
STUDY OF ELECTRONIC STRUCTURE

OF DISORDERED SYSTEMS

THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY (SCIENCE)

IN

PHYSICS

BY

PRASHANT SINGH

DEPARTMENT OF PHYSICS

UNIVERSITY OF CALCUTTA

JULY, 2012



To my parents and my fianćee......
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Chapter 1

Introduction

In this thesis we have addressed three classes of problems : (a) the basic density

functional theory. We have modified the underlying exchange-correlation potential

such that the new formulation describes semi-conductors and insulators accurately.

(b) study of magnetism and electronic structure of bulk disordered alloys and (c)

doped and co-doped clusters.

1.1 Density Functional Theory

First principles description of the electronic structure and related properties of dis-

ordered solids has been a challenging problem. The Bloch theorem, which allows us

to use lattice translation symmetry of the Hamiltonian to simplify the problem to a

large extent, is no longer valid in the presence of disorder. This puts constraints in

formulating a new quantitative calculational technique with the same degree of accu-

racy and efficiency as that for crystalline solids. In our research group considerable

1
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volume of work has been done on disordered metallic solids but semiconductor and

insulators have not been touched much. The density functional theory (DFT) [3] and

its local density approximation (LDA) upon which majority of our work has been

based underestimates the band gaps in such solids considerably.

The first part of our work will be to propose and apply a modified version of

DFT, going beyond the standard LDA, which will yield accurate band gaps and also

a better picture of the excited states.

As we shall see subsequently, the part of the total energy contributed by the

electron-electron repulsion is a functional of the two particle reduced density matrix.

The exact functional relationship between the correlation function arising out of such

a pair density and the density is not, in general, known. This leads to approximations

which could be one of the causes of the failure to predict the band-gap with any

degree of accuracy. The challenge of DFT lies in determining the unknown form of

the exchange-correlation functional. The simple formulae for exchange-correlation

derived for the homogeneous free electron gas were used with the Thomas-Fermi

ideas as an approximation for the exact interacting electron cloud. This procedure

was justified by the Hohenberg-Kohn theorem [4]. This theorem proves that

(i) The ground state density uniquely determines all the terms in the many-body

Hamiltonian; consequently leads to evaluation of all properties of the system,

which includes many-body wave function [5].

(ii) The correct determination of ground-state density for which true density func-
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tional leads to the electronic energy minimum of the system.

Subsequently, using above propositions the many-body Schrödinger equation effec-

tively maps onto a single particle Kohn-Sham equation. In spite of making huge

progress in electronic structure calculations, obtaining the exchange-correlation po-

tential and energy still remains unsatisfactory. This is the only major approximation

involved in solving the Kohn-Sham equation. Many different functionals have been

introduced since the very first functional proposed by Kohn-Sham [6] based on the

homogeneous electron gas (HEG) model. Without considering the atomic lattice and

structure which constitute a real material, HEG model allows one to understand

the effects of quantum nature of electrons and mutual electronic repulsions in solids.

LDA successfully predicts many ground state property quite accurately e.g. struc-

tural, elastic and vibrational properties. In the LDA binding energy estimations are

too negative, activation energies are not reliable, as also is the relative stability of

crystal bulk phases. While LDA provides a better insight into the density of states

and band structure, it fails to resolve the problem of the band gap. Drastic under-

estimation of band gap and wrong band positions in semiconductors and insulators

turn out to be one of the classic failures of the LDA. The motivation of our work was

to develop a method which we can apply for semiconductors and insulators. Since

our electronic structure methods all depend upon the LDA, they too suffer from its

drawbacks. The LDA exchange potential does not have the derivative discontinuities

that are present in other functionals. It is a well-behaved function of density which is
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not sensitive to the particle number. No correct treatment of self-interaction for elec-

trons is present as in the Hartree-Fock and the exchange functionals. The success of

any density functional method depends on a good choice of the exchange-correlation

functional, our task was to decide upon how to replace the LDA exchange potential.

The criteria that the new potential must meet are : (a) the derivative discontinuity

should be there and (b) the functional should be self-interaction free.

1.2 Dealing with disorder

Disorder in solids falls in two main classes : substitutional disorder, where the un-

derlying lattice remains unchanged, only the lattice sites are randomly occupied by

different species of atoms ; and topological disorder where the underlying lattice is

itself randomly distorted. In several situations both types of disorder may become

relevant. In this thesis we shall address only substitutional disorder : a canonical

example of this is a random alloy.

Configuration averaging of physical quantities is a central idea in the study of

disordered systems. Several techniques have been proposed to evaluate such config-

uration averages. Among them coherent potential approximation (CPA) [10] turned

out to be the most successful. The idea was proposed by Soven (1967) to tackle

electronic motion in the background of a random potential. This was motivated by

an idea proposed by Landau and Lifshitz (1975) to study randomly dispersed spher-

ical globules of one dielectric in another. The problem with the CPA was that it
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was a single-site, mean field approximation. It cannot accurately take into account

of local correlations leading to clustering or short-ranged order. Neither can it deal

with disorder in the off-diagonal part of the Hamiltonians that arise, for example,

when there is a large difference in the band widths of the constituents. Later many

attempts have been made to generalize CPA to include multi-site correlations. One

of the first novel approaches to this problem was based on the augmented space theo-

rem introduced by Mookerjee [2, 11]. The augmented space formalism (ASF) is very

powerful tool. It has been shown that the CPA is a special approximation within the

ASF. The ASF, therefore, is a generalization of the CPA. We can introduce such ap-

proximations that short-ranged correlations are included and the essential properties

like positive definite spectral densities and, in cases of homogeneous disorder,lattice

translation symmetry of averaged quantities are all preserved. ASF is one of alter-

natives suggested for CPA due to some difficulties pointed above. In this thesis we

have projected both ASF and CPA in our calculations.

To study the ordering effects in disordered alloys, we shall use the generalized

perturbation method (GPM) [12, 13]. The expansion coefficients are small energy

differences of large energies. We have chosen the Lichtenstein formula [14, 15] to

accurately obtain such small energy differences. The GPM mapped our problem

on the Ising model for doing magnetic phase analysis of disordered systems under

consideration.
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1.3 Transition Metal Clusters

By clusters we mean systems with a finite number of bonded atoms.The number of

atoms can vary from a few to millions. Clusters lie somewhere between an atom

and the bulk, forming a bridge between the two. Studying physical and chemical

properties of clusters with increasing size from a few atoms to bulk leads us to an

understanding of how they evolve with increasing size of cluster. Clusters of varying

sizes can be generated using a variety of techniques such as sputtering, chemical va-

por deposition, laser vaporization, supersonic molecular beam etc. Semiconductors

with dilute magnetic impurities (DMS) [16] have opened up a possibility of manipu-

lating the spin degree of freedom of electrons through interaction between the local

moments of the doping magnetic ions and the spins of the charge carriers of the host

semiconductors. Magnetic clusters and nano-particles are interesting not only because

of their possible technological applications, but also because in these systems we can

systematically study the effect on magnetism with diminishing size and dimension. As

clusters are interesting because finite size effect can lead to quite different structural,

electronic, magnetic and other properties different from molecule and bulk.

In transition metal clusters have incomplete d-shells and localized d-shell electrons

which make them interesting in comparison to clusters with sp-shells whose properties

are largely affected by delocalized sp-orbitals. The studies done on clusters and solids

to calculate different properties shows intrinsic difference between atomic and bulk

nature. Magnetism in transition metal (TM) clusters is one of fundamental issues
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to be addressed at the atomic level. The magnetic properties of nano particles de-

pending on size, composition and local atomic environment show variety of intriguing

phenomena. The deflection experiment of Stern-Gerlach (SG) type is commonly used

by experimentalist to study magnetism of free transition-metal clusters in molecular

beams [17]-[22].

We shall address a different class of problem, namely finite clusters of atoms

with dopants (alloyed clusters). S. Kuroda et.al. [23] has shown that the effect of

additional doping of charge impurities in ferromagnetic semiconductor Zn1−xCrxTe

e.g. iodine or nitrogen, (which is expected to act as an n-type or p-type) dopant in

ZnTe, brought about a drastic enhancement or reduction of the ferromagnetism in

Zn1−xCrxTe, while the grown films remained electrically insulating. Furthermore we

have explored, how the energetics and magnetism will change if we look at clusters

instead of Zn1−xCrxTe bulk or films. So we choose a particular type of (ZnTe)12

clusters [24] doped with transition metal Cr, at either of Zn or Te site cites and then

co-doped with donor type impurities from group VII e.g. Iodine(I) or acceptor type

of impurities from group V e.g. Nitrogen(N) respectively. Donor or acceptor type of

impurities has been doped either at Zn or Te sites or outside(or inside) of the (ZnTe)12

cage to see it’s effect on energetics, magnetic properties etc. of the cluster.

1.4 Outline of the thesis

The thesis has been outlined as follows:
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(I) In chapter 2, we shall introduce the detailed theoretical framework of electronic

structure calculations carried out in this thesis.

(II) Our aim in chapter 3 is to develop a non-variational approach, the exchange-

correlation functional introduced by Harbola-Sahni [7] to calculate excited state

properties e.g. band gap. We shall also show that Harbola-Sahni exchange-

correlation potential gives good ground state properties in agreement with ex-

periments e.g. mechanical properties viz bulk moduli.

(III) Why does NiMo alloy not show spin glass nature unlike AuFe ?. In chap-

ter 4, we look at very small concentration range of Mo from 0-18 at.%, using

augmented space formalism [2] within mean field approximation.

(IV) A comparative study of NiMo and NiW alloys at low concentration range of Mo

and W (≈ 0-18 at.%). In chapter 5 coherent potential approximation [10] is

been employed to look into the properties of above mentioned alloys.

(VI) Transition metal clusters are of special interest, as the transition metal atom

in free state posses an incomplete d-shell in the ground state and many ground

state properties are governed by these localized d-electrons. In Chapter 6 we

studied, what happens to structural stability, magnetism etc. of Zn1−xCrxTe

cluster doped with donor (I) or acceptor (I) impurity at diminishing size.



Chapter 2

A brief review on Electronic Structure

Theory

In this chapter, we shall present an overview of the density functional theory (DFT)

and linearized muffin-tin orbital (LMTO) method which describes the ground state

properties of a many electron system in terms of the density of the system. All

calculations has been done within DFT.

2.1 The many-body Schrödinger equation

The Schrödinger equation is the conventional point to begin description of many-

electron systems. For stationary state problems :

Ĥψ = ih̄
∂ψ

∂t
= Eψ (2.1)

9
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where Ĥ represents the Hamiltonian of an N-electron system and can be written as

(atomic units are used throughout)

H =
Nc∑
I=1

−52
I

2MI

+
N∑
i=1

−52
i

2m
+

1

2

∑
i,j

1

rij
+ veI({ri}, {RI}) + VII({RI}) (2.2)

where we have considered a system consisting of Nc ion-cores (the I th ion core having

a mass MI) bonded in a solid by N valence electrons (the ith valence electron having

a mass m). VII and veI are the Coulomb interactions between the ions themselves

and between the electrons and ions. rij is the distance between the ith and the jth

electron.

The mass of the ion is much larger than that of an electron (M � m), so that

the characteristic time scale over which an electron changes its state is much smaller

than that associated with the motion of the ions. Hence, the ion-cores can be treated

as stationary during the short time the electron state evolves. This makes it possible

to solve the Schrödinger equation for the wave function of electrons alone. This

is the Born-Oppenheimer approximation. The wave function may then be written

in a separable form χ({RI})ψ({ri}|{RI}). Thus, the Schrödinger equation for the

electrons (for a given position of the ion cores RI) can be written as:[
−

N∑
i=1

∇2
i

2m
+ veI({ri}|{RI}) +

1

2

∑
i,j

1

rij
)

]
ψ({ri}|{RI}) = Ee({RI})ψ({ri}|{RI})(2.3)

The total energy of the system is a sum of electron and ion-core energies. The problem

in trying to solve this equation is the number of variables involved. Which shows the

difficulty of the problem. We quote Feynman “The trouble with quantum mechanics

is not only in solving the equations, but in understanding what the solutions mean.”
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Attempts to solve these problems due to the immensely large number of variables

and lack of easy interpretation has led to the development of newer approaches. An

important class of methods has been based on the variational principle where one

minimizes the quantity

Ẽ = 〈Ψ̃|H|Ψ̃〉 (2.4)

using suitable forms of the trial function Ψ̃ mainly guided by the one-particle orbital

picture leading to single particle self-consistent field schemes like Hartree, Hartree-

Fock and multi-configuration methods. However, due to the computational expense

the routine application of such methods to realistic models of systems of interest is not

practical and not likely to become so despite rapid advances in computer technology.

So, the question that arises is - Is it necessary to solve the Schrödinger equation and

determine the 3N dimensional wave function in order to compute the ground state

energy?

2.2 Avoiding the solution of the Schrödinger equa-

tion

An alternative approach has been based on the reduction to lower dimensions based

on the density functional theory. For more than past three decades density functional

theory has been the dominant method for the quantum mechanical simulation of

periodic systems. It has been adopted by quantum chemists and is now very widely
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used for the simulation of energy surfaces in molecules.

Although the electronic wave function for the N electron system is a function of

3N variables, the expectation value 〈Ψ|Â|Ψ〉 can be calculated through other derived

quantities that depend on less number of variables, if Â is a sum of one- or two-

particle operators, as is the case for the Hamiltonian. Thus, for the ion-core - electron

potential energy consisting of one-particle terms, one has :

∫
Ψ∗(r1, r2, ..., rN)

∑
i

veI(ri|{RI})Ψ(r1, r2, ...rN)dr1dr2...drN

= N

∫
dr veI(r|{RI})

∫
Ψ∗(r, r2, ..., rN)Ψ(r, r2, ...rN)drdr2...drN (2.5)

All electrons are identical, so we choose any of the variables and rename it r and

renumber the rest r2, r3 . . . rN . Hence the result

VeI = 〈Ψ|
∑
i

veI(ri|{RI})|Ψ〉 =

∫
dr veI(r|{RI})ρ(r) (2.6)

valid for any single-particle multiplicative operator, where the single-particle den-

sity is defined as

ρ(r) = N

∫
Ψ∗(r, r2, ..., rN)Ψ(r, r2, ...rN) dr2dr3...drN (2.7)

Similarly, for two-particle multiplicative operators such as the electron-electron

repulsion, one can write

Vee = 〈Ψ|1
2

∑
i,j

1

rij
|Ψ〉 =

1

2

∫
dr1dr2 Γ2(r1, r2)/r12 (2.8)
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where the two-particle density, which gives the joint probability of finding an elec-

tron at r1 and an electron at r2, is defined as

Γ2(r1, r2) =
N(N − 1)

2

∫
Ψ∗(r1, r2, ..., rN)Ψ(r1, r2, ...rN)dr3...drN (2.9)

The functional Γ2 is often referred to as the pair density.

The reduced density functions can also be expressed as the expectation values of

the corresponding density operators, viz.

ρ(r) = 〈Ψ|
∑
i

δ(r− ri)|Ψ〉 (2.10)

Thus we can write

Γ2(r1, r2) = 〈Ψ|
∑
i 6=j

∑
δ(r1 − ri)δ(r2 − rj)|Ψ〉 (2.11)

For the kinetic energy term which involves differential operators, one can write

T = −〈Ψ|
∑
i

52
i

2mi

)|Ψ〉

= −1

2
N

∫
Ψ∗(r1, r2, ..., rN)52

1 Ψ(r1, r2, ...rN) dr1dr2...drN

= −1

2
N

∫ [
52

1

2m1

Ψ∗(r1, r2, ..., rN)Ψ(r1, r2, ...rN)

]
r1=r

′
1

dr1dr2...drN

= −1

2

∫
dr1

[
52

1

2m1

γ(r1; r
′

1)

]
r1=r

′
1

(2.12)

with the first-order reduced density matrix defined as

γ(r1; r
′

1) = N

∫
Ψ∗(r

′

1, r2, ..., rN)Ψ(r1, r2, ...rN)dr2dr3...drN (2.13)



Chapter 2. A Brief Review on Electronic Structure Theory 14

Clearly, the following relationships among the reduced density functions and matrices

hold good.

ρ(r1) = γ(r1, r1) ; Γ2(r1, r2) = Γ2(r1, r2; r1, r2)∫
ρ(r1)dr1 = N ;

∫
Γ2(r1, r2)dr1dr2 = N(N − 1)

γ(r1; r
′

1) = γ∗(r
′

1; r1) ; ρ(r1) =
1

N − 1

∫
Γ2(r1; r2)dr2 (2.14)

For spin-polarized situation one has to include the spin dependence, such that,

ρ(x) ≡ ρ(r s) ;

∫
dx→

∑
s

∫
dr ; ρ(r) =

∑
s

ρ(x)ds

ρ(r) = ρ↑(r) + ρ↓(r) s(r) = ρ↑(r)− ρ↓(r) (2.15)

The total energy can thus be expressed in terms of the reduced density matrices

(RDM) as

E[ρ, γ,Γ2] = T [γ(r1; r
′

1)] + VeI [ρ(r)] + Vee[Γ2(r1, r2)] + VII (2.16)

where VII is the ion-core - ion-core interaction energy. This leads to the possibility

of developing the quantum mechanics of many-electron systems in reduced space in

terms of the RDM’s bypassing the wave function. One of the important requirements

is the possibility of direct determination of RDM by minimizing the energy with

respect to the RDM’s for which the effect of the Pauli exclusion principle has to be



Chapter 2. A Brief Review on Electronic Structure Theory 15

built-in into the RDM’s. The existence of an antisymmetric ψ from which the RDM’s

can be obtained has to be guaranteed.

This is the so called N-representability problem which has to be solved by impos-

ing necessary and sufficient conditions on γ1(r1; r
′
1) and Γ2(r1, r2), which are unfortu-

nately not yet known. The N-representability conditions on ρ(r) are however known

and are very simple, viz.

∫
ρ(r)dr = N ; ρ(r) ≥ 0. (2.17)

This makes the single-particle density (simplest reduced quantity) a promising candi-

date for the formulation of quantum mechanics in reduced space. Some of the many

advantages for the electron density ρ(r) to be the basic variable are :

(a) it is a function in 3D space in which we live and perceive,

(b) it is simpler to tabulate and plot,

(c) it provides a better visualization and

(d) it is an experimental observable, thus enabling one to compare the results of

theoretical calculations directly with experiments.

The question now is whether it is possible to develop a quantum theory in terms

of density alone bypassing the wave function, for which one has to ensure if (a) the

density contains sufficient information (b) calculation of the properties and the energy
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is possible from the density alone (c) it is possible to develop a method for the direct

calculation of density.

The possibility of a density description of many-electron systems has been explored

by many people leading to the so called density functional theory (DFT). Although

the first DFT, viz. The Thomas Fermi method has existed since 1927, the birth of

modern DFT has been through the formal proof of a theorem by Hohenberg and

Kohn (1964).

2.3 Hohenberg-Kohn Theorem

The Hohenberg-Kohn Theorem [4] establishes the density as the basic variable. This

theorem states that the ground-state density ρ(r) of a bound system of interacting

electrons in an external potential v(r) determines this potential uniquely (up to an

uninteresting additive term).

