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Synopsis

We have done a systematic study of dynamical behavioursrdinear chaotic systems under memory mod-
ulation. Control and enhancement of chaos have their agiits in real systems. For last two decades it
has been a field of active research. However memory modnlhge recently been recognised as fiactive
method of chaos control and our work indicates the richné#isi® method. Dynamics of chaotic systems
are usually governed by system parameters. We propose timkthre system parameter(s) according to the
past and present states of the system. We have shown systeatdeto show much richer dynamics under
memory modulated control. We started with memory modulgsedmeter control in one dimensional maps
and moved to higher dimensional discrete maps. We have ntigite modification of our prescription to
apply this method to more realistic continuous dynamicateyps.

Our choice of delayed feedback modulation makes the dyrsaofione dimensional (logistic) maps non—
Abelian, and since the choice of (noninvertible) map depardthe history, the system is deterministic and
also non-Markovian. These new features give rise to novehdycal features. The zones of dynamical
stability have a complicated and hierarchically organiggdcture.Our main method for understanding the
organization of periodic orbits in such driven systems istlgh a generalization of the results of MSS for
the organization of periodic orbits in unimodal maps, andsivew how this scheme helps in rationalizing
the diferent periodic orbits that can arise in the driven systenaddition, we find that there are non—-MSS
periodic orbits, namely the stabilization of “forbiddenihieraries for periodic orbits which results from the
choice of delayed feedback forcing.There also appear t@ediens in parameter space where there are no
periodic windows and our preliminary studies of the dynantiere have revealed a peculiar characteristic of

the attendant tangent bifurcations. Although they aréditiType-1, owing to the interplay of two dierent



mappings in determining the dynamics, the actual mechafittse re-injection process leads to the scaling
exponents being quite fiierent from%. When applied with little modification memory dependent coint
enriches dynamics of one dimensional maps to greater ext®atintroduce a single step memory depen-
dence in the fully chaotic logistic map. However, we show thausing composite functions to define two
one dimensional maps, it is possible to obtain some analysialts for the bifurcation structure. Numerical
results support the calculated bifurcation scheme and dgitiad yields a further insight which allows the
calculation of convergence ratio for a new period addingiade. It can be shown that the convergence ratio
can be calculated in the similar way for any quadratic magdlanaps. It is also shown that the mechanism
of period adding bifurcation is quitefeierent from the dynamics of piecewise continuous maps whenieg
adding phenomenon is quite common.

The mechanism of period adding bifurcation is explainedemwith the analysis of two dimensional dis-
crete Lotka-Volterra system. We have shown that the perdlihg bifurcation is an outcome of interplay of
chaotic dynamics with ordered (periodic) dynamics. We &n@vn when the dynamics with of positive and
negative Lyapunov exponents get coupled, period addingrecd\eimark-Sacker Bifurcation is observed
in this two dimensional discrete system. As the system par@nthanges the system moves from invariant
curves to chaotic bands. Center manifold theory is usedptagxthis scenario. Invariant curves are coupled
with chaotic bands to ensure period adding bifurcation smt®ccur with weakly stable attractors. Attrac-
tors with suficiently large negative Lyapunov exponents cause periothgdufurcation as it couple with
chaotic ones.

Single-step memory dependent parameter modulation wasfietbtb fit into dynamics of continuous sys-
tems. Memory dependent delay feedback was used in steadgbé-sitep one. This modulation is shown to
have great fect on continuous dynamical systems in controlling theapynov exponents. Limit cycles are
shown as a outcome of quantization of delay time. We hope ouk wontributes to the ongoing research
of control of chaos and consider memory modulated parancetgrol as a standard method of controlling

chaos.
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Chapter 1

Control of chaos in dynamical systems

1.1 Introduction

The concept of chaos has been introduced into science quite recenthg seventies. Chaotic
systems provided researchers with a new tool for modelling the uncertalmty wiffers from the
classical probabilistic concepts. Chaotic motions are modelled as the solutatsoninistic non-
linear diferential or diference equation with floating frequency and amplitude.

The attention of many physicists, mathematicians and engineers was drawrstodpef chaotic
systems by the paper by D. Ruelle and F Takens (1971) who coined théstearmye attractor’
for chaotic attractors (1), and by the paper of T. Li and J. Yorke %19vho introduced the term
‘chaos’ (2). Serious investigations of a similar complex dynamics werepeed in the former
soviet union by A. Kolmogorov, Y. Sinai, V. Arnold, V. Melnikov, Yu. Neima L. Shinikov and
A. Sharkovsky in the 60s-70s. Later chaotic phenomena was discbwesnormous number of
systems in mechanics, physics, chemistry, biology etc. Chaotic models wergeekto be useful
for financial time series prediction and for training. Moreover such modete also found useful
in the study of neural networks and genetic algorithms.

From the point of view of control, chaotic systems are a particular clasgmfnear dynamical

systems having irregular oscillating solutions. Control of chaos can b&dmeyed as a subarea of

11



1.1. Introduction 12

controlling the nonlinear oscillatory systems. However problems of the daftahaos have cer-
tain distinctive features. The most important of them was pointed out by ECO@Grebogi and

J. Yorke (3). They showed that the trajectory of chaotic motion can bedumnio periodic one by
means of arbitrarily small control that stabilizes the inherent periodic orbftat concept opened
new perspectives both in natural sciences and in technology and alsteahiia avalanche of re-
search in this area.

One of the reasons for interest in the control of chaos is the wide rdritgepmtential applications

covering the entire area of science and technology. We will illustrate lbene sf these.

1.1.1 Mechanics and mechanical engineering

A variety of oscillatory as well as synchronization problems for mechasigstiems arises when
one intends to design a vibration equipment. The control of a ship becomegamipehen it rolls

and the rolling is &ected by lateral ocean waves. The motion of the ship can exhibit chans eve
for waves purely periodic in time due to the nonlinear dynamics of the ships i problem

is to decrease the amplitude of chaotic oscillations under disturbances. éwgia low level of
control is admissible. The problem of suppressing vibrations, which eantérpreted as damping
the system to bring it down to a desired energy level, is of a similar nature.

Techniques of creating or suppressing chaos can be applied in washagtgnes. It is known that
washing may be accelerated when the angular velocity of the rotor is oscillatflogeover the
desirable kind of oscillations is chaotic due to the fact that the chaotic chandke rotor speed

provide a better mixing and a better dissolving of the detergent.

1.1.2 Electrical engineering and telecommunications

Till recent years, investigations were mainly concerned with periodic ooil& (4). For many
years the chaotic modes were either overlooked or considered to bsinatdkee Van der Pol and

Van der Mark (5) made the brief remark “Often an irregular noise is heatte telephone re-
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ceiver before the frequency jumps” and never discusses the issherfHowever during last three
decades, the interest in chaotic oscillations within the theory of circuits rsetrdously. The most
popular applications of chaos lie in the field of telecommunications.

A few ways of using chaos for signal storage of transmission werertespan (6; 7; 8; 9; 10).
Chaotic signal are used as the carrier instead of periodic one. To ré@Bzelectrical circuits of
transmitter as well as receiver need to be synchronized. Many techofigoatrolling periodic sig-
nal fails in synchronizing chaotic one; hence new ways of controlling@€lsggnchronization were
developed. Synchronization of chaotic system has its application in the fietgpiography (11).
One of the first experiments on controlling chaotic oscillations was devotednivot of lasers,
where the system consisting of neodymium-yttrium-aluminium-garnate laserfaggugncy dou-
bling crystal was considered (12). At the high levels of input power ttenaity of the laser output
power fluctuates chaotically. With the feedback algorithm proposed by, ithenlaser can be driven
into periodic mode. Later many successful experiments on chaos coat®ldeen performed by
different kinds of laser source (13; 14; 15; 16).

Another important field of application of chaos control is power systemssé&lsystems under
certain natural stress fall into ‘crisis’ which can be controlled using st@mtrol methods (17).
Electrical generators in power systems can be controlled by broaderenajttiaction region of
the normal operation mode. Control of irregular oscillations of the outputhiaed through the

method of transient stabilization.

1.1.3 Chemistry and chemical engineering

Studies of chaotic dynamics in chemistry has started with Belusov-Zhabotieaktion.Once the
existence of periodic and chaotic oscillatory modes was recognized, theidmntrolling it in
chemical reaction became quite natural. The control goal can be formaksathieving the steady
state mode of the reaction. In other cases it can be necessary to craate dscillations. In
combustion applications chaos is desirable as it enhances the mixing ofifaelitv In chemical

reaction there are fewer parameters to control than in electronic circwtprdblem of small or
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restricted control is truly practical. Adaptive control method is vefgative in controlling chemical
reactions for producing chaotic as well as oscillatory reactions.

Chaotic phenomena are already used in chemical technology. Chaotic mixmgcsfaster and
more dficient than difusion. A better mixing yields a more uniform reaction and therefore less
impurity is present in the product. This process makes the reactions mdreffeasive and is

heavily used in chemical industry.

1.1.4 Biology biochemistry and medicine.

Unlike chemistry and telecommunication chaotic oscillations have been known ltaisis for
long. The famous logistic map, whose role in chaos is that of the Hydrogemiatquantum me-
chanics, has its origin in population dynamics (18). Rhythmic behaviour isia paperty in living
organisms and it facilitates the survival and evolution of them. Chaotic rhyénenalso quite com-
mon in biological systems. These systems are pierced by positive andveeigatibacks which
make them suitable for control purposes.

During the last two decades research in biochemistry and molecular bicdagyained much atten-
tion. Models of molecular dynamics are based on Hamiltonian formulation aricb€orethods for
the Hamiltonian systems are of much importance. These methods are applieat¢éoos@llations
in bio-molecular structures and also to synchronize oscillationdliardnt parts of the structures.
The potential applications in medicine include treatment of cardiac arrhythrdig@thological
brain activities. These motions are primarily chaotic and treatments are peddsy enhancing
chaos. Both theoretical and experimental results on controlling cardygmmk (19; 20; 21) and

brain rhythms (22; 23) were reported in the literature.

1.1.5 Economics and finance

The existence and importance of oscillations in economic activities have hdely wecognized
since 19" century. Quite recently an interest in models of nonlinear dynamics and ease in

financial studies. Though far less attention was paid to the prediction awblcof those economic
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activities. Recent studies showed that the dynamics of many financial tirae seloetter described
by chaotic models than by conventional ones based the Brownian motioP5R4;haos theory and
neural networks has become very important in studying modern finaneaiythWe can forecast
an increasing significance of economics and finance as a new markle¢ foontrol of oscillations

and chaos.

1.2 Methods of chaos control

The presence of chaos in physical systems has been extensivelysteatezhand is very common.
In practice, however, it is often desired that chaos be avoided. Incasst we expect the systems
to show nice periodic behaviour. For last two decades there has bissier research on control-
ling chaos and numerous research papers were published. The medrofling chaos started with
the seminal paper of Ott, Grebogi and Yorke (3).

The processes of controlling chaos in dynamical systems can be divigeidlilowing three main

categories.

1.2.1 Stabilizing unstable periodic orbits

This method was suggested by Ott, Grebogi and Yorke and addresdelidiveng question:“Given
a chaotic attractor, how can one obtain improved performance and addaiecting time-periodic
motion by making onlysmalltime-dependent perturbations in accessiblesystem parameter?”
When controlling goal is only to make small perturbation to the system to acldguéar dynamics
then itis hard to create new orbits; generally they require stronger patioins. A chaotic attractor
typically embeds within it an infinite number of unstable periodic orbits. By propatrol small
perturbation can move the chaotic dynamics to one of the unstable period& drhe parameter
is controlled in time such that it stabilises the intended unstable periodic orb@)Ume method

is very general and can be applied to variety of situations.
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It is important to note that this method is morffeetive in the presence of chaos. As chaotic
attractors embed infinite numbers of unstable orbits small parameter pertorbatictabilize one
of the number of dierent orbits. For non-chaotic attractors the system improvement is limited as
periodic orbits are limited to that specific system.
The prerequisite to apply this method to control chaos is that the dynamici@ugiof the system
should be known.

dx

o =Fxp) (1.2.2)

p being the controlling parameter. Even if the dynamical equations descritergygtem are not
known, but the time series of some scalar dependent var#dt)lean be measured the chaotic

attractor can be reconfigured using delay coordinates.
X(t) = [«t), z2(t = T), z(t — 2T),...,zZ(t — MT)] (1.2.2)

As control of chaos often leads to making the system fall into periodic oXbitsEq(1.2.1) is used

to find out the Poinc&r surface of section. Each rotation maps to a point in that section. From this
map a humber of unstable orbits can be determined (26). After that pargmeterbe perturbed to
stabilize the system to the intended UPO.

Let us start with the simplest period one orbit, higher dimensional orbits eagxplained as a
generalization of the same procedure. Period one orbit acts as a fixe@dpaohe Poincdr section.

Let A5 and A, be the experimentally determined stable and unstable eigenvalues of theesafrfa
section map at the chosen fixed point. The |[< 1 <| 4, |. Letes ande, be the experimentally
determined unit vectors in the stable and unstable directions. Without lossefaity we can take

p = O for the fixed point. 1&; denotes the'l fixed point on the Poincarsurface then for fixed point

& = &n = 0. Then slight change gf to p we can approximate

sen(p)/oplp = 0= pien(p) (1.2.3)

Png + [Aueufu + Asesfs].[€n — Pnd] (1.2.4)

(e}
Il

1R

§n+1
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p is rewritten aspy, to associate it with nth section. The choicemfis such that,, falls on
the stable manifold of = 0, i.e. f,.é&n1 = 0. If &1 falls on the stable manifold then parameter
perturbation can be set to zero, and the orbit for the subsequent timgmpibiach the fixed point

at a geometrical rates.

1.2.2 Control by feedback

The method suggested by OGY is veiffi@ent and has been successfully applied to some exper-
iments (27; 28). An experimental application of the OGY method requires tincons computer
analysis of the state of the system. The changes in paramaterdiscrete in time since the method
deals with Poincd@& map. The parameter modulation is applied as the trajectory of the system
crosses the Poindgamap. The OGY method can stabilize only those periodic orbits whose maxi-
mal Lyapunov exponent is small compared to the reciprocal of the time ihteetimeen parameter
changes. Since the corrections of the parameter are rare and smallcthatitin noise leads to
occasional bursts of the system into the region far from the desireddpedtoit, and these burst
are more frequent for large noise.

Pyragas (29) suggested the idea of a time-continuous control to ovethsnpeoblem. With small
perturbation UPOs can be stabilized with continuous feedback control.

In the following two methods of continuous control in the form of feedbaeksaiggested. Both
methods are based on the construction of a special form of time-contipadusbation,which does

not change the form of the desired UPO, but under certain conditioiliztah Feedback can be
external as well as internal. In the first method a combined feedback whadjr external force

of a special form is used. The second method is based on self contralianged feedback.

