal 
transport in conventional (Fermi-liquid) mesoscopic devices where leads are explicitly ac- 
counted for. The effect of environment comes into picture through the attached leads. In 
contrast to the Kubo formalism which is time-dependent, the Landauer formula connects the 
conductance of a mesoscopic system to its static scattering properties. Landauer in his pio- 
neering work [29] expressed the current through a conductor in terms of the probability that 
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I / / 

lead 1 lead 

/ @ / 

FIGURE 2.1: Mesoscopic sample (shaded region) connected to two electron reservoirs, charac- 
terized by chemical potential #I and P2 respectively, by ideal leads (leadl and lead2). A voltage 
difference 5V -- (#I -/t2)/e between the reservoirs causes a current I through the sample. 

an electron can transmit through it. Thus the electrical conduction of a device is reduced to 
a scattering problem. This approach is intuitively very appealing because it seems obvious 
that  the conductance of a sample ought to be proportional to the ease with which electrons 
can transmit through it. For ballistic conductor, the transmission probability being unity, 
the finite current obtained from Landauer approach gave rise to a question 'where does this 
resistance come from?' Imry [30] clarified this question using earlier notions due to Engquist 
and Anderson. Biittiker [8] extended this approach to describe multi-terminal measurements 
in presence of magnetic field. 

In Chapter 4 for a Quasi-one-dimensional (two dimensional system with width much 
less than its length) quantum ring geometry (the ring shaped system having mesoscopic 
length scale, where wave properties of electrons become important) in contact with electron- 
reservoirs via leads, we use Landauer-Biittiker conductance formula to calculate the elec- 
tronic current in different segments of the system. 

2.3.1 Genera l  Landauer  formula 

To derive the Landauer conductance formula, we consider a mesoscopic conductor at zero 
temperature connected to two electron reservoirs by ideal leads as shown in Fig. 2.1. The 

left and right reservoirs are characterized by chemical potentials #i and #2 respectively. The 
'conductor' is represented as a scattering region. The current is seen as a consequence of 
the imbalance of chemical potential at the external reservoirs. When #1 is greater than 
#2 a current starts flowing through the system from left to right. The current flow takes 
place entirely in the energy range between #I and #2. The contacts are assumed to be 
'reflectionless' i.e. electrons can exit the device into the contacts without any reflection. In 
a narrow conductor due to confinement in transverse direction, several modes or channels are 
present. Only the propagating modes i.e. kx 2 ~ 0 participate in conductance. The dispersion 
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FIGURE 2.2: Dispersion relations for several transverse modes. Just for clarity we have drawn 
only five modes. The electrons that constitute the net current have energies ranging in between #1 
and #2. 

curves for each mode has a cut-off energy 

cn = E(n ,  k = 0).  

For a given energy E of the system the number of propagating modes can be obtained by 
counting the number of modes having cut-off energy smaller than E : 

N - E ~ ) ( E - e n  ) 
n 

For simplicity we consider equal number of transverse modes 'N '  are present in both leads 
i.e. leads are of equal width. Since #1 > #2, carriers are injected into the left lead from the 
left reservoir. The incoming current (see Fig. 2.2) carried,by channel i is 

cgni 
I~ n : evi-~ (Pl - P2) (2.10) 

where vi is the longitudinal velocity along x-direction and the density of states in the leads 
for the i-th mode is 

Oni cgni cgki 1 1 

OE Oki OE 27~ hvi 

Apart from this there will be another term, originating from the oscillatory local density 
of states (LDOS) in the leads, which has been ignored to derive Landauer conductance 
formula. Though in quantum regime, the oscillatory LDOS can be very large yet predictions 
of Landauer conductance formula has been observed to an accuracy of one part in a billion. 
Therefore, it is suitable to assume that  the reservoirs screen away the oscillatory LDOS 
and it has no effect on transport  properties or thermodynamic properties of the mesoscopic 
sample. Both vi and ~ are evaluated at the Fermi energy. Using these two relations in 
Eq. (2.10) we find that  

/ i n  __ e - ( 2 . 1 1 )  

which is same for all the propagating modes (channels) present in the system. Thus the total 
influx of current from lead 1 is given by 

I in : ~ N (#1 - P2) (2.12) 
27rh 
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The outflux from lead 2 is simply the influx at lead 1 times the transmission probability 

N 

= N - (2.13) 
2~h 

i , j=l 

where Tij denotes transmission coefficient from mode j in the left lead into the mode i of 
the right lead. The rest of the flux is refected back to left reservoir 

N 

I - -  N ( , 1 - , 2 ) ( 1 -  
2~h 

i , j=l 

Thus the net current I flowing at any point in the conductor is given by 
N 

I = I in -- I--  = I ~ = r g E Ti j  (~1 - ~t2) (2 .14)  
27rh 

i , j=l 

Hence the conductance is equal to the net current divided by the proper voltage difference 
AV. When two non-invasive voltage probes ( i.e. there is no (finite) current flowing through 
the probes ) are attached at the reservoirs AV = (#1 - p2)/[e[ and thus 

I 2e 2 N 
G -  AV - h -  N ~ T~j (2.15) 

i , j=l 

which is the celebrated 'Landauer two probe conductance formula'. 
When these voltage probes are attached to the leads adjacent to the conductor the 

potential difference is determined by the piled up charges to the left and to the right of the 
conductor represented by the chemical potentials/.t A and #B respectively. PA and #B are 
smaller than #1 and larger than #2. PA ( PB ) is found from the condition that  the number 
of occupied states (electrons) above ~tA (/ZB) must equal the number of unoccupied states 
(holes) below #A (#B). Then potential difference is 

A V  - t~A - ~ .  _ E ~ [ 1  + E j  (n~j  - T~ j ) ] / v~  (t~l - t ~ 2 )  
lel 2/v  

Thus we obtain the conductance as 

G4 2e2 En  2/V'~ (2.16) 
= h ~. .  T~j En[1 + E,~ (nn,, - r~m)]/v~" 

Since the voltage probes do not coincide with the ~eservoirs (current probe), hence Eq. (2.16) 
is called four probe conductance formula. 

For decoupled channels Tij = 5ij Ty and Rij = 5i~ Rj and for each channel j ,  Tj + Ry = 1. 
Then the Landauer two probe and four probe conductance formulas i.e. Eq. (2.15) and 
Eq. (2.16) reduce to 

2e 2 N 
G - - / -  N (2.17) 

j= l  

G4 2e2 En2/Vn (2.18) 
- h ~. T~ E.[1 -~k-~-T.)] /vn" 

3 
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For single channel case these equations are simplified to 

2e 2 
G -- ~ T~ (2.19) 

2e 2 T1 
G4 - h 1 - T 1  (2.20) 

One can view the total resistance G -I as a reservoir-lead contact resistance G~ -I in series 
with the conductor resistance G41. When transmission vanishes, e.g. for tunneling systems, 
G and G4 converge to one another. When transmission is close to unity (TI --~ I), the 
resistance G41 ~ RI, i.e. the resistance is proportional to the back-scattering probability. 

2.3.2 Bi i t t iker  so lut ion  

The difference in points of view expressed by Eq. (2.15) or Eq. (2.16) for the conductance has 
its roots in the location of the non-invasive voltage probes. Biittiker treated [8] the current 
probes and voltage probes on equal footing. He made no qualitative distinction between 
current and voltage leads. The advantage of this approach is that  the inherent invasive 
property of the probes is taken into account in a natural way. He then evaluated the current 
flowing from one reservoir to another i.e. Eq. (2.13) for the difference in chemical potentials 
inside two reservoirs i.e. Pl and #2. He argued that  the current in Eq. (2.13) arose due to 
the difference of the chemical potentials inside the reservoir. 

In his approach [8], each probe connected to the conductor by leads is considered as a 
carrier emitting reservoir held at some chemical potential. If we have a total of 1p probes, 
the current through lead l~ connected from the conductor t0 probe l~ (current/voltage probe) 
is then given by 

lp 

= (2.21) 
/j=l 

with #lj is the chemical potential of probe lj and 

2e 2 N 
= _ _  T~ zj (2.22) Gz~,lj h N E ij 

i ,j= l 

is the two-probe Landauer conductance due to the transport from probe lj to probe li via 

lead lj to lead li through the conductor. Here T~j l~ denotes the transmission coefficient from 
mode i in lead li to mode j at probe lj. 

2 . 4  E x p e r i m e n t  o n  p h a s e - s h i f t :  

Yacoby et al. [31] and Schuster et al. [32] had performed two interference experiments on the 
phase coherent transmission through quantum dots (QD) in the Coulomb blockade regime. 
Both the experiments utilized the double-slit interference procedure to measure the phase 
shift of an electron while traversing the QD. To introduce measurable phase shift between 
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FIGURE 2.3: Schematic description of the device structure used by Schuster et al. An AB-ring 
is connected to an emitter E, a collector C and base region. Reflector gates R reflect diverging 
electrons towards the collector, o is the QD. Taken from Ref. [32]. 

arms of the Aharonov-Bohm (AB-) interferometer they inserted the QD in one of the arms. 
In the former experiment [31], a two-probe measurement was done. In this measurement, due 
to Onsager symmetries, the phase of the AB-oscillations were restricted to either 0 or 7r, thus 
this experiment could not provide the required phase-shift. Schuster et al. [32] overcame this 
drawback by using four-probe measurement. Their device, schematically shown in Fig. 2.3, 
was defined by metallic gates on the top of a GaAS-A1GaAs heterostructure. Different 
contacts, namely, the emitter (E), the collector (C) and the base region and additional 
reflecting barriers (R) are connected with the ring. The base contacts were held at zero 
chemicM potential. Another gate (the plunger gate Vp) controlled the area and electrostatic 
potential at the QD. Using Landauer-Bfittiker's four-probe conductance formula, Schuster 
et al. measured the current at the collector as 

2e 2 
/ c =  

h 
[T c + Tc VcB] , 

where Tc is the transmission probability through C. The transmission probability TEC = 
ItQD -t- tsLI 2 is a coherent sum of all path amplitudes from E to C. Here t@D and tsz are the 
transmission coefficients from E to C respectively through the path containing the QD and 
the path without it (represented as 'sl' in the Fig. 2.3). The open circuit (Iv = 0) collector 

voltage VCB (= v__aa TEe) is proportional to TEC. They investigated the voltage drop Vcs for Tc 
% / 

fixed voltage VEB between the emitter E and the base. For fixed magnetic field they observed 
pronounced resonance peaks (peaks in Vcs) and minima as a function of the plunger gate 
voltage Vp in the Coulomb blockade regime. The phase of the AB signal VCB showed 
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FIGUaE 2.4: Schematic diagram of a one dimensional scdtterer of arbitrary shape with strength 
V(x). The barrier is confined in the interval a < x _< b, r Cr and Ct are respectively the incident, 
reflected and transmitted waves. X (x, E, V) is the evanescent wave inside the barrier region. 

monotonic rise to ~r over the width of the resonance and jumps to zero at the minima over a 
very small energy scale. The resonance-zero line-shape in the conductance as a function of 
Fermi-energy and the phase behaviour described above have been assigned to Fano resonance 
at energies where the scattering state of non-resonant free path gets degenerate with resonant 
state of the path containing the QD[124]. This 'Fano' resonance which is characterized by 
zero-pole structure in complex energy is a very general feature of conductance in quasi-one- 
dimensional (QID) conductors. This would be clearly seen as we proceed for the next two 
chapters. In the appendix of Chapter 3 we shall study 'Fano resonance' in details. On 
the other hand, in the Schuster et al.'s experiment, when the magnetic field is changed the 
collector voltage shows AB oscillations with the expected period AB = r where A is 
the area of the AB-ring and r is the flux quanta. 

2.5 Phase  t ime  for tunnel ing  particle 

The 'phase time' or 'delay time' is defined as the energy derivative of scattering phase-shift 
and is interpreted as the time spent by the particle (electron) in the scattering region. This 
was proposed by Wigner in 1955 [33] and is often called 'Wigner delay time'. We consider 
an one-dimensional time-independent barrier V(x) localized on the interval a _< x < b 
as in Fig. 2.4. Let a wave packet with wave vectors chstributed sharply around k (quasi- 
monochromatic) is incident on the scatterer and it has the form 

r = J f(k) exp( ikx - iE t /h )  dk, (2.23) 

where E is the energy of the electron with wave vector k. After scattering, the transmitted 
wave packet can be represented as 

Ct = f t(k) f(k) exp(ikx - iEt/h) dk 

= / v ~  exp (iOt + ikx - iEt/h) dk, (2.24) 
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where T (= t* t) is transmission amplitude and 0~ is the phase of the transmission coefficient 
t. Let x = x~ be the peak of the wavepacket. In stationary phase approximation, 

dot 1 dE 
d--k + Xp(t) h d---k t = O. (2.25) 

Thus due to tunneling through the barrier a spatial displacement ~x (= ~ t  k ) occurs in the 
peak of the transmitted wave. The corresponding temporal delay is 

1 dot 
v(k) dk 

dot = h 
d E '  

(2.26) 

where v(k) is the group velocity of the free wave packet. In what follows this temporal delay 
in transmission will be referred to as 'transmission phase time'. Similarly, the 'reflection 

' ~ ~ It would phase time' is defined as the energy derivative of the reflection phase, Tr = .~ dE" 
be worth mentioning that  for a symmetric barrier the reflection and transmission phase 
times are equal. The tunneling through an 1D static barrier, as shown in Fig. 2.4, conserves 
time-reversal symmetry and hence the scattering matrix S can be written as 

S =  ( rt r ~t ) , (2.27) 

where r and r ~ are reflection amplitudes for particle (electron) coming from the left and 
from the right, respectively. The unitarity of scattering matrix (S t S = I) implies that 
]tl 2 + Irl  2 = ]~12 ~ - [ r t l  2 = 1 (probability conservation)and t*r t + tr* = 0. From the 
former relation we get It[ = Ir'] and then substituting it in the later, we obtain a relation 
between the phases of the reflection and transmission amplitudes as 

Ot +-Tr =-1 (Or + O~r) ' 
2 2 ' 

(2.28) 

where 0~ is the phase corresponding to reflection amplitude rq For a symmetric barrier, 
0r -- 0~r (as r = r0, then Eq. (2.28) becomes 

7r 
�9 0t + ~ = Or. (2.29) 

Thus for a symmetric barrier Tr -- ~-t. 
In chapter 5 we shall discuss the phase time in details for tunneling through different 

quantum systems and verify Hartman effect, independence of phase time on the width of an 
opaque barrier for tunneling particles, beyond one dimension. 

2.6 P e r s i s t e n t  Current  

It is well-known that persistent current can flow in super-conducting systems in absence of 
magnetic flux. Biittiker, Imry and Landauer [34] in a seminal paper, suggested the existence 
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FIGURE 2.5: Schematic diagram of a closed circular loop with an enclosed Aharonov-Bohm flux 
. 

of persistent currents even in a normal metal closed loop (e.g. ring) but in the presence 
of Aharonov-Bohm (AB)-flux. The persistent current is an equilibrium property of the 
ring and is given by the flux derivative of the Free Energy of the ring. These currents are 
the consequence of the sensitivity of the eigen-states to the boundary condition. Due to 
the enclosed magnetic field, the time reversal symmetry in the ring system is broken. As 
a consequence, the degeneracy between the states carrying current in clockwise and anti- 
clockwise directions is lifted. For a perfect one-dimensional ring of circumference L (see 
Fig. 2.5), the periodic boundary conditions lead to the quantization of energy levels, namely, 
E~ • l~2 (27rn~2 where, n = 0, • :t=2, Thus we see, the ground state n = 0 is non- ~-L-/ , . . . . . .  
degenerate and each of the excited states are doubly degenerate. In presence of AB-fiux, 
the degeneracy of these levels is lifted. The modified "periodic boundary condition of the 
wave-function in presence of AB-flux is r  + L) - r  exp(i2~rr162 where r is the 
flux quantum. As a result the eigen-states and eigen-energies and hence all the equilibrium 
physical properties of the ring are periodic in AB-flux r with a period r Again, in general, 
r  + L) = r e x p ( i k L )  for Bloch-like states. This condition implies the identification 

2 rr 
k L  = 2nTr + ~ (2.30) 

r 

The current carried by  n-th single-particle level in the ring at T -- 0 is, 

evn 1 ~ E n  (2.31) 
I,~=- L 'v"=h ak. 

which gives, using the analogy in Eq. (2.30), 

I~, = - c  o--~ = -mL------ ~ n +  

where, energy eigenvalues 

En=~--~m n +  , 

(2.32) 

(2.33) 
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~t 

FIGURE 2.6: Schematic diagram of a circular loop connected to a reservoir of chemical potential 
# by a lead. An Aharonov-Bohm flux r is enclosed in the ring. 

with n = 0, 4-1, •  . . . . . .  Thus one can readily see from Eq. (2.32) that  for the ground state, 
the current is diamagnetic in nature and for the 1st excited state (n -- - 1 )  it is paramagnetic. 
As we go from one energy eigenstate to next the current changes sign. This is related to 
the 'parity effect'J125]. The total current in the ring for N number of spinless electrons is 
the sum over the individual contribution from each state, weighted with the appropriate 
occupation number. At finite temperature,  instead of the sum, one can calculate the current 
from the thermodynamic  potential i: e. Free Energy F of the system [35], 

OF I(r (2.34) 
q~u 

This is the persistent current flowing in a closed ID ring at equilibrium. As a grand 
canonical realization of the system one can couple it with a Landauer reservoir (see Fig. 2.6) 
of chemical potential # by a lead. The persistent current of such open system is given by 
[36] 

f E  0 logDet[S(E)]dE, (2.35) 
1 

I ( . )  - c  8 0-~ 2-~ 

where, E8 is the bo t tom of the conductance band. The integrand gives the differential current 

dI 0 1 
~/E - 0r  2i log Det [S(E)] 

Or I OE 
OE 0r (2.36) 

where ~ -= ~i log Det [S(E)] is the scattering phase shift and 0_~0E approximately gives the 
relevant density of states (DOS). Thus the differential current for an open ring at finite tem- 
perature is the closed ring persistent current times the DOS. Persistent currents in mesoscopic 
rings have been detected in several experiments [37, 38]. The typical magnitude of persis- 
tent current at T = 0 with L between 1 and 3 #m and for a Fermi wavevector kf between 
101~ -I (metallic rings) and 10sin -I (semiconducting rings), varies between 1 and 5nA. 
However, there is a discrepancy of upto two orders of magnitude between experimental and 
theoretical results, 
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2.7 Current magnification 

Persistent current in isolated (closed) rings are generated in presence of embedded AB-flux 
and it is an equilibrium phenomenon. Whereas, in open system (eg. ring connected with 
electron-reservoirs) without having any threaded AB-flux, the circulating current arises in 
presence of inter-reservoirs transport current. This is a rion-equilibrium phenomenon. Unlike 
the persistent current which is due to the broken time reversal symmetry in presence of AB- 
flux, the circulating current generates when the two arms of the ring are asymmetric. The 
current I injected by the reservoir into one of the leads splits into Iv  and IL in the upper and 
the lower arms of the ring (see Fig. 2.7) such that the total current is conserved (Kirchoff's 
law : I = Iv  § IL). When the two arms are identical in all respects then the injected current 
is divided exactly into two equal halves i.e. Iv  = IL = I / 2  while flowing in the ring before 
combining at other junction with the lead. Here I gives the total inter-reservoir current or 
the transport current. For classical ring when the two "arms are not identical then we have 
the condition IV/IL = R v / R L  and I = Iv  § IL, which automatically implies 0 < Iu < I 
and 0 < IL < I. Here Rv and RL are the resistances of the two arms of t he  ring. Thus 
both Iv and IL are positive and flow along the applied bias. But for mesoscopic ring, the 
circumference being smaller than the phase coherence length, the electrons in two arms in 
general pick up different phases and their quantum mechanical superposition gives rise to 
two distinct possibilities, The first being, for some values of Fermi energy the currents in 
the two arms Iv  and IL are individually less than the total current I,  i.e., the current in 
both arms flow along the direction of the applied field. The other possibility is that for some 
values of Fermi energy, Iv (or IL) can be greater than the total current I. In this case current 
conservation dictates IL (or Iv) to be negative such that I = IL § Iv. The phenomenon that  
the current in one of the arms is larger than the transport current is referred to as 'current 
magnification' [39-41]. This has been already established tl~eoretically for 1D ring system. 
Such a phenomenon occurs at the vicinity of resonances in the ring and is purely quantum 
mechanical in origin. Magnitude of this negative current is that of the 'circulating current' 
associated with current magnification. This circulating current can lead to a large magnetic 
moment in absence of magnetic field but in presence of ' t ransport  current. Classically, when 
a parallel resonant circuit (capacitance C connected in parallel with a series combination of 
inductance L and resistance R) is driven by an external e.m.f., circulating current arises in 
the circuit at resonant frequency [42]. However, the current magnification effect is absent in 
a circuit with two parallel resistors in the presence of dc current in the classical regime. In 
a mesoscopic ring the intrinsic wave nature of electrons and their phase coherence gives rise 
to this effect even in presence of dc driving voltage. 

In Chapter 4 we shall investigate this phenomenon for a multi-channel Q1D mesoscopic 
ring with static impurities in it [24]. 

2.8 Scattering matrix for Q1D systems 

When an electron scatters elastically from an impurity eg. potential barrier or well in free 
space, it scatters into a propagating wave (characterized by real wave-vector) which travels 
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FIGURE 2.7: Schematic d iagram o f  an open one dimensional mesoscopic ring connected with 
two reservoirs r 

o u t  

~R 
" o u t  

FIGURE 2.8: Mesoscopic sample connected to two semi-infinite leads of width W. 

away from the impurity. But when an electron is restricted in the QID wire, several trans- 
verse (perpendicular to the direction of propagation) modes or sub-bands are formed due to 
the confinement. Depending upon the energy of the incident electron, among these trans- 
verse modes few are propagating and the rest are evanescent (not propagating; characterized 
by imaginary wave-vector). In such wir.e, the incident electron can, as well, elastically scatter 
into the evanescent modes present in the wire. Thus for a steady current flow, a localized 
state is formed even around a repulsive impurity[60]. Even for n0n-interacting electrons, 
the boundary conditions for scattering events change due to built up evanescent modes near 
the impurity. In Fig. 2.8, we have shown such a mesoscopic quasi-one-dimensional wire con- 
nected to two semi-infinite ideal leads. For simplicity we assume that both the leads and 
the sample are of same width W. We consider non-interacting spinless electrons that are 
described by the following Schr6dinger equation 

+ y (y) + V (x,y) r  = E r  (2.37) 

where the coordinates x and y represent the longitudinal and transverse directions respec- 
tively. The electrons are confined along the transverse (y)-direction but free to move along 
the longitudinal (x)-direction. me is the effective mass of the carrier (electron) in the system 
considered above. Vc(y) is the confinement potential along the transverse direction, Vd(x, y) 
is the potential due to impurities present in the wire. In the regions where no impurity 
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potential is present, one can solve an one-dimensional problem along the y-direction, 

h2 02 ] 
2me Oy 2 § V~(y) Xn(Y)= EnXn(Y). (2.38) 

where n is the transverse mode index, En is the corresponding energy of the n-th transverse 
mode and Xn(Y) are the normal modes. One can expand the solutions of Eq. (3.63a) on the 
basis of Xn(Y) as 

r y) = (2.39) 
where cn(x) are the Fourier coefficients. Along the transverse direction, the boundary con- 
ditions are such that the wavefunction vanishes outside the sample and the leads. This can 
be realized by considering a hard-wall type confinement potential 

Vc(y) / 0 y<l l 
(2.40) 

Then Xn(Y) c< s i n ( ~  § kyy) with ku -- n r / W  where n -- 1 ,2 , . . .c~.  depending on the 
incident energy E 2 2 = k~ + kv of the electron, finite number of modes are propagating (k 2 > 0), 
rest are evanescent (k 2 < 0). In Fig. 2.8, eL,  e L  t represent respectively the incoming wave 
towards the sample (scatterer) and outgoing wave from the sample in the left lead and r  
r  represent the same in the right lead. Inside the sample and the leads, every solution of 
Eq. (3.63a) can be written as a sum of incoming and outgoing 'propagating' waves as well 
as 'evanescent' waves. Far away from the impurity 'evanescent' wave plays no role and thus, 

r  P L L L L ---- ~n=l [ An r + Bn r ] for ,x --* - c~  
r  P R R R R =F~n= 1 [Anr § Bn r ] f o rx - -++c~ ,  

(2.41) 

(2.42) 

where e L  and L r constitute cn(x)Xn(Y) in the left lead and r  and CRo~t~ constitute 
c~,(x) Xn(Y) in the right lead. P represents the maximum number of propagating modes. The 
coefficients of incoming and outgoing coefficients are related by a linear transformation, 

BR =S(E)  AR , (2.43) 

where A L, A R, B L, B R, are the column vector of the coefficients A L, A • L R n, Bn, Bn respectively 
and S(E) is the scattering matrix of dimension 2P • 2P. The scattering matrix S can be 
decomposed into P • P submatrices, the reflection matrices/~ and/~1, and the transmission 
matrices 2P and ~l as 

S = ~ /~, , (2.44) 

For a wave approaching the sample through the left lead, the reflection matrix/~ represents 
the reflected wave emitting through the left lead, and the transmission matrix T represents 
wave transmitted through the right lead. Similarly,/~i and T~ represent reflected and trans- 
mitted waves coming from the right lead. For a time-reversal invariant system, S equals its 
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transpose S' i.e. /~ =/~T, ~, = /I~'T, and 2~ = 2r ft. Time-reversal symmetry is easily broken 
for an electronic system in presence of magnetic field. Flux conservation dictates that the 
S-matrix is unitary 

S S* = ][. (2.45) 

This implies additional relations between reflection and transmission matrices. The differ- 
ent symmetry properties of S-matrix and the scattering coefficients through the Landauer- 
Biittiker formula (see section 2.3) enable us to explain different aspects of electron transport 
in mesoscopic systems. In chapter 3.we shall use the S-matrix in the context of Friedel- 
sum-rule for an open multi-channel mesoscopic wire. In chapter 4 with the help of the 
Landauer-Biittiker approach we shall, calculate the 'circulating current', generated in an 
open multi-channel mesoscopic ring, from the different elements of the S-matrix. 



Chapter 3 

Friedel-Sum-Rule in 
Quasi-one-dimensional Quantum Wire 

3.1 Introduct ion  

Scattering processes are characterized by the scattering amplitude. While the scattering 
intensity is directly related to the square modulus of the scattering amplitude, the scattering 
phase shifts are also very important physical quantities. One can now probe scattering phase 
shift directly in an experiment [31, 32, 43]. The density of states in a mesoscopic sample and 
its relation to the scattering matrix is very important for the understanding of mesoscopic 
transport phenomena. It has been shown by several "workers [44-46] that the transport 
across a mesoscopic sample, connected to leads, can be formulated in terms of the scattering 
matrix. The DOS gives an idea about the distribution of energies of a system. DOS plays 
an important role in determining thermodynamic properties (eg. persistent current [36]), 
electrical conduction phenomena (eg. capacitance [47], charge relaxation resistances [48] 
etc.). The Friedel-sum-rule (FSR) relates the DOS of a system to the phase of the eigenvalues 
of the scattering matrix [49, 50]. For large system size, FSR can be stated as [49] 

~f(E2) - ~f(E1) = ~r N(E2, EI), (3.1) 

which is also valid for 'isolated' ('closed') mesoscopic conductor [51]. Here N(E2, El) is the 
number of particles (electrons) in the energy interval [El, E2] and ~f (E) is the 'Friedel phase' 
at energy E. This 'Friedel phase' can be expressed in terms of the phase of the eigenvalues 
of the scattering matrix as, 

Of(E) = ~ E~J  = In(Det[S]), (3.2) 
J 

where S is the scattering matrix. For the conservation of the probability current the scat- 
tering matrix must satisfy unitarity (as we have seen in section 2.7). Furthermore, unitarity 
implies that the eigenvalues of the scattering matrix must lie on the unit circle in the complex 
plane. Therefore, one can express the eigenvalues as ),3. --- exp (2i~j) with a real quantity ~j 
and j takes values I, 2,... N for S-matrix of order N x N. 

25 
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3.1.1 FSR for isolated mesoscopic conductor 

From Eq. (2.3) in the section 2.2 of Chapter 2 we have already seen that the DOS of a system 
can be expressed in terms of the Greeh's function. Now we show how one can obtain DOS 
from the scattering matrix. 