Consider the ground states of two N-electron systems characterized by the two

external potentials (differing by more than an additive constants) v1(r) and v2(r)

with corresponding Hamiltonian:

H1 = T + U +
∑
i

v1(ri) ; H2 = T + U +
∑
i

v2(ri)
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where

T = −1

2

N∑
i

52
i and U =

1

2

∑
i 6=j

1

|ri − rj|

with the corresponding Schrödinger equation, H1ψ1 = E1ψ1; H2ψ2 = E2ψ2 and

we assume that the two wave functions ψ1 and ψ2 yield the same density as,

ρ(r) = N

∫
ψ∗1|2(r, r2, ..., rN)ψ1|2(r, r2, ...rN) dr2dr3...drN (2.18)

Now,

E1 = 〈Ψ1|H1 |Ψ1〉 ≤ 〈Ψ2|H1 |Ψ2〉

≤ 〈Ψ2|H2 |Ψ2〉+ 〈Ψ2|H1 − H2 |Ψ2〉

≤ E2 +

∫
drρ(r)[v1(r)− v2(r)]. (2.19)

Now, similarly one could show that,

E2 ≤ E1 +

∫
drρ(r)[v2(r)− v1(r)]. (2.20)

Summation of the above two inequalities leads to the contradiction

E1 + E2 ≤ E2 + E1 (2.21)

Hence the assumption of identical density arising from the two different external

potentials is wrong. Thus a given ρ(r) can only correspond to only one v(r) and since

v(r) is fixed, the Hamiltonian and hence the wave functions are also fixed by density



Chapter 2. A Brief Review on Electronic Structure Theory 18

ρ(r). Since the wave function is a functional of density, the energy functional Ev[ρ]

for a given ion-core - electron potential veI(r) is a unique functional of density. It can

also be directly proved that this energy functional assumes a minimum value for the

true density.

The minimization of Ev[ρ] subject to the constraint of normalized density, as given

by eqn. (2.17), leads to the Euler equation for the direct calculation of density, viz.

δ[Ev[ρ]− µ
∫
ρ(r)dr−N ] = 0

∂E

∂ρ
− µ = 0⇒ µ =

∂E

∂ρ
= v(r) +

∂F

∂ρ
. (2.22)

The essence of the problem now is to obtain an expression for the energy func-

tional in terms of density which has the general form

Ev[ρ] =
∫
veI(r)ρ(r)dr + F [ρ]

where F [ρ] is a universal functional of density. Comparing with the energy func-

tional in terms of the RDM’s, i.e.,

Ev[ρ, γ,Γ2] = T [γ] +

∫
veI(r)ρ(r)dr +

1

2

∫ ∫
Γ2(r1, r2)

r12
dr1dr2 (2.23)

and using the decomposition

Γ2(r1, r2) = ρ(r1)ρ(r2)[1− f(r1, r2)] (2.24)
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where f(r1, r2) is the correlation function, one can separate out from the electron-

electron repulsion term, the classical electrostatic contribution

Ecoul[ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12

dr1dr2 (2.25)

The exact kinetic energy functional T [ρ] is usually replaced by the kinetic energy

of a system of non-interacting particles Ts[ρ] and the contribution from the electron-

electron interaction energy other than the classical electrostatic contribution and the

difference T [ρ]− Ts[ρ] constitute what is known as the exchange-correlation (xc) en-

ergy functional Exc[ρ]. Thus, one can write

Ev[ρ] =

∫
v(r)ρ(r)d(r) + Ecoul[ρ] + Ts[ρ] + Exc[ρ]. (2.26)

Thus Exc is simply the sum of the error made in treating the electrons classically

and in the error made in using a non-interacting kinetic energy. We note at this

point that the nomenclature in general use and also used in the present context,

exchange-correlation (xc) energy functional is quite misleading for as stated above

the Exc contains an element of the kinetic energy and is not the sum of the exchange

and correlation energies.

The scheme for obtaining the non-interacting kinetic energy functional Ts[ρ] for a

certain ρ(r) is through the solution of the one-particle Schrödinger equations
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[
−1

2
52 +λ(r)

]
ψi = εiψi (2.27)

for a suitably chosen λ(r) such that the resulting orbitals yield the density as

ρ(r) =
∑
i

|ψi|2 (2.28)

and then evaluating the functional as

Ts[ρ] =
∑
i

εi −
∫
drλ(r)ρ(r). (2.29)

The energy functional that is to be minimized for determining the correct equi-

librium density is then given by

Ev[ρ] =
∑
i

εi −
∫
drλ(r)ρ(r) +

∫
veI(r)ρ(r)d(r) + Ecoul[ρ] + Exc[ρ] (2.30)

which leads to the variational condition

∂Ev[ρ] = 0 =
∑
i

δεi −
∫
drδλ(r)ρ(r) +

∫
δρ(r)[−λ(r) + veI(r) + (2.31)

∂Ecoul
∂ρ(r)

+
∂Exc
∂ρ(r)

(2.32)

Considering the expression for εi,

εi = −〈Ψi|
1

2
52
i |Ψi〉+ 〈Ψi|λ(r)|Ψi〉 (2.33)
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we get,

δεi = 〈δΨi|
1

2
52
i |Ψi〉+ 〈δΨi|λ(r)|Ψi〉+ c.c.+ c.c.+ 〈Ψi|δλ(r)|Ψi〉

= εiδ〈Ψi|Ψi〉(= 0) + 〈Ψi|δλ(r)|Ψi〉 (2.34)

and hence the result:

∑
δεi =

∫
drρ(r)δλ(r) (2.35)

which in combination with the variational condition leads to the result

δEv[ρ] = 0 =

∫
drδρ(r)[−λ(r) + veI(r) +

∂Ecoul
∂ρ(r)

+
∂Exc
∂ρ(r)

] (2.36)

Since the variation of δρ(r) is arbitrary, the bracketed quantity must be zero and

hence one has

λ(r) = veI(r) +
∂Ecoul
∂ρ(r)

+
∂Exc
∂ρ(r)

(2.37)

This clearly shows that if one chooses λ(r) given by this expression, the single

particle Schrödinger equation leads to the correct density for the system.

This provides the basis for the Kohn-Sham (K-S) density functional scheme which

involves solution of a set of N nonlinear integro-differential equations:

[−1
2
52 +veff (r; ρ)]ψi = εiψi
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with the effective potential given by

veff (r) = veI(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δExc
δρ(r)

= φ(r) +
δExc
δρ(r)

(2.38)

where, 52φ = 4πρ(r) and the density is calculated as

Ev[ρ] =
∑
i

εi −
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + Exc[ρ]−

∫
drρ(r)

∂Exc
∂ρ(r)

(2.39)

for spin-polarized situations, incorporating the spin-components of the density as well

we have,

Ev[ρα, ρβ] = Ts +

∫
v(r)ρ(r)d(r) + Ecoul[ρ] + Ts[ρ] + Exc[ρα, ρβ]. (2.40)

and the Kohn-Sham equation under the spin-polarized situation becomes

[−1

2
52 +veff (r; ρσ)]ψkσ = εkσψkσ (2.41)

with an effective potential given by

veff,σ(r) = v(r) +

∫
ρ(r

′
)

|r− r′ |
dr

′
+
δExc[ρα, ρβ]

δρσ(r)
(2.42)

The corresponding density is given by

ρ(r) =
∑

i |ψkσ|2
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This set of non-linear equations (the Kohn-Sham equations) describes the behaviour

of non-interacting “electrons” in an effective local potential. For the exact functional,

and thus exact local potential, the “orbitals” yield the exact ground state density

and corresponding energy. The Kohn-Sham approach gives an exact correspondence

of the density and ground state energy of a system consisting of non-interacting

Fermions and the “real” many body system described by the Schrödinger equation.

The correspondence of the charge density and energy of the many-body and the

non-interacting system is only exact if the exact functional is known. In this sense

Kohn-Sham density functional theory is an empirical methodology - we do not know

(and have no way of systematically approaching) the exact functional. However the

functional is universal - it does not depend on the materials being studied. For

any particular system we could, in principle, solve the Schrödinger equation exactly

and determine the energy functional and its associated potential. This, of course,

involves a greater effort than a direct solution for the energy. Nevertheless, the

ability to determine the exact properties of the universal functional in a number of

systems allows excellent approximations to the functional to be developed and used in

unbiased and thus predictive studies of a wide range of materials -a property usually

associated with an ab initio theory. In practice, the utility of the theory rests on the

approximation used for Exc[ρ].
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2.4 The Local density approximation for Exc[ρ]

The generation of approximations for Exc has lead to a large and still rapidly expand-

ing field of research. There are now many different flavours of functional available

which are more or less appropriate for any particular study. In the early days prac-

tical implementations of density functional theory was dominated by one particular

system for which near exact results could be obtained - the homogeneous electron

gas. In this system the electronic charge density (ρ) is uniform due to a constant

external potential faced by the electrons.

Thomas and Fermi studied the homogeneous electron gas in the early twentieth

century [25]. The orbitals of the system are, by symmetry, plane waves.

If the electron-electron interaction is approximated by the classical Hartree po-

tential (that is exchange and correlation effects are neglected) then the total energy

functional can be readily computed. Under these conditions the dependence of the

kinetic and exchange energy on the density of the electrons can be extracted and

expressed in terms of a local functions of density. This suggests that in the inho-

mogeneous system we might approximate the functional as an integral over a local

function of the charge density. Using the kinetic and exchange energy densities of the

non-interacting homogeneous electron gas this leads to;

T [ρ] = 2.87

∫
ρ

5
3 (r)dr (2.43)
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and

Ex[ρ] = 0.74

∫
ρ

4
3 (r)dr (2.44)

These results are highly suggestive of a representation for Exc in an inhomogeneous

system. The local exchange correlation energy per electron might be approximated as

a simple function of the local charge density (say, εLDAxc (ρ)). That is, an approximation

of the form;

ELDA
xc [ρ] =

∫
ρ(r)εLDAxc (ρ(r))dr (2.45)

An obvious choice is then to take εLDAxc (ρ) to be the exchange and correlation

energy density of the uniform electron gas of density ρ - this is the local density ap-

proximation (LDA). Within the LDA εLDAxc (ρ) is a function of only the local value of

the density. It can be separated into exchange and correlation contributions;

εLDAxc (ρ) = εLDAx (ρ) + εLDAc (ρ) (2.46)

The Dirac form can be used for ELDA
x ;

εLDAx (ρ) = −Cρ
1
3 (2.47)

Where for generality an arbitrary free constant, C, has been introduced rather

than that determined for the homogeneous electron gas. This functional form is much

more widely applicable. The functional form for the correlation energy density, εLDAc ,

is unknown and has been simulated for the homogeneous electron gas in numerical
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quantum Monte Carlo calculations which yield essentially exact results [26]. It is a

remarkably noteworthy fact that the LDA works as well as it does given the reduction

of the energy functional to a simple local function of the density. One of the reasons

could be that in LDA there are very significant errors in the exchange and correlation

energies but, as the exchange energy is generally underestimated and the correlation

energy overestimated, these errors tend to cancel. The success of the LDA is in part

due to this cancellation of errors.

Further insight into the behaviour of functionals can be obtained by examining

how well they approximate Γ2 - the probability of finding an electron at r1 and an

electron at r2. LDA seems to make a very poor approximation of Γ2. So, we are

faced with the question - how can the LDA produce such reasonable energetics if the

functional Γ2 is so poorly described by it? The answer is based on the structure of the

Coulomb operator. We remember from eqn. 2.8 that the electron-electron interaction

can be written as;

Vee =
1

2

∫
dr1dr2Γ2(r1, r2)/r12 (2.48)

From this it seems a poor approximation to Γ2 leads to a poor estimate of the

electron-electron interaction. However, the Coulomb operator depends only on the

magnitude of the separation of r1 and r2, r12. We can re-write Vee as ::

Vee =
1

2

∫
dr1dr12Γ2(r1, r1 + r12)/r12

1

2

∫ ∞
0

4π|r12|2[

∫
Γ2(r1, r1 + r12)

r12

dΩr12

4π
]dr12 (2.49)
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Thus the electron-electron interaction depends only on the spherical average of

the pair density - P(r12);

P (r12) =

∫
Γ2(r1, r1 + r12)dr1

dΩr12

4π
(2.50)

The LDA makes a reasonable approximation to this spherically averaged pair

density. This explains in part the success of the LDA.

Thus, we can conclude that the remarkable performance of the LDA is a con-

sequence of its reasonable description of the spherically averaged pair density along

with the tendency for errors in the exchange energy density to be canceled by errors

in the correlation energy density.

2.5 The Generalized Gradient Approximation for

Exc

In the generalized gradient approximation (GGA) the exchange-correlation functional

Exc depends on the density and its derivative,

EGGA
xc [ρ] =

∫
ρ(r)εGGAxc (ρ(r), | 5 ρ(r)|)dr (2.51)

Now one can use the GGA functionals by Perdew and Wang [27], by Perdew, Burke

and Ernzerhof (PBE) [28] and Becke’s formula [9] for the exchange part combined

with Perdew’s 1986 formula for correlation [29]. The GGA improves significantly on

the LDA’s description of the binding energy of molecules - it was this feature which
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lead to the very wide spread acceptance of DFT in the chemistry community during

the early 1990’s. We use the PBE functional mostly for DFT-based calculations in

this thesis.

2.6 Orbital-dependent functionals: An overview

The first question comes into mind is : Why would one even think about using

orbital-dependent functionals, given the tremendous success of the LDA and GGA in

evaluating different properties? There are many considerable points related to this

question in which LDA and GGA fails.

Failure of LDA/GGA

Failure of LDA/GGA leads physicist to move farther from density based functionals to

orbital-dependent functionals. Few of important issues where density based functional

does not perform:

I -Heavy Elements.

II -Negative Ions.

III -Dispersion Forces.

IV -Strongly Correlated Systems.

It is very important to understand about orbital-dependent functional (ODF) and

why ODF’s are so important. So exact-exchange term Ex from DFT is the obvious
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starting point for whole discussion which is the suppose to be most simple functional

of this type. Definition of the exact exchange term Ex comes from the Fock expression

and can be written in terms of KS orbitals:

Ex = −e
2

2

∑
kl

∂k∂l

∫ ∫
d3rd3r

φ†k(r)φlr)φ†l (r
′)φ

(
kr
′)

|r− r′|
. (2.52)

Expression given above is very conclusive which shows that for k = l self-interaction

of orbital is completely canceled present in Hartree term EH , which has been the ori-

gin of the problem of the LDA/GGA with ionic system (negative ions). Last equation

automatically induces a correlation functional of DFT,

Ec = Exc − Ex. (2.53)

It is necessary to mention that Ex and Ec are not same as the exchange and correla-

tion energies defined in conventional many-body theory. Although in the Fock-term of

Hartree-Fock (HF) approach and the functional form of Ex agrees with the exchange,

difference lies with orbitals inserted into the Fock-term: the KS orbitals in eqn. 2.52

has been used, evaluated using solutions of the KS equations with their effective poten-

tial veff which comprised of ion-electron, electron-electron and exchange-correlation

potential. The φk does not agree with the HF orbitals which satisfy the non-local HF

equations. The difference between the resulting exchange energies as well as the dif-

ference between T0 and the full kinetic energy are absorbed into Ec. The right-hand

side of eqn. 2.52 is a density functional in the same sense as the kinetic energy T0:

The KS orbitals φk are unique solution of KS equations evaluated with the help of
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density n, also density n uniquely determines veff (which is guaranteed by the HK

theorem [4] for non-interacting systems), which then allows the unique calculation

of the φk. Thus, Ex represents an implicit density functional dependence, whereas

LDA/GGA shows explicit density dependence. To study the complete spectrum of

KS we extended the class of functional which includes unoccupied part of KS-states

and eigenvalues along with the occupied part which is uniquely determined by veff .

This approach is more like a transit from variational type Thomas-Fermi equation

to the KS equation. Here we step-out from explicitly density-dependence to orbital-

dependent xc-functionals. In the latter we recast kinetic energy functional in orbital-

dependent form which is very important part of Etot[n]. We can use concept same as

above to Exc. Much celebrated orbital based functionals enjoys now a status of third

generation of density functionals.

From the above term we can see that This is the most appropriate definition as it

guarantees the exact cancellation of the self-interaction energy contained in EH , which

has been identified as the origin of the problem of the LDA/GGA with negative ions

(and also seems to be relevant for the description of Mott insulators). It automatically

induces a corresponding definition of the correlation functional of DFT.

2.6.1 Optimized Potential Method (OPM)

The question to be emphasized is how to calculate the potential which corresponds to

xc-functionals of the type eqn. 2.52. There are three distinct ways for the derivation
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of the basic equation which yields this potential [42].

I -Direct Functional Derivative

II -Total Energy Minimization

III -Invariance of the Density

2.6.2 Harbola-Sahni Potential (HSP)

Harbola-Sahni provided an approach alternate OPM to evaluate the exchange corre-

lation potential in KS-DFT in his paper titled ”Quantum-Mechanical Interpretation

of the Exchange-Correlation Potential of Kohn-Sham Density-Functional Theory” [7]

and applied for atoms and in this thesis, we adopted HSP within DFT to evalu-

ate various structural properties (e.g. bulk moduli) as well as electronic properties

(e.g. band gap) of solids. HS provided a distinct interpretation of the exchange-

correlation potential of KS-DFT from the general concept of electrostatics as the

work done against the electric field of the Fermi-Coulomb hole charge distribution by

an electron. This interpretation also provides insights into the exact Slater exchange

potentials. Correct evaluation of the Fermi-Coulomb hole will provide the exchange-

correlation potential as the work done (this has been discussed in chapter 3 of this

thesis).
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2.7 Linear Muffin-Tin Orbital Method

The tight binding linear muffin-tin orbital (TB-LMTO) method is a specific imple-

mentation of density functional theory within the local density approximation (LDA)

and discussion of this part has been taken from the book The LMTO method: muffin-

tin orbitals and electronic structure by H.L. Skriver [31]. In this method there is no

shape approximation to the crystal potential, unlike methods based on the atomic-

spheres approximation (ASA) where the potential is assumed to be spherically sym-

metric around each atom. For mathematical convenience the crystal is divided up

into regions inside muffin-tin spheres, where Schrödinger equation is solved numer-

ically, and an interstitial region. In all LMTO methods the wavefunctions in the

interstitial region are Hankel functions. Each basis function consists of a numerical

solution inside a muffin-tin sphere matched with value and slope to a Hankel function

tail at the sphere boundary. The so-called multiple-kappa basis is composed of two or

three sets of s, p, d, etc. LMTOs per atom. The extra variational degrees of freedom

provided by this larger basis allow for an accurate treatment of the potential in the

interstitial region. The first approximation in using atomic sphere method, is that

the potential in the crystal has a local spherical symmetry and extremely at potential

in interstitial space. This approximation is called atomic sphere approximation(ASA)

as shown schematically. The wave function at energy E can be written as

ψj(k, r) =
∑
lm

bjkRlmψRl(E, |r−R|)ilY m
l (r̂−R) (2.54)

where bjkRlm is the expansion coefficient of the partial wave, Y m
l is a spherical
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harmonics, il is a phase factor and ψRl a solution of radial Schrödinger equation[
− d2

dr2
+
l(l + 1)

r2
+ v(r)− E

]
rψl(E, r) = 0 (2.55)

Phase conventions of[32] is used for spherical harmonics. Wigner and Seitz [33, 34]

suggested the spherically symmetric potential to extend until the boundary of atomic

polyhedron. The wave functions in solid is then expressed as Bloch sum of eqn. 2.54

ψj(k, r) =
∑
R

expikṘ
∑
lm

bjklmδ(r−R)ψl(E; |r−R|ilY m
l (r̂−R) (2.56)

where δ inside atomic sphere is unity and zero outside. Though this cellular

method turned out to be too tough for applying boundary conditions, it gave rise to

KKR (named after Korringa, Kohn and Rostoker) (and LMTO) method and Wigner-

Seitz rule of energy band. Slater [35] in his Augmented Plane-wave(APW), inscribed

a muffin-tin(MT) sphere in each atomic sphere. Inside the sphere, the potential

is spherically symmetric and wave functions are expanded as Wigner-Seitz partial

wave. Korringa [36], Kohn and Rostoker [37] expand the MT spheres similar to

cellular and APW. The interstitial potential is flat and wave functions are expanded

as phase shifted spherical wave. Boundary conditions are expressed as condition for

self-consistent multiple scattering between the MT spheres. Andersen linearized this

method which is one of the most used method of solving the KS equation.

