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Chapter 1 Introduction 
 

Exploration of non-equilibrium phenomena in complex chemical systems lies at the 

heart of research in physical chemistry. The phrase ‘complex chemical systems’ applies for 

any multicomponent atomic or molecular system
1, 2

 containing interacting particles. Such 

systems are ubiquitous in nature, for instance, fluid-media in living systems host several 

dissolved or dispersed organic and inorganic molecules. The air surrounding us, which is a 

vast reservoir of various molecules of different species, also falls into this category. Solutions 

of fluorescent dyes, electrolytes, biomacromolecules, like protein, DNA, different interfaces 

and micelles all form instances of complex chemical systems. Development of such complex 

materials with specific physical and chemical properties constitutes an important branch of 

science and technology
3
. 

In scientific literature the complex chemical systems are recognized by characteristic 

static and dynamic properties observed over broad range of length and timescales
2
. Such 

characteristic properties often lead to highly specific and unique chemical phenomena, 

controlled by the diverse coupling among the different length and timescales. With increasing 

number of emergent complex chemical systems, molecular level understanding of their 

properties and these phenomena is becoming exceedingly important. Experiments allow 

direct exploration of structure and dynamics over different space and time windows. The 

theoretical approaches aided by computational techniques offer scope to procure knowledge 

essential for fundamental understanding of complex systems. Various experimental 

techniques have been employed in this regard, in conjunction with theory and computation
2, 4

 

to extract structural and functional information about numerous emergent complex chemical 

systems during the past few decades. 

The connection between the equilibrium structure and the underlying dynamics is an 

important feature of the complex chemical systems. The dynamics of constituent molecules 

in a system is determined by their spatial arrangements which are very important for their 

functional properties. Here lies the motivation for the studies of non-equilibrium processes in 

these complex materials which ultimately help to characterize the relationship between 

structure and functions. Different processes reveal different aspects of this relationship, of 

which three main classes of non-equilibrium phenomena are discussed in the present thesis: 

(i) solute rotation in different complex media, (ii) effects of nanometer scale confinement on 

dynamics of solvation in fluids and (iii) conformational dynamics in biomacromolecules.  
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We pursue the understanding of the above classes of non-equilibrium phenomena 

using theoretical and computational approaches. For the analytical calculations we work 

within the frame-work of mean field theory
5
. As the name suggests, Mean field theory

5, 6
 is a 

theoretical framework which approximates the many-body interactions in a system by an 

effective interaction so that any molecule feels a ‘mean field’ due to the other molecules. 

Thus, it reduces a many-body problem into an effective one-body problem and hence is 

enormously advantageous for the mathematical simplicity it brings in. Mean field theory is 

almost invariably the first approach adopted to explore any complex system. It is quite a 

useful description if the spatial fluctuations in the system are not significant. Such 

approximation leads to quantitative results when the range of interactions is infinite. For our 

purpose, we use the mean field theory to treat the long-ranged forces in the system. We 

perform several computer simulations to support our analytical results. The simulations on 

biomacromolecular systems are based on atomistic force-field based methods. All the 

theoretical and simulation methods are described in the relevant chapters where they have 

been employed. 

In the three subsequent sections 1.1-1.3 of this chapter, we describe the backgrounds 

and unresolved aspects of these processes in the relevant complex chemical systems. We also 

briefly state our results and discuss the implications. The final section of this chapter gives an 

outline of the remaining part of the thesis. 

1.1 Dipolar solute rotation in different media 

Rotation of dissolved solute molecules in a fluid medium is a motion of fundamental 

category. Such rotation depends directly on the ability of the immediate surroundings of the 

solute to accommodate its new orientations. Any heterogeneity in the environment of the 

solute is captured by these rotational motions. Thus the dynamics of solute rotation has been 

one very important class of non-equilibrium process that supply valuable information 

regarding the nature of solute-solvent coupling
7-9

 and local environment of the solute. The 

rotational dynamics of a molecular rotor is typically expressed in terms of the rate of angular 

displacement around a specific molecular axis. For a spherical molecule one finds a unique 

rate of rotation, inverse of which gives the timescale of rotation. However, multiple 

timescales also are observed if the molecule itself possesses different rotational degrees of 

freedom, applicable for highly anisotropic molecules
10

 and biomacromolecules
11

. The 

timescales can be lengthened if there is any specific interaction or complex formation 

between the solute and the solvent molecules
12, 13

. Thus, these rotational rates or the 

associated timescales have proved useful tools to understand the local compactness of a 



Chapter 1  10 

 

medium at a length scale of the order of the solute size. In addition such timescales often give 

valuable idea about mechanisms of certain reactions, especially in biomolecules, since 

binding can significantly retard these rotations.  

 

Figure 1.1: Rotation of a dipole. It is initially aligned to z-axis and then rotates about the 

y-axis.  represents the angular displacement with respect to its initial orientation.  

 

Figure 1.1 schematically shows the rotation of a dipole where the angular 

displacement is marked as  a time-dependent quantity, rate of change of which describes the 

rate of rotation. Measurements of the time dependent fluorescence anisotropy
11

 r(t) provides 

a method to track the rotation of a fluorescent solute. In such experiments the solute is 

excited using laser to create a dipole in a higher electronic state. This excited solute dipole 

then gradually relaxes to equilibrium via diffusive rotational motion.  The time-dependent 

fluorescence emission intensity for such a dipole is anisotropic which is expressed in terms of 

r(t). The conventional probes used in these experiments are aromatic fluorescent molecules, 

like coumarins, oxazines, anthracenes and many more. The observed r(t) generally follows an 

exponential decay, given by )/exp( Rt  , with a characteristic time scale R  for the solute 

rotation. This is called the rotational correlation time, conventionally known as the rotation 

time. Sometimes multi-exponential decays are observed when one obtains via the time-

integration of the normalized r(t), an average R , dominated by the longer time scale of the 

decay.  

There are three major classes of well-studied solvent systems. In the first class fall the 

common liquid solvents having critical points much higher than ambient temperature (AT). 

These are the conventional solvents including the dipolar liquids, both protic (water and 

alcohols) and aprotic (acetone, acetonitrile, chloroform, formamide etc.), and the non-dipolar 

ones, like, the hydrocarbons (cyclohexane, benzene, toluene etc.)
8, 14

. The observed R  in 

these solvents are a few tens of picoseconds (ps). Next class comprises of the supercritical 
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fluids
15

 with the fluid critical temperature near AT. Some examples are fluoroform, ethane, 

carbon-dioxide and nitrous oxide
16-19

. Average R  in these media are typically 5-10 ps. 

Finally, there are ionic media which are multicomponent systems themselves, namely, the 

ionic liquids
20

 where the observed R  are about few nanoseconds (ns), electrolyte solutions
12, 

13, 21
 with R  about few hundreds of ps and so on. The most popular fluorescent probe 

molecules have been the coumarin dyes, among which coumarin 153 is the one used mostly 

due to its non-reactive nature. It does not undergo any complexation with the solvent 

molecules in any of the above three varieties of solvent systems, thus providing reliable 

information about the local solvent structure and dynamics.  

The average R  of a solute is conventionally understood by the Stokes-Einstein-

Debye (SED) model
8, 22

. It is a purely hydrodynamic model according to which the average 

R  for a spherical rotor, with volume pV  in a medium of viscosity , is given under the stick 

boundary condition by  

    
Tk

V

B

p

R


  ,                                                             (1.1) 

where TkB , the Boltzmann constant ( Bk ) times the absolute temperature. The conventional 

SED model has received enormous success in describing solute rotation in common polar 

solvents
8
, ionic liquids

23
, electrolyte solutions

13
 and for biologically relevant moieties

24
. In 

particular,  increases with increasing solvent density Thus, R  gets longer as increases.   

 

Figure 1.2: Phase diagram of a fluid. The supercritical and sub-critical regions are shown. 

 

The experimentally observed solvent density dependence of R  in the supercritical 

fluids (Figure 1.2) is highly non-trivial. For instance, the observed R  for Coumarin 153, a 

dipolar solute, in supercritical fluoroform, a dipolar solvent, exhibit a non-monotonic 
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variation passing through a maximum around  = 0.6c and a minimum at  = c, the critical 

density, followed by a monotonic increase for  > c . The SED model fails to explain this 

complex density dependence of R . Our recent work
25

, incorporating the solvent structural 

effects and solute-solvent interactions in the friction experienced by the rotating solute, 

satisfactorily describes the anomalous density-dependence of solute rotation within the SED-

framework. The formulation and results are presented in chapter 2.  

We extend
26, 27

 the above generalization of the SED model to answer the long-

standing controversy on the decoupling of electrical part of rotational friction, termed as the 

dielectric friction
28

, from dipolar solute rotation in various liquid systems. The controversy 

stems from the experimental finding for the common dipolar liquids
8
, the ionic liquids

23
 and 

electrolyte solutions
13

 that hydrodynamic timescale matches the measured average rotation 

times in these complex media. This is surprising, for these experimental observations, suggest 

negligible dielectric friction even in presence of strong electrostatic solute-solvent 

interactions. This cannot be explained by the existing theories
29

 which predict appreciably 

large dielectric friction. Our theory predicts a minimal contribution from the dielectric 

friction, and thus provides a microscopic explanation of how the dielectric friction gets 

decoupled from dipolar solute rotation in above liquid systems
26, 27

. More importantly, our 

analyses suggest
27

 the existence of a quasi-universality in solute rotation for a wide variety of 

solute-solvent combinations. We derive a macro-micro relation connecting a set of 

experimentally measurable quantities to the molecular arrangement of the solvent around a 

dissolved solute, and demonstrate that both the quasi-universality and the domination of 

hydrodynamics originate from one single source, that is, packing at liquid-like density. These 

calculations and results are given in chapter 3. 

 

1.2 Solvation dynamics in nanoconfined fluids 

Fluids under confinement represent a very important class of system relevant in 

various branches of science and technology, from biology
30

 to tribology
31

. With increasing 

importance of physical and chemical processes in confined geometry
32-43

, fundamental 

understanding of confinement-induced effects on fluid properties has drawn considerable 

attention
44, 45

. If the confinement is comparable to molecular size, measuring a few 

nanometers, the confined fluid undergoes drastic changes in static and dynamic properties
46, 

47
, while the dimensionality of the system crosses from three to two. In strong solvophilic 

confinements particle-movements become sluggish
33, 47, 48

 compared to the bulk, while strong 

solvophobic confinements tend to make particles to move faster than in the bulk
46, 49

. The 
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understanding of this crossover in fluid properties is one of the most challenging problems. 

All the phenomena in nanoconfined fluids affect a broad range of physical and chemical 

processes in confined media
32-43

, ranging from extraction to catalysis in nanopores. Thus, 

study of the confinement-induced changes in fluid properties is both pedagogically and 

technologically important. 

In a complex chemical system a fundamental step for most of the physical or chemical 

process is the solvation of the participating solute
45, 50

 by the solvent molecules. Any 

stabilizing interaction between a solute and surrounding solvent molecules is conventionally 

termed as solvation. The organization of the solvent molecules around the solute is a non-

equilibrium process governed by the instantaneous solvent distribution and diffusion of the 

solvent molecules. Confinement affects both the fluid distribution as well as the diffusion 

significantly. Thus, solvation dynamics experience such confinement effects when the solute 

gets solvated in a confined fluid. Knowledge on modifications in solvation dynamics under 

confinement would supply valuable information on the possible changes in rates of various 

solvation-dependent processes, e.g. catalysis in nanoscale pores, charge- or proton-transfer 

reactions and associations of biomolecules.  

 

Figure 1.3: Schematic representation of solvation dynamics. The solute (larger circle) is 

perturbed from its (a) initial equilibrium solvated state via suddenly increasing its size 

or changing the dipole moment (vertical arrows inside circles) to create a (b) non-

equilibrium situation. From this state the solvent molecules (smaller circles) move to 

reorganize themselves to reach a (c) new equilibrium state. Inset shows a schematic 

solvent response function S(t). 

 

Solvation dynamics is typically studied (Figure 1.3) via perturbing an equilibrated 

state of the solute and then measuring the time required for the solvent to reach a new 

equilibrium state from the initial equilibrium distribution. This time required, termed as the 

solvation time , is obtained in terms of the decay time-scale(s) of the time (t) dependent 

solvent response function
45

 S(t) which typically behaves like )/exp( t  in the long-time 

limit. Dynamics of solvation of many fluorescent dyes have been widely studied in confined 
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fluids. The general picture emerging out of the observations from both experiments
45

 and 

computer simulations
51-53

 is as follows: In a bulk fluid the solvation is typically complete 

within tens of ps with one or two decay timescales in S(t). In nanoconfined solvents, the 

solvation may extend from hundreds of ps to even ns. Recent computer simulations
51-53

 also 

show such slowing of the solvation dynamics in various confined systems compared to the 

bulk. The most striking feature of this slowing down of solvation is that it happens in both 

solvophilic as well as solvophobic confinements. There has been no molecular-level 

understanding of this slowing down of solvation dynamics due to geometrical constraints 

imposed by the confinement.  

The effects of confinement become more severe when the thermodynamic condition 

of the bulk-fluid phase surrounding the confined media is in the sub-critical region (Figure 

1.2) near liquid-gas coexistence. The nature of surface becomes vital here which leads to 

changes in fluid phase behaviour
54, 55

. Although, there exist many applications
56-58

 of the sub-

critical liquids along with several studies on the surface induced phenomena
55, 59-63

, not many 

studies have been performed to elucidate the roles of sub-critical solvents in solvation 

process. However, a simulation study
64

 has shown that the density of the sub-critical solvent 

controls the solvation behaviour. 

Our studies highlight several aspects of confinement-induced changes in solvent 

properties in absence and presence of solute to address above two classes of phenomena:  

1. Dimensional crossover in fluids: 

In a recent work we have studied
65

 using extensive computer simulations the effects 

of nanoscale confinement on a fluid in a slit geometry far away from any coexistence point. 

We explain the dimensional crossover, observed in experiments
46, 47

, in terms of modification 

in the long-wavelength behaviour of density response of the fluid due to geometrical 

constraints. We also show that the confining potential significantly affects the crossover 

behaviour. In a solvophobic slit the fluctuations increase as the confinement is made stronger. 

On the other hand, in a solvophilic confinement the fluctuation decreases significantly due to 

large attraction of the attractive walls under strong confinement.  