The retarded (advanced) Green's function for the isolated (closed) conductor in presence 
of scatterer can be written as 

~(a) = .  [(E -4- ic)~ -/=/o - 1)] -1 (3.3) 

= ~0(a) .~_ ~0(a)~% ~(a) , (3.4) 

where the transfer matrix T is dependent on potential responsible for scattering through 

the relation, T = 1) ~-~--0 (G0(a)(E) 1))n. Here, 1) is the impurity potential (scatterer) 

present in the system and/2/0 is the free Hamiltonian of the isolated conductor. The total 
Hamiltonian of the isolated conductor is /:/c = /:/0 + 1). G0 (~) is the retarded (advanced) 
Green's function of the isolated conductor in absence of the scatterer. Now from Eq. (3.4) 
and Eq. (2.3) we get 

I Im[Tr[G~TG~o]] p(E) - po(E) = =-~ 

-- r O--E Im Tr - 

1 0 [In[][ + - 

- 2i~ o-~ Tr (5~ 5])r 
-- 2i~I cg---EO Tr [In[if - 2i~5(E[[- /:/o)T]] 

2~ OE 
_ 1 __0 in[Det[~]] 

2ilr OE 

where po(E) (= ilr Im [Tr[G~]])is the DOS of the isolated conductor without 

rity. Thus from Eq. (3.10) and Eq. (3.2) we get 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

any impu- 

p(E) - po(E) = -1 a0f(E) (3.11) 
OE ' 

which is the differential form of the FSR in its canonical form(Eq. (3.1)). Thus for an isolated 
conductor the canonical FSR is exact as it is for a'thermodynamically large system. 

3 . 2  F S R  for o p e n  m e s o s c o p i c  c o n d u c t o r  

In section 2.2 of Chapter 2 we have already shown that for an open system i.e. for a 
conductor connected with leads, the DOS is affected by the environment. Here we want to 
see how the FSR is modified for an open mesoscopic conductor. 
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From Eq. (3.2), for a system having no other scatterer than the system-lead junctions, 
we can write (for details see Ref. [51]) 

O:(E) _ 1 I n ( D e t [ S ] )  
2i 

= I m l n D e t  [E]I-  [-Ic- E ~] 

where [ E ~ -  / ? / c -  E~] -1 = 

, ( 3 . 1 2 )  

Go~, advanced Green's function for the open system (see 

section 2.2), E a being the advanced self energy due to the conductor-lead coupling. 
From Eq. (3.12), differentiating both sides with respect to energy, we obtain 

oEO/(E) = ImTr Gop 1 OF_. 

Then using Eq. (2.9) in Eq. (3.13) we see 

O a 
OI(E) + Im Tr Gop (gE 

^a 
= ImTrGop 

: 7rp(e) 

(3.13) 

(3.14) 

Eq. (3.14) is the modified FSR for the open mesoscopic system. Note that  for open systems 
(Eq. (3.14)) DOS does not equate to the energy slope of the Friedel phase, there remains 
another term in the R.H.S. depending on Green's function and energy derivative of self 
energy incorporating the effect of environment. Introduction of a scetterer inside the system 

^a 
will change the DOS by changing Gop. To get back the canonical form of FSR (Eq. (3.1)), 

we have to neglect -5-ff i.e. the energy dependence of the self energy in Eq. (3.14). This can 
be done for 'non-polarizable' leads i.e. leads having a large DOS, which can screen away any 
deviation from charge neutrality in presence of impurity. This approximation is also true 
in large energy regimes (the so called WKB regime) where usually transport  occurs. From 
section 2.2, the energy-derivative of the self-energy term becomes 

5-6 = OR 
(3.15) 

Thus we can see that  the 2nd term on r.h.s, of Eq. (3.14) is non-zero when either or both 
of the two terms, the system-lead coupling term Tl and Green's function of isolated lead ~ ,  
are energy dependent. 

In section 3.4 we shall discuss the importance of this extra term in modified FSR 
(Eq. (3.14)) for a QID quantum wire with one propagating channel (mode) [21]. In sec- 
tion 3.5 we shall extend the study for a multichannel Q1D quantum wire [22]. 

3.3 Scattering in one-dimension and negative values of 
d O f / d E  

Before going to study the FSR for Q1D quantum wire here we recall the FSR in the context 
of scattering in one dimension. In Fig. 3.1 we consider a scattering problem that  is described 
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~[=eikx+re -ikx ~n=aeikX +be -ikx ~lllil=teik(x-l) 

~:=0 ' x=l 

I II III 

FIGURE 3.1: Two identical delta function potentials separated by a length I. Strength of each 
potential is V. The thick vertical lines denote the positions of the potentials and the thin horizontal 
line is the direction of propagation. A plane wave of unit amplitude is incident from the left and 
wave function in different regions (marked as I, II and III) is written down in the figure, r and t 
are the reflection and transmission amplitudes, respectively, of the entire system and k -- V~ is 
the incident wave vector. The origin of coordinates is shown in the figure. 

in details in the figure caption. The quantum mechanical wave function or the solution to 
the SchrSdinger equation in different regions is also shown and explained in the figure and 
its caption. We shall always normalize the incoming wave-function such that its amplitude 
is i. Griffith's boundary conditions for this system gives the following equations [52, 53] (we 
use 2 m =  l and h =  l) .  

1 + r = a + b, (3.16) 

a e  ikl + be -~kz = t ,  (3.17) 

i k ( 1  - r )  - i k ( a  - b) = - V ( 1  + r) and (3.18) 

i k ( a e  ~kt - be  -~k t )  - i k t  = - V  ( a e  ~kz + b e - i k t ) .  (3.19) 

We shall first analyze this system in detail and generalize the results of Refs. [54, 55] further 
by considering realistic energy dependent r and t, that will later help us to accentuate the 
new features that can be observed in a QID quantum wire in presence of scatterer. 

First of all let us calculate the local DOS and global DOS to see how much it agrees with 
dOf/dE. Although the basic facts discussed in this section is known in the Greens function 
formalism, to the best of our knowledge, quantitative disagreement (or agreement) has not 
been shown so far. Using quantum mechanical expression for the local DOS integrated over 
the region II (assuming leads to be unpolarizable) in Fig. 3.1, i.e., 

2 fol PR = I aeik  + be-ik  12 dx, 
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it is easy to show from Eq. (3.11) tha t  ( the equat ion below is consistent wi th  Ref. [55] and 
some hints  on its der ivat ion is given in Ref. [56]) 

dO/ d(kl  Z + ='p' (say), (3.20) 

where  /~-- I  a 12 + l b  12 and (3.21) 

pq = e 2ikx + ba* dx  (3.22) 
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FIGURE 3.2: The solid, dashed and dotted curves denote the exact d~f/d(kl), the p' and the 
respectively. All three quantities are plotted as a function of k I. Different system parameters are 
Vl 2 = -5 ,  h = 1, 2m = 1. 

Here ~ is a term that arises because of quantum mechanical.interference and it can be 
seen that the integrand in Eq. (3.22) oscillates with x. For I Ei > 1 (this is the WKB regime 
when the electron does not feel the potential strongly and is almost entirely transmitted) 
is negligibly small. This is shown in Fig. 3.2, where we plot p' (the dashed curve) and ~5 (the 
dotted curve). The two curves are almost the same for I E ] > i, which means ~, being the 
difference between the dashed and dotted curves is vanishingly small above this energy. It 
is known that to get the equality between the LHS and RHS of Eq. (3.20), it is necessary to 
drop the term ~ [68]. It is also known that this deviation arises because we are considering 
the local DOS rather than the global DOS, 

2 F p(E) = ~v r162 . 
O 0  

To get an equali ty it is necessary to neglect the  energy ,dependence  of self energy ~r(a). We 
shall soon see tha t  in this par t icular  case whenever reflection and t ransmission ampl i tudes  
become energy independent ,  i.e. non-dispersive, ~r(a) becomes non-dispersive and the  FSR 
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in i ts canonical form (Eq. (3.1)) holds. The pq/l t e rm or the interference te rm inside the 
scat terer  does not arise in the  case when l ---* 0 as in the cases to be considered in the 
following sections 3.4, 3.5.2. All the deviation from Eq. (3.1) to be observed there is due to 
this dispersive behaviour of self energy. 
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FIGURE 3.3: The quantity dOf/d(kl) is plotted as a function of kl for the different values of Vl 2. 
The dotted, dashed, solid and long dashed curves are for Y l  2 --- - 2 , - 2 : 1 , - 5  and - 8  respectively. 
We use h = 1,2m = 1. 

One can prove that 

1-1r'l 4 
=I a 12 +Ib ]2= 11- r'2r 2 12' 

for any energy dependent reflection amplitude r' of one of the two identical scatterers in 
Fig. 3.1, where, w = e ~k~. Hence as indicated by Eq. (3.20), it would be interesting if we 
can obtain a good estimate of fi or p; from ~f. In the Appendix C it is explained that if 
dr' dt l 
dE -- dE --* 0 (which means the scatterers are non-dispersive and that only happens at high 

energy in ID, 2D and 3D) then, d(kl)reouces to the expression ~ and then therefore, 
jl_r'%212 ' 

dO! . . . .  . 
d(kl) ---- P" 1~ m ShOWn in section III of Ref. [51] (see Eq. 6 and 7 therein), tha t  to relate ~dE to 
the  global DOS, one has to neglect the energy dependence of the self energy, tha t  depends 
on the  coupling of the system to the leads, i.e,, r '  and t t. Thus our results are consistent 

�9 ~ " �9 �9 . 

with that .  The  exact d(kZ) m shown m Fig. 3.2 by the  sohd curve. Note tha t  in the relevant 

energy regime (IEI > 1) (in 1D this i's WKB regime), the  solid curve is very close to the 
dashed and dot ted  curves, which means FSR works very well for the local DOS integrated 
over a finite region of interest as well as for the  global DOS. But for I~1 < 1, a-5- deviates d(k~ l 
from ft. But  since t ranspor t  effects in weak localization or diffusive or ballistic regime occur 
at Fermi energies, tha t  is normally higher in semiconductors as well as metals in comparison 
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to the energy where the two curves deviate substantially from each other, Friedel sum rule 
is often useful in condensed matter  to obtain a good estimate of local DOS integrated over 
a finite region of interest as well as global DOS. 

dOf/dE is also well known as average Wigner delay time [57, 58]. In the stationary phase 
approximation, it gives the time spent by the scattered particle at the impurity site. In the 
low energy regime, where dispersion becomes significant, the stationary phase approximation 
is not valid, dOf/dE can become negative and does not give a meaningful particle delay time. 
In this regime dOf/dE becomes negative as the phase velocity becomes larger than the group 
velocity and even larger than the velocity of light, and although such super-luminous particles 
can be detected experimentally they cannot carry any signal or information. In Fig. 3.3 we 
show the negative behavior of dOf/d(kl). We find that  as the strength of the impurities is 
varied, d~gf/d(kl) can become more or less negative (see Fig. 3.3), maximizing at V12 -- -2 .1  
for the symmetric delta potentials. The energy regime, where dOf/d(kl) can be negative 
remains the same for all V and always ]E I < 1. We have checked for all these values of V 

E 1), FSR works very well. FSR has a that  apart from this insignificant energy range (I V I < 
close counterpart in quantum mechanics called Levinson's theorem. 

3.4 FSR for single channel QID quantum wire 

Refs. [54] and [55] parameterize the S-matrix in a particular way (there are in fact many 
different ways of parameterizing the S-matrix ) in which the scattering matrix elements 
become independent of energy. In the previous section 3.3 we have generalized the work of 
Refs. [54] and [55] for real energy dependent 2• scattering matrices in 1D. In this section 
we intend to study the FSR for a single channel Q1D quantum wire with a delta-function 
impurity [21]. In the single channel regime, the Q1D system can be described by a 2• 
scattering matrix. Here we will show that  the energy dependence of scattering elements, 
that  are not important  in 1D play a very crucial role in Q1D. We will further extend the 
study for a multi-channel Q1D quantum wire in sections 3.5.1 and 3.5.2. 

Metallic or semiconducting conductors are modelled with many point impurities [59]. 
Hence we will restrict our analysis to delta function potential impurities. The single channel 
case being the most important  because it is in this regime that  one can really control the 
quantum interference effects and use them to build mesoscopic devices [5]. In a single channel 
quantum wire, in the presence of a single attractive impurity, taken as a negative delta- 
function potential, the transmission probability can go to zero [60] for some finite energy 
of the incident electron. At the corresponding energy, the scattering phase-shift shows a 
discontinuous jump (slip) by ~ [61, 62]. It was shown that  in the single channel case the 
Friedel phase 0~ or charge transfer is not affected by the discontinuous phase drops [54, 55, 
62]. Besides, to study the transport across a quantum dot connected to two ideal leads on 
two sides, most theoretical studies model the dot by a single bound state at the site of the 
dot as in the single particle description, the Coulomb blockade makes the other levels of the 
dot to be insignificant. As an attractive delta potential is capable of creating such a single 
bound state, it was used in Ref. [62] to explain the Fano resonances in quantum dots and the 
unusual features of the scattering phase shift observed across the quantum dot. Besides, the 
present study provides a basis for general understanding, and so that  we can comprehend 
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FIGURE 3.4: This is a schematic diagram of a Q1D quantum wire of width W (much less than 
its length). The dash-dotted curve is a line through the middle of the quantum wire, and it is also 
taken to be the x-axis. The origin of the coordinates is shown in the figure. An impurity delta 
function potential gd(x  , y) = Vf(x)5(y - y i )  is situated at x = 0 and y = Yi and marked as • 
We consider scattering effects when the incident electron is from the left with an energy E. In the 

~2h2 4~2h2 there is only one transverse mode that propagates and the energy range ~ < E < 2m--~-~w, 
rest of the modes are evanescent. The impurity at • mixes the different modes to give scattering 
matrix elements. The transverse wave function in the incident and transmitted channels is shown 
by dotted lines. 

the system and the results of Ref. [55] better. 

3.4.1 First principle calculation of scattering matrix and DOS in 
QID quantum wire 

In the similar fashion, as we have done in the section 2.7 for non-interacting spinless electrons 

confined in a QID quantum wire (shown in Fig.(3.4)), the Schr6dinger equation can be 
written as 

+ + + yd(x, y) r  y) = Er y). (3.23) 

Here all the parameters carry the same meaning as they did in the section 2.7. Using mode 
rescaling procedure (described in Appendix A) for a static (time independent) Dirac delta 
function type impurity potential in the Q1D quantum wire, shown in Fig. 3.4, the scattering 
matrix S becomes 

( ?~11  i l l  ) (3.24) 

when only one channel (mode) is propagating i.e. energy of the incident electron lies in the 
range E1 (= 7r 2 h 2 / 2  ?'n e W 2) < E < E2 (= 4 rc 2 h 2/2 me W2). As we consider single propa- 
gating channel, we have only one transmission amplitude t n  and one reflection amplitude 
~n. Bagwell [60] has obtained (see Eq. (A.18) and Eq. (A.29) in Appendix A) 

: Fll 

t l l  = 1 + r l l  = 1 + - ' t ~ l  (3.25) e 1 + ~'~j>l rj~ + ._~ 2~j ~ 2kl 
7F 

(2me "//h 2) sin 2 [j ~ (Yi + W/2)] where Fj j  -- 
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(see Eq. (A.2) in Appendix A), with 7 being the strength of the Dirac delta potential 
placed at a distance Yi from the centre of the quantum wire of width W (see Fig. 3.4). 
These scattering matrix elements define the scattering properties of the impurity potential 
completely. When the impurity potential is positive it can only support scattering states. 
However when the impurity potential is negative, it can also support some bound states, 
apart from the scattering states. From Eq.(A.3) we see that for each n we get a sub-band 
of scattering states (E as a function of kn). Similarly we get a bound state for each n, that 
are solutions to (see Ref. ([60])) 

~Fjj 
1 + = 0 (3.26) 

j=n 2~j  

F o r n  ---- 1 we get a t r u e b o u n d  state. The bound state for n = 2 may or may not b e a  
true bound state. If the impurity potential is such that  the solution to the Eq.(3.26) lie in 
the energy range where n -- 1 channel is propagating, then this bound state for n -- 2, is 
degenerate with n = 1 scattering state and it becomes a quasi-bound state. The scattering 
matrix is expected to contain all informations of this quasi-bound state, and solving the 
scattering problem is sufficient. 

We calculate the change in DOS due to the impurity potentia ! that  can be written as 
(see Appendix B) 

~_~ 2 s [ tlj [2 
p ( E )  - p o ( E )  - 2[~:11[hVl oo dx  cos (2k  1 x + 01) J- ~ v  1 . ;{J , (3.27) 

3 

with vl = hkl ~me, the longitudinal ve!ocity of electron in the propagating mode and 01 is 
e the phase of the reflection amplitude ~n. Here ~ j  denotes sum over all evanescent modes. In 

Eq. (3.27), tlj is the transition amplitude from the propagating mode to the j - th  evanescent 
mode. We find it in terms of mode coupling constant and wave vectors as (see Appendix A) 

_ Plj 

tlj = 2~j (3.28) 
1 + ]~j>l r-a + ~_h~_ 2~j ~ 2kl 

The 1st term on the r.h.s, of Eq. (3.27) is basically due to the change in the LDOS in the 
leads. Since the delta function potential is a point impurity, the integrated LDOS in the 
leads extends from - c ~  to ce. One can do the integration to find f-~o~ dx cos(2klx + 01) = 
7r cos(0~)5(kl). So it is zero unless the quasi-bound state coincides with k~ -- 0. In the case 
of extended impurities one can see that  this term gives an unimportant small contribution 
that  does not change with energy. Also the carrier concentration in the leads is normally 
large enough to screen away a small oscillatory LDOS completely. So the relevant quantity 
that  appears in FSR is 

2 it1:[2 (3.29) 
p~( E )  -- po~ E )  : hv  I E i~ e ' 

e 

This is actually the integrated local DOS around the impurity site and decaying away from 
the impurity site all the way up to • Here e can take values 2, 3, ...ee. Thus we can 
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independently calculate both the change in DOS (p(E) - po(E)) and the scattering matrix 
(1  o In (det [S])) starting from 1st principles, where we do not have to throw away dispersive 
behavior or energy dependence of self energy. 

3.4.2 Resu l t s  and Discuss ion  

We first present below a discussion and definition of the WKB regime for a Q1D system, 
because it is an interesting subject "on its own. It is to be noted that  we do not employ 
WKB approximation anywhere and our calculations are exact. When the incident electron 
propagates in a potential where the wave-function changes very slowly in space then very 
little reflected wave is generated and that  is taken to be the WKB regime [63]. So a delta 
function potential in one-dimension (1D) has a WKB regime at higher energies, when the 
reflection probability is very small. In the inset of Fig. 3.5, where we plot I~1112 versus 
incident energy we find that  there are three regimes. One is to the  left of point P1 where 
]~11] 2 is large and also strongly energy dependent. The other is between the points P1 and 

Q1 where ~ > >  7. These two regimes can be seen in 1D scattering (e.g., a delta function 2me 
potential in 1D) and are the non-WKB and WKB regimes, respectively. The third regime 
is to the right of the point Q1, where again I~1112 is very small and is hence a WKB regime, 
but the energy dependence of I~1112 is very large. Such a regime cannot be seen in 1D and 
is a specialty of Q1D. So the energies that  lie to the left of P1 is the non-WKB regime, 
where the electron feels the potential very strongly and is almost entirely reflected back. 
Energies to the right of the point P1 correspond to the WKB limit. Although, the system 
considered here is a Q1D system, corresponding to a scatterer in Q1D, there is an energy 
dependent scatterer in 1D [61, 64, 65]. The bound states and scattering states of these two 
potentials are identical and this is an exact correspondence, valid in all regimes, quantum 
or semi-classical. And so when the reflection probability is small in Q1D, it is also small 
in the corresponding 1D potential. Then all the notions and results of WKB regime that  
we are familiar with in 1D are also true in QID. In Fig. 3.5 we find a large deviation of 
7r[p(E) - p0(E)] (dotted curve) from dos (solid curve) at energies in the non-WKB regime dE 
(left of P1). This is similar to what is seen in 1D, 2D or 3D. In the WKB regime, that  is 
to the right of the point P1, although I Tll 12 is very small, its energy dependence is not 
as negligible as that  of a potential in 1D (eg, a delta function potential in 1D or a square 
well in 1D). Energy dependence of ITlll 2 automatically implies energy dependence of ~-p (or 
~a), i.e., dispersive behavior. So there is an appreciable difference between zr[p(E) - p0(E)] 
and d-2t Thus FSR in its canonical form is not' very good in the WKB regime and this is 

d E "  
counterintuitive. 

Let us now analyze the curves (solid and dashed) to the right of Q1, analytically. In this 
region ~2 --* 0. From Eq.(3.29) we find that  only the 1st term in the series is relevant. That  
is 

[ 27r Fll i] (3.30) 
7r [ p ( E ) -  p0(E)]~2~0diverges as hVl I~22 /~2 tr 

Thus the strong energy dependence in the energy beyond Q1 is due to the rapid population of 
the second sub-band through evanescent modes, as it approaches its propagating threshold. 
Hence, unlike the Fano resonance, this is not a quantum interference effect. This is like the 
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FIGUaE 3.5: The dashed curve denotes ~(p - Po) and the solid curve gives d ( - - . 5 i  In Det[S]). 
Both the quantities are plotted as a function of E W  2 using xi = 0, Yi = .21W and 7 = 1 in 
linear-log scale. In the inset the corresponding I~1112 is plotted in linear-log scale. 500 evanescent 
modes are considered in this calculation. 

Van Hove singularity at the  band edge. Similarly one can find 

dE J ~2--,o ~2-~o 

diverges identically. Note tha t  a l though arg(tll) can have a discontinuity, the  derivative 
exists at all energies. Essentially the right derivative and left derivative is the same at the  
discontinuity. Hence we prove FSR is exact as ~2 -~ 0. This is unders tood when we note 
tha t  when ~2 --* 0, I~1112 goes to zero at the band edge [60]. Also it is known tha t  when 

r l l  = 0 then  rp maximizes [5], and energy dependence of g~ being negligible, dE~ =av. Thus 
all the  deviat ing terms being zero, the FSR is valid around the diverging DOS at the  band 
edge. Fig. 3.6 shows similar things for a stronger impurity. 

For strong negative potentials  (Fig. 3.7), such tha t  the bound state for n = 2 is below 
the  propagat ing threshold of n = 1, the curves look similar to tha t  in Fig. 3.5. For the 
negative 5 function potent ial  with the bound state for n = 2, in the  propagat ing regime of 
n = 1, we have plot ted the energy derivative of Friedel phase and change in global DOS in 
Fig. 3.8. ]tml 2 is shown in the  inset. Note tha t  Itml 2 shows tha t  at the  point P the system is 
in extreme non-WKB regime where Itm 12 goes to zero. At this energy there is a quasi-bound 
state  and there  is s trong energy dependence of scattering matr ix  elements as well as self 
energy. According to earlier s ta ted results [45], there should be violation of FSR here. 

The  peak in 7r[p(E) - p0(E)] at P occurs due to the quasi-bound state. We also see tha t  
at  this very point  P there is an exact agreement between L.H.S. & R.H.S. of Eq.(3.11). This 
can be even verified analytically. Subst i tut ing the bound state condit ion given in Eq.(3.26) 
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FIGURE 3.6: The dashed curve and solid curve denote 7r(p- P0) and d(-.5ilnDet[S]), respec- 
tively. Both the quantities are plotted as a function of E W  2 using xi --- 0, y~ = .21W and "y -- 10 in 
linear-log scale. In the inset the corresponding I~1112 is plotted in linear-log scale. 1000 evanescent 
modes have been considered to perform this calculation. 

into ~ as well as in zr[p(E) - p0(E)] separately, we get 
dE 

dOf _ reek1 1 ~ •nn 
d-E ~ r~l ~ - ~[p(E) - p0(E)] (3.32) 

This agreement between ~ and 7r[p(E) - p0(E)] was argued to be equal for the case of 
dE 

a stub in ref [55], at the transmission zero where the ~ term in Eq.(3.14) was dropped 

from the very beginning [55]. Dropping the energy dependence of ~a in non-WKB regime 
and verifying the validity of FSR is rather meaningless, as the violations do come from the 
energy dependence of Ea. Even after including these terms we get exact agreement at the 
transmission zero for the negative ~ function potential in a quantum wire, although it is in 
extreme non-WKB regime. The reasons are as follows. At the transmission zero, since there 

is a quasi-bound state, E= becomes minimum s ~176 - 0. All these arguments are also 
true for the stub. 

3.5 Phase  shifts, phase t imes and F S R  in mult i -channel  
Q I D  quantum wire 

In this section we extend the study of the scattering problem in the Q1D quantum wire 
system with a Dirac delta function impurity but in the regime where incident energy of the 
electron is such that  in addition to the lowest mode, higher modes are also propagating [22]. 
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FIGURE 3.7: The dashed curve and solid curve denote ~r (p-  P0) and d ( - . 5 i l n D e t [ S ] ) ,  re- 
spectively. Both the quantities are plotted as a function of E W  2 using xi = 0, yi = .21W and 
- / = - 1 0  in linear-log scale. In the inset the corresponding [rll [2 is plotted in linear-log scale. 1000 
evanescent modes have been considered. 

In this multichannel case since the unitarity of a particular channel is absent and the electron 
can escape to a different channel, the scattering scenario differs from that we have seen for 
the single channel case (section 3.4). Here the transmissiola zeroes are replaced by minima 
and the associated discontinuous phase slip by 7r are replaced by continuous and less than 7r 
phase drops [22]. We shall see that in the multi channel case too the Friedel phase Of is not 
affected by these continuous phase drops [22]. 

For a static symmetric scatterer in a strictly ID system when transmission and reflection 
amplitudes are denoted by'~'and ~', respectively, 

In this  case, one can show [55] 

CO0____y/ _ cO0t (3.33) 
cO E cO E ' 

where Ot corresponds to the t ransmission phase. 
For systems, t ha t  are not s tr ict ly one dimensional,  however, has a 2 x 2 scat ter ing matr ix  

(single channel  Q I D  system) 

cOOI cOOt (3.34) 
cOE # cOE' 

because unlike a s t r ic t ly  one dimensional system, in them the t ransmission zero is associated 
wi th  a phase j ump  (by a value 7r). Thus when we go from 1D (with 2 x 2  S-matrix) to Q1D 
(also wi th  2 x 2  S-matrix)  then Eq. (3.33) does not hold, i.e. in general, energy derivative 
of Friedel phase can not be obtained from any transmission phase time. This  analysis was 
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FIGURE 3.8: The solid curve and the dashed curve denote ~ ( p -  P0) and d(-.5ilnDet[S]), 
respectively. Both the quantities are plotted as a function of EW 2 using xi = 0, Yi = .21W and 

= -1.5 in linear-log scale. For this value of 7 there is a quasi-bound state at EW 2 = 36.1022. 
In the inset the corresponding It1112 is plotted in linear-log scale. 500 evanescent modes have been 
considered. 

presented by Lee [54] and by Biittiker and Taniguchi [55]. We shall show that  OO//OE can 
be related to the Wigner delay time of any one of the reflection amplitudes. In section 3.5.3 
we will show some novel phase shifts at critical energies where S matrix changes dimensions. 
Then we present some concluding remarks. 

3.5.1 Wigner delay time in quasi-one-dimensions 

In Fig. 3.9 we consider a quasi-one-dimensional quantum wire with an attractive impurity 
at (0, y~), having electrons confined along the y-direction but free to move along the x- 
direction. While the states far away from the impurity are good momentum states, the 
impurity can mix the different modes and in this region of mode mixing, the wave function 
is #~(x, y) = Enc~(x)xn(y), where Xn(Y) are the transverse wave functions in the absence of 
the impurity and c~(x) are position dependent coefficients that  has to be determined by 
mode matching. The confining potential in the y-direction or the transverse direction is taken 

nTr W to be hard wall. Thus the transverse wave-function is of the form X~(Y) = sin w(Y + T)" 
For a given width W of the quantum wire one can choose the energy range of the incident 
electron such that  only two modes are propagating, although, all the other modes (infinite 
in number, showing that  the internal wave function can have infinite degrees of freedom, 
which makes it difficult to calculate the exact local DOS from the internal wave function) 
will be present but as evanescent modes. For example, if the energy of the electron be E 
then for propagation in the n-th transverse mode (in short we will refer this as n-th mode) 



3 , 5  P H A S E  SHIFTS,  PHASE TIMES AND F S R  IN MULTI-CHANNEL Q I D  QUANTUM WIRt~9  

2 2 T 
i Yi w 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ ; 0 )  ............................... 
I 1 

FIGURE 3.9: Schematic diagram of a quantum wire of width W with an impurity V(x,  y) = 
7 5(x) 6(y - Yi) at • The dash-dotted curve is a line through the middle of the quantum wire, and 
it is also taken to be the x-axis. The origin of the coordinates is shown in the figure. We consider 
scattering effects when the incident electron is from the left. The sub-bands marked as 1 on the left 
and right of the impurity denote the first mode (i.e., its wave function can be obtained by putting 
n= l  in Eq. (3.35) with appropriate sign for kn). Similarly, sub-bands marked as 2 on the left and 
right of the impurity denote the second mode (i.e., its wave function can be obtained by putting 
n=2  in Eq. (3.35) with appropriate sign for kn). 

the  wave-funct ion is of the  form 

sin e knx ,335, 

9z27r 2 
where  kn = v I E -  E,~, En being w~ and n = 1, 2, 3 , . . .  c~. Here we have used h = 
2m = 1. To have the  n- th  mode  to be propagat ing it is necessary tha t  k~ > 0 or 

n < W___v/-~. (3.36) 

Thus  we can choose the energy range where there  will be two propagat ing  modes,  i.e., n = 1 
w v /~)  will be evanescent,  and n = 2 satisfy condi t ion (3.36). The  rest of the modes (n > 7 

whose wave functions are of the form 

nlr W e_~, x (3.37) sin + V) 

where  ~n = v / E n -  E. These evanescent modes just  renormalize the  scat ter ing mat r ix  
elements  and drop out  of the  problem. 