External force control

Let for us consider dynamical system Eq(1.2.1). We imagine that the explicitof the equation is

unknown but some scalar varialylg) can be measured as a system output. If the system is available
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for external inputf (t) then we can divide the system into following subsystems

dx

F = P(X,y) (1.2.5)
dy
i Q. y) + (1) (1.2.6)

The vectorx describes the remaining variables of the dynamical system that are négmafsin For
simplicity it can be taken that(t) disturbs only the first equation, corresponding to the output value.
For no external forcef((t) = 0), let the system have a strange attractor. Dynamics of the system
as well as large number of distinct UPOs can be found by constructing detadinates (1.2.2).
From the experimental output signgl) various periodic signay;(t) can be determined. where
yi(t + Ti) = yi(t) andT; is the time period for'f UPO.The diferenceD(t) between the signaj(t)

and the output signal is used as control signal.

f(t) = K[yi()] - y(t) = DY) (1.2.7)

where K is an experimentally adjustable weight. This perturbation feeds ingy#tem a negative
feedback foK > 0. The important feature of the perturbation is that it does not changelttés
of Eq(1.2.5) corresponding to the UBQ) = y;(t). By selecting the weight K stabilization can be

achieved. Near the stabilization weight only a small external force is edjtorstabilize the UPOs.

Delayed feedback control

The complexity of the experimental realization of the above method is mainly in gigrdef a
special periodic oscillator. The second methods works pretty well to ststlras. In this method
the external signay;(t) in Eq(1.2.7) is substituted for the delayed output sigiied 7), wherer is

the delay time. The perturbation cam be written in the form

f(t) = KIy(t - 7) - y(t)] = kD(t) (1.2.8)
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Now when the delay coincides with the period of the ith UPOT;, then the perturbation becomes
zero for the solution of system Eq(1.2.5) correponding to this WRO= yi(t). So perturbation in
this form also does not change the solution of the system correspondihdtBO. Like the earlier
method choice of an appropriate K leads to stabilization of the desired UPMisAmethod does

not depend on the external signal it is much simpler to realize this system.

1.2.3 Control through periodic perturbation

The inherent irregularity of chaoic dynamics and its strong sensitivity tugmtion sometimes
lead us to believe that such dynamics cannot be destroyed by means loexteanal forcing.
Moreover, the notion that the existence of three incommensurate freqsémeiesystem can gen-
erally lead to chaos hardly suggests that the addition of an externallyqaddequency will have
controlling dfect on chaotic dynamics. In the previous section we saw external feledbatrol
can tame chaos. Even without the presence of feedback chaos cantimled with the presence
of small external periodic forcing. Chaotic attractor embeds infinite numb&s®0s. Like earlier
section Poincdr surface of section can be generated for the surface of section. eQfothcae
section a D-dimensional continuous dynamics can be represented ada pegsented as a D-1

dimensional discrete dynamics. Colse to a UPO an unstable limit cycle can bé&nhbge

whered > 1, < f, >= 0, < fn2 >= 1; we can takef, to be harmonic. Angular brackets denote
the average over n. When= 0 the fixed pointxx is clearly unstable. For finite the Lyapunov

exponent; corresponding to the map (1.2.9) is

n=Re<In(A+efy) > (1.2.10)

For smalle,

n=1In1-&2/2% + @) (1.2.11)
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When A%2In1 < &2 the Lyapunov exponent in negative which impliesis stable. Even when
A2InA > €2, the forcing has anffect of reducing the Lyapunov exponent. Resonant interactions can

further dfect the stability of these cycle.

1.2.4 Control through synchronization

Synchronization of two identical chaotic system has been proposeddoyaPand Carroll in 1990.
Later many other processes of synchronization are proposed. Afrigimet al. investigated the
possibility of some dterent types of synchronization where the parameters does not mateh. Th
idea was developed further by the works of Rullatval. (30; 31) and Parlitzt al. (32). This
generalization of synchronization of chaotic system leads us to contcbbafs of response system.

We consider an n-dimensional dynamical system
u = f(u) (1.2.12)
the system can be divided into two subsystemsy,w)]
v =g(v,w); w=h(v,w) (1.2.13)

wherev = (Ug,...,Um), g = (f2(u),..., fn(U)), W = (Umi1,...,Un) andh = (fne1(u), ..., fa(u)).
Now a new subsystem’ can be created identical to thesystem by substituting the set of variables
v for the corresponding’ in the functionh and the previous equation can be augmented with the
new system

v =g(V,w); W=hv,w); W =h(v,w) (1.2.14)

The subsystem componentsandw’ synchronize only ifv’ — w ast — co. In the infinitesimal

limit this leads to the variational equations for the subsystem;

& = Dyh(v, w)é (1.2.15)
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where Dyh is the Jacobian of they subsystem vector field with respectwoonly. This equa-
tion leads to the calculation of the Lyapunov exponents of the subsystesmeckin literature as
conditional Lyapunov exponents. If the largest conditional expoisenegative both subsystems
synchronize.

In this analysis parameters of both the subsystem are taken to be identiadl;iwpractical sys-
tems are often not true. It can be shown that if the parameters of thesseivsydifers slightly then
also both system synchronizes.

The generalized version of synchronization suggests that for twademical systems (e.g. two
Lorenz with diferent parameter values) there may exists a smooth functional depeilancen-
nects the overall nature of both the system. If two chaotic dynamical systergsmerally synchro-
nized and the drive system is non-chaotic the response system care alsa-Johaotic (for certain

range of parameters ) though it should be chaotic for its own parameter (&3)

1.3 Discussion

A nonlinear system with chaotic behavior is very sensitive to initial conditipagjcularly in the
system with large Lyapunov exponents (34). A tiny error may lead to fadfitke control pro-
cess when its errors are amplified exponentially with time. Such errors cantrbduced by the
linearization of a nonlinear system, the inaccuracy of experimental measateand the noisy en-
vironment. A number of presented methods modify control parameters ackeeriod of Poincér
map (3; 38; 35; 36), and the stabilization can be realized only for sudbdierorbits whose
maximal Lyapunov exponent is smaller than the reciprocal of the time inteetalden parame-
ter changes. For the control system with large Lyapunov exponenglordnder unstable periodic
orbits, the tiny errors may ‘kick’ the system state out of its controllable regibime fluctuation
noise leads to occasional bursts of the system into the region far fronesired periodic orbit, and
these bursts are more frequent for a large noise. Therefore the fidefusting the system state

more frequently than once each period T (35; 37), and the idea of a tintawgous control seems
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attractive in this context (29).

Pyragas have proposed two methods of permanent chaos control wiidildisie-continuous per-
turbation in the form of linear feedback (29). The stabilization of unstabt@gic orbits (UPOs)
of a chaotic system is achieved either by combined linear feedback with ¢hef asspecially de-
signed external oscillator or by delayed self-controlling linear feedhattlout any external force.
They have calculated the maximal Lyapunov exponent of the UPOs usitigghgzation of system
to analyze the local stability of the system and to select suitable experimentpitadle weight
parameter K. Both methods are based on the construction of a speciabf@rime-continuous
perturbation, which does not change the desired UPO, but can stabilizést certain conditions.
Ushio proposed a method of chaos control for stabilizing a periodic amtieelded in a discrete-
time chaotic system based on contraction mappings in 1995 (40). The validite ahethod is
shown using a property of contraction mappings.

An open-plus-closed-loop (OPCL) method of controlling nonlinear dynagstems was presented
by Atlee Jackson and Grosu in 1995 (39). The input signal of their methibe isum of Hibler's
open-loop control and a particular form of a linear closed-loop continel,goal of which can be
selected as one of the UPOs embedded in chaotic attractor, or anothiétepsssooth functions
of time. The asymptotic stability of the controlled nonlinear system is realized bl ap-
proximation around the stabilized orbit. But the calculation of the closed-loopd signal is very
difficult in some cases, especially for complex and high-dimension chaotic systems

In recent years many more control algorithms have been proposed eritidilprevious methods
they all have their own shortcomings. While feedback methods have largengter controlling
range, practical implementation becomeiclilt for fast chaos. The feedback control chaos meth-
ods stabilize one of the unstable periodic orbits (UPOs) embedded in its catti@ator by applying
small temporal perturbations to an accessible system parameter. For sbrspééayl systems such
as chaotic circuits and fast electro-optical systems, therdtisudty in attaining real-time data of
the system parameters and variables. Similarly non-feedback basedl eoethods lacks energy

optimization. Recent research (41) based on genetic algorithm aresgpmoptimize the signal
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strength. This approach can achieve the control goal with significantlgrlpawer, ranging from

one to three orders of magnitude irffdrence.
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Chapter 2

Anti-control of chaos in dynamical

systems

2.1 Introduction

Most studies which attempt to control chaotic dynamical systems direct tfi@itsstowards con-
trolling the system to regular periodic orbits or to specific chaotic orbits (1H&wever, there have
been few attempts at control directed towards enhancing the chaoticityoficflows. This is an
important problem for its own intrinsic interest and may have practical apigiaas well. An
important example of a situation where enhancing chaos is useful, is thesgrotmixing (3; 4; 5)

. Mixing is a consequence of the stretching and folding of chaotic flowg:stesn which has expo-
nential stretching, as in a chaotic flow, can mfi@ently. Many mixing processes like fluid flows,
combustion processes, chemical reactions, heat transfer proe¢ssesn be modeled by chaotic
flows (3). An enhancement of the chaoticity of such systems can lead tthaneement of the rate
of mixing; an outcome which has desirable consequences in many of thasstso In addition to
enhancing the rate of mixing, the enhancement of chaos can be desmdhliseful also in other
situations. In the case of biological systems, there are several instingitsations where main-

taining or enhancing chaos is desirable (6) . It has been suggestéldehpathological destruction

26
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of chaotic behavior may be responsible for heart failure (7) , and sopes tyf brain seizures (8).

Techniques which are capable of enhancing and maintaining chaos eousgtful in such contexts

(9).

2.2 Enhancing chaos with parametric modulation

An important parameter, which characterizes the degree of chaos imticcaw is the Lyapunov
exponent, which gives the average rate of stretching. However, tthefratretching is not uniform
over a chaotic attractor in the case of dissipative flows or over the ppase ef a conservative flow.
Thus the local Lyapunov exponent (LLE) , a measure of the local fad&retching, is diferent in
different regions of the phase space (10) . The nonuniform nature ep#iml distribution of the
LLEs can be exploited to construct a mechanism that can enhance aithdseace, the rate of
chaotic mixing.

Let us consider an autonomous nonlinear dynamical syst@ndimensionn, evolving via the
equations

X = F(x, 1) (2.2.1)

where the set of parameteustakes values such that the trajectory shows chaotic behavior. Let
w(x, t) be the tangent vector to the trajectory at the pgiand timet. The evolution ofw is given
by

W = (W.V)F (2.2.2)

The Lyapunov exponent of the system is defined by

Lt 1w |

t=eo t || W(x(0),0) || (22.3)

wherex(0) is the value ok att = 0 and|| w || is the norm ofw. Now define the local Lyapunov

exponenti(x) as
1, [[wx(t+ at),t+at]]

A = fim N WO (2.2.4)
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The quantityl(x) represents the local rate of stretching at the paifthis is, in general, not uniform
over the attractor. Note that the Lyapunov exponeBf[2.2.3] is the average value of the LLEs for
a long orbit or can be obtainedby averaging the LLEs over the invaregity of the attractors in
dissipative systems.

A control procedure can be set up to enhance chaos and insofés asphoves mixing, the mixing
rate can be increased utilizing the distribution of the LLES. The controleplae operates in
regions where the LLEs fall substantially below the average value . dinatime, the LLE of the

system falls below its average value to the point where

AX) < (A= yok) (2.2.5)

whereoy is the standard deviation of the distribution of LLE gnid some chosen factor, the control
is activated so that the parameteis changed ta + sdu . Heredu is a small increment ansltakes
values+1 or —1 depending on which choice enhances the LLE. The system is allowealieeev
with the new value of the parameter as long as the condition Eq(2.2.5) is satiEfieteafter the
parameter is reset to its original value. To decide the sigre can write an equation far in matrix
notation in the form

W =W'MT, W= MW (2.2.6)

whereW' is a row vector and the matridT is given byMT = VF. The equation for the norm of
W can be written as

| W12= W' (MT + M)W, (2.2.7)

Thus the rate of change in the normwfdue to change in the parameter is given by

INRG

I Wi + die) 117 = 1| W) |12

~ W'(M] + M)W (2.2.8)
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where the last step is obtained by expanding to lowest ordéw emdM,, = 0M/ou . Clearly, for
the local rate of stretching to increase| W ||> must be positive . Thus the sigris determined to
ensure thah || W ||? is positive.

It must be noted that Eq(2.2.8) is written in the lowest ordedin Actually, the éfect of the per-
turbation is nonlinear since when the parameter changes the entire trajfdioeysystem changes.
Hence, the fect on the LLE can be quite ftierent from that given by Eq(2.2.8) due to tieeet of
the higher nonlinear terms. In many cases the enhancement in the Lyagpuanent turns out to
be substantially higher than that expected in the linear approximation.

The procedure used above to enhance chaos and the mixing rate asilpenedified to apply to

the case of discrete maps. For maps, the evolution equation Eq(2.2.1) caittbe as

X1 = F(xt, 1) (2.2.9)

wherex; are the dynamical variables at timeThe evolution of the tangent vectaris given by

Wiyl = (WtV)f (2210)

The control procedure is the same as above. The paramietehanged te + sdu when condition

(2.2.5) is satisfied. To decide the sigwe can write Eq(2.2.10) in matrix form as

Wi = MW, (2.2.11)

whereMT = Vf. The equation for the norm & is

| West 112= W MT MW, (2.2.12)
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Thus the rate of change in the normWfdue to change in the parameter is given by

AW | Wea1 (e + die) 112 = 1l Weaa () 112 (2.2.13)

W (MTM,, + M M)Wy (2.2.14)

where the last step is obtained by expanding to lowest ordés ind M,, = dM/du. For control
to enhance chaos and rate of mixing, the sigior the parameter changf: must be such that
All Wi, 1 |12 is positive.

Briefly, one can enhance the average rate of stretching by introdusimglaparameter perturbation
which enhances the LLE whenever the system trajectory visits a regiame wieeLLESs take values

much smaller than their average value.

2.3 Enhancing chaos by periodic and quasi-periodic perturbation

Weak periodic perturbation has been used to suppress chaos in dyrsysteans. However, Weak
periodic or quasi-periodic perturbation can also be used to induce ahaos-chaotic parameter
ranges of chaotic maps, or to enhance the already existing chaotic sthie pHrturbation is large
enough then the system goes to chaotic state in a easier way.

Transition of periodic state to chaotic attractor under weak periodic paettartis highly dependent

on the local dynamics. Chaos is more likely to occur near bifurcation poini$erBnt kinds of
bifurcations lead to dierent routes to chaotic transition. Two dimensional chaotic maps can be

expressed under periodic perturbation

Xne1 = F(Xn, Yn, 1) + £ COS(Zrwn) (2.3.2)

Yn+1 9(Xn, Yn, 1)

wheree is the amplitude of perturbation anglis the frequency of the signal. The perturbed map

with period perturbation can be equivalently described by a sgt@dfuations
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Yorei = O(Xpnsi-1, Ypnsi-1, 1)
wherei = 1,2,...,pandn = 0,1,2,.... These p maps are topologically conjugated and exhibit

analogous behaviour. For period doubling bifurcation, transition abgirorbit to chaos depends
on perturbation amplitude and not on perturbation frequency. The laviErgorbits gets multiplied
by p and gives higher periods whereas higher periodic orbits transits t@.chRapHopf bifurcation
chaotic transition does depend on frequency of perturbation as thelzitm frequency breaks
the frequency locking and hence the periodic state of the dynamical system.