2. Solvation dynamics under nanoconfinement: 

We also study the solvation dynamics in a confined geometry where the bulk fluid-

phase surrounding the confinement is specified. Two different phase-points are considered: 

(a) Far away from phase-transition We study
66

 via computer simulations the 

dynamics of solvation of a large solute in a fluid under nanometer scale confinement to 

provide microscopic mechanisms of the slowing down observed earlier. We find a single-
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exponential S(t) both in bulk and confinement to show that two fundamentally different 

aspects of the crossover is responsible for the slowing down in the presence of two kinds of 

walls. We show a sharp slowing down of solvation dynamics in solvophilic confinements due 

to suppression of fluid diffusion in the presence of solvophilic walls, along with slow solvent 

dynamics due to geometrical constraints. The solvation becomes slower than in the bulk in 

strong solvophobic confinements as well, but not as sharply as in the solvophilic case. This is 

due to the competition between reduction of dimensionality in solvent dynamics and faster 

in-plane solvent diffusion.  

(b) Near the liquid-gas phase-coexistence We further carry out computer simulations 

to study
67

 the dynamics of solvation of a solvophilic solute in a solvophobic confinement, the 

confined solvent being in equilibrium with bulk liquid close to liquid-gas phase coexistence, 

far below the critical point. Under these circumstances evaporation takes place inside the 

pore, commonly known as capillary drying
61

. If a solvophilic solute particle is now inserted 

in such a dried solvophobic pore the solute tends to wet the pore via capillary condensation
68

 

posing a competition
62

 with the wall-mediated drying effect. This competition decides the 

fluid diffusion in the pore to affect solvation dynamics. We find that the solvent response 

inside the solvophobic confinement for the solvophilic solute is bi-exponential as in the bulk 

sub-critical liquid. The observed solvation timescales are significantly smaller under strong 

confinement compared to the bulk timescale indicating faster solvation in the pores. This is 

due to a low density fluid phase created via the competition between the drying by 

solvophobic walls and the surface-mediated wetting by solvophilic solute. The solvation 

timescale increases linearly with slit separation to approach the bulk value.  

Details of all the calculations and results on dimensional crossover and solvation 

dynamics are included in chapter 4. 

1.3 Conformational fluctuations in biomacromolecules 

The biomacromolecules are highly flexible systems, with a huge number of internal 

degrees of freedom, having the capability to adopt numerous conformations. The fluctuations 

from one conformation to another plays very important role in various biological processes 

including molecular recognition, signal transduction, gene expression and so on
69-72

. 

Reversible conformational switching of different biomacromolecules are important even 

technologically, for their application in several biosensing devices
73, 74

. Nuclear Magnetic 

Resonance (NMR) relaxation experiments
75

, fluorescence correlation spectroscopy coupled 

with Forster resonance energy transfer
76

, multiphoton microscopy
77

 and paramagnetic 

relaxation experiments
78

 have been employed to explore conformational dynamics of 
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biomacromolecules. Molecular simulations
79-83

 have been important in this regard yielding 

microscopic information about conformational changes.  

The primary focus of studies on conformations of biomacromolecules has been 

identification of a set of suitable variables to capture the conformational fluctuations. When a 

biomacromolecule participates in a binding event with another molecule, both the binding 

partners experience conformational changes
84

 which stabilize the complex
85

. These changes 

take place simultaneously at several pockets distributed over the entire surface of the 

biomacromolecules. The handling of such a large number of variables is extremely difficult. 

Moreover, the interactions in the system are also diverse, like van der Waals forces, 

electrostatic and hydrophobic interactions. These factors render the full characterization of 

the conformational fluctuations in biomacromolecules at microscopic level quite 

challenging
86, 87

. 

 

Figure 1.4: Example of conformational changes for specific function. Four Calcium (Ca2+)-

ions (dots) bind to metal-free inactive Calmodulin, an eukaryotic cellular protein, and 

activates it for binding to peptides. Thus, Calmodulin participates in various cellular 

activities. 

 

Figure 1.5: Illustration of a dihedral angle. Here the dihedral  is defined as the angle 

between the planes with atoms A, B, C and the plane with atoms B, C and D.   would 

change as relative positions of A and D change via rotation around the bond between B 

and C. 

 



Chapter 1  17 

 

Proteins are important biomacromolecules with a huge diversity of their structures 

and functions. They often form complexes with metal-ions, ligands and other 

macromolecules
88

 to adopt specific conformations for certain biological function (Figure 1.4). 

Importance of various backbone and side-chain dihedral angles
89

 as suitable conformational 

variables have recently been highlighted
90

 to describe protein conformations. A dihedral 

angle is given by the angle between two atomic planes constituted by four consecutive atoms 

as illustrated in Figure 1.5. By definition the dihedral angles are designed to trace the changes 

in rotational degrees of freedom which govern the conformational fluctuations. Moreover, the 

dihedrals are coarse-grained variables which give an advantage over the normal mode 

analyses with a significant reduction of number of working variables. We use the dihedral 

angles to describe following equilibrium and non-equilibrium aspects: 

1. Conformational thermodynamics:  

One significant aspect of the equilibrium conformational fluctuations is the estimation 

of thermodynamics of conformational changes upon complexation. This involves changes in 

both conformational entropy ( confS ) and free energy ( confG ) associated with the binding 

event
91

. The experimental methods, like, isothermal titration calorimetry (ITC)
69

 providing 

the standard free energy and entropy changes of binding, can neither yield the conformational 

contributions nor resolve the changes at the level of individual variables or binding regions. 

NMR relaxation experiments
92-95

 provide an estimate of confS . However, there has been no 

established experimental means of extracting confG
 
as yet, except UV resonance Raman 

measurements of conformational free energy landscapes
96

. Histograms of the dihedral angles, 

obtained from all-atom molecular dynamics simulation trajectories have been used to 

estimate the confS for proteins
97

. Several computational techniques exist to estimate the 

confG  as well
81, 82

. However, all these methods have been computationally very demanding 

and hence limited to small and medium sized biomacromolecules only. 

We have recently developed
83

 a theoretical approach, based on one dimensional 

histogram of dihedral angles, to estimate confG and confS for biomacromolecular 

complexes. These histograms are generated from all-atom molecular dynamics simulations of 

the binding molecules in explicit solvent in their free and bound states. Our approach is 

simple and computationally efficient compared to existing methods for its ability to provide 

both confG  and confS simultaneously from the same histogram. confG  is obtained from the 

ratio of histogram maxima (equilibrium populations) in free and bound states, whereas confS

is estimated using the Gibbs formula
98

. Moreover, our method allows us to estimate the 

thermodynamic changes in the individual binding regions.  
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We first illustrate our studies for protein-peptide binding where we show that the 

equilibrium fluctuations of dihedral angle represent the conformational thermodynamics 

obtained from NMR relaxation experiments
75

. Next we consider
99

 the case of a protein 

undergoing conformational changes upon binding to metal-ions
100, 101

. We find different 

thermodynamic changes in different metal-binding sites where the ligands coordinating to the 

metal-ions play different roles in stabilizing the metal-ion bound protein-structure. Metal-ion 

binding induce large thermodynamic changes in distant part of the protein also via 

modification of secondary structural elements. The details of above method and the results 

are presented in chapter 5. 

2. Dynamic fluctuations of dihedral angles: 

Apart from the equilibrium aspects, we explore
102

 a very important non-equilibrium 

process allosteric regulation
103

 in biomacromolecular systems. Allosteric regulation is defined 

as communication among distant sites in biomacromolecules which governs fundamental 

cellular processes, ranging from metabolism to gene expression. Such communication is an 

inherent capability of nearly all proteins
104

 to regulate structural and dynamical changes at 

some part upon binding events at a distant part. Understanding such long-distance 

communication is a formidable experimental challenge, while the current theoretical 

explanation utilizes simplified models
105

. We show that the distant site communications can 

be probed directly from the time-dependent correlations among the dihedral angles at 

different sites. We illustrate this for binding of multiple metal-ions to a protein where 

modifications in the dynamical correlation pattern upon the binding of metal-ions are 

interpreted in terms of allosteric regulations which explain experimental observations. We 

also discuss the connections between our observations and the existing understanding of 

allosteric regulation based on shift of populations among various conformational states
103

. All 

these calculations and results are also included in chapter 5.  

3. Changes at biomacromolecular Interface:  

Another very important issue regarding biomacromolecular complexes is the changes 

at the interface. Recent experiments
106, 107

 suggest that structural modifications at the 

interfaces are vital for stability of the complexes and functions of the associated 

biomacromolecules. Although several qualitative aspects about such interfaces are known 

from structural data, quantification of the interfacial changes is lacking. In chapter 6 we 

study
108

 in close detail the thermodynamics of conformational changes at the interface of a 
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protein-protein complex. confG and confS are calculated from the histograms of dihedral 

angles to show that the binding at interface is dominated by strong electrostatic interactions. 

We also show that the changes in the distribution of interfacial water molecules give rise to a 

substantial entropy contribution in binding of the proteins. The dynamics of the interfacial 

water molecules get arrested which demonstrates tight binding at the interface. 

1.4   Outline of the thesis 

The organization of the rest of this thesis is as follows: In chapter 2 we develop the 

molecular theory on dipolar solute rotation in a supercritical polar fluid to explain the 

experimentally observed non-monotonic solvent density dependence of average rotation 

times. We extend this theory in chapter 3 for dipolar solute rotation in various complex 

media, including common dipolar liquids, ionic liquids and electrolyte solutions to resolve 

the long-standing question regarding the role of dielectric friction in solute rotation.  

In chapter 4 we provide a generic understanding for the experimentally observed 

confinement-induced dimensional crossover in various fluid properties. We also consider the 

dynamics of solvation of a large solute in a nanoconfined fluid to explore microscopic 

mechanisms of experimentally observed slowing down of solvation dynamics under 

confinement. Further we predict the solvation behaviour in a solvophobic pore placed in a 

sub-critical bulk fluid near liquid-gas coexistence, to capture the effects of competition 

between drying by the solvophobic walls and wetting by the solvophilic solute.  

Chapters 5 and 6 consider conformational fluctuations in biomacromolecular systems. 

In chapter 5 we present our histogram-based method for estimation of entire conformational 

thermodynamics of biomacromolecular complexation from histogram of dihedral angles. We 

illustrate this method first for protein-peptide binding to show that dihedral histograms indeed 

provide the conformational thermodynamics obtained from NMR relaxation experiments. 

Further, we consider metal-ion binding to a protein where, apart from the thermodynamics, 

we also provide a route for direct probe of allosteric regulations via dynamic correlations 

among dihedral angles. Chapter 6 describes a study on biomacromolecular interface where 

we extend the histogram-based method for a protein-protein complex to highlight the 

important interactions dominating the binding at the interface. We generalize the histogram 

based method to compute interfacial water contributions to the thermodynamics. Estimation 

of the changes in dynamics of interfacial water molecules demonstrates tight binding at the 

biomacromolecular interface.  
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Chapter 2 Dipolar solute rotation in a supercritical polar 
fluid 
 

2.1 Introduction 

A fluid phase slightly above the gas-liquid critical temperature (see Figure 1.2) is 

broadly regarded as a supercritical (SC) fluid
15

. They are highly compressible offering large 

tunability of density by mild pressure variations. Pedagogically, the solvent-density 

dependence of several non-equilibrium rate processes near room temperature, can be studied 

in SC fluids like carbon dioxide, fluoroform, ethane etc. having critical temperature (Tc) close 

to the room temperature
109

. Specifically, rotational dynamics of aromatic solutes in a SC fluid 

can supply valuable information regarding the nature of solute-solvent coupling
7-9

 and local 

environment of the solute.  

The )(tr -decay of Coumarin 153 (C153) in SC CHF3 (Tc=299 K)
109

 is single-

exponential
18

 for all solvent densities. The observed R is nearly temperature-insensitive with 

a non-monotonic variation between 5-9 ps as the fluid density () increases. In spite of large 

uncertainties, there is a clear maximum near ccr  ,( being the critical density of the 

fluid) = 0.6 with R ~ 8 ps and a minimum around 0.1r with R ~ 5 ps. Since   for a 

fluid, including the SC fluids, in general monotonically increases
110

 with density, the 

conventional SED model (Eq. 1.1) fails to explain the above complex density dependence. 

The SED model has two major drawbacks: (1) Being based on purely continuum 

description of the molecular solvent, it does not consider the effects of solvent structure. The 

SC fluids have large compressibility. In a fluid composed of spherical molecules of diameter

 , the spatial arrangement of molecules can be described by the wave vector )(k  dependent 

static structure factor
5, 111, 112

, )( kS . Note that the compressibility is the long-wavelength 

limit of )( kS . Therefore, )( kS  may have a crucial role in the observed complex density 

dependence of R . (2) The solute-solvent interaction has not been included in the above 

model. Several workers attempted
7-9, 29, 113-115

 to incorporate the effects of solute-solvent 

interaction on solute rotation. Especially, the concept of dielectric friction
28

 has been invoked 

to address the change in the friction experienced by a rotating polar solute, due to 

electrostatic interactions. However, none of the above works conclusively support this 

picture. Relatively recent work
114

 suggests that the additional friction due to solute-solvent 

interaction is attributable to a static „electrostriction‟ effect. This is believed to originate from 

the enhanced solvent-structure in the first solvation shell
116

 around the solute due to electrical 

interaction between the solute and the solvent molecules. Another interesting factor 
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encouraging the inclusion of solute-solvent interaction is the „local density augmentation‟ 

(LDA)
16, 117-121

 observed during solvation in a SC solvent.  As one approaches the critical 

density from low r , the solvent density around a dissolved solute becomes much larger than 

the bulk density of the SC solvent. This unusual enhancement of local density is termed as 

the LDA. For C153 in SC CHF3, the maximum in R  and LDA occurs
109

 around the same r. 

This LDA is an outcome of strong solute-solvent coupling overcoming large length scale 

density fluctuations near critical point. Therefore, the solute-solvent interaction may have a 

significant role in solute rotation in a SC polar fluid. Note a modified SED model
8, 22

 includes 

the effects of solute-solvent interaction via two phenomenological parameters: a boundary 

condition factor and a solute shape-factor.  

 

 

Figure 2.1: Pictorial description of solute-solvent interaction effects on solute rotation.  

Smaller circles with smaller arrows denote the solvent dipoles whereas larger circles 

with larger arrows denote the solute dipole. (A) The equilibrium condition with solute in 

its excited state. (B) After an angular displacement ( ) of the solute dipole in the 

background of solvent molecules. 

 

In this chapter we introduce a molecular level theoretical framework
25

 to calculate the 

R  of a dipolar solute in a dipolar fluid incorporating the contributions of both solvent 

structure and the solute-solvent dipolar interaction. Basically, the conventional SED theory is 

used with a couple of ramifications: (1) The hydrodynamic viscosity   is replaced with the 

wave vector dependent viscosity )(  k  of the fluid which brings in )( kS  directly into the 

picture. This is done based on molecular hydrodynamic arguments leading to an analytical 

expression of )(  k  which is verified via MD simulations. We also show how to extract the 

experimental   for a SC fluid from )(  k . This modification to SED model captures 

qualitatively the experimentally observed non-trivial density dependence of R  in SC CHF3. 