2.7.1 Korringa, Kohn and Rostoker Method

In the KKR-ASA, MT and interstitial region is divided into overlapping atomic

spheres (ASs). The total volume of the ASs thus equals the total crystal volume.
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Any point r in the space is denoted by (r, R), where R is the index for the AS and

r = (r, r̂) = (r, θ, φ)(r < R) is the vector denoting the position in each AS. R denotes

the radius of AS and here φ is azimuthal angle.

Starting point for KKR is an energy dependent orbital defined as

χlm(E, r) = ilY m
l


ψl(E, r) + pl(E)( r

S
) r < S

(S
r
)l+1 r > S

(2.57)

where ψl(E, r) is the solution of eqn. 2.57 and S is the radius of atomic sphere.

This muffin-tin orbital(MTO) is regular, continuous and differentiable over all space.

The potential function pl(E, r) and normalization of ψl(E, r) requires continuity and

differentiability at the sphere boundary with the boundary condition

pl(E) =
Dl(E) + l + 1

Dl(E)− 1
, (2.58)

where, Dl(E) =
S

ψl(E, S)

∂ψl(E, r)

∂r
|r=S (2.59)

is the logarithmic derivative function.

The tail of the orbital, (S
r
)l+1 is the solution of Poisson’s equation ∇2X = 0, which

has zero kinetic energy. So, the tail centered at R can be expanded around the origin

in terms of spherical harmonics with shifted in phase, which yields,

∑
R 6=0

exp i(k.R)(
S

|r−R|
)l+1ilY m

l (r̂−R) =
∑
l′m′

−1

2(2l′ + 1)
(
r

S
)l

′
il

′
Y m′

l′ (r̂)Sk
l′m′,lm (2.60)

where Sk
l′m′,lm is the canonical structure constant, converges inside the sphere of near-

est neighbor.
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The first term of MTO ilY m
l (r̂)ψl(E, r) is already a solution of eqn. 2.55 and is

the one-center expansion with origin at r. For any other sphere, therefore, the term

is ∑
lm

ajklmY
m
l (r̂)ψl(E, r) (2.61)

provided tails from all other sphere cancel the term

∑
lm

ajklmY
m
l (r̂)pl(E)(

r

S
)l (2.62)

where ajklm is the expansion coefficient of MTO. From eqn. 2.60, the condition for this

tail cancellation is ∑
lm

[
Pl(E)δll′δmm′ − Sk

l′m′,lm

]
ajklm = 0 (2.63)

where Pl is defined as

Pl(E) = 2(2l + 1)
Dl(E) + l + 1

Dl − 1
(2.64)

Solution of secular form of eqn. 2.63 gives eigenvectors ajklm when

det
[
Pl(E)δll′δmm′ − Sk

l′m′,lm

]
= 0 (2.65)

2.7.2 Muffin-tin potential

The basic assumption of muffin-tin orbital is that in the neighborhood of an ion-core

the potential seen by the electron in a solid is not very different from that of the

atomic ion-core. This neighborhood is spherically symmetric with radius S centered

at R. In the interstitial region the potential is flat, called muffin-tin potential (VMTZ).

In muffin-tin potential is defined as
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VMT (r−R) =


υ(|r −R|)− VMTZ r ≤ S

0 r ≥ S

(2.66)

is the muffin-tin potential where R and r are the positions of the ion-cores and

electrons respectively. Thus Hamiltonian can be written as:

H = −∇2 +
∑
R

VMT (|r−R|)− κ2 + E (2.67)

where κ is the kinetic energy in the extended region, κ2 = E − VMTZ . Eqn. 2.55 has

been solved numerically for radial solution ψl(E, r) written in terms of Hankel and

Bessel function

ψL(ε, κ, r) = ilYL(r̂)


ψl(ε, r) + κcot(ηl(ε))jl(κr) r ≥ S

κηl(κr) r ≤ S

(2.68)

with MT basis set

χMTO
L (ε, κ, r) = ilYL(r̂)


ψl(ε, r) + κcot(ηl(ε))jl(κr) r ≤ S

κηl(κr) r ≥ S

(2.69)

where S is the muffin-tin sphere radius. jl and nl are the spherical Bessel function is

defined as

jl(κr)→


( (κr)l

(2l+1)!
) κr → 0

sin(κr+ lπ
2

)

κr
r →∞

(2.70)

and spherical Neumann function is given by

ηl(κr)→


− (2l−1)!

(κr)2l+1 κr → 0

− cos(κr+ lπ
2

)

κr
r →∞

(2.71)
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which means jl is regular both at origin and at ∞ , where nl is regular at ∞

only and diverges at origin. This yields a bound state envelop function which is real,

and regular both inside (since jl(κr) is regular at origin) and outside (since nl(κr) is

regular at infinity) the sphere. The inclusion of jl(κr) in the single particle basis set

includes the effect of neighbours so that the minimal basis set is capable of describing

the full system. Anderson’s method of linearized basis

χαRL = φRL(rR) +
∑

φ̈αR′L′(r′R)hαR′L′,RL (2.72)

where φ̈αR′L′(r′R) is linear combination of φ and φ̈ and given by

φ̈αR′L′ = φ̈αR′L′ + φR′L′oα (2.73)

here, oα is overlap matrix. Eq. 2.72 is used as starting point for our calculation of HS

potential. Which subsequently used in evaluation of radial density, Fermi-Coulomb

hole charge density. Evaluation of Fermi-Coulomb hole allows us to directly calculate

electric field. Later electric field is utilized in evaluation of exchange-correlation

potential.

2.8 Solution of the Kohn-Sham Equation

The Kohn-Sham orbitals are required to be expanded in a suitable basis set in order

to be solved. The basis set can either be fixed energy dependent like plane waves

or linear combination of the atomic orbitals or energy dependent partial wave-like
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basis. Plane wave basis has been found to be useful for the calculation of systems

like clusters and solids. Plane wave basis expansion is mathematically simple. By

using the pseudo-potential approach the size of the basis set required can be reduced

making the calculation computationally less expensive.

2.8.1 Plane Waves and Pseudo-potentials

Plane wave basis are orthonormal and energy independent. Thus they convert the

Kohn-Sham equation to a simple matrix eigenvalue problem for the expansion coef-

ficients. Moreover, plane waves are atom and atomic position independent. In such

calculations , the single electron wave function is expanded using plane wave basis

exp[i(G.r)], where the candidate G’s are the reciprocal vectors of the unit cell used.

The biggest advantage of plane wave basis is its ability to perform the exact vari-

ational calculation based on a discrete numerical grid, i.e., instead of doing actual

real space integrations, we can do a summation over a real space grid, the results are

exactly the same.

The plane wave calculations require that the wave function be described by plane

waves within a certain energy cut-off Ecut. In order to reduce Ecut to a reason-

able value the wave function should be smooth. While it is often smooth at the

chemically important bonding area, near the nuclei, the valence wave functions often

have a lot of wiggles. These wiggles must exist so that the valence wave functions

are orthogonal to the deep level core wave functions. Besides, it is difficult to de-
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scribe those chemically-not-important core wave functions using plane wave basis.

To overcome these difficulties, pseudo-potentials are developed. Basically, using a

Pseudo-potentials, the core states will no longer exist, and the valence pseudo-wave

functions become smooth near the nuclei. Using this technique the unwanted sin-

gular behaviour of the ionic potential at the lattice points can be removed. A good

pseudo-potential wave function should be soft and transferable. A pseudo-potential

is soft if it requires less number of plane waves. A pseudo-potential is transferable

if it works considerably well in different environments. However, to have these good

properties, it is necessary to have different pseudo-potentials for s,p,d states, i.e, the

pseudo-potential is angular momentum dependent (non-local pseudo-potential).

2.8.2 Projector Augmented Wave

The drawback of the pseudo-potential method is that all information on the full wave

function close to the nuclei is lost. This can influence the calculation of certain prop-

erties, such as hyperfine parameters, and electric field gradients. Another problem

is that one has no before hand knowledge of when the approximation yields reliable

results.

A different approach is the augmented-plane-wave method (APW), in which space

is divided into atom-centered augmented spheres inside which the wave functions are

taken as some atom-like partial waves, and a bonding region outside the spheres,

where some envelope functions are defined. The partial waves and envelope functions
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are then matched at the boundaries of the spheres. A more general approach is

the projector augmented wave method (PAW) which is used in this thesis, which

offers APW as a special case and the pseudo-potential method as a well defined

approximation. The PAW method was first proposed by Blöchl [30].

The projector augmented wave (PAW) method separates the Kohn-Sham wave

functions, which displays rapid oscillations in some parts of space, and smooth be-

haviour in other parts of space into auxiliary functions which are smooth everywhere

and a contribution which contains rapid oscillations, but only contributes in certain,

small, areas of space. Having separated the different types of waves they can be

treated individually. Thus the Kohn-Sham total energy E can be separated into a

part calculated on smooth functions, Ẽ, and some atomic corrections, ∆Ea, involving

quantities localized around the nuclei only

E = Ẽ +
∑
a

∆Ea (2.74)

where the smooth part Ẽ is the usual energy functional, but evaluated on the smooth

functions ρ̃ instead of ρ and with the soft compensation charges Z̃ instead of nuclei

charges Z(r).



Chapter 3

A first-principles approach to band gap

problems

1

3.1 Introduction

The many-body interacting system of valence electrons in a solid is one of the dif-

ficult problems in physics. Perhaps the most successful first-principles approach to

the electronic structure of solids is density functional theory (DFT) [39, 40]. The

ideas behind DFT are quite simple and remarkably easy to implement for numerical

studies. However, the inaccuracy in predicting the band gap of semi-conductors and

insulators has been one of the recurring problems in this approach. The crux of the

matter lies in the setting up of the auxiliary, single particle Kohn-Sham equation

1The contents of this chapter has been submitted for publication : P.Singh et.al.

41
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[4, 6]. In the traditional DFT the auxiliary Hamiltonian is obtained variationally.

As a result, DFT is applicable only to the ground state. It is well understood that

the spectrum and orbitals of the Kohn-Sham equation have no specific significance

beyond the fact that they are used to obtain the ground-state density and the ki-

netic energy contribution. Interpretation of the unoccupied part of the Kohn-Sham

spectrum as the excitations of the many-body system does not have any basis. On

the other hand, the energy eigenvalue of the highest occupied orbital is the exact

ionization potential of the system [41]. Since adding an extra electron at the bottom

of the conduction band would hardly change the density of a bulk system, it was

expected that the difference in the Kohn-Sham orbital energies corresponding to the

lowest unoccupied band and the top of the highest occupied band should give the

correct band gap of semiconductors and insulators. However the results obtained by

applying the traditional exchange-correlation functionals like the local density ap-

proximation (LDA) are contrary to this expectation and grossly underestimate the

band gap with respect to experiments. We come up with a new class of exchange-only

(EX) functionals developed by Harbola and Sahni (HS) [7], an orbital based exchange

only functional. Harbola and Sahni provided its physical interpretation from electro-

statics as the work done to bring an electron from infinity to some point against

force field of the exchange hole depletion charges. HS-EX satisfies criteria required

to replace LDA. The question arises : why is HS-EX important as there exist many

functionals e.g. LDA+U, GGA [27, 28], meta-GGA [8], the exact exchange (EXX)
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[42] functional and many hybrid functionals e.g. B3LYP [9] ? It has always been

understood that the spectrum of orbitals of the Kohn-Sham (KS) equation have no

specific significance beyond the fact that they are used to obtain the ground-state

density and the kinetic energy contribution. KS obtained the Hamiltonian of this

non-interacting system by a variational principle. As we know the Hamiltonian has

higher order (excited) states as local minima, while the global minimum belongs to

ground state. If we could make a starting guess quite close to he excited states then it

would converge to this minimum. Alternatively, we could design the functional such

that the excited states are global minimum. But contrary to LDA, HS-EX obtained

the potential through clear physical arguments based on electrostatics. This is not a

variational approach. Consequently, it allows us to apply HS-EX to calculate excited

state properties e.g. band gap in semiconductors. Given the long available list of

functionals it would not possible discuss all, nevertheless, we shall shed some light

over some exchange-correlation functionals commonly used within KS-DFT along

with HS-EX. There have been considerable efforts to improve the band gaps within

the framework of Kohn-Sham DFT. Extending the idea of optimized effective poten-

tial (OEP), primarily proposed by Talman and Shadwick for atoms [42, 43], to solids

by Kotani where exact exchange (EXX) combining with LDA correlation produces

good band gaps in excellent agreement with the experiments [44]. EXX calculates

the linear response function which is subsequently inverted, which makes the compu-

tation very cumbersome [47]. However, presently within first-principles approaches



Chapter 3. A First-principles approach for Band Gap Problems 44

for extended systems, the GW approximation (GWA) [45] explains electronic band

properties most accurately while the computational efforts required for GW method

are much heavier, thus limiting it’s application to relatively smaller systems. We are

proposing an alternative approach to obtaining the exchange-correlation potential. In

this approach, the XC-potential is calculated as the work done in moving an electron

in the electric field produced by its Fermi-Coulomb hole. The physical interpretation

of this potential was provided by Harbola and Sahni (HS) [7]. Using HS approach

within the exchange (EX) only approximation, where HS-EX is evaluated from Fermi

hole, produces ground state as well as excited state properties comparable to EXX

and GWA but with considerably reduced numerical efforts. The above physical pic-

ture and the vastly reduced computational effort make this approach worth following.

With this in mind, we use HS approach to calculate the various properties of materials

within TB-LMTO in the atomic sphere approximation (ASA) [48].

3.2 Methodology

In the post-Born-Oppenheimer many-body Hamiltonian of the interacting valence

electron system, the contribution to the total energy by the electron-electron interac-

tion terms is :

Eee[ρ] =
1

2

∫ ∫
Γ(r, r′)

|r− r′|
drdr′

The joint probability density can be written as : Γ(r, r′) = ρ(r)ρ(r′)[1 − C(r, r′)]

where C(r, r′) is the correlation function. The electron-electron part of the total
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energy becomes :

Eee =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′ +

1

2

∫ ∫
ρ(r)ρxc(r, r

′)

|r− r′|
drdr′ (3.1)

where, ρxc(r, r
′) is Fermi-Coulomb hole charge distribution defined as

ρxc(r, r
′) = −ρ(r′)C(r, r′)

If we compare the Hartree and exchange-correlation terms in Eqs. 3.1, the physical

interpretation of ρxc(r, r
′) is the deficit in the density of electrons at r′ when another

electron is at r. Thus an electron at r causes a ‘hole’ in the electron density at

r′, which is the Fermi-Coulomb hole. We can approach the problem of defining the

exchange part of the Kohn-Sham potential by its electrostatic definition as the work

done to bring an electron from infinity to r against the electric field produced by the

Fermi hole,

E(r) =

∫
ρx(r, r

′)

|r− r′|3
(r− r′)dr′. (3.2)

Here, ρx(r) is Fermi hole (exchange) charge density and the exchange potential is

obtained from the work done :

WHS(r) = −
∫ r

∞
E(r) · d` (3.3)

A question may be asked whether the field E(r) is curl free and the expression for the

Harbola-Sahni potential is path independent. The kinetic energy correction to the

exchange term does lead to a small solenoidal component in the field. This correction

is necessary but may not be quantitatively important in many materials. However,
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indeed the field is curl free in the ASA. The virial theorem [50] gives the exchange

energy from the HS-EX potential WHS(r)

Ex = −
∫
ρ(r)r · ∇WHS(r)dr. (3.4)

There have been several applications of these ideas [51, 52] to estimate accurately the

ground state energies as well as the energies of excited states of several atomic systems.

As is well known that latter are notoriously difficult to estimate theoretically. But

the excellent results reported for both the ground and excited states encouraged us

to apply this technique to solids. Using the approach outlined above, the Kohn-Sham

like auxiliary equation in atomic sphere become

{
−1

2
∇2 + Veff(r)

}
φλσ(r) = ελφλσ(r)

Veff = V (r) +

∫
ρ(r)

|r− r′|
dr′ +WHS(r) . (3.5)

while for empty sphere we solve the equation with LDA

{
−1

2
∇2 + Veff(r)

}
φλσ(r) = ελφλσ(r)

Veff = V (r) +

∫
ρ(r)

|r− r′|
dr′ + VLDA(r) . (3.6)

Eq. 3.5 and eq. 3.6 are used to calculate various ground and excited state properties of

solids. We have implemented the HS-EX potential in TB-LMTO within atomic sphere

approximation (ASA) developed by Jepsen et.al.[48]. Within this methodology, the

lattice space is divided into ion-core centric atomic spheres (AS) with overlap < 10%,

where ASA demands that the sum of AS volumes equals the cell volume. For open
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Figure 3.1: Clockwise from top left, radial density (RD), LDA potentials for empty

sphere (ES) and at bottom left HS-EX and LDA potential for silicon atomic sphere(Si-

AS). Wigner-Seitz radius is kept fixed for both Si-AS and ES at 2.53Å.

lattices this is not possible and the remaining volume is filled with empty spheres

which do not have associated ion-cores but is filled with charge. We shall replace the

potential within the atomic spheres (AS) by the HS-EX. For the empty spheres (ES),

we use the standard LDA potential because absence of core in ES, makes the electron

gas reasonably homogeneous and application of LDA is justified.
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3.3 Results and Discussion

3.3.1 Electronic Structure of Semiconductors: a first principles study

3.3.1.1 Silicon (Si)

In fig. 3.1, we have plotted potential inside Si-AS and ES with HS-EX (solid line) and

LDA (dotted line). There is a discontinuity in the potential at the AS boundaries.

This is an artifact of ASA. Contrary to HS-EX, LDA has a relatively positive con-

tribution to exchange due to non-cancellation of self-interaction. In TB-LMTO the

AS and ES orbitals have fractional charges which has been taken care of while calcu-

lating the radial and Fermi hole charge densities [53].Total valence electrons in Si-AS

using HS-EX is 3.31, while EXX and LDA numbers are 3.34 and 3.21 respectively.

HS-EX localizes the valence states by self-interaction correction. For band structure

calculation, we started with Si having diamond structure, with indirect band gap.

The diamond structure structure consist of two interpenetrating fcc lattices with Si

atoms at (0,0,0) and (1/4,1/4,1/4), respectively, and we add two other fcc lattices

of empty spheres to obtain closely packed structures within TB-LMTO-ASA. ES has

been inserted as spherical scatterer in open shell region. The average Wigner-Seitz

radius has been set for both Si-AS and ES to 2.53Å. Basis set used for this calcula-

tion is (3s3p3d) for Si-AS and (1s2p3d) for ES, which is complete under all symmetry

operations and no additional basis atoms have been introduced. The tetrahedron

integration is performed over the full Brilluoin zone with 29 irreducible k-points from
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512 (8×8×8). The band structure of Si thus obtained is shown in fig. 3.2. The figure

points out energy values along particular edges of the irreducible wedge, the energy

dispersion along the straight line from point Γ to point X. A comparison of the

dispersion curves obtained with HS-EX and LDA shows that the curvature of valence

bands are hardly affected in HS-EX. However, definite shift has occurred in valence

bands while conduction bands shifted and definite shift with some distortion has oc-

curred which is not a rigid shift like scissor operator method. The energy dependent

distortion invalidates the use of the scissors operator which empirically inserts a rigid

shift [61] ( in fig. 3.2 for LDA and HS-EX Fermi level has been set at zero). The

conduction band minimum in silicon occur at about 0.85% of the way to the zone

boundary from Γ to X. The difference between conduction band minimum and va-

lence band maximum results into a correct indirect Γ-X gap for Si. Band gap for Si

produced by HS-EX is 1.18 eV whereas LDA highly underestimates with 0.49 eV and

some over-estimations in GWA [98] and EXX [44] with 1.37 eV and 1.98 eV respec-

tively. For silicon, within HS-EX, the calculated effective electron mass (m∗e/m0) is

0.99 while Kittel et .al . reported a value of 0.97±0.02 [62]. Our calculated effective

hole mass (m∗h/m0) is 0.44 while the calculations of Dexter et .al . [63] showed an av-

erage hole mass to be 0.39, where m0 is the free electron rest mass. The same trend

is clearly observed in the density of states.
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Figure 3.2: Comparison between the band-structures and densities of states of Si

using HS-EX and LDA potential.