In this case the scat ter ing matr ix  S can be wr i t ten  as 
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FIGURE 3.10: The argument of various reflection and transmission amplitudes (in radians), from 
incident channel m to propagating channel n, are plotted as u function of E W  2. The solid, long 
dashed and dotted curves denote arg(~n), arg(t11) and arg(t22) respectively. The different system 
parameters are 9' = -10,  Yi = .21W and xi = 0. 

where JR, JR' consist of all the reflection amplitudes and ~, ~i" consist of all the transmission 
amplitudes present in the two channel propagating regime. As our system obeys time reversal 
symmetry, we obtain T = "I~'. Further for a symmetric scatterer, as that considered here, 
JR = ]~'. Thus  the  scat ter ing matr ix  becomes 

S = 

with  ~ = 

and ~ = 

The  elements  of ~ are re la ted th rough  [60] 

JR ~ ] (3.39) ~ , 

[ rll ~21 ~22 ?~12 ] (3.40) 

1 t21 {22 J (3.41) 

irmn 
rmn = 2 d ~ '  (3.42) 

where d = 1 + 2 L "  

Here ~ e  denotes  the sum over all evanescent modes and ~-~f denotes the sum over all 
propagat ing  modes.  Here rn, n = 1, 2. Eq. (3.42) also holds for inter-sub-band transmission 
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amplitudes i.e. {12 and  t'21. The intra-sub-band transmission amplitudes tll and {22 are given 
by 

{mm = 1 +,~mm. (3.44) 

Here FaG is the strength of coupling between the a-th mode and the/3-th mode. If we take 
the impurity to be a delta function potential i.e., V(x, y) = 75(x)5(y - y~), and the confining 
potential in the y-direction to be .hard wall (V = oo for w > > w -T - Y - -~-, and 0 everywhere 
else except the impurity site • ) (see Fig. 3.9) then 

aTr W /3~ W 
F ~  = ~sin -~-(Yi + -~-) sin --~-(Yi + --~-). 

Apart from the two propagating modes we consider two evanescent modes and truncate 
the infinite series of evanescent modes (note that although the series is strongly converging, 
the reason for truncating is different, stronger and explained in more detail after Fig. 3.14) 
in Eq. (3.43) and so Eq. (3.42) becomes 

F33 r44 / F l l  1~22 ~ 
1 + ~ + ~4 + i \ 2kl -i- 2k2 J = d2 (say). (3.45) 

The lowest evanescent mode (putting n--3 in Eq. (3.37) gives its wave function) has even 
parity in the transverse direction. For a negative impurity potential i.e., ~/< 0, it also has 
a quasi bound state at E = E3b, where E3b is given by the solution of 

F33 1~44 -- 0. (3.46) 
1 + 2 - ~  + 2~4 

97r2 Since E3b < ~-~, E3b can be degenerate with scattering states. The higher evanescent mode 
(putting n=4  in Eq. (3.37) gives its wave function) has odd parity in the transverse direction 
and this too has a quasi bound state at E = E4b, where E4b is given by the solution of 

r44 
1 + 2~'4 = 0. (3.47) 

Once again depending on 7, E4b can be degenerate with the scattering states. The effect of 
including more evanescent modes is just to renormalize the strength of the impurity potential 
and does not give anything new [60]. 

Due to micro-reversibility ~12 -- ~21. Also ~12 -- t'12 because in both ~12 and {12 (= t'21) the 
density of states in the input as well as the output channel is the same, and also the incident 
channel momenta and the outgoing channel momenta are the same in the transverse as well 
as in the propagating direction. Thus in Eq. (3.39) only 5 elements are distinct. They are 
rn, r12, r22, tll and t2z. 
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From Eq. (3.42) and (3.44), 

{ii 

iF11 (3.48) 
r l l  = 2d2kl'  

i F n  
r12 = 2d2 kv/~lk~ , (3.49) 

iF22 
r22 = 2d2k2' (3.50) 

1 + -s + r44 + i2h~k~ 
2~3 2~4 2 and (3.51) 

d2 

{22 = i + s +_C~ + . h i  
2~3 2~4 ~2ki (3.52) 

d2 

Knowing these mat r ix  elements, the scat tering matr ix  is completely known and Of can also 
be calculated. 
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FIGURE 3.11: The solid curve denotes arg({11) in radians shifted by ~ radians in the y-direction 
while the dotted curve denotes ]{11 ]2. Both the quar~tities are plotted as a function of E W  2. The 
different system parameters are x~ = 0, y~ = .45W and "7 -- -15.  

We find some further relationships between the scattering phase shifts as follows. First 
of all 

Re(d) (3.53) arg(rl l )  = arg(r22) = t a n - l i m ( d  ) �9 

Secondly, when 4~ 9~2 < E3b < ~-~, i.e., the quasi bound state  of the 3rd sub-band lies in the  
energy range where one can have two propagat ing sub-bands, then the quasi bound s tate  E3b 
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drastically changes the scattering matrix elements in that energy range. So in this energy 
41r ~- 9~r 2 range W-~ to W~ we find 

7r 

arg(~12) :F ~ = Of + 7r. (3.54) 

Here negative sign is to be taken when E3b lies in this energy range. Otherwise the positive 
sign has to be taken. 0f is to be calculated from Eq. (2) using Eq. (3.39). Thirdly we find 

arg(~11) 4- ~r = arg(~12) . (3.55) 

Note that in contrast to Eq. (3.54) here the choice of 4- sign is arbitrary. However consistent 
with this choice is the following 

7r 
arg(r11) q- ~ = 0f q- 7~, (3.56) 

where once again + sign is to be taken when E3b is present in this energy range and - sign 
is to be taken when absent. 

We thus find very simple analytical expressions for 0f in the sense that one need not 
calculate it from a 4 x 4 scattering matrix but can calculate it from the argument of a single 
matrix element like rll or r12 or r22. These relations are analogous to Eq. (3.33) in section3.5 
obtained for purely one dimensional case, i.e., One need not calculate Of from 2• matrix 
but one can find it from the argument of a single matrix element. 

In Fig. 3.10, we plot only the distinct arguments of the scattering amplitudes versus 
energy of the incident electron. We find that all of them show negative slopes over a very 
large range of energy and as already discussed, such negative slopes give rise to fundamental 
questions in quantum mechanics [57, 58]. Now in QID we~find that this negative slope is not 
restricted to low energy but can occur at any arbitrary energy. Notice for example, arg(tll) 
and arg(t22) show larger negative slopes at the highest possible energies for two channel 
propagation. The rest of this section will be devoted to understanding these negative slopes 
that at first sight looks very different in nature and character in the three curves in Fig. 3. i0, 
and also to understanding what will happen when there are more than two propagating 
modes. 

It is to be noted that  among all these scattering matrix elements r l l  and {11 exist in the 
single channel regime (i.e., 7r 2 < E W  2 < 47r 2) where r l l  is the reflection amplitude and tl l  
is the transmission amplitude. The phase of {11 in the single channel regime is known to 
change discontinuously by Ir when tl l  is 0, i.e., t l l  has a zero in real energy. In the two 
channel regime if we write from simplifying Eq. (3.51) 

k2(2a3 + g3) + i~3g2 (3.57) 
= k2(2.3 + g3) + i. (g2 +  gl)' 

where c~ = k2 and gs = 2~ Fss; with s=1,2,3, then interestingly, we see that  it has a kl F44-i-2t~4 
zero in complex energy and not in real energy. 

If we modify the Breit-Wigner line shape formula of 1D to include complex zeroes and 
write 

E - E0 + iF0 
t,~b~(E) = A E -  Ep + iFp " (3.58) 
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where A is a normalization factor, then just as Pp gives the scale over which arg[tr~(E)] 
increase at E = Ep, Fo gives a scale over which arg[tmbw(E)] decrease at E = Eo where 
Itmbw(E)l 2 also shows a minimum at E = Eo (but not zero). One can check this very easily 
(let us say, when E0=2, Ep=l and F0 = Fp = 0.5)' and so we do not demonstrate it here. 
Now from Eq. (3.57) we see that at an energy which satisfies the condition 

2~3 + 93 = 0, (3.59) 

the real part of the numerator in Eq. (3.57) is zero. Condition (3.59)  is the same as 
the condition (3.46) for a quasi bound state E3b coming from the 3rd sub-band that  is 
degenerate with scattering states. So, around this energy where Eq. (3.59) is satisfied (lets 
say at E = Eab ---- E0) arg(tl~) will undergo a drop over an energy scale determined by the 
imaginary part, ~3g2, i.e., F0 - ~ag2. 

1 .0625  �9 , �9 , , , �9 , , , , , , , , . 
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0 .8125  f 
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EW 2 
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FIGURE 3.12: The solid curve denotes arg(t11) in radians shifted by ~ radians in the y-direction 
while the dotted curve denotes It1112. Both the quantities are plotted as a function of E W  2. The 
different system parameters are xi = 0, Yi = .45W and ~, = -10. 

It can be seen in Fig. 3.11 that It1112 (dotted curve) shows a narrow minimum around 
an energy EW 2 _~ 84 (which is the solution of Eq. (3.59) or Eq. (3.46)) and at this energy 
arg(tll) shows a very sharp drop over a narrow energy range determined by ~ag2. Hence by 
decreasing/increasing this quantity ~392 we can make the phase drop sharper/broader, g2 
can be made smaller in two ways, first by decreasing 7 and second by taking the impurity 
closer to a node in the transverse wave function. The plot for a decreased value of 3' is shown 
in Fig. 3.12 and it confirms this. 

Note that  the quantity ~392 is actually energy dependent. But in Fig. 3.11 and Fig. 3.12 
sag2 is so small that the drop occurs over a scale in which ~3g2 is roughly constant. For 
larger values of t%g2, the phase drop will be determined by a complex competition between 
Sa and g2. This is shown in Fig. 3.13. First of all the scale of the phase drop becomes so 
large that  any sensitivity to the position of the quasi bound state can not be seen. Secondly, 
~3g2 can not be taken to be a constant over this large scale and the enhancement of the 
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FIGURE 3.13: The phase of the transmission amplitude arg(t11) is plotted as a function of E W  2 

for different values of 7. The solid and dashed curves are for 7 = -47.1371 and -25.197 respectively. 
For both cases the quantity arg(t11) is shifted by 27r radians in the negative y-direction. Other 
system parameters are xi -- 0 and Yi = .21W. 

negative slope for E W  2 > 79 is a signature of the fact tha t  here a3 -~ 0 and so g392 - - +  0 as 
E W  2 increases. 
Similarly if we rewrite Eq.(28) as 

~22 

r 

kl (2t~3 -t- g3) + ia3gl 
k1(2/~3 ~- g3) -~- i~3(gl -~-/~g2)' 

where 13 = ~ ;  then  it is clear tha t  the behavior of arg(t22) will be quali tat ively the same. It 

is indeed found in Fig. 3.10 tha t  the  behavior of arg(t22) is similar to tha t  of arg(t11). 
0 / =  ~ln[det[S]] is shown in Fig. 3.14 as a function of energy, for different values of 7. 

The  min imum in 0f follows the  E3b and so the energy range where the  slope of 0; versus E is 
negative is de te rmined  by the  E3b. Note tha t  when E~b goes out of this energy range the Of 
versus E has a positive slope everywhere. So in Fig. 3.14, the  negative slope arises whenever 
a quasi bound  state E3b is degenerate  with the scattering states ( n = l  and n=2), and scatter 
and disperse the  scattering states in a non-monotonic  manner.  For weaker impurities in 
QID,  the  negative slope occur at higher energies and also are steeper as demons t ra ted  in 
Fig. 3.14. This is in contrast  to what  happens in 1D and demons t ra ted  in Fig. 3.3, tha t  the  
energy where the  negative slopes occur is always for E / V  < 1. 

We have used two evanescent modes in our calculations because one can include as many 
evanescent modes wi thout  changing the nature  of the negative slopes as long as the positions 
of the  quasi bound  states E3~ and Enb remain the same. One can check this tha t  with four 
evanescent modes and 7 -- -6.46584, the negative slopes are the same as in Fig. 3.10, 
which means tha t  the  thi rd  and the fourth evanescent modes just renormalizes 7 from - 
6.46584 to -10. The  exact renormalizat ion takes place according to a formula 7 (h) = 7(~)/d, 
where 7 (h) is the  7 value used here and 7 (~) is the renormalized value of 7 when we use 
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FIGURE 3.14: The Friedel phase 0f is plotted as a function of E W  2 for different 3'. The solid, 
dotted and dashed curves are for 3' = - 1 0 , - 1 5  and -25.197 respectively and the corresponding 
E3b are at E W  2 = 87.982, 86.606 and 80 respectively. The dot-dashed curve is shifted by ~r 
radians in y-direction for 3' = -47.1371, corresponding E3b is at E W  2 = 35 which is less than 
the propagating threshold E W  2 ~- 39 of the second transverse mode. The dashed curve is for 
3' = -25.197, corresponding E3b is at E W  2 = 80. The dotted curve is for 3' = -15,  corresponding 
E3b is at E W  2 = 86.606. The solid curve is for 3' = -10,  corresponding E3b is at E W  2 = 87.982. 
We use Yi = .21W and xi = 0. The arrows accentuate the positions of the minima that  shift 
towards higher energies for weaker impurities. 

m evanescent modes instead of two. d = (1 + F~5)/(2~5) + F~6)/((2~6) .... F(mn)/(2t~m), where 
r n ~ r  W 2 F(~ ) 7 (n) sin ~-(y~ + y )  . Solving this one can find the renormalized value of 3' i.e., 

3"(n) tha t  keep the  mi n i mum of any of the curves for the scat ter ing phase shifts considered 
here unchanged.  It is worthwhile  mentioning tha t  at the band  edges (i.e., E ~ 39 and 
89, in the figures considered in this section), the value of any curve is independent  of the  
number  of evanescent modes,  as all the  modes get decoupled there. In other  words, number  
of evanescent modes  considered does not change the na ture  of the negative slopes. Only the 
positions of the  quasi bound  s ta tes  are important .  

We find from Eqs. (3.53), (3.54), (3.55) and (3.56) 

d arg(~.~n)= d 1 
dE  ~ ( l n [ d e t [ S ] ] )  (3.60) 

We find the above relat ion to be t rue  for any number  of propagat ing modes. So m and n can 
take any integer value less t han  or equal to p, where p is the total  number  of propagat ing  
modes.  For two propagat ing modes p=2,  for three propagat ing modes p=3 and so on. So 
Eq. (3.60) is analogous to the  1D case given in Eq. (3.33). Tha t  is when the dimension of 
the  mat r ix  S becomes very large, then  it is sufficient to consider the a rgument  of a single 
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matrix element in order to calculate the complicated quanti ty on the RHS of Eq. 41. In the 
energy regime where there are two propagating channels, the negative slopes in 0/  versus 
incident energy curves are determined by E3b, and when there are 3 propagating channels 
then the negative slopes are determined by E4b and so on. 

The scattering phase shifts of transmission channels i.e. arg( tm~) ,  where again m and n 
can take all possible integer values less than or equal to.p, show sharp or gentle phase drops 
when the scattering states are degenerate with a quasi bound state, depending on the value 
of the imaginary part  in the numerator  of ~'m~. In the single channel regime the imaginary 
part  in the numerator  is zero and phase drops take the limiting value when the phase drops 
are absolutely discontinuous by It. Just as the discontinuous phase drop in single channel 
case do not affect O/in any way, the phase drops of the arg(~m~) also do not affect O/in any 
way and 0 /behaves  similarly as a r g ( ~ , ~ ) .  

3.5.2 Densi ty  of States and Friedel sum'rule in quasi-one-dimension 
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FIGURE 3.15: The system under consideration is shown in Fig. 3.9 with ~/ = 1. The Fig. 
shows some important scattering probabilities. The solid curve gives I~nl 2 and it shows that for 
E W  2 > 50, a particle incident in the first propagating mode does not feel the scatterer at all, and is 
almost entirely transmitted intra~channel, I~n 12 being close to unity. The dotted curve gives I t2212 
and once again for E W  2 > 50, it is close to unity signifying that a particle incident in the second 
propagating channel is almost entirely transmitted intra-cha.nnel. So E W  2 > 50 is the WKB regime 
where the potential scatters the incident electron very weakly. The dashed curve gives 30 times 
1~1212 (=- IT12.12) and shows strong energy dependence not only for E W  2 < 50 but also around the 
highest energy ( E W  2 ~ 89) or in the extreme WKB limit: its absolute value being extremely small 
there signifying extremely low inter-channel transmission i.e., the incoming particle does not feel 
the scatterer. 
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FIGURE 3.16: The system under consideration is shown in Fig. 3.9 with 7 = 1. The solid and 
dashed curves denotes ~ and ~r(p(E) - po(E)) respectively. The two curves deviate from each dE  
other, where ever the curves in Fig. 3.15 are strongly energy dependent. Otherwise they agree. 

The local DOS integrated over the region of interest R is given by the following expression 
[60] 

W " 

L I_; PR = dx dy E 5 ( E -  Em,k.~) J r j2 (3.61) 
2 m,km 

Here E is the incident energy and R is the integration region where modes are mixed. 
m and km are the two quantum numbers that  define an incident electron wave-function, 
A,~e ikmx sin ~ (y + w)  whose energy" is Era,kin, where we have taken that  the electron is 
incident from the left i.e., x < 0. r y) is the wave-function in the region of mode 

mixing and Cm,k,~(x,y) = ~'~n c(nm)(x, kn) sin ~ ( Y  + w).  Here c(~)(x; kn) = Cne ~k~x for n -- 1 

and n = 2 and c('~)(x, kn) = C~,e -'~x for n > 2; x being greater than or equal to 0. 
The coefficients C~ can be determined by using the mode matching technique. The mode 
matching has been done in details by Bagwell [60]. Here the delta function potential is taken 
to be extending from - e  to +e which has to be set to be tending to 0 in the end. P0R can 
be determined by replacing r (x, y). by the plane wave states in absence of the scatterer 
and doing the integration again. 

Extending Eq.(3.29) to multichannel propagation, we find that  for any non-zero incident 
energy 

2 ~ Itpel ~ (3.62) 
(p(E) - po(E))R = E ~ ~e 

p 

Here Vp = ~ with Vp corresponding to the velocity of electron in p-th propagating mode. 
m 

~-]~ and ~ e  denote sum over all propa.gating and evanescent modes respectively. 
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Note that if we calculate the global DOS by taking the integration region to be from -ce 
to c~ instead of just the region R where the modes are mixed then Eq. (3.62) remain the 
same. One will get some extra integrals that are indefinite integrals but using the current 
conservation condition it can be analytically proved (see Appendix B ) that they cancel each 

other, pq/l like terms are zero for 5 function potential. Thus in this case (the proof is given 
in Appendix B) 

p(E)  - po(E) = ( p -  PO)R 

and both of them deviate identically from ! ~ due to strong dispersion, at any arbitrary 
~r d E  

energy. As can be seen in Fig. 3.14 that  ~ is negative over a very large energy range while 
d E  

(P - Po) = (P - PO)R as given by Eq.3.62 is positive. This can be understood easily if one 
recalls Eq.(3.14) and remembers that  the positive contribution of O~Ea/OE term can make 

negative even when (p - PO)R is positive. d E  

Since the negative slopes are due to the quasi bound states supported by the negative 
delta function potential, one may ask what happens for a positive delta function potential 
that  does not support any quasi bound state. This situation is discussed below and it also 
elaborates the uniqueness of the QID, with respect to the importance of O~a/OE in Friedel 
sum rule and shows that  the contribution from self energy can be large even in the WKB limit. 
Note that  ~--]a depends on scattering probabilities. Fig. 3.15 shows the energy dependence 
of some important  scattering probabilities. The figure is similar to Fig. 3.5 analyzing FSR 
for single propagating channel in QID. In Fig. 3.16 in the left of P1, the non-WKB regime, 
there is large deviation of 7r (p - P0) from d g f / d E ,  similar to 1D, 2D and 3D. In the right 
of P1 though Itlll 2 --+ 1 (Fig. 3.15) indicating WKB regime, the dispersive behaviour of the 
transmission and reflection amplitudes remain strong enough implying energy dependence 
of Z a  so canonical form of FSR is not very good in this regime. Whereas in the region to 
the right of Q1, ~3 --~ 0 thus the two terms diverging as 1/~3 match at this band edge. 

3.5 .3  P h a s e  B ehav i or  at Crit ical  Energies  

Very interesting phase behaviors can be seen at energies where the S-matrix changes dimen- 
sion. For example for E < a~2 there is only one propagating mode and the S-matrix is 2 • 2. 

4~2 there are two propagating modes and the S-matrix is 4)<4. The matrix But for E > W-~, 
47r 2 element rll exists on either side of the energy ~-~ and in Fig. 3.17 we show the behavior of 

arg(~ll) in the energy range that includes EW 2 -- 4~ 2. Note that it exhibits a discontinu- 
ous phase drop by ~ at EW 2 -- 4~ 2. So far only discontinuous phase drops of 7r has been 

From the properties of a 2• S-matrix it follows that if there is a observed but never 7" 
discontinuous phase change then it can only be of 7r [54, 55]. So had the S-matrix been 2><2 
on either side of EW 2 -- 47r 2 the phase drop would have been It. But since the S-matrix is 

4Tr 2 2><2 only on one side, including EW 2 -- 47r 2, i.e., E _< ~-~, the phase drop is also one half 
of ~. I~11] 2 also has a zero at EW 2 = 41r 2 for all possible choice of parameters [60], and this 

zero is associated with a 2 phase jump instead of a ~r phase jump. 

Next we take a repulsive 5 function potential. It is known [60] that at critical energies like 
EW 2 = 4~ 2, It1112 shows discontinuities. Here I~1112 does not have a zero but exhibits a dis- 
continuous jump. At these points arg(t11) also shows non-analytic behavior as demonstrated 
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FIGURE 3.17: The system under consideration is shown in the Fig. 3.9. The plot is of arg(rll) 
in radians versus EW 2. This plot is for "y = -25.197, x~ = 0 and Yi = .45W. 

in Fig. 3.18. In this case darg(t11) is discontinuous. 

3 . 6  F a n o  r e s o n a n c e  

We have seen in the previous sections (section 3.4 and section 3.5) that  the mixing (de- 
generate) between the continuum states (scattering states) and quasi-bound discrete state 
gives rise to asymmetric lineshape in transmission amplitudes (see Eq. (3.25), Eq. (3.57)) as 
a function of energy of the incident electron. This asymmetric lineshape characterized by 
zero-pole structure in complex energy plane is named after its inventor and is called 'Fano 
resonance'. In this section we shall discuss the subtle aspects of the Fano resonance through 
a simple toy model [23]. 

The electronic states of atoms and molecules are characterized in the lowest level of ap- 
proximation (the mean field or Hartree-Fock description) in terms of the electron occupancy 
of the single particle states corresponding to mot ion in an average potential. Thus, for 
example, the ground state of the Helium atom is described as (ls) 21S0, that  is, two electrons 
in the spin singlet state in the lowest single particle orbital (in conformity with the Pauli 
exclusion principle). The first excited state is that  of the excited configuration expressed 
in the standard spectroscopic notation as (ls 2s) 3S1. Various excited states of the Helium 
atom may be excited from the ground state by the scattering of electrons or photons and 
show up as peaks (or Breit-Wigner resonances) in the elastic scattering cross-section and 
also in the excitation spectrum for the inelastic processes. This description in terms of sin- 
gle particle states is only approximate, and the true state can be found by considering the 
effect of perturbations due to the interactions beyond mean field resulting in the mixing of 
configurations. 

A qualitatively different situation arises, however, when we consider the excitation of 



3.6 FANO RESONANCE 51 

1.015 

c~ 
1.005 

0.995 

, ~ ,  0.988 

0.975 

/ 
/ 

i / 
ds '  

/ 

\ 
\ 

0'96530 3~5 4~0 45 50 
E w  2 

FIGURE 3.18: The solid curve d e n o t e s  [{1112 . The dashed curve is plotted after subtracting 
5.27183 radians from arg({ll) in radians. Both the quantities are plotted as a function of E W  2. 
We use ~' = +25.197, xi = 0 and yi = .45W. 

a sufficiently high-energy configuration, for example, the (2s2p)IPI state of the Helium 
atom which possesses an energy above the lowest ionization threshold. If excited, such a 
state would be auto-ionizing, decaying into He + + e-, and would manifest itself as a highly 
asymmetric peak in the excitation spectrum. A qualitative understanding of the origin of 
such peaks (known as Fano resonances) was provided by Rice [69] and by Fano, [70] and a 
quantitative treatment, rendered subtle by the fact that it involves the mixing between a 
discrete state and one belonging to a continuum (with the attendant degeneracy in energy), 
had to await almost a quarter of a century [71]. 

There has been renewed interest in the Fano resonance in recent years in connection with 
interference effects in quantum dots [72] and .in the Aharonov-Bohm ring with a quantum 
dot embedded in one arm [73]. Hence, it is desirable to clarify the essence of the mechanism 
underlying the Fano resonance by considering exactly soluble models that  avoid the calcu- 
lational complications needed for realistic systems. To obtain a simple realization of such a 
resonance, consider the elastic scattering of a particle by a target system describable in terms 
of a potential Vg. The subscript g states that the target in its ground state. Suppose that the 
target has an excited state of energy A above its ground state. When the projectile energy 
E is above the threshold A, an inelastic process is possible in addition to elastic scattering. 
This scattering is described in terms of two channels, the elastic and the inelastic. The latter 
channel corresponds to the scattering of the projectile of energy E > A from the excited 
state of the system through a potential V~; the two channels are coupled to each other via a 
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potential Vc. The system is governed by the coupled SchrSdinger equations 

(T + Vg)lr + Vole} -- EIr (3.63a) 

(T + V~)Ir + V~]r = ( E -  A)]r (3.635) 

where ]r and ]r denote the states in the elastic and inelastic channels respectively and T 
is the kinetic energy operator for the projectile. If the projectile and target, which interact 
via the potential V~, has a bound state with energy less than A, the would-be bound state 
of the excited channel lies in the continuum of the elastic channel, the two channels being 
coupled by the potential V~. 

We shall consider two solvable examples and show that  the probability for the excitation 
of the quasi-bound auto-ionizing state exhibits a resonance at an energy Ep < A with a 
finite width F corresponding to a complex pole of the corresponding amplitude of the form 
(E - Ep + iF/2) -1, similar to what occurs in Breit-Wigner resonance. The amplitude also 
possesses a concomitant zero at a real energy E = E0 near the resonance energy Ep. The 
juxtaposition of a complex pole at Ep - iF/2  and a real zero of the excitation probability 
in the energy plane gives rise to a highly asymmetric peak as the energy passes through 
the value corresponding to the energy of the auto-ionizing state (the bound state in the 
continuum). The generic pole-zero structure of the amplitude can be written in the form 
a(E)  = (E  - E o ) / ( E  - Ep + iF/2) = (c + qF)/(e + i), where c measures the separation of 
the incident energy from the resonance position in units of F/2, that  is, ~ -= ( E -  Ep) / (F /2 )  
and the asymmetry in lineshape is described by the Fano parameter qF = ( E p -  Eo) / (F /2) .  
Thus the excitation lineshapes in the neighborhood of the Fano resonance are given by 

f(c) = la(E)] 2 - (qF + c) 2 (3.64) 
l + e 2  ' 

where other weakly varying factors have been appropriately factored out to emphasize the 
main features. These lineshapes[71] for different values of the asymmetry parameter qF are 
shown in Fig. 3.19. The asymmetry parameter qF may be positive or negative depending 
on the sign of Ep - Eo that is, the relative location of the zero, E0, and the pole, Ep. The 
curves for negative values of qF may be obtained by letting c --. -c. 

3 .6 .1  D i r a c  D e l t a  m o d e l  for t h e  F a n o  r e s o n a n c e  

A solvable realization of the two channel problem is provided by a particle of mass m moving 
in one dimension where the potentials in Eq. (3..63) are taken to be Dirac delta functions. 
We make a further simplification by taking Vg(x) -- 0, which results in the elastic channel 
corresponding to a free particle except for the coupling potential Vc(x). Thus the bound state 
from the inelastic channel is embedded in a free particle continuum, creating the simplest 
scenario for the Fano resonance. We take Vg(X) = 0, Vc(x) -- -)~cS(x), and Ve(x) -- - .~5(x) 
with A > 0 and define ~ - 2 m A / h  2, ~ -- 2mA~/h 2, k 2 - 2 m E / h  2 and q2 _ 2 m ( E -  A ) / h  2, 
so that  Eq. (3.63) becomes 

d 2 
dx2r  + ~c~(x)r = 

d 2 
~ r  + ~ ( x ) r  + ~c~(x)r = 

-k2r  (3.65a) 

-q2r (3.65b) 
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FIGURE 3.19: Fano line shape for different values of the Fano parameter q. 