(2) The effect of the solute-solvent interaction is included by considering the rotational 



Chapter 2  22 

 

relaxation of the excited solute in fluorescence depolarization experiments. In such 

experiments, anisotropy in polarization is created by photo-exciting a dissolved solute. This 

anisotropy in polarization subsequently relaxes to a new equilibrium via rotational diffusion 

of the solute. Let us consider a small angular displacement of the solute dipole from its final 

solvent-equilibrated orientation in the background of the solvent dipoles (shown 

schematically in Figure 2.1). The solute dipole would then tend to relax back to its 

equilibrium orientation by rotational diffusion under the action of torque generated via the 

solute-solvent interaction. 

The organization of this chapter is as follows: In section 2.2 we describe the 

theoretical formulations of )(  k for SC fluid. Section 2.3 shows the calculation of molecular 

hydrodynamic R of C153 in SC CHF3 from )(  k . The effects of solute-solvent electrostatic 

interactions in R  are included in section 2.4. We conclude in section 2.5. At the end of the 

chapter the appendices are given which include the details of theoretical calculations. 

 

2.2 Wave vector dependent viscosity 

In this section we introduce the molecular hydrodynamic description of )(  k  and 

then illustrate the calculation for a normal liquid. The theory is verified by MD simulations 

on a Lennard-Jones liquid. Finally, we calculate )(  k for SC CHF3. 

2.2.1 Molecular hydrodynamic description for normal liquid 

According to molecular hydrodynamics, the transverse current autocorrelation 

function  tkC ,  is defined for a normal liquid as      0, 2 kk jtjktkC 
  where  tjk

  

is the Fourier component of the transverse current.  tkC ,  is known to be related to the 

shear viscosity   of the fluid
111

:  

  tketkC
2 2

0,  

                                                       (2.1) 

where t  denotes the time,  mTkk B

22

0  , m   and m , the mass of a fluid molecule. 

Integrating both sides of Eq. 2.1 over the entire time range we get the wave vector dependent 

viscosity given by
122 

                                                           
1

02

0

2
td,

1




 







  tkC

k

m
k 




                               (2.2) 

Fick‟s law
111

 for diffusive motion states that the current: 
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)(r)j(r tDt ,,        (2.3) 

where )(r t,  is the time dependent microscopic solvent density at position r, D being the 

self-diffusion coefficient of the fluid. Now, Eq. 2.3 yields in the Fourier space for the 

transverse current,    tDiktj k
k   , k being the transverse component of k (parallel to z

axis). Multiplying both sides by  0kj   and taking average over initial conditions
111

, we 

obtain 

       00 22

kk

kk tDkjtj 



   .                                     (2.4) 

It is known
111

 that:   tDk
kk et

2  , k  being the Fourier component of the 

microscopic solvent density. Inserting this in Eq. 2.4 leads to,    0kk jtj 



  tDkekSDk
222 

  , where static structure factor
111

,   kkkS   . Thus, we reach at a 

molecular hydrodynamic expression of  tkC , , following its definition
111

 

        tDkkk ekSDkkjtjktkC
22222 0, 





      (2.5) 

Putting Eq. 2.5 in Eq. 2.2 and performing the integration one obtains,  

 
 




kDSk

Tk
k B

2



 .      (2.6) 

We set 0

2 6 rk  (  being the bulk density and 0r , the molecular radius of the fluid) to 

arrive at the final expression of wave vector dependent viscosity,  

      
 


kSDr

Tk
k B

06
                                                (2.7) 

We can also derive the weakly interacting limit of diffusion
5
, from the expression of   k : 

The isothermal compressibility of the fluid
111

 is given by   1
 TkBT   kSk 0lim  . So, 

   0~6/0~ 0  kDSrTkk B )6/(1 0 TDr  . Rearranging this we get TdD  2

where  06 rd  , a density dependent dissipative coefficient
5
.  

Note that Eq. 2.7 yields 

        kSkSkk          (2.8) 

for wave vectors k  and k  . In the long-wavelength 0~k  limit where  kS  has a 

minimum
111

 (inset, Figure 2.2a), an expansion yields,    221  bkk   where b depends 
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on the curvature of  kS  near 0~k . Such small k  behaviour of   k  has been 

reported earlier
24, 122

.  

2.2.2 Molecular dynamics simulation 

Both sides of Eq. 2.8 can be computed from Molecular Dynamics simulations which 

can provide direct test of the wave vector dependent viscosity. We consider to this end, for 

simplicity, a Lennard-Jones (LJ) system at normal liquid condition. The interaction potential 

between a pair of LJ liquid molecules at separation r is given by     ][4
612

rr   ,   

being the interaction strength parameter
111

. Our simulation system involves 216 LJ particles 

using the argon units
111

 [ = 120 K in Bk unit, diameter  = 3.4 Å and molecular mass 40 

a.m.u], adopting microcanonical (fixed number of particles N, volume V and total energy E) 

ensemble
111

. A simple cubic simulation box is used of side 46.6L with the periodic 

boundary condition on all sides. The density of the system is taken at 8.03   and the 

average temperature at 8.0~TkB  (96 K). The equations of motion are integrated using the 

Verlet algorithm
123

, the time-step for integration being 0.028 ps. 

We calculate   k  from the simulation by Eq. 2.2, with  tkC ,    02 kk jtjk 



and      





i

tikz
i

k ietvtj ,  tvi


 being the transverse component of the velocity of the ith 

particle at time t and  tzi , its z-coordinate at time t. Finally, we can write:  tkC ,

       
  

j

tikz

j

i

ikz

i
ji etvevk

02 0 . Here, the angular brackets represent an average over 

1000 independent initial configurations.  kS  has been calculated from the Fourier 

transform (FT) of the pair correlation function
111, 123

 obtained via the simulations.  

 

Figure 2.2: Wave vector dependent viscosity and structure factors. (a)     minkk

(filled circles with error bars) and     kSkS min  (open triangles, the solid line is 

drawn only as a guide to the eyes) as a function of k , both calculated from MD 

simulation, for LJ liquid for 8.03   at 96K. Inset:  kS  of the same system calculated 

from our simulation. (b)  kS  as function of k for SC CHF3 at 310 K at two densities, 
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74.0r  (the solid line) and at 0.2r  (the dotted line). Inset: Scaled compressibility 

𝝌𝑻
∗

 of SC CHF3 at 310 K as a function of r . 

 

The finiteness of the simulated system-size restricts us to explore the 0~k  limit
122

. 

The minimum accessible wave vector in our simulation is Lk  2min  , L  being the side-

length of the simple-cubic simulation box. The inset in Figure 2.2a shows  kS  from the 

simulations. Figure 2.2a shows a comparison between     minkk  (circles with error 

bars) and     kSkS min (open triangles), both computed from the simulations. Both the 

plots are similar in appearance with almost the same rate of decrease from the maximum 

value of unity at the smallest wave vector, which is consistent to the low wave vector 

expansion. The discrepancy between the two plots is more pronounced for low wave vector 

region which could be due to finite size effects in the simulations
123

.  

 

2.2.3 Extension to SC CHF3 

Hydrodynamic results being insensitive to the detailed molecular interactions, we 

expect the hydrodynamic description of   k  in terms of  kS  to be valid for SC polar 

fluids also. We calculate  kS  using the standard liquid state theory
111

 and obtain its 

0~k  limit as a theoretical estimate of T . Here,  kS  is computed using the Ornstein-

Zernike (OZ)
111, 112

 relation:      1
1


  kCkS ,  kC  being the Fourier transform (FT) 

of  rC , the spatial direct correlation function of the fluid. In our calculation we assume that 

the solvent-solvent interaction consists of hard core part of diameter  and a long-ranged 

dipolar contribution due to a dipole moment of magnitude   located at the centre of a solvent 

molecule.  rC  is expressed as a combination of the short-ranged and long-ranged part for 

the polar fluid. For the former, we use the Percus-Yevick (PY)
111, 112

 form  rCPY  for hard 

sphere potential. The long-ranged part  rCLR  is considered within mean-field approximation 

where the many-body correlations are replaced by a simple form based on the pair-potentials. 

Here we derive  rCLR from angle averaged Mayer‟s function
111, 112

 based on standard dipolar 

potential. Thus, 

     rCrCrC LRPY                                                   (2.9) 

where                                       3310  rcrccrC PY            for r                  

            0                                             for r                    (2.10) 

and                                                 624 )(92 rTkrC B

LR                                               (2.11) 
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The three coefficients c0, c1 and c3 in  rCPY , are functions of the packing-fraction 

  36 p , and given by: 42

0 )1/()21( ppc  ,    42
1 15.016 pppc  and 

03 5.0 pcc  . Inset of Figure 2.2b shows )( 62  TT 
 for a typical isotherm. Our 

estimate for the critical point from the divergence of T is: 29.0)( 23  cBc TkT  and 

25.0

c  which are in good agreement with the experimental numbers
110

. The details of all 

these calculations are given in Appendix A. 

Subsequently, we perform calculations at a supercritical temperature
124

. We show the 

calculated  kS  of SC CHF3 ( = 3.5 Å)
110

 in Figure 2.2b at two densities above and below

c . In general, two peaks can be observed in  kS : one around 0~k  in a region 

dominated by fluid compressibility and another around  2~k , dictated by the molecular 

packing. For low r , the peak at 0~k  predominates which gradually disappears with 

increasing r along with the concomitant enhancement of the packing-driven peak.  

 

 

Figure 2.3: Shear viscosity of SC CHF3. Experimental (circles) and theoretical (triangles) 

at 310 K as a function of r . 

 

We use this  kS  and experimentally observed
110

 D  to obtain   k  for SC CHF3. 

It is found that the experimentally observed shear viscosity of SC CHF3 is well reproduced 

(see Figure 2.3) by an integration of   k  over the entire range of wave vectors: 

      kk dd4/1 k  where, the factor 4/1  takes care of the degeneracy of the 

choice of the transverse direction. Here, for numerical purpose, the integration range was 

taken from 0k  up to 10k . We note that a larger upper limit does not alter the value 

of  . The experimentally observed viscosity
110

 is thus an average momentum transfer in a 

given layer of fluid over all possible length scales. This rationalizes the extension of the 

molecular hydrodynamic expression for the    k for SC CHF3.  
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2.3 Generalization of SED model: Molecular hydrodynamic R 

Let us now consider the generalization of the SED theory via replacement of   by

  k . Recalling the SED expression (Eq. 1.1): TkV BpR   , we can define the rate of 

rotational relaxation pBR VTk  1 . Introducing   k  we get the wave vector 

dependent rate,     pB VkTkk   . Now, the different peaks in  kS  for SC CHF3, 

both sharp and broad, appearing at different regions of wave vectors, create different wave 

vector-windows for   k . We average the   k  over the wave vectors under a given 

structure factor peak to produce an average rate: 
  kk ddkav )(~

, for the  th 

peak. The rotation time for the  th peak is then,   ,,
~/1~

avR  . Here, each of the structure 

factor peaks (Figure 2.2b) will give rise to a time scale implying an over-all multi-

exponential rotational relaxation. For example, at low density region  1r ,  kS  has a 

single prominent peak around 0~k  but no such peak at larger wave vectors. This implies a 

single-exponential relaxation, R being governed by the single peak. In the higher density 

region  1r , the relaxation would be bi-exponential with two time scales because of two 

peaks in  kS , R being a weighted average of the two. However, the present formalism 

does not allow calculating the weights of these separate time scales.  

Figure 2.4a shows both 1,
~

R  and 2,
~

R  of C153 (Vp = 246 Å
3
 and excited state dipole 

moment 0 = 13.4 D)
125

 in SC CHF3 at 310 K as a function of r  while the experimental data 

at two temperatures 302 K and 310 K are shown in inset. At very low densities, 0~k being 

the only peak of  kS , 1,
~

R is the only relevant time scale. Interestingly, it shows all the 

features of the experimental density dependence of rotation time with the maximum at

59.0r , agreeing qualitatively with the experimental data. Appearance of this maximum 

can be explained by a minimum in compressibility (see inset of Figure 2.2b). Such a 

minimum also justifies the LDA becoming maximum near 6.0r . 1,
~

R  becomes minimum 

at 03.1r , with good agreement with the experimental finding. This minimum is explained 

by the maximum in compressibility at 03.1r .  
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Figure 2.4: Estimated rotation time data. (a) Molecular hydrodynamic rotation times of 

C153 in SC CHF3 at 310 K as a function of r : Filled and open triangles represent the 1,
~

R  

(from 0~k peak) and 2,
~

R  (  2~k  peak) respectively. Inset: The experimentally 

observed time scales with error bars at 302K (filled) and 310 K (diamonds), respectively. 

(b) Rotation times after inclusion of solute-solvent polar interaction: Filled and open 

circles represent the 1,R  and 2,R respectively. Inset: the lower time scale of 1,R  and 

2,R , the symbols being identical as before. 

 

The packing dominated peak appears for densities above 1r , giving rise to 2,
~

R

that increases linearly with r . In this regime the packing dominated contribution of  kS  

remains almost unchanged with density implying DR 1~
2,  . According to the Enskog's 

description
111

, 
2/12 ))](8/(3[ )( mTkgD B  for a fluid where  g  is the radial 

distribution function at contact, m being the mass of a molecule.  g  being weakly sensitive 

to r  in this density regime, we get rR D  1~
2, . Note that in the density range

6.10  r , 1,
~

R  and 2,
~

R  do not differ significantly from each other, although 2,1,
~~

RR   . 

However, 1,
~

R  increases rapidly at very high densities ( r  > 1.6) where the fluid becomes 

highly incompressible. The experimental R in these densities does not show such rapid 

increase, rather is comparable in trend with 2,
~

R . 

 

2.4 Inclusion of solute-solvent interaction 

It is evident from the earlier section that although the molecular hydrodynamic 

timescales successfully capture the experimentally observed non-monotonic density 

dependence, the timescale values are only qualitative. Therefore, we next include the 

contributions from solute-solvent electrostatic interactions which could contribute 

significantly. The torque on the solute dipole undergoing rotational relaxation, as shown in 

Figure 2.1, is determined by the electrostatic interaction energy,  U  of the rotating photo-
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excited dipolar solute as a function of its orientation  (with respect to the laboratory frame z

-axis), due to the solvent dipoles in the first solvation shell (see Appendix B).  U  depends 

on two factors: (1) the solute-solvent dipolar interaction potential
†
 and (2) the solvent 

orientation distribution in the first solvation shell. The solvent orientation is characterized by 

 t10 , the projection of the solvent orientation distribution for spherical harmonic 1l . 

Since we are considering the perturbation from the final equilibrium orientation of the solute 

and relaxation back to the same equilibrium state, we use over-damped equation of motion 

for all the relevant dynamical variables. Note that the solvent orientation distribution 

undergoes relaxation as well, the rate being dictated by the solvent rotational diffusion RD . 