A summary of the important features of the HS-EX band structure of Si at high-

symmetry points in structure with respect to the valence-band maximum given in

table 3.1. Total valence band width for Si is 11.80 eV.

3.3.1.2 Diamond (C)

The diamond and silicon posses similar structure which comes under same space

group and the treatment of C follows that of Si. Basis set used for this calculation is

(2s2p) for C-AS and (1s2s3d) for ES. The conduction band minimum in C occur at

about 0.667% of the way to the zone boundary from Γ to X. The difference between

conduction band minimum and valence band maximum results into a correct indirect

Γ-X gap for C. Band gap for C produced by HS-EX is 5.56 eV whereas LDA highly
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c-Silicon band energies(eV)

HS-EX Expt. HS-EX Expt. HS-EX Expt.

Γv1 -11.80 -12.5±0.6 Xv
1 -7.88 -3.9 Lv1 -9.64

Γv2,5 0.00 0.00 Xv
3 -7.88 Lv1 -6.86

Γc1,5 2.58 3.4 Xv
5 -2.63 Lv3 -1.10 1.21±0.4

Γc1 3.69 4.2 Xc
1 1.42 Lc1 1.48 2.3

Xc
3 1.42 Lc3 5.60 5.60

Xc
5 10.49 Lc1 9.40

Table 3.1: Energy bands of Si at L, Γ and X high symmetry points with respect to

Γ2,5 point which is the valence-band maximum. Along with HS-EX band energies

experimental energies for silicon has been shown.
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Figure 3.3: Comparison between the band-structures and densities of states of dia-

mond using HS-EX and LDA potential.

underestimates with 2.70 eV and some over-estimations in GWA [98] and EXX [44]

with 6.03 eV and 5.12 eV respectively. HS-EX has slight overestimation of ≈ 2%

while LDA and EXX underestimates by ≈ 51% and ≈ 7% respectively and GWA

overestimates by ≈ 10%. Which shows our method is in better agreement with

experiments. A summary of the important features of the HS-EX band structure of

C at high-symmetry points in structure with respect to the valence-band maximum

given in table 3.2. Total valence band width for C is 20.33 eV.

3.3.1.3 Zinc-blende and wurtzite aluminium nitride (AlN)

The high temperature electronics and optoelectronic applications require wide band

gap semiconductors, aluminium nitride is one of the largest band gap semiconductors

with 6.2 eV in wurtzite (WZ) phase. It usefulness can be attributed to it’s high
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c-Diamond band energies(eV)

Γv1 -20.33 Xv
1 -11.88 Lv1 -14.69

Γv2,5 0.00 Xv
3 -11.88 Lv1 -12.28

Γc1,5 6.01 Xv
5 -5.65 Lv3 -2.57

Γc1 14.9 Xc
1 6.40 Lc1 9.82

Xc
3 6.41 Lc3 10.61

Xc
5 16.35 Lc1 16.70

Table 3.2: Energy bands of diamond at L, Γ and X high symmetry points with respect

to Γ2,5 point which is the valence-band maximum.

temperature stability (melting temperature3000 C), high elastic stiffness and excellent

thermal conductivity. In III-V group based Al-semiconductor compounds AlN with

wurtzite (w-AlN) phase is only with direct band gap. The zinc blende (ZB) (cubic)

form has been theoretically reported to be metastable [64, 65], and only the calculated

lattice parameter (a = 4.37 Å) is available [66, 67], obtained by assuming the same

volume per atom as in the WZ structure. Both w-AlN and c-AlN have been the

subject of extensive theoretical studies ranging from the semi-empirical to the first-

principles methods within the density functional theory (DFT) framework [76]. We

have explored in detail, common structural as well as electronic properties. The

valence configuration in AlN of the Al is 3s23p1 and N is 2s22p3 shells. In WZ, the

Al and N atoms are in (2b) positions as follows: Al (0, 0, 0), (1/3, 2/3, 1/2); N

(0, 0, w), (1/3, 2/3, 1/2+w). For the WZ structure w is the internal parameter,
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described as the relative displacement between Al and N sub-lattices along the c

direction, was fixed to be 0.385 and the c/a ratio at the value of 1.601. In ZB, the

Al and N are in fcc positions as follows: Al (0, 0, 0); N (1/4, 1/4, 1/4). We have

considered a set of lattice parameters for c-AlN is a=4.38 Å calculated by HS-EX

approach developed by us. Theoretical calculations within the LDA give 4.32 [69]

and 4.345 Å [70] using FLMTO and 4.342 Å using PWPP [71], and those within

GGA give 4.394 Å using PWPP [72] and 4.40 Å using FLAPW [73]. For w-AlN, we

started with experimental lattice parameter a = 3.11 and c = 4.98 [74] while the

pseudo-potential calculations, slightly underestimates compared to the experiments,

of Wright and Nelson [71] with values a = 3.08 Å and c = 4.94 Å. The most prominent

features of the calculated band structures (bandwidths, band gaps) of c-AlN and w-

AlN are listed in Table 3.3. In c-AlN the conduction-band minimum (CBM) is located

away from the Γ point, at the X point. Thus, we obtain an indirect band gap of 5.05

eV in agreement with other results (see Table 3.3 for comparison). The results of

other approaches beyond the LDA, HartreeFock [75], GW quasi-particle [68] and self-

interaction and relaxation correction pseudo-potential (SIRC-PP) [77] calculations

are also listed for comparison. Only the GW quasi-particle calculation of Rubio et

al [76] yields gap energies in reasonable agreement with experiment. The band gaps

of AlN are underestimated in the LDA, when compared to the experimental data or

GW calculations (Table 3.3). They are 30-50% smaller than the experimental values

and this is an intrinsic feature of the DFT-LDA. In w-AlN, the band gap is 5.64 eV
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and direct at Γ; this is in close agreement with the results of experimental energy gap

(6.28 eV) of w-AlN was determined by Berger [78]. Thus our HS-EX underestimates

the band gap by 0.64 eV (≈ 10%). While LDA underestimates by 1.85 eV (≈ 30%).

Total and the projected DOS integrated over the atoms (Al and N) and the interstitial

region outside the atomic spheres for both WZ and ZB AlN. These plots (fig. 3.4) are

very similar for both w-AlN and c-AlN. There is hardly any difference expected for

the occupied states between DOSs obtained for the two structures, significant change

for unoccupied levels has been expected. In particular, the total DOS for c-AlN has

conduction band DOSs that are shifted toward lower energies as compared to that of

w-AlN. It can be seen that the DOS in the interstitial region is not negligible. For both

c-AlN and w-AlN, the total DOS presents three regions: firstly, N-2s state dominates

the lower part of the valence band, secondly, N-2p and Al-3p states dominate the

upper part of the valence band. The Al-3s states contribute to the lower valence

bands. The first conduction band in Γ shows predominantly the Al-3s character. A

summary of the important features of the HS-EX band structure of AlN at high-

symmetry points in WZ structure and ZB structure with respect to the valence-band

maximum has been given in table 3.3. The total valence bandwidths are 14.63 eV

and 14.72 eV for w-AlN and c-AlN respectively.
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w-AlN band energies(eV) c-AlN band energies(eV)

Γv1 -14.63 Hv
3′ -4.35 Γv1 -14.72 Lv1 -12.86

Γv3 -5.2 Hv
1,2 -3.10 Γv2,5 0.00 Lv1 -5.43

Γv5 -0.68 Hv
3 -0.75 Γc1,5 5.20 Lv3 -0.44

Γc1 5.64 Hc
3 10.16 Γc1 14.74 Lc1 8.26

Γc3 8.06 Av1,3 -3.25 Xv
1 -12.25 Lc3 11.30

Γc1,6 12.84 Av5,6 -0.36 Xv
3 -4.67 Lc1 15.47

Lv1′,3′ -4.93 Ac1,3 7.79 Xv
5 -1.62

Lv1,3 -3.01 Ac5,6 12.53 Xc
1 5.05

Lv2,4 -3.01 Xc
3 9.79

Lc1,3 7.74 Xc
5 14.97

Lc1′,3′ 11.74

Table 3.3: The eigen energies has been calculated with reference to the valence-band

maximum.
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Figure 3.4: Comparison between the band-structures and densities of states of dia-

mond using HS-EX and LDA potential of w-AlN (wurtzite) and c-AlN (cubic)

3.3.1.4 Zinc-blende and wurtzite boron nitride (BN)

In recent years, the properties of boron nitrides (BN) have been studied in great

detail, both theoretically and experimentally. This is mainly due to some of the fasci-

nating properties of BN, such as extreme hardness, high melting point, low dielectric

constant, large band gap, etc., that have many applications in modern microelec-

tronic devices and its usefulness as a protective coating material[79]. At very high

temperature range, BN emerged as a very strong competitor of diamond and SiC.

Also, BN is the lightest III-V compound which is isoelectronic with the III-V semi-

conductors namely GaAs, but with quite different properties. BN exists in three

crystalline forms [80]. We shall be studying zinc-blende and wurtzite phase of BN.

There have been many studies on the electronic and structural properties of c-BN,

but relatively few for w-BN. Early studies show vastly different results mainly be-
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cause of deficiencies in the computational methods. In recent years, first-principles

calculations in the local-density approximation (LDA) have provided much better and

consistent results. These include the LCAO (linear combination of atomic orbitals)

calculations with numerical basis by Zunger and Freeman [81]; LCAO Hartree-Fock

study by Dovesi, Pisani, and Roetti [82]; calculations by Huang and Ching [83]; first-

principles pseudo-potential calculations by Wentzcovitch and coworkers [84]-[87], and

also by Van Camp, Van Doren, and Devresse. Park, Terakura, and Hamada stud-

ied the band structures and the equilibrium lattice constants of all three phases of

BN using the full-potential linear augmented-plane-wave method (FLAPW)[88]. The

band structure of BN is calculated self-consistently using the TB-LMTO method.

A full basis set including the empty 3s and 3p atomic orbitals of both B and N is

employed. Each atomic function is expanded in terms of tight binding atomic or-

bitals. 29-k points in the irreducible part of the Brilluoin zone (BZ) are used for

self-consistent iterations in both the cases. The numerical accuracy achieved in these

calculations is adequate and is comparable to similar calculations for other crystals.

Our methodology predicts, c-BN and w-BN both are indirect band gap system, which

is in agreement with the experiments. Our results compared with LDA and GWA are

closest to experiments. HS-EX overestimates band gap only by ≈ 3%, while LDA

underestimates by ≈ 50% and GWA overestimates by ≈ 11%. A summary of the

important features of the HS-EX band structure of BN at high-symmetry points in

WZ structure and ZB structure with respect to the valence-band maximum has been
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Figure 3.5: Comparison of band-structure and densities of states using HS-EX and

LDA potential of w-BN (wurtzite) and c-BN (cubic)

given in table 3.4.

3.3.1.5 Zinc-blende boron and aluminium phosphide (BP and AlP)

Stone and Hill [89] made the first optical transmission measurements on amorphous

BP. A large abrupt decrease in the transmittance of 6.0 eV was taken to indicate a

band gap of that width even though a small inflection occurred in their data at 2.0

eV. However, now it has been established that the experimental band-gap energy is

only about 2.1 eV. The first report of this lower value was by Archer, Koyama, Loeb-

ner, and Lueas [90] who obtained agreement within 50 meV from room-temperature

measurements of optical absorption, in-3ection electroluminescence, and photoelec-

tric response of surface barrier contacts. At about the same time Wang, Cardona,

and Fischer [91] determined from transmission measurements that the fundamental
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w-BN band energies(eV) c-BN band energies(eV)

Γv1 -15.66 Hv
3′ -8.29 Γv1 -18.05 Lv1 -15.41

Γv3 -9.90 Hv
1,2 -7.10 Γv2,5 0.00 Lv1 -9.74

Γv5 -2.08 Hv
3 -2.77 Γc1,5 9.04 Lv3 -1.84

Γc1 8.08 Hc
3 11.30 Γc1 11.57 Lc1 11.11

Γc3 9.90 Av1,3 -5.17 Xv
1 -14.16 Lc3 12.75

Γc1′,6 11.74 Av5,6 -1.15 Xv
3 -8.25 Lc1 16.45

Γc1,6 12.56 Ac1,3 10.30 Xv
5 -4.47

Lv1′,3′ -9.33 Ac5,6 11.23 Xc
1 6.02

Lv1,3 -3.49 Xc
3 10.84

Lv2,4 -3.22 Xc
5 17.64

Lc1,3 8.51

Lc1′,3′ 11.73

Table 3.4: The eigen energies has been calculated with reference to the valence-band

maximum.
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absorption edge of BP is near 2 eV and caused by indirect transitions from the k=

0 top of the valence band to a conduction-band minimum at the X point. They at-

tributed this small value of the energy gap to an extremely small ionicity. Fomichev,

Z hukova, and Polushina [92] obtained a value of 2.0±0.2 eV for the band gap of

BP by ultrasoft x- ray spectroscopy. In the literature, one finds completely different

empirical predictions of the band gap of BP. For example, Manca [93] on the basis

of the correlation between the value of the energy gap and the single bond energy,

predicted a band gap of 4.2 eV. Scalar [94] predicted a gap of 6.2 eV based on an

empirical formula connecting the energy gap with the ionic and covalent atomic radii

of the constituent elements. However, Stearns [95] in considering these predictions,

called attention to the fact that the III-V compounds are ordinarily more ionic than

their group-IV analogs, but just the opposite is true of borides. Starting from these

considerations, he predicted a band gap of 2.1 eV. BP is one of the promising IIIV

semiconductors in the zinc-blende structure. This material exhibits excellent physical

and chemical properties that make it attractive for device applications, including a

wide band gap, a high melting point, high mechanical strength, etc. Technological

interest in it has been stimulated in recent years by its potential use in optoelectronic

and microelectronic devices working under extreme conditions. Using our method-

ology we predicted BP as an indirect band gap material with the band gap of 2.20

eV. This is in excellent agreement with the experiments but LDA predictions under-

estimate the band gap by ≈ 45%. The conduction band minimum in silicon occur
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at about 0.75% of the way to the zone boundary from Γ to X. The difference be-

tween conduction band minimum and valence band maximum results into a correct

indirect Γ-X gap for BP. AlP also comes out to be a indirect band gap material in

our method which is in agreement with the experiments. The calculated band gap

is 2.49 eV which is in excellent agreement with experimental value of 2.51 eV with

underestimation within 1% of latter.

Figure 3.6: Comparison between the band-structures and densities of states of dia-

mond using HS-EX and LDA potential of zinc-blende c-BP and c-AlP

A summary of the important features of the HS-EX band structure of BP and AlP

at high-symmetry points in ZB structure with respect to the valence-band maximum

is given in table 3.5.
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c-BP band energies(eV) c-AlP band energies(eV)

Γv1 -14.67 Lv1 -11.67 Γv1 -11.41 Lv1 -9.87

Γv2,5 0.00 Lv1 -8.43 Γv2,5 0.00 Lv1 -5.43

Γc1,5 4.79 Lv3 -1.55 Γc1,5 2.92 Lv3 -0.73

Γc1 6.82 Lc1 4.06 Γc1 5.76 Lc1 2.77

Xv
1 -10.27 Lc3 7.14 Xv

1 -9.26 Lc3 7.30

Xv
3 -8.19 Lc1 11.41 Xv

3 -5.38 Lc1 9.60

Xv
5 -3.66 Xv

5 -1.97

Xc
1 2.53 Xc

1 2.49

Xc
3 2.73 Xc

3 2.97

Xc
5 12.44 Xc

5 11.67

Table 3.5: The eigen energies has been calculated with reference to the valence-band

maximum.



Chapter 3. A First-principles approach for Band Gap Problems 64

3.3.1.6 Polytypes 3C and 2H of silicon carbide (3C-SiC and 2H-SiC)

Cubic SiC has only one possible polytype, which is represented by 3C-SiC or β-SiC.

Keeping tetrahedral bonding intact, each SiC bilayer can be oriented into only three

possible positions with respect to the lattice. If these three layers are arbitrarily

representation of X, Y and Z, and the arranged in sequence as ABCABC then the

crystallographic structure comes out as cubic zinc blende. This arrangement is known

as 3C-SiC. In 3C-SiC, 3 is the number of layers needed for periodicity. 3C-SiC pos-

sesses the smallest band gap (≈ 2.4eV) [105]. Cubic SiC has been grown on Si with

limited success and incorporated into heterostructure devices, despite the nearly 20%

lattice mismatch between β-SIC and Si. Fig. 3.7 shows 3C-SiC is an indirect band

gap material, where valence band maximum is at Γ and the conduction band mini-

mum is at X. The Γv2,5-Xc
1 indirect gap of 2.84 eV calculated form HS-EX is in good

agreement with the value of 2.39 eV taken from optical absorption measurements

made by Choyke, Hamilton, and Patrick [96] on relatively. We calculated band gap

1.56 eV using TB-LMTO-ASA within LDA. LDA underestimates gap approximately

by ≈ 40%. While method developed by us TB-LMTO-ASA within HS-EX overes-

timates only approximately by ≈ 18%, whereas GWA overestimates it by ≈ 15%.

We are very close to GWA values even in some cases we improved over GWA. 2H-SiC

is another simple crystal structure found among SiC polytypes having largest band

gap. The bi-layer stacking ABAB..., gives SiC hexagonal symmetry and referred to

as 2H-SiC. All of the other SiC polytypes are a mixture of the zinc blende (cubic) and
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Figure 3.7: Comparison between the band-structures and densities of states of dia-

mond using HS-EX and LDA potential of 2H-SiC (wurtzite) and 3C-SiC (cubic).

wurtzite (hexagonal) bonding. There are four atoms in a unit cell with two positive

and two negative ions. In 2H-SiC hexagonality h is unity which represents hexagonal

close-packed structure. Again with reference to fig. 3.7 shows 2H-SiC is also an in-

direct band gap material, where valence band maximum is at Γ and the conduction

band minimum is at M . The conduction band minimum in 2H-SiC occur at about

0.577% of the way to the zone boundary from Γ to M . Our calculated value is 3.39

eV which is in very close agreement with experiments 3.30 eV with over estimation

about by ≈ 3%, where LDA underestimates by ≈ 53% while GWA overestimates

by ≈ 14%.

A summary of the important features of the HS-EX band structure of 2H-SiC and

3c-SiC at high-symmetry points in WZ structure and ZB structure with respect to

the valence-band maximum has been given in table 3.6. The maximum valence band

width is -13.98 for 3H-SiC while -14.85 for 2H-SiC.
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2H-SiC band energies(eV) 3C-SiC band energies(eV)

Γv1 -13.98 Hv
3′ -7.10 Γv1 -14.85 Lv1 -11.59

Γv3′ -11.03 Hv
1,2 -4.41 Γv2,5 0.00 Lv1 -7.95

Γv3 -7.40 Hv
3 -1.51 Γc1,5 6.66 Lv3 -0.94

Γv5 -1.30 Hc
3 5.85 Γc1 8.92 Lc1 5.76

Γc1 3.58 Av1,3 -3.96 Xv
1 -10.24 Lc3 10.46

Γc3 4.81 Av5,6 -0.71 Xv
3 -7.48 Lc1 11.43

Γc1′,6′ 7.55 Ac1,3 4.81 Xv
5 -2.85

Γv1,6 8.07 Ac5,6 8.41 Xc
1 2.84

Lv1′,3′ -7.30 Xc
3 5.34

Lv1,3 -2.05 Xc
5 15.37

Lv2,4 -1.99

Lc1,3 4.04

Lc1′,3′ 6.53

Table 3.6: The eigen energies has been calculated with reference to the valence-band

maximum.
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Figure 3.8: Comparison between the band-structures and densities of states of dia-

mond using HS-EX and LDA potential of Li and Na.