We begin by discussing the region above the inelastic threshold where E > A. Be- 
cause Ref. [71] discusses the problem using partial wave phase shifts, we will cast the one- 
dimensional transmission and reflection solutions in terms of eigenchannels[74] (analogous to 
angular momentum partial waves for central potentials; see Appendix A). Because Eq. (3.65) 
is symmetric under the parity operation x --* - x ,  the solutions r and r may be classified 
as even or odd under the transformation. For an attractive delta function potential in one 
dimension, there is always one and only one bound state that  has symmetric parity. Also 
the odd (or anti-symmetric) function vanishes at x = 0 arid hence a delta function potential 
5(x) makes no contribution (because 6(x)r and 6(x)r vanish if r  = 0) = 0 and 
r = 0) = 0). Therefore, the only nontrivial solutions are the ones that  are even under 
x --~ - x .  We observe that  for Ac = 0 (when the elastic and inelastic channels are uncoupled), 
the elastic channel corresponds to a free particle and has only plane wave solutions, while in 
the inelastic channel there are continuum solutions (taken to be box normalized) described 
by 

1 
Co(X) - V/-~[e -~q~ + aoeiqX], (3.66a) 

and a bound state solution 

with 

r = v ~ o e  -z~ (3.66b) 

q + i~/2 ~ (3.67) a 0 =  and / 3 0 = - .  
q-i /2 2 

We consider only the nontrivial solutions which are even under x ~ - x .  The bound 
h2 X2 h2 X2 state occurs at E = A 2m 4 �9 If A > ~m T '  the bound state in the inelastic channel (lying 

below its threshold E < A) is in the energy regime where the only process taking place is 
elastic scattering. Note that  the bound state corresponds to a pole of ao(q) at q = i,V2. (For 
an excellent description of the connection between bound states and poles of the scattering 
amplitude the reader is referred to the text book of Gottfried.[75]) 
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Now let us consider the effect of coupling between the two channels. For particles incident 
in the elastic channel we must solve Eq. (3.65) and search for solutions of the form: 

r = l[e-iklxl  + Ae ~klxl] (3.68a) 
x/47r 

r = a m__.e~ql~l , (3.68b) 
vzTr 

because in the inelastic channel described by r we have only outgoing waves. We obtain 

q - ~ 7  - 4k A - .~ ~ (3.69a) 
q - ~ 7  -t- 4k 

.~, ~ ,  (3.69b) 
a = v/-2(q-z7 + 4kJ 

and I AI 2 + 21al 2 ~ = 1, which follows directly from Eq. (3.69) and is a consequence of unitarity 
(probability current conservation), which means that  the incident probability current equals 
the sum of the final probability currents in the elastic and inelastic channels. The factor of 
q / k  arises from the ratio of the currents in the inelastic and elastic channels and the factor 
of 2 represents particles in the inelastic channel emerging to the left and to the right. Note 
that  the pole of A has shifted compared to that  of a0 which is an effect of the coupling of 
strength ,~c. Also note that  as )~ --, 0, A --* 1 as it should because we have taken Vg = 0. 

To find the pole's location, we solve a fourth order equation in k. Instead of obtaining 
numerical results, we solve for the pole position, kp, for small ,~. We readily find (see 
Appendix B) that  

kp [ s  -  211/2 N 4 ( 2 s  + _ (3.70) 
-~-J + Ac 6 4 ( A -  @)s/2 8(/~ - @)" 

For small Ac the pole moves away from the real axis in the /c-plane and sits in the fourth 
quadrant close to the real axis. 

It is useful to study the analytic properties of a scattering amplitude as a function of 
energy considered as a complex variable. Bound states appear as poles of the scattering 
amplitude at real negative values of the energy (scattering corresponds of course to positive 
energy), and resonances are associated with poles at complex values of the energy E = 
Er - iF~2, where Er and F define the location and width respectively (see Ref. [75]). 

The amplitudes have so far been expressed as a function of k. To study their nature with 
respect to the energy, we note that E = h2k2/2m and we need to calculate a mapping from 
the k-plane to the k2-plane. From Eq. (3.69a) we see that A(-k) -- A-l(k) because the 
points k and -k are mapped onto the same point in the k2-plane, the function A(k) is not 
single valued in k 2 unless we introduce a branch cut from k 2 = 0 to c~ along the real axis. 
This is known as the unitarity cut. The upper half complex k-plane is mapped onto the first 
Riemann sheet and the lower half }-plane onto the second Riemann sheet. (See Ref. [76] for 
a discussion of general aspects of the underlying mathematics.) We map the pole at kp in 
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the k-plane (as in Eq. (3.70)) onto the kLplane as 

~m he [-~ 16(/~(/S + ~)_ ~)2Jl , h~-mA~4(/~ _ ~ r 
: __  �9 ~ 2  _ ~ �9 (3.71) 

To obtain a physical understanding of the width, F, of the resonance, we recognize 
that  this "bound state in a continuum" or the "auto-ionizing" state with an unperturbed 
energy E = A h2 ~2 2m 4 decays into the continuum states of the elastic channel caused by 
the interaction Hint = -Ace(x) .  To obtain the rate of the decay for small ~c, it is sufficient 
to use time-dependent perturbation theory or Fermi's golden rule, so that  the decay rate = 
2~l(flHint]i ) 2 dR where the initial state is the unperturbed bound state described by the h d E  ' 

wave-function (xli) = e-~-Ixl, the final unperturbed state is (x l f )  = e iklxl, and the 

number of states of a free particle between p and p + dp is dp = Lap which gives a-e- -- 
h ' d E  - -  

L d ( h k )  __ L [ d / ~ - - ' E ' ~  L 2~m 1 -h dE - -  ~ k ~  V ---~)E=A h~ X2 = ~ V -p- . . Accordingly, the decay rate for the 
2 m  4 

auto-ionizing state to go into the continuum is given by 

F 
h F k - h o o  

2m 4 V / ~  5,-T'4 

v/A n2 ~2 
2m 4 

(3.72) 

in agreement with our earlier result (expressed by Eq. (3.71)) describing the excursion of the 
pole into the complex plane. We may use perturbation theory to verify that  the shift in the 
real part  of energy to order ic 2 is zero. 

To understand the origin of the Fano zero, we must examine the elastic scattering ampli- 
tude A at energies below the onset of the inelastic channel E < A. In this region Eq. (3.65) 
becomes, 

d 2 

dx 2~,(x) + ~cS(x)r = -k2 r  (3.73a) 

d 2 
~-x2r + ~5(x)r + ~c5(x)r = Z2r (3.73b) 

where ~2 = ~-~(A - E) > 0. Note that  ~ is not an eigenvalue to be determined, but is deter- 
mined by the energy E of the incident beam. The open channel solutions r  correspond 
to continuum states, while the closed or evanescent channel function r is exponentially 
damped. However, because we are concerned with the mixing between r  and r we 
need to adopt a normalization for the two functions. Bayman and Mehoke [74] proposed 
a method where the open channels are normalized to unit flux and the closed channels are 
normMized with an analogous factor (which would result from analytic continuation). We 
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write the solutions of Eq. (3.73) as 

Ok(x) -- ~ k ~  (e , k N +  Aeikl~l), (3.74a) 

r = V/1 -I~kl  ~ 1__ 1 e_~lx] ' (3.74b) 
v / ( 1  - 

where the probability amplitudes, ~k and v/1 - I~kl 2, are to be determined. If these solutions 
are substituted into Eq. (3.73), we obtain 

A = ~ - 2/3 - z~_ (3.75a) 

~2 
~" Ac (3.755) (k _ ~ l e z ( 2 / 3 _ i  + 

V/1 -I~kl  2 

where IAI = 1 due to unitarity because the inelastic channel is closed. Note that  in the limit 
Ac --* 0, we have I~kl --* 1, which means that the bound state decouples from the continuum, 
and the probability of being in the elastic channel is unity. 

To determine the probability for transition from the bound state to the continuum 
through elastic scattering (or other processes), we note that  the probability for exciting 
the "auto-ionizing" state via scattering is proportional to the square modulus of the overlap 
integral between r and Ck, 

f_ 'r162 + (3.76) 

which vanishes when 

/3(A - 2/3) + -~- = 0, (3.77) 

that  is, when/~ = [A + V/A 2 + 4A~]/4. This solution is the Fano zero with the experimental 
signature that  the lineshape for excitation of the auto-ionizing state vanishes at the energy 
E0. Therefore, the transmission amplitude, A + 1 (see Appendix A) has a zero at A = 2/3. 

h 2 [~2 ~4 (A+~.) l The location of this zero for small Ac is given by Eo -~ A- ~m L ~- +Ac 16(A-~)2J as compared 

resonance 
h2 (h+~) 

to the energy Ep = A -  [ ~ ~-~ - A  c 16(5_4)2 j and the width F - - 2-~2 ~ h2 ~X~ . Thus ~ 4 ] 

we find that  the Fano parameter qF > 0, and the asymmetric lineshape described generically 
in Eq. (3.64) emerges in this case. 

It is evident from this discussion that  the essence of the Fano zero lies in the mixing 
between the continuum states of the elastic channel and the quasi-bound discrete state of 
the inelastic channel. The effect of mixing is well expressed by Ugo Fano [77]: "Repulsion 
(of levels) is familiar in discrete spectra, when a level of one configuration happens to lie in 
the midst of a series of levels of other configurations; configuration interaction causes the 
levels of the second series to be shifted away from the perturbing level. In our situation, 



3.6 FANO RESONANCE 57 

where a discrete level of one series lies in the continuum of another channel, the levels of this 
continuum are also repelled, but in the sense that their oscillator strength (level densities) is 
thinned out in the proximity of the perturbing level." (The phrase in parentheses was added 
by the authors for increased clarity.) To make 'this remark more concrete, we write down 
the effect of the coupling on the density of states of the elastic channel. Note that from 
Eq. (3.74a) that mixing modifies the plane wave solution by altering the normalization by a 
factor ~k. Hence, the changed density of states due to the auto-ionizing state is given by the 
multiplicative factor 

I k12= 1 -  _ < 1, (3 .7s )  
i ) 2  + + - 

thus reducing the density of states via "level repulsion," and it is this feature and the Fermi 
golden rule that  leads to the asymmetric lineshape. 

3 . 6 . 2  D i s c u s s i o n  a n d  r e s u l t s  : 

We have explained the origin of the Fano resonance by a soluble model: the one-dimensional 
Dirac delta potential. To make the results more transparent, we have taken the elastic 
channel to correspond to a free particle if it were not coupled to the inelastic channel. Thus 
nontrivial scattering in the elastic channel occurs only because of the bound state of the 
inelastic channel, which manifests itself through the typical Fano pole-zero structure. We 
could have included a direct potential in the elastic channel as well, but this potential would 
only complicate the algebra without adding anything to the understanding of the relevant 
mechanism. We also clarified how the amplitudes generate a pole in the fourth quadrant 
of the second Riemann sheet of the complex energy plane in the elastic unitary cut, and 
how the excitation function for the auto-ionizing quasi-bound state from the elastic channel 
develops a zero at some real energy near the resonance. The generic reason for the occurrence 
of this zero was explained by Fano as arising from the fact that the wave function in the 
elastic channel has the form exp ( - i k r )  - exp (2i5) exp ( ikr) ,  which is sin(kr + 5) modulo 
an over-all phase and irrelevant factors. To find the excitation probability of the quasi- 
bound state, we have to determine the overlap of this form with a smooth function g(k,  r) 
which varies slowly with respect to k. This overlap is given by f sin(kr + 5) g(k,  r) dr = 
cos (5) f sin(kr) g(k,  r) dr + sin (5) f cos(kr) g(k,  r) dr. As the energy crosses the Fano 
resonance, 5 changes from -7r/2 to ~/2, and the overlap integral must pass through zero. 
To make the one-dimensional model also conform to this generic description in terms of 
phase-shifts, we have adopted the formalism of eigenchannels. We also have demonstrated the 
modification in the density of states due to the bound state in the continuum. We have argued 
that  the reason for the zero in the elastic amplitude lies with the repulsion of levels due to the 
bound state of the inelastic channel intruding into the region of purely elastic scattering and 
the concomitant vanishing of the overlap with this auto-ionizing state. It is necessary to add a 
word of caution. It may sometimes be very difficult to discriminate between a Fano-resonance 
and interference effects between a Breit Wigner resonance and a slowly varying background. 
Consider the latter situation described by an amplitude f = B ( F / 2 ) / ( E  - Er + iF /2 )  

+ BF(E-Er) 
and note that  Ill 2 = B 2 + (E-E~)2+ r__} The interference term between the resonance 
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and the background could very well be parametrized by the Fano form with the asymmetry 
parameter q = EpzE~ ---- ~. Thus particular attention should be paid to the underlying 

2 

physical situation vis a vis inelastic channels and bound states in the continuum. 

3.6.3 Conc lus ions  

Thus the purpose of this work was to verify FSR in single channel as well as multi-channel 
QID quantum wires in the presence or absence of Fano resonances. Fano resonance is a 
very general feature of QID quantum wires. At the Fano resonance all the quantities are 
strongly wave vector dependent as it is a purely quantum interference effect. Never the less, 
FSR is exact at the Fano resonance. This is contrary to the known fact that FSR is valid 
in semi-classical regimes where there is no strong dependence on wave vector. The exact 
agreement of the FSR in spite of the strong wave vector dependence is due to the fact that 
at the Fano resonance there is a quasi bound state that leads to a minimum in the self 
energy. Away from this quasi bound state there are strong violations. These are true for any 
negative potential in QID and the potential considered here and the associated calculations 
make this clear. For positive as well as negative delta function potentials, there is also strong 
wave vector dependence, close to the upper band edge of single channel propagation. This 
is due to the rapid population of the first evanescent mode at its propagation threshold 
and does not depend on the existence of Fano resonance, dEa/dE=O here because of the 
perfect transmission at the band edge, and hence the agreement in FSR. So the former case 
of agreement in the peak is an agreement in purely quantum regime, while that in the case of 
the latter peak is in the semi-classical regime. Away from the peaks there is always violation. 
It may be interesting to work out some extended potentials in QID [66, 67]. 

In a multichannel quantum wire with attractive impurities, negative slopes in the scat- 
tering phase shift versus incident energy curves can occur at all possible energies. For weaker 
defects it happens at higher energies and the negative slopes are more pronounced. Such neg- 
ative slopes mean super luminescence [57, 58] that can be observed experimentally. Although 
such a super luminescent particle will not give any information about the particle delay or 
information delay, they are of interest because they demonstrate fundamental principles in 
quantum mechanics. Hence Eq. (3.60) derived in this paper may be of use to experimental- 
ists and theoreticians. The energy dependence of self energy can be strong except for at band 
edges or quasi-bound states. Thus energy derivative of Friedel phase does not, in general, 
give the change in DOS. Unlike ID, 2D, 3D in QID the presence of quasi-bound states play 
crucial roles even in quantum transports through a simple wires. The FSR in its canonical 
form (Eq. (3.1)) becomes exact at band edges as well as at strongly quantum regimes such as 
at quasi-bound states, where Fano resonances occur. The self energy term can be important 
for fairly large energies (except for at band edges), the so called WKB regimes, making the 
canonical identity of Eq. (3.1) inexact. In mesoscopic conductors the oEa/cgE dependent 
term in FSR (Eq. (3.14)), in general, is important. We also show that the discontinuous 
phase drops in the single channel case have a counterpart in the multichannel case wherein 
the drops can be continuous and we propose a line shape formula for them in Eq. (3.58). 
When there is a third channel of escape for the electron, apart from the channel along which 
it is incident and the channel where its scattering phase shift is measured, the phase drop 
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becomes continuous. However, these phase drops do not affect ~lnDet[S] and hence Friedel 
sum rule. Finally, we discuss some novel scattering phase shifts at energies where the S 
matrix changes dimension. 
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Chapter  4 

Quantum current magnif ication in a 
mult i -channel  mesoscopic  ring 

In this chapter we study the nonequilibrium effect of quantum current magnification in a QID 
ring connected to reservoirs through leads [24]. So far all studies on current magnification 
have been restricted to the case of one dimensional (single channel) systems only. Studies on 
current magnification effect in mesoscopic open rings have been extended to thermal currents 
[78] and to spin currents in presence of Aharonov-Casher flux [79]. This effect has been 
studied in the presence of a spin-flip scatterer which causes dephasing of electronic motion 
[80, 81]. The predicted magnitude of the circulating current densities can indeed be very 
large [40] and has been termed as 'giant persistent currents' [82, 83]. Recently the current 
magnification effect has been shown to occur in mesoscopic hybrid system at equilibrium 
in the presence of a magnetic flux and in the absence of transport current [84, 85]. In this 
chapter we discuss the current magnification in a Quasi-l-dimensional (QID) mesoscopic 
ring. Thus we go beyond the single channel regime to a multi-channel one. 

Multi-channel systems are a closer realization to the experimental systems [43, 86] due 
to their finite width in the transverse direction of propagation of currents. Specifically, we 
consider a QID ring of perimeter L and width W with L >> W as shown in Fig. 5.10. The 
two leads that connect this system to the electron reservoirs have the same width as that of 
the ring. The length of the lower arm of the ring is 13 while that of the upper arm is 11 + 12. 
An impurity 5 function potential VS(x -/I)(~!Y - Y~) is embedded in the upper arm. The 
electrons can propagate freely along the length of the ring and the leads but their motion is 
confined along the transverse direction. We consider hard wall confinement potential along 
the transverse direction. Due to this confinement, infinite number of transverse modes are 
generated in the system. If the energy of the electrons is such that the corresponding wave 
number is real then the mode is termed as propagating, on the other hand, if the wave 
number is imaginary it is termed as evanescent. The widths of the ring and the leads being 
equal, the number of propagating and evanescent modes are same in these two. 

We consider non-interacting electrons in the system. The system size is taken to be 
smaller than the phase coherence length Ir and the phase randomizing inelastic scattering 
is considered only inside the reservoir. Scattering inside the system maintains the phase 
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FIGURE 4.1: Schematic diagram of an open multi-channel mesoscopic ring of perimeter L = 
ll + 12 + 13 connected through the leads 1 and 2 to electron reservoirs (not shown in figure). Both 
the ring and the leads have the same width W. Several transverse modes are shown by horizontal 
lines in the leads. A delta function type static scatterer Vd(x, y) = V!x  - ll)(y - Yi) of strength V 
is shown in the upper arm at x. e denotes the coupling strength between the leads and the ring. 

coherence. This necessitates only static scatterers in the system which in our case are a delta- 
function potent ia l  and junct ion scatterers at J1 and J2. We neglect all phase randomizing 
scattering l ike-phonon interaction inside the system. The left reservoir (SL) and the  right 
reservoir (SR) have chemical potentials  #L and PR respectively. W h e n  PL > #R current flows 
from SL to SR and vice-versa. We are interested in the linear response regime where currents 
are related to the  transmission across the system at the Fermi energy (Landauer-Bii t t iker  
formula, [5]). We consider tha t  the electrons enter the system through the  left lead and come 
out th rough  the  right lead. Due to mirror symmetry, results remain the same if the  flow of 
electrons is reversed with the direction of circulating current get t ing reversed. This ensures 
absence of circulating current in equilibrium at zero magnetic field. 

For no loss of generality we have considered the si tuation wherein no mode mixing be- 
tween different transverse modes occur at the junctions. The ring and the lead are connected 
via junct ion  scattering matrices at J1 and J2. The junct ion scattering matrices are same 
for bo th  the  junct ions J1 and J2. The coupling between either sides of the junct ion for the 
modes with same transverse quan tum number  is given by [87] 

) S j =  v'~ a b 
v'~ b a 

(4.1) 

I i). is a coupling parameter with values where a = 1 (Vii _ 2 e -  1) and b = ~ (vri  - - 2e + e 
0 _< e _< 0.5. W h e n  e --* 0 the  system and the reservoir are decoupled while for e --* 0.5 
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these two are strongly coupled. This S-matrix satisfies the conservation of current [88]. The 
above S-matrix is independent of the incident energy and the index of the transverse modes. 
The presence of the elastic scatterer, namely, 5 function potential in the upper arm mixes 
different propagating and evanescent modes and gives rise to extra phase shift in each mode. 

When electrons are injected in the p-th propagating mode, the total wave function in the 
left lead (region I) is given by 

r I = v/-~'eikP~Xp(y) + E rp~e-~k~X~(Y) '  (4.2) 
n 

where kp is the longitudinal wave-vector corresponding to p-th mode along the direction 
of propagation. Here rpn describes reflection amplitude from p-th to n-th mode, X~(Y) 
represents the n-th transverse mode where y is the coordinate along the transverse direction 
and ~ denotes summation over n including p. The normalization factor v /N is determined 
by noting that  the current density injected by the reservoir in a small energy interval d E  in 
the p-th propagating mode is 

dnp (4.3) djp~ = e V p - ~  f ( E ) d E  

where f ( E )  is the Fermi distribution function, dn~ = 2 is the density of states (DOS) in dE hvp 

For our zero temperature calculations f ( E )  = 1 for occupied the perfect wire and Vp = , ~ .  

states. The wave function Cp I gives the incident current density djp~ = ~ d E ,  which in 
2e d E  turn is independent of the propagating mode in which the electron is incident if N = ~ . 

Here d E  denotes an energy interval around Fermi energy and hence change in incident energy 
would mean a change in the Fermi energy of electrons emanating from the reservoirs. 

The wave functions in all other regions are 

r  = E [ A  e ik'~x B e -ik'~x " io ~ \ pn + pn ) ~ n k g )  (4.4) 
n 

r III E (C e ik'~ D e -ik'~ " = , pn + pn )Xn(Y) (4.5) 
n 

r IV = Z (E, + x (y) (4.6) 
n 

C V  = E t p ~ e  ik~x'~c~yJ'~ (4.7) 
n 

where n stands for all available propagating modes including p. 
Sj connects the incoming and outgoing amplitudes of the p-th mode at J1 via 

() () %,p 1 
App = Sj  B~p 
Ep, F;p 

where any new amplitude Ap~ is connected to its earlier definition Apn by 

(4.8) 
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In further calculations all the amplitudes with primes carry the same meaning as above. 
Sj  connects the incoming and outgoing amplitudes of all the other propagating modes m 
( m - ~ p ) a t  J lVia  (0) 

(4.9) 

Similarly, the incoming amplitudes (0, Cpn, Ep~) and outgoing amplitudes (t;~, Dp~, Fp~) at 
the junction J2 are connected via the same scattering matrix Sj. 

The elastic scattering at the impurity is described by 

[ B;,1 ~ - i k l l l  

Bt ~-ik211 
p2 ~ 

o .  , 

B !  ~ - i k p  ll p p  ~ P 

c;1 

A,px e,k~z~ 
i~2 e ik2ll 

. o .  

. ~  

dpp r 

D' I 
D' 2 

�9 �9 ~ 

D';v 

(4.10) 

w h e r e S =  ( /~ T)/~ 

and both/~ and T are matrices of order P x P, P being the maximum number of propagating 
modes in the system depending on a given Fermi energy. These matrices/~ and T can be 
expressed in terms of matrix elements ~.~ and t.~n respectively, where 

tin ~- 

2 ~  

 m+iE m 1 "Jr- E j  2~j 2kj 

with 1 _< m, n _< P .  The indices m and n denote propagating modes. ~--~e represents a sum 
over all the evanescent modes and y]P represents a sum over all the propagating modes. The 
inter-mode (i.e. rn ~ n) transmission amplitudes are t ,~ = ~,~ and intra-mode transmission 
amplitudes are tn~ = 1 + ~n~. For details see Ref. [60]. Fm~ can be calculated using 

2meV 
h---r- 

In Eq. 4.10, while writing A~n , B~n the origin is taken to be at the junction J1 whereas 
in writing C~, D ~  the origin is taken to be at the scatterer. For details of the S-matrix 
elements for a multi-channel scattering problem see Ref. [60]. Note that the different elements 
of the S-matrix contain informations about the propagating modes as well as all the infinite 
number of evanescent modes arising out of transverse confinement [60]. 
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For any given incident electron in the p-th mode in the lead with energy E the current 
in the n-th mode in region II is given by 

dj ,n u = ([Ap kl 2 - IB. l 
2e 

= (IA , I 2 -IB ,nl 2 ) -fi- (4.11) 

Currents in all the other portions of the ring can be calculated similarly. The partial current 
densities djp,nLu are obtained after integrating the local currents along the transverse y- 
direction. If djp,n is the current density in the n-th propagating mode in any segment of the 
system then the total current in that segment is given by 

P P P 

dj = E djp(s)= E E djp,~, (4.12) 
p----1 p----1 n----1 

where 'p' denotes the propagating mode in which the electrons are injected from the reservoir. 
We use scattering matrices at the two junctions and at the scatterer site, • to calculate 

all the amplitudes and then find out the total current density (djT), the current density in 
the upper arm (dju) as well as that in the lower arm (djL). Thus 

P P 

h 
p = l  n = l  

P P 

= _ )-; 
p = l  n = l  

(4.13) 

We study these currents as a function of the incident electron energies. 

4 . 1  r e s u l t s  a n d  d i s c u s s i o n s  

The circulating current density djc is the magnitude of the negative part of djv or djL as 
mentioned earlier. When dju is negative the direction of circulating electron current is an- 
ticlockwise (negative) and when djL is negative then it is clockwise (positive). A circulating 
current in a loop gives rise to an orbital magnetic moment (Ampere's law). By our con- 
vention, positive djc indicates an 'up' or positive magnetic moment whereas negative djc 
indicates a 'down' or negative one. We plot all the current densities in the units of inci- 
dent current density djin 2e = -~dE and all the energies in the units of ground state energy of 

7[-2~ 2 
the transverse modes, E0 - 2m~-7~w" In all our calculations we have considered 500 evanes- 
cent modes. Increasing the strength of the impurity potential causes the coupling of higher 
number of evanescent modes and hence for large impurity potential strengths one need to 
incorporate larger number of evanescent modes. 

We first study the case for which the system is weakly coupled with the leads (Fig. 4.2). 
This coupling can be controlled by changing the values of e appropriately. All the physical 
parameters are indicated in the figure caption. The upper and lower arms of the ring have 
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FICURE 4.2: Plot of the circulating current density djc/djin in the ring as a function of E/Eo 
of the electron. In the whole energy range, we have 1 to 10 propagating modes (corresponding 
energy-ranges are indicated by vertical dashed lines). The different system parameters are 11 = 3.5, 
12 -- 2.5, 13 = 4.0, W -- 1, 2meV/h 2 = 1, y~ = 0.21W, c = 0.2. 

different lengths. From the plot of the circulating currentdensi ty  vs. energy (Fig. 4.2) we 
observe that  there is current magnification of almost same magnitude with similar frequency 
of occurrence over the entire energy range. The total number of propagating modes in the 
lead incident on the ring vary throughout this energy scale from one to ten as indicated in 
Fig. 4.2. 

Number of propagating modes in the lead and the ring are same. Between different 
propagating modes there are several resonances around which current magnification takes 
place [39, 40]. These resonances approximately occur around Er h2 (2r~2 = ( ~ )  ~--L-/ , where Er 
are the energy eigenvalues of the isolated ring of length L. The small deviation of resonances 
from these values is due to multi-channel nature of our problem along with the impurity 
potential which causes mode mixing. When there are, say, ten propagating modes, to obtain 
total current in the upper arm we have to add hundred values of partial currents [Eq. 4.12] due 
to different modes. Though individual partial current density shows oscillatory behavior the 
magnitude of the total circulating current in multi-channel regime remains of the same order 
of magnitude as it is when only one mode is propagating in the system. This can be explicitly 
seen in Fig. 4.2 throughout the energy range with one to ten propagating modes. This clearly 
indicates that  current magnification effect is robust even in multi-channel systems despite the 
contributions from several propagating modes and mode mixing. To see the mode mixing and 
the cancellation effects we have considered the case where there are four propagating modes 
in Fig. 4.3. Hence to obtain total current in the upper arm we have to calculate sixteen partial 
currents [Eq.4.12]. In Fig. 4.3, for simplicity instead of considering sixteen partial currents we 
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FIGURE 4.3: Plots of different partial current densities dj~(S)u/dj~ n and the total current in the 
upper arm of the ring as a function of E/Eo.  The dotted curve gives djl(S)v/djin , the dashed curve 
gives dj2(S)v/djin, the dash-dotted curve gives dj3(S)v/dj~n , the long-dashed one is for dj4(s)tr/dji n 
and the solid one is for dju/djin. In the above energy range we have 4 propagating modes. The 
different system parameters are 11 = 3.5, 12 = 2.5, 13 --- 4.0, W -- 1, 2meV/h  2 = 1, Yi = 0.21W, 
e = 0.2. 

have p lo t ted  four values of current  densities djl (s) t,, dj2 (s) t~, dj3 (s) t,, dj4 (s) t~ and to ta l  current  

djv. Here dji(s)t I = ~_4 n=l dj~,n, i = 1, 2, 3, 4. dji,n is sum over part ial  current  densities in the  
four propaga t ing  modes  in the  upper  a rm when electron is incident in the i - th  propagat ing  
mode.  Total  current  in the  upper  a rm is given by djv = djl(s)t~ +dj2(s)t~ +dj3(s)t~ +dj4(s)t , .  
Negative currents  in this graph represents the existence of circulat ing current  in part ial  
current  densities. Each dj~(s)t, show oscillatory and complex pat tern .  The  to ta l  current  djv 
still exhibits negative par t  (current  magnification) in spite of cancel lat ion effects arising due 
to mode  mixing. 