The fluctuating torque is then given by     U , where      cos0100 tuU 
 
(see 

Appendix B) where  410  , the bulk value of the orientation profile. The over-damped 

equation of motion (EOM) of the solute dipole:    


Urot  where rot is the 

rotational frictional coefficient
126, 127

. For small angular displacement from the final 

equilibrium state and 
1 RDt , the solution is     tet    0 . Here   rotu  01000  , the 

angular frequency of rotation which is the relaxation rate of the orientational correlation 

function. Hence, we identify TkMV BpR  1  where
‡ 

)9/21()/6( 22

0

3 TkTRkM BB   , R being the solute-solvent interaction length in the 

first solvation shell (see Appendix B). This expression is similar to the SED-expression, with 

the friction experienced by the solute dipole being modified by a factor of M over the 

hydrodynamic friction. Therefore, the solute-solvent interaction contributes non-additively to 

the hydrodynamic friction. Now, inserting the k -dependence we get the modified wave 

vector dependent rotational relaxation frequency:     MVkTkk pB   , and follow the 

similar averaging over peaks of  kS  to calculate the new time scales 1,R  and 2,R . To 

calculate M we use 00 rRR  , 0R  and 0r  being the solute and solvent radii respectively.  

                                                 
†
 Note that the total solute-solvent interaction contains an orientation independent short-

ranged component in addition to the asymmetric (dipolar) component given by. However, the 
short-ranged component does not contribute to the torque acting on the solute because the 
latter (torque) is determined by the angle-dependent interaction alone. 

‡
 Here an obvious restriction arises, out of the mean field approximations we imposed in our 

formulation, to allow only positive values of the factor M that, 2𝜇2𝜌/9kBT < 1. 
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Figure 2.4b shows the 1,R  and 2,R . The maximum in 1,R  is now at 4 ps at 

59.0r  and the minimum is at 3.24 ps at 03.1r . The 2,R  values ranges between 9 ps 

and 16 ps for 6.1r . Interestingly, the experimental R  of C153 compares well to the 

lower of the two calculated time scales. In particular the large time scale given by  1,R  has 

not been reported in the experiments for 6.1r . Thus identification of R  with 1,R  for 

low density and that with 2,R  at high density produce semi-quantitative agreement with the 

experimental data, shown in inset of Figure 2.4b.  

2.5 Conclusion  

In conclusion, we have developed a theoretical understanding of the rotational 

relaxation, for large polar solutes in polar SC solvents, incorporating the solvent structure via 

wave vector dependent shear viscosity and then the solute-solvent interaction. Here we 

extend the SED picture to incorporate the molecular interactions explicitly. The SED model, 

in its conventional form can qualitatively produce the experimental data with the simple 

replacement of   by   k . However, for a semi-quantitative agreement one needs to include 

the solute-solvent interaction. Apart from extracting the time scales that compare well with 

the experimental data, the present theory explains the possible causes behind this remarkable 

density dependence of rotation of a polar solute in a SC polar fluid. In particular, the 

rotational relaxation of the solute at low solvent densities is essentially governed by fluid 

compressibility. We predict that at very high densities, where the packing dominates the 

solvent structure, the time scales increase linearly. We expect that a more explicit treatment
7
 

of the solute-solvent interaction would yield a better agreement to the experimental rotation 

times. Even though we restrict our discussion to rotation of C153 in SC fluoroform for the 

availability of experimental data, the present theoretical framework is applicable to rotation 

of a polar solute in a polar solvent in general. Moreover, such framework can be used to find 

the rotation time in other systems having different solute-solvent interactions and different 

solvent structures, like electrolytes, ionic liquids, to name only a few.  
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Appendices 

A. Determination of critical point of fluid and calculation of S(k) of the SC fluid.  

The critical point of the fluid is determined
124

 by the divergence of 𝜒𝑇
∗  defined as 

(1/𝜌𝑘𝐵𝑇)lim𝑘𝜎→0 𝑆(𝑘𝜎). Therefore, the inverse compressibility 𝐵𝑇
∗ = 1/𝜒𝑇

∗ = 0 at the 

critical point. S(k) has been calculated from C(k), the Fourier transform of C(r). The short-

ranged part of C(r) is C
PY

(r), defined in 2.2.3, and the long-ranged attractive part C
LR

(r) for 

the polar fluid is derived by angle-averaging the Mayer‟s function
111, 112

: 

    ]1[,, ',,    rvLR erC , where,   ,,rv  is the potential energy of interaction between 

two fluid dipoles with orientations  and   in the laboratory frame. We derive   ,,rv from 

the standard dipole-dipole potential
128

, the potential energy of interaction between two fluid 

dipoles given by, 

     rμrμμμr, ˆˆ3
1

3


r
v ,                                      (2.12) 

where, Ωμ  ,   ,Ω  being the unitary vector pointing along the direction of a fluid 

dipole in the laboratory frame;  ,r̂  is the unit vector along r, the separation vector 

between two dipoles. We carry out the dot products and integrate over all the angular 

coordinates, and of the separation r. We integrate over the azimuthal coordinates,  &

of the dipoles also, retain only the polar coordinates '& , to get '&  

  32 'coscos',, rrv   . We expand the exponential in  ',, rC LR
 under mean field 

theory
2
 approximation, retaining up to the quadratic term: 

      2',,',,',,  rvrvrC LR  ,   (2.13) 

Finally, integrating  ',, rC LR
over   and ' we find   642 92 rrC LR  . 

 

Figure A1: Estimation of critical point of a polar fluid. Plot of 𝑩𝑻
∗  as a function of * at 

three different temperatures, T* = 0.28 (the dash-dot curve) below the 𝑻𝑪
∗ , T* = 0.30 (the 
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dotted curve) above the 𝑻𝑪
∗ ,  and at  𝑻∗ = 𝑻𝑪

∗  = 0.29 (the solid curve). Note that, 
*

TB  at 𝑻𝑪
∗ , 

becomes zero for 25.0*  . 

 

 To calculate the S(k) of SC CHF3 ( cT =299 K)
110

, we use 47.2 D, higher than its 

gas phase value of 1.65 D (such high value is reported
110

) and 5.3  Å, also taken from 

Song et al
110

. The 0~k  mode is calculated analytically by integration of C(r) over the 

entire space. In Figure A1, we show the plot of 𝐵𝑇
∗  as a function of fluid density,

3*    at 

three different temperatures, 23* TkT B : one above (T* = 0.30) and one below (T* = 

0.28) the critical temperature 𝑇𝐶
∗ and another at 𝑇𝐶

∗ = 0.29. We get the critical density, 𝜌𝐶
∗  = 

0.25 which is fairly comparable with the corresponding experimental value
110

 of 0.2. The 

other non-zero k  modes of C(k) has been calculated numerically.  

B. Calculation of the interaction energy U() of the rotating solute. 

Following similar treatment as described above, we can write down the dipolar 

interaction potential  ',, RVdip , between the solute dipole ( 0 ) with polar orientation    

and a solvent dipole ( ) with polar orientation '  (both in the laboratory frame) with a 

separation R , as 

  'coscos',, 0  uRVdip  ,         (2.14) 

where 
3

00 Ru  .  

As the solute relaxes back to its final equilibrium orientation, the solvent also relaxes. 

The solvent relaxation is given by the equation of continuity
111

 for the solvent orientation 

profile  t,' : 

 
0

'

,'













 j

t

t
     (2.15) 

j being the current associated with the rotational diffusion of the solvent, defined as: 

         ','  tDj R                                              (2.16) 

where  is the chemical potential and RD , the coefficient of rotational diffusion of the 

solvent. We use the following definition for  :  

  
 t

tF

,'

,'




  ,                                                  (2.17) 
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F  being the density functional free energy
111

 as a functional of  t,' . Also, we define 

 t10 , the projection of the solvent orientation distribution for spherical harmonic 1l  as 

      010 ,''cos'cos  tdt     (2.18) 

where 0  is the bulk value of the orientation profile given by  410  .  

In the calculation of  from Eq. 2.17, we generalize the equilibrium density 

functional
111

 F for non-equilibrium fluctuations in the solvent orientation distribution. The 

equilibrium free energy that describes equilibrium changes in the solvent orientation 

distribution  ' from its bulk value 0  is:  

      
 

           00

0

''''','''cos'cos
2

1
1

'
ln''cos' 




 























  CdddF  

     ',''cos  RVd dip                                                (2.19) 

where, TkB1  and  '',' C  is the two particle direct orientational correlation function 

between solvent molecules having orientations '  and '' . Note that the solvent molecules 

also possess spherically symmetric interaction potential. However, the correlations due to 

spherically symmetric potential are irrelevant for  ' . We simply replace  ' by  t,'  

in Eq. 2.19.  

We use the mean field
111

 expression for    '',''','  vC   where  '',' v  is the 

long-ranged dipolar interaction potential between solvent molecules with separation r , given 

by 

 
3

2 ''cos'cos
'','

r
v


      (2.20) 

The solvent-solvent correlation is truncated at the mean interparticle separation sa  defined as 

 1
3

4 3  sa                                                      (2.21) 

where   denotes bulk solvent density. Using Eqs. 2.16, 2.17 and 2.19 we get 

 
     

 

'

 ',
,''sin,'

'

,'
10




















RV
tDttD

t
Dj

dip

RRR
     (2.22) 

where 
32

0 sa  . From Eq. 2.22 we can easily arrive at, 
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






2cos)(cos)( 0100100 utDtD

j
RR

                (2.23) 

where we have used     'cos,' 100  tt  . Inserting Eq. 2.23 in 2.15 we finally find a 

solution for 

     tDRet


 01010  .                (2.24) 

We now calculate the angle dependent interaction energy. Considering only the 

solvent molecules in the first solvation shell, the angle-dependent interaction energy is given 

by: 

           'cos,''coscos'cos,'',, 0  dtudtRVU dip       (2.25) 

Inserting Eq. 2.18 in Eq. 2.25 we can write 

     cos0100 tuU      (2.26) 

The fluctuating torque on the solute dipole is then given by     U . We recall the over-

damped EOM of the solute dipole
5
:  

 










 U
rot

                                                 (2.27) 

which with the help of Eq. 2.26 becomes in small   limit, 

 





rot

tu





1000

                                                 (2.28) 

Therefore we find the solution:  

      









 

t

rot

dtt
u

t
0

10

00  ' ' exp0 


 .                                   (2.29) 

Inserting Eq. 2.24 in 2.29 we get  

   
   













 tD

Rrot

Re
D

u
t 1

0
exp0 1000 

                               (2.30) 

As long as 1 RDt , we can linearize the second exponential in Eq. 2.30 to get 

     tt  exp0   , where   rotu  01000  . The rotational relaxation of the solute can 

be characterized by the correlation function:      0 ttCr   where  denotes an average 

over initial angular orientations of the solute dipole in the laboratory frame. Insertion of the 
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solution of  t  here, gives:     t
r etC  2

0   . Now, comparing the relaxation of this 

correlation function with the fluorescence depolarization, we identify the rotation time of the 

solute as  01 1000  urotR  .  

We now define   1010 0    which is calculated by minimizing   'F  in Eq. 2.19 

with respect to  ' . The minimization condition      0'' F  yields within the 

framework of classical density functional theory
111

 (DFT): 

           0

 ',

0

'''','''cosexp
'




 
 


Cde

RVdip                  (2.31) 

Note that we are working at a temperature few percent (1~3%) above the critical point of the 

solvent, where the fluctuations of solvent orientation is much less pronounced than those at 

the critical point. In addition, the presence of moderate solute-solvent dipolar interaction 

(u0~kBT) further reduces the orientation fluctuations. In this limit of small solvent orientation 

fluctuations, implying    1' 00   , we expand the second exponential in the right 

hand side of Eq. 2.31 and retain only the linear term to obtain 

           0

 ',

0

'''','''cos1
'




 
 


Cde

RVdip             (2.32) 

Using the mean field expression of    '',''','  vC   again in Eq. 2.32 we arrive at  

           0

 ',

0

'''','''cos1
'




 
 


vde

RVdip            (2.33) 

We now multiply both sides in Eq.2.33 by 'cos , integrate and use Eqs.2.18 and 2.19 

yielding 

        ',2

3

2

100 ',

10 'cos'cos'cos'cos






RV

s

RV dipdip ed
a

ed


   (2.34) 

Rearranging Eq. 2.34 we get 

   

    ',2

3

2

0

 ',

10

'cos'cos1

'cos'cos











RV

s

RV

dip

dip

ed
a

ed











                             (2.35) 
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Eq. 2.14 is then inserted in Eq. 2.35. After this, linearization with respect to 0u , subsequent 

integrations and use of Eq. 2.21 lead to the final expression of the required orientation 

distribution 

921

32
2

0
10









u
.                                                  (2.36) 



Chapter 3  37 

 

Chapter 3 Dipolar solute rotation in liquid media: effect of 
electrostatic solute-solvent interaction 
 

3.1 Introduction 

The SED model
8, 22

 in Eq. 1.1 can be recast as  

    
TkB

hyd

rot

R
6


 ,                                                         (3.1) 

where the hydrodynamic rotational friction
127, 129

 p

hyd

rot V6 . Even though the conventional 

SED model has received enormous success in describing solute rotation in common polar 

solvents
8
, ionic liquids

23
, electrolyte solutions

13
 and for biologically relevant moieties

24
, it 

completely breaks down while explaining the non-monotonic density dependence of R  

observed in supercritical fluids. Our generalization
25

 of the SED model, described in the 

previous chapter, incorporating the solvent structural effects in the friction experienced by the 

rotating solute rather satisfactorily describes the non-monotonic density-dependence. 

Following this approach
25

, the generalized expression of the hydrodynamic friction becomes: 

    p
hyd
rot Vkk  6  involving the wave vector dependent viscosity

25  kS  which contains 

the molecular information of the solvent via the static structure factor  kS 111
. The success 

of the generalized SED model naturally raises the following question: Why does the simple 

and purely hydrodynamic SED model works so well for complex media?  khyd
rot  takes into 

account the solvent-solvent interactions in  kS , while the solute-solvent interactions enter 

only through pV , the excluded volume of the solvent due to the presence of the solute. Since 

the friction arises due to the solute-solvent coupling at the molecular level, the total rotational 

friction rot  should contain the effects from both the short-ranged and long-ranged solute-

solvent interactions.  