3.3.2 Comparison of HS-EX band gap with different methods

Table 3.7 shows us that our predictions are in excellent agreement with experiments,

it also summarizes our arguments succinctly. Absence of self-interaction in HS-EX,

contrary to LDA, localizes the valence bands comparatively more than conduction

bands due to large exchange contribution by former. Consequently, instead of subsid-

ing, HS-EX improves the band gaps which shows the applicability of Harbola-Sahni

construct into the description of excited states.

3.4 A first-principles study of the Electronic struc-

ture of metals Li, Na, Al and V

The study of electronic structure of solids provides a fundamental basis for under-

standing their electronic properties. Study of electronic properties of metals shows

negligible change in band structure except some fractional shift of energy bands and
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Element Band Gap(eV)

HS-EX LDA GW Expt.

C 5.56 2.70 6.03 5.48

Si 1.18 0.49 1.37 1.17

AlN-ZB 5.05 2.44 4.90 5.11

AlN-WZ 5.64 4.43 5.80 6.28

AlP-ZB 2.49 1.16 2.86 2.51

AlP-WZ 2.01 4.43 — —

BN-ZB 6.39 3.07 6.85 6.20

BN-WZ 7.82 4.90 — 5.92

BP-ZB 2.20 1.21 — 2.21

3C-SiC 2.84 1.38 2.76 2.42

2H-SiC 3.39 1.56 3.75 3.30

Table 3.7: The band gaps from HS-EX compared with LDA [97], GW [98]-[99] and

experiments [100]-[106]. HS-EX and LDA are evaluated withing TB-LMTO-ASA.

AlN, AlP, BN, BP refers to ZB structure and AlN, the two polytypes 3C and 2H of

SiC were studied former with ZB while latter with WZ structure.



Chapter 3. A First-principles approach for Band Gap Problems 69

Figure 3.9: Comparison between the band-structures and densities of states of dia-

mond using HS-EX and LDA potential of Al and V.

density of states level which localizes whole structure due to absence of self-interaction

of orbitals in HS-EX. Although we have done the calculations over very simple metals

Li, Na, Al and V shown in fig. 3.8 and fig 3.9, because our motivation was to develop a

more efficient methodology to treat the semiconductor materials within TB-LMTO-

ASA. We studied metals, to gauge the universal applicability of our methodology.

Because underestimation of the excited states (band gap) in semiconductors and in-

sulators almost by ≈ 30% to ≈ 50% concluded as one of classic failures of LDA. Im-

plementation of HS-EX within TB-LMTO-ASA formalism shows good improvement

over LDA. Results are shown in Table 3.7. In case of metals we got overestimated

values of bulk moduli because of non-variational approach of method (HS-EX works

better for quasi-particle states). Methodology, proposed by us gives as good struc-

tural properties as LDA does but in contrary to LDA it works at the places where

LDA fails namely in electronic properties e.g. excited states in semiconductors (band

gap problem).
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3.5 Structural properties of metals and semicon-

ductors

Further, we applied our method to calculate structural properties e.g. bulk moduli

of semiconductors as well as metals. We chose to apply HS-EX based TB-LMTO to

canonical semiconductors C, Si and few wide band gap system such as AlN, AlP, 3C-

SiC (zinc-blende (ZB) structure) along with metals like Li, Na and Al has also been

tested under this approach. Table 3.8 summarizes the BM for a series of elements

(semiconductors and metals). HS-EX has been compared with LDA, HF and exper-

iments. While good agreement is obtained for equilibrium lattice parameter (ELP)

calculated within HS-EX with experiments except metals like Li and Na which differ

by as much as 5%. The average deviation of the calculated ELP from the experiments

is less than 1% for other systems under consideration. All the calculations performed

self-consistently and non-relativistically. We used Murnaghan equation of states [54]

to fit the lattice paprameter with eigen energies calculated by TB-LMTO-ASA within

exchange only functional (HS-EX). The bulk modulus B is defined by the equation

B = V
∂2E

∂V 2
= −V ∂P

∂V
(3.7)

where E(V ) is the total ground-state energy as a function of volume, P is the pressure,

and B is evaluated at the minimum of E(V ). Although the bulk modulus is essentially

the curvature of E(V ) at the equilibrium volume, it is customary, but not universal

to go beyond a simple quadratic fit. As semiconductors have intriguing mechanical
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Element a(Å) Bulk Modulus (GPa)

Metal HS-EX Expt. HS-EX LDA HF Expt.

Li 3.27 3.45 17 16 12 11

Na 4.03 4.21 10 10 8 6

Al 3.98 4.02 93 99 – 76

V 2.98 3.02 209 196 – 162

Semiconductor HS-EX Expt. HS-EX LDA HF Expt.

C 3.60 3.57 429 457 438 442

Si 5.51 5.43 86 97 97 99

AlN-ZB 4.38 4.36 208 206 254 202

AlP-ZB 5.50 5.46 88 89 95 86

3C-SiC 4.41 4.36 211 227 218 224

Table 3.8: Equilibrium lattice parameters are shown from HS-EX and experiments.

The bulk moduli have been evaluated by fitting the data to the Murnaghan equation

of state [54]. Our results shall be compared with LDA [56, 55], HF [59, 60] along with

experiments [58].
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properties such as bulk moduli especially of very high value, we start by calculating

elastic and electronic properties of semiconductors e.g.BM. Table 3.8 summarizes the

BM for a series of elements (metals and semiconductors) and compounds. HS-EX

has been compared with experiments and other theoretical calculations. We notice

that with increasing atomic number equilibrium lattice parameter (ELP) shows good

agreement with experiments. The HS-EX ELP values matches well with experiments

which are within the accuracy of the calculations. For Li, Na deviation of ELP from

experiments is (5, 5)% respectively while others within 1% of experimental values.

We found underestimated ELP values in metallic systems with overestimated BM

while opposite is case for the semiconductors. For semiconductors the HS-EX agrees

closely with experiments. In case of metals we overestimate the BM. Structural

properties of metals calculated within HS-EX produces almost similar results as LDA

e.g. equilibrium lattice parameter and bulk moduli.

3.6 Conclusion

In summary, we have developed a first principles method to calculate accurately

the band gaps of semiconductors, based on Harbola-Sahni exchange potential with

TB-LMTO basis. Not only the calculated band gaps of several semiconductors are in

very good agreement with experiments, but the ground state properties like the lattice

parameters and bulk moduli. This computationally less expensive and the possibility

of easy implementation in more accurate full potential methods should allow one to
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treat more complex systems. However, there are still issues to be settled, like systems

with strong correlation effect needs more careful treatment e.g. oxides. We have

estimated the local potential due to the Fermi-hole caused by the Pauli principle.

However, the Coulomb hole in which even electrons with the different spins can not

come near each other, needs to be incorporated. There is also difference between the

true kinetic energy and the kinetic energy of the coupled system to be incorporated.

Since the major part in the earlier discrepancy of the band gap has been completely

taken care of, these extra correction may not be really necessary.



Chapter 4

Electronic structure of the binary alloy

NiMo within augmented space formalism

and its phase analysis

1

4.1 Introduction

The magnetic behaviour of disordered alloys in which a magnetic component is diluted

with a non-magnetic one, or one in which the components have competing ferro- and

antiferro-magnetic behaviour has been the subject of intense research for a long time

[107]. By now the experimental picture is very well understood. In particular it is

understood that in certain composition ranges one finds a phase in which there is

1The contents of this chapter has been published in P. Singh et.al. Pramana 76 639 (2011)

74
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no long-ranged magnetic order, in spite of the fact that locally magnetic moments

exist. The susceptibility as a function of temperature shows a characteristic cusp,

indicating freezing of magnetic degrees of freedom. In the same spin-glass phase one

observes history dependence and anomalously slow relaxation, characteristic of glassy

materials.

In this chapter we shall examine magnetic properties and phase transitions NiMo

alloy to check the spin glass nature of NiMo within augmented space formalism [2].

This alloy can be prepared in the disordered phase by fast quenching from the melt.

It’s magnetic behavior are very different. NiMo is a random ferro-magnet in the Ni

rich region, but keep losing magnetism as Mo concentration increases and suddenly

goes to zero. It does not seem to exhibit a spin-glass phase. The aim of this communi-

cation, from a first-principles density functional based theory, is to map the problem

onto an equivalent Ising model and describe the magnetic phases from the calculated

pair energies of the model.

Although such alloy phases have been quite exhaustively studied by techniques

of both equilibrium and non-equilibrium statistical mechanics, a first-principles, mi-

croscopic study based on realistic models of such systems will throw some light both

on the suitability of some of the underlying assumptions of the simplified solvable

models as well as differences in behaviour because of local chemistry.

Successful mean field approaches to the problem of spin-glasses vary from that of

Sherrington-Kirkpatrick [108] to the sophisticated replica symmetry breaking ideas of
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Parisi [109, 110]. Different ways of describing and dealing with the randomness have

been suggested by Kaneyoshi [111], Plefka [112], Thouless et.al.[113] and the virial

expansion of Morita and Horiguchi [114]. The virial expansion is valid either at low or

very high temperatures [115] or when the spin pair energy parameter J ∼ O(N−1/2).

It is, in fact, invalid in the parameter range and coupling type of our interest. Most

of these solvable models assume specific type of spin pair energies like infinitely weak,

infinitely long-ranged (J ∼ O(1/N)) and further assume Gaussian distribution of

these pair energies in an ad hoc manner. It would be interesting to examine these

simplified models in light of our first-principles analysis.

This chapter will be arranged as follows : in the section 2 we shall study the

electronic structure of NiMo alloy at varying compositions and extract information

about the density of states and local magnetic moment. In section 3 we shall use our

electronic structure and the generalized perturbation expansion formalism to map the

problem of emergence of magnetic order onto a classical Ising model and obtain the

effective pair energies. We shall examine the nature of these pair energies in detail. In

the final section we shall use our mapped random Ising model to examine the phase

diagram basing our analysis on mean-field theories.

4.2 Electronic structure of NiMo alloy

Our starting point will be the Kohn-Sham equation for the motion of electrons in the

alloy. We can choose any of the methods for generating Hamiltonians from first prin-
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ciples in which the basis is labeled by lattice points. Such a tight-binding description

is ideal for describing the substitutional disorder in the alloys of our interest. We shall

choose the tight-binding, linear muffin-tin orbitals method (TB-LMTO) [116]. The

TB-LMTO is a standard technique by now and we shall refer the interested reader

to the above reference for details. In a random alloy the LMTO ‘potential’ param-

eters are random and we shall have to describe the properties of the system from

the viewpoint of configuration averaging. Extensive work on methods dealing with

configuration averaging exists. An extended discussion on the successful averaging

techniques and a comparison between their estimates (for FeCr) has been given in a

recent paper by Tarafder et.al.[117] In the present work we have chosen to use the

augmented space recursion (ASR) [11] introduced by one of us.

The augmented space formalism deals with configurational averaging going be-

yond mean-field approaches like the CPA. It takes into account the effect of config-

urational fluctuations of the immediate neighbourhood of a site and can deal with

inhomogeneous disorder like clustering [119], short-ranged ordering [120]-[121] and

local distortions arising out of size mismatch of constituents [122]. The augmented

space formalism is exact and approximations arise only in the recursion part. Recur-

sion expands the configuration averaged Green function as a continued fraction and

the approximation is in the number of continued fraction steps accurately calculated

before the asymptotic part is ‘terminated’ by one of the terminators suggested by

Haydock [123] or Beer and Pettifor [124]. We shall terminate with the Beer-Pettifor



Chapter 4. Electronic Structure of Binary Alloys 78

terminator after 11 steps of recursion. This will mean that 20 moments of the den-

sity of states will be accurate, as compared with only 8 moments in the CPA. The

other major source of error is in the atomic sphere approximation of the TB-LMTO.

One way out is to replace the TB-LMTO with full-potential LMTO. But then the

Hamiltonian will no longer be sparse and recursion will lose accuracy. We shall stick

with the TB-LMTO-ASR. The limit of accuracy of the total energy calculations is

about a few mRyd/atom. For energy differences less than this our statements will be

qualitative.

The calculations are LSDA-self-consistent and the Madelung energy is constructed

according to the ideas of Ruban and Skriver [125]. Their screening parameters were

obtained using the SQS technique as suggested by Ruban et.al.[126]. Within the

TB-LMTO procedure the solid is partitioned into atom centric atomic spheres (AS)

labeled by Ri. Φ(r − Ri) is the wavefunction projected in an AS at Ri. Once

we have calculated the configuration averaged Green function �Gσ
RiL,Ri,L

(E)� we

immediately obtain the following:

The local spin-resolved density of states :

nσ(E,Ri) = − 1

π
=mTrL �Gσ

RiL,RiL
(E + i0+)� (4.1)

The charge and the magnetization densities :
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ρσ(r−Ri) =

∫ EF

−∞
|Φ(r−Ri)|2 nσ(E,Ri)

ρ(r−Ri) = ρ↑(r−Ri) + ρ↓(r−Ri)

m(r−Ri) = ρ↑(r−Ri)− ρ↓(r−Ri)

(4.2)

and the magnetic moment within an atomic sphere (AS) :

m(Ri) =

∫
AS

d3r m(r−Ri)

ρ(r−Ri) is the charge density and m(r−Ri) is the magnetic moment density in AS

at Ri. From this description it is clear that the magnetic moment is not localized at

Ri but smeared across the AS. m(Ri) integrated over an AS is the average magnetic

moment associated with it. These magnetic moments are thus built up out of itinerant

electron charge densities associated with different spins.

Fig.-4.1 shows the atom and spin projected densities of states for Ni1−xMox at

two characteristic compositions : one with low Mo content and another with a higher

one. The electronic structure of NiMo has been studied earlier using the CPA by

Abrikosov et.al.[128] and using the locally self-consistent Green function (LSGF) by

Abrikosov et.al.[129].

We have earlier studied this alloy system both from the point of view of electronic

structure [130] and atomic ordering [131]. Unlike other canonical spin glass alloys,
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Figure 4.1: Projected densities of states for Ni (red) and Mo (black) in Ni1−xMox

alloys (left) x=0.08 and (right) x=0.18

the Ni and Mo bands overlap considerably. In addition Ni is a fragile magnet whose

moment is lost if it is surrounded by too many non-magnetic neighbours. Local

magnetic moments on Ni and Mo and the total magnetic moment per atom are shown

in Fig.-4.2. We see that Mo does carry some magnetic moment in the alloy, although

rather small. Also the moment carried by Mo is oppositely oriented to that of Ni. As

in all systems in which magnetism is predominantly itinerant, the Mo PDOS becomes

narrower as its concentration decreases and its local moment increases. Effect on Ni,

however, is rather different. Because of the fragility of its moment, as its concentration

decreases and Mo occupying its neighbourhood becomes more probable, Ni moment

also decreases. Fig.-4.2 shows that the total magnetic moment of the alloy also

decreases as Mo concentration increases and finally vanishes at x ' 0.15. This is

clearly reflected in the experimental data of Asgar et.al.[132]. Spin-glass phase has

not been reported in NiMo, although careful experimentation is still required around
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x ' 0.15 before where the Ni loses its local moment.

Figure 4.2: Local magnetic moments at Ni and Mo (AS) sites in Ni1−xMox as a

function of Mo concentration x.

4.3 Magnetic ordering and the random Ising model

The analysis of magnetic order forming out of the paramagnetic phase is similar to

that of atomic ordering from a chemically disordered phase. To describe the mag-

netic phases of an itinerant magnetic alloy we shall follow the generalized perturbation

method first introduced by Ducastelle and Gautier [12]. We shall begin with a com-

pletely disordered paramagnetic arrangement of atomic spheres each with its own
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magnetic moment pointing randomly along the quantization direction or opposite to

it. Into that system introduce local perturbations and expand the total energies:

E = Edis +
∑
Q,Ri

E(1),Q(Ri) δξ
Q
i +

1

2

∑
QQ′

∑
Ri,Rj

E(2),QQ′
(Ri,Rj) δξ

Q
i δξQ

′

j . . . (4.3)

Q,Q′ are the species of atom Ni or Mo. The summation of Ri is over those AS

occupied by specie Q, and that of Rj over AS occupied by specie Q′. The scalar

variable δξQi takes the value ±1 according to whether the atomic sphere labeled by

Ri is occupied by a Q specie of atom and its average moment (constructed out of

the itinerant electron charge densities as discussed before) points in the quantization

direction or opposite to it. Note that δξQi are not spin variables but occupation

numbers. Once the averaged magnetic moment in the AS labeled by Ri is built

up from itinerant electron densities, the variables {δξQi } describe how the AS are

arranged on the lattice. Consequently, they are scalar, classical variables. Our aim is

to determine which arrangement is free-energetically the most favourable.

The terms E(1),Q(Ri), E
(2),QQ′

(Ri,Rj) are called the renormalized single-site and

pair energies. The former plays no role in ordering of the AS, while the higher terms

like triplet and quadruplet energies are assumed to be small enough to be ignored. It

is easy to note from the above definition that :

E(2),QQ′
(Ri,Rj) =

1

2

∑
σ

∑
σ′

(2δσσ′ − 1) EQσ,Q′σ′

Ri,Rj
(4.4)

where EQσQ′σ′

Ri,Rj
is the total energy of a paramagnetic background with the sites Ri and

Rj occupied by Q and Q′ type of atoms, with σ and σ′ being the alignments of the
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averaged magnetic moments in the AS, either along or opposite to the quantization

direction. Since E(2),QQ′
(Ri,Rj) are very small energy differences (of the order of

mRy) of large energies (of the order of 103 Ry), a separate calculation of each com-

ponent energy will produce errors larger than the small differences themselves. These

the pair energy parameters will be calculated, following the suggestion by Lichtenstein

et al. [14, 15], as :

E(2),QQ′
(Ri,Rj) =

1

4π

∫ EF

−∞
dE =m TrL

{
δQRi

TQσQ
′σ(Ri −Rj) δ

Q′

Rj
TQσ

′Q′σ′
(Rj −Ri)

}
(4.5)

where σ 6= σ′ and δQRi
= PQσ

Ri
− PQ′σ′

Ri
. PQσ is the on-site potential function of TB-

LMTO while T = (P − S)−1 is the Green operator in a disordered system in which

the sites Ri and Rj are occupied by species Qσ and Q′σ′. S is the LMTO structure

matrix. We should note that these energy calculations are also from an itinerant

electron viewpoint.

In Ising model parlance E(2)QQ′
(Ri,Rj) = JQQ

′
(R) R = |Ri−Rj|. Let us examine

the behaviour of JQQ
′
(R) in greater detail. To quantify this variation we use the

spatial moments of the scaled pair energy :

IQQ
′

0 =
∑
R

W (R)JQQ
′
(R)

IQQ
′

n−1 =
∑
R≥a

W (R)
{
JQQ

′
(R)/IQQ

′

0

}n
n = 2, 3 . . . (4.6)

W (R) are the coordination numbers on the face-centered cubic lattice.
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Unlike canonical spin glass materials where alloying with magntic atoms leave the

non-magnetic atoms with negligible moment, on other hand in NiMo, Mo gains a small

moment and the pair energy between Ni and Mo and Mo and Mo are not negligible.

Fig.-4.3 shows these pair energies as functions of distance. The Ni-Ni pair energy in

NiMo has significant differences from the pair energies of pure and robust magnetic

atoms in canonical spin glasses. Although the nearest neighbour pair energy is still

ferro-magnetic, the anti-ferromagnetic second nearest neighbour pair energy is very

small and dominated by the ferro-magnetic third nearest neighbour one. Both the Ni-

Ni and Ni-Mo pair energies show the characteristic decay due to disorder scattering.

The Ni-Mo pair energy is ferromagnetic, but at low Mo concentrations most of the

neighbours of Ni are also Ni. It is more probable to find Mo at the next-nearest

neighbour positions. The relatively large next-nearest neighbour antiferro-magnetic

Ni-Mo pair energies may then explain why the Mo and Ni atoms have moments

anti-parallely aligned.