The dynamics becomes more interesting as one applies quasi-periodibagotuto periodic or-
bits. For very weak perturbation low period attractors become quasidgiemo torus attractors.
As the perturbation gets stronger torus attractors goes through fratitedizad become strange
non-chaotic attractors (SNA) (11; 12). With perturbation amplitude beirggl#ite dynamics of
the system can oscillate between chaotic and SNA which fidicgntly large amplitude becomes
uniformly chaotic. In period doubling bifurcation SNA undergoes a cresd becomes chaotic
whereas for Hopf bifurcation there is a direct transition from SNA to thaatractor without any
crisis. Quasi-periodic perturbation enacts band merging of separatticch#tractor and hence

generating robust chaos.

2.4 Enhancing chaos via time delay feedback

A a natural yet nontrivial question for anti-control of chaos is whetiter can make an arbitrarily
given system chaotic or enhance the existing chaos of a chaotic systesinigysmall controls. A

positive answer can be given by showing that any given discrete-titbe@uous system of finite
dimensionality, which can even be originally stable provided that it has adealuacobian, can be

driven to be chaotic by using small-amplitude state feedback controls (L3ddwever this fec-
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tive anti-control method utilizes a full state feedback control, which may aadsirable in some
applications. Therefore, one may sometimes resort to findifigrdint methodologies as stated ear-
lier.

A system with time delay is inherently infinite dimensional, so it is known to be ableaduge
complicated dynamics such as bifurcation and chaos, even in a very singplerfier system. In
particular, chaotic behaviors are observed to exist in some defgratitial equations due to their
associated dlierence equations (15; 16). As a generalization one can approximaiensfep
between an nth-order stable lineaffdiential equation with a time-delay feedback and a suitable
discrete map. This, in turn, suggests a small-amplitude time-delay feedbacldrfathati-control

of chaos in an nth-order stable linear or nonlinediedential equation.

We consider an nth-order single-input single-output (SISO) linear tivarient (LTI) system de-

scribed by the following dferential equation:

YO + an-1y™ D) + ...+ a1y D) + aoy(t) = Bout) (2.4.1)

whereu(t) andy(t) are the input and output of the system, respecti\(ely,?;é andgg are constatnts

with agBp # 0. The uncontrolled system (2.4.1) , witt) = O therein, is therefore stable in the

sense that(t) - 0 ast — oo, where

20) = [z, 22, ..., Z0] T = [y, YD, ...,y DT

time delay feedback can be designed of the form

u(t) = wy(t — 7)) (2.4.2)

wherew is a continuous function and> 0 is the delay time, satisfying

lu)l < &, Vt>0 (2.4.3)
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for a prespecified amplitude > 0, such that the outpy{t) of the system is chaotic in a rigorous
mathematical sense.

Eq(2.4.1) can be recast in the following n-dimensional state-space form:

Z=Acz+ o beu (2.4.4)

whereA. andb; are in the controllable canonical form, namely,

0 1 0 0
0 0 1 0
Ac =

0 0 0 1
—@p —@1 —@2 -+ —Qn-1

0

0

be =
0
1

Clearly, the functional form for the map w is not unique. One simple choice is
u(t) = w(y(t — 7)) = esiney(t — 7)) (2.4.5)
which satisfies the requirement (2.4.3) . If the map
Yeor = 22wy = eosin@ry (2.4.6)

is chaotic, then we may expect that the time-delay feedback Eq.(2.4.5) cantheasutput y(t) of

system (2.4.1) chaotic provided that the delay time fidently large angg = ?.
0
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For any fixed nonzero value @ , the origin is a globally asymptotically stable fixed point of this
map, if 0< o < g9 . Aso increases and passes through the valug othe map (2.4.6) has one pair
of nonzero conjugate, locally asymptotically stable, fixed poigts> 0 andy™ = y* < 0. Aso
continues to increase, each nonzero fixed point undergoes a eadqaatiod-doubling bifurcations
leading to chaos. With an even further increase of the bifurcation paraxadte o, each chaotic
attractor increases in size. Finally, at a critical vatue: 7-, the two chaotic attractors merge into

one, still chaotic but with an almost unchanged size proportiongl.to

2.4.1 Enhancing chaos in stable nonlinear system

Let us consider a nonlinear SISO continuous-time synamical system airthe f

Y = g(y) + w(y)u (2.4.7)

whereg andy are smooth nonlinear functions t= [y, y, ...,y ]T . Lety = Ois an asymptot-
ically stable fixed point of the uncontrolled system [witft) = O therein] ands(0) # 0. There are

two ways to transfer this system into a linear system of the form (2.4.1).

Approximate linearization approach

A typical way of system linearization is approximate linearization. Supposethibamaximum
amplitude of the control input(t) of system (2.4.7) iz > 0. Since the system is stable about its
zero fixed point by assumption, for afBaiently smalle, there exists a small neighborho@df the
origin such that ify(0) is inQ theny(t) stays inQ forever. In this small neighborhodd, Eq.(2.4.7)

can be represented by its linearization, evaluated at the origin, as follows:

YO + oy D 4+ Y + agy = wou(t) (2.4.8)

where
ap(y) :
ai =~y -0 i =0L...n-1
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It follows from the analysis of the last section that the small amplitude time-de&dbfck
u(t) = wly(t — 7)) = esin(oy(t — 7)) (2.4.9)
can makey(t) chaotic within the bounded region .

Exact linearization approach

Another method for system linearization is the feedback exact linearizatxthe controller be

1

U= e (000 = vy ==y oy + w0 (2.4.10)

wherely; }{‘;01 aren constants withg # 0, such that
S+ 1S 4+ -+ 915+ v (2.4.11)

is a Hurwitz stable polynomial. Then Eq.(2.4.7) becomes

Y+ ynoay ™ ey oy = (D) (2.4.12)

which is in the same form as (2.4.1). Therefore, controller (2.4.11) Wijh= e sin(cy(t — 7)) can
make system (2.4.7) chaaotic.

Clearly, controller (2.4.11) actually cancels the nonlinearity of the origipstlesn and renders it
linear. As it stands, the controller is more complicated than the given systeieh) istphysically
impractical in most cases. However,the main purpose is simply to reformaw#hegistem into an
appropriate form by this ‘controller’ and then to create chaos by usingjnifeedelayed feedback
controller v(t) in the suitable form. Therefore, if we consider then (2.4.11) as a coordinate
transform rather than a controller, while the controlleristhen this approach is reasonable for

anti-control of chaos.
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2.5 Discussion

In applications of feedback control schemes it is generally necessangasure the system state
variables, thereby generating a control signal that is then applied to the& sigan accessible sys-
tem parameter. In practice, it is relativelyffitult to implement this class of schemes to some
high-speed systems such as chaotic circuits and fast optoelectricahsys&empared to feedback
control techniques for inducing and enhancing chaotic behavior diream systems of small time
scales, nonfeedback methods have the advantages of speed arititfleXbrthermore, on-line
monitoring and processing are not required. Of course, in order t@fipcopriate signals for con-
trol, the nature of the system dynamics must be understood a priori. Thésofle@ntrol approaches
is suitable for cases in which no real-time data or only highly limited measuremetits sfstem
state are available. A number of studies on nonfeedback anticontrolaosdiave been carried
out with various control signals, for example, constant perturbatiorisi@) , weak noise signals
(19; 20) , and weak periodic perturbations (21; 23) . A few studies hiso demonstrated the dual
function of suppressing and inducing chaos with applications of weatdpeperturbations to the
nonlinear dynamic systems (24; 25).

The non-feedback methods proposed in literature used control sigatlsithbeen assigned some-
what intuitively or arbitrarily rather than sought out based on optimizaticghesignal parameters.
In the case of using a periodic perturbation as the control signal, withe¢hedncy fixed a priori,
the amplitude for achieving the control goal can be found by simply varyingite within a range.
The signal determined in this manner is not optimal in any sense. Additionallg, rfalti param-
eter control signal, the method for determining the proper combination of tengter values is a
problem. The approach used in finding a signal able to wfii&iently in achieving a preset control
target seems significant.

Power consumption for chaotification of non-chaotic orbits can be optimigadiious methods
(26). In use of periodic signals of high harmonics, the power of the optaréagnal is not nec-
essarily reduced with an increasing number of harmonic modes, while usasirperiodic signals

of multiple incommensurable frequencies has the trend of reducing sigwak path an increase
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in the number of the modes. However, the Genetic Algorithm-optimized signalsvailode are
favorable for their simplicity andfectiveness.

Although the diferences are within one order of magnitude, the power of a quasi-pesiggtial
needed to reach the control goal is generally lower than a periodic onghgittame number of
modes.

To destabilize an ordered fixed-point or periodic state, the power esfor chaotification varies
relatively slowly at comparatively lower LLEs but increases drasticallyhaspreset value of the
target LLE reaches a certain critical value. In the case of enhanciraptwicity of a chaotic state,
required control power increases as preset target LLE increldséike that for triggering chaos in
ordered states however, here is no obvious slow-varying regioragpgen the correlation of min-
imum power versus target LLE. Performing chaotification with GA-optimizedkygerturbations
demonstrates that further enhancing the chaoticity of a chaotic state neetlsontrol power than

triggering chaos in an ordered state, either fixed-point or periodic state.
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Chapter 3

Control end enhancement of chaos

through memory dependent feedback

Chaos is omnipresent in nature. For a nonlinear system of more than tweedeay freedom, it is
chaotic whenever its evolution sensitively depends on the initial conditiomshdvhatically, there
must be an infinite number of unstable periodic orbits embedded in the undeclyaotic set and
the dynamics in the chaotic attractor is ergodic. Physically, chaos can be fioumonlinear optics
(laser), chemistry (Belouzov-Zhabotinski reaction), electronics é&¥atsumoto circuit), fluid dy-
namics (Rayleigh-Bnard convention), meteorology, solar system, and the heart and blaing
organisms. As chaos is intrinsically unpredictable and its trajectories diwxgonentially in the
course of time evolution, controlling chaos is apparently of great intenglsinaportance. Ott, Gre-
bogi and Yorke (1) proposed a successful technique to controtllovensional chaos. The basic
idea is to take advantage of the sensitivity to small disturbances of chadiors/ stabilize the
system in the neighborhood of a desirable unstable periodic orbit natarabgdded in the chaotic
motion. Pyragas (2) proposed a mofkaent method which makes use of a time-delayed feedback
to some dynamical variables of the system. Control of spatiotemporal chaastial diferential
equations was also considered (3; 4). As an alternative method of Laritams synchronization

was pioneered by Pecora and Carroll (5). The theory and applicdtaaotic synchronization has
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been extensively studied (6) in various research directions, for icestatectronic circuits, laser ex-
periment, secure communication, biological and chemical systems, shdckieg{7), and wake
turbulence (8). Synchronous stability was studied by Pecora andlid&yrand Yang et al. (10).
The stability of the synchronous state can be understood from the eigerdiatribution of the
coupling matrix of a nonlinear system.

As opposed to the mainstream of controlling or eliminating chaos in dynamidahsysanti-control

of chaos, which means creating chaos when it is beneficial, has alsdeattsamtne growing inter-
est. This is due to some desirable features of chaos in some timer andrgy-critical applications
where chaos can provide a system designer with a variety of spec@nties, richness of flexi-
bility, and a cornucopia of opportunities. Recent studies have showicliaat can be used for a
variety of applications such as information transmission with high poftieiency (11), generating
truly random numbers (12; 13), and novel spread spectrum (14widte bandwidth (15; 16), and
optical (17) communication schemes. Examples also include liquid mixing, huraemamd heart-
beat regulations (18; 19). It is expected that chaos research inesmigig will eventually reach the
point where it will lead to improved and refined design procedures lieigad designer to design a
system to be either chaotic or nonchaotic at will.

Numerous methods have been suggested to control and enhance ttimsgymamical systems.
OGY method is one of the most popular methods to control chaos. Howevendittiod has some
drawbacks as it deals with the Poinganap. The method can stabilize only those periodic orbits
whose maximal Lyapunov exponent is small compared to the reciprocakdfntie interval be-
tween parameter changes. A mofeeetive method of time continuous control was suggested later
by Pyragas. Pyragas suggested two alternative methods of chaad.cQitaotic systems can be
stabilized to a periodic orbit by the application of small additive externakdris an alternative
method it was suggested that this external drive can also be taken ay &edellback.

Here we present anfiierent method for chaos control. In general delay feedback dementise
difference in state variable inftkrent times. It is applied with some external coupling. We show

this delay can also be memory dependent to control chaos.
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Poincaé maps and stroboscopic maps are quite useful tool to analyse chaaos.i€hassible only

in systems which have dimensions more than two. However stroboscopic mapmbles us to
make a time slice of equal interval and theeetive system is a discrete time dynamical system of
lower dimension. This low dimensional discrete systems retains the main aspeté®tic dynam-

ics and are easier to analyse. For this reason analysis of this discrete tia@idsl systems or
maps are very important in the study of nonlinear dynamics.

In the fourth chapter we discuss th&feet of memory dependent feedback in one dimensional
guadratic maps. In discrete system delay feedback is translated asmestepy dependent feed-
back. We are interested in one step memory dependent feedback asrengpaerated by strobo-
scopic mapping and the step width can be adjusted by estimation of return timesyfsteen. In
the fourth chapter we show the change of dynamics in logistic map with the applicd memory
dependent modulation of the system paramet&he system not only becomes periodic for a larger
range of the system parameter it also depicts richer dynamical struc@nises and period incre-
menting bifurcation are among the new features in the bifurcation diagramridddere window
emerge through intermittent transition which lead to non-standard type-| intemoyitteith expo-
nent O [in stead of the standard exponeé]

In chapter five we look into the interplay of chaotic and periodic dynamics iw aememory
modulated control. Under memory modulation one dimensional sydfiettigely behave as a two
dimensional one. We take logistic map again as our model system but coetidtem such that
one part of the dynamics always remain chaotic; the other part move feaodgr to chaotic state.
The most interesting dynamics of this system is period adding bifurcation. s€higario is also
different from border collision dynamics which is very common underlying ohyos for period
adding bifurcation. We show an elaborate analysis to explain period adiiimgation and a a uni-
versal period adding exponehis calculated for quadratic map. We apply the negative algorithm to
the system to show that the same formulation with positive feedback cananblagos to a great

extent.
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We move to higher dimensional discrete system in chapter Six. In ecologg dne some
species whose population goes from generation to generation, for Exaggpsy moths or any of
many other species of insects. These topics are usually modelledférede equations, iteration
map or discrete dynamical systems. Instead of looking to stroboscopic rhigher dimensional
chaotic systems we take the discrete version of famous Lotka-Volterrdgtigpumodel. We exam-
ined the fixed point dynamics and bifurcations of this dynamical system a&estigate theféect of
memory dependent feedback on it. The system undergoes Neimar&rS®sfciccation, fold bifur-
cation and flip bifurcation as flerent stability relation is satisfied between the system parameters.
Interestingly we find such memory dependent feedback can lead to peliay dynamics also in
two dimensions. Further investigation confirms our speculation that interptdnaos with periodic
dynamics leads to period incrementing bifurcation.