The solute-solvent long-ranged electrostatic interactions become operational when the 

solute and the solvent are charged or having permanent electrical moment. Nee and 

Zwanzig
28

 explored, within a continuum model description, the connection between the 

rotational friction and the dielectric response of a liquid. When a polar solute rotates in a 

polar medium, there is a redistribution of the polarization field generated by the solute in its 

surrounding solvent. This redistribution is not instantaneous, rather takes time, thus imparting 

a friction on the solute against the motion, termed as the “dielectric friction (DF)”. The early 

theoretical approaches
28, 29, 130-133

 addressing DF included the solvent effects through 

continuum dielectric constant and dielectric relaxation time. The solute in all these theories 
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has been a point dipole in a spherical cavity. Recent works
7, 115, 134-136

 consider an extended 

charge distribution model (ECDM) of a solute molecule where the constituent atoms with 

individual partial charges are distributed in an asymmetric ellipsoidal cavity. In spite of 

realistic elements, the ECDM received limited applications for two principal reasons: the 

high sensitivity on the cavity radius
134

 and the somewhat arbitrary truncation of the number 

of terms used in the expression of DF
113, 134

. Both these factors are highly system specific, 

varying for different solute-solvent combinations. Moreover, the solvent is still considered as 

a dielectric continuum without any microscopic details. 

Although the concept of DF has been a key to understand ion-transport
137-142

 and 

other non-equilibrium phenomena in polar media in general
29

, its role in solute rotation is still 

a matter of considerable debate
8
. r(t) measurements of C153 in various polar liquids show

8
 

that R  increases linearly with the solvation time s  and consequently, viscosity of the 

solvent. SED model is found to works quite well in most of these cases. R  in a polar 

medium is observed to be slightly larger than that in a non-polar medium of similar viscosity. 

It is tempting to interpret the additional slowing down of R  in terms of extra DF operating in 

the system. The conventional van der Zwan and Hynes (VZH) theory
132

, used widely to 

estimate the dielectric contributions towards the rotational friction, shows that DF depends 

linearly on s. Calculations for C153 in the aprotic solvents using this model yield
8
 dielectric 

contributions around 10-20% of the total friction. Similar estimation for the monohydroxy 

alcohols indicates even larger contributions of DF due to larger s for the alcohols compared 

to those for the aprotic solvents of similar polarity. However, the enhancement of 

experimental R  is not as large as predicted by the existing DF theories
28, 132

. Such 

discrepancy calls for a proper microscopic theory of DF on solute rotation. 

 The observations on dipolar solute rotation in ionic media, namely, ionic liquids (IL) 

and the electrolyte solutions (ES) possessing interactions even long-ranged than dipolar 

interactions, render the situation even more interesting. ILs are highly viscous and often has 

ions containing large alkyl chains
143

 and permanent dipole moment
144

. The dipolar solute 

rotation in ILs is then expected to be controlled by coupling between the medium viscosity 

and solute-IL dipole-dipole and dipole-ion interactions. r(t)-measurements using fluorescent 

probes report R  ~ a few ns
23, 145-148

, one or two order of magnitude larger than that in regular 

liquid solvents
8
. The electrical interactions in an ES are very similar as in dipolar ILs. They 

are more viscous compared to the neat liquid component
13

. Consequently, much slower solute 

rotation ( R ~ hundreds of ps)  is observed in an ES
13

 than in regular liquids. 
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Systematic investigations on dipolar probe C153 show
23

 that in the dipolar ILs the R  

is well explained by the SED model. In case of ES, the concentration dependent R  values, as 

observed
13

 using coumarin 334 (C334, another dipolar solute) in solutions of LiNO3 in 

dimethyl sulphoxide (DMSO), are exactly reproduced by Eq. 1.1 with solution viscosities as 

inputs. These observations seem to suggest insignificant DF even in these ionic media. Given 

the validity of the SED description for solute rotation in common dipolar solvents, the 

question then naturally arises: Is there a common mechanism that decouples the solute 

rotation from the friction due to electrostatic solute-medium interactions?   

Recent computer simulations
29, 114

 reveal that the enhancement in rot  on a solute in a 

dipolar medium can be attributed to a static “electrostriction” effect, arising from enhanced 

structure in the first solvation shell via solute-solvent electrostatic interactions. Keeping this 

in mind, in the present chapter, we develop a theoretical formalism
26

 to estimate the DF in a 

polar medium due to increased solvent ordering around the solute via the long-ranged solute-

solvent interactions. The hydrodynamic friction has been taken into account via   k  

introduced in the previous chapter. We derive an expression for R  of a dipolar solute in a 

dipolar solvent, where the relevant parameters have been obtained from microscopic 

considerations. Both the solute and the solvent are treated as point dipoles embedded in the 

centre of hard spheres to keep the calculation analytically tractable. Our main finding is that 

the DF have marginal effects on solute rotation, allowing an overwhelming dominance of 

hyd

rot  in R . In this way, we provide a molecular level explanation for the validity of the well-

known SED description for solute rotation in common dipolar solvents. We generalize the 

molecular theory to ILs and ES, with an emphasis on a possible common mechanism for the 

decoupling between solute rotation and DF. Our calculations
27

 show that viscosity and R  are 

dominated by the packing driven peak of the experimental  kS . This motivates us to 

consider only the packing driven peaks of  kS  for different media, obtained from 

analytical liquid state theories
111

. Our results agree well with the experimental data. Here we 

again find negligible DF contributions to solute rotation.  

This interesting similarity of DF for solute rotation in all the liquid media of varying 

interaction could be attributed to the short-range repulsive interaction that governs the solvent 

packing around the solute at liquid density. This leads us to construct a quantity which 

reflects the insensitivity of solute rotation to the details of solute-solvent interaction. This 

factor, we term, the quasi-universality factor and is defined as pR VDr /0   where  0r  and 

D  are respectively the molecular radius and the translational self-diffusion coefficient of the 

solvent. Note here, R  and D  are experimentally accessible quantities, while 0r  and pV  can 

be obtained from molecular modelling.   is further connected to the microscopic solvent 
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structure and thereby constitute a macro-micro relation. We find that remains very similar 

for a wide variation of solute-solvent interactions which confirms the quasi-universality. The 

reason behind this universality can be traced to the fact that solute rotation is governed by the 

local friction which in turn is dominated by the packing-driven interactions.  

The rest of chapter is organized as follows: Section 3.2 includes the calculations of 

hyd

rot , the DF and finally R for a dipolar solute in common dipolar solvents. The calculations 

are extended in section 3.3 for the ionic media. Section 3.4 describes the quasi-universality of 

solute rotation in various liquid media. We conclude in section 3.5 and then present the 

appendices containing the details of various calculations. 

3.2 Common dipolar liquids 

In this section we formulate our theory for common dipolar liquids. First, the 

calculations on hyd

rot and hydrodynamic contributions to R  are described. Next we show how 

the DF can be included in the theory to calculate rot . Finally the R  are estimated with both 

hydrodynamic and electrostatic contributions. The obtained theoretical R  are compared with 

the experimental data on C153 in common dipolar solvents. 

3.2.1 Molecular hydrodynamic friction and hydrodynamic rotation times 

Let us first calculate the rotation time for a dipolar solute in a dipolar liquid from the 

molecular hydrodynamic friction  khyd
rot . We consider the case of C153 in acetonitrile at 

ambient condition as a representative example. From Eq. 2.7, the wave vector dependent 

viscosity for a liquid solvent
25

 in the limit of slip boundary condition
111

, appropriate for 

normal liquids, is:     kDSrTkk B 04 . Here, we model acetonitrile as a fluid 

consisting of hard spheres of diameter   with central point dipole, of dipole moment 

5.3 D
125

.  kS  could be obtained experimentally via neutron or x-ray scattering 

experiments, computer simulations or liquid state theories
111

 as shown in the previous 

chapter. Our calculated  kS  from liquid state theories, shown in Figure 3.1, reveals the only 

peak (nearest-neighbour) around the wave vector  2k  which according to molecular 

hydrodynamics, represent the governing wave vector modes for shear waves in a liquid
149-151

. 

Therefore, the average viscosity is given by
25

,     kk ddk ,  integrating over the 

wave vectors spanning the nearest-neighbour peak. Using the values of 0r  and D  for 

acetonitrile
8, 152

, we find 29.0 cP at 300 K, which is close to the experimental shear 

viscosity
8
, 0.34 cP.  
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Figure 3.1: Representative static structure factor of a common dipolar liquid acetonitrile.  

 

One can use   in place of   in the SED expression to estimate the hydrodynamic 

rotation time: TkV Bp

hyd

R   . 
hyd

R can also be estimated from the wave vector dependent 

rate of rotational relaxation
25

:      pB VkTkk  ~ , as in the previous chapter. The 

average rate of rotational relaxation is defined by integrating over the wave vectors under the 

k≈ 2 peak of  kS :   kk ddkav )(~~
. The average rotation time can then be 

identified as: av

hyd

R  ~1 . Using 246pV Å
3
 for C153, we find 17

hyd
R ps and 19 ps from 

the above two descriptions respectively, which are faster by ~ 20% from that measured (22 

ps) in experiments
8
. Since the two descriptions produce results differing so little, for 

simplicity, onwards we use the first one. 

3.2.2 Friction due to long-ranged solute-solvent interaction 

Let us now include the long-ranged solute-solvent interactions in the total rotational 

friction. The torque acting on a rotating dipolar solute, as shown in chapter 2, 

      Utf  where   is the time-dependent solute-orientation with respect to the 

laboratory frame z -axis,  U  being the solvent-orientation averaged solute-solvent dipolar 

interaction potential energy
25

. For simplicity, we consider first the solvent molecules in the 

first solvation shell. The interaction potential   ,,sdip RV
 
between the dipolar solute and a 

dipolar solvent molecule at separation 00 RrRs  , integrated over all possible solvent 

orientation and weighted by the solvent orientational density  t,'  in the first solvation 

shell, provides  

       'cos,'',,  dtRVU sdip                                            (3.2)                                                                                                                                                       
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where 0R  is the solute radius. Note,  U  has got implicit time dependence via the time-

dependent solvent density  t,' .   ,,sdip RV , for the photo-excited solute dipole 

becomes
25

  

                                               'coscos',, 0  uRV sdip  ,                                       (3.3) 

where 
3

00 sRu  , the solute-solvent interaction strength. The normalized projection of 

 t,'  for spherical harmonics 1l and 0m  is given by  

         0
0

110 ,'cos'cos  tYdt                                        (3.4) 

where  410  , the bulk orientational solvent density. Here,  t10  approximately 

determines the solvent response towards the photo-excitation of the solute dipole, which is 

proportional to the solvent polarization. Using Eqs. 3.2-2.18, one obtains 

     cos0100 tuU 
                                                  (3.5) 

The microscopic expression for the time dependent total torque, in the limit of small angular 

displacements, then becomes 

       01000100 sin tututf   .                                      (3.6) 

The DF rot due to long-ranged solute-solvent interaction is subsequently determined by the 

memory function
111, 153  tM , the auto-correlation function of the time-dependent fluctuating 

torque which is the orthogonal projection
111, 153

 of the total torque  tf .  tM  is related to the 

auto-correlation function of the total torque,          000 2  Iftft  ,  by the Mori-

Zwanzig formalism
111, 153

: 

    sssM

1
~
1

~
1




                                                           (3.7) 

where  sM
~

 and  s
~

 denote the Laplace transforms of  tM  and  t  respectively, at a 

complex frequency s . Here, I  denotes the moment of inertia of the rotating body about the 

axis of rotation. Using the equipartition theorem we obtain 

 
   

TIk

ftf
t

B

0
 ,                                                         (3.8) 

which, after using Eq. 3.6, takes the following form  
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         001010

2
0

2
0 


 tt
TIk

u
t

B

 .                                       (3.9) 

Note that  t  has coupling between the fast mode  t10 , describing the orientational 

relaxation of the solvent and slow mode  t , describing the rotational motion of the solute. 

For rotation of a massive and large polar solute in fast polar solvents, the relaxation time 

scales of  t10  and  t  are widely separated. Hence, under decoupling approximation
154

 

one can write  

         001010

2
0

2
0 


 tt
TIk

u
t

B

 ,                                    (3.10) 

Now, the lag in solvent response towards solute rotation can be linked to the solvent 

reorganization time via the following approximate relation:     st
et

 
 01010 . Considering 

the equation of motion for  we find (Appendix A):  

  tBet                                                                (3.11) 

where 
 

TIk

u
B

B

2
10

2
0

2
0 0

  and 
 



















srot

u






101000 .  

Insertion of the Laplace transform of Eq. 3.11:      sBs
~

, in Eq. 3.7 leads to 

 
  Bss

Bs
sM






~
.                                                       (3.12) 

which can further be expressed as 

  






















ss

s

ss

s

B

B
sM

4

~

2
,                                          (3.13) 

s  and s  being the roots of the equation, 02  Bss  , given by   242 Bs   . 

Here s  gives a divergent exponential in t limit, implying an unphysical situation. 

Therefore, integrating around the pole at s , we have the inverse Laplace transform 

  ts
es

B

B
tM 






42
                                                   (3.14) 

Now, we calculate rot by the time-integral of the memory function  tM : 
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 
B

BI
dttM

I
rot

422 2
0 

 



 ,                                                 (3.15) 

In the limit of weak solute-solvent coupling (i.e., B2 ), insertion of the expressions of B

and  in Eq. 3.15 produces 

    
1

1000
2

1000 10

2

0




















srotB

rot

u

Tk

u




 .                               (3.16) 

Eq. 3.16 is a self-consistent expression for rot  since rot
hyd
rotrot    with solution given 

by 

  

 
  

s

B

hyd
rots

s
hyd
rot

B
rot

Tk

u
u

Tk

u











2

0
0

2

0

2
1000

1000

2
1000





 .                                 (3.17) 

Note Eq. 3.17 connects rot  to the orientational static solvent structure around the solute, 

10  and the average solvation time, s . The total friction now becomes 

  

  

1

1000

2
1000

02

0
1


















s
hyd
rotB

shyd
rotrot

uTk

u




.                                     (3.18) 

Expansion of Eq. 3.18 in the weak solute-solvent coupling limit produces the following first 

order term:  

  

  














s
hyd
rotB

shyd
rotrot

uTk

u





02

0
1

1000

2
1000                                         (3.19) 

where   12

010 ]921)[32(0  TkTku BbB  , obtained in the Appendix B in the previous 

chapter from a equilibrium DFT for the classical systems, b being the bulk solvent density. 

Now, we recast Eq. 3.19 as 

 Jhyd
rotrot  1                                                          (3.20) 

where       1

1000

2

1000 ]02[0  s

hyd

rotBs uTkuJ  , the solute-solvent dipolar coupling 

factor. Note that, J  is essentially the ratio 
hyd
rotrot  , diminishing with increasing 

hydrodynamic friction. 
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Next, we extend our calculations to take into account the effects of solvent molecules 

beyond the first solvation shell around the solute. We find the expression of the coupling 

factor (Appendix B):   1

0 ]0)[8/3(  s

hyd

RBsRb TkIJ  U  where  RI  

     
 2

10

2
1106

0,2 kkk  dipVd and        


kkk dtVt dip ,243 10
1103

0 U . Here  k
110
dipV  

and  t,10 k  denotes the Fourier components of the solute-solvent dipolar interaction 

potential and the normalized solvent density distribution around the solute, respectively. We 

calculate  0,10 k  by using the DFT treatment (Appendix C).  