To see in detail  the  na ture  of current  magnificat ion vis-a-vis to ta l  t ranspor t  current  
in lead we consider a case where there  is only one propagat ing mode  (Fig. 4.4(a)) and 
separately  another  case wherein number  of propagat ing modes are ten  (Fig. 4.4(b)). In these 
figures we have p lo t ted  the  total  t ranspor t  current  and circulat ing currents  as a function of 
Fermi energy wi th  the  other  parameters  as ment ioned  in figure caption.  We see a current  
magnif icat ion whenever  there  is a part ial  m in imum in the total  current  t ha t  flows th rough  
the  sys tem which in tu rn  is measured  at the leads. This phenomenon  of current  magnificat ion 
at Fano type  line-shapes of total  current  is consistent wi th  earlier observations seen in the 
case of one dimensional  system [39]. Though  from a first look in the range 1.8E0 < E < 
2.2E0 in Fig. 4.4(a) it appears  t ha t  we have current  magnificat ion near  a to ta l -current  
maximum,  a closer scan reveals tha t  there  is indeed a very sharp Fano-type asymmetr ic  
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FIGURE 4.4: P lo t  of  t he  c i rcula t ing cur ren t  djc/djin (do t ted  lines) and  the  to ta l  c u r r e n t  djT/djin 
(solid lines). B o t h  the  func t ions  are  p lo t ted  versus E / E o .  T h e  different  sy s t em p a r a m e t e r s  are  
11 = 3.5, 12 ---- 2.5, 13 = 4.0, W -- 1, 2 m e V / h  2 = 1, y~ = 0.21W, e = 0.2. 

maxima-minima line-shape at this point. When only one channel is propagating the total 
current is proportional to the transmission coefficient [5]. A closer look at these minima 
shows that we obtain current magnification of either sign around every maxima-minima pair 
in total current. In Ref. [39, 82, 83] the current magnification of a pure ID quantum ring 
having no impurity has been related to Fano resonance (asymmetric zero-pole structure) 
in the transmission coefficient. In multi-channel transmission Fano zero-pole line shape 
gets replaced by an asymmetric maximum-minimum line-shape [22]. We found this Fano 
type asymmetric maxima-minima line-shape at each energy point of current magnification 
shown in Fig. 4.2. At current magnification the presence of a quasi-bound state of circulating 
current in the ring gives rise to this Fano-type line-shape to the total current. The circulating 
current changes sign more sharply and shows stronger current magnification where Fano line- 
shape is sharper and narrower. This feature is somewhat equivalent to the classical parallel 
LCR resonant circuit in which the higher Q-values indicate higher current magnification and 
sharper minimum at resonant frequencies. These features remain intact for the whole energy 
scale even if there are more than one propagating modes contributing (see Fig. 4.4(b)). 

For a symmetric ring (11 + 12 = /3) we observe (Fig. 4.5) lesser occurrence-frequency 
of the current magnification throughout this same energy scale. This is understandable as 
in the absence of any impurity and magnetic field an asymmetric ID ring shows current 
magnification [39], meaning that asymmetry in length ratios of a ring favors this effect. 
Pareek et al. [40] have shown that for a ID ring one can have regions of incident energies where 
current magnification gets enhanced with the increase in the impurity potential strength. We 
investigate this effect for the case of our multi-channel ring. In order to compare with Ref. [40] 
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FIGURE 4.5: Plot  of circulating current  density djc/djin in the ring as a function of E/Eo of 
the  electron for 6 propagat ing modes. The solid curve is for ll = 3.5, 12 = 2.5, 13 = 4.0 while the  
d iamond shaped points  are for 11 -- 3.5, 12 = 1.5, 13 = 5.0. From figure it is clear tha t  current  
magnification great ly reduces for ring with equal length of upper  and lower arms. Other  sys tem 
parameters are W ---- I, Yi = 0.21W, 2meV/h 2 = 1 and e = 0.2. 

we have calculated the effects of potential using Griffith's boundary condition or coupling 
parameter c -- 4/9 at the junctions. In Fig. 4.6 and Fig. 4.7 we have shown the variation of 
the current magnification for two different peaks in the appropriate energy ranges. Fig. 4.6 is 
for single channel case while Fig. 4.7 is for two channel. From Fig. 4.6(a) and Fig. 4.7(a) we 
notice that the current magnification effect get enhanced with the increase in strength of the 
impurity potential while the opposite is true for the case considered in Fig. 4.7(b). A closer 
look at Fig. 4.6(b) reveals that peak in the negative part of the circulating current density first 
increases and then decreases as we vary continuously the strength of the impurity potential. 
Thus impurities in the system can either enhance or decrease the current magnification effect. 
The enhancement of the circulating current densities is a counter-intuitive effect, in the light 
of the fact that impurity generally degrades the transport current in the system. 

It might be interesting to note that a negative delta-function potential is capable of 
providing one bound state having energy ~ meV2/(2h2W2). Our choice of V is such that 
2meV/h 2 ~ i. This corresponds to a binding energy ~ 10-4eV when W ~ .2#m [89]. This 
binding energy or the ionization energy due to impurity, in general, should be much less 
than the free atomic binding energy (~ eV) due to the dielectric screening and the smaller 
electron effective mass [91] than the free electron mass. This criterion is indeed held by 
our choice of potential indicating it's feasibility. Moreover our choice of the length ratios 
(11 +/2) : 13 : W are similar to that used in experimental situations [43, 89]. We have checked 
that the general feature of occurrences of very closely spaced regions of current magnification 
of similar magnitudes in the whole energy window (Fig. 4.2) does not alter with change in 
each  of  t he  quan t i t i e s  11/12, (ll + 12)/13, yi/W, W/L  or 2meV/h 2 one a t  a t ime  keeping rest  
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FIGURE 4.6: Plots of circulating current dj~/djin versus incident energy E/Eo in the range 
of single mode propagation. Curves 1 ,2 ,3 ,4 , . . . ,  10 are for potential strengths 2meV/h 2 = 
0.5, 1.0, 1.5, 2.0,..- ,5.0 respectively. The other system parameters are 11 = 3.125, 12 -- 3.125, 
13 -- 3.75, W -- 1, y~ -- 0.21W, e = 4/9. 

of the parameters fixed. In particular, the shift in position of the defect potential does not 
change the properties of current magnification. In Fig. 4.8 we shift the impurity along the 
upper arm of the ring keeping its y-coordinate fixed and in Fig. 4.9 we shift the impurity 
along the width of the ring keeping its x-coordinate fixed. It is clear from that Fig. 4.8 
and Fig. 4.9 neither the magnitude nor the occurrence frequency of current magnification 
in energy scale depend on the position of impurity potential. But, as discussed earlier, the 
change in strength of the defect potential or the asymmetry of two arm-lengths may change 
the magnitudes and positions of current magnification in energy scale, keeping the general 
feature unaltered. As (11-F 12)/13 --+ 1 occurrence frequency of current magnification becomes 
smaller. For 2m~V/h 2 = 0 or y~/W -- •  the mode coupling constant Finn = 0 and 
the modes get decoupled and as expected, current magnification remaining robust becomes 
similar to single channel problem. Interestingly, staying within phase coherence length if we 
double the L / W  ratio, the amplitude of djc does not decrease while occurrence frequency 
becomes larger as the resonance spacings (AEr /Eo  ~ (W/L)  ~) become smaller. This is 
shown in Fig. 4.10. Doubling the L naturally means quadrupling the magnetic moment as it 
scales with area. It would be worthy to mention that  unlike current magnification, amplitude 
of persistent currents decreases as 1/L 2. 

Biittiker [87] has shown that  when the ring is threaded by a magnetic flux O, as the 
coupling goes towards the strong coupling regime (e --. 0.5) the amplitude of persistent 
current reduces due to increased dephasing. This is a quantitative change in persistent cur- 
rent due to broadening of energy levels with increasing coupling strength. To examine the 
effect of system-reservoir coupling strength on current magnification in multi-channel ring 
in absence of O, we have calculated circulating current for e = 0.48. We observe that  the 



4.1 RESULTS AND DISCUSSIONS 71 

2 

1.5 

0.5 

0 

-0.5 
4.039 

12 _'- ( b' ) 
.~ 6- 

o 

-12 

-18 

- ~ a ) '  ' ' 1' ' ' - - ' ~ '  '3  ' A  ' ' ' --] 

I , J L I , I , I I 
4.0425 4.046 4.0495 4.053 4.0565 4.06 

I I I ' I I ' I 

, t J I , I , I , , I , 

4.645 4.65 4.655 4.66 4.665 4.67 4,675 4.68 

E/E  o 

FIGURE 4.7: Plots of circulating current  djc/djin versus incident energy E/Eo  in the range 
of two mode  propagation. Curves 1 , 2 , 3 , 4 , . . . ,  10 represent potential  s t rengths 2meV/h  2 = 
0.5, 1.0, 1.5, 2 .0 , . . .  , 5.0 respectively. The other system parameters  are 11 -- 3.125, 12 = 3.125, 
13 -- 3.75, W = 1, Yi = 0.21W, e = 4/9. 

frequency of current magnification as well as the magnitude of circulating currents reduce 
significantly in the whole energy range (Fig. 4.11) compared to that observed in Fig. 4.2. 
This indicates that in QID coupling strength alters the nature of current magnification effect 
in a non-trivial manner. The total current magnification in the ring is due to a summation 
over current magnifications corresponding to each incident mode allowed for a given incident 
energy. As we increase the coupling strength e, we observe that the contribution to cur- 
rent magnification from electrons injected in each incident mode goes from a narrower and 
stronger to a broader and weaker shape with respect to the corresponding energies (Fig 4.12). 
The broader they get, the more cancellation of current magnification occurs due to overlap 
of different incident modes. In Fig. 4.13 we have shown contributions from first and second 
incident modes in the upper arm of the ring when only two modes are propagating. In this 
energy range we observe current magnification for e -- 0.2 (upper graph) but absence of 
current magnification for c = 0.48 (lower graph). From lower graph (e = 0.48) it is evident 
that though the contribution of current due to incident mode-I (dashed line) is negative 
and thus should give rise to current magnification, the contribution from incident mode-2 
(dotted line) cancels it off and we observe no net current magnification in this energy range. 
From the upper graph (e -- 0.2) it is clear that in the energy range where contribution 
of current due to incident mode-I (dashed line) is negative, the contribution from incident 
mode-2 (dotted line) is almost zero as the contribution to current magnification from each 
incident mode is very sharp for low e-values. Hence we obtain a net current magnification in 
this energy range for e = 0.2 though current magnification is absent for c = 0.48 in the same 
energy range. Thus system-reservoir coupling strength alters current magnification effect in 
a multi-channel mesoscopic ring not only quantitatively, but it also has a strong qualitative 
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FIGURE 4.8: Plot of circulating current density djc/dj~n in the ring as a function of E/Eo  of the 
electron for 6 propagating modes. The dotted curve is for 11 = 3.5, 12 = 2.5 while the solid one is 
for 11 = 0.5, 12 = 5.5. Other system parameters are 13 = 4.0, W = 1, Yi = 0.21W, 2meV/h 2 = 1 
and e = 0.2. 

effect. The stronger the coupling the weaker and lesser is the current magnification in any 
energy scale. As for energies where higher number of modes are propagating and number 
of cancellations of current magnification is also high we obtained even lesser current mag- 
nifications and their occurrence frequency in the energy axis are also reduced (Fig. 4.11). 
This effect is entirely due to the superposition of currents from all the different channels 
which is absent in purely 1D system. The non-trivial effect of system-reservoir coupling on 
the equilibrium currents in 1D quantum double ring system has  been discussed recently in 
Ref. [90]. 

We now consider the case of an attractive 5 function potential ( V < 0). We see in Fig. 
4.14 that  in the stronger coupling regime (e = 0.48) the amplitude of current magnification for 
attractive potential is lesser in comparison to the repulsive one (Fig. 4.11). The magnitudes 
and the positions of the current peaks are very sensitive to the details of some of the system 
parameters and they can not be predicted apriori.. Moreover, the current magnification effect 
is always absent at the quasi-bound state of the negative potential (Fig. 4.14). The energies 
of the quasi-bound states are marked by arrows in Fig. 4.14. These states are characterized 
by peaks in the density of states (DOS) and for further discussion on quasi-bound state see 
Ref. [21, 22, 60]. The presence of negative delta-function potential enhances DOS near this 
potential. This enhanced local DOS at the impurity site reduces the DOS of the propagating 
electrons, thereby reducing the current magnification. 

In Fig. 4.15 we have considered a special case and plotted the total transport current 
d e n s i t y  djT and circulating current density djc in the energy range 4.6E0 < E < 5.4Eo. In 
this energy range at the Fermi energy there are two propagating modes. The corresponding 
bound-state is at 5.1025E0. Around the bound-state there is an enhancement in scattering. 
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FIGURE 4.9: Plot of circulating current density djc/djin in the ring as a function of E/Eo of the 
electron for 6 propagating modes. The solid, dotted and dashed curves are for Yi = 0.5W, 0.21W, 0 
respectively. Other system parameters are ll = 3.5, 12 = 2.5, 13 -- 4.0, W = 1, Yi = 0.21W, 
2meV/h  2 = 1 and e = 0.2. 

The structure of the total transport current exhibits symmetric line shapes (like Breit-Wigner 
type symmetric resonances). Around these resonances we ,do observe current magnification. 
This special case shows that Fano type resonance structure in the total transport current is 
not a necessary criterion for the observation of current magnification effect. 

4.2 Possible Experiment  

We have seen that only for a certain but large number of parameter values, circulating 
currents appear in the ring. Such circulating currents will be associated with a magnetic 
moment that can be determined by a SQUID or a Hall magnetometer placed on above or 
below the ring. The magnetic moment will be jcA, where A is the area enclosed by the 
ring. jc will be related to djc by f ; ~  djc(E). When there is no circulating current (current 
in t h e  two arms flow in the same direction) there will be negligible magnetic moment.  We 
have seen in Fig. 4.2 and Fig. 4.10, regions of current magnification occur very close to each 
other  in an apparent ly  random order and by tuning any one parameter  (Fermi energy or 
defect s t rength)while  keeping other parameters  fixed there is a high probabi l i ty  of observing 
current magnification. The parameters to tune are #L, PR and the strength of the defect. 
Instead of tuning #L, PR one can fix them and chose any Fermi energy of the system by 
applying an electric field perpendicular to the geometry by using some overall gate. In an 
experimental situation the tip of an STM can be used to create a defect of any desired 
strength in one arm by depleting the electron gas under the tip. Alternatively, a defect of 
desired strength can be produced by fabricating a small gate on top of one of the arms of 
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FIGURE 4.10: Plots  of circulat ing current  djc/djin versus incident  energy E/Eo. In this regime 
six modes  are propagat ing.  The  do t ted  curve is for L / W  = 20 while solid one is for L / W  -- 10. 
The  o ther  sys tem parameters  are W = 1, ll : 12 : 13 -- 7 : 5 : 8, Yi -- 0.21W, 2meV/h 2 = 1.0 and 
e=0.2.  

the ring, and applying a voltage on it perpendicular to the plane of the ring. We have taken 
some typical cases of rings fabricated in the laboratory in recent experiments such as that 
in ref. [43, 89]. These rings have L/W in between that considered in Fig. 4.2, Fig. 4.10. In 
experiments the rings that are mainly used are made of GaAs where effective electron mass 
is 0.067m* [91], m* being the electron mass. Using this the peaks in the circulating current 
jc come out to be of the same order of magnitude as that of the zero temperature persistent 
cur ren t .  For  example ,  i n t e g r a t i n g  djc over an  in terva l  of PL : 43.04E0 < E < 43.32E0 = #R 
w i t h  /ZL -- #R = .28E0 ~ 39 • 1 0 - 6 e V  ( ~  AE~)  a t  t he  m a r k e d  ($) p e a k  in Fig.  4.2 we f ind 
jc ~ 3 . 6 9 n A  for W -- .2#m [89] a n d  t he  c o r r e s p o n d i n g  o rb i t a l  m a g n e t i c  m o m e n t  is ~ 127#B 
whe re  #B ---- B o h r  m a g n e t o n .  T h i s  m a g n e t i c  m o m e n t  r e m a i n s  of t he  s a m e  o rde r  of  m a g n i t u d e  
a t  all p e a k s  of  Fig.  4.2. So w i t h  p resen t  day  d e t e c t o r s  like S Q U I D s  a n d  Hal l  m a g n e t o m e t e r s  
one  can  def in i t e ly  d e t e c t  t he  m a g n e t i c  m o m e n t s  due  to  cu r r en t  magn i f i ca t ion .  

4.3  c o n c l u s i o n  

In conclusion, we have shown that, even in the nmlti-channel case, for a system weakly cou- 
pled with the reservoirs the current magnification in the presence of transport current is a 
robust effect. The magnitude of the circulating current can be very large even in presence of 
several propagating modes despite mode mixing and cancellation effects as discussed in the 
text. The circulating currents are mostly associated with Fano resonances in total transport 
current. However, there are, sometimes, exception to this rule, namely, current magnifica- 
tion may occur around Breit-Wigner type symmetric resonances in the total current. Unlike 
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FIGURE 4.11: The circulating current djc/djin versus E/Eo is plotted for repulsive potential 
2rneV/h 2 = 1 in strong coupling regime c = 0.48. The different system parameters are 11 = 3.5, 
12 = 2.5, 13 = 4.0, W = 1, Yi = 0.21W. 

purely one dimensional systems Fano resonance does not exhibit zero in the total transmis- 
sion, however, it is characterized by a sharp minimum along with asymmetric line shape in 
the total  current. Impurity strength can enhance or suppress current magnification and is 
sensitively dependent on system parameters. We have established that  the system-reservoir 
coupling strength controls the current magnification qualitatively. As the coupling becomes 
stronger the current magnification becomes weaker and its occurrence in the given energy 
range reduces. Thus system reservoir coupling parameter controls the transport  properties 
in a very interesting manner. It is interesting to note that  persistent currents in a ballistic 
mesoscopic ring in the presence of magnetic flux increases with the Fermi energy (or the 
number of channels) [34, 87, 92, 93]. In contrast the magnitude of the current magnifica- 
t i o n  is independent of the total number of propagating channels. It may be emphasized 
tha t  persistent currents and the circulating currents due to current magnification are two 
independent distinct phenomena [41, 94]. 
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Chapter 5 

Phase time for tunneling particle 

5.1 I n t r o d u c t i o n  

Quantum tunneling, where a particle has finite probability to penetrate a classically for- 
bidden region is an important feature of wave mechanics. Invention of the tunnel diode 
[95], the scanning tunneling microscope [96] etc. made it useful from a technological point 
of view. In 1932 MacColl [97] pointed out that tunneling is not only characterized by a 
tunneling probability but also by a time the tunneling particle takes to traverse the barrier. 
There is considerable interest on the question of time spent by a particle in a given region of 
space [58, 1057 ]. The recent development of nanotechnology brought new urgency to study 
the tunneling time as it is directly related to the maximum attainable speed of nanoscale 
electronic devices. In addition recent experimental results claiming superluminal tunneling 
speeds for photons [99, i00] boost the urgency. In a number of numerical [i01], experimental 
[99, 102] and analytical study of quantum tunneling processes, various definitions of tunnel- 
ing times have been investigated. These different time scales are based on various different 
operational definitions and physical interpretations. Till date there is no clear consensus 
about the existence of a simple expression for this time as there is no hermitian operator 
associated with it [58]. Furthermore, a corpuscular picture of tunneling is very hard to be 
realized due to the lack of a direct classical limit for the tunneling particle's trajectories 
and velocities. Among the various time scales, 'dwell time' [57] which gives the duration 
of a particle's stay in the barrier region regardless of how it escapes can be calculated as 
the total probability of the particle inside the barrier divided by the incident probability 
current. The 'conditional sojourn time' [98] gives the time of sojourn (dwell) in the spatial 
region of interest for some given conditions of scattering. It can be defined meaningfully 
by a 'clock' which is basically an extra degree of freedom that co-evolves with the sojourn- 
ing particle. Bi~ttiker and Landauer proposed [103] that one should study 'tunneling time' 
using the transmission coefficient through a static barrier of interest, supplemented by a 
small oscillatory perturbation. In another approach, the traversal time, is measured by the 
spin precession of the tunneling particle in a uniform infinitesimal magnetic field. This is 
called local 'Larmor time' [57, 104]. A large number of researchers interpret the 'phase 
time' [33, 105, 106] as the temporal delay of a transmitted wave packet. This time is usu- 
ally taken as the difference between the time at which the peak of 'the transmitted packet 

79 
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leaves the barrier and the time at which the peak of the incident quasi-monochromatic wave 
packet arrives at the barrier. Within the stationary phase approximation the phase time can 
be calculated from the energy derivative of the 'phase shift' in the transmitted or reflected 
amplitudes. Biittiker-Landauer [103] raised objection that the peak is not a reliable charac- 
teristic of packets distorted during the tunneling process. In contrast to 'dwell time' which 
can be defined locally, the 'phase time' is essentially asymptotic in character [107]. The 
'phase time' statistics is intimately connected with dynamic admittance of micro-structures 
[108]. This 'phase time' is also directl:~ related to the density of states [45]. The universality 
of 'phase time' distributions in random and chaotic systems has already been established 
earlier [109]. In the case of 'not too opaque' barriers, the tunneling time evaluated either as 
a simple 'phase time' [105] or calculated through the analysis of the wave packet behaviour 
[I I0] becomes independent of the barrier width. This phenomenon is termed as the Hartman 
effect [106, II0, iii]. This implies that for sufficiently large barriers the effective velocity 
of the particle can become arbitrarily large, even larger than the light speed in the vacuum 
(superluminal effect). Though this interpretation is a little far fetched for non-relativistic 
Schrdinger equation as velocity of light plays no role in it, this effect has been established 
even in relativistic quantum mechanics. 

Though experiments with electrons for verifying this prediction are yet to be done, the 
formal identity between the SchrSdinger equation and the Helmholtz equation for electro- 
magnetic wave enables one to correlate the results for electromagnetic and microwaves to 
that for electrons. Photonic experiments show that electromagnetic pulses travel with group 
velocities in excess of the speed of light in vacuum as they tunnel through a constriction 
in a waveguide [i00]. Experiments with photonic band-gap structures clearly demonstrate 
that 'tunneling photons' indeed travel with superluminal group velocities [99]. Their mea- 
sured tunneling time is practically obtained by comparing the two peaks of the incident and 
transmitted wave packets. Thus all these experiments directly or indirectly confirmed the 
occurrence of Hartman effect without violating 'Einstein causality' i.e., the signal velocity or 
the information transfer velocity is always bounded by the velocity of light. It should also be 
noted that in the photonic tunneling time experiments by Nimtz et al., based on frustrated 
total internal reflection, the velocity of the half-width of the pulse (not the peak of the wave 
packet) is monitored. The velocity of the half-width is found to be superluminal (according 
to theory and experiment). Relation of this result to the causality principle is discussed 
in the references [112, 113]. The 'Hartman effect' has been extensively studied both for 
nonrelativistic (SchrSdinger equation) and relativistic (Dirac equation) [58, i00, 105] cases. 
Recently Winful [114] showed that the saturation of phase time is a direct consequence of 
saturation of integrated probability density under the barrier (equivalently in the electro- 
magnetic waves saturation of stored energy). The Hartman effect has been found in one 
dimensional barrier tunneling [I I0] as well as for cases beyond one dimension as in tunneling 
through mesoscopic rings in presence of Aharonov-Bohm flux [25]. In the current note we 
extend the study of phase times for branched networks of quantum wires. 

In section 5.2 we study the Hartman effect on a quantum ring geometry i.e. beyond one 
dimension and in the presence of Aharonov-Bohm (AB-) flux [21, 22]. Here due to non-zero 
AB-flux, electron, though traveling in sub-barrier regime, picks up one phase factor inside 
the ring. Our results show that even the 'phase time' for a given incident energy becomes 
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independent of the barrier thickness as well as the magnitude of the flux. These results 
confirm 'Hartman effect' in quantum ring even in presence of AB-flux. We have extended 
[21] this effect for a circular ring having two potential barriers with an intermediate free space 
where a quantum particle can propagate. Interestingly, the saturated phase time becomes 
independent of the intermediate free length (in the large length limit of the barriers) in the 
off resonant case. This result can be interpreted as a "space collapse or space destroyer" 
[115]. Even though in the intermediate free space (can be treated as potential well, due 
to two barriers at the two ends of it) inside the ring electronic wave can travel as a free 
propagating mode (and not as a evanescent mode), surprisingly the saturated delay time is 
independent of the length of the well (as if it does not count). In section 5.3 we shall present 
phase times [27] for branched networks of quantum wires which can readily be realized in 
optical wave propagation experiments. This geometry allows us to check other nonlocality 
effect such as tuning the saturation value of 'phase time' and consequently the superluminal 
speed in one branch by changing barrier strength or width in any other branch, spatially 
separated from the former. 

5.2 H a r t m a n  effect  in p r e s e n c e  of  A B - f l u x  

We study the scattering problem across a quantum ring connected to one or two ideal semi 
infinite leads (as schematized in Fig. 5.1). Such ring geometry systems are extensively 

V1 

I ~ '~  IV 
V=O j ~ ~ J 2  V=O 

V2 

FIGURE 5.1: Schematic diagram of a ring connected to two leads in the presence of an Aharanov- 
Bohm flux, r 

investigated in mesoscopic physics in analyzing normal state Aharanov-Bohm effect which 
has been observed experimentally [16, 17]. A magnetic field is applied perpendicular to the 
plane of the ring. Due to this a magnetic flux r as shown in Fig. 5.1 is enclosed by the ring. 
There is a finite quantum mechanical potential of strength V inside the ring while that in the 
connecting leads are set to be zero. We focus on a situation wherein the incident electrons 
have an energy E less than V. The impinging electrons in this sub-barrier regime travels 
as an evanescent mode/wave throughout the circumference of the ring and the transmission 
or the conductance involve contributions from both the Aharanov-Bohm effect as well as 
quantum tunneling. Here we are interested in a single channel case where the Fermi energy 
lies in the lowest sub-band. To excite the evanescent modes in the ring we have to make the 
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width of the ring much less than that of the connecting wires. The electrons occupying the 
lowest sub-band in the connecting wire on entering the ring experience a higher barrier (due 
to higher quantum zero point energy) and propagate in the ring as evanescent mode. The 
transmission or conductance across such systems has been studied in detail [116, 117]. An 
analysis of the phase time for different ring systems is carried out in the following subsections. 

5.2.1 Ring connected  with two leads 

We approach the scattering problem using the quantum wave guide theory [15, 116] for the 
system shown in Fig. 5.1. In the stationary case the incoming particles are represented by a 
plane wave e ikx of unit amplitude. The effective mass of the propagating particle is m and 
the energy is E -- h2k2/2m where k is the wave vector corresponding to the free particle. 
The wave function in different regions (which are solutions of the Schr6dinger equation) in 
the absence of magnetic flux are given below 

r = e ikx~ + r e  -~kx~ ( in region I ) (5.1) 

r  = A l e  ~q~x~ + Bl  e -iq~xl ( in region II ) (5.2) 

r = A2 e ~q2x~ + B2e - ~ q ~  ( in region III) (5.3) 

r = t e  ikx3 ( in region IV) (5.4) 

wi th  k being the wave-vector of electrons in the leads, ql = v / 2 m ( E  - V~) /h  ~ is the wave- 
vector for propagat ing  electrons in the  barrier of s t rength  V1 on the upper  arm while q2 = 
v / 2 m ( E  - V2) /h  2 is t ha t  in the  V2 on the lower arm of the ring. The origin of the co-ordinates 
of x0 and xl  is assumed to be at J1 and tha t  for x2 and x3 are at J2. At J1, x2 = lb2, at J2, 
x l  = lbl, where lbl and lb2 are the length of the two barriers on the upper and lower arms 
of the  ring respectively. Total  circumference of the ring is L = Ibl + lb2. 

We use Griffith's boundary  conditions [52] 

r  = r = r (5.5) 

and 
ar + + = 0 ,  (5.6) 

Oxo 0xl J~ Ox2 
at  the junct ion  J1. All the  derivatives are taken either outward or inward from the junc- 
t ion [15]. Similar boundary  conditions hold for J2 as well. 