As a natural progress we move from two dimensional discrete dynamisi&nsg to three dimen-
sional continuous time system. In chapter seven we analyse the system witlotittmeious delay
feedback. Keeping analogy with memory dependent feedback we modifyatameter with mem-
ory dependent continuous time delay. We first apply it to damped harmaiitats and show that
the damped oscillator can be modified to a limit cycle with memory delay feedback. tyaid
only occurs for some discrete values of delay. Tliisaive method is applied to three dimensional
rossler system and we analyse and predict the values of the delay Heetledformation of limit

cycle.
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Chapter 4

The phase—modulated logistic map

4.1 Introduction

Chaos control has been an ongoing theme of research in nonlineanidgreince the early 1990's
(1) when it was realized that small parametric perturbations could stabilizedeorbits embed-
ded within chaotic attractors. The sensitivity to initial conditions that is chanatiteof chaotic
dynamics can, depending on the circumstance, be either wanted or asirah#edynamical fea-
ture. Thus both theoretical and practical considerations have bgemeaile for the interest in the
area, resulting in a large body of work orffdrent methods for ensuring a desired (usually periodic
or stable) motion in a nonlinear dynamical system. A variety of techniquesb®am employed,
many of which have been realized in practical applications; several g the&ve been reviewed in
detail (2).

One of the most powerful methods for chaos control is through feed&tabidization (3). It
is widely recognized that feedback, as a general principle, igfariesit means of ensuring stable
behaviour; this has been widely used (4; 5). (Linear feedback sysiawesalso been studied in
the context of dynamical systems theory (6).) Another common techniqueirolling chaotic
motion is by modulation of the system parameters: by judiciously varying paresnétes often

possible to drive a nonlinear system into a desired dynamical state (2).
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By combining both delayed feedback and parametric modulation it is possibéviwed/ersa-
tile methods for chaos control and in the present paper we study a sim@mabal system wherein
both these aspects are included. This is the logistic map where the nonlineasitygier is modu-

lated by linear feedback,

Xnt1 = (@ + & SgNKn-1 — Xn))Xn(1 — Xn). (4.1.1)

The quantityp = sgnf,-1 — Xn), termed an instantaneous phase (7), has been used in previous work
to detect order within chaotic dynamics (7; 8; 9). The use of time—delaythbagell-known &ect
of increasing the dimensionality of the problem. Thus, the above driveandigal system can be

rewritten as a two—dimensional map,

(a + & sgnfn — X)) Xn(1 — Xn) (4.1.2)

Xn+1

Yni1 = Xn, (4.1.3)

although, as we argue in Section 4.2 below, the dynamic§féstevely 1-dimensional, and the

system can be more easily studied as the mapping(s)

Xn+1 = fr(Xn) = (@ = &)Xn(1 - Xn) (4.1.4)

with f, or f_ being chosen dynamically, namely in a history—dependent manner. This riteke
dynamicsnon Abelian sincef, (f_(x)) # f_(f.(X)) for nonzerce.

This non—Abelian character gives rise to novel dynamical behavioishvigdescribed in detalil
in Section 4.3 of this paper. In the following Section 4.2, we first discuss tlienand argue that
analysis in terms of 1-dimensional maps can adequately explain fiieeedit dynamical regimes.
We obtain a phase diagram of the system under variation of the parameieds; its main features
can be understood through a generalization of the kneading theoryifoodal maps developed

by Metropolis, Stein and Stein (MSS) (10). This theory, which takes intowddtinerary shifts
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between map$, andf_, is presented in Section 4.4. Because of the history dependent nathee of
dynamics, the intermittency found near specific tangent bifurcations exhititstandard scaling
exponents, the origin of which lies in the details of the dynamics (11), assdisdun Section 4.4.
One additional motivation for studying the specific form of modulation whicliches the non-
linearity parameter betweenffirent values is that it can be implemented quite easily using digital
outputs (6; 12). In the concluding Section 4.5 we outline a simple circuit-bageetimental real-
ization of the proposed feedback modulation. There have been relatied stdies of the logistic
map where similar parametric modulation has been studied both for periodit3jldnd stochastic
(13) drives, although without feedback or delay. The analysis usesidould find application for
other similar forms of driving, and we conclude this paper with a discussidrsammary of our

results.

4.2 Phase—diagram under modulation

We examine the behaviour of typical orbits of Egs. (4.1.2-4.1.3) as a funcfithhe parameters. The
dynamics for the case aef = 0, when the system reduces to the unmodulated logistic map is well
understood. For smad, the nonlinearity parameter undergoes slight variation, and the dynamics
can be either periodic or chaotic, depending on the parametanslce. The motion is confined to
the unit square, but since the Jacobian corresponding to Egs. (4113344 singular, the resulting
orbits are further constrained. For all orbits with period, there is an eigenvalue which is zero;
thus they are either a set of points (when the orbit is periodic), or lienendimensionaturves in
the (X, y) plane when the orbit is chaotic. This feature of the motion, which is partituidwe form
of modulation that we have considered here, allows for considerable sirafiifian the analysis.

In order to get a global view of the dynamics of the modulated system, we dhtaiphase—
diagram of the dferent dynamical regimes as a function ok3r < 4, and fore > 0. In a single

logistic map, the motion can become unbounded when the nonlinearity paranestezeds 4, and
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in order to focus on dynamics that remains globally bounded, we resca(é )&s

Xne1 = [@ + (4 = @)'sgNf-1 = Xn)]Xn(1 — Xn), (4.2.1)

and examine the parameter regimecx’ < 1. The dynamics can be bounded evendor- 1,
depending on the value of but we do not consider this region here. The case of negativalso
not studied here since this latter system has additional features thatresexjoent on initial state
sensitivity; this will be discussed elsewhere.

Of the two Lyapunov exponents, one is zero, while the other is given by

N
= lim — g [ . 422
A NI_>ooNi:ln|5Xi| ( )

Shown in Fig. 4.1 are regions in the, ¢’) plane where the motion is periodic or chaotic. The re-
gions of stability in Fig. 4.1 have the characteristic and canonical shamsvailows” or “shrimps”
for two—parameter maps as has been discussed earlier (15; 16; £4Qrdemization of such stable
regions is around superstable orbits (17) as will be discussed in theewtidn.

The magnetization (7; 8) is the average phase along the trajectory,

o1y
® = lim = Z; SgNGi_1 — X;). (4.2.3)

which, in the present case, is also the averaged, scaled driving. Uaigity, which has been
examined in a number of recent studies (7; 8), has been shown to peditferent measure of
detecting ordering in chaotic dynamics (7; 9). Togetheand ® provide a classification of the
different types of motion in nonlinear dynamical systems (7; 18). Fig. 4.2 dsspieeydiferent
phases, namely regions where the magnetization takes distinct values. ddte geriodic motion
of period M or for chaotic motion inM bands, the magnetization takes valdes K/M, where
K(< M) depends on the itinerary of the orbit.

Along the axise’ = 0, the system degenerates to the single logistic mappigax(1l — X) =
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Figure 4.1: Regions of chaotic dynamics (white) and periodic motion (black)dm, &' plane.
The system reduces to the single logistic map on thedine 0. There can be stable motion for
particulara aboves” = 1 but we do not consider this here.
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f(x), for which the entire phenomenology, both qualitative and quantitatieeyeny well known

(19). We recall some of the main features that are of relevance in the matisiestem.

e The cascade of period—doubling bifurcations accumulates at3.569946.. ..

¢ A band—merging crisis occursat, = 3.678857., when there is a transition from a two—band

attractor to a single—band chaotic attractor. This occurs when
1 1
&) =1-= (4.2.4)
2 a

namely when the unstable period—1 orbit coincides with the third iterate of thenaamum,

and signifies the end of the inverse period—doubling cascade.

e All the purely odd periods occur in the rangg, < o < o = V8 + 1, the period—3 orbit
being created at the tangent bifurcation that occuks.aBelow am, the periodic windows

have periods of the forkh=m-2lj=1,2....

¢ In each periodic window of perioki there is a superstable orbit, namely one where the map
maximum is an element:

1. 1
®Zy= =
f (2) >

The itineraries of the superstable periodic orbits can be described syailyolfrough the
U-sequences (10), which encodes the iterates of the map maximum falling aghh(R) or

left (L) of the maximum.

e Below a = any the magnetizationb is zero while abovey, in each periodic window of
period k the magnetization takes a value that is an integral multiplé.oﬂ'he fractional
nature of the magnetization is unrelated to the nature of the dynamics (whidleadraotic
or periodic), but relates to the geometry of the attractor, the number of diséinds on which

the dynamics occurs and the order in which they are visited.

With modulation, many of the above features are preserved, at leagh@dl«. Thus periodic

windows continue into the phase plane #r> 0, although as can be seen in Fig. 4.1, there are



Figure 4.2: The magnetizatiahin different regions of the phase plane. When the motion is periodic
with periodk or in k bands, the magnetization takes the vajtle Regions with dierent values of

k are coloured distinctly.

many mergings of the periodic windows, as well as the creation of entirelyegimes of stability.

Most notable (see Fig. 4.2) is the creation of a large stable zone of perasdafso, in comparison

to the width of the periodic windows at = 0, large zones of other odd periods.

Thus one major féect of the modulation appears to be gtabilizationof periodic dynamics.

Application of an appropriate amplitude of modulation can stabilize any des@eddp(within a

range), and thus this is a technique for the control of chaos. Our ibteges however, extends to

the actual nature of the dynamics and the bifurcations that occur in thersyBtese are discussed

in Section 4.3.4.
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4.2.1 One—dimensional analysis

Since one eigenvalue of the Jacobian is always zero, it is possible tsarb/present system in

terms of the theory of 1-d unimodal maps. Note that each orbit of Eq. (1),

O Xo, X1, %2, 0oy Xiy o .. (4.2.5)

can be additionally characterised by the ‘sign-sequence’, namely therses of the signst) of
the modulation,

S:%,S,%...,S,... §=sgnfi—1—X) (4.2.6)

A periodic orbit will necessarily have a periodic sign sequence. Theegpondence is not 1-1:

many diferent orbits could have the same sign sequence, and chaotic orbitschawdsperiodic

sign sequences. Not all sign sequences will be permitted since thé mamimodal (see below).
Keeping in mind the limit — 0, where the symbolic dynamics for all orbits is well known, it

is useful to consider the present system as ffextve “1-dimensional” mapping

Xne1 = (), (4.2.7)

with the functionsf, (X) = (a+&)x(1—X) or f_(X) = (e—¢&)x(1-X) chosen according to the permitted
sign-sequence. The advantage of using this 1-dimensional descriptlat ifie allowed periodic
orbits of the dynamical system, Eq. (1) can be well understood andatberzd by extending the
kneading theory for unimodal maps (10) to take into account the switchimgeba the two dferent

logistic maps. This is discussed in the next section.

4.3 Periodic Orbits and Crises

When the dynamics is governed by a single niap pointx is said to belong to a periodic orbit or
cycle of periodk if
fO(x) = x. (4.3.1)
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In the present system, this needs to be generalized since thefmapsd f, are applied in a

history dependent manner. Thus a periodic orbit of pekigddetermined by the condition
1060 = f5(1878,(9) = x (4.3.2)

where s is either+ or -, and the sequenc®s;... s« corresponds to &alid or permittedsign
sequence, namely a dynamically consistent sequence of the fmap$e orbit is stable if, for a
neighbourhood ok;, the condition

U= <1 (4.3.3)

k
[BRALY
i=1

is satisfied.

One class of valid itineraries can be deduced from the MSS (10) sesmieAdong the line
£'=0, the system reduces to a single logistic mapping, and the sequence dfgerints that occur
can be completely described. For unimodal maps, periodic orbits where fhenasdmum is an
element of the cycle can be symbolically coded by whether iterates fall to th@ )Jedr right (R)
of the maximal point (C). MSS described how to construct the symbolic itiperaany periodic
orbits lying between any other pair of periodic orbits by a simple algebraiceprore (10). An
extension of this algebra which takes into account the dynamical alternafaedn the map§.
andf, is applicable here. As can be seen from Fig. 1, periodic dynamics on the [in@ carries
over for nonzero (but smalp’. To use the MSS procedure here, it should be recognsied that since
the dynamics usesftierent maps based on the itinerary, the symbols R, L and C carry subseripts
or - to denote which of the maps is used to determine the subsedymarnics. Thus, the period—3
orbit, which has the U-sequence

RL (4.3.9)

on the lines’” = 0 now necessarily becomes

C_R_L,. (4.3.5)
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For a single unimodal map, there are distinct period—5 orbits with MSS segsi®LR and RI°R
respectively. These generalizetpRR L, R_R_and CR_L,L_R_. Listed in Table | are all possible
U-sequences that can exist for periodic orbits with period less than ®betthese two period-5
orbits (cf. the Table in Ref. (10) Appendix). Similiar kind of constructioas e carried out
for higher period orbits with additional rules governing permitted symbol (R, valid sign
sequences (20).

In addition to the generalizations of the MSS sequences, new sequenoesdpossible which
do not arise in the unimodal system. Such “non-MSS” periodic orbits Hbtul@not extend from

thee’ = 0 line and can therefore be identified easily from Fig. 4.1. We discuss lthiefly below.

4.3.1 Superstable and doubly superstable orbits

An orbit of periodk is termedsuperstabldf (cf. Eq. (4.3.3))u = 0 and corresponds to parameter
values {, £’) for which the critical point of the map belongs to the orbit. In the presestesy, the
critical point of eitherf_ or f, being part of the cycle makes the orbit superstable. This imposes
one constraint, and thus the condition for superstability is met along a line haotmension 1)

in the (@-¢’) parameter plane. Such lines are dendﬁ%‘din Fig. 4.3, the subscript indexing the
several diferent such orbits that can occur. It can happen that the critical pbbath maps are
elements of the cycle, in which case we term the abitbly superstabléDSS). Such orbits occur

at isolated points (of codimension 2) in the phase plane, and play a crolgahrdetermining the
nature of the MSS and non MSS sequences that occur in this system.

This is most easily illustrated by the example of period 5 orbits.

4.3.2 Example: Orbits of periodk =5

The logistic map has 3 MSS itineraries for period 5 orbits &éitedént values ofr. These are,

respectively RLR, RL?R and RL.