In Figure 3.2a, we illustrate the behaviours of  k
110
dipV  and  0,10 k . These two 

quantities govern the interaction terms  00U  and RI  to decide the values of J . We consider 

the case of C153 in acetonitrile, using the excited state dipole moment of C153 to be
125

 

140 
 
D and van der Waals radius

125 9.30 R
 
Å. Figure 3.2a shows the plot of  

2
110

kdipV  

at different wave vectors. It decays from maximum near 0k mode. We show in Figure 

3.2b, the profile of  k10  for the same system exhibiting a similar behaviour to  
2

110
kdipV . 

From the nature of these two at different wave vectors, it is quite clear that the dominant 

electrical contributions towards the friction come from the long-wavelength i.e. 0k mode. 

This actually reflects the long-ranged nature of the solute-solvent interaction. 

 

Figure 3.2: Angular components of solute-solvent interaction potential (a)  
2

110 kVdip and 

solvent density around the solute (b)   k10 . Both are shown for C153 in acetonitrile, at 

different wave vectors.  

The details of estimated DF for C153 in various polar liquids, both aprotic and the 

alcohols are presented in Figure 3.3. Here the solvent parameters we use in our calculations 

are: the solvent D
152, 155-159

, 125, 160-162
, static dielectric constants 0

125
, r0

8
 and s

8
. For these 

calculations, we replace 
hyd
rot  in Eq. 3.20 by that averaged over the wave vector window 

around the nearest-neighbour modes. Figure 3.3a shows rot  as a function of s while the 
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hydrodynamic part 
hyd
rot  is shown in Figure 3.3b. Note the difference in scales of the vertical 

axes in these two panels. We find that for most of the aprotic solvents DF is nearly zero 

barring the cases of DMSO and propylene carbonate (PC) both of which have dipole 

moments larger than 4 D. The alcohols also exhibit comparatively larger DF. In Figure 3.3c 

we show the ratio 
hyd
rotrot  = J  which turn out to be too small in all the cases to generate 

any considerable dielectric contribution. J accounts for at most ~1-2% of the total friction, 

even for solvents like the alcohols supporting observations of Horng et al
8
. A closer 

inspection reveals that 
hyd
rot  is always very large compared to the product sRI   in the 

numerator of J , rendering it small.   

 

 

Figure 3.3: Friction data for common dipolar liquids. (a) rot  and (b) 
hyd
rot  and (c) 

hyd
rotrot  , all as functions of s for C153 in aprotic polar liquids and in alcohol solvents. 

The solvation times have been taken from Horng et al8. 

 

Figure 3.4: Experimental8 (circles) and calculated (triangles) R of C153 in aprotic polar 

solvents and alcohols, as a function of experimental8 s. Colour codes same as Figure 3.3. 

The best linear fit through the experimental points are shown by the dotted straight line. 

 

3.2.3 Rotation times including DF 

     Let us now discuss the rotation times. We can rewrite Eq. 3.20 as 
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 J
hyd
RR  1 .                                                         (3.21) 

Figure 3.4 shows the experimental
8
 (circles) and calculated (triangles) R  of C153 in the 

polar liquids depicted in Figure 3.3, as a function of experimental s . From the data in Figure 

3.4, it is clear that the calculated R  agree reasonably well with the experimental values. 

Further, Figure 3.4 indicates a linear dependence
163-165

 between R  and s , shown by the best 

fit line through the experimental data. Such behaviour can be rationalized by noting that in 

general we have   s
hyd
rot 00U , true for all the liquids we study here. Under these 

circumstances, Eq. 3.21 can be approximated as  

 
s

B

Rbhyd
RR

Tk

I







2
48

3
 ,                                                (3.22) 

showing a linear dependence between R  and s . Typically in dipolar solvents s is 

proportional to solvent viscosity  . So the linear dependence in Eq. 3.22 implies that R  is 

also proportional to   which is observed in experiments. In most of the dipolar solvents, the 

pre-factor of the term containing s  is too small to contribute significantly to R . However, 

if the pre-factor is large due to large solute-solvent coupling this additional dependence could 

be observed.  

3.2.4 Comparison with earlier theories 

Our estimated values of DF are smaller in magnitude than those obtained from the 

VZH theory. The differences between the VZH and our results are more significant for the 

alcohol solvents. Interestingly, a common point of both the frameworks lies in the inclusion 

of the solute-solvent interaction and s  
to determine the DF. In the VZH approach, the 

solute-solvent interaction is incorporated in terms of experimentally observed fluorescence 

stokes shift
125

. It has been experimentally observed that C153 exhibits larger s  in alcohol 

solvents compared to the same in aprotic solvents of equivalent polarity, probably due to 

solute-solvent specific interactions and/or solvent-solvent interactions. It is to be mentioned 

here that computer simulation studies
166

 have indicated presence of such interactions, even 

though effects of these interactions have not been reflected strongly in the solvatochromic 

shift
125

 of C153 in protic polar solvents. Therefore, the VZH description, based directly on 

the Stokes shift values and s , predicts larger friction for alcohols than aprotic solvents. In 

the present theory, the solute-solvent interactions are considered using a microscopic model 
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of the interactions where in principle the Stokes shift values can also be used. It is indeed true 

that in common to the VZH approach the DF in the present theory is related to the s . 

However, the difference here is that the dependence on s  is non-linear and enters through a 

self-consistent manner (Eq. 3.17). This non-linear dependence on s reduces the magnitude of 

DF significantly compared to that predicted by the VZH approach. Even in the linearized 

version (Eq. 3.22), the pre-factor of s  for these solute-solvent systems is rather small.  

 

Figure 3.5: Solute-solvent correlation for ionic solutes in dipolar solvent.  
2

10 kcid  as a 

function of k , for ionic solutes in acetonitrile. The solute here is modelled as a hard 

sphere with a unit positive charge embedded at the centre. We show the data for three 

values of the solute radius with insignificant dependence for solutes larger than solvents. 

 

Similar self-consistent treatment of DF, as in our calculation, done in the context of 

ion-transport in a polar medium to obtain the DF
137-142

 shows substantial contribution of the 

long-ranged forces. The solute-solvent long-ranged interaction in those cases is of ion-dipole 

type, much stronger compared to the dipole-dipole interaction. Figure 3.5 shows the 

longitudinal component of wave vector dependent direct correlation function
142, 167

,  kcid
10

  

plotted for an ionic solute placed in acetonitrile. For a univalent cationic solute of size 

comparable to C153, the value of  
2

10 kcid is about 1000 times larger than  
2

110 kVdip  

(Figure 3.2a) at 0k . Since the principal electrical contribution to friction arises from the 

0k mode, clearly the DF would be important for ion translation but not so significant for 

solute rotation in a dipolar solvent.  

3.3 Generalization for ionic media 

Here we generalize the theory developed in the previous section for the ionic solvents, 

namely the IL and the ES to compute the DF. We follow similar steps as in section 3.2: First 

we consider the hydrodynamic contributions from   k  and then extend the equations 3.2.2 
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for IL and ES. Finally, the rotation times are calculated and compared with the experimental 

data.  

3.3.1 Wave vector dependent viscosity and molecular hydrodynamic R 

We present our analyses based on   k for ILs and ES in this section. 

(a) Ionic liquids 

To calculate   k  for the ILs we need the structure factors. The total structure factor 

 kStot  of an IL is obtained combining the partial structure factors
168

,  kSij : 

   
ji

ijjitot kSxxkS
,

 where xi is the mole fraction of the ith ion (i, j = 1 (cation) and 2 

(anion)). The experimental  kStot  of different ILs, measured via small angle x-ray 

scattering experiments
168, 169

, are different from the  kS  of normal liquids
111

 due to pre-

peaks at lower wave vectors (  20  k ) apart from the packing driven  2k  peak. 

These pre-peaks have also been observed in several simulation studies
170-173

 and are believed 

to be manifestations of long-range charge-ordering in ILs
172

. The pre-peak intensities vary 

with alkyl chain-length as shown by studies on ILs with [Imn1
+
] and [Prn1

+
] cations (see 

Tables for names
168, 169

). For n<8 typically one pre-peak is present, whereas another pre-peak 

appears only for n  8 and becomes stronger even than the other pre-peak for n=10.  

We calculate   k  for three pyrollidinium ILs (n = 4, 6 and 10) using the 

experimental
168

  kStot , for which the experimental viscosities and R  are known
23

. 

Considering the similarities of the experimentally observed ionic partial structure factors
168

, 

radii
23

 and self-diffusivities
144, 174

, we define an average molecular radius 2)( 210 rrr   and 

average self-diffusion coefficient 2)( 21 DDD   for each IL, ir  and iD  denoting the 

radius and self-diffusion coefficient of ith ion. Therefore, for an IL 

    kSDrTkk totB 04 . The viscosity contribution from the th peak in  kStot  is 

calculated as
25

,   
  kk ddk  integrating from 

)( Lkk  to 
)( Rkk  , covering 

the entire peak. For instance, in case of [Pr41
+
][Tf2N


], we set 1.5)1( Lk  and 4.7)1( Rk  for the 

pre-peak, while 4.7)2( Lk  and 0.11)2( Rk  for the  2k  peak.  

The overall average viscosity is obtained as 


 c  where 


 hhc / , the 

combining weight factors and h , the height of the th peak. Table 3.1 shows that   for the 
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above three ILs agree reasonably well with their experimental viscosities. For n=4 and 6, we 

find that the  2k  peak contributions are dominating (>85% of the  ), while it is the 

major contributor (~50%) for n=10. These clearly show the dominance of the nearest-

neighbour peak over the pre-peaks which is not surprising, for the viscosity is determined by 

the momentum transfer between the adjacent layers. The molecular hydrodynamic friction, 

  )(6  kVk p

hyd

rot  , defines the wave vector dependent rate of rotational relaxation
25

: 

    pB VkTkk  ~ . The corresponding average rate is defined as
25

: 

  kk ddkav )(~~ . The molecular hydrodynamic rotation time is then given by 

TkV Bpav

hyd

R   ~1 . The calculated 
hyd

R  of C153 in these three ILs (Table 3.1) agree 

well with the experimental data
23

.  

The dominance of the  2k  peak contributions in   calculated from the 

experimental  kStot  indicates that the viscosity can be extracted from a model of the 

 2k  peak in  kStot . To this end, we theoretically calculate the  kStot , using the 

known Percus-Yevik form
111

 for short-ranged repulsive interactions and treating the long-

ranged electrostatic interactions at the mean-field level
25, 26

 (Appendix C) that is known to 

capture the  2k  peak
111

 reasonably well. We consider the ILs to be composed of hard 

spheres with unit point charges at centres, a dipolar ion having an additional central point 

dipole. Further, we assume only dipolar cations and choose ILs having no specific interaction 

with C153. Table 3.1 shows that the   and 
hyd

R  values for the three pyrrolidinium ILs 

discussed above, calculated from the  2k  peak of the theoretical  kStot  (numbers in 

parenthesis), agree well with the experimental data.  

Next we consider the ILs for which no experimental  kStot  are available, focusing 

only on the  2k  peak. In Figure 3.6a, we illustrate the theoretical  kSij  and  kStot  

for [Im41

][PF6


]. The calculated  values of these dipolar ILs (Table 3.2) from the  2k  

peak of  kStot  agree quite well with the experimental
23

  which justify our model 

calculations. The 
hyd

R values (Table 3.2) too are quite close to the respective experimental R .   
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Table 3.1: Viscosities and 
hyd

R of C153 in three N-methyl(N-alkyl)pyrrolidinium ([Prn1+]) 

ILs with anion bis(trifluoromethylsulfonyl)imide ([Tf2N]) at 298 K, whose experimental 

structure factors are known. 

Name of ILs  (cP) 

(calc.) 
 (cP) 

from k  
2  peak 

 (cP)  

(expt) 

a hyd

R
(ns) 
(calc.) 

R
(ns) 
(expt.) 

Rb J 

[Pr41
+][Tf2N] 50 43(64)c 70 29(9) 3.0(3.8) 3.4 12(12) 0.0002 

[Pr61
+][Tf2N] 57 49(66) 93 39(29) 3.4(3.9) 5.7 40(32) 0.0031 

[Pr10,1
+][Tf2N]d 155 78(111) 145 7(23) 9.2(6.6) 9.0 2(27) - 

a 
100

exp

exp





t

t






      b  
100

exp

exp





t

R

hyd

R

t

R

R





. 

c The results in the parenthesis are from the theoretically calculated structure factors. In 
addition, we use the dipole moments144, static dielectric constants175, ionic radii23 and self-
diffusivities174, 176 of the ILs for calculations. 

d In this case, the dipole moment of the cation is too high (~ 16 D)144 for the mean-field 
approximation to be valid. 

 

Table 3.2: Viscosities and 
hyd

R of C153 in other ILs at 298 K. 

Name of ILsa  (cP) 

(calc.) 

 (cP)  

(expt) 


 hyd

R (ns) 

(calc.) 

R (ns) 

(expt.) 

R J 

[Im41
+][Tf2N] 33 41 20 2.0 2.6 23 0.0010 

[Pr31
+][Tf2N] 42 53 21 2.5 2.6 4 0.0002 

[Im41
+][BF4

] 52 75 31 3.1 4.3 28 0.0068 

[Nip311
+][Tf2N] 71 105 32 4.2 4.4 5 0.0002 

[Nip411
+][Tf2N] 99 130 24 5.9 7.9 25 0.0002 

[Nip611
+][Tf2N] 129 139 7 7.7 7.8 1 0.0021 

[Im41
+][PF6

] 149 187 20 8.9 12.0 26 0.0024 

a The cation [Im41
+] is 1-Butyl-3-methylimidazolium and [Nipn11

+] is 
(dimethyl)(isopropyl)(alkylammonium); the anion [BF4

] is tetrafluoroborate and ([PF6
] is 

hexafluorophosphate. 
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Figure 3.6: The theoretical static structure factors. For (a) IL [Im41
][PF6

] and (b) 0.5 M 

LiNO3 in DMSO at 298 K. In both cases we show the total as well as partial structure 

factors. In panel a, the range over which we carry out the integrations on total structure 

factor for calculation of viscosities is marked by the quantities kL and kR. In panel b, such 

integration ranges are marked, for the ionic components by kI and for the dipolar 

component by kL and kR. In case of the electrolyte solutions the calculations are done 

using the ionic radii116 r1, r2  and molecular radius8 r3, dipole moment125  and static 

dielectric constant125 0  of DMSO. 

