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Chapter 1

A brief overview of theoretical studies of surfaces and
thin Films.

1.1 Introduction

Surfaces are the fitst line of defence of any substance in its interaction with its surround-
ings. This i5 precisely the renson, that knowledge about material surfaces hos becomes
indispensable in order to produce noael maternals which will aid the technological and

solentifie advancement of the human civilization.

One of the interesting festures of magnetism at a surface is the medificabion of the
surface magnetic moment because of difference betvween atomic envitonments in the sur-
face and the bull. The study of surdace mognetism had a dramatic start, when it was
suggesbed that dead or paramagnetic lavers in overlasers of [Mi were formed when thev
weare deposited oo Cu (Liebermann f al 1969). But those controversies have now bean
lnid to mest with new and more sophisticated experiments refuting the earlier contronmar-
sinl findings. Ancther exctic feature of surface mognetism is its anisctropy, which has
immense potential for industoal applicaticns.

In bull: materials where we hawe Iattice translational symmetry, Bloch Thecrem bosed
reciprocal space methods are used to determine their electronic and magnetic structures.
But for surfaces and thin flms this translational svmmetnr is lost. If we are dealing
with a (001) surface, there still exils a remnant translabicnal symmetry in the x-v plans,
while that in the =-direchion is lest. Therefore cne can shill talke advantage of this planar

1



Chapfer 1. A brief overview of theoretical studies of surfaces and thin films 2

svmmetry and use the Green funchicon techniques. Alden ef ol 1992 havre utilized the terc-
dimensicnal pericdicity on Hat sudfaces to deal with a tvo-dimensional reciprocal space
while treating the direction perpendicular tothe sudface by a eal-space method.

For a rough surface(100) even this planar symmetry is lost . In such a scenaric
wea cannct afford the comfort of reciprocal space based methods. The real space bosed
“Recursion method" (Haydock ef al 1972, Hmydeck 19800 is an alternative |, as it doss
not tale recourse to any translational svmmetor

In chapter 2 we have first carried cut TE-LMTO super cell calculakions for crdered thin
films . Then we performed a real space recursion with the TB-LMTO =super call Hamilto-
nian. We hawe caleulated the crbital( f-m-m,) resslved Local density of States(LDOS) and
magnetic moments for different lavers of the thin film. We obtained surface enhancement
of magnetic maoment for body-centered cubic Fe(100) and Cr(100), face-centerad cubic
Cof 1007, Mi(100), Mi(110) and IMi(111), hewagonal closed-pacled Cof100) nine-lorered
thin films. Our results | Chalkraborty ef al 2003, Chalaaborty ef al 2005) mabched well
with the existing results. In addition, cur {f-m) resclved moments and | f-m-m. ) resolved
charge revealad some interesting facts (Chalaaberty of 2l 2005). We found that all the
d-orbitals do not contribute to the surface magnetic enhancement | on the contrarn: the sur-
face magnetic moment of some d-arbitals are suppressed (in some cases lile face-centerad
cubic Mi{100) and IMi{111) surface)In fact it is the way in which the electronic charge
redistributes among the different d-states, that determines their confribution to the sur-
face enhancement. The s and p states in some cases (lile face-centerad cubic IMi( 100 jand
hexagonal closed-pacled Co(100) where the enhancement is fesble) facilitate the surface
enhancement. We also obserred a Frrede! like cecillation in the charge and magnetic mo-
ments of the lwrers of thin Ailms. We have also applied the recursion methed to see howr
different types of roughness affects the sudace magnetismin IMi{ 100) and Fe(100 ) surfaces.