However, a look at Fig.-4.4 shows us that the moments of JNiNi(R) are all positive

and strongly decreasing as x increases. As for NiMo the local ’Weiss’ field has a

distribution which becomes more Gaussian as x increases and increasingly sharp.

The positive sign of the third and fifth moments indicate that the pair energies are

predominantly ferro-magnetic. This means that frustration is negligible exactly in

the compositions where spin-glass may become possible. This coupled with the fact

that exactly in this region the Ni atoms lose their local moments, may be the reason
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Figure 4.3: Pair energies JQQ
′
(R) = E(2)QQ′

(R) for Q,Q′ = (top) Ni-Ni, (middle)

Ni-Mo and (bottom) Mo-Mo in Ni1−xMox.

Figure 4.4: First four m‘oments of JNiNi(R) R ≥ a with R for different compositions

of NiMo
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why spin glass phase has not been observed in NiMo.

A comment must be made regarding the oscillatory pair energies in these alloy

systems. Ling et.al.[134]-[135] have discussed the pair energies in CuMn, another spin-

glass alloy. They argue that if the Fermi energy straddles the local DOS peak of the

magnetic component, then ferromagnetism is favored, whereas antiferro-magnetism

is stabilized if the local DOS peaks are away from the Fermi-energy. In CuMn the t2g

states are more nearly filled and provoke a ferromagnetic tendency while the eg states

being away from the Fermi energy stabilizes anti-ferromagnetism. The competition

between these two tendencies suppresses direct magnetic interactions between the

magnetic atoms and enhances the role of indirect interactions. The outcome is the

interpretation of magnetic interactions in terms of damped, oscillatory RKKY-like

interactions. This may not be reflective of actual RKKY interactions. For NiMo too

a similar argument can be made. A look at the Ni projected DOS shown in Fig.-4.1

shows us that the eg and t2g structures in the DOS are well separated : one straddling

the Fermi energy and the other away from it.

4.4 Phase analysis of NiMo

Our model consists of NA, A and NB, B atoms uniformly distributed over M lattice

sites and interacting via our estimated pair energies J(| Ri−Rj|). These may vary in

sign as a function of distance providing the main ingredient, frustration, in the system.

The probability of an atom A occupying a specific site Rk is 1/M , as every site has
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equal probability of occupation. Similarly, the probability that a site is occupied by

a A atom is NA/M and a B atom is NB/M . In the thermodynamic limit, in the

absence of any clustering or segregating effects,

lim
NA,M→∞

NA

M
= xA lim

NB ,M→∞

NB

M
= xB

xA, xB being the atomic concentrations of A and B constituents. The random ‘Hamil-

tonian’ is the same as shown in Eqn. (3):

∆E =
1

2

∑
QQ′

∑
Ri,Rj

JQQ
′
(|Ri −Rj|) δξQi δξQ

′

j

where,

JQQ
′
(R) = E(2),QQ′

(R)

For a binary alloy, Q,Q′ can be either A or B. JQQ
′
(|Ri − Rj|) is random de-

pending upon which type of atoms occupy the sites Ri and Rj. It can take on the

values JAA(|Ri −Rj|), JBB(|Ri −Rj|) or JAB(|Ri −Rj|).

Introducing the single-site mean field approach by replacing the quadratic term

δξQi δξ
Q′

j by δξQi m
Q′

j + δξQ
′

j m
Q
i −m

Q
i m

Q′

j where mQ
i is the thermal average < δξQi >,

we can obtain the Free energy as :

F = −1

2

∑
QQ′

∑
Rj ,Rj∈QQ′

JQQ
′
(|Ri −Rj|)mQ

i m
Q′

j +
1

β

∑
Q

∑
Ri∈Q

log cosh(βhQi )(4.7)

where the local ‘Weiss’ fields are :

hQi =
∑
Q′

∑
Rj∈Q′

JQQ
′
(|Ri −Rj|)mQ′

j (4.8)
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In an ordered alloy we can define a homogeneous order parameter corresponding to

the occupation variable of a Q type of atom as mQ = (1/NQ)
∑

i∈Qm
Q
i and an average

global order parameter as m =
∑

Q xQm
Q. In our disordered system inhomogeneities

are in a macroscopic scale and this prevents us from introducing such an idea prior

to some kind of configuration averaging. Rather we picture the system as follows :

the net result of random pair energies connecting a local order parameter with its

neighbourhood is that it experiences a local random ‘Weiss’ field along which the

average AS moment aligns. This leads to a set of local order parameters {mQ
i }. In

order to describe the local order parameters we need to know the distribution of the

local ‘Weiss’ fields. This interpretation links our work with that of Thouless [113]

and Mookerjee [137]. The free energy is a function of the whole set of local order

parameters. The stable phase solution comes from the equations ∂F/∂mQ
i = 0 for all

i. This leads to :

mQ
j = tanh

[
βhQj

]
Q,Q′can be A or B (4.9)

For sufficiently high temperatures, the only consistent solution will be mQ
i = 0 ∀i.

At low concentrations of the magnetic constituent and as we lower the temperatures

some of the local order parameters become non-zero and they are distributed ran-

domly on the lattice. Moreover, there could be several different configurations of ±

order parameters which have the same free energy. This implies that rather than

having a unique stable phase with non-zero global order parameter, we have a very



Chapter 4. Electronic Structure of Binary Alloys 89

corrugated free energy landscape with many minima differing in random distributions

of ± moment carrying AS separated from each other by energy barriers. The resulting

‘phase’ may consist of domains with differing local AS configurations. One way of

describing such an inhomogeneous picture is to find the distribution function of the

scaled local ’Weiss’ field. The scaling is carried out as follows : all J(R) is replaced by

I(R) = J(R)/I0. In case there is only one magnetic constituent, the scaling is done

with : I0 =
∑

RW (R)J(R). In case both the constituents are magnetic we have three

factors IAA0 , IAB0 and IBB0 and we scale with respect to I0 = Max {IAA0 , IAB0 , IBB0 }.

Here W (R) is the coordination number at a distance R from an origin.

The scaled ’Weiss’ fields are given by :

ĥQi =
∑
Q′

∑
Rj∈Q′

IQQ
′
(|Ri −Rj|) mQ′

j

The technique for the derivation of distribution function has been described earlier

by Klein [138] and Mookerjee [137] and the reader is referred to those papers for

details. Here we shall quote the procedure and the main results. The probability is

first expressed as a Radon transform of the Eqn.(4.8) and then the approximation is

introduced in which we replace the delta-functional kernel of the Radon transform by

its configuration average. Under the assumption that local ’Weiss’ fields at different

sites are uncorrelated : so that there is no clustering or short-ranged correlations

between the local order parameters, we get

PQ(ĥQi ) =
1

2π

∫
dk eikĥ

Q
i

∏
Q′

[
1− FQQ′(k)

M

]NQ′
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where,

FQQ′(k) =
∑
R

∫
dzPQ(z)

[
1− exp

{
−ikIQQ′

(R)tanh(βJQQ
′
(R)z)

}]

In the thermodynamic limit :

PQ(ĥQi ) =
1

2π

∫
dk exp

{
ikĥQi −

∑
Q′

xQ′FQQ′(k)

}

The direct calculations of the FQQ′(k) are tough as it stands, but let us expand

the exponential and examine the terms :

FQQ′(k) =

∫
dz PQ(z)

[
ikIQQ

′

0 tanh(βJQ0 z) +
k2

2
IQQ

′

1 tanh2(βJQ0 z) . . .

. . . +
(−ik)3

6
IQQ

′

2 tanh3(βJQ0 z) . . .

]

where ∑
R

W (R)In(R) = In−1 n = 1, 2 . . .

We define :

JQ0 =
∑
Q′

xQ′mQ′∑
R

JQQ
′
(R) =

∑
Q′

kBTQQ′mQ′

JQ1 =
∑
Q′

xQ′qQ
′∑
R

JQQ
′
(R)

2
=
∑
Q′

k2
BT

g2
QQ′qQ

′
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Figure 4.5: Phase diagrams for NiMo alloy

and

mQ =

∫
dz PQ(z) tanh(βJQ0 z)

qQ =

∫
dz PQ(z) tanh2(βJQ0 z) (4.10)

Comparing Eqns. (4.9) and (4.10) we note that we can interpret mQ and qQ as the

configuration averages� mQ
i � and�

(
mQ
i

)2

�. Our frozen disordered local moment

picture envisages spin-glass in NiMo as a quaternary alloy Ni↑1−x/2Ni↓1−x/2Mo↑x/2Mo↓x/2.

For this phase mQ = 0 but qQ 6= 0. Thus the frozen disordered moment picture is

consistent with our model for a spin-glass.

The equations (4.10) then reduce to the standard mean-field equations :
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mQ =
1√
2π

∫
dze−z

2/2tanh

[∑
Q′

TQQ′

T
mQ′

+
T g2

QQ′

T 2
qQ

′
z

]

qQ =
1√
2π

∫
dze−z

2/2tanh2

[∑
Q′

TQQ′

T
mQ′

+
T g2

QQ′

T 2
qQ

′
z

]

The results are similar to many earlier works based on the distribution of local

’Weiss’ fields, but it must be emphasized that our derivation has throughout made

assumptions that take into account both a correct description of substitutional disor-

der and correct form of the pair energies. The scaling of both the mean and variance

of the local ’Weiss’ field with concentration of the magnetic component naturally

arises in our results. Moreover, in this derivation we emphasize on the distribution of

local ’Weiss’ fields, so that the inhomogeneous picture of the system remains intact.

mA,mB, qA, qB are being related to the moments of the local ’Weiss’ field distribution.

One phase is characterized by mQ = 0, qQ = 0 so that the ’Weiss’ field distribution

is a delta function at hQ = 0. This is obviously a paramagnetic phase with no local

or global magnetization. Another phase is characterized by mA = 0,mB = 0, qA 6=

0, qB 6= 0. Here the distribution of the ’Weiss’ fields are Gaussian with means at zero

but with a non-zero spread. How can such a phase be described ? Since the mean

is zero the local magnetization positive at as many sites as it is negative. This is

exactly the frozen disordered moment picture described earlier. The spin-glass phase

boundary is given by :
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Tg =
1

2

{
(T gAA + T gBB) +

√
(T gAA − T

g
BB)2 + 4T gABT

g
BA

}
(4.11)

Finally there is a third phase where mA 6= 0,mB 6= 0, qA 6= 0, qB 6= 0. For this

phase the distribution of the local ’Weiss’ fields are shifted Gaussians with a non-

zero mean. So not only is there a distribution of different local moments, the global

averaged moment is also non-zero. This is the random ferro-magnetic phase. This

boundary is given by :

Tc =
1

2

{
TAA + TBB +

√
(TAA − TBB)2 + 4TABTBA)

}
(4.12)

The Fig.-4.5 plots phase boundaries for NiMo. Now both the constituents carry

moment, so we shall use the more general Eqns.(4.11) and (4.12). The paramagnetic-

random-ferromagnetic boundary agrees very well with the experimental results of

Asgar et.al.[132]. We note that in most of the temperature-concentration domain

the spin-glass boundary lies well below the random-ferromagnetic one. Only in a

small region around Mo concentration 11-13% (atomic) is there a possibility of these

boundaries to cross and a spin-glass transition possible.

4.5 Conclusion

In NiMo alloy with increasing Mo concentration, Ni loses it’s local moment and sud-

denly goes to zero at close to 13 at.% of Mo. NiMo does not show any signature
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of spin glass which may be the artifact of mean-field approach followed by us. So

very careful experimental observation is required at 11-13 at.% of Mo as there is a

competition between the formation of the spin-glass and collapse of both magnetic

moment and frustration with dilution.



Chapter 5

Comparison between magnetic transitions

in NiMo and NiW alloys

1 In this chapter we shall switch from TB-LMTO-ASR formalism to KKR-CPA. Our

aim would be to apply different approximations to similar problems in order to get a

feel for their individual applicabilities. We shall study Ni1−xMox and Ni1−xWx alloys

where concentration of Mo varies from 0 to 12 percent and that of W varies from 0

to 10 percent respectively. We shall present composition dependence of pair energies,

spatial moments of scaled pair energies and magnetic phase behaviour of these alloys

and then making a detailed analysis and comparison to conclude with arguments of

non-existence of spin-glass phase in above two in contrast with canonical spin-glass

systems like AuFe.

1The contents of this chapter has been published in P. Singh et. al. J.Magn.Magn. Mater 323

2478 (2011)
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5.1 Introduction

Transition metals like Fe, Co and Ni alloy with non-magnetic metals like Au,Ag or

Cu to form disordered solid solutions. For certain composition ranges in these alloys

we observe the spin-glass phase at low temperatures. Ni is an exception to this class.

Alloyed with Mo or W, it does exhibit a disordered phase. However, no experimental

signature of the spin-glass phase is seen in either Ni1−xMox or Ni1−xWx .

We shall study magnetic transitions and magnetic phase diagrams of these two

alloy systems based on the ideas of the generalized perturbation method (GPM)

[12, 13]. We begin with a completely disordered nonmagnetic background and perturb

it with magnetic fluctuations. We expand the total energy of this perturbed state

about the nonmagnetic background in a power series in the small perturbations. In

this expansion, retaining terms only till the pair energies, we map the problem onto

an effective Ising model. This will be the basis of our phase analysis.

This energy expansion involves coefficients which are small differences of large

energies. We use the Lichtenstein formula [14, 15] for a direct and hence accurate

calculation of these small energy differences. We obtain the local magnetic moments

from the Korringa-Kohn-Rostocker based coherent potential approximation (KKR-

CPA) [144, 145]. The pair energies has been calculated from the more accurate

exact muffin-tin orbital based CPA (EMTO-CPA) [146]. These techniques have been

described in detail in the references provided.
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5.2 Formation of moments and magnetic ordering

In order to understand the onset of magnetic ordering in random alloys, we need a

derivation of the lowest magnetic configurational energy. The KKR partitions the

lattice space into atom centric atomic spheres. Within each sphere we treat the

electrons as itinerant and the magnetic moment associated with an atomic sphere is

obtained from the configurational averaged Green functions as shown Chapter 4, eqns

(4.1)-(4.2).

The problem of magnetic ordering is then the ordering of these atomic spheres

carrying their moments. This is exactly the problem described in Chapter 4, eqns.

(4.3)-(4.4).

The one-site energy E(1),Q is unimportant for bulk ordered structures emerging

from disorder. It is important for emergence of inhomogeneous disorder at surfaces

and interfaces [147]. The pair energies E(2),QQ′
are the most important factors gov-

erning emergence of bulk ordering. The interpretation of equation (4.3) immediately

allows us to introduce a method to obtain the pair potentials directly rather than

calculate the total energies and then subtract them. Since they are small differences

(of the order of mRy) of large energies (of the order of 103 Ry), a direct calculation

will produce errors larger than the differences themselves. The Lichtenstein formula

was introduced to calculate such small differences directly. This has been described

and given in Chapter 4, eqn. (4.5).
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Figure 5.1: Magnetic moments per atomic spheres for Ni1−xMox (top) and Ni1−xWx

(bottom)

5.3 Mean-field analysis of transition temperatures

The generalized perturbation maps the problem onto an effective Ising model. Chap-

ter 4 section 4.3 describes the analysis in detail. We shall follow the same procedure

as described in that section.

In fig. 5.1, we have shown the local Ni magnetic moments as functions of alloy

composition. We note at around 12% dilution with Mo and 10% dilution with W, the

Ni atoms in the alloy lose their individual magnetic moments. This is in sharp contrast

with Fe diluted with Au or Ag, or Mn diluted with Cu. In an earlier communication

we have shown [148] that with increasing dilution the local magnetic moment of Fe

actually increases to that of an isolated Fe atom. For these canonical spin-glass alloys,

although at around 10-20% dilutions the alloys go into a spin-glass phase and the net

magnetization vanishes, the individual local moments on the magnetic atoms remain

robust (as seen from Mössbauer experiments). The moment on Ni, on the other hand,
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Figure 5.2: (Top panels) Pair energies for Ni1−xMox and their variation with composi-

tion. (Bottom panels) Pair energies for Ni1−xWx and their variation with composition.

In the right panels pair energies are shown starting from the second nearest neighbors

in the face-centered cubic lattice.

is fragile and is lost on dilution. There can, therefore, be a competition between loss

of local moment on Ni and an onset of the spin-glass phase in these alloys which we

wish to examine in greater detail.

In fig. 5.2 shows the exchange couplings as a function of composition. We note

that the exchange couplings are strongly composition dependent. The right panels

show pair energies starting from the next-nearest neighbours and their composition
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Figure 5.3: Moments of the exchange energies for (top) Ni1−xMox (bottom) Ni1−xWx
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variation in greater detail. We note the following points :

(i) If we compare the results for NiMo with those obtained in Chapter 4, we note

that ASR and CPA almost mirror each other. In this alloy system the two

methods give comparable results.

(i) The pair energies are dependent on the composition. The simplified models

of spin-glass alloys without exception assumed that the pair energy depended

only on the components of the alloy. The nearest neighbour exchange energies

are ferromagnetic and decreases on dilution mirroring the collapse of Ni local

magnetic moment. The second nearest neighbour exchange energies change

from anti-ferromagnetic to just ferromagnetic on dilution, while the next three

collapses to zero with dilution. This feature has to be incorporated in any

realistic model of the spin-glass.

(ii) The pair energy J(R̂) oscillates in sign with increasing R̂ so that the possi-

bility of frustration is present. The nearest neighbour pair energy is strongly

ferromagnetic and quite a bit larger than the next nearest neighbour one. The

behaviour of the pair energies exhibits exponential decay characteristic of disor-

der damping. With increasing dilution disorder scattering increases and so does

the damping. A model with damped, oscillatory interaction seems suitable for

these alloys.

Let us examine the behaviour of J(R̂) in greater detail. To quantify the variation
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of J(R̂) with R̂ we use the spatial moments of the scaled pair energy :

In =
∑
R>a

W (R̂)
{
J(R̂)/J(a)

}n
n = 1, 2, . . . (5.1)

W (R̂) are the coordination numbers on the face-centered cubic lattice and a is the

nearest neighbour distance on it.

From fig. 5.3 we note that the third moments of both Ni1−xMox and Ni1−xWx :

M3 are positive which is characteristic of distributions which are asymmetric with

more weightage towards ferro-magnetic pair energies. This asymmetry decreases and

at around 10 − 12% dilution becomes zero. This is in sharp contrast with AuFe,

where this moment is negative and changes to positive only at around 84% dilution

of Fe with Au. The anti-ferromagnetic pair energies are the source of frustration on

the lattice. The third and fourth moments M3 and M4 go to zero with increasing

dilution indicating that the distribution (whose moments these are) becomes more

Gaussian (free from asymmetry and kurtosis), while the second moment M2 also

decreases and the distribution about the mean becomes sharp (delta function like).

The first moment also goes to zero at around 10− 12% dilution, indicating that the

distribution becomes a delta function centered at the origin.This is characteristic of a

paramagnetic phase and there is a strong indication that a paramagnetic phase with

no local Ni moments may be the stable low temperature phase at 12% dilution for

Ni1−xMox and 10% dilution for Ni1−xWx

These results throw some light on the nature of frustration in the systems and their

behaviour with composition. Khmelevskyi et al. [149] have used the partial moments
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Figure 5.4: Frustrated plaquettes on a face-centered cubic lattice which lose their

frustration on dilution

K(R0) =
∑

R>R0
W (R̂)J(R̂) to illustrate frustration. The moments by themselves

cannot give full information about frustration unless we couple them with the lattice

topology. Antiferro-magnetic pair energies indicates the possibility of frustration.

But antiferro-magnetic pair energies themselves may not lead to frustration until we

couple it to frustrated plaquettes on the lattice. On bipartite lattices even completely

antiferro-magnetic pair energies lead to no frustration at all.