 

(b) Electrolyte Solutions 

Here we focus on the LiNO3-DMSO solution since a systematic experimental 

investigation on rotation of a neutral dipolar solute C334 in this ES, is available
13

. Moreover, 

C334 does not show any solute-solvent specific interaction in this ES. However, no 

experimental or simulated structure factor of this ES system is known. Therefore, we model 

this ES as a ternary mixture
177

 of oppositely charged hard spheres representing the ions and 

dipolar hard spheres representing the dipolar solvent to calculate the  kSij  (Appendix D). 

Here also the long-ranged interactions are treated at the mean-field level. The ionic 

components (Figure 3.6b) have only one significant mode around 0k  with no structure 

near  2k . This compressibility mode
25

 can be attributed to weak screening at low 

concentrations (c ~ 0.1-1 M here) leading to a small inverse Debye screening length
111

 

1~D . The dipolar component in Figure 3.6b is similar to the  kS  for normal liquids. 

The cross-terms nearly vanish (Figure 3.6b) rendering only the self terms significant.  

The partial viscosity i  due to the ith component is defined as 

  σdσdkσ= ii  
 kk /  where    kσSDπrTk=kσ iiiiBi 4/ . We fix  ≡ 0k  mode for 

the ionic components ( 2 ,1i ) and  ≡  2k  mode for the dipolar solvent ( 3i ). 
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Integrating over the different ranges depicted in Figure 3.6b ( 0k  to Ikk   for 2 ,1i  

and from Lkk   to Rkk   for 3i ), the average viscosity of the ES: 
i

iix where 

ix  is the mole fraction of the i th species. The calculated  (Figure 3.7a) at several 

concentrations agree quite well with the experimental viscosities
13

. The 
hyd

R  of a solute in an 

ES can be obtained as: 
i

iavi

hyd

R x ,  where   σddkωiiav  
 kk /, , defined for the 

i th species in solution. The agreement of the calculated 
hyd

R values of C334 to the 

experimental
13

 R  (Figure 3.7b) is also quite well. Both  and deviate from the experimental 

data at large c values which can be attributed to formation of of ion-pairs, triple-ions etc
178

, 

modifying the average solvent structure. 

 

Figure 3.7: Viscosities and rotation times in ES. Comparison of (a) experimental and 

calculated  of solutions of LiNO3 in DMSO and (b) experimental R  and calculated 
hyd

R  of 

C334 ( 252pV
 

Å3)13 in the solutions of LiNO3 in DMSO, both at 298 K. For these 

calculations we calculate the concentration dependent ionic self-diffusivities iD  using 

Onsager equation179 with ionic conductivities at infinite dilution180 as inputs. 

 

3.3.2 Electrostatic contribution to R in ionic media 

According to section 3.2.2, the DF ( rot ) acting on a rotating dipolar solute can be 

expressed as
26

 

                                 
  

















]0[8

3

0 s

hyd

rotB

sRbhyd

rot

hyd

rot

hyd

rotrotrot
Tk

I
J






U
.            (3.23) 

The solute-solvent interaction has been treated here at the mean-field level replacing the 

solute-solvent correlation simply by the interaction potential
111

. Equation 3.23 clearly reveals 

the non-linear coupling between DF and hyd

rot . In addition, rot  possesses complex 

dependence on s , showing an implicit connection to solvent dielectric response. This is 
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important because nowhere in this theory we explicitly connect rot  with solvent polarization 

relaxation.  00U  incorporates all the important medium-interactions in rot . The overall 

rotation time is given by Eq. 3.21 in terms of J.  

In order to use the above formalism (Eq. 3.21, 3.23), developed above for a dipolar 

liquid, in case of IL and ES, we calculate  00U  and RI  for these media and determine J.  For 

dipolar solute rotation in an IL we find (see Appendix E),  

             


kkkkkk
IL

0 dtVdtVt sds ,,243 10

1

110

0

10

1

110

10

3
U  

     kkk dtVs ,2 10

2

110

2                                                                (3.24)                              

where  4/10  .  k110

siV  denotes the Fourier component of the interaction potential 

between the solute and the ith ionic species;  ti ,k10 , the normalized projection of the local 

density of the ith species around the solute for spherical harmonics 1l  and 0m ; and 

 k110

sdV , the Fourier component of the dipole-dipole part of the solute-IL interaction potential. 

Similarly, for an ES (Appendix F)
 

            







 




k,kkk,kk2243 10

3

110

0

2,1

101103ES

0 dtnVdtnVt sd

i

isi U                (3.25)             

where the local ionic densities are denoted by ni (i=1 for cation and 2 for anion) and density 

of the dipolar solvent by n3. Here  k110

siV  and  k110

sdV  correspond to solute-ion and solute-

dipolar solvent interactions respectively.  

 

Figure 3.8: The wave vector dependent solvent density profiles around the solute. (a) IL 

[Im41
][PF6

] and (b) 1M LiNO3 in DMSO at 298 K. 

 

We calculate the equilibrium solvent local densities using the classical DFT 

(Appendix G). Figure 3.8 illustrates representative density profiles in IL and ES. The panel a 
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shows the behaviour of the dipolar cation density  0,k10

1  for [Im41

][PF6


] around C153 

(solute radius R0 = 3.9 Å and excited state dipole moment 140 
 
D)

125
. In panel b we show 

the cationic density profile  0,k10

1n  for 1M LiNO3 in DMSO around C334 (R0 = 4.1 Å and 

130 
 
D)

13, 181
.  

We show the ratio J= hyd

rotrot   for C153 in dipolar-ILs in Tables 3.1 and 3.2, 

calculated using experimental
23, 125

 s , 0 and R0. J does not exceed 1%, suggesting complete 

domination of hyd

rot . Due to unavailability of experimental s  for C334 in LiNO3-DMSO, we 

use the s (2.1 ns) observed
21

 for C334 in 1M NaClO4-DMSO solution with similar viscosity 

(4.7 cP)
21

 to that of 1M LiNO3-DMSO (4.35 cP)
13

. Here we find a very similar J ~ 1% as in 

the ILs. The calculated R s of C153 in ILs (Figure 3.9) are within 1% of the corresponding

hyd

R . Both the calculated and experimental R  depend linearly on s  indicating a viscosity-

scaling of these average inverse rates, as observed for common dipolar solvents
26

. In case of 

ES, for C334 in 1M LiNO3-DMSO we calculate R =328 ps, ~1% larger than the 

corresponding 
hyd

R =325 ps.  

 

Figure 3.9: Rotation time data in ILs. The experimental (circles) R  with error bars and 

calculated (triangles) R  of C153 in nine ionic liquids as functions of s . The dotted line 

represents the best linear fit through the experimental data. 

 

In dipolar liquids also we observe very small J (~1%) for dipolar solute rotation
26

. 

Here we find in IL and ES, even long-ranged solute-solvent electrostatic interactions fail to 

generate appreciable DF. The reason can be demonstrated from Eq. 30. The criterion for 

significant J is:   hyd

rots 0IL

0U . Although in ILs we get ~10-100 times larger  0IL

0U  than 

its analogue  00U  in dipolar liquids
26

 and much higher s  than that in dipolar solvents, the 
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product   s0IL

0U (Figure 3.10a) is never comparable to hyd

rot  (Figure 3.10b) which is also 

very large (~1000 times of that in dipolar liquids) due to high medium viscosity. This 

analysis also provides a microscopic explanation for the experimental observation that 

dipolar solute rotation in ILs follow essentially the same dependence on the temperature-

reduced viscosity ( T ) as in the common dipolar solvents
23

. For an ES at low electrolyte 

concentration, the ion-ordering around the solute is smaller than that in an IL (Figure 3.8) 

because of ion solvation by the dipolar medium. Consequently,  0ES

0U  is quite small so that 

even subsequent multiplication by a large s  fails to make the product dominate over hyd

rot . 

Consequently, the rot  for a dipolar solute in an ES appears to be similar to that in a neat 

dipolar medium but viscosity-scaled.  

 

Figure 3.10: Components of friction in ILs. (a) The product   TkBs0IL

0U  and (b) 

TkB

hyd

rot  for C153 in nine ILs (marked in the figure by colours). 

 

3.4 Quasi-universality of solute rotation in liquid solvents 

The present calculations clearly show that the solute-solvent excluded volume and the 

hydrodynamic viscosity are enough to understand the rotation of a spherical solute as the 

long-ranged interactions get decoupled. This decoupling leads us to write, av

hyd

RR  ~1 , 

where   kk ddkav )(~~ . Using     pB VkTkk  ~  and 

    kDSrTkk B 04  one can write  

  avpR S=VDr 41/0                                               (3.26) 

where     kk ddkSSav . This integral will be dominated by the peak in  kS . 

Equation 3.26 relates experimental quantities to the microscopic solvent structure and thus 

constitutes a macro-micro relationship. Note, a similar relation as Eq. 3.26 can be derived 

from the SED expression:  TkV BpR /   and Stokes-Einstein relation
111

 for self-diffusion 
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of a tagged solvent particle:  04/ rTkD B  that  4/1/0  pR VDr  which follows from 

Eq. 3.26 with 1avS , valid for extremely low density solvent condition.  

First we calculate from the solvent structure factors. For ILs we calculate avS  from 

the weighted average (as in case of  ) of different peak contributions in the experimental 

 kStot . We find for the three pyrrolidinium ILs and 0 for n=4, 6, 10 

respectively, while from the theoretical  kStot of the ILs, we get Therefore  

appears to be similar for different ILs. Nearly the same value of  (~ 0.06) is obtained from 

theoretical
26

  kS  for liquid solvents of diverse interactions like hydrocarbons (non-

dipolar), aprotic dipolar liquids and alcohols (protic dipolar). In fact  ~ 0.06 even for a 

purely hard sphere system indicating that  is primarily determined by the repulsive part of 

the total interaction and is rather insensitive to the long-ranged interactions.  

We need to estimate  from experimental data to check its equality with  We 

consider near-spherical solutes with known R  in above liquid solvents and ILs. In Figure 

3.11a, we show  values for C153 as a function of R  in different solvents. We use 0r  and 

D to estimate for ILs, while r0, estimated from the van der Waals volumes
8
 and 

experimental
152, 155, 156

 D  are used for common liquids. Although the range of observed R  in 

common liquids is fairly large (~ 10-150 ps)
8
, that of  is quite narrow: 0.05-0.12. In ILs, 

though the R  are much larger
23

 -range is fairly narrow (0.06-0.10). This remarkable 

similarity and small spread of  values for a single solute C153 in solvents of such diverse 

interactions clearly suggest a quasi-universal character of C153-rotation in liquid media.  

 It is interesting to check if this quasi-universality of  holds even for non-dipolar 

solutes. This is important because  is expected to be insensitive to the microscopic details of 

solute-solvent interactions. In Figure 3.11a, we show  for two non-dipolar solutes PTP
14

 

with 0.07-0.14 in liquids and DMDPP
145

 with 0.07-0.08 in three ILs. Thus, the quasi-

universal nature holds here as well. Some highly non-spherical solutes exhibit different 

regimes of this quasi-universality: ~0.09-0.20 for  pyrenes and anthracenes in common 

liquids
19

 and ~0.02-0.05 for perylene
146

 and aminoquinoline
147

 in different ILs. These 

variations may be partly attributed to the shape anisotropy and could be incorporated via 

suitable shape-factors. 
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Due to the difference in partial structure factors of different components in an ES one 

needs to further generalize the calculations of  and . Here Rτ  is given by: 
i

iaviR xτ ,  

where   σddkωiiav  
 kk /, , for the i th component in the medium. Using 

    piBi VkσTk=kσω /  and    kσSDπrTk=kσ iiiiBi 4/  we find  

   
i

iiaviiipR SDrxV ,41 .                                    (3.27) 

which connects solute properties ( R  and pV ) to the medium properties: structure factors and 

self-diffusion coefficients. Figure 3.11b shows the   values for C334, DMDPP and DPP
12

, 

in LiNO3-DMSO solutions at different concentrations c along with  computed for the ES at 

each c. As c increases from 0.1 to 1M, the observed R  of all three solutes
12, 13

 increases, the 

same trend being present in  . Here again,   at c < 1M agree quite well with   , while the 

agreement worsens at higher concentrations presumably for changes in average solvent 

structure for the ion-pairs, triple-ions etc
178

 appearing at such concentrations.  

 

Figure 3.11: Data on for various solute-solvent combinations. (a)  vs. R  plot for five 

solutes: C153, PTP (p-terphenyl) and DMDPP (2,5-dimethyl-1,4-dioxo-3,6-

diphenylpyrrolo[3,4-c]pyrrole) in various liquid solvents: hydrocarbons (black), polar 

aprotic (red), alcohols (green) and ionic liquids (blue). (b) Plot of  for three solutes 

C334, DMDPP and DPP (1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole) as a function of c in 

solutions of LiNO3 in DMSO at 298K along with the values of  for the solvent. Here and 

 defined by Eq. 3.27 are made dimensionless by multiplying both with 3D  where 3D  is 

the self-diffusion coefficient of the dipolar solvent and , the average molecular diameter 

of the components in ES. 
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3.5 Conclusion  

In conclusion, in this chapter, we have developed a microscopic theory that 

systematically includes the effects of solute-solvent dipole-dipole interactions and solvent 

structure on average rotation time of a polar solute in a polar solvent. We find that the 

rotational relaxation of a dipolar solute in a polar medium is governed by the hydrodynamics, 

having little dependence on the long-ranged solute-solvent interaction. We thus provide a 

molecular basis for the SED model which has been obtained from purely hydrodynamic 

consideration.  

We generalize our theory for ionic liquids and electrolyte solutions to show that 

decoupling of DF from solute rotation occurs even in ionic media via the non-linear 

dependence of DF on hyd

rot  and an overwhelming domination of hyd

rot . The fact that repulsive 

part of the interaction largely determines the liquid structure makes solute rotation insensitive 

to the mean-field effect generated via the solute-solvent long-ranged interactions. This 

insensitivity leads to quasi-universality in solute rotation and thus provides a microscopic 

explanation for the experimental observation that dipolar solute rotation in ILs and ES follow 

the same correlation as established for common dipolar solvents. Note, the present theory 

considers only the solute-solvent combinations with no specific interaction (such as H-

bonding). The effects of shape anisotropies of solute and solvent molecules or solution 

inhomogeneity are also ignored. Despite these lacunae, the present analytical scheme 

provides a resolution to the debate regarding the role of DF in solute rotation.  