Substituticnally disorder is a commeon cocurrence in the feld of matedals and is of
immense imporbance, both from the pont of wiew of phisics a5 well as technology, Par-
tial discrder is ancther form of substitutional discrder where some of the sub-lattices are
crderad while others are discrdered. This generally oocurs when we are slightly awoe
from stoichiometrv(example CusAn ). In chapter 3 we have dealt with the partial disceder
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in bulk and thin Alm(100) of CouFr_Cry_ _Al a doped quaternary Heusler allew in 12,
phase. The Heusler compounds are of great technological impartance as thev are poten-
tial candidate for application in spintronics, since many of them exhibit the property of
haltmetallicity. For partially discrdered bulle, thin flms and surtaces of CoeFr.Cr Al
we hawve emploved the augmented space farmalism (Meclerjee 1973) in conjunction with
TE-LMTO super<ell calculation. The augmented space theorem which caloulates config-
uration avernged quantities , is cne of the most elegant methods to do the conhguration
averaging in discrdered svstems.

In chapter 4+ we have studied the effect of electron-phoncon interaction in ground
state for chemiecally uniform and albernating 1-d labtice and a trilavered thin flm( 100}
in real space. We have achieved an excellent matching with the ground state K-space
results( Chalaabarti ef al 2006, Bonea ef al 1999) for the uniform 1-d lattice and then
we hoe applisd cur real space methodology o study the ground state slectron-phonon
interactions in a chemically alternating lattics and a trilorered thin Alm. The adwmntage
of the real space method is that, it can be applied to cases where one cannct do reciprocal
space calculations.

1.2 HReview of the basic theoretical tools.

In the following two sections we shall review the two bosic theorstical tods we shall use
subsaquently in the course of all our worl: © the density functional theorr and the linear
muffin-tin orbitals methed. In the nenxt tero chapters we shall tale the cutcomes of thess
tero methods and medify them to suit cur problem at hand .

The cohesive, elactronic, optical, magnetic and superconducting properties of solids
are dominatad by the behmwriour of valence eleckrons mesring in the fisld of the ion-cores
of the constituent atoms. Ion-cores are the nuclel together with the core electrons which
do not participate in bonding in sclid. This manv-body problem is impossibly difficult
to solve without introducing simplifiing, but reascnable approcdmations. Explanation of
different properties of the solid equires different lewels of sophistication in the treatment
of electron-electron correlations.

One level of sophistication is the density functicnal thecry (DFT). The DFT is a
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self-consistent feld approdmation which reduces this many-bedy problem to essentially
a one-aeleckron cne and has been the basis of the band theory of sclids. Ik has prosed
to be immensely successful, especially in the physics of metals and semiconductors. It
provides us with the most handy hrst-principles technique to verify, ns well s predict,
the properties of materials with quantitative accuracy. Today it is possible, for ecoample,
to calculate total energies of solids with ro 50-100 mHBaxd. accuracy, so that we may

investigate surtace reconstruction, interface relasmbion or bond formation with conhdence
(Das 1993). The developments of band structure metheds have been well documentad.

Dur aim here is to review the energy band description of sclids based on the density
funchicnal approach which maps the ground stabe of an inkeracting electron gas onbo the
ground state of non-inkeracting electrons that experience an effective potential. The meost
crucial term in this effectivwe potential is the exchange-correlation potential whese origin
lie in the quantum mechanical and slectrostatic interactions between the electrons. One
electron band structure methods, where this exchange-correlstion term is trested in a
mean-feld sense is surprsingly successful in vielding the correct ground stabe properties
of alarge wariety of solids that are of interest in maternal science have been recently tackled
with chemical accuracy. To o limited ectent, it i5 also successful in descrnbing single
particle excitations due to prodding the materials with photons, electrnc and magnetic
field, temperature etc. | although there are limitations of band theory in explaining
strongly correlated phenomena.

We shall concentrate on the Keorringa-Iichn-Restocker (IR} scattering approach
to band structure and its linearized version : the linear mufiin-tin orbitals technique
(LMTO). The advantages of the technique are :

(a) it leads to the Hamiltonian and cverlap matrices with smallest rank and hence fastest
from the computational point of view, in particular in dealing with complen: solids
with many atoms per unit osll

(b) it is possible to define a localized basis such that the Hamiltonian can be recast in
a tight-binding form which can be solwed in meciprocal as well as real space. For
handling non-pericdic systems where kis no more a good quantum number and real
space methods are extremely important.