~1(/bl) -- ~b2(0)= ~3(0) (5.7) 

0r J2 0 3(x3) and c9r (xl) + + = 0, (5.8) 
Oxl Ox2 Ox3 

We choose a gauge for the vector potential in which the magnetic field appears only 
in the boundary conditions rather than explicitly in the Hamiltonian [15, 16]. Thus the 
electrons propagating clockwise and anticlockwise will pick up opposite phases. The electrons 
propagating in the clockwise direction from J1 will pick up phases i c~i at J2 and electrons 
propagating anticlockwise from J2 to J1 in the upper arm pick up a phase -i c~i at J1. 
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Similarly, an electron picks up a phase i ae at J1 moving in the clockwise direction from 
Je in the lower arm and - i  ae at Je when moving anticlockwise from J1 in the lower arm 
of the ring. The total  phase around the ring is a l  + ae = 2 ~r r162 where r and r are 
the magnetic flux and flux quantum, respectively: Hence from above mentioned boundary 
conditions we get for tunneling particle 

at J1 : 1 + r - A1 - B1 e x p ( - i  OL1) = O, 

A2 exp(-h2 lbe) exp(iae) + B2 exp(h2 lbe) - 1 - r = O, 

i k ( 1  - r) + hi d l  - hi B1 exp ( - i  a l )  

- he Ae exp(-he/be)  exp(i ae) + he Be exp(he/b~) = 0, 

at J e :  A1 e x p ( - h l  lbl) exp(ic~l) + B1 exp(hl Ibl) - t = O, 

Ae + Be exp(-ic~2) - t = 0, 

i k t  + hi A1 e x p ( - h l  Ibl) exp(i a l )  - hi B1 exp(hl Ibl) 

- e;e Ae + he B2 exp ( - i  ae) = 0, 

(5.9) 
(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

with h 1 = ~ r  1 - E ) / h  2 and h2 = v /2m(V2 - E ) / h  2 being the imaginary wave vectors, 
in presence of rectangular barriers of strength 1/1 and 1/2 respectively, inside the ring. 

Solving Eqs. (5.9) - (5.14) for an electron traversing the ring with two barriers of equal 
strength V1 = 1/2 = V along its entire circumference, as shown in Fig. 5.1, we obtain an 
analytical expression for the complex transmission amplitude t as 

4 i k h  exp( ia l )  [P exp(h/bl) + Q e  ~Ibe] 
t = (5.15) 

P Q k e +  2 i k h S _  + he; 2 [exp(hL)(1  + e x p ( n i l r ~ ) )  - S+] 

where 

A 
P = e x p ( 2 i z c ~ ) ( e x p ( 2 t ~ l b e ) -  1 ) ,  

r t ~  

Q = (exp(2h/bl ) - -  1) ,  

S+ = e x p ( 2 i ~ ) ( e x p ( 2 t ~ L )  • 1) , 
/ 

90 

with h being the imaginary wave vector for the evanescent wave inside the barriers. Once t 
is known, the transmission phase time can be calculated from the energy derivative of the 

phase of the transmission amplitude 

h Oarg[t] 10arg[t]  (5.16) 
~-t = OE v Ok ' 

where, v = h k / m  is the velocity of the free particle. In what follows, let us set h -- 1 
and 2m = 1. We express all the physical quantities in dimensionless units i.e. the barrier 
strength in unit of incident energy E (V  - V / E ) ,  barrier widths in units of inverse wave 
vector k -1 (lbn - k lbn), where k = v ~  and 'transmission phase time' ~-t in units of inverse 
of incident energy E (Tt -- E ~'t). We now proceed to analyze the behaviour of 'transmission 
phase time' as a function of various physical parameters for different ring systems. 
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FIGURE 5.2: Plot of Tt versus L for three different values of E / V  with r = 0 and Ibl = lb2. 

In Fig. 5.2 we plot phase t ime Tt as a function of length L of the ring for different values 
of incident energies in the absence of magnet ic  flux r for the case where the two a rm lengths 
lbl and Ib2 are equal. From the figure we clearly see tha t  ~-t evolves as a function of length L 
and asymptot ica l ly  sa tura tes  to a value (~-t~) which is independent  of L thus confirming the  
H a r t m a n  effect. The  sa tura t ion  value, 7t,, increases with  increasing incident energy and the  
corresponding Tt~ values for E = 0.2V, 0.6V and 0.8V are 1.47, 1.86 and 3.13 respectively. 
From Fig. 5.2, note  that ,  depending  upon the incident electron energy, ~-t is a monotonic  or 
non-monotonic  funct ion of L in the small length limit. 
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FIGURE 5.3: Plot of ~-t versus L for different arm length ratios. The ratio lbl : lb2 for the solid, 
dotted, dashed and dot-dashed curves are 1 : 1, 3 : 2, 4 : 1, 9 : i respectively. Inset shows Tts versus 
E / V  for L ---- 30 with equal arm length ratios. 
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In Fig. 5.3 we plot the transmission phase time versus L for a particular energy, E = 0.2V, 
in the absence of magnetic flux r but for different length ratios of the upper and lower arms. 
We observe that  the saturation value of the phase time is independent of the arm length 
ratios for a given energy as one can anticipate, in the inset of Fig. 5.3 we plot Tt8 versus 
E / V  for r = 0, L = 30 with equal upper and lower arm lengths. Plots with different arm 
length ratios (lbl : lb2) with different r in the asymptotic limit were found to overlap with 
the above curve in the entire energy regime. Analytically, in the large L (> l / a )  limit, the 
transmission phase time ~'t becomes independent of L and the magnetic flux (in accordance 
with Har tman effect) and is given by 

4a3 + 5k2a  + (k4//~) (5.17) 
Tt8 = 2 k ( ( 2 a  2 _ (k2/2))2 + 4 k 2 a 2  ). 
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FIGURE 5.4: Plot of Tt versus r for different L. The solid, dotted, dashed and dot-dashed curves 
are for L -- 10, 10.5, 12.5, 30 respectively with equal upper and lower arm-lengths. 

In Fig. 5.4 we have plotted transmission phase time as a function of flux r for various 
values of circumference of the ring with Ibl -- Ib2 and E = 0.2V. We observe that Tt is flux 
periodic with periodicity r This is consistent with the fact that all the physical properties 
in presence of Aharonov-Bohm flux across the ring must be periodic function of flux with 
a period r [5, 17, 45]. However, we observe that as we increase the length of the ring the 
visibility or the magnitude of Aharonov-Bohm oscillations in ~'t decreases. Consequently in 
the large length limit the visibility of these oscillations vanishes as can be seen from Fig. 5.4. 
The constant value of ~'t thus obtained in the presence of flux is identical to 7ts (1.4698) 
in the absence of flux (see Fig. 5.2) in the large length regime. This numerically obtained 
value of "rts is in perfect agreement with the analytical expression for wts, Eq. (5.17), given 
above. This result clearly indicates that the delay time in the presence of opaque barrier 
becomes not only independent of length of the circumference but also is independent of the 
AB-flux thereby observing the Hartman effect in the presence of AB-flux. We also find that 
the behaviour of reflection delay time is same as transmission delay time as anticipated from 
general symmetry laws from the simple geometric structure considered in the present case. 
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5.2 .2  R i n g  c o n n e c t e d  w i t h  one  lead 

(a) 

I 

V = 0  

V;zO 

(b) 

I 

V = 0  

V ~ V = 0  

v e o  

FIGURE 5.5: Schematic diagram of a circular ring connected to semi infinite lead. 

Now we discuss the 'reflection phase time' for the above quantum ring but connected to 
a single wire of semi-infinite length and in presence of AB-flux as shown in Fig 5.5(a). Here 
also we focus on the tunneling of an electron in the sub-barrier regime. We analyze the phase 
time of the reflected wave. It is well known that in one dimensional scattering/tunneling 
problem, reflection involves prompt part as well as the multiple scattering arising from the 
edges of the scattering center (say, for the square barrier). However, transmission across the 
scattering region does not have the prompt part but has only contributions from multiple 
scattering. We would like to emphasize here the fact that the unitarity of the scattering 
matrix forces transmission and reflection phase times to coincide for a one dimensional 
tunneling problem (to be identical in magnitude) [as we see in section 2.5], even though 
reflection has a prompt part as mentioned above. For symmetric barrier the phase of the 
reflection and the transmission amplitudes differ by a constant phase 7r/2 [see in section 2.5]. 
Hence, the information we get does not depend on whether we study the phase time in the 
reflection or in the transmission mode. Thus in the present section we have chosen a simple 
and generalized geometry where we can analytically study the phase time in a reflection 
mode and in presence of Aharonov-Bohm flux. We show that this phase time in the opaque 
barrier regime becomes independent of the length of the circumference of the ring and the 
magnitude of the AB-flux. We have also studied this effect by including an additional 
potential well between two barriers in the circular ring (Fig. 5.5 (b)). Interestingly, the 
saturated reflection phase time becomes independent of the length of the potential well (i n 
the large length limit) for energy away from resonances. Inside the potential well the electron 
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travels as a free wave. Increasing or decreasing the free path (length of the well) does not 
alter the saturated reflection phase time through the system. It seems as if electronic wave 
does not count the free space in between two barriers. This result is regarded as a "space 
collapse" or "space destroyer" [115]. 

We use the same quantum wave guide theory [15, 116] discussed above to get the 
reflection phase time for the system shown in Fig. 5.5(b). The wave functions in different 
regions are 

r = e ikx~ + re -ik~~ ( in region I ) (5.18) 

r = A1 e -~lx~ + ~1  et~lXl ( in region II ) (5.19) 

r = Ce  ~k~ + De  - i k ~  ( in region III) (5.20) 

~2(x2) = A2e  ~2~2 + Bae ~ 2  ( in region IV) (5.21) 

with k being the wave-vector of electrons in the lead and in the intermediate free space 
between two barriers inside the ring. ~1 = V/2m(V1 - E ) / h  2 and ~ = v/2rn(V2 - E ) / h  2 are 
the imaginary wave-vectors respectively for tunneling electrons in the barriers of strength V1 
and V9 inside the ring. The origin of the co-ordinates of x0 and Xl is assumed to be at J1 
and that  for x~ and x2 are at P1 and P2 respectively. At P1, xl = Ibl, at P2, x~ = w and at 
J1, x2 = Ib2, where lbl and lb2 are the length of the two barriers separated by a well region 
of length w inside the r ing.  Total circumference of the ring is L = Ibl + lb2 + w. 

In presence of the AB-flux, following the same method described above, the boundary 
conditions for the current system (shown in Fig. 5.5(b)) become 

l + r - A 1 - B l e x p ( - i a l )  = 0 ,  

A2 exp(- 2 Ib ) exp(i  ) + B2 exp(   Ib ) - 1 - r = 0,  
ik(1 - r )  + tg I (A1 - B 1  exp( - - i  oq)) 

- ~2 A2 exp(-~;2 Ib2) exp(i a2) - ~2 B2 exp(~2 lb2) = O, 

d l  exp ( -~ l  lbl) exp[i al] + B1 exp(~l Ibl) 

- C - D exp ( - i  a~o) = 0, 

t~l n l  exp(- t~ l  lbl) exp(i o11) - t~l B1 exp(t~l lbl) 
+ i k C - i k D exp(-ia~o) = 0, 

c exp(ik ) exp(i  ) + D exp(-ik ) 
- A 2  - B2 exp(- iag)  = 0, 

i k C  e x p ( i k w ) -  i k D  e x p ( - i k w )  exp(-ia~o) 

+ he A2 - ~2 B2 exp ( - i  a2) = 0, 

(5.22) 
(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

where i al ,  i (al  + aw) are the phases picked up respectively at P1 and P2 by the electron 
traveling clockwise from J1 and i (al  + a~ + a2) is the phase picked up by the same electron 
at J1 after traversing once along the ring. The total phase around the ring becomes a l  + 

a ~  + a2 = 2 ~ r 1 6 2  
Solving Eqs. (5.22)- (5.28) for a ring system with a rectangular barrier of strength V along 

its entire circumference (Fig. 5.5(a)) we obtain an analytical expression for the reflection 
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amplitude as 
- t q  (2 cos(a) - exp(kL)) + i k exp(kL) 

r = (5.29) 
t~l (2 cos(a) - exp(kL)) + i k exp(kL) ' 

where a = 31 + a~  + 32. After knowing r, the 'reflection phase t ime'  ~-~ can be calculated 
from the energy derivative of its phase [33, 105] as 

OArg[r] 
Tr - OE (5.30) 
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FIGURE 5.6: In absence of magnetic flux (i.e. r =0 ), for a ring with a barrier of strength 
V throughout its circumference, the reflection phase time "Jr is plotted as a function of ring's 
circumference L. The solid, dotted, dashed and dash-dotted curves are for V -- 1.25, 1.5, 3, 5 
respectively. Incident energy is set to be E -- 1. In the inset the saturated value of phase time ~-r s 
is plotted as a function of the barrier's strength for same E. 

We now proceed to analyze the behavior of wr as a function of various physical parameters 
for different ring systems. In the similar fashion, described above, here also we express all 
the physical quantities in dimensionless units. Thus the reflection phase time Tr is expressed 
in units of inverse of incident energy E (wr --- E wr). After straight forward algebra in the 
large length (L) limit and in absence of magnetic flux, we obtain an analytical expression 
for the saturated reflection phase time (using Eq. (5.29) in Eq. (5.30)), which is given by, 

1 k 
k---~ + ~ 

(2 + (5.31) 

with ~ being the  imaginary wave vector of the electron inside the barrier of s t rength V and 
width  lb (= L). 
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First we take up a ring system with a single barrier along the circumference of the 
ring. For a tunneling particle having energy less than the barrier's strength we find out the 
reflection phase time 7r as a function of barrier's width L which in turn is the circumference 
of the ring. We see (Fig. 5.6) that in absence of magnetic flux, wr evolves as a function of 
L and asymptotically saturates to a value 7rs which is independent of L thus confirming 
the 'Hartman effect'. From Fig. 5.6 it is clear that the saturation value increases with the 
decreasing barrier-strength. In the inset of Fig. 5.6, we have plotted 7r8 as a function of 
barrier-strength. From this we can see that for electrons with incident energy close to the 
barrier-strength the value of T~ o is Quite large. 
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FIGURE 5.7: For a ring with a barrier of s t rength  V lies throughout  its circumference, the 
sa tura ted  phase t ime Tr s is plotted as a function of magnetic  flux r The  solid, dashed and dot ted  
curves are for L -- 6, 7, 9 respectively. Other  system parameters  are V -- 5, E = 1. 

To see the effect of magnetic flux on 'Hartman effect', we consider the same system 
but in presence of Aharonov-Bohm (AB) flux. We find out, for the tunneling particle, the 
reflection phase time as a function of embedded magnetic flux for different lengths L of the 
barrier covering the ring's circumference. We have chosen the lengths such that in absence 
of the 'AB-flux', for a given system (i.e. for known E and V) the reflection phase time 
T r gets saturated in these lengths. From Fig. 5.7 we see that fr as a function of r shows 
AB-oscillations with an average value which is the saturation value 7rs for the same system 
in absence of AB-flux. Further observe that (Fig. 5.7) wr is flUX periodic with periodicity r 
This is consistent with the fact that all the physical properties in presence of AB-flux across 
the ring must be periodic function of the flux with a period r [5, 17, 108]. However, we 
see that as we increase L the magnitude of AB-oscillation in wr decreases. Consequently in 
the large length limit the visibility vanishes. This clearly establishes 'Hartman effect' even 
in presence of AB-flux. The constant value of Tr thus obtained in the presence of flux is 
identical to wrs (0.294115) in the absence of flux (see Fig. 5.7) in the large length regime 
and its magnitude is given by Eq. (5.31). This result clearly indicates that the reflection 
phase time in the presence of opaque barrier becomes not only independent of length of the 
circumference but also is independent of the AB-flux thereby observing the 'Hartman effect' 
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in the presence of AB-flux. 
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FIGURE 5.8: In absence of magnetic  flux ( i .e .  r =0  ), for a ring with two barriers of s t rength  111 
and 1/~ separated by an intermediate  well region, the reflection phase t ime Tr is plotted as a function 
of ring's circumference L for different width w of the well. The  dashed-dotted,  solid, do t ted  and 
dashed curves are for w -- 0, 1, 5, 10. Other  system parameters  are lb2 = 5, 1/1 = V2 -- 2 and E = 1. 

Now we consider the ring system with the ring having two successive barriers separated 
by an intermediate free space as shown in Fig. 5.5(b). In absence of magnetic flux, we see 
the effect of 'quantum well' on the reflection phase time ~-r. In Fig. 5.8 ~'r is plotted as a 
function of one of the barrier's length (say Ibl) while other barrier's length is fixed (Ib2 = 5) 
and for few different values of length of the well. Here, the fixed value of the barrier's length 
Ib2 is chosen in such a way that in absence of the well region the reflection phase time reaches 
saturation at this length. From Fig. 5.8 we see that for all parameter values of well's width, 
the saturation value of reflection phase time Tr s is same and it is equal to what we obtained in 
absence of the well in the ring system. Thus the saturated phase time becomes independent 
of the width of the well (in the long length limit) for the energy away from the resonances. 
This is as if the effective velocity of the electron in the well becomes infinite or equivalently 
length of the well does not count (space collapse or space destroyer) while traversing the 
ring. 

Finally consider a similar system as that shown in Fig. 5.5(b). Here we see the effect of 
resonances, present in the ring system with a well, on the saturated reflection phase time 
Trs. For the system described above with I/i = I/2 -- 2, Ib2 = 5, r -- 0 we have plotted ~-rs, 
for the electrons with incident energy E : I, as a function of the well's width for different 
parameter values Ibl in Fig. 5.9. We see that the resonances which have Lorentzian shape 
become sharper and narrower as the width of the barrier Ibl becomes large. For very large Ibl 
the resonances are very hard to detect. It should be noted that as we increase the length of 
the well for fixed E for particular barrier lengths incident energy E coincides with resonances 
(or resonant states) in the well (which arise due to constructive interference due to multiple 
scatterings inside the well). For these values of lengths we observe sharp rise in the saturated 
delay time and its magnitude depends on the length of the well. It is worth to mention that 
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FIGURE 5.9: In absence of magnet ic  flux (i.e. r =0 ), for a ring wi th  two barriers of s t reng th  
V1 and V2 separa ted  by an in termedia te  well region, the  sa tu ra ted  phase t ime Trs is p lo t ted  as a 
funct ion of r ing's  circumference L for different wid th  Ibl of the  barrier.  T h e  solid and dashed curves 
are for lbl -- 2.75, 3 respectively. Other  systems parameters  are lb2 -- 5, V1 -- V2 = 2 and E -- 1. 

a w a y  f o r m  t h e  r e s o n a n c e  t h e  va lue  of  ~-r8 is i n d e p e n d e n t  of  t he  l e n g t h  of  t h e  well (see Fig .5 .8)  
a n d  d e p e n d s  on ly  on  t h e  ba r r i e r  s t r e n g t h .  

5.3 H a r t m a n  effect and non- local i ty  in q u a n t u m  net-  
works  

Hartman effect is itself one of the manifestations of quantum non-locality [99]. Here we 
study the effect for various quantum mechanical networks having potential barriers in its 
arms. In such systems it is possible to control the 'super arrival' time in one of the arms by 
changing parameters on another, spatially separated from it. This is yet another quantum 
nonlocal effect. Negative time delays (time advancement) and 'ultra Hartman effect' with 
negative saturation times have been observed ,in some parameter regimes. 

As a model system, we choose a network of thin wires. The width of these wires are so 
narrow that only the motion along the length of the wires is of interest (a single channel 
case). The motion in the perpendicular direction is frozen in the lowest transverse sub-band. 
In a three-port Y-branch circuit (Fig. 5.10) two side branches of quantum wire $I and $2 
are connected to a 'base' arm So at the junction J. In general one can have N(_> 2) such 
side branches connected to the 'base' wire. 

We study the scattering problem across a network geometry as presented schematically in 
Fig. 5.10. Such geometries are important from the point of view of basic science due to their 
properties of tunneling and interference [16, 17] as well as in applications such as wiring in 
nano-structures. In particular, the Y-junction carbon nanotubes are in extensive studies and 



92 PHASE TIME for TUNNELING PARTICLE 

So 

J ~ ~ 2 "  

FIGURE 5.10: Schematic diagram of a Y-junction or three-way splitter. 

they show various interesting properties like asymmetric current voltage characteristics [I 18]. 
In our system of interest there are finite quantum mechanical potential barriers of strength 
Vn and width Ibn in the n-th side branch. The number of side branches can vary from 
n -- 2, 3,... N. We focus on a situation wherein the incident electrons have an energy E 
less than Vn for all n. The impinging electrons in this sub-barrier regime travels as an 
evanescent mode/wave and the transmission involve contributions from quantum tunneling 
and multiple reflections between each pair of barriers and the ,junction point. Here we are 
interested in a single channel case where the Fermi energy lie in the lowest sub-band. To 
excite the evanescent modes in the side branches one has to produce constrictions by making 
the width of the regions of wires containing barriers much thinner than that of other parts of 
the wires. The electrons occupying the lowest sub-band in the connecting wire on entering 
the constrictions experience a potential barrier (due to higher quantum zero point energy) 
and propagate as an evanescent mode [116, 117]. In this work an analysis of the phase time 
or the group delay time in such a system is carried out. 

5.3.1 Theoretical treatment 
We approach this scattering problem using the quantum wave guide theory [15, 66] as we 
did in the previous case. The wave functions, in different regions of the system considered 
(Fig. 5.10) can be written as, 

r = e ik ~ + Re  ( i n S 0 ) ,  

r = Ane  ikx~ + Bne -ikx~ (region I inSn) ,  

r = Cue -~(x~-~") + One ~ ( ~ - ~ " )  (region II inS~),  

•(n)Hx(Xn) = the ik(x"-w"-lb") (region III inSn) ,  

with ~,  = v /2m(V ,  - E ) / h  2 being the imaginary wave vector in presence of rectangular 
barrier of strength V,. r r and r denote wave functions in three regions I, I I  
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FIGURE 5.11: For a 3-way splitter with a barrier in $I arm, the 'phase times' T1 and T2 are 
plotted as a function of barrier width %1' in (a) and (b) respectively. The solid, dotted, dashed, 
dot-dashed and the dashed-double dotted curves are for VI -- 5, 4, 3, 2, and 1.05 respectively. Other 
system parameters are E -- I, Wl = 3. 

and I I I ,  respectively, on n-th side branch, x0 is the spatial coordinate for the 'base' wire, 
whereas xn is spatial coordinate for the n-th arm. All these coordinates are measured from 
the junction J. In n-th side branch, the barrier starts at a distance w~ from the junction J. 

To solve the problem, we use Griffith's boundary conditions [52] 

r  = r  = r . . . . .  r (5.32) 

and 

0r = EnO~(~), (5.33) ax0 J J '  
at the  junction J.  All the derivatives are taken either outward or inward from the junc- 
tion [15]. In each side branch, at the starting and end points of the barrier, the boundary 
conditions can be written as 

r = r (5.34) 

r + lbn) = r + lbn) , (5.35) 

ar (~,~) _ ar (~,~) ' (5.36) 

a'~,(n)H (w,~+tb,~)- 0r (5.37) Oxn Oxn (~,,~+Zb,~) 
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FIGURE 5.12: Here for a 3-way splitter with one barrier in each branched arm $1 and $2, the 
'phase times' T1 is plotted as a function of barrier width 'lb~' keeping Ib2(= 1) and 171(= 5) fixed 
and for different values of parameter V2. The small dashed, dot-dashed, solid, long dashed and 
dotted curves are for 172 = 2.5, 3.5, 5.0, 10.0 and 12.5 respectively. Other system parameters are 
E -- 1, Wl = w2 = 3. In the inset Tsl is plotted as a function of 172 for the same system parameters. 

From the above mentioned boundary conditions one can obtain the complex transmission 
amplitudes tn on each of the side branches. 

5.3.2 Resu l t s  and Discuss ions  

In the similar fashion, as we did in the earlier section, following the method introduced by 
Wigner [33], we can calculate the 'phase time' (phase time for transmission) from the energy 
derivative of the phase of the transmission amplitude in[33, 105] as 

T~ = h OArg[t~] (5.38) 
OE ' 

where, v = h k / m  is the  velocity of the free particle. 
In wha t  follows, let us set h = 1 and 2m = 1. We now proceed to analyze the  behavior  of 

~-~ as a function of various physical parameters  for different network topologies. We measure 
t ime at  the  far end of each barrier  in the branched arms containing barriers and in the case 
of arms in absence of any barrier  we measure the phase t ime at the  junct ion  points. We 
express all the  physical quanti t ies  in dimensionless units  i.e. all the  barrier  s t rengths  Vn in 
units  of incident energy E (V~ - V~ /E) ,  all the barrier  widths  Ib~ in units  of inverse wave 
vector k -1 (Ib~ - klb~), where k = v /E  and all the ext rapola ted  phase t ime ~-n in units  of 
inverse of incident energy E (~'n - ETa). 

First  we take up a system similar to the Y-junct ion shown in Fig. 5.10 in presence of a 
barrier  V1 of wid th  Ibl in a rm $1 but  in absence of any barrier  in a rm $2. For a tunnel ing  
part icle having energy E < 1/1 we find out  the phase t ime ~-1 in a rm $1 as well as ~-2 in a rm 
$2 as a function of barr ier  wid th  Ibl (Fig. 5.11). From Fig. 5.11(a) it is clear t ha t  ~-1 evolves 
wi th  Ibl and eventual ly saturates  to T81 for large lbl to show the H a r t m a n  effect. Fig. 5.11(b) 
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FIGURE 5.13: Here for a 3-way splitter with one barrier in each side branch •1 and $2, the 
'phase times' T1 (solid curve) and It112 (dashed) are plotted as a function of 'Ibl' for a very small 
lb2(= 0.5). Other system parameters are E = 1, Wl = w2 = 2.5, V2 = 5 and V1 = 15. In the 
inset, the solid and dashed curves represent 72 and It212 respectively as a function of lbl. For better 
visibility we have plotted phase times scaled down by a factor of 20. 

shows the phase time ~-2 in arm $2 which does not contain any barrier. This also evolves 
and saturates with Ibl, the length of the barrier in the other arm $I. This delay is due 
to the contribution from paths which undergo multiple reflection in the first branch before 
entering the second branch via junction point J. In absence of a barrier in the n-th arm the 
phase time wn measured close to the junction J should go to zero i.e. Tn --+ 0 in the absence 
of multiple scatterings in the first arm. Note that Tsl and Ts2 change with energies of the 
incident particle (Fig. 5.11). From Fig.5.11 it can be easily seen that fs2 is always smaller 
than Tsl for any particular 171 i.e. the saturation time in the arm having no barrier is smaller. 
The phase time in both the arms show non-monotonic behavior as a function of VI. As we 
decrease the strength of the barrier VI the value of TI (T2) decreases in the whole range of 
widths of the barrier and also the saturated value of ~sl (~-s2) decreases until ~ reaches 1.6 
and with further decrease in ~ the values of wl (w2) as well as w81 (ws2) starts increasing. 

As the second case we take up another Y-junction which contain potential barriers in 
both its side branches as shown in Fig. 5.10..We fix the values of 171(-- 5) and vary Ibl for 
each values of V2 to study the lbl-dependence of TI (Fig.5.12). From Fig. 5.12 we see that ~-i 
decreases with increase in Ibl to saturate to a value 7sl at each value of V2 thereby showing 
'Hartman effect' for arm '$I'. But now, we can tune the saturation phase time at arm $1 
non-locally by tuning strength of the barrier potential V2 sitting on another arm $2! Thus 

'quantum nonlocality' enables us to control the 'super arrival' time in one of the arms ($1) 
by changing a parameter (V2) on another, spatially separated from it. In the  inset of Fig. 5.12 
we plot ~-81 as a funct ion of V2. It clearly shows tha t  when the barrier  s t rengths  V1 and V2 
are very close the  'phase t ime'  reaches its min imum value. In all o ther  cases i.e. whenever  
V1 # V2, the  value of T81 is larger. 

We shall show now another  interest ing result related to the H a r t m a n  effect. For this we 
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FIGURE 5.14" Here for a 3-way splitter with one barrier in each side branch $1 and $2, the 
'saturated phase times' Tls (thick solid), T2s (thick dotted) and ~-rs (dashed) are shown as a function 
of 'w2'. For better visibility, while plotting all three quantities are divided by 50. The square 
modulus of transmission amplitude through the 2nd barrier It212 (solid) and the reflection amplitude 
Irl 2 (double dot-dashed) are shifted upwards along the the positive y-direction by 3. The different 
system parameters are E -- 1, V1 = 15, V2 = 5, Ibl = 100.0, Ib2 = 0.5 and wl = 2.5. 

keep 1/2(= 5) unaltered and reduce Ib2. For very small/b2(= 0.5) we see from Fig. 5.13 that  7-1 
is negative for almost the whole range of/bl-values showing 'time-advancement' and eventu- 
ally after a sharp decrease saturates to a negative value of 7-81 -- -4.514 implying 'Har tman 
effect' with advanced time. It might be noted that,  in principle, the 'time-advancement' 
(Fig. 5.13) can be measured experimentally as Itll 2 has a non-zero finite value for a small 
range of Ibl at lower lbl regime where 7"1 is negative. In the inset we plot the corresponding 7-2 
and It212 as function of lbl.  Again the values of 7-9 remains different from the one dimensional 
tunneling through a barrier of strength V2 and width lb2 in the whole range of lbl imply- 
ing 'quantum nonlocality'. In the cases discussed so far 7-2 vary more sharply in small lbl 
regime. Further the inset in Fig. 5.13 shows a dip in 7-2 at parameter regimes where It212 has 
a minimum. For a wave packet with large spread in real space it is possible that  the leading 
edge of the wave packet reaches the barrier much earlier than the peak of the packet. This 
leading edge in turn can tunnel through to produce a peak in the other end of the barrier 
much before the incident wave packet reaches the barrier region, sometimes referred to as 
pulse reshaping effect. This, in general, causes 'time advancement' [58]. This negative delay 
does not violate causality, however, the time is bounded from the below. In the presence 
of square wells in one dimensional systems negative time delays have been observed. This 
effect is termed as 'ultra Hartman effect' [ see for details [119] ]. 