4.3. Periodic Orbits and Crises

55

| I h
3.2

- ! | !
3.6 3.8
a
ac am at

Figure 4.3: Lines of organization of the superstable orbits in parametee s@aly the low order

periodic orbits are shown: some of these have been described in thaddrtEable II. A few DSS
points are also indicated, as are the crisis lifeand|>.
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Figure 4.4: (a) Locus of points in the parameter plane relevant to the périmtbits, nameIWIjS,
j=1,3,N> k = 1,2D% andJ3, J2. (b) The orbit diagram for the doubly superstable period 5
orbit, showing the itinerary of points and the hopping between the two rhagsd f_.

In the modulated system these become (see Fig. 4.4(a))

My
5
M2

5
M3

C:R_.LLIR_R-
CiR_LiL_R_

C.R.L,L_L,

(4.3.6)
(4.3.7)

(4.3.8)

and they start on the lower boundary of the phase plane, namely & With increasing:’, the

locus ofo and Mg move toward each other (as a functiorngt’) and merge at (3.52,0.58), giving

rise to a DSS orbit (Fig. 4.4(b)) with itinerary

D°: C,R_L,C_R.C,.

(4.3.9)

In effect, the DSS orbit is created when the fourth iterates gf@mely R in Mf orL_in Mg

move gradually to the left and right respectively, until the points coincide at
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Non-MSS sequences are created out of the DSS oty the reverse process, namely by per-

mitting the C. element to go either to the right or the left, thereby making the itineraries (Fig)%.4

N> : L,RL,C. R =CRL,RL, (4.3.10)

N> : RyR.L,C.R =C.RRRL, (4.3.11)

Note that both these would be forbidden in a single unimodal map (in MSS nqtéteyrare RLRL
and FL).

For the DSS poin1D5, we observe that
C.-R.-C, (4.3.12)

which gives the condition
1 1
f_(f_(é)) =5 (4.3.13)
which is satisfied along thining line, J2. A family of DSS points (see Fig. 4.3) occur at the
intersections of this and Iine]éﬁ which connect € and C in k steps, as for instancﬁ,
C,—>R. —>L,—>C_ (4.3.14)
which is specified by
1 1
L (RGN = 5. (4.3.15)
DSS points of ordem + k occur at intersections of eithdf andJ™ lines (see Fig. 4.3 for the point

D®) or J™ and JK.

4.3.3 Crisis lines

The band—merging crisis in the logistic map occurs when the third iterate of themagjpnum

coincides with the unstable period—1 fixed point; see Eq. (4.2.4). Since fefmandf, are used
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in a history dependent manner for nonzefgthis generalizes to
1 1
L (LGN =1-— (4.3.16)
a—&

and this condition is satisfied along the line denokgdn the (,¢’) plane; see Fig. 4.3. (The
subscript - is indicative of the fact that the third iterate of the maximum coiscidth the fixed
point of the mapf_, and the lettel denotes that this is an interior crisis line). In an analogous
manner, one can have other crisis lines, say whemthéterate of the map maximum coincides

with the period-1 fixed point of the maip,

1
12 1555 oo (4.3.17)

axte

st ... Sp being a valid sign sequence as discussed earlier.
The crisis lines and the DSS points, along with the MSS and non MSS orbiteizegte
dynamical behaviour of this system. Table Il lists (the lowest order) lingddha the skeleton of

the pattern present in the parameter space.

4.3.4 Period incrementing bifurcations

At fixed a, wheng’ increases, the nonlinearity parameter in the rhgmamelya + &, increases,
while that in f_ decreases. These can lead to competiiigcts of stabilization througlfi. and
destabilization througti,. Chaotic motion can only occur if + & exceedsy.= 3.569946. . . (the
lower left region of stability in Fig. 4.1 is defined lay+ ¢ < a() but whether the dynamics is stable
or unstable will depend crucially on the history of a given orbit. In thegmesystem we have not
observed any dependence of the asymptotic dynamics on the initial conditions

An expanded view of the regionB< a < 3.7, 0 < & < 0.6 is shown in Fig. 4.5. The
prominent feature of this region of the phase diagram is the merging ofifieviitndows at nonzero
&’. At these window mergings, there iariod incrementingpifurcation: the windows that merge

correspond to periods— 1 andp, wherepis odd. Since all odd periods in the logistic map (hamely
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)
a=3.25 ' a=3.25 '
0.8 =
1 -
X B — 4 x 0.65
0.4
T |
0.523 ¢ 0.524 0.523 g/ 0.524

Figure 4.5: Period incrementing-bifurcations (a) Expanded view of tqmoof Fig. 4.1 showing the
merging of periodic windows that cause period incrementing bifurcatibg®Bifurcation diagram
for period 10 to 11 bifurcation (region inside the box in (a)) and (c) Blgwofithe region inside the
box in (b) showing the period incrementing phenomena.
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on the lineg” = 0) can occur only to the right af,,, and even periods which are of the forfi 2j
can occur only to the left, the respective windows in the modulated systemaigdo the right and
left of am. The merging of these periodic windows occurs, as can be seen, abugdis linel 2.
In each of the windows, there are superstable orbits and for theserwerita the condition for the

period incrementing bifurcation as the simultaneous occurrence of

1

a—&

() = 1- (4.3.18)

and

1. 1
fs(3) =3 (4.3.19)

where the valid sign sequence is such hats; = + —+. At the merging of the period 6 and period

7 orbits, for instance, the respective orbit itineraries are
CiR_.L;R.R{R_ and CR_L;R_.R_R;R_. (4.3.20)

In Table Il the extended MSS sequence for orbits in a period—increngebiiurcation are listed.
This is for the main families of windows (with periods less than or equal to 9ntleage along the
line 13. There are many families of period incrementing bifurcations, all of whictunalong the
lines|™ for differentm; 12 and|® are indicated on Fig. 4.3. At the merging of the peroandp+ 1

windows on the crisis liné™, the superstable orbit has the condition

: 1 1
1P - —)=5 (4.3.21)

The reverse bifurcation, where the period decreases by one, caocalsr, and does so by the
reverse of the above mechanism. It should be mentioned that this bifurcéfiers from period—
adding (21) as well as from the border—collision bifurcation (22). Inldteer case, there is a
transition from periodp to periodm, all points of the periodic orbits collapsing onto an stable

periodic point at the border (22). The period incrementing (or decrénggrbifurcation islocally
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Figure 4.6: Log-log plot of¢) versusr. The straight line passing through the data has stope
0.08.

similar to border—collision in that two elements of the periodic orbit become thragde—versa),

R_R; —- R_.R_R;.

4.4 Intermittency

Here we examine the characteristics of the intermittent dynamics that is othsertlds model.
As has been noted already, compositions of the maps are non—Abeliarf fifiqe)) # f_(f. (X))
and this can give rise to nonstandard dynamical behaviour. We studynipentabifurcation that
gives rise to the period 5 orbit at=3.25 though our observations hold for other ranges of parameter
values as well.

At o = 3.25, one regime of intermittent motion occurs fojjust belowe; ~ 0.8225.. .. while
abovegg, there is a period-5 cycle. A characteristic of any intermittent dynamics iscdimg

behaviour of the average length of the laminar regipmamely

1
0~ (4.4.1)
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wherer = (g; — £’) is the parametric distance from the tangent bifurcation. For the stangiped T
intermittency (23) the exponeft= %
For the present system we find that the average length of the laminar teggemot vary with

r, and instead (see Fig. 4.6) follows the law

1
O w0 (4.4.2)

Such lack of sensitivity to the tangent bifurcation is unexpected, espesialtg the return map
for the dynamics appears to have the canonical Type-I form in the naigbbd of the tangency,

namely

Vel = Yn + Py +r (4.4.3)

wherep andq are constants ang, is the distance ok, from the tangency point. This map can be
viewed as the dierential equation
d

Y _
i ay2 +r (4.4.4)

and the length of the laminar region is the number of stépsken to cross the bottleneck ngas

0 and is found from

S
Il

f dt = ﬁ : aygir (4.4.5)

w/%[tan‘l \/§c+ tant ﬁA] (4.4.6)

If r is suficiently small andA > 0, with \/g > 1, then

=1 (4.4.7)

This argument can be generalized to the case of the nonlinear term in.&d.) (eingy?’, when
one obtaing o r-4-%).

This reasoning breaks down in the present case due to the nature eftsiledidynamics and
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9(x)
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Figure 4.7: Plot of the composite functigfx) (see Eqg. (4.4.8) on the interval. The single point of
tangency here is at= 0.6514; the other points can be seen by examining other composite functions
which can be obtained from(x) by cyclic permutation of the constitueft. Shown in the inset is

the canonical form in the vicinity of the tangency with a schematic trajectorypidmsdges through

the tangency bottleneck fromto c.

indeed to the unique features of the history dependent dynamics. Whsideong a periok
tangent bifurcation in a single mappinfy,it is obvious that the graph d#(x) will be tangent to the
diagonal at thé points of the periodic orbit. Here, on the other hand, each ok fha&nts is a point

of tangency for alifferenteffective mapping. Thus, in the 5-cycle fee3.25 ands” = &, the five
points of tangency each arise from dfdient history and are points of tangency for five separate

maps, each of which is a combination of 2s and 3f_’'s. One of these, namely

9(¥) = f- (£ (f-(F.(£-09)))). (4.4.8)

is shown in Fig. 4.7. As can be seen, there is a single point of tangenty;tmat the overall
dynamics isnotgoverned byg(x) except in the neighborhood of the tangency since the dynamics is
history dependent. Nevertheless, as we argue fthetef residual fixed points in such combination
maps crucially &ects details such as the reinjection probabilities and thereby the scalingeepon

(It should be clarified that tangency occurs simultaneously in the fiteerdnt combination maps at
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& = g.) The fixed point adjoining the tangency point in Fig. 4.7 can have stablescgeound it.
This is diferent from the intermittency in the standard logistic map.

In the standard Type-I intermittency scenario,dbbelowe;, the periodic orbit is itself unstable,
but points cycle through the neighborhoods of the fixed points in a consmetnner: iterates leave
the neighbourhood of one point of tangency to go to a second and thehitd and so on. In the
composed map®, points traverse the tangency bottleneck in its entirety.

This need not be the case when the orbit reinjects into the tangency bdtdeaiediterent
points, as was first noted by Kim, Kwon, Lee and Lee (11). If there istalalision P;,) of points
Yin» Where the trajectory enters the neighbourhood of the tangency themihratdength would

have to be

@ = f  (BinOPOInin (4.4.9)

with the normalization

[A P(yjn)dyin =1 (4.4.10)

For everyyin, Eq. (7.1.1) yields

1 , [a 4, [a
(Yin, ©) = ﬁ[tan 1 /Fc— tan ™t \/;yin] (4.4.11)

With a flat distributionP(y;) = L_ we have from Eq. (7.1.3)

c+A!

r + ac
r +aA?

m[tan‘1 \/§c+ tan? \/EA]. (4.4.12)

In Eq. (4.4.12), for small, the first term on the right has malependence. When reinjection occurs

1

O = Zcrmy™

from below,A > 0 and the tangency bottleneck is fully traversed; the second term givesattiag
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r~1/2 dependence. However, wharis negative, then the two inverse tangents cancel each other for
very smallr (each is equal ta/2 in magnitude, but the signsftér) resulting in behaviour observed
in Fig. 4.6.

From Figs. 1 and 2 it is apparent that period-5 intermittency occurs ongrge ofe around
3.25. We have observed that for higlethe exponend eventually become%, the crossover being
controlled by the details of the reinjection dynamics (24). The nonstandimjéatton behaviour
is not maintained at all tangent bifurcations in this system; the exponentswean to the standard

Type | case upon variation of parameters.

4.5 Discussion and summary

The parametrically modulated logistic map has been extensively studied fificf@ams of driv-
ing which include the cases of periodic (26), quasiperiodic (27; 28)edlsas stochastic forcing
(29). The diterent dynamical phenomena that obtain in the logistic map are modified under the
influence of driving in interesting ways, leading frequently to novel o#itions and attractors with
unexpected dynamical and structural properties (30). Our choicelayedd feedback modulation
makes the dynamics non—Abelian, and since the choice of (noninvertibleflepgmds on the his-
tory, the system is deterministic and also non-Markovian. These new dsagive rise to novel
dynamical features.

The zones of dynamical stability have a complicated and hierarchically iasghstructure.
These are well-understood, having the canonical shape for stabilibynssig two—parameter map-
pings (15; 16; 17). Our main method for understanding the organizatiperaidic orbits in such
driven systems is through a generalization of the results of MSS (10)dartfanization of periodic
orbits in unimodal maps, and we show how this scheme helps in rationalizingfibedt periodic
orbits that can arise in the driven system. In addition, we find that theracareMSS periodic
orbits, namely the stabilization of “forbidden” itineraries for periodic orbitsck results from the
choice of delayed feedback forcing.

There also appear to be regions in parameter space where there agaaticpvindows and
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our preliminary studies of the dynamics here have revealed a peculiactiiastic of the attendant
tangent bifurcations. Although they are still of Type-I, owing to the intgrppifatwo different map-
pings in determining the dynamics, the actual mechanics of the re-injectioagsr¢tl) leads to
the scaling exponents being quitétdrent from%.

Dynamics in the case of additive forcing,

Xn+1 = @Xn(1 — Xn) + & SGNKn-1 — Xn), (4.5.1)

is also very similar. The phase diagram in this latter case (not shown teséjdntical features—
period incrementing bifurcations, stable shrimp regions, superstablecaibtydsuperstable orbits,
etc. Much of the analysis presented for multiplicative modulation carries d\iete, however,
that an analogy can be made between Eg. (4.5.1) and a globally coupledttiagpviéth delay—
feedback, as has been done in other cases of driven dynamicahsy&®). Interest in the study of
emergent ordered collective behaviour in coupled maps with delays{88gsts that this analogy
should be explored systematically.

Delay feedback modulation of the form studied here can be easily realizsgh@riment, par-
ticularly in electronic circuits (34). There are standard proceduresfiamducing time-delays, and
the Schmitt trigger provides a simple means of comparing two signals to obtain & aliggat with
the desired phase (12); this can then be fed back into the system as ihEdy).(

However, the motivation to examine driven dynamical systems arises framedywof contexts.
For instance, modulated mappings arise in specific population models, palyieut@n migration
or other exogenoudlects need to be considered (25). Indeed, there have been studiearita
of forced systems with dichotomous (13; 14) drives, as well as more caatgyidriving terms (31).
The analysis presented in this paper can be extended to other pulsed sirstems. In particular,
quasiperiodic driving can be approached systematically as the limit of pegales of increasing

period; studies of such modulation are presently under way (20).
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Table I: Extended MSS sequences for periodic orbits with pero# between the period 5

orbits M3 and M5,

Periodk | Itinerary Notation
5 RL,RR M3
9 RL.RRLRLR | M
7 R.L,RR.L.R M/
9 RL.RRL.RR,R | M
8 RL,RRL.RR M3
3 RL, M3
6 RL,LRL, VH
9 RL.LRL,RRL,| M
8 RL,L.RLRR M3
9 RL.LRLRRR | M
7 R.L,L_RL.R MJ
9 RL,LRLRLR [ M
8 RL,LRLRL, V4
5 RL,L.R M3
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Table Il Notation used to describe lines in parameter space along which the phgsendia
is organized. The subscripts on C, R and L indicate which nigpdetermines the dynamics and
Fo=1--1.