Fig. 5.4 shows a few of the smallest triangular and quadrilateral plaquettes within

a cubic unit cell of the face-centered cubic lattice. The signs shown are that of the

corresponding J(R̂). Given the exponential decay of J(R̂) with R̂, these smaller

plaquettes are energetically the most important. With increasing dilution all these

plaquettes lose their frustration. This is another phenomenon that competes with

formation of a spin-glass phase on dilution.

Finally, we shall make use of the eqn.(4.10) to eqn.(4.11) and eqs. 5.1 to generate
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Figure 5.5: The magnetic phase diagram for Ni1−xMox and Ni1−xWx

the phase diagram for Ni1−xMox and Ni1−xWx . This is shown in fig. 5.5. The collapse

of Ni magnetic moment on dilution leads to the paramagnetic phase extending all the

way down to T=0K below 88% Ni in Ni1−xMox and 90% Ni in Ni1−xWx . For Ni1−xMox

there is a small region around 88% Ni composition where Tg > Tc. However, we

have to remember that these are mean field estimates of Tc and Tg, and the local Ni

moment just vanishes here. Therefore the existence of a spin-glass phase in Ni1−xMox

in this corner of the phase diagram is doubtful. So far no experimental report on

the spin-glass in Ni1−xMox is available. For Ni1−xWx , on the other hand, no such

possibility seems to exist and there is no signature of any spin-glass phase in the

phase diagram.



Chapter 5. Magnetic Transitions in NiMo and NiW Alloys 105

5.4 Conclusion

We conclude that Ni based binary alloys behave differently from canonical spin-

glasses. In NiMo and NiW, contrary to canonical spin-glass material, as the con-

centration of Mo or W increases, the local magnetic moment on Ni goes to zero. In

Ni based alloys there is a competition between the formation of the spin-glass and col-

lapse of both magnetic moment and frustration with dilution and the phase diagram

does not indicate the possibility of a spin-glass phase.



Chapter 6

Effect of impurity doping on pristine

clusters

1

6.1 Introduction

Magnetic clusters and nano-particles are interesting not only because of their possible

technological applications, but also because in these systems we can systematically

study the effect of diminishing size and dimension on magnetism. Semiconductors

with dilute magnetic impurities (DMS) [16] have opened up a possibility of manipu-

lating the spin degree of freedom of electrons through interaction between the local

moments of the doping magnetic ions and the spins of the charge carriers of the host

1The contents of this chapter has been published in P.Singh et.al. J. Magn. Magn Mater. 323

166 (2011)
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semiconductors. By definition conventional DMS is a diamagnetic semiconductor

which is doped with a transition metal with unfilled d-levels. Content of magnetic

transition metal dopant varies from few to several atomic percent. These magnetic

dopants add some spins which are coupled with several kinds of dopant−dopant in-

teractions. Ferromagnetic (FM) ground state is result of such couplings in a DMS.

Mainly super-exchange and double exchange phenomenon are involved. However, su-

per exchange occurs principally in oxides with oxygen as mediating agent between

two dopants, and in double exchange ionic dopants with unequal charges exchange

an electron. In both the mechanisms defined previously exchange occur through the

bond between the dopants with mediator, where FM in semiconductors is indepen-

dent of free carriers. Third mechanism, surfaced in last few years, says if crystal has

lattice defects then there will be associated electrons which will couple the dopant

spins. Still not very much clear. Finally, the DMS, which posses very important

mechanism, carrier-induced exchange arises by co-dping (ZnTe)12 cluster (wide band

gap) with donor or acceptor impurity introduces itinerant electrons or holes in the

host wide band gap semiconductor, which are coupled with transition metal mag-

netic impurity spins. Magnetic and electrical transport properties has strong link

with last mechanism, providing the bigger horizon for functionalizing spintronic ma-

terial. In a majority of DMS materials FM occurs well below the room temperature,

this puts a limitation on their practical use. As two important criteria for selecting

the most promising materials for semiconductor spintronics are: first, existence of FM
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at room temperature and second, if application of the material is already known at

industrial level. A rapid progress in doping II-VI wide band-gap semiconductors by

substitutional impurities has recently been achieved. For example, donor or acceptor

doping in case of solids has been performed for ZnSe:I [150] and ZnTe:N [151]. The

motivation behind studying the Cr doped (ZnTe)12 clusters [24] with either donor or

acceptor impurities is to take a step towards the search for room temperature FM and

also tuning of the band gap at nano-scale. (ZnTe)12 with stable cage structure like

fullerene with 8 hexagons and 6 rhombi, have HOMO-LUMO gap of ∼2.33 eV. Dop-

ing with magnetic material make non-magnetic cluster properties interesting. In this

chapter we shall study the effect of impurity co-doping of Cr doped (ZnTe)12 clusters

with acceptor (N) or donor (I) type of impurities. We shall emphasis over the elec-

tronic properties of such co-doped clusters to understand how structural, energetic

and magnetic changes take place. Effects of doping on the FM of bulk Zn1−xCrxTe

have already been studied. Iodine (I), which is found to be an electron dopant, en-

hances the FM while Nitrogen (N), which is expected to be a hole dopant, suppresses

it [152, 23]. These effects have been explained on the basis of the double exchange

mechanism [153]. However, carrier-induced FM in Zn1−xCrxTe thin films is in doubt

because these films are highly insulating. In Ga1−xMnxAs, on the other hand, FM is

enhanced with increased hole concentration. Clusters are finite systems and do not

have extended carrier states. In them the situation may be rather different. Here the

local environment of the Cr dopant may play an important role in its magnetism. It
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would therefore be instructive to study such co-doped clusters. To our knowledge a

theoretical investigation into impurity co-doping of (ZnTe)12 clusters with magnetic

dopant is not available.

6.2 Computational Details

We shall use the density functional theory (DFT) based plane wave method im-

plemented in the Vienna ab initio simulation package (VASP) [154] with projector

augmented waves (PAW) [30, 158]. The PAW formulation is suitable for transition

metals. We have used the exchange-correlation energy functional of Perdew-Burke-

Erhnzerhof [155]. The 3d and 4s electrons of Zn anc Cr, the 6s and 5p electrons of Te,

the 5s and 5p electrons of I and 2s and 2p electrons of N are treated as valence elec-

trons respectively and the wave functions are expanded in plane wave wave basis set

with default kinetic energy cut-offs. At the Γ point reciprocal space integrations has

been done. We have kept the cluster in a large enough super-cell (a cube with sides

of length 15Å) so that there is no effect of interaction between periodic images of the

cluster. We have used the Kosugi algorithm [156]. It is a new and efficient iteration

method for simultaneously obtaining several eigensolutions of a large real-symmetric

matrix by modifying the simultaneous expansion method by Davidson and Liu. The

method is basically the Ritz iteration method to correct trial vectors simultaneously

using correction vectors. However, the number of the correction vectors determined

in each iteration need not be the same as the number of the desired solutions. It
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is advantageous for the former number to be smaller than the latter when many

eigensolutions are sought. We have chosen Kosugi algorithm (special Davidson block

iteration scheme) over RMM-DIIS because it optimizes a subset of selected bands

simultaneously. This is approximately a factor of 1.5-2 slower than RMM-DIIS, but

always stable. We have also applied the Vosko-Wilk-Nusair interpolation [157]. Usu-

ally VASP uses the standard interpolation for the correlation part of the exchange

correlation functional. The interpolation formula according to Vosko-Wilk-Nusair,

usually enhances the magnetic moments and the magnetic energies. Because the

Vosko-Wilk-Nusair interpolation is the interpolation usually applied in the context

of gradient corrected functionals, it is desirable to use this interpolation whenever

the PW(91) functional is applied. The accuracy of Hellman-Feynman forces were set

to 0.001 eV/Å- atom. The automatic Monkhorst-Pack k-mesh generator was used.

For transition metals with large magnetic moments, the PAW method seems to be

more appropriate (comparable to all-electron calculations) than the ultra-soft pseudo

potential(US-PP) method [158]. The magnetization energies are overestimated in

US-PP approach and for generalized gradient approximation (GGA) these overesti-

mations are even larger than local-spin density approximation (LSDA). This over-

estimation is attributed to the dependence of GGA on shape of the wave functions

compared to LSDA functionals. However, the difference lies in pseudization of the

augmentation charges in US-PP approach. Judicious selection of accurate psuedized

augmentation function can make US-PP as good as PAW but on the cost of expensive
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computations. While in PAW introduction of radial grids avoids any such expenses.

The formation energy of the cluster is calculated as,

Eform = E[ZnpTe12CrnXm]− E[Zn12Te12] + n µCr +m µX . . .

. . .−


(n+m) µZn case (a) if p = 12− n−m

n µZn case (b) if p = 12− n

0 case (c) if p = 12

(6.1)

where, n and m are total number of magnetic impurity atoms and total number of

donor (I) or acceptor (N) type impurities respectively. X represents type of donor

or acceptor impurity. Eform is the difference of the total energy of doped and pure

parent pristine cluster and the chemical potential of dopants. µX is the chemical

potential of the element X. Formation energy tells us how easily we can construct

a stable cluster by adding or substituting atoms. The higher (lower) the formation

energy lower (higher) is the probability to form a stable cluster. At a nano-scale it

differs from the cluster binding energy which is the energy required to disassemble

the cluster into free atoms.

6.3 Results and Discussions

Among the smaller clusters, pristine (ZnTe)n with n=12 is the most stable with

binding energy of 2.07 eV. It has a fullerene-like cage structure as shown by Yadav

et. al. [24]. Its HOMO−LUMO gap is 2.33eV, wider as compared to the bulk value

of 2.26 eV. Increase of band gap with reduced dimension leads to an idea of band gap
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tuning by impurity doping. In our problem we tried various isomeric structure of the

cluster doped with impurities in three different ways, namely

1. Substitutional: We replace the atom from the host cluster, preferably at zinc

sites. We found Zn site energetically more stable.

2. Endothermal: Dopants occupy the center of the cage of the host cluster.

3. Exothermal: Absorbed on the surface of the host cluster.

Two type of dopants has been used. Firstly, 3d-transition metal Cr as magnetic

impurity and secondly, co-dopants of group V-A (N) as acceptor and VII-A (I) as

donor. These dopants and co-dopants have various possible doping positions.

(a) We did the substitutional doping n atoms of Cr and m atoms of X both may

be substituted either at Zn-site or Te-site. Substituting Cr, I (or N) or both at

Te site is energetically not feasible.

(b) n atoms of Cr may substitute Zn and m atoms of X sit in interstitial or surface

positions. The cluster size becomes 24 +m.

(c) Both n atoms of Cr and m atoms of X may sit in interstitial or surface positions.

The cluster size changes to 24 + n+m.

In the calculations (ZnTe)12 cluster either mono-doped or bi-doped with magnetic

impurity (Cr) and mono-doped with donor (I) or acceptor (N). (ZnTe)12 cluster mono-

doped with Cr have only possibility of FM while bi-doping with Cr may favour FM

or or anti-ferromagnetism (AFM). Our goes like
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1. (ZnTe)12 mono-doped with Cr and I or (N).

2. (ZnTe)12 bi-doped with Cr and mono-doped with I.

3. (ZnTe)12 bi-doped with Cr and mono-doped with N.

In second and third points feasibility of both FM and AFM coupling between Cr

atoms has been investigated.

6.3.1 Pristine cluster (ZnTe)12 mono-doped with magnetic Cr and

donor (I) impurities

We have started with the (ZnTe)12doped with magnetic impurity (Cr), latter co-doped

with donor (I) impurities. After structural optimization until the Hellman-Feynman

forces on each atom are less than the error bar described in the earlier section. The

Fig.-6.1 and Table-6.1 describe and illustrate the final geometric structures and their

magnetic moments respectively. Each of the structures represents a local minimum

in the energy landscape.

Among various isomeric combinations studied, we have considered six different

clusters with the lowest energy. They have been arranged in the order of increasing

stability and formation energy.

1. MF1-I : a Cr and an I atom substituting two Zn atoms (24 atoms).

2. MF2-I : a Cr atom inside the cage substituting a Zn atom and an I on the

surface (25 atoms).
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3. MF3-I : a Cr and an I atom kept outside the cage (26 atoms).

4. MF4-I : a Cr and an I atom kept outside the cage but with interchanged positions

(26 atoms).

5. MF5-I : a Cr atom on surface and an I inside the cage substituting a Zn atom

(25 atoms).

6. MF6-I : a Cr outside the cage and I inside the cage (26 atoms).

MF1-I is the most stable structure with 1.051 eV formation energy while Cr and I

have replaced Zn-host from the surface.

In Table-6.1 different structures has been arranged in order of increasing formation

energy. The formation energy is minimum when two Zn atoms are substituted by Cr

and I from the cage. There is slight bond distortion in the neighbourhood of the

Cr atom. In MF1 the Cr-Te distance is reduced approximately by 4-8% from parent

pristine cluster, indicating increase in bond strength and accumulation of charges in

the Cr-Te bond. The donor (I) impurity mostly sits next to the Cr site but energy

minimization process takes I to the center of the cage. There is decrease in local as

well as global moment which is due to increased co-ordination of Cr in the cluster.

Co-doping with donor (I) gives an extra electron to the cluster . When it delocalizes

within cluster, it can jump from one atom to one of its neighbours [11]. This intra-

cluster electron hopping reduces the HOMO-LUMO gap. We found that replacing Te

sites instead of Zn with dopants was energetically rather unfavorable. Earlier Yadav
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Figure 6.1: Zn-atom in gray, Te-atom in shade of dark-yellow, Cr-atom in blue and

I-atom in magenta. (ZnTe)12 cluster mono-doped with Cr and I. The spin direction

at Cr signifies presence of moment at Cr-site. Ordering of optimized structures has

been done with increasing formation energy.
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Magnetic Moment

dCr−I Eform Egap Cr I Total

MF1-I 2.58 1.051 0.69 2.11 -0.03 1.42

MF2-I 2.58 2.373 0.78 3.57 -0.19 3.00

MF4-I 7.98 3.568 0.64 3.35 0.00 2.98

MF5-I 2.70 3.583 0.24 3.11 -0.01 2.87

MF3-I 6.71 3.600 0.54 3.31 0.00 3.04

MF6-I 3.01 4.787 1.44 3.97 0.27 4.25

Table 6.1: The six different clusters of (ZnTe)12 mono-doped with Cr and I, described

in the text and their characteristic properties. Distance between Cr and I atoms dCr−I

is in Å, Eform and HOMO-LUMO gap (smallest of the two spin channels) Egap are in

eV and magnetic moments in bohr-magnetons.

et. al.[24] showed the magnetic moment for the structure with minimum formation

energy for Cr doped (ZnTe)12 to be 3.62µB. I co-doping reduces this to 1.42µB for

MF1. Only in the relatively unstable MF6 structure we see the increase in moment.

In the bulk, donor (I) doping i.e. introduction of extra electron in ZnxCr1−xTe is

supposed to enhance the magnetic moment on site occupying Cr-atom. In (ZnTe)12

cluster donor(I) doping lowers the magnetic moment on site Cr because I has tendency

to go to Cr-site consequently donating an electron and reducing number of unpaired

spins at Cr-site. This effect is attributed to diminishing size of cluster due to increased

surface to volume ratio. We conclude that the local environment of Cr in the doped
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cluster plays an important role in determining the moment on it.

6.3.2 Pristine cluster (ZnTe)12 mono-doped with magnetic Cr and ac-

ceptor (N) impurities

We have considered six different optimized structures out of several isomers we have

tested in our calculation of (ZnTe)12 mono-doped with a magnetic impurity (Cr) and

an acceptor (N).

1. MF1-N : a Cr and a N atom substitute two Zn atoms (24 atoms).

2. MF2-N : a Cr atom substituting a Zn atom inside the cage and N on surface

(25 atoms).

3. MF3-N : a Cr and a N atom kept outside the (26 atoms).

4. MF4-N : a Cr and a N atom kept outside the cage with interchanged positions

(26 atoms).

5. MF5-N : a Cr atom on surface and N substituting a Zn atom inside the cage

(25 atoms).

6. MF6-N : a Cr outside the cage and N inside the cage (26 atoms).

Table-6.2 shows the properties of the six lowest possible energy structures of

(ZnTe)12 mono-doped with Cr and N arranged according to increasing formation
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Figure 6.2: Zn-atom in gray, Te-atom in shade of dark-yellow, Cr-atom in blue and

N-atom in cyan. (ZnTe)12 cluster mono-doped with Cr and I. The spin direction at

Cr signifies presence of moment at Cr-site. Ordering of optimized structures has been

done in increasing formation energy.
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Magnetic Moment

dCr−N Eform Egap Cr N Total

MF1-N 3.36 1.874 0.67 3.725 0.240 4.079

MF2-N 1.93 3.374 0.82 3.663 0.093 4.069

MF4-N 3.29 3.752 1.16 4.055 0.075 4.226

MF5-N 6.21 4.121 0.26 3.759 -0.151 3.094

MF6-N 3.80 5.432 0.40 3.670 0.404 4.241

MF3-N 5.63 5.714 0.47 3.706 -0.439 2.982

Table 6.2: The six different clusters of (ZnTe)12 mono-doped with Cr and N described

in the text and their characteristic properties. Distance between Cr and N atoms

dCr−N is in Å, Eform and HOMO-LUMO gap (smallest of the two spin channels) Egap

are in eV and magnetic moments in bohr-magnetons.

energies. Fig.-6.2 displays the structurally optimized structures of the six possibil-

ities mentioned in Table-6.2. If we compare Cr-I and Cr-N doped pristine cluster

(ZnTe)12, the structure of the latter have higher formation energies than the corre-

sponding ones of the former. In MF1-I and MF1-N, Cr-I and Cr-N replaces two Zn

atoms on same rhombus. The donor (I) always try to bond with magnetic impurity

(Cr) due to its high electron affinity, since Cr needs to saturate in terms of bonding

to get to the minimum energy state. The donor impurity I leaves the surface and

gets bonded with Cr. But acceptor N remains on the surface and just distorts the

rhombus on which it sits and also the nearby hexagon into a distorted rectangle. The
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Cr-N distance in comparison to Cr-I is enhanced by 23 % which means there is less

charge accumulation between Cr and N. MF1-N forms a comparatively stable cage

like structure with slight distortion from (ZnTe)12 doped with Cr. Formation energy

is minimum for both these clusters in their respective groups. But as we can see,

contrary to expectation, the magnetic moment is higher for N-doped (ZnTe)12 with

Cr as compared to pure Cr doping. Doping with acceptor (N) impurity is expected

to suppress magnetism in bulk Zn1−xCrxTe. N has three unpaired electrons in its

valence state. Doping it in the bulk will reduce the number of unpaired electrons and

hence magnetism. However, in many similar cases the opposite has been observed

[159]. Wang and Zunger [160] showed, using thermodynamic arguments, that if we

dope ZnO with Ga and N from a N2 source, then N centric dopant clusters N-Ga4

and N-Ga3Zn which promote n-type doping are favored. On the other hand, doping

ZnO with Ga and N from a NO source favors Ga centered dopant clusters Ga-N4 and

Ga-N3O which promote p-type doping. This explains the surprising observation [161]

that the type of doping and therefore enhancement or suppression of magnetism does

depend upon the local environment in which the N sits after doping. In our case, in

the MF1-N cluster, there is a clustering of N-Cr-Te3. Since we have structurally mini-

mized geometry, we can argue that the N-Cr-Te3 clustering is energetically favourable

and could be the source of the moment enhancement.
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6.3.3 Pristine cluster (ZnTe)12 bi-doped with magnetic impurity (Cr)

and mono-doped with donor (I) or acceptor (N) impurities

(ZnTe)12 bi-doped with magnetic impurity (Cr) and donor impurity (I) leads to sev-

eral isomeric structures. After structural optimization we have chosen following five

cluster compositions in the order of increasing formation energy.