As the next case we consider the same Y-junction network system with two side branches, 
each containing a potential barrier. The width of the barrier in arm S1 is set at a large value 
(say 100) where all the phase times get saturated. Now we shift the position of the barrier 
in arm $2 away from the junction and study its effect on the saturated transmission and 
reflection phase times. In Fig. 5.14 we have plotted all these three quantities 7-81, %2 and 7-~ 
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FIGURE 5.15: Here for a 3-way split ter with one barrier in each side branch $1 and $2, the 
' sa tura ted  phase t ime'  Tls is plot ted as a function of 'w2'. The  dashed and solid curves are for 
Ib2 -- 0.5 and 2.0 respectively. Other  system parameters  are E -- 1, ~/~ -- 15, V2 -- 5, Ibl -- 100.0 
and wl = 2.5. 

as a function w2. Earlier we have shown in Fig. 5.12 that by changing a nonlocal parameter 
V2 one can tune Tsl whereas Fig. 5.14 shows change of another parameter w2 can tune 
~-81 nonlocally. Note that T82, 7-8r also depend on w2. From Fig. 5.14 we see that It2[ 2 (Jr[ 2) 
shows resonances (anti-resonances) as a function of w2. These resonances are associated with 
resonances in all three phase times. Among which Tsl shows maxima-minima structures at 
these resonance w2 values whereas other two phase times show only positive peaks. As It2[ 2 
and Irl 2 have finite non-zero values, these variations in phase times should, in principle, be 

observable in experiments. In Fig. 5.15 we have plotted wsl as a function w2 for two different 
values of the width Ib2 of the barrier in arm $2. Note that as we increase the width Ib2, the 
frequency of getting negative saturation values (Wsl) reduces (see the solid curve in Fig. 5.15) 
and increasing the width Ib2 further, the negative saturation goes away. This is in agreement 
with the discussions in previous paragraph. 

Finally consider a similar system as that shown in Fig. 5.10, but in presence of N(_~ 
2) identical side branches and study phase time as a function of increasing N. All the 
side branches being identical the 'phase times' for transmission through each of these arms 
Sn, a = 2, 3,.-. N saturate to the same value 78 for very large Ibn. In Fig.5.16 we plot the 
saturation value Ts as a function of the total number of side branches N present in the 
system. From the figure we see that for V -- 5, ~-s first increases with N to a maximum value 
of 3.776 at N -- 9 and thereafter keeps on decreasing with the increase of N. As we start 
reducing the strength of the barriers from 5 we see that for V -- 1.49 the increasing nature 
of ~-~ in small N range vanishes. In general, at larger N, the decreasing nature of Ts with N 
persists, e.g., note the solid curve in Fig.5.16 plotted at V -- 1.25, but the initial increase in 
Ts is not a generic feature. For larger N transmission amplitude in each side branch reduces 
with increase in N and hence the corresponding peaks of wave packets reach the far end at 
earlier times thereby reducing w~. 
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FIGURE 5.16: Here N ( ~  2) number  of side branches each with a barrier of s t rength  V and width  
lb(= 100) are connected with the incident arm So. In each arm barriers s tar t  at the  same point 
w(-- 1). Thus  all the  side branches being identical the 'phase t ime'  for transmission through these 
arms Sn, n = 2, 3 , . . .  N satura te  to the  same value ~-s. The sa tura ted  'phase t ime'  Ts is plot ted as 
a function of the  total  number  of side branches N in the system. The dot ted  and solid curves are 
for V -- 5,0 and 1.25 respectively. The incident energy is kept at E = 1. 

5 . 4  C o n c l u s i o n s  

We have verified the Hartman effect in different quantum ring geometries in the presence 
of Aharonov-Bohm flux. We have studied the transmission phase time for a ring connected 
with two leads and and reflection phase time for a ring connected with a single lead. Both 
the studies show that the phase time for a given incident energy becomes independent of 
the barrier thickness as well as the magnitude of the flux in the limit of opaque barrier. In 
addition, for the later case of a ring connected with a single lead, introducing a potential 
well between two successive opaque barriers covering the entire circumference of the ring, 
we have found that the saturated reflection phase time becomes independent of the width 
of the well for energies away from the resonances. This implies, as if, the effective velocity 
of the electron within the well becomes infinite or equivalently length of the well does not 
count (space collapse or space destroyer). In absence of AB-flux we have obtained analytical 
expressions for the saturated reflection and transmission phase times for the two above 
mentioned geometries. 

We have then extended our studies on Hartman effect in quantum network consisting of 
a main one dimensional arm having N(___ 2) side branches. These side branches may or may 
not have barriers. In presence of barrier the 'phase time' for transmission through a side 
branch shows the 'Hartman effect'. In general, as the number of side branches N increases, 
the saturated 'phase time' decreases. Due to quantum nonlocality the 'phase time' and it's 
saturated value at any side branch feels the presence of barriers in other branches. Thus one 
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can tune the saturation value of 'phase time' and consequently the superluminal speed in one 
branch by changing barrier strength or width in any other branch, spatially separated from 
the former. Moreover Hartman effect with negative saturation times (time advancement) has 
been observed for some cases. In conclusion generalization of Hartman effect in branched 
networks exhibits several counter-intuitive results due to quantum non-locality. System 
parameters such as number of side branches N and barrier widths Ibn, strengths Vn, distance 
wn (from J) and incident energy E etc. play very sensitive roles in determining delay times. 
The delay times are also sensitive to the junction S-matrix elements used for a given problem. 
In our present problem junction S-matrix is determined uniquely by the wave guide transport 
methods. Depending on wn there may be one or several bound states located between the 
barriers in different branched arms and as a consequence saturated delay time can be varied 
from the negative (ultra Hartman effect) to positive and vice-versa. We have verified this by 
looking at the transmission coefficient in the second arm $2 which exhibits clear resonances 
as a function of w2. Moreover the reported effects are amenable to experimental verifications 
in the electromagnetic wave-guide networks. 
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Chapter 6 

Conclusions 

In this thesis we have discussed several new results. We started off with an introduction in 
chapter 1 and discussion of some theoretical and experimental background in chapter 2. In 
chapter 3 we have shown that  for an open mesoscopic conductor the system-environment 
(conductor-lead) coupling plays a very important role in its conductance phenomena. The 
effect of environment (reservoir) through a term called self energy, which is a function of 
system-lead coupling, modifies the canonical FSR, which connects the experimentally mea- 
surable scattering phase shifts to the DOS of the system. We have verified the FSR for 
Q1D quantum wire in presence of static impurity. For single channel transport, our studies 
for attractive impurity show that  the self energy is negligible at Fano resonance, a strongly 
quantum regime arising due to degeneracy of scattering ,states with quasi - bound states. 
Thus the canonical form of FSR is shown to be exact at a strongly quantum regime, in 
contrary to the earlier belief that  FSR should be exact only in WKB or quasi-classical limit. 
Far from the Fano resonance, at almost all energies available for single propagating channel, 
self energy dependent term is not negligible. We have further shown that,  both for attractive 
and repulsive scatterers, at the upper band edge the energy : derivative of self energy van- 
ishes making canonical FSR exact. In multichannel propagation, again, we have obtained the 
same results. We further observed that  for attractive impurity, the energy slope of scattering 
phase shift (phase time) can be negative indicating super-luminescence. Then in section 3.6 
we have explained the origin of Fano resonance, ubiquitous in quantum transports, by an 
exactly solvable model, namely, one-dimensional Dirac delta potential. 

In chapter 4 we have shown the presence of current magnification (CM) in a multi- 
channel quantum ring in presence of a scatterer that  gives rise to mode mixing. This is an 
non-equilibrium effect driven by the chemical potentials of reservoirs the ring is connected 
to. We have shown that  CM is a robust effect for a system weakly coupled to reservoirs, 
despite all the mode mixing and cancellations. The circulating currents are large and are 
mostly with Fano resonances in total transport current. We discussed the impact of impurity 
strength, system-lead coupling etc. on CM. The persistent current, an equilibrium effect due 
to external magnetic field, is known to increase with increase in number of propagating 
channels. In contrast to that,  the magnitude of circulating current in CM is independent 
of the number of propagating channels. We have discussed the experimental possibilities to 
verify the different predictions of our theoretical calculation of CM. 

i01 
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In chapter 5 we have probed Wigner phase time in different quantum geometries. We have 
verified Hartman effect in ring geometries ( in presence and absence of magnetic flux) and 
in quantum networks. We have verified the concept of space collapse in ring geometry. We 
have, further, shown due to quantum non-locality the phase time and its saturated value at 
any side branch feels the presence of barriers in other branches. Therefore, non-local tuning 
of saturation phase time is possible. Moreover time - advancement and ultra Hartman effect 
was observed. The delay times are also sensitive to junction S-matrix and and therefore 
system lead coupling is expected to modify them. The reported effects are amenable to 
experimental verifications. 

Our investigations in the realm of mesoscopic physics have highlighted some basic and 
important points. We worked in a regime of length scales < Ir the phase coherence length. 
Within this length scale interference effect plays the leading role. This is which gives rise to 
phenomena like CM and quantum non-locality. Mesoscopic wires being QID, confinement 
plays a crucial role by generating independent channels. Thus multimoded transport along 
with mode-mixing at the scatterer sites are important in studies of mesoscopic physics. The 
other principal point is the finite size (inter-facial) effect introduced by system-lead coupling. 
The inherent small size of mesoscopic samples makes it pertinent to study the impact of this 
before deciding if in some special cases such effects could be neglected. 

In general electrons at or near the Fermi level take part in quantum transport. In low 
temperature transport in mesoscopic systems electrons are assumed to be non-interacting 
as we have done throughout this thesis. However, in mesoscopic sample sizes, electron- 
electron coupling should play a crucial role. A full many body calculation incorporating 
various interactions of electrons with other electrons, phonons, electromagnetic fields, other 
excitations etc. is a way forward. At the Fermi level, electrons of a normal metal being 
unpolarized [120] we often neglect the associated spin degree. But for ferromagnetic metals, 
the electrons can occupy either up or down states at Fermi energy. Thus electronic current 
is spin-polarized. A spin-polarized FET like transistor has been proposed [121] in which 
conductance can be controlled by choosing polarization of the reservoirs and a gate voltage 
utilizing Rashba spin-orbit effect. Spin polarized transport and spintronics are other future 
direction. Quantum adiabatic transport and quantum pump is the other field where both 
theoretical [122] and experimental [123] progresses have been achieved. Other interesting 
areas are single electron tunneling, quantum chaos in micro-structures, mesoscopic structures 
combining normal metal and super-conducting components etc. 

With the ever increasing miniaturization, the transport concepts derived from classical 
drift-diffusion theory does not remain valid in characterization of sub-micron sized devices. 
The currently available devices contain feature sizes of ~ 100nm. With the advent of nano- 
technology it appears that, sooner rather than later, quantum effects will become very im- 
portant in operations of futuristic room temperature devices of dimensions in the molecular 
range. STM, AFM techniques may be useful to achieve such devices. The effects we have 
studies in this thesis can be verified in low temperature experimental facilities that are cur- 
rently available. In addition, some of the effects discussed may find applications in futuristic 
devices. 



Appendix A 

Scattering and transition amplitudes 
in QID quantum wire 

In this appendix we recall the 'mode rescaling procedure' [60] to obtain different scattering 
and transition amplitudes of a multi-channel QID quanrum wire in presence of a Dirac delta 
type static impurity potential. 

A.1 Mode  rescaling procedure 

Bagwell [60] introduced a very useful technique, namely, 'mode rescaling procedure' to study 
multi-channel systems as shown in Fig. 2.8 with 'singular', impurity potential. This method 
we have used in our study on Q1D geometries, namely, the quantum wire and the mesoscopic 
ring, in presence of Dirac 5 impurity. Below we sketch the 'mode rescaling procedure' which 
would be repeatitively referred in the body of the thesis. 

Using r y) from Eq. (2,39) into the Schrbdinger Eq. (3.63a), we obtain an equation of 
motion for the Fourier coefficients cn as 

d2cn(x) 

dx 2 
+ k~ c.(x) = ~ rn~(~)c~(x), 

m 

(A.1) 

where I~nm(X) a r e  the mode coupling constants which give the amount of mixing between 
different modes at the impurity potential as 

r.m(x)- 2~no / . h2 dyx,~(y) Vd(x,y)xm(y). (A.2) 

The longitudinal wave vector kn becomes n dependent wave vector as 

k ~ -  2me ( E -  En). (A.3) 
h 2 

The sum on the right hand side of Eq. (A.1) includes both rn -- n and m -~ n terms 
i.e. contributions from all the modes are taken into account. Now we consider a singular 
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potential as the impurity, e.g., a Dirac-delta function potential at x = 0 and y = y~ in the 
quasi-one-dimenional (Q1D) wire sample as shown in Fig. A.1. Thus 

Vd (x,  y)  = "), 5 (x)  5(y  -- y~) , (A.4) 

with strength ~. Using Eq. (A.4) in Eq. (A.2) and then the orthogonality condition for the 
normal modes, Eq. (A.1) reduces to 

dc~,(X)dx x=o+ - den(X)dx ,=0- = E PnmCm(0), (A.5) 
m 

where the x-independent mode coupling constant 

Pnm 2me 7 . 
-- h2 X~(Yi) Xm(Y~) (A.6) 

are proportional to the strength of the impurity and the size of the wave-function at the 
impurity. 

T 
i Yi w 

(o,o) | 
................ I ................ 

FIGURE A . I :  Quasi-one-dimensional wire with a Dirac-delta function impurity potential 
V ( x ,  y) = ~5(x)5(y  - y~), marked as x, of strength ~, is situated at x = 0 and y = Yi. 

In the regions where the impurity potential is absent eg. 

impurity, the solutions to Eq. (A.I) are 

A,~ e ik'~x q- B n  e - i knx  , x < 0 

c , , (x )  = Cn e ~k"x + D n  e -~knx , x > O, 

for the propagating modes and for evanescent modes 

A , e  -~"~ + B , e  ~ " ~ , x < 0  
cn(x)  = Cn e -'~n~ + Dn e ~'~ , x > O. 

on the left and right of the 

(A.7) 

(A.8) 
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2 2m ( E n -  E). From Eq. (A.5), for n-th propagating and evanescent mode using with ~n = 
respectively Eq. (A.7) and Eq. (A.8) we obtain 

i kn (Cn - Dn) - i kn (A,, - Bn) = E rnm (Am + Bin) (A.9) 
m 

--nn (On - On) § nn (An - Bn) -~ E I~nm (Am § Bin). (A.10) 
m 

Continuity of wave function at the position of the impurity potential gives another boundary 
condition 

An + Bn = Cn + Dn (A.11) 

for all normal mode indices n. Following normal textbook on Quantum mechanics, we 
consider particles incident only from the left i.e. Dn = 0 for all n. Besides, for evanescent 
waves, An -- 0 as far away from the impurity the evanescent waves vanish. Thus we obtain 
from Eq. (A.II), An + Bn = Cn for all propagating modes and Bn = Cn for all evanescent 
modes. Once An, Bn and Cn are known, the current transmission and reflection amplitudes in 

the scattering matrix can be obtained a s  ~nm ~ t ~ c_~ - ~ r = = V ~  nm = V ~ J A n  a n d r n m = V ~  n,~ 

~ - B ~  respectively. Bagwell [60] a very effective technique for solving infinite set showed An 
of coupled equations (A.9), (A.10) and (A.11) by truncating them to a finite size. 

For an example, consider electron is coming with an energy E2 < E < E3 so that  two 
propagating modes are present in the system. In addition, let us consider only two evanescent 
modes in the Q1D wire. For the case when mode one is incident on the impuriy i.e. A2 = 0 
and B2 = C2 we can write the coupled matrix equation from Eq. (A.9), (A.10) and (A.11) 

-2ik1 
0 
0 
0 

I~il -- 2iki 
F21 

F3i 
F4i 

as 

F12 Fi3 F14 
F22 - 2ik2 F23 F24 

F32 F33 § 2~3 F34 
F42 F43 F44 § 2t~4 

t l l  

ti2 
ti3 
ti4 

(A.12) 

In Eq. (A.12), let us eliminate the highest evanescent mode i.e.expressing t14 in terms of tn ,  
ti2 and t13, we obtain the 3 x 3 matrix equation 

- 2 i k l  
0 
0 

Fii,4 - 2ikl Fi2,4 F13,a 
F2i,4 F22,4 - 2ik2 F23,4 
D3i,4 F32,4 F33,4 + 2~3 

I tii 
t12 
ti3 

(A.13) 

where the previous 'mode coupling constant' is rescaled by the highest possible evanescent 
mode (i.e. mode four) present in the system as 

2n4 
Fnm,4 = Fnm F44 + 2~4 ' n, m = i, 2, 3. (A.14) 

In Eq. (A.13) further expressing t13 in terms of other two transmission coefficients i.e. tn 
and t12 we obtain 

0 F21,a-4 F22,3-4 - 2ik2 t12 ' 
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where the new 'rescaled mode coupling constants' are 

2~3 
Fnm,3-4 ---- Fnm,4 F33 + 2~3 ' n, m = 1, 2. (A.16) 

In general, for electron incident on the impurity with energy lying in the range Ep < E < 
Ep+l i.e. maximum number of propagating modes present in the system is p (>  1), the 
rescaled 'mode coupling constant' is 

2t~p+l 
= , n , m  = 1 , 2 , . . . p ,  (A .17) .  I~nm'(p+l)--e I~nrn'(P+2)-e l~p+lp+l q- 2/~p+l 

where e is the maximum number of evanescent modes. From the above rescaling procedure, 
it is clear that the total effect of the evanescent modes comes into 'rescaled mode coupling 
constants' which eventually become energy dependent [compare Eq. (A.6) and Eq. (A.17)]. 
Whenever incident energy of the electron aligns with the bottom of a subband, all the modes 
completely decouple from each other and each separate mode shows perfect transmission. 
For example, in the system considered above with two propagating modes, if E -- E3, then 
from Eq. (A.16), F n m , 3 - 4  = 0 and from Eq. (A.15), tn  = 1 and t12 = 0. For the case when 
mode two is incident on the impurity, a similar equation for t~l and t22 , as Eq. (A. 15), gives 
t21 = 0 and re2 = 1. In the mode rescaling procedure, the infinite set of coupled equations 
(Eq. (A.9, Eq. (A.10) are truncated to a finite set of equations. In this process of truncation, 
to get the correct result, the number of evanescent modes are considered depending upon 
the strength of the impurity in a way such that  the density of states of the evanescent modes 
( ~  ~ )  times the strength of the impurity is very small i.e. ~ m~ 

A.2 transmiss ion and reflection ampl i tudes  

Considering one propagating mode in Eq. (A.12) i.e. when energy of incident electron lies 
in the range Ei < E < E2, one can obtain (see [60]) 

t l l  ----- 1 q- r l l ,  (A.18) 

where  r l l  = Fl l ,2 -e  (A.19) 
2ikl ( 1 -  rll'2-')2ikl 

and Itn] 2 + 1~1112 = 1 (A.20) 
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which is the current conservation identity. In the similar fashion, for two propagating modes 
i.e. when energy of incident electron lies in the range E2 < E < E3, Eq. (A.12) gives 

where 

where 

tn  = 1 n t- r l l ,  (A.21) 
r11 ,3-e  rn  = ; (A.22) 

2ikl ( 1 - Fl1'3-r - 2 i k l  r22,a-~ ) 2 i k 2  

t12 = r12 = F21,a-e (A.23) 
2ik2 ( 1 - r 1 1 , 3 - ~  _ 2 i k l  r22,3-,)2ik2 

F12,a-e 
t21 = r21---- ; (A.24) 

2ik1 ( 1 - r l ~ , 3 - ~  _ 2 i k ~  r22,3-~)2~k2 

t22 = 1 + r22, (A.25) 
F22,3--e r22 = . (A.26) 

2ik2 ( 1 - r 1 ~ , 3 - r  _ 2 i k l  r22,3-,)2ik2 

In this case, the current conservation satisfies the following equations 

It1112 + It1212 + +Iraqi = + Ir1212 = 1, (A.27) 
(A.28) 

From Eq. (A.19), Eq. (A.23), Eq. (A.23), Eq. (A.24) and Eq. (A.26) one can obtain the 
reflection amplitudes rnm (see Ref. ([60])) as 

--4 Pure 
~ ,  (A.29) 

~ ~ + i  E ~  ~ 

where ~. represents a sum over all the evanescent modes while ~-~P represents a sum over 
all the propagating modes considered in the problem. Here the subscripts m and n corre- 
spond propagating modes. Eq. (A.29) also holds for intermode transmission amplitudes tnm 
where m ~ n, as we can see from Eq. (A.23) and Eq. (A.24). The intramode transmission 
amplitudes tnn are obtained from rnn as t'nn ---- 1 + rnn (note Eq. (A.18) and Eq. (A.19)). 

A . 3  T r a n s i t i o n  a m p l i t u d e  f r o m  p r o p a g a t i n g  t o  e v a n e s -  

c e n t  m o d e  

From Eq. (A.12), for one propagating mode and one evanescent mode we find out the tran- 
sition amplitude from propagating mode 1 to evanescent mode 2 as 

_F~2 

2~2 (A.30) t12 = 1+1"22 + i r u  �9 
2~2 2kl 
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Similarly, for two evanescent modes Eq. (A.12), we calculate the transition amplitudes to 
find, 

_r12 
2.2 (A.31) t 1 2  = 1 + r22 + Ea~ + i r~  �9 

2~2 2~3 2 kl 

2,,3 (1 .32)  
t 13  = 1"+ h z  + F_~ + i r~  �9 

2~2 2~3 2 kl 

Increasing number  of evanescent modes in Eq. (A.12), we have also obta ined the the general 
expression for the t rans i t ion ampl i tude  from the propagat ing mode  to the j - t h  evanescent 
mode as 

__hi  
t l  j ~ 2~j 

1 + ~-~f r_u_ + i ril  ' 
j> l  2tcj 2ki 

which is the  Eq. (3.28) in section 3.4. 



A p p e n d i x  B 

Global  D O S  in a Q1D quantum wire 

In this appendix B we present the derivation of Eq.(3.27) i.e. change in global DOS in 
presence of a Dirac delta type static scatterer in a multi-channel Q1D quantum wire. As an 
example, here we consider only two propagating modes. The global density of states is given 
by 

W F / :  p(E) = E 5 ( E -  E.~,k.~) dx dy E[r 2 (B.1) 
m,km c~ 2 n ,kn  

where Cn,k,~(x,y) = ~"~.,~ c(m)(x)x~(y) and Era,kin is the energy of an electron in the leads. 
m27r2h2  h2k  2 

Em,k~ -- 2m~W2 + =~=~,where~.~ m = -4-1, =t=2, as there are two propagating modes in the leads. 
As X~(y)'s form an orthonormal set, 

F p(E) = E 5(E-E.~,k,~) dx E c(m)(x) 2 
m,km c~ n 

First considering electron incident from the left, the partial density of states is 

p l (E)  / F 1 ~ 1 ~ x ~  c ~ ) ( x )  ~ - hv~ ~ x ~  4~)(x) 2 + 
n n 

= h v l T l +  T2 (B.2) 

So 

p(E) = pl(E) + p2(E) 

where p2(E) is the partial DOS for electron incident from the right. 

hk2 
m e  

V2-- 

Now, 

F T1 = dx ~ 41)(x) 2 
n 

Here, vl - hkl and 
m e  
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where electron is incident in the fundamental mode (denoted by superscript(I)), 

{ e  iklx --k Tile -iklx for x < 0 
c~)(x) = [11 e ikl~ for x > 0 

c~)(x) = { ~1~ e -'k2~ for x < 0 
t~a e i ~  for x > 0 

and for n > 2, 

cO)(x) = { t ~  e ~nx for x < 0 
tln e - ~  for x > 0 

So, 

T1 f /0 = d x  [1 + ITlll 2 --]- 21Tll I cos(2klX + 7"]1)] -[- dxlt l l l  2 
O o  

; /0 q- dx[~1212 + dxlt121 ~ + - -  + - -  + . . . . . .  
c~ ~3 ~4 

Here, ~1 is defined as ~11 = [r11[ e-i01. 
Similarly, when electron is incident in the 1st excited mode (denoted by superscript(2)) 

T2 F 
O o  

+;  

~xE ~)(x) ~ 
n 

dx [1 + 1~2212 + 2]r221 cos(2k2x + z]2)] + /0 ~ 

dxl~2112 + dxlt2112 + ]t2312 q_ 1t241____~ 2 
t';3 /~3 

. . . . . . .  

Here, z]2 is defined as r22 = [r2~[e -i~2. Therefore, 

- -  d x  hvl dx + hv2 dx + ~vl dx + hv2 
O0 O0  O0  O0  +   11/o / 

hVl dx cos(2klx + 7 1 ) +  21r221 0 oo hv----2- oo dx cos(2k2x + z]2) 

/o /o ]t'1112 + It1212 dx + ]~el]2 + ]~ee]2 dx 
+ hvl hv2 

1 (]t13[ 2 -[- ]t14[ 2 / 1 ([t23[ 2 [t24[ 2 / 
_ + . . .  + - -  + + . . .  . 

+ ~ \  ~3 ~4 ~ \  ~ ~4 

Due to time reversal symmetry, r12 = r21 & t'12 = t21" We put r12 = r21, r21 = r12, t12 = t'21, 
t21 = {12 in the 3rd, 4th, 7th and 8th terms respectively. 
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Therefore, 

p l ( E  ) = 1 + I'r1112~v; + 1~2112 f-~o dx + 1 + 1~212h~= + I~=1= S ~ 

/o /o I~xil= + I~=~1~ dx + 1~21= + I~=1= 
+ hv~ hv2 dx 

+ 

+ 

Now adding and subtracting the following terms, 

'{11[2 /__ 9 '~2112 /__ 9 '{22'2 /__ 0 
hvl dx , hvl dx , hv2 dx , - -  

we get, 

dx 

2l'r11[/_ ') /_ 
hVl dx.cos(2klx + w) + 21~=1 0 cr hv2 ~ dx cos(2k2x + ?72) 

) 1 ( 't23'9" ,t24, 2 ) 1 ( I t ~ J  + I~.1 = +. . .  + + _  +. . .  

hv2 dx , 

Similarly we can calculate p2(E) and thus, 

- dx + ~ dx 
p(E) hvl ~ ~o 

/: 21~.1 dx COS(2]~1$ + r/l) -4- + ~ ~r 

2 (I~13__J2 _F l~141____~ 2 -F'''',) 
+ ~ \ n3 n4 

F 21~=1 dx cos(2k2x + 72) 
hv2 oo 

(B.3) 

Now ~2 f-~oo dx + ~2 fo__~ dx = po(E) i.e. DOS in the absence of scatterer. So we get 

F F p(E) - po(E) - ~v~ ~ hv--~- 

2 Itl31 u + Itl4l._~ 2 + . . .  + + - - + . . .  . 
+ Fv~ ~3 ~4 Fv~ ~3 ~4 

(B.4) 

1 + I~.1 ~ + I~1  ~ + I~.1 ~ + 1~2112 f o  
pI(E) = dz 

hvl J_o~ 

1 + I~l~l 2 + I~=l: + I~1:1: + I~=12 f ~  
+ hv2 J _  dx 

o o  

hvl  dx cos(2klX + ?~1) 4- 2l~=l 0 hv---2-- ~ dx cos(2k2x + 72) 

1 (,~13, 2 ,t1412 ) 1 (,t23, 2 ]t2412 ) + - -  + . . .  + - -  + - - + . . .  . 

Now I~- I :  + 1~2112 + I{1112 + 1~211: --- 1 and 1~1212 + I%~12 + I~1 :  + I~11 ~ = 1. 
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Appendix C 

Scattering amplitudes from 
double-delta potential in 1D 

Considering the symmetric scattering potential in Fig. 3.1, the scattering matrix S of the 
structure can be found by cascading the scattering matrices of different parts, i.e., 

S=( rt rt) =$1|174 
r '  t I ) 

where $ 1 = $ 3 =  f W 

and $ 2 - - (  0T T)0 

kl and k -- ~ / ~ E .  $2 is the scattering matrix for the free region II of Here e i r  , r T 
Y 

length l between the two scatterers, r '  & f are the reflection & transmission amplitudes due 
to one of the two potentials when isolated. 