MK is indicative of superstable peridcbrbits which follow the MSS pattern.

IX denotes interior crisis analogues where the map maximum iterates to the peridat-bf
the mapf.. in k steps.

J¥ orbits connect ¢ (or C_) to C_ (or C,) in k steps.

NX orbits are superstable peri@arbits which are Non-MSS.

Itinerary Orbit equation

1° | CRL.F f(F(F () = (1= 25)

15 | CCRR.RLLRF. | f(f(f(f(f-())) =1- L

18 | CCR.R.RLLL.RF | f_(fu(f(f(f(f-G)) =1- -1

14 | C_.RLLLL.R.F. f(f(( Q) =1- L

3 |CRL.C f(f(F(3)) = 3

3 | GRLiLC (L (F(R3)) = 3

J2 | C_.R.C, f(f3)=1

M?® | CRL, () = 3

N} | CRRRL, (- (- () = 3
CRLR_L,

NS | CCR.R(R_L,L_ fo(F((F (- (-G = 3
C_R.L,R_L;L_

Table Il : Extended MSS sequences for periodic orbits with pefic@iabout the interior crisis
line 13. The windows for periog and p + 1 orbits merge at the period—incrementing bifurcation;
these share identical extended MSS itineraries in the first 3 ang tadtpositions, with the higher

period orbit having an additional Rpoint.
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Periodk | Itinerary Notation
8 | RL,R.R.R.L,R M2
6 | R.L,R.R.R MS$
8 | R.L.R_R.R.R.R- VS
9 | RL,RRRRRR | M
7 | RL,R.R.R,R M
9 | RL,RRR.RL,R | M




Chapter 5

Period adding bifurcation in a one

dimensional map

In a strikingly simple experiment(1) performed recently, a sequence aichadding bifurcations
were observed. Period adding bifurcations have been seen quitefithgof late but these systems
have been of the neurobiological variety (2)-(4), electrical circuitsafsl pulsing lasers(6)-(7). In
the work of Colliet al, it is bubble formation in a liquid which was studied. The bubbles were
caused by a constant airflow into the liquid. It is the time interydbetween consecutive bubbles
which was of interest. Empirically one could writg.1 = f(Xn). A map was actually suggested for
the process. The experiment was done as follows:

A cylindrical tube is used as the bubble column.The bubbles are issued btirigjair through a
metallic nozzle submerged in a viscous fluid and the liquid is maintained at a fixglot.h&he
nozzle is placed with its tip well below the liquid surface to avoid wdleets on the forming
bubble. The nozzle is attached to a small air chamber. Air from a comprisssygected to a
capacitive reservoir and a proportionating solenoid valve controlledRipaontroller sets the air
flow to the chamber under the nozzle. The flow rate is measured by a flow{ifFigs 1]

In order to study the influence of the pneumatic system in the bubble formati@amidcs, a hose is

connected from the solenoid valve to the chamber under the nozzle, gdieqaid the influence of

72
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o] (B

arir fTew:
b A B

Figure 5.1: Experimental apparatus for bubble formation with the flow-mEkgttiie controller (C)
and the solenoid valve, representing the control loop of the air flow ratethee hose (h) between
the valve and the chamber under the nozzle.

the other elements of the pneumatic system. Foffierdint hose lengths were used to see tfece
of change of hose length on bubble formation. The detection system i@ baselaser-photodiode
with a horizontal He-Ne laser beam focused on the photodiode placed #imnozzle. The time
interval between successive bubbles is measured by time circuitry ingegd?C slot.

E. Colli looked at the time series of time intervadsbetween successive bubbles and investigated
the correlation between two successive time intervals. Experimental reauisshown that the
sequence, is not necessarily constant. Stable periodic regimes of high period antcregimes
appeared. Period adding bifurcation was also observed for certsgdmgths with varying air flow
rates.

By looking at the period adding sequence obtained in the experiment anutdpesed map, we
thought that it should be possible to explore this sequence iffexelt fashion. Considering the
fact that a long pipe length and a high air flow rate are necessary foetimmdding process, we

noticed that the Reynold’s number would be high in this region and accdyding thought that a
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fully chaotic map could be relevant to start with. The fact that the systemdgpdis/e implies that
a low order system would be reasonable to describe the dynamics. Petiblihg or intermittency
in a Navier Stokes fluid were modeled by the logistic map with the general cqrarameter r
[ie. 41 = rxn(1 — xn)], which is a good choice for studying the universal features adsutia
with the phenomena. In this particular case the phenomenon is period additlissimple map
cannot show period adding bifurcation. We thought a variation of thetlogigap should be a good

candidate to generate and explain this phenomenon. Accordingly, wegerég model the system

by

Xn+1 = 4Xn(1 = Xn) if Xn < Xn-1

Xn+1 = MXn(1 = Xn) if Xq > Xn1

This particular choice gives us an added advantage. Recently muchhaerkeen devoted to
neurobiologically motivated relaxation oscillators. These oscillators almwayalshow a sequence
of period adding phenomena in their very rich bifurcation patterns. Inugh £ases the period
adding comes from piecewise smooth maps (8)-(10). In fact the map sedgay Colli et al. to

describe their system, namely

fig(T) = —¢ + { greatest root of- 6T + m[t — d(M)]® = I[t = d(M)]} (5.0.1)

also has the feature of piecewise continuity because the chosen roetaftiit equation switches
in a discontinuous manner. We have tried to show in this chapter that similargze(8)-(10) can

also be achieved by modulating the control parameter in a 1-D map.
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5.1 The model

With this in mind, we have introduced a logistic map (11)-(12) where the noasiiggarameter is

modulated by a history dependent feedback. We can introduce modulatlungeneral form:

Xns1 = [Fo — (4 — ro) tanh & - XN %L = %) (5.1.1)

where we can takg; as

(i) some definite predefined value. or

(i) Xc = X1, SO that the next step of the dynamics depends on the previous step. &hthev
dynamics of the map becomes history dependent.

We explored in detail the limi¢ — 0. In that limit the hyperbolic tangent function becomes a step
function. We note that the limitg, — X followed bye — 0 ande — O followed byx, — X; do
not commute. For our practical purpose, we need the ardelO followed byx, — X.. In this case
the limit of the hyperbolic tangent can B4. We chose the valuel, keeping in mind that control
of chaos is what we are after.

In the following bifurcation diagrams, is plotted againsty and not against r as the bifurcation
diagram with respect to, captures the=4 dynamics explicitly.

For case (i)x; = 0.5 [Fig 7.1(a)] is a reasonable cuffdhough a vast range o can be used to
achieve period adding bifurcation [Fig 7.1(b)-7.1(d)]. It shows thergith of our model.

Case (ii) shows period adding cascade in a more elegant way. It seerasatbditer model for
bubble formation dynamics as there is no predefined fiitdahe experiment.

In this scenario, Eq(6.0.1) takes the form:

Xn+1 = MXn(L = Xp) if Xn < Xn-1

Xnt1 = MXn(1 = Xn) if Xq > Xn-1 (5.1.2)
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(e)

Figure 5.2: (a)Bifurcation diagram of the memory coupled logistic map withgfireed cuté
Xxc = 0.5 1in the limite — 0. (b-d)Bifurcation diagram for case(i) forftkrent values of cufts
x.=0.2, 0.4 and 0.6 respectively. Both axes are plotted in log scale. x axis igjéatteg(y-2) and
y axis as logk,). (e)Bifurcation diagram with; = % axes are in natural scale.
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wherer = (2ro—4). For =4, the logistic map is fully chaotic while far< 3, it shows a stable fixed

point. We want to point out that the system that has been much studied is

Xn+1 = (o + Gn)%n(1 — Xn))

whererg + gn is never greater than four agg can have various complicated forms but it has always

been local (13)-(14). Our departure from the usual practice is tiraj,ds memory dependent(12).

5.2 Exploration of dynamics

We begin by exploring the dynamics of the map

Xn+]_ = fz(Xn) = an(l - Xn) |f Xn > Xn_l (522)

with 0 < r < 4. Without the memory dependence, the logistic map = 4x,(1 — X,) is fully
chaotic with a Lyapunov index of In(2) and an invariant density distributioitkvts continuous in

0 < x < 1. The mapxn+1 = rXn(1 — Xn), by itself shows fixed points far < 3 followed by cycles

of period 2' and so on. In the presence of memory, the above map does not begin wigd adint
but with a 2-cycle. We can qualitatively see the existence of it by noticingdhat< 1, X,.1 will

be smaller tharx, if we use Eq(7.1.2) and then Eq(7.1.1) will have to be used at the nextrstiep a
Xn+2 > Xn+1 Which forces the use of Eq(7.1.2) at the next step. Thus, we havesib@2-cycle

X1,%2 With

X2 Ax1(1 - 1) (5.2.3)

X1

rxz(1— Xo) (5.2.4)
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We see immediately that

X2 Arxo(1—x2)(1—rxo(1—-x2)) and (5.2.5)

X1

Arx1(1—x1)(1 - 4x2(1 - x1)) (5.2.6)

Thusx; andx;, are the fixed points of two iterated functions F(x) and G(x) given by

F(X) 4rx(1 - x)(1 - 4x(1 - x)) (5.2.7)

G(x)

4rx(1 - x)(1 - rx(1-x)) (5.2.8)

These functions have zero as the stable fixed point feorzll. The two cycle elements will be non
zero forr > ;11 and can be found from Eq(5.2.7) and Eq(5.2.8) and the cycle will be stalitag as
the slopes of F(x) and G(x) at the fixed point are greater than -1. Bission through a pitchfork

bifurcation occurs at (using F(x))
-1 = 4re[1-8x(1- x)][1 - 2x]

which leads to

oy = 1-2rc+ \ar¢+4rc -9

l_
X 2(4r; - 5)

using Eq(5.2.7) ax. andr, we substitute fox; from above and find. = @‘ ~ 1.113. Above

r = r¢, the 2-cycle bifurcates to a 4-cycle and then to 8-cycle. These bifunsatiee supported by

a numerical analysis. Neatt there is another possible fixed point solution. For restricted basin of
attraction we get a stable solution B{x) = x. This solution is stable far < 3 and atrg = 2.7460

the basin of attraction for this fixed point collides with that of the period 8ecgad crisis occurs.

After that we see only the fixed point attractor.
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5.3 Period adding bifurcation

We note that+2 is going to be interesting. A2, The map of Eq(7.1.2) has the feature that all
initial conditions less tham, = % are going to yieldx,.1 > X, but will not crossxp.1 = % This
means that such points will be repeatedly iterated by the map of Eq(7.1.2)ikhnelach the fixed
pointx = % However, initial conditions starting at, > % will yield X1 < X, and the next iteration
will use the map of Eq(7.1.1) which will obviously yield an itera¢g, > Xn.1 forcing the map of
Eq(7.1.2) at the next stage. The new input may or may not be Ies%thad hence a fixed point
may not be reached. Thus exactly aPrsome initial conditions lead to a fixed point and some
initial conditions do not. This opens up the possibility thatfoe (2 — &), we may have a fixed
point as the sole outcome of the iteration by Eqs(7.1.1) and (7.1.2).

Beyondr = 2, we need to refer to the complete numerical results shown in Fig 5.3(a).eAow
slightly beyondr = 2, a periodic window of very large period emerges. The period dezseasy
rapidly forr = 2 + ¢, with ¢ < 1. The period decrement is through the inverse of a period adding
bifurcation. At every decreasing point, three branches come and mediva emerge. This gives
rise to a ribbon like structure which is shown in Fig 5.3(b).

Period adding phenomena was extensively studied in the context of switcihtmits through bor-
der collision bifurcation(15)-(18). This is a common form of bifurcatiorewtthe dynamical system
can be modelled by a set of piecewise smooth maps. One dimensional piesewisén maps can

be defined in the following way

g(%ns ) if Xp 2 A
Xnr1 = F(Xa; ) = (5.3.1)

h(,u) if Xn <A
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In the limite — 0 our model Eq(6.0.1) can be cast in this fornx{fis taken to be some predefined

constant. We can write down our system in the following form

a(Xn) = 4Xa(1 — Xn) if Xn < Xc
Xne1 = T(Xns ) = (5.3.2)

h(Xn; ro) = (2ro — 4)Xn(1— Xn)  if Xn = X

Now border collision occurs when the fixed points of the smooth maps cresotderx, = ..
For first mapx; = ;3’1 and it cannot cross the border, although the fixed point of the secopd ma
(Xn > Xc) X5 = g:g—j can cross the border agis varied. Whenxs, collides with the bordex, = x;
bifurcation occurs. The fixed point gets stabilized and a chaotic bandyemefForx; = % the
collision occurs at

1. 2p-5 1
T 2'20-4 2

Xg = Xc iro=3
Which we can verify by Fig[7.1(e)]. The higher periods also gets ulestapbthe same process. For
X{ > Xc no fixed point is possible and only a chaotic band is possible.

Two dimensional piecewise smooth maps can be expressed as

91(Xn; Yni ) if Xn,¥n € Ra
9(Xn; Yny ) = (5.3.3)

G (Xn; Yni i) if Xn,¥n € R

where the border divides the map into two regi®sandRg. In the limite — 0 andx; = X1 our
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system can also be represented as a set of two dimensional piecewigh amaps.

Ynel = X

Xne1 = X1 — Xn) if Xq < Yn (5.3.4)
and

Ynir = Xn

Xnr1 = (2r0 = 4)Xn(L1 = Xn) if Xy > yn (5.3.5)

where the border iy, = X,. Now the fixed points of the first map as well as second map are
Xn = Xn-1 = Yn. All the fixed points lie on the border, so border collision does not happen
As we move towards = 2 from above, the distance between two consecutive nodes decrdases

we define the quantity

5= lim n_Int (5.3.6)

n—eopnig —In
wherer, is the value of r at which an (n-1) cycle goes to an n-cycle, theonverges to 1.414. We
now explain how this happens.
In the ribbon like structure, every node is a fixed point of the return mgp‘?(f(fz(xm))) and
f2”‘6(f2(f(xm))), where n denotes the number of cycles executed at that particller ehr and
f (xm) is a composite function off, (xm) and f2(xm). Convergence of the fixed point from left to right

at the nodes ensures that these nodes are also fixed poia{ggf So for each node
f30(fa(f () = F200) = X (5.3.7)

i.e. X, =1- 1, and hence
1 1
50 fo(f(1 - F))) =1- - (5.3.8)
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Figure 5.3: (a)Bifurcation diagram of the memory coupled logistic map. @)Ne= 3 (i.e. =2)
we see the ribbon like structure. The box is enlarged in the next (c) figure

gives the r-value for the nodg at then" cycle. But Eq(5.3.8) can be decomposed as

(- ) - - | |reg - Dy - 1] <o 539)

where the first factor gives the solution for the n-1 cycle and the squamtilices the newf") node.
So Eq(5.3.8) gives all the nodes up to the nth order.