1. F1/AF1-I : Two Cr atoms substituting Zn atoms on opposite vertices of a

rhombus and an I atom substituting a Zn atom nearest to one of Cr atoms.

The moments on the Cr atoms are either aligned (F) or anti-aligned (AF)(24

atoms).

2. F2/AF2-I : Two Cr atoms substitute Zn and an I substitutes a Te on the same

rhombus (24 atoms).

3. F3/AF3-I : Two Cr atoms and an I atom replace three Zn atoms on same

hexagon (24 atoms).

4. F4/AF4-I : Two Cr atoms substitute Zn on the same rhombus and an I atom

sits outside the cage (25 atoms).

5. F5/AF5-I : Two Cr atoms substitute Zn on opposite vertices of two rhombi

with an I atom sitting outside the cage (25 atoms).

The starting structures are such that the Cr atoms may be arranged either in FM

or AFM coupling. After structural optimization by limiting the Hellman-Feynman
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forces below the error bar, the final moments and geometrical structures are described

in Table-6.3 and Fig.-6.3 (for FM arrangement of Cr moments) and Fig.-6.4 (for AFM

arrangement of Cr moments) respectively.

Magnetic Moment

dCr−Cr Eform Egap Cr1 Cr2 I Total

F1-I 7.05 1.291 0.12 4.04 3.895 -0.02 7.86

F2-I 2.92 1.564 0.54 4.01 4.01 -0.003 7.92

F3-I 3.23 2.062 0.13 3.59 3.52 -0.02 6.59

F4-I 3.04 4.337 0.51 3.63 3.54 -0.06 6.57

F5-I 7.73 4.674 0.51 3.75 3.12 -0.06 6.51

AF1-I 7.01 1.248 0.45 4.04 -3.897 -0.02 0.197

AF2-I 2.62 1.432 0.42 3.67 -3.76 -0.01 -0.098

AF3-I 4.68 1.965 0.72 3.69 -3.22 -0.01 0.715

AF4-I 2.81 4.140 0.24 3.57 -3.37 -0.07 0.636

AF5-I 7.73 4.666 0.55 3.75 -3.11 -0.06 0.766

Table 6.3: Distance between Cr atoms dCr−Cr is in Å, Eform and HOMO-LUMO gap

(smallest of the two spin channels) Egap are in eV and magnetic moments in µB.

In Table-6.3, the five energetically minimized structures are arranged according

to the lowest (F1/AF1) to the highest (F5/AF5) formation energies. For the FM

structures of Cr1-Cr2, the most favourable cluster has a large Cr-Cr distance in which
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the Cr atoms sit on opposite vertices of two rhombi facing each other across the cluster.

The I replaces a Zn in the neighbourhood of one of the Cr atoms. Clusters bi-doped

with Cr at Te-sites are s energetically unfavorable. The structures with AFM spin-

arrangements have lower formation energies in compared to FM spin-arrangmentss.

In the AFM structures the two Cr atoms are not equivalent, as one has an I atom

in its vicinity. The moments on the two are therefore not equal in magnitude and

we have essentially a ferri-magnetic arrangement. Yadav et. al.[24] showed that for

Cr doped (ZnTe)12 cluster FM stability decreases with increase in distance between

Cr-Cr atoms. Doping that cluster with I changes this order. This now depends on

at which position the I sits with respect to the Cr atoms. The HOMO-LUMO gaps

in these clusters are reduced by I-doping. The donor I contributes an electron to

system which is delocalized within it. In case of (ZnTe)12 cluster bi-doped with Cr

and monodoped with N. We have chosen four lowes energy cluster compositions to

describe the low energy states out of several isomeric structures.

1. F1/AF1-N : Two Cr atoms replacing Zn at opposite vertices of two facing

rhombi and a N atom replacing a Zn in the neighbourhood of one of the Cr

atoms (24 atoms).

2. F2/AF2-N : Two Cr atoms substituting two Zn on same rhombus and a N atom

sitting outside the cage (25 atoms).

3. F3/AF3-N : Two Cr atoms and a N atom substituting three Zn atoms on same

hexagon (24 atoms).
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Figure 6.3: Zn-atom in gray, Te-atom in shade of dark-yellow, Cr-atom in blue and

I-atom in magenta. (ZnTe)12 cluster bi-doped with Cr and mono-doped with I. The

spin direction at Cr1 and Cr2 signifies presence of moment at Cr-site which are FM

coupled. Ordering of figures has been done in increasing formation energy.
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Figure 6.4: Zn-atom in gray, Te-atom in shade of dark-yellow, Cr-atom in blue and

I-atom in magenta. (ZnTe)12 cluster bi-doped with Cr and mono-doped with donor

(I). Spin-up at Cr-1 and spin-down at Cr-2 couple them AFM aligned. Ordering of

optimized structures has been done with increasing formation energy.
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4. F4/AF4-N : Two Cr atoms substituting two Zn on same rhombus with a N

atom substituting a Zn in an adjacent rhombus (24 atoms).

Magnetic Moment

dCr−Cr Eform Egap Cr1 Cr2 N Total

F1-N 6.81 2.98 0.23 3.77 3.88 0.14 7.78

F2-N 2.96 3.33 0.59 3.74 3.47 1.58 9.10

F3-N 3.30 3.33 0.39 3.66 3.56 -0.11 6.63

F4-N 2.93 3.57 0.78 3.65 3.65 -0.15 6.65

AF1-N* 6.77 3.08 0.69 3.75 3.63 -0.16 6.73

AF2-N 2.85 3.22 0.24 3.59 -3.51 0.16 1.97

AF3-N 2.58 3.35 0.55 3.36 -3.69 -0.11 -0.63

AF4-N* 2.93 3.57 0.78 3.65 3.65 -0.15 6.65

Table 6.4: Distance between Cr atoms dCr−Cr is in Å, formation energy Eform and

HOMO-LUMO gap (smallest of two spin channels) Egap are in in eV and magnetic

moments in µB. * these structures cannot sustain anti-aligned moments (see text).

We started with (ZnTe)12 clusters bi-doped with Cr and mono-doped with N.

The Cr-moments are either FM or AFM aligned. After structural optimization and

restricting the Hellman-Feynman forces to below the imposed error bar, we obtained

clusters whose magnetic structures and geometry are described in Table-6.5 and Fig.-

6.7 for FM arrangement of Cr1 and Cr2 moments and Fig.-6.8 for AFM arrangement
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Figure 6.5: Zn-atom in gray, Te-atom in shade of dark-yellow, Cr-atom in blue and

N-atom in cyan. (ZnTe)12 cluster bi-doped with Cr and mono-doped with N. The spin

direction at Cr1 and Cr2-sites signifies FM coupling of moment at Cr-sites. Ordering

of structures has been done with increasing formation energy.
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Figure 6.6: Zn-atom in gray, Te-atom in shade of dark-yellow, Cr-atom in blue and

N-atom in cyan. (ZnTe)12 cluster bi-doped with Cr and mono-doped with N. Spin

direction at Cr-1 and Cr-2 signifies AFM coupling between two Cr-atoms. Ordering

of optimized structures has been done with increasing formation energy.

of Cr1 and Cr2 moments respectively. In the Table-6.5 for structures AF1-N and AF4-

N we started with AFM coupled Cr moments, whcih after optimization yield FM like

Cr-moments. Unlike other cases the AF moment configuration in these structures is

not even locally stable. As discussed earlier, same as in case of cluster mono-doped

with Cr and acceptor (N), the effect on magnetic moment of these clusters too depend

on the environment in which the dopant N sits. In the clusters with least formation

energy FM arrangement is preferred and the moments are bolstered above prtistine
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cluster doped with Cr. The HOMO-LUMO gap is also reduced from the pure pristine

cluster significantly. When Cr-Cr distance is minimum, gap is larger in case of N-

doping. The Zn or Te atoms surrounding Cr-atoms have very small moments induced

on them. Cr-atoms acquire larger moment than bulk due to reduced co-ordination.

6.3.4 Analysis of cluster energy spectra

Fig.-6.7 and Fig.-6.8 shows the energy spectra of the minimum formation energy

pristine clusters of (ZnTe)12 mono-doped and bi-doped with Cr and mono-doped

with I or N respectively. In the left columns, magenta and green-color corresponds

to Cr-3d, blue-color to I-5p and black-color to N-2p partial density of states. In the

right columns plot belongs to total density of states where magenta-color indicates

the spin-up-channel while green-color is down-spin-channels. Fermi-level (EF ) has

been set at zero. The top left panels of Fig.-6.7 and Fig.-6.8 show the spectra for the

clusters MF1-I and MF1-N respectively. We note that (ZnTe)12 mono-doped with

Cr along with the I or N impurities, specifically substituting at Zn-sites, changes

the electronic structure at the EF significantly. In the right column, top panel of

Fig.-6.7 we see that the occupied 3d-levels in the up-channel due to I doping shifts

towards higher energies above EF , i.e. they now become unoccupied. While in the

down-spin-channel unoccupied 3d-levels were shifted towards lower energies with 5p-

orbital contribution near EF . In up-spin-channel just above EF large number of states

are available but in the down-spin-channel HOMO-LUMO gap is larger. The right
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Figure 6.7: Energy spectrum of (ZnTe)12 cluster with (left column, top) Cr-3d and

I-5p projected spin-resolved DOS and (right column, top) total spin-resolved DOS

for Cr-I doping for MF1-I structure; (left column, middle) Cr1-3d, Cr2-3d and I-

5p projected spin-resolved DOS and (right column, middle) total spin-resolved DOS

for Cr2-I doping for F1-I structure ; (left column, bottom) Cr1-3d, Cr2-3d and I-5p

projected spin-resolved DOS and (right column, bottom) total spin resolved DOS doe

Cr2-I doping for AF1-I structure.
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Figure 6.8: Energy spectrum of (ZnTe)12 cluster with (left column, top) Cr-3d and

N-2p projected spin-resolved DOS and (right column, top) total spin-resolved DOS

for Cr-N doping for MF1-N structure; (left column, middle) Cr1-3d, Cr2-3d and N-2p

projected spin-resolved DOS and (right column, middle) total spin-resolved DOS for

Cr2-N doping for F2-N structure ; (left column, bottom) Cr1-3d, Cr2-3d and N-2p

projected spin-resolved DOS and (right column, bottom) total spin resolved DOS doe

Cr2-I doping for AF2-N structure.
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column top panel of Fig.-6.8 shows that doping with acceptor (N) impurity, occupied

and unoccupied states both in up as well as down spin-channels are shifted towards

lower energies. Band gap is larger in the up-spin channel. Thus it seems possible that,

doping appropriately, the gaps can be reduced to a level where either the up or down

or both spin-channels become gapless i.e. half-metallic like in nature. The middle left

panels of Figs. 6.7 and 6.8 show (ZnTe)12 bi-doped with Cr and mono-doped with I or

N respectively, with Cr1 and Cr2 having moments with FM alignment. For the case

of I-doping the picture is quite like the case mono-doped with Cr, with smaller gap

in the up-channel and larger gap in the down-channel. For FM alignment of Cr1-Cr2

in case of N-doping, gaps are almost same. The bottom left panels of Figs. 6.7 and

6.8 show (ZnTe)12 bi-doped with Cr and mono-doped with I or N respectively, Cr1

and Cr2 have AFM arrangment. For I-doping in the AF case gap in up-spin as well

as down-spin channel are same, while for N-doping the down-channel has the larger

gap. If we compare Fig.-6.7 and Fig.-6.9 for FM case where (ZnTe)12 bi-doped with

Cr, Cr up-3d states populate the HOMO-LUMO gap of pristine (ZnTe)12 . While for

the AFM case both the up-3d and down-3d Cr states are pushed above and below

the HOMO-LUMO gap of (ZnTe)12 cluster giving significant gaps for both the up

and down spin-channels. Referring to Fig.-6.8 we note that with N-doping both N

up-2p and down-2p states populate the HOMO-LUMO gap of (ZnTe)12 giving much

smaller gaps than that for AFM case with I-doped clusters. Partial and total density

of states of I and N doped (ZnTe)12 clusters with FM and AFM arrangements of Cr-
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atoms show difference in moments due to varying hybridization between Cr-3d and

I-5p (or N-2p) states which also results into changed chemical bonding of Cr-Te2-I(or

N) type of clustering. We can clearly see the difference in majority and minority

electrons on integrating partial density of states which significantly differs from one

cluster arrangement to another showing substantial change in moment.

Magnetic Moment

Egup Egdn
µB/atom

F0 2.73 2.73 0.00

F1 0.74 2.37 3.64

F2 0.69 1.06 1.42

F3 0.28 1.67 2.20

F4 0.16 1.70 3.40

Table 6.5: HOMO-LUMO gaps in the up and down channels in eV, magnetic moments

in bohr magneton µB.

Fig-6.9 shows the spin-resolved energy spectrum of pristine (ZnTe)12 cluster (F0).

Fig.-6.10 shows (top pannel from left to right) the energy spectrum in the two spin

channels for (ZnTe)12 mono-doped with Cr (F1), mono-doped with Cr and co-doped

with I (F2), and (bottom pannel from left to right) bi-doped with Cr and co-doped

with I (F3) and finally tri-doped with Cr and co-doped with I (F4). A systematic

study of the five cases shows that there is considerable change in the spectrum near
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Figure 6.9: Total spin-resolved DOS of the pristine (ZnTe)12 cluster.

the Fermi level in the up-spin-channel as compared to that in the down-spin-channel

with respect to pristine (ZnTe)12 cluster. Band gap of up-spin-channel decreases with

increasing number of Cr atoms keeping I fixed but in down-spin-channel once the co-

doped with I the change is much smaller. The up-spin-channel is fully spin polarized

and only one spin type of electrons can pass through it. This is characteristic of half-

metallic systems. We have summarized this in Table-6.5. The decrease in moment

for Cr-I doping is due to p-d hybridization in Cr-3d and I-5p orbitals. In contrast

to this similar doping of Cr-atoms and co-doping with an acceptor (N) atom both

energy gaps reduce with increased doping of Cr-atom with fixed N. Both up and down

spin-channel have only partial spin polarization.

If we wish to synthesize these clusters at room temperature then the HOMO-

LUMO gap should be of the order of Eg ' κBT where T ' 300K. That is, the



Chapter 6. Effect of Impurity Doping on Pristine Cluster 135

Figure 6.10: Total spin-resolved DOS of (ZnTe)12 cluster doped with Cr, Cr-I, Cr2-I

and Cr3-I. In the top panel(from left to right): (ZnTe)12 cluster doped with Cr and

CrI respectively and in the bottom panel(from left to right): (ZnTe)12 cluster doped

with Cr2-I and Cr3-I respectively.
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larger HOMO-LUMO gap in the spin channels should be greater than 0.025 eV. In

our case we have smaller HOMO-LUMO gap in the up-spin channel in comparison

to the down-spin channel and for all configurations this larger gap is more than the

above limit. We believe, it may be possible to synthesize the described clusters in the

laboratory at room temperatures.

6.4 Conclusion

We have shown that pristine cluster (ZnTe)12 doped with magnetic impurities and

co-doped with charged impurities changes the energetics as well as the magnetic prop-

erties and may stimulate half-metallic nature into it. For clusters doped with two or

more Cr atoms, both I or N co-doping enhances magnetic moments. Moreover most

stable configurations are those with FM aligned Cr moments. Enhancement of mag-

netic moments by N co-doping has been attributed to specific cluster environments of

the dopants and co-dopants. Unlike the bulk, there are no extended electronic states

in the cluster and local environment plays the crucial role here. This is a characteristic

of reduced dimensions.
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Conclusion

In this chapter we shall discuss what and how we researched, along with the findings

in compared to other methods which were motivation of work done for this thesis.

In the chapter 3 we have developed a first principle method with non-variational

approach to calculate ground-state as well as excited-state properties of semiconduc-

tor materials and reporting an adaptation of the Harbola-Sahni exchange (HS-EX)

potential to the tight-binding linear muffin tin orbital (TB-LMTO) method. There

has been several methods available which considerably improve the band gaps within

the framework of Kohn-Sham DFT, but why we bank upon HS-EX only? Like the

idea of optimized effective potential’s (OEP) extension to solids where exact exchange

combining with LDA correlation produces reasonably good band gaps in agreement

with the experiments. Computational cost involved in exact exchange is high because

of inversion of linear response function which makes the computation very cumber-

some and heavy. Presently, more accurate methods in first-principle approaches for

137
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extended systems exists, the GW approximation (GWA) explains electronic band

properties most accurately but computationally GW method is very heavy which re-

stricts it’s uses for relatively smaller systems. Keeping in mind we have proposed

HS-EX potential an alternative approach to obtaining the exchange-correlation po-

tential. In this approach, the XC-potential is calculated as the work done in moving

an electron in the electric field produced by its Fermi-Coulomb hole.

Using HS approach within the exchange (EX) only approximation, where HS-

EX is evaluated from Fermi hole, produces ground state as well as excited state

properties comparable to EXX and GWA but with considerably reduced numerical

efforts. The above physical picture and the vastly reduced computational effort make

this approach worth following. With this in mind, we use HS approach to calculate the

various properties of materials within TB-LMTO in the atomic sphere approximation

(ASA). The electrostatic basis of derivation of the Harbola-Sahni potential allows

this non-variational approach to study different excited state properties like band

gap. We replaced LDA from TB-LMTO with HS-EX. HS-EX completely cancels the

self-interaction part, contrary to LDA. As filled shells contribute more to exchange

thus potential obtained using HS-EX is better over LDA, giving more clear picture

of shell closing in atoms. Consequently, localizing the valence band and conduction

band levels resulting into better excited state properties e.g. band gap. We shall also

emphasize on calculated ground state properties like equilibrium lattice parameter,

bulk modulus for metals and semiconductors are in very close agreement with the
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experiments. The clear physical interpretation of HS-EX potential coupled with the

fact that it is very simple to implement in numeric calculations leads us to suggest

its preferential use over other computationally cumbersome techniques. These new

results improve substantially over local density approximation results, bringing them

very close to experimental values.

In the chapter 4 and chapter 5 we studied Ni (Nickel) based alloys doped with Mo

(molybdenum) and W (tungsten) as non-magnetic impurities. As we know alloys has

always been very important because of their industrial use and among them searching

for some specific properties make them more interesting e.g. spin glass nature. Both

alloy system we studied using augmented space formalism and coherent potential

approximation methods does not show any signature of spin glass. In our studies we

attribute this to the artifact of mean-field approach followed by us. Fragile moment

of Ni in NiMo or NiW alloy which suddenly disappears when Mo or W concentration

reaches ≈ 13 at.% and ≈ 10 at.% respectively. So, we proposed for very careful

experimental observation at 11-13 at.% of Mo and at 10 at.% of W as there is a

competition between the formation of the spin-glass and collapse of both magnetic

moment and frustration with dilution.

In chapter 6 we have studies pristine cluster comprised of Zn (Zinc) and Te (Tel-

lurium) atoms in a most stable cage structure of it type. We have shown that pristine

cluster (ZnTe)12 doped with magnetic impurities e.g Cr (Chromium) and co-doped

with charged impurities e.g. I (Iodine of n-type) and N (Nitrogen of p-type). In
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our study charged impurities play major role and changes the energetics as well as

the magnetic properties and in some of isomers they stimulated half-metallic nature

which is very important feature we found in DMS materials. We have doped the

clusters with maximum of two magnetic atoms, both I and N has been taken as

mono-dopants. We studied both ferromagnetic as well as anti-ferromagnetic proper-

ties and ferrmomagnetism came out as most stable configurations in these systems.

Enhancement of magnetic moments by N co-doping has been attributed to specific

cluster environments of the dopants and co-dopants. Unlike the bulk, there are no

extended electronic states in the cluster and local environment plays the crucial role

here. This is a characteristic of reduced dimensions.

To conclude on positive node “The Past: Our cradle, not our prison; there is

danger as well as appeal in its glamour. The past is for inspiration, not imitation,

for continuation, not repetition.”-annonymous
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