After cascading these three matrices the resultant scattering matrix of our system be- 
comes 

r / -~- l _ r , 2 r  2 
~'~ ~ f~/2"r r' tl2T2r! " 

l_ r ,2r2 -I- 1_r,~r2 

And so, 

( ( ) - (c.~) det[S] = r' + 1 - r'2~ -2 1 - r'2T 2 

1 
: (1 -- r'2~2) 2 (M + N) ,  (C.2) 

where M = r'2(1 - r'2~-2) 2 (C.3) 

and N = (1 - r'2~ -2) (2t'2r'272 - t'%-2). (C.4) 
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From Eq. ( C. 1), 

( Odet[S]or OA B_ff_ Z - 2 A - ~ - ~ - ~  (c.5) 

t'2T2r ' 
where A = r ' + l _ r , 2 T  2 (C.6) 

t ' 2 T  
(c.7) and B -- l-r'2T 2" 

Using Eq. (C.5), (C.6) and (C.7) we find 

Odet[S] 
or 

- -  2 

+ 2 

+ 2 

d 2r'B+T--r,~T- ~ - ~,-~_T,2T2) 2 0 r  

[ ( 2r'273B'~ ( 2 r " r 2 B ) ]  Or ' 
A I + B T +  f--r-fi-~Tej--B 1--r'2"r e 0r 

2 r ' ~ - A B - B  1--r '2T 2 0r  

To obtain Eq. (C.8) we retain the energy dependence of r',t' and T. Hence our results 
correspond to real potentials and we do not parameterize the S matrix in a special way. 
Now we apply this result to the case of double delta function potential in Fig. 3.2 and 
illustrate the significance of the last two terms in comparison with the 1st one in Eq. (C.8). 
We should emphasize here that  the calculation in this appendix holds even if the 5-function 
potential is replaced by the square-well or any arbitrary potential. Thus in the regime where 
Or' Ot' OT o--~ ~ 0 and ~-~ ~ 0 and using ~ = iT, 

- 2 (t,2 

At this point we substitute the values of A and B from Eq. (C.6) and Eq. (C.7) respectively 
to get 

Odet[S] _ 2i 1 
0 r  (1 - r'2~-2) 3 

Now,  0f - ~iln(det[S]) 

00 s 00 s 0r 
and so 

OE 0r OE" 

N.  (C.10) 

(C.11) 

From Eq. (C.II), Eq. (C.2) and Eq. (C.10) 

0Of 1 

0r 
1 Odet[S] 

2i det[S] 0r 
1 1 

i - r'2T 2 M + i 
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Mult ip ly ing  the  n u m e r a t o r  and  d e n o m i n a t o r  by (1--r'2"r2)* 1--1r'l 4 
, we get  

OOf 
or 

Since 1 -I~ '12 = It'P 

where,  Q = 

1 - I t '  P ( 1 -  r'2~-~) * 1 
I1  - r ' 2 r  2 12 1 - ' l  r' I ~ M K + I  

1 - 1 < 1 4  
= I 1 - r %  -2 [ 2 Q '  

(1 -: r'272) * 1 

1- I r ' l  4 --~+1 
[ ( 1 -  r'*2r*2) - 1+ I r' 141 ~- 14 ] 

= i--_ i r, 14 + 1  

as I'r14 = 1).  

-r'*%-*2+Jr ' 141 7-1 ~ 1 1 
Q = ( 1 + I t '  12)lt'l 2 + z j  -~+1 

Now subs t i t u t ing  the  values of M and  N from Eq. (0.3)  and  (0.4)  

Q = 

M N-+I 

-r"2~*~(1 -r'2w2)+lt' 12 (1+ I r' 12) -t'2~-2 (t '2 - 2r  '2) 

(C.12) 

(C.13) 

(C.14) 

(0.15)  
It' 12 ( l +  I r' I ~) r,2(1 - r,2T2) _ t,%2(t,~. _ 2r,2) ' 

Using,  r' =1 r' [ e~~ and t' =] t' ] e ~~ 

Q = [Irq21t'121wl4e2~o, e2~(o~-o~)_ Ir'lnlt'121w14w2e4~o, 
_ [t,14T2e4iOt _ ]t'14]r'12T2e4iOt_ 21r'141TI4e 2iOt .. 

+ 2lr'16]rl%ne 2i<~176 + 21r']2]t'12T2J i<~176 + 21r'lallt']~~-2e2i(~176 

where,  D = (1+  Iv '  12)( - I t '  14 T2e 4iOt- IT ! [4 T2e4iOr 

+ 2 I t '  121 ~' I ~ Pe2~(~247176 I ~' I ~ e2'~ 

Now it follows f rom un i ta r i ty  t ha t  e 2i(~176 = e i'~ = - 1  and  I~-[ a = 1 and  so 

Q = [-Ir '12lt '12e 2i~ _ Ir']4]t'12T2e4iOt _ It'14r2e4iOt _ [t'14lr']2T2e4iOt _ 2]r'pe2iot 

+ 2Jr'1%2s176176 + 2lr']2]t'I2~ne 2i(~176 + 21r'14lt'12w2e2i(~176 

= [--e2~~ 2 + 2Jr'] 2} -- (1{] 2 + ]r'12{tr'l 2 + It']2}) 

(e 4~~ It'12~ -2 - e2~(~176 2 ) ] / O .  

Now inside the  {} brackets  if we use the  fact t ha t  I r '  12 + I t '  12= 1, t h e n  

(0.~6) 

(0.~7) 

Q = [-e2i~ [r'12(1 + [r'] 2) - e4i~ + 2e2i(~176 , (0.18)  

Mul t ip ly ing  n u m e r a t o r  and  d e n o m i n a t o r  above by e -2i(~176 and  pu t t i ng  e 2i(~176 = e i~ = 
- 1, we get  

-e-~~ + I~'P) + ~2(It'12 + I~'P) + I~'12~2 
Q = D '  ' 

where,  D '  = D e  -2i(~176 . (C.19) 
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Again using [r'[ 2 + ]t'l 2 = 1, 

Q = (1 + Ir']2)(r 2 - I r ' ] 2 e  -2ion) 
D' 

Now from expressions (C.19) and (C.16) 

D ' =  (1 + [r'[2)[lr '12e -2~~ - [r'14.r2e -2i(~176 

-[t'14r2e2i(~176 + 2[t'12lr'12r2]. 

As Ot - Or - '~ 

D ' =  (1 + [r'12)[lr'12e -2~0' + r2 ( I r ' [  2 + It'[2) 2] 

where of course [ r '  [2 + l  t, 12= 1. Substituting D' in Eq. (C.20), 

r2_  It' 12 e 
Q = r 2 +  I r, 12 e-2~o, �9 

(c.2o) 

Multiplying numerator and denominator of Q by e 2i~ and using e 2i(~176 = e i~ = -1 ,  we 
get from (C.12) 

OO f 1-- IT t [4 

0r i1 -  r '2 r  212 



A p p e n d i x  D 

L o c a t i o n  of  t h e  t r a n s m i s s i o n  zero  

For scat tering in three dimensions from spherically symmetr ic  potentials  the S-matr ix  is 
diagonal  in the orbital  angular m o m e n t u m  partial  wave channels and hence uni tar i ty  forces 
each diagonal-element  to be of the form e 2~Z, where 51 is the corresponding phase shift. For 
a one dimensional  problem with particles incident from the  left (xlk)  = 1 e~kX we search 
for solutions of the  form 

{ e ik~ + a ~ ) e  -ik~ x ~ - c ~  (D.1) 
r  ' a~)  e ~k~, x -~ + ~  

where a~)  is the  reflection ampl i tude and a~) is the transmission ampl i tude for left incident 
particles. Similarly for particles incident from the right (x I - k) = 1 e-iax we look for 

{ e -ikx + a (R) e ikx x ~ +c~ (D.2) 
r  ) a (R) e -ik~ , x ~ - c e  

where a(R) is the  reflection ampl i tude and a(R) is the  transmission ampl i tude for right incident 
particles. Thus the S-matr ix  has the form 

a(R) 

If V(x) has the symmetry V(-x) = V(x), then clearly a~) = a (R) = a R and a~) = a (R) = aT, 

( ) and accordingly as S = aw aR which has the eigenvectors ~ 1 
a R  a T ' 

belonging to the  eigenvalues a r § a R and a v - a ~  respectively. Hence with these eigenchannels 

the  S-matr ix  is diagonal w i t h S  = ( a t + a "  0 / .  Note tha t  for V ( x ) =  a s  basis, 
\ 0 a T - a R ] 

- .~5(x )  we have non-trivial  scattering only in the  even channel. Thus a T - a R = 1 and 
a T + a R = A. Therefore, a T = �89 (1 + A). Some authors adopt  a different definition of the 
S-matr ix  from what  we have used [5]. For the present purpose we prefer our convention 
because as V ~ 0 we have S ~ 1[ as in the case for three dimensional  case. 

i17  
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A p p e n d i x  E 

Loca t ion  of  the  R e s o n a n c e  and 
d e t e r m i n a t i o n  of  the  w i d t h  

It is best  to look at A above the threshold E = A for the opening of the inelastic channel  
viz. bo th  channels  open and  t rack its pole in k so tha t  the  sheet s t ruc ture  also becomes 
clear. Eq. (3.69) gives for the  pole 

.7` 7`~ 
q -  ~ + ~ = O. (E.1) 

�9 ~ k2 s ~: _ 2 ~  At A~ = 0 the  pole is at q = z~ or = - w i t h / ~  Now if we switch on 7`~ and 

assume Ac is very small, we may write 

7,2 
k = s - T (1 + 51 + i52),  

where  51 and 52 are small and become smaller with smaller 7`C. 
Thus,  q2 = k 2 /~ ,~ _ ,~_2 _ - - - 4 + (~' ~) (a~ - 5~ + 251 + 2~a2 + zia152) and 

(E.2) 

q = i ~  7` [1 2(s ~ )  (a~ - a~ + 251 + 2ia2 + 2iala2) 

7`4 (51 ~ - 5~ + 2ia152) ]. (E.3) 

In taking the square-root of q2 we have carefully taken the correct sign so that 7`c -~ 0, the 

pole is at q -- z~. 

1 1 

k V/X ~4 
1 

V / ~  5,2 4 

_ _  (1 + al + ia2) -1 

- -  (1  - -  51 - -  i 5  2"q ' -5 2 - -  5 2 q- 2 i 5 1 5  2 q - ' ' ' )  (E.4) 
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If we keep terms up second order in 5 in Eqs.(E.3) and (E.4) and use them in Eq.(E.1), we 
see that the lowest order terms in 5 (with i~ of the same order) in imaginary and real part 
of the Eq.(E.1) yield 

2(A -- -~) 51 i 2 1 (/k - ~ )  s i 
i 4 ~ 5 2  + 8  A 4 ~ 5 ~ = 0  (E.5a) 

2(s  - -~) 52 + i~ 1 (1 -- 51) = 0 .  (E.Sb)  

4 / ~  ~ 4 

Note that although 51 is of  O(14)  , 5 2 is of O(i~). From the above two relations [(E.5a) and 
(E.5D)] 

i 
52 = -1~ (E.~) 

8(s - ~ ) ~ / 2  

Because 51 is of O(i4), the imaginary part of the Eq.(E.1) must contain 51 and 5~ which 
-4 are functions of A c. Thus we obtain 

5 1 = i  4 ( 2 s  + i 2) (E.7) 
6 4 ( s  ~ )  3" 

We use Eqs.(E.7) and (E.6) and find the pole position from Eq.(E.2) as 

~ s  i2 (25  + i 2) i - i i~ (E.S) 
64 (/~ - ~)5/2 8 ( s  ~ )  

~nkp~_z ~ [_~ -4 ] E p -  i r 2 2 h2 (s  + ~ )  h 2 i 
2 = 2rn ~m - A~ 1 6 ~ - -  ~-~)2j - i ~m i~ 4(s  ._-~)1/2 (E.9) 

which are Eqs.(3.70) and Eq.(3.71) in the text. 



R e f e r e n c e s  

[10] 

[11] 

[12] 

[13] 

[14] 

[I] W. Brattain, W. Shockley and J. Bardeen, Nobel lecture 1956. 

[2] R. P. Feynman, 'There's plenty of room at the bottom' AmericanPhysical Society 
Meeting (Pasadena, CA), 1960 (www.its.caltech.edu/feynman). 

[3] C. W. J. Beenakker and H. van Houten, Solid State Physics 44, 1 (1991). 

[4] Mesoscopic phenomena in solids, edited by B. L. Altshuler, P. A. Lee and R. A. Webb 
(North-Holland, Amsterdam, 1991). 

[5] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 
Cambridge, UK, (1997). 

[6] B. J. van Wees et al., Phys. Rev. Lett. 60, 848850 (1988). 

[7] D. A. Wharam et al., J. Phys. C 21, L209 (1988). 

[8] M. Biittiker, IBM J. Res. Dev. 32, 317 (1988). 

[9] Introduction to Mesoscopic Electron Transport by L.P.Kouwenhoven, G.SchSn and 
L.L.Sohn in 'Mesoscopic Electron Transport' NATO ASI  Series E - 345 , eds. 
L.P.Kouwenhoven, G.SchSn and L.L. Sohn, p. 1-44, Kluwer Academic Publishers 
(1997). 

Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). 

R. A. Webb et al., Phys. Rev. Lett. 54, 2696 (1985). 

T. J. Thornton et al., Phys. Rev. Lett. 56, 1198 (1986). 

H.Z.Zheng et al., Phys. Rev. B 34, 5635 (1986). 

C. W. J. Beenakker and H. van Houten, "Quantum Transport in Semiconductor Nanos- 
tructures," in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic, 
New York, 1991), 44, 1-228. 

[15] J. B. Xia, Phys. Rev. B45 (1992) 3593. 

[16] Y. Gefen, Y. Imry and M. Ya tzbel,  Phys. Rev. Lett. 52 (1984) 129. 

121 



122 REFERENCES 

[17] S. Washburn and R. A. Webb, Adv. Phys. 35, 375 (1986). 

[18] Y. Imry, Europhys. Lett. 1,249 (1986). 

[19] R. A. Webb and S.Washburn, Physics Today, 41 52 (1988). 

[20] M. Biittiker, Phys. Rev. Lett., 57, 1761 (1986). 

[21] S. Bandopadhyay, P. Singha Deo, Phys. Rev. B 68, 113301 (2003). 

[22] P. Singha Deo, Swarnali Bandopadhyay and Sourin Das, Int. J. Mod. Phys. B, 16, 
2247 (2002). 

[23] Swarnali Bandopadhyay, Binayak Dutta-Ray and H.S.Mani, Am. J. Phys. 72 (12), 
1501 (2004). 

[24] Swarnali Bandopadhyay, P. Singha Deo and A. M. Jayannavar, Phys. Rev. B 70 075315 
(2004). 

[25] Swarnali Bandopadhyay, Raishma Krishnan, and A. M. Jayannavar, Solid State Corn- 
mun. 131,447 (2004). 

[26] Swarnali Bandopadhyay and A. M. Jayannavar, to appear in the proceedings of Con- 
densed Matter Days 2004 (2005); quant-ph/0411161. 

[27] Swarnali Bandopadhyay and A. M. Jayannavar, Phys. Lett. A, 335, 266 (2005). 

[28] Zerson Huang, Statistical mechanics, John Wiley, New York, (1987). 

[29] R. Landauer, IBM J. Res. Dev., 1,223 (1957). 

[30] Y. Imry, in Directions in Condensed Matter Physics, G. Grinstein, G. Mazenko, eds., 
World Scientific, Singapore (1986). 

[31] 

[32] 

[33] 

[34] 

[35] 

[36] 

[37] 

[38] 

[39] 

A. Yacoby et. al., Phys. Rev. Lett. 74 4047 (1995). 

R. Schuster et. al., Nature 385 417 (1997). 

E. P. Wigner, Phys. Rev. 98 (1955) 145. 

M. Biittiker, Y. Imry and R. Landauer, Phys. Lett. 96A, 365 (1983). 

F. Bloch, Phys. Rev. B 2, 109 (1970). 

E. Akkermans et. al., Phys. Rev. Lett. 66, 76 (1991). 

V. Chandrasekhar et. al., Phys. Rev. Lett. 67, 3578 (1991). 

D. Mailly et al., Phys. Rev. Lett. 70, 2020 (1993). 

A. M. Jayannavar and P. Singha Deo , Phys. Rev. B 51, 10175 (1995). 



REFERENCES 123 

[40] T. P. Pareek, P. Singha Deo and A. M. Jayannavar , Phys. Rev. B 52, 14657 (1995). 

[41] A. M. Jayannavar, P. Singha Deo and T. P. Pareek, Physica B 212, 216 (1995). 

[42] D. F. Shaw, An Introduction to Electronics, 2nd ed., (Longman, London, 1970), p. 51. 

[43] G. Cernicchiaro et al., Phys. Rev. Left. 79,273-276 (1997). 

[44] M. Biittiker, H. Thomas and A. Petre, Z. Phys. B 94, 133 (1994). 

[45] M. Biittiker, Pramana Journal of Physics,58, 241 (2002). 

[46] G. Hackenbroich, Phys. Rep. 343, 463 (2001). 

[47] V. A. Gopar, Phys. Rev. Left. 77, 3005 (1996). 

[48] M. Biittiker and A. M. Martin, Phys. Rev. B 61, 2737 (2000). 

[49] J. Friedel, Philos. Mag. 43, 153 (1952). 

[50] Roger Dashen, Shang-keng Ma and Herbert J. Bernstein, Phys. Rev. 187 345 (1969). 

[51] A.L. Yeyati and M. Biittiker, Phys. Rev. B, 62, 7307 (2000). 

[52] S. Grimth, Trans. Faraday Soc. 49, 650 (1953). 

[53] P.S.Deo and A.M.Jayannavar, Mod. Phys. Left. B 7, 1045 (1993); P. Singha Deo and 
A. M. Jayannavar, Pramana Journal of Physics, 56,439 (2001) and references therein. 

[54] H. W. Lee, Phys. Rev. Left. 82, 2358 (1999). 

[55] T. Taniguchi and M. Buttiker, Phys. Rev.B 60, 13814 (1999). 

[56] From the derivation of the FSR (one can see the book by Ziman in Ref. [49]), that the 
scattering phase shift is defined such that when we set the scattering potential to 0 
the scattering phase shift is also 0. However, in the double delta function potential the 
arg(t) = kl when the strength of the delta function potentials are set to zero. Hence 
the scattering phase shift is arg(t) - kl. However, the term coming from the derivative 
of kl cancels with the term coming from P0, leading to the Eq. in (3.20). 

[571 F. T. Smith Phys. Rev. 113, 349 (1960)i 

[58] R. Landauer and T. Martin, Rev. Mod. Phys. 66, 217 (1994). 

[59] P. A. Mello and N. Kumar, Quantum Transport in Mesoscopic Systems, Oxford Uni- 
versity Press (2004). 

[6o] P. F. Bagwell, Phys. Rev.B 41, 10354(1990). 

[61] P. S. Deo, Phys. Rev. B 53, 15447 (1996). 

[62] P. Singha Deo, Solid State Commun. 107, 69 (1998). 



124 REFERENCES 

[63] 

[64] 

[65] 

[66] 

[67] 

[68] 

[69] 

[70] 

[71] 

[72] 

[73] 

[74] 

[75] 

[76] 

[77] 

[78] 

[79] 

Eugen Merzbacher, Quantum mechanics, John Wiley, New York (1999). 

Hua Wu et al., Phys. Rev. B 45, 11960-11967 (1992). 

E. Tekman and P. F. Bagwell, Phys. Rev. B 48, 2553 (1993). 

P. S. Deo and A. M. Jayannavar, Phys. Rev. B, 50, 11629 (1994). 

We have also found that if we take two delta function potentials in a single channel 
quantum wire and place two of them close to each other, then for very large strengths 
of the two potentials, the system becomes almost reflectionless. This is very counter- 
intuitive as large potentials are expected to give large reflections. It happens because 
strong potential couples the evanescent modes very strongly to the propagating mode 
at the positions of the delta potentials, and an incident electron is thrown into the 
evanescent channels rather than reflected. And since the two potentials are close to 
each other, the electron can easily tunnel from one potential site to the other and 
finally go to the transmission channel, again due to the large coupling between the 
evanescent and transmission channels. 

V. Gasperin, T. Christen and M. Biittiker, Phys. Rev. A 54, 4022 (1996). 

O. K. Rice, J. Chem. Phys. 1, 375 (1933). 

U. Fano, Nuovo Comento 12, 156 (1935). 

U. Fano, Phys. Rev. 124, 1866-1878 (1961). 

C.Fiihner et al.,"Phase measurements using two-channel Fano interference in a semi- 
conductor quantum dot", cond-mat/0307590 (2003). 

K.Kobayashi et al., Phys. Rev. Lett. 88, 256806 (2002); Phys. Rev. B 68, 235304 
(2003). 

B. F. Bayman and C. J. Mehoke, Am. J. Phys. 51, 875-883 (1983). 

Kurt Gottfried, Quantum Mechanics, Benjamin/Cummings, Boston, 1, pp. 131-143 
(1966). 

J. W. Brown and R. V. Churchill, Complex Variables and Applications, McGraw-Hill, 
New York, 6th ed., pp. 176-179 and 276-281 (1996). 

U. Fano and J. W. Cooper, Reviews of Modern physics, 40 No.3, 441-507 (1968). 

M. V. Moskalets, Euro. Phys. lett. 41 , 189 (1998). 

T. Choi, C. M. Ryu and A. M. Jayannavar, Int. J. Mod. Phys. BI2, 2091 (1998) and 
cond-mat/9808245. 

[80] S.K.Joshi, D.Sahoo and A.M.Jayannavar, Phys. Rev. B 64, 075320 (2001). 



REFERENCES 125 

[lOO] 

[lol] 

[102] 

[81] C. Benjamin et al., Mod. Phys.Lett. B 15, 19 (2001). 

[82] J. Yi et al., Phys. Rev. B 65, 033305 (2002). 

[83] H.Wu et al., Phys. Rev. B 68, 125330 (2003). 

[84] C. Benjamin and A. M. Jayannavar, Phys. Rev. B 64, 2333406 (2001). 

[85] C. Benjamin and A. M. Jayannavar, Int. J. Mod. Phys. B 16, 1787 (2002). 

[86] Hisashi Aikawa et al., Phys. Rev. Lett. 92, 176802 (2004). 

[87] M. Biittiker, Phys. Rev.B 32, 1846 (1985). 

[88] B. Shapiro, Phys. Rev. Lett. 50 ,747  (1983). 

[89] S. Pedersen et al., Phys. Rev. B, 61, 5457 (1999). 

[90] C. Benjamin and A. M. Jayannavar, cond-mat/0309133. 

[91] C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1995), Chapter 
on Semiconductor Crystals. 

[92] M. Bfittiker, in Squid '85-Superconducting Quatum Interference Devices and Their 
Application, edited by H. D. Hahlobohm and H. Liiebbig (de Gruyter, Berlin, 1985). 

[93] H: F. Cheung and E. K. Hiedel, Phys. Rev. B 40, 9498 (1989). 

[94] A. M. Jayannavar and P. Singha Deo, Phys. Rev.B 49, 13685 (1994). 

[95] R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973). 

[96] G. Binning and H. Rohrer, IBM J. Res. Dev. 30, 355 (1986). 

[97] L. A. MacColl, Phys. Rev. 40, 621 (1932). 

[98] S. Anantha Ramakrishna and N. Kumar, Europhys. Lett., 60 (2002) 491; Colin Ben- 
jamin and A. M. Jayannavar, Solid State Commun., 121 (2002) 591. 

[99] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett. 71 708 1993; R. Y. 
Chiao, P. G. Kwiat, and A. M. Steinberg, Scientific American, p. 38-46, August 1993. 

A. Enders and G. Nimtz, J. Phys. I 2 (1992) 1693; 3 (1993) 1089; A. Enders and G. 
Nimtz, Phys. Rev. E, 48, 632 (1993); G. Nimtz, A. Enders and H. Spieker, ibid 4 
(1994) 565. 

S. Collins, D. Lowe and J. R. Barker, J. Phys. C 20, 6213 (1987); R. S. Dumont and 
T. L. Marchioro II, Phys. Rev. A 47, 85 (1993). 

P. Guerent, E. Marclay, and H. Meier, Solid State Commun. 68, 977 (1988); Ch. 
Spielmann, R. Szipocs, A. Sting, and F. Krausz, Phys. Rev. Lett. 73, 2308 (1994); Th. 
Hills et al., Phys. Rev. A 58, 4784 (1998). 



126 ~ REFERENCES 

[103] 

[104] 

[105] 

[106] 

[1071 

[108] 

[109] 

[110] 

[111] 

[112] 

[113] 

[114] 

[115] 

[116] 

[117] 

[118] 

[119] 

[120] 

[121] 

[122] 

[123] 

M. Biittiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982). 

M. Biittiker, Phys. Rev. B 27, 6178 (1983). 

E. H. Hauge and J. A. Stcvneng, Rev. Mod. Phys. 61 (1989) 917. 

T. E. Hartman, J. Appl. Phys. 33 (1962) 3427. 

E. H. Hauge, J. P. Falck, and T. A. Fjeldly, Phys. Rev. B 36, 4203 (1987). 

M. Bfittiker, J. Phys. Condensed Matter, 5 (1993) 9361; M. Bfittiker, H. Thomas and 
A. Pr~tre, Phys. Lett. A 180 (1993) 364. 

A. M. Jayannavar, G. V. Vijaygobindan and N. Kumar, Z. Phys. B 75 (1989) 77; 
Sandeep K. Joshi, A. Kar Gupta and A. M. Jayannavar, Phys. Rev. B58 (1998) 1092; 
Sandeep K. Joshi and A. M. Jayannavar, Solid State Commun. 106 (1998) 363; ibid 
IIi (1999) 547; For a review see Yan Fyodorov and H. Sommers, J. Math. Phys. 38 
(1997) 1918. 

V. S. Olkhovsky and E. Recami, Physics Reports 214 339 (1992). 

J. R. Fletcher, J. Phys. C 18, L55 (1985). 

On Universal Properties of Tunnelling, G. Nimtz et al., APEIRON 7, Nr. 1-2, January 
- April, 2000. 

A. Haibel and G. Nimtz, Ann. Phys. (Leipzig) I0, ed. 8, 707-712 (2001). 

H. G. Winful, Phys. Rev. Lett. 91 (2003) 260401; H. G. Winful, Phys. Rev. E68 (2003) 
016615; H. G. Winful, Opt. Express i0 (2002) 1491. 

V. S. Olkhovsky, E. Recami and G. Salesi, Europhys. Lett. 57 879 (2002). 

A. M. Jayannavar and P. Singha Deo, Mod. Phys. Lett. B 8 (1994) 301-310. 

B. C. Gupta, P. Singha Deo and A. M. Jayannavar, Int. J. Mod. Phys. B I0 3595 
(1996); Colin Benjamin and A. M. Jayannavar, Phys. Rev. B 68 085325 (2003). 

B. C. Satishkumar, P. John Thomas, A. Govindaraj, and C. N. R. Rao, Applied Physics 
Letters 77(16) 2530 (2000). 

J. G. Muga, I. L. Egusquiza, J. A. Damborenea, and F. Delgado , Phys. Rev. A, 66, 
042115 (2002). 

S. Das Sharma, American Scientist Nov/Dec 2001 issue. 

S. Datta and B. Das, Appl. Phys. Left. 56, 665 (1990). 

P. W. Brouwer, Phys. Rev. B 58, RI0135 (1998); Ronald Benjamin and Colin Ben- 
jamin, Phys. Rev. B 69, 085318 (2004). 

M. Switkes et al., Science 283, 1905 (1999). 



REFERENCES 127 

[124] K.Kobayashi et al., Phys. Rev. B 68, 235304 (2003); Phys. Rev. B 70, 035319 (2004). 
[125] A. J. Leggett, in Granular Nano-Electronics, 251 of NATO Advanced Studies Institute, 
Series B: Physics, edited by D. K. Ferry, J. R. Barker and C. Jacoboni (Plenum, NY 1991) 
p. 297. 


	Contents
	Acknowledgments
	List of Publications
	1 Introduction
	1.1 Mesoscopic Physics
	1.2 This Thesis

	2 Basics of electron transport in mesoscopic system
	2.1 Introduction
	2.2 Effect of environment on mesoscopic conductor
	2.3 Landauer-Biittiker conductance formula:
	2.4 Experiment on phase-shift:
	2.5 Phase time for tunneling particle
	2.6 Persistent Current
	2.7 Current magnification
	2.8 Scattering matrix for Q1D systems

	3 Friedel-Sum-Rule in Quasi-one-dimensional Quantum Wire
	3.1 Introduction
	3.2 FSR for open mesoscopic conductor
	3.3 Scattering in one-dimension and negative values of dOf/dE
	3.4 FSR for single channel QID quantum wire
	3.5 Phase shifts, phase times and FSR in multi-channel QID quantum wire
	3.6 Fano resonance

	4 Quantum current magnification in a multi-channel mesoscopic ring
	4.1 results and discussions
	4.2 Possible Experiment
	4.3 conclusion

	5 Phase time for tunneling particle
	5.1 Introduction
	5.2 Hartman effect in presence of AB-flux
	5.3 Hartman effect and non-locality in quantum net-works
	5.4 Conclusions

	6 Conclusions
	A Scattering and transition amplitudes in QID quantum wire
	A.1 Mode rescaling procedure
	A.2 transmission and reflection amplitudes
	A.3 Transition amplitude from propagating to evanes-cent mode

	B Global DOS in a Q1D quantum wire
	C Scattering amplitudes from double-delta potential in 1D
	D Location of the transmission zero
	E Location of the Resonance and determination of the width
	References