We get the value of r for the nth node,) from

rf=(fa(f(1 - %))) =1 (5.3.10)
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If for n=N the period adding phenomenon stops, then
N-6 1
ri; >(f(1- F)) =1 (5.3.11)

and also

rfN=>(f(1- %)) =1 (5.3.12)

when period adding stops — rn.1, then Eq(6.3.5) and (6.3.6) give
1
rnfa(—) =1 (5.3.13)
N

which givesry = 2. So atr = 2 the period addition phenomenon stops. It clarifies the bifurcation
diagram.
By finding the roots, we can find the ratié of Eq(5.3.6). Also we can findlin the following way;

Near 2 letr, = 2 + Ap,then

a2 = 1 (5.3.14)
miiaz, = 1 (5.3.15)
wherer, ~ ry. This gives
An - An—1
On= ———— 5.3.16
" An+1 - An ( )

S06n = \fIn = V2. For a large n, our numerical result supports this analysis.[Fig 5.4]

Beyondr = 25427, there is a chaotic band with the emergence of a periodic window at7244
[Fig 5.5(a)]. For 27564 < r < 2.7876, we see a cycle of period 11. Each element of the eleven
cycle exhibits a sequence of period doubling bifurcationrfer 2.7564 andr > 2.7876. For one
particular element of the 11-cycle the two sets of bifurcations on either sai@ign in Fig 5.5(b).

As we further increase the value of there are two large periodic windows. At= 2.9499,

a 6-cycle is formed. Period-6 fixed points bifurcate and take the periallichg route to chaos.
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Figure 5.5: (a)Rich dynamical structure after inverse period adding $b)Period doubling route
to chaos in 11-cycle.

Like in a logistic map a period 3-cycle is formed and takes intermittent route(219)to chaos.
At r = 3.8384 period-3 becomes stable and goes through period doubling hifu.ctn between
various other periodic windows can be seen.

We applied static as well as random perturbation to the system. Under staticbpéon;

the map still remains at a fixed point &f(x,) for r < 2 as the perturbation decreases quadratically
over the iteration. For dynamic noise the map depends on the perturbatiwsainsecutive steps
linearly and the equality conditiorx{,1 = X,) fails forr < 2. We get a replica of period adding

bifurcation forr < 2. [Fig. 5.6]
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Figure 5.6: Bifurcation diagram with dynamic noise.

5.4 Disscussion

In closing we note that if we introduce a memory dependence on the logistictineapit is possi-

ble to reduce the completely chaotic behavior of the first mam[= 4x,(1 — X,)] to a controlled
periodic orbit for low values of. We also note that many scenarios that are generally modeled by
piecewise smooth maps (8)-(10) can also be done by this method. With exqetment (22) it

is possible to simulate a logistic map exactly and hence this class of systemsis Axreased
[Eq(6.0.2)] there are bifurcations in the memory dependent map with two sjrikatures in the
course of the bifurcations. One is the sudden collapse of a eight cycle tiixéd point which
continues to be stable asapproaches from below and the other is the sequence of period adding
bifurcations forr > 2 which approaches the infinite period limitmapproaches 2 from above. The
mechanism of period adding bifurcation for the system under memory moduilstijoiite diferent

from border collision. We note that the number expressing the bunching®otuccessive period-
adding occurs is distinctly ffierent from the corresponding number for the period adding route of
Yin Shui Fan and Teresa Ree Chay (23). Thifedénce is because of theffédrent mechanisms for

the period adding in the two cases.
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Chapter 6

Two dimensional discrete dynamical

systems under memory modulation

In ecology, there are some species whose population goes from tendoageneration, for ex-
ample, gypsy moths or any of many other species of insects. These topiagsuaily modelled by
difference equations, iteration map or discrete dynamical systems. A famoretalimodel (1) is

the following logistic diference equation
Xn+1 = MXn(1 = Xn) (6.0.1)

which describes evolution of the population of a single species in discretevineee r is a number
describing the fertility rate of the species agdlenotes the population density of the n-th generation
of the species. This can be expressed by saying that the population geaesation depends only
on the population in the previous generation. This discrete model showsrinbehdynamics than
its continuous counterpart

dx(t)

—r = O - x) (6.0.2)

The logistic map of Eq(6.0.1) shows rich dynamical structures such ascimermittency and

various bifurcation which cannot be observed in lower dimensional canimaystems. Simplicity

88
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of difference equations helps us to understand the dynamical systems in a degdler These
difference equations also serve as important models for modulation of chaasnieol and en-
hancement of chaos. In our present work we study the two dimensioeddtor prey dynamics

(2)-(6) suggested by the famous Lotka-Volterra equations

)

i ex(D[1 - y(t)] — ax(t)? (6.0.3)
) (6.0.4)

where x(t) is the population density of the prey and y(t) is the populationitgesfshe predator at
time t. The dynamics of the prey population is logistic growth and the intrinsic groatghise in
the absence predators.The functional response, the number of giéaduials consumed per unit
area per unit time by an individual predator, is the function The natural death rate of predator is

. In the above: , @ both are positive constants.

6.1 Discrete Lotka Volterra dynamics

We are interested in the discrete form of this equation as the discrete dyriamiosh richer and
can lead to chaotic dynamics (2). In Euler scheme, taking the step size tityoevercan discretize

the diferential form as

X1 (1+ &)Xy — aX2 — &XnYn (6.1.1)

Yn+1 (1 - &)Yn + XnYn (6.1.2)

From the point of view of biology the dynamics of the predator-prey systkould be confined

within the first quadrant ok, y, phase plane. To ensure that the initial conditions are taken in such
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a way that the iterates always remain positive; we need to impose

Xo > (1—}) (6.1.3)
E

Yo < l+e—aX (6.1.4)

6.1.1 Fixed points and their stability

The fixed points (x,y) of the discrete Lotka Volterra model can be obtaired the following

equations

x
I

(1+&)x— ax® — exy (6.1.5)

(1-¢e)y+exy (6.1.6)

<
Il

Apart from the trivial fixed point (x0,y=0) there are two more fixed pointsx € Z,y = 0) and
(x =1y = 1-2). From biological requirement the third fixed points does not existfor &.
Now from linear stability analysis we can predict their stability. The eigengaldor the stability
matrix can be obtained from the following determinant
Q+e-2ax—¢gy)-A —&X

=0
gy Q-e+ex)-A1

For the trivial fixed point (0,001 2 = 1+ &, 1 — & which makes it a saddle point, as we are interested
2

ine > 0. Fore > 2 it becomes a unstable fixed poilyo = 1-&,1— ¢+ £ for the fixed point
a

X= f,y = 0. As long as < 2 the fixed points are stable fer< «. Fore > 2 it becomes a saddle
a
asl; < —1 but the other eigenvalue becomes stablesfar (¢ — 2)a.

The stability analysis of the third fixed point leads to interesting dynamits, = 1 -

@2 + dea — 4e2
2

become real. The fixed point becomes stablesfora . The fixed point becomes a stable spiral for
2

+

NI R

. Fora > 2(V2 - 1)e the square-root term becomes positive and the eigenvalues

@ = 2(V2 - 1) and remains stable until =

e+
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6.2 Bifurcation analysis

At ¢ = « stability of the fixed point changes. For< a (X = f,y = 0) is stable but as > « this
a
point loses its stability and the other fixed poirtf 1,y = 1 — g) becomes stable. So at « the

system goes through a fold bifurcation.
2
We come across an important bifurcatiormat ng at this point the amplitude of the eigenvalue
&

[re'] becomes unity and the stable spiral undergoes a Neimark-Sackerabifur@nd invariant
2
i 1 These invariant circles collapse to periodic points through
E

formation of smaller islands Fig 6.1(d) which then form smaller invariant cukig 6.1(e). For

closed curve stabilizes far <

larger values of (smallera) the system leads to chaos Fig 6.1(f).

Under certain parameter constraints the system can also goes througfufliation. We can
find the condition for flip bifurcation taking into account the dynamics in cemta@ifold. As we
are interested in the local dynamics near the fixed pojnt 1,y, = 1 - g, we make a coordinate

E

transform to consider this fixed point to be our new origin.

Un:Xn—l

Vn = yn - 1 + g
&
then Eq(7.1.3) can be rewritten as the following

(1 - @)Un — &Vp — QU2 — elnVy (6.2.1)

Un+1

Vn+1 (8 — Q)Un + Vh + EUnVp (622)

, , 1. 2—-a+ Va2 + dea — 4&2 , :
we find out the eigenvaluet , = E[ o a2+ @ ], and rewrite Eqs(6.2.1-6.2.2) in

terms of the eigenvectorgy, g,) of the linear part. By the center manifold theory, we know that

the stability of (0, 0) near = f(g) can be determined by studying at a one-parameter family of
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Figure 6.1: (a)Bifurcation diagram far = 1.4. We can see a fold bifurcation at = ¢. For
e = 2.0747 Neimark bifurcation occurs and invariant circles can be seerftéy)that. Diterent
dynamics are illustrated in (b,c,d,e,f) for corresponding values ©f2.1,2.114 2.15,2.25,2.26.
Breaking of invariant circle to small island is clear from (d,e). After this thadis chaotic inter-
mittently separated by few periodic bands. Invariant circles underdfiesaht bifurcations and the
dynamics becomes chaotic.
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Figure 6.2: Bifurcation diagram whenis varied withx,. The value ofx is kept fixed at 2.0. A fold
bifurcation can be observed alsosat 2.0.

equations on a center manifold, which can be represented as follows
WE(0) = {(Pn. Gn. T) € R3|pn = h(pn. 1), h(0,0) = 0, Dh(0, 0) = 0}.

Now the codicient of p, is equal to ‘-1’ for flip bifurcation, which leads to the following condition
to be satisfied.

4c* - 830 + (Ba? + 4)e? + aPe — dea = 0 (6.2.3)

Fora = 2 this condition is satisfied and we get flip bifurcation ot 2 Fig 6.2.

6.3 Control of invariant circles to periodic orbits

Memory modulation is anféective way to control chaos and lowering the value of Lyapunov expo-
nents. Though control of chaos has been in the literature the memory modtatimique is quite
of late (8; 9). In earlier works (10; 11) we have shown that one dimeasiguadratic maps can

be controlled &ectively with feedback algorithm using one step memory. One dimensionatitogis
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map shows chaotic dynamics fok 4, Control of chaos emerges through following memory delay

feedback which also leads to additional phenomena.

Xni1 = Xn(L — Xn) if Xn < Xn_1 (6.3.1)

Xni1 = MXn(1 = Xp) if Xn = Xno1 (6.3.2)

this modulation leads to suppression of chaos for a large range of pararastkis &ective in
lowering the local Lyapunov exponent (LLE). We looked at the dynamwiidhis discrete predator-
prey model under similar memory modulation. Under memory feedback Eq(addlEq(7.1.2)

gets modified to the following equations;

(1+ &)X — (a0 +,3)Xr21 — &XnYn if (Xn, Yn) > (Xn-1, Yn-1)
Xn+1 = (6.3.3)

(1+&)%n — (a0 _ﬂ)xﬁ — &XnYn if (Xn, Yn) < (Xn-1, Yn-1)
Vo1 = (L — &)Yn + EXnYn (6.3.4)

At a = ¢ the unmodulated system goes through a fold bifurcation. It would be ititeyege see the
dynamics if we take this bifurcation point to be the starting point of modulationyge= . Now
according to the control algorithm when the system becomes more unstadigndmaics will push
the system towards more controlled dynamics asifor € the system has stable fixed point. Now
for small values ok we get ordered dynamics of period four. With the increase wé see more
interesting dynamics Fig 6.5(f). The system shows period adding dynarhich ¥ quite diferent
from the one we analysed in (11). Here witlperiod increases in a continuous manner but there is
no fixed ratio like Feigenbaum constant. In reality the rﬁ?ﬁ of the corresponding widthhg)
of consecutive two period andn — 1 increases slowly Fig[6.3(a),6.3(b)].

We can as well takeg to be some other point. Another possibility to taketo be in the periodic

point region of Fig 6.1(a). Then the dynamics is an outcome of the interplayeba chaotic
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Figure 6.3: calculation of = AAnjl. (a)¢ is calculated when period adding occurs by varyingb)
Numerical values of as period adding happens wheis changed. In both cases the ratio increases
with higher period.

dynamics and invariant orbits. As the invariant orbits are feeble attrafitpasppunov exponents
nearly zero) chaotic dynamics supersedes the periodic dynamics anidimarcles only retains
their signature when they are modulated with periodic dynamics Fig 6.3. Wesaagllecontrol the

dynamics by modulating the value ©f Then the system takes the form;

Xne1 = (1+ &)Xy — aXg — € XaYn (6.3.5)

Vi1 = (1= €)Yn + & Xn¥n (6.3.6)

wheres’ = g9 — ySgn(X, — X»_1). Now from previous analysis Fig 6.1(a) we know when we vary
ate = a fold bifurcation occurs and as we increasthe system undergoes Neimark-Sacker bifur-
cation and eventually to chaos. So when the system moves further fromdipatynamics memory
modulation gives negative feedback and maintains the system in perioditostatger range of.
This modulation also leads to period adding bifurcation for higher values Bbr smaller values
system shows periodic dynamics of period four Figs[6.5(e),6.5(f)].

The memory dependent control method is veffyceent in controlling chaos and also for putting
the systems from higher periodic state to a lower periodic one. But perdidgaghenomena is a

outcome of the interplay between the chaotic dynamics and periodic stated Bddimg bifurca-
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Figure 6.4: Interplay between chaotic bands and invariant orbits. Fnonodulated case Fig 6.1(a)
Xo is taken to be 2.2. This consideration mixes invariant circles with chaotic asaa/gléeriodic
point-bands. This mixing leads to chaotic bands separated by small perimdiows.

tion does not happen when we control non-chaotic attractors. Fronothesponding Lyapunov

exponents in Figs[6.5(c),6.5(d)] we can verify our statement.

6.4 Discussion

In this chapter we studied the the dynamical behaviors of the discrete-timeopreator model,
which is obtained by using the scheme of Euler's method with step one. Weeeathat there
exist some parameter values such that the discrete model has a stablenirsyia. However,
the continuous model does not have limit cycles. We would like to point oustitae continuous
predator-prey model with functional response has limit cycles. There baen a great amount
of literature on this topics ((6; 7; 12; 13) and references therein). @mwtier hand, it should be
recognized that the discrete model is derived from the continuous mgdeller's method, and
not from actual population growth laws. For some parameter values or ivatiaés, this model

can have negative values xfin) or y,, which have no biological meaning. Therefore, it is a further
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Figure 6.5: Period adding occurs when a strong chaotic attractor intevahtperiodic dynam-
ics.Bifurcation diagrams(a,b) and Lyapunov exponents (c,d) of unmiadidiéscrete Lotka-Volterra
system for two dferent values of is plotted [(ck = 0.2,(d)e = 0.6] with a. Bifurcation diagrams
(e,f) for the modulated system for the same values siiow that interplay of periodic state with
strong chaotic one leads to period adding.
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study topic in future how propose a reasonable discrete-time predayompictel.

Control of invariant cycle can be done with the same method as with controhizngsc We showed
memory modulation of the system parameter leads to interesting dynamics sudbhdaguzling
which is generally seen where border collision occurs. As discussestioHapter memory modu-
lation dynamics is dferent from border collision dynamics and hence worth greater unddista
Unlike previous chapters we have shown memory modulation methdigtiee for higher dimen-

sional systems.
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Chapter 7

Controlling dynamical systems by
memory dependent switching: a

variation on the Pyragas scheme

The earliest proposal for control of chaos was prescribed by Oétb@gi and Yorke (OGY)(1).
They exploited the presence of an infinite number of unstable periodic @i?®) in the chaotic
state. The idea of OGY was to stabilize a UPO by a small time dependent chatigedantrol
parameter. The advantage of stabilizing a UPO lies in that it can be donerbgllackange in the
control parameter (2; 3; 4). However the OGY technique is fimtient for large Lyapunov numbers
and hence a variation was introduced by Pyragas (5). In the two sclseiggssted by Pyragas (5)
one requires an external force and the other does not. The one vaejahas the external force
calls for a complex experimental realization and so we discuss the sedosiehec This scheme

introduces a feedback into the dynamical system written as

dy

a = P(y,x) (7.0.1)
dx

a = Q(y9 X)

100
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where §,x) is a (r+1) dimensional dynamical system ayd the variable that we are focusing on.
They-equation is modified in the Pyragas scheme by a teftj) whereF(t) = K[y(t — 7) — y(t)],
wherer is a delay time and we have

dy _

i P(y, x) + F(t) (7.0.2)

clearly if r happens to be periof] of theit™ UPO, the system is unperturbed. The primafpr in
the implementation of the Pyragas scheme is the determinatioawd K that would stabilize the
chaotic orbit. We show the results of this condition For tlis$ter system in Fig 7.4(a) .

In the present work we use a variation on the Pyragas scheme. We toaiplescription suggested
by Pyragas with the literature on switching in dynamical systems. Our goal & tgpsa technique
for controlling the output of dynamical system. Our approach is not réstrto chaotic dynamics
and in reality does not have any significant overlap with the standard $mgtdignamics because
we use switching in an irregular manner by making it memory dependent. @sgrption is quite
similar with that of Pyragas in using a delay tim@hough we do not link it to UPO). However un-
like Pyragas we do not use it as a drive. In the spirit of OGY we rathethesdelay and switching
to perturb the control parameter. We first exhibit our scheme by using drtval the dynamics of

a damped linear oscillator.

7.1 Memory modulated harmonic oscillator

Periodic orbits (1; 5) arise in both Hamiltonian systems and dissipative ohessimplest Hamil-
tonian system with a periodic orbit is the simple harmonic oscillator. The frexyugihmotion is
determined by the constants of the restoring force and the amplitude is detefgimatial condi-
tions. For the nonlinear oscillator, the frequency depends on the amplitadénas on the initial

conditions. If we now add a damping (dissipative system) which in the uswalgmenology is



7.1. Memory modulated harmonic oscillator 102

proportional to the velocity (linear damping), then the oscillations die out. Athegdamping, on
the other hand, would cause the oscillation amplitudes to grow exponentiallg.ftfllow the phase
space nomenclature, then the fixed point at the origia (x = 0) is a centre for the conservative
system. It is a stable spiral for a mildly damped oscillator and unstable spirdddacorrespond-
ing negative damping. For the dissipative system to exhibit periodic orbédsgjamping needs to
be nonlinear. Such periodic orbits are called limit cycles and the amplitude tifrtheycles are
generally independent of initial conditions. The periodic orbit can aldoimeed in the dissipative
systems provided the nonlinear dissipation is such that the damping is pos#ivgaot of the cycle
and negative over the remainder. This gives an energy balance eveortplete cycle. From the
linear to nonlinear oscillator, there is a change in the nature of the fixedatdime origin when the

motion changes at the origin. This is well exemplified in the Van der Pol oscillator

%+ kX(x* = 1)+ w?x = 0

where the nonlinear damping makes the fixed pgiat X = 0 an unstable spiral as opposed to the
stable spiral fox+ kx + w?x = 0.

We introduce a memory dependent switching (6; 8) to write

X + KXO[X(t) — X(t — 7)] + wp?x =0 (7.1.1)

In the aboved(y)is the step function which is1 if y is positive and -1 if y is negative andis a

preassigned time. The switching is apparent if we write Eq(7.1.1) as

%+ kX + wo?x =0 if X(t) > x(t — 1) (7.1.2)

% — kX + wp?x = 0 if x(t) < x(t - 7) (7.1.3)

The switching condition makes it clear that the switching is memory dependemoemmedi-
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ately that the stable spiral in the absenc®edfinction becomes a centre in its presence. This is the
indication of the existence of somethindgfdrent and accordingly we write down the solutions for
the two segments Eqs(7.1.2,7.1.3)xaf) = Ae 5t cos Wt + ¢1), xo(t) = Bet! cos wt + ¢2) where
A, ¢1, B, ¢, are determined by initial conditions aad= w/woz - '%42. A periodic solution of period
T would imply that there is at least one switch in the interval D< T. Investigating solutions with
one switch only, we requirg;(t’) = xo(t’) andxy(t’) = Xo(t") for a smooth solution and periodicity
implies x1(0) = x2(T) with x1(0) = Xo(T). It is straight forward to see that a solution can be found
forT = %’T andt’ = % . The actual existence of a switch is controlled by the “memory time ”
7. We note that ifur << 1, then the theta function can be written@xr). It is the sign of the
velocity that controls the switch in this case and it is easy to see that a peribdio/dl result. The
same argument holds fer= T, the orbit is now simply inverted with respect to the previous one.
We show the numerical evidence of the periodic orbits in Fig 7.1. While the loalsisome limit
cycle characteristics in that it is a periodic orbit. In a non conservatistey, the size of the orbit
depends on initial condition Fig 7.2(a) which is a hallmark of a conservayistes. We note that
while the limit cycle ofr = 0 andr = T are easily understandable, it is the closed orbitrfer &
which is nontrivial. In general, we find a quantisation of stabilisirign units of the half periodg
Fig 7.2(b).
Limit cycle oscillations have practical applications in many nonlinear mechaascelell as elec-
tronic systems. Based on the above observations, we now propose adnetbantrol chaotic
dynamics by converting chaotic oscillators to limit cycles. We propose to exp®known regular
dynamics of these systems to flip the control parameter in the ‘favourablierrevhen the dynam-
ics seem to become irregular. This will help stabilize limit cycles in the followintesys.

Let x; = fi(u, {Xj}), whereu is a set of control parameters, represent a chaotic system. In what
follows, we will takeu to have only one componept We assume the system shows chaotic as
well as non-chaotic dynamics forftirent values of control parameter. We make our parameter

memory dependent so that the system can self-modulate its dynamics agdorttie controlling

method. The dynamics will be governed by both chaotic as well as norticlaivactors. So, for
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(b)Lyapunov exponents for the damped oscillator under memory modul&ffapunov exponents
are plotted against the feedback time the positive Lyapunov exponents in figure (b) indicates
runaway solution for the oscillator.

certain choice ofi there can be a balance between both type of dynamics and the systenowan sh

limit cycle oscillation.

7.2 Modification of Pyragas scheme

We propose the following controlling method to modify dynamics of chaotic systetimit cycle
oscillations. We assume for < uc the system dynamics is regular (fixed point or periodic orbit)
and foru > uc the system is chaotic. We replagédy u + e®[X(t) — x(t — 7)] where® is +1 for

X(t) > x(t — 1) and -1 forx(t) < x(t — 7). 7 is some predefined timescale. For smathis control
method restricts the dynamics from going very far from its initial points. Fotagewvalues of
controlling parametes, the chaotic and fixed point dynamics balance each other and we see limit

cycle oscillations.
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7.3 Non phase coherent oscillators

We start with Lorenz oscillator. We modify the usual controlling parameterithdt any loss of

generality we can modify the system as following;

X = o(y-X)
y = (r—e@[y(t) —y{t—1)])x-y—xz (7.3.1)
z = xy-bhz

where b andr have their usual values. tfis small the® function is governed by the local dynam-
ics. If the trajectory tries to move far from the initial points, r is changed tas and it induces

a positive “damping” in the system. Thus the system tries to compensate itgy&obange over

a cycle. For specific values af change in energy over a complete cycle becomes zero and we
observe limit cycle.

This mechanism is also applicable to many other chaotic oscillators. Wiserot small two cases

yA 20 + i
15 - B

10
X 12717 16 185

Figure 7.3: Limit cycle due to memory modulated parameter control of Lorestemsy Usual
parameters are takeor.= 10,b:% and =28. £=10.0 andr = 0.001 are taken for this figure.
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can happen. For phase coherent attractors we can define an iapaexalue for the phase of the
chaotic attractor. Memory modulation of governing parameter of those atsdetals to periodic
dynamics. Those attractors show periodicity in limit cycle oscillations, ie. onldisrrete values

of T we see limit cycles. For non phase coherent attractors we do not sedigigy in 7 for its
larger values though for smaller valuestofve do see periodic oscillations. Lorenz system under
usual parameter regime shows double loop chaotic attractor which is a x@ogle of a non phase

coherent attractor.

7.4 Phase coherent oscillators

We demonstrate the first mechanism for a phase coherent chaotic systder. dértain parameter
values (&b=0.2,c=5.7) Rossler oscillator goes through chaotic motion and the chaotic attractor is a
phase coherent one. We numerically calculate the approximate time pericRifgbler oscillator.
Measurement of time period of more complicated attractors can be done bytexjiribert phase

and measuring the corresponding time period.

Now we taker — O, % T and control the parameter ‘b’ with the same kind of prescription as before

X = -y-z
y = X+ay (7.4.1)
Z = b+eO[yt) -yt -1)]+2zx-cC)

Here a,b and c have their usual values. Bhienction can take the values eithet or -1 and hence
can lead to damped as well as undamped solution. The dynamical analgsithtes the earlier
analysis for 1-D oscillator and we observe limit cycle oscillations as showigiii.B(b). This is to

be compared with the corresponding limit cycle stabilization of Pyragas whlmoisn for refer-

ence in Fig 7.4(a). It should be noted that we do not use a feedbadomnee look for the UPOs.

To verify that the underlying dynamics is the same as with the 1-D model we dalduiameri-
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cally the average value of time period for thédRler oscillator and found the Lyapunov exponents
for different values ot. From Fig 7.4(c) we can see~ nT cases lead to more stable formation
of limit cycle thant ~ (n + %)T. In chaotic oscillators phase space points are revisited only ap-
proximately. We observe limit cycles only wher: nT, n=0,1,2,.... The Lyapunov spectrum with
respect tar shows a sharp fall. This result confirms our speculation that chaotiangaaan be

altered to limit cycle oscillations using memory dependent parameter modulation.

7.5 Discussion

we have shown that a memory dependent switching of a control parametetymamical system
can be very ffective in altering the dynamics. With the prescription given Pyragas it istjess
to control chaotic oscillators where we know the position of the UPOs. Qunoaph is closer to
OGY approach in the sense that we also modulate the parameter of the dyreysiem. In our
method we do not need to know the UPOs and we can also apply our methaslanhetime series
is available. In particular, this can have applications in control of chaoscésly in controlling

experimental time series.
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Chapter 8

Conclusion

The main goal of this thesis is to studffexts of memory modulation on nonlinear as well as chaotic
systems. Control of chaos is one of the most relevant fields for rés@arwnlinear dynamics.
Many methods have been proposed for controlling chaos in last two eecddiore recently un-
derstanding of usefulness of chaos in physical system has drawtiattehnonlinear dynamicists
and has become an active field. In this thesis we have developed memenddepcontrol algo-
rithms and analysed the resultant dynamics. While external feedback metieogisite common in
literature for controlling chaotic dynamics, memory dependent feedbaekds n iterative maps
this technique has been applied in the from of one step memory depentldmpestify the idea of

a one step memory dependence as follows. Iterative maps are genevateddrbboscopic maps of
higher dimensional continuous system. Now a single step in the map cordssqmoa fixed time
span in the continuous system. In stroboscopic maps we get a section ofitireious system at
equal intervals of time. Thus a one step memory in the map is a memory of an ecenting a
finite time earlier in the continuous system.

We systematically studied thdfects of memory modulation. Logistic map has long been taken
as a standard system for exploring the dynamics of one dimensional ienadips. We suggest a
prescription for controlling this map with memory dependent modulation. This fatol not only

changes the usual chaotic and non-chaotic ranges it is also able toishendynamics. In standard

111
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chaotic maps we can see intermittent transition to chaos from periodic dynamilcgistic map
it occurs through type-I kind of intermittency where local map is quadratiés ihtermittent tran-
sition predicts the relation between the distance from the periodic window wéttage length of
periodicity in the time series. Under memory modulation the relation changes deealimapping
remains the same. The new idea of re-injection mechanism is included to exj@gshémomenon.
Various kinds of modulation are possible to implement on maps. We investigaiffdrait kind of
modulation on the same logistic map.flerent modulations serveftirent purposes. Unlike pre-
vious case here we also studied the interplay between highly chaotic dynaitfictable periodic
dynamics. We found that this memory modulated map gives rise to a long seqokperiod-
adding bifurcation. Period adding bifurcations are usually seen in pisedimear maps where
the periods are generally interspersed with chaotic bands. Here wedhdiferent mechanism
(memory modulation) can also generate this phenomenon. We presentathesedere period
adding cascade is much cleaner so that we can analytically calculate thesrafidhe widths of
two adjacent periodic windows. This ratio is universal in the sense thabewer the local map is
quadratic under the same mechanism the same analysis follows.

The phenomena of period adding is seen to be ubiquitous in the memory depemajes. We
studied two dimensional discrete Lotka-Volterra system as a natural exiesfsthe one dimen-
sional iterative maps. Discrete Lotka-Volterra shows periodic as welhastic dynamics. It also
shows invariant cycles as it goes through Neimark-Sacker bifurcatderstudied this system under
memory modulation. The existence of both chaotic and periodic dynamics lepdsiad adding
bifurcation. We showed numerically that period adding only occurs irgoieesof both periodic and
chaotic dynamics. Though here we did not see any universal rati@fadpadding bifurcation. We
need to study this dynamics more in depth in future to explore the underlyiragrdgs and explain
this type of period adding in greater detail.

Finally we showed modulation of chaotic dynamics to periodic limit cycles canttiea through
similar kind of memory dependent modulation. We improved our prescription afonemodu-

lation through low dimensional discrete dynamical systems and eventually épitiecontinuous
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chaotic systems. Controlling chaos has earlier been suggested by Owgzaed Yorke (OGY).
Unlike OGY method, the controlling methods explained in this thesis control thandigal sys-
tem globally. As a natural consequence interplay between chaotic aiodipatynamics becomes
important. As a outcome of this interplay many new and rich dynamics can be [geemory de-
pendent control methods make the systems discontinuous in general. Thistitigity is often the

cause behind the generation of many rich dynamics that was absent inginalsystems.