Finally, the approach described in this chapter can be extended to rotation of realistic 

solutes in any solvent in general. One needs to this end, a proper description of the solvent 

static structure factor and an appropriate solute-solvent interaction model. Generally, the 

solute-solvent interaction can be expressed as:   ',, RrV  

        coscos
21

21

21

,,

m

l

m

l
mll

mll
YYV Rr . Inclusion of the higher harmonics (l1, l2 > 1) will take 

care of the contributions from the finite charge distributions over the solute and the solvent 

molecules systematically. Similar expressions can be written for the fluctuating solvent 

density and the solvent-solvent static correlations. This kind of modelling would be very 

similar to the extended charge distribution model
134

 considered earlier. Note that the coupling 

parameter J depends on a competition between 
hyd
rot  and the product   s00U . The modified 

treatment will affect the solute-solvent interaction strength  00U , resulting in very different 

value of the DF. However, the calculation scheme will be numerically quite intensive, loosing 



Chapter 3  60 

 

analytical simplicity of the present one. The scenario could be simplified for an uncharged 

multipolar solute in a non-dipolar solvent having only higher multipole moments. The solute-

solvent interaction term  Rr 
mll

V 21  in such cases will fall off quite fast as a function of

Rr  . In such cases, the rotational friction will be dominated by the packing of the solvent 

around the solute.   

 

 

Appendices 

A. Equation of motion and orientational correlation function for solute rotation  

The EOM for solute rotation can be written as 

 
 t

U
rot 




 








                                                        (3.28) 

where  t  denotes the fluctuating torque arising out of all possible sources including short-

ranged and long-ranged forces and the terms non-linear in  . Here
5, 111   0t  and 

     tTkt Brot   20 . Considering the initial equilibrium distribution of the solvent 

around the rotating solute, we can write Eq. 3.28 in Fourier space: 

         0100 0ui rot  ,                                          (3.29)                               

and subsequently  

   
   2

1000
2 0

2

rotrot

B

u

Tk





 ,                                    (3.30) 

which, upon inverse Fourier transformation, becomes 

   
 

 














 t

u

u

Tk
t

rot

B 0
exp

0
0 1000

1000




 .                                     (3.31) 

Therefore, the normalized profile for orientational correlation function for solute  

   

   
 














 t

ut

rot

0
exp

00

0
1000 




                                            (3.32) 

 

 



Chapter 3  61 

 

B.  Calculation of the solute-solvent dipolar coupling factor J  including 

contributions from beyond the first solvation shell   

Here we calculate the coupling factor after considering the solvent molecules in the 

immediate neighbourhood and beyond. To this end, we write the average dipolar solute-

solvent interaction energy as 

       'cos,,',,  ddtVU dip  rrRr                                 (3.33) 

where  ',, Rr dipV  is space-dependent form of dipolar interaction potential between the 

photo-excited solute dipole and a solvent dipole, with a separation Rr  .  t,, r  denotes 

the time dependent solvent density distribution. Here, r  and R  denote the position vectors 

of the solvent molecule and the solute molecule, respectively. Now,  ',, Rr dipV  can be 

written as
25

  

                                               'coscos',,
3

0 



Rr

Rr


dipV .                               (3.34) 

One can expand  ',, Rr dipV  as a function of spherical harmonics
182

  

          coscos',,
21

21

21

,,

m
l

m
l

mll

mll
dipdip YYVV RrRr              (3.35) 

where  

              coscoscoscos',,
21

21 ddYYVV m
l

m
ldip

mll
dip RrRr .               (3.36) 

As it turns out,  Rr 110
dipV  is the leading component of  ',, Rr dipV  that couples with 

 t,10 r . Therefore, we obtain for the interaction energy 

       rrRr dtVU dip ,cos43 10
110                                     (3.37)      

using
182

    cos43cos0
1 Y . Setting, 0R , implying the solute being located at the 

origin, we can write Eq. 3.37 in Fourier space using the Parseval‟s relation
182

: 

       


kkk dtVU dip ,cos243 10
1103

                                  (3.38)      

Eq. 3.38 can be rewritten as 

                                                               cos0 tU U                                            (3.39) 
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where  

       


kkk dtVt dip ,243 10
1103

0 U ,                                            (3.40) 

the solute-solvent interaction strength, weighted by the solvent distribution. Therefore, the 

torque on the rotating solute becomes 

     tttf 0U                                                              (3.41) 

in small   limit. The autocorrelation function of  tf , under the decoupling approximation: 

             00,,2
4

3
1010

2
1106





 ttVd

TIk
t dip

B

b



k-kkk                            (3.42) 

Here, for the solvent density modes we use     st
et

 
 0,, 1010 kk . For the auto-correlation 

of the angular variable, through analysis of the equation of motion (Appendix A), we get   

   

   
 











 t

t

t

rot

0
exp

0

0
0U




                                                (3.43) 

where        


kqk dVdip 0,2430 10
1103

0 U . Using this normalized profile in Eq. 3.42, 

we arrive at 

  tBet                                                              (3.44) 

where      
 2

10

2
1106

0,2
4

3
kkk 




dip

B

b Vd
TIk

B  and 
 



















srot



100U

. Finally, we 

calculate the memory function as described earlier, using Eq. 3.44 and derive the long-range 

part of the rotational friction:  

     
 
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1106 10
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srot

dip
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b
rot Vd

Tk 







U
kkk .                          (3.45) 

This leads to the following expression of total friction 

  











s
hyd
rotB

sRbhyd
rotrot

Tk

I





08

3
1

0U
                                         (3.46) 

where      
 2

10

2
1106

0,2 kkk  dipR VdI . Therefore, the modified dipolar coupling 

parameter J  becomes: 
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  s
hyd
rotB

sRb

Tk

I
J





08

3

0U
                                                 (3.47) 

C.  Calculation of 10(k) for a dipolar liquid around the dipolar solute 

To evaluate  k10  we evaluate  r10
 

using equilibrium DFT as described in 

Appendix B of the previous chapter. The density functional free energy   ', rF  is given 

by:  

      
 













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








 1

4

',r
ln',r'cosr ',r






b

ddF  

            4'',r4',r'',',rr''cos'cos rr 
2

1
bbCdddd    

      ',0,Rr',r'cosr    dipVdd                                   (3.48) 

where,  '',', rr C  is the two particle direct correlation function (DCF) between solvent 

molecules at positions r and rhaving orientations '  and '' . Minimization of    ', rF , 

with respect to the constraint for N solvent molecules 

    Ndd  ','cos  rr ,                                                  (3.49)              

yields       0','cos   rrddF ,   being the Lagrange‟s multiplier. The 

differentiations give 

 
      




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4
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b

Cdd 









  

    ',RrdipV                                                                    (3.50) 

For small fluctuations:          14',44',   bbb rr , Eq. 3.50 yields 

 
      


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4'',r'',',rr''cosr

4

',r
b

b

Cdd    

    ',RrdipV                                                              (3.51) 

Multiplying both sides of Eq. 3.51 by   cos0
1Y , integrating over  cos  we obtain using 

Eq.2.18 
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 
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       ',Rrcos'cos 0

1  dipVYd                                                   (3.52) 

Again, multiplying both sides of Eq. 3.52 by rk.ie , integrating over r and using the 

convolution theorem
182
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4
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1  dipVYd                                               (3.53) 

Here the surviving component of the Fourier mode of the DCF,  '',', kC  is given by 

               coscoscoscos,, 0
1

0
1

.110 dddYYerCC i
rk

rk . We can write within 

mean-field approximation
25

:      rCrCrC LRPY   ,,  as in Appendix A of chapter 2. 

 rCLR  is obtained by angle-averaging of       coscos,, 32 rrC LR , denoting 

the long-ranged part
25

. Finally, we get from Eq. 3.53,  
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where    kk
11010 3 dipdip VV  . Rearrangement of Eq. 3.54 leads to 
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D. Calculation of the Static structure factors  

(i) Ionic liquid 

We model an IL as a binary mixture of hard spheres (HS)
183

, each with a charge 

embedded at the centre. For a dipolar ion, there is an additional dipole at the centre of the HS. 

The spatial direct correlation function
111, 112

 (SDCF) between the ith and jth ion (i=1 for 

cation, 2 for anion) can be written as:      rCrCrC
LR

ij

PY

ijij  , where  rC
PY

ij  is the hard 

core part given by the Percus-Yevick form for binary mixture of hard spheres
183

 and 

jir rr  . The long-ranged part  rC
LR

ij  is treated at the mean-field level
111

. For simple 
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ions:   rqqrC ji

LR

ij   , the standard Coulombic form. For the dipolar ions with dipole 

moment we write   642 92 rrqqrC ji

LR

ij     , qi, the charge on the ith ion and 

, the dielectric constant of the medium. Here the second term denotes the dipolar part 

calculated as in Appendix A of chapter 2. For the ion-dipole interactions 

  23 rqrC i

LR

ij   , the projections of standard ion-dipole interaction potential
184

 

    coscos)( 2rqrv iij  between the ith ion with polar angle  and jth dipolar ion 

with orientation    (both in the laboratory frame) for spherical harmonics 11 l , 12 l and 

0m . From  rCij  we calculate  kCij  and hence  kSij , the partial structure factors 

using the OZ relation
2,3

. The total static structure factor is then obtained as:  

   
ji

ijjitot kSxxkS
,

  where xi is the mole fraction of the ith ion. 

(ii) Electrolyte solution 

We model the solution of a 1:1 electrolyte to be a ternary mixture, the components 

being the cations, the anions and the dipolar solvent molecules. The mole-fractions of the 

ions are the same to maintain electro-neutrality. We label the components in the following 

fashion: the cations as 1, the anions as 2 and the dipoles as 3. For salt concentrations 0.1M to 

1M, the ionic mole-fractions turn out to be ~0.001-0.01. As a result, the hard core 

contributions are negligible to ionic SDCFs   rCij  2,1, ji , owing to very small packing 

fraction p. Here we use the hypernetted chain closure by Attard et al
185

 to calculate the ionic 

SDCFs, via solving the OZ relation. We use the asymptotic form
185

 of total correlation 

function   reqqrh r

jiij  
     . Here,      2132

621


  DDD , the modified 

screening length in terms of the inverse Debye screening length
111

  
21

24 







 

i

iiD qc  

where   is the average molecular diameter of the components in ES and ci, the concentration 

of the ith ion. The SDCFs for ion-dipole  3,1, ji  and the dipole-dipole interactions

 3, ji  are calculated as described in previous section. The hard sphere part  rC HS
ij  are 

adopted from the work by Hoshino et al
177

 on structure factors for a ternary mixture of hard 

spheres.  kSij s are calculated using the method for ternary mixtures described in Hoshino 

et al
177

.  
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E.  Calculation of dielectric friction  

(i) Ionic liquid 

For an IL made of dipolar cation (i=1) and simple anion (i=2), the average solute-

solvent interaction energy can be written, via an extension of Eq.3.37, as,  

            rrRrrrRr dtVdtVU sds ,,cos43 10

1

110

0

10

1

110

10   

      rrRr dtVs ,2 10

2

110

2                                                                     (3.56)      

where  Rr 110

siV  denotes the leading component of the interaction potential between the 

dipolar solute and the ith ionic species in the medium; and  Rr 110

sdV , the same between 

dipolar solute and a dipolar ion. Setting, 0R , we can write Eq. 3.56 in Fourier space: 

             


kkkkkk dtVdtVU sds ,,cos243 10

1

110

0

10

1

110

10

3


 

     kkk dtVs ,2 10

2

110

2                                                 (3.57)      

Eq. 3.57 can be expressed as 

                                                               costU IL

0U                                               (3.58) 

where  

             


kkkkkk
IL dtVdtVt sds ,,243 10

1

110

0

10

1

110

10

3

0 U
, 

     kkk dtVs ,2 10

2

110

2                                              (3.59) 

the time dependent solute-solvent interaction strength, weighted by the solvent distribution. 

Therefore, the torque on the rotating solute given by       Utf  becomes 

     tttf IL

0U                                                          (3.60) 

in small  limit. The autocorrelation function of  tf , under the decoupling approximation: 

 
       

TkI

tt
t

B 

00IL

0

IL

0 


UU
                                                (3.61) 

 where I denotes the moment of inertia of the rotating body about the axis of rotation. We 

now calculate    0IL

0

IL

0 UU t  and    0 t  separately. We write 
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     6IL

0

IL

0 )2(
  4

3
0 





TkI
t

B

bUU
 

               tVtVtVd ssds ,kk2,kk,kkk  10

2

110

2

10

1

110

0

10

1

110

10 
 

                              kkkkkkk  tVtVtVd ssds ,2,, 10

2

110

2

10

1

110

0

10

1

110

10        (3.62) 

Here, for the solvent density modes we use     st

ii et
 

 0,, 1010
kk to get 

    st

B

Rb e
TkI

I
t





 /IL

0

IL

0
  4

3
0


UU                                           (3.63) 

where IR contains all the self- and cross-terms in Eq. 3.62 resulting from the multiplication. 

Using the EOM (Eq.3.28) we arrive at 

   

   
 











 t

t

rot

0
exp

00

0 IL

0U



                                               (3.64) 

The rest of the treatment is similar to that for the dipolar liquids
26

 once all the 

multicomponent contributions are accounted for in IR. We get the DF  

 
1

0 10

8

3




















srotB

Rb

rot
Tk

I






ILU
                                          (3.65) 

Eq. 3.65 portrays the self-consistency for rot  as rot
hyd
rotrot   . Solution of Eq. 3.65 

leads to the following expression of total friction 

  

1

IL

0 08

3
1















s

hyd

rotB

sRbhyd

rotrot
Tk

I





U
                                  (3.66) 

We find that   1

0 ]0)[8/3(  s

hyd

RBsRb TkIJ  ILU << 1 for all the ILs and hence we can 

linearize Eq. 3.66 to write  

 Jhyd

rotrot  1 .                                                       (3.67) 

Hence, hyd

rot

hyd

rotrotrot J . 

(ii) Electrolyte solution 

In this case, we have three components: cation, anion and the dipolar liquid. 

Therefore, the average solute-solvent interaction energy is given in Fourier space by  
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             


kkkkkk dtnVdtnVU ss ,2,2cos243 10
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110
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110
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     kkk dtnVsd ,10

3

110

0                                              (3.68)               

Here  k110

siV  and  k110

sdV  denote the Fourier components of the dipole-ion part and dipole-

dipole part of the solute-solvent interactions, respectively. Note, here we use ni instead of i 

to denote the densities of the components. Equation 3.68 can readily be written as  

     cosES

0 tU U                                                       (3.69) 

where 

              







 




kkkkkk

ES dtnVdtnVt sd

i

isi ,,2243 10

3

110

0

2,1

101103

0 U          (3.70) 

The rest of the calculation is similar to that for IL to arrive at the same expression of DF as 

Eq. 3.65 where the quantities that would be different are  tES

0U  and IR. 

E.  Calculation of equilibrium solvent density profiles around solute 

(i) Ionic liquid 

We get  r
10

i  
from DFT treatment similar as Appendix B. The free energy 

  ', riF , is given by  

      
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1111   

 rrrr rr 
diCdddd

 

         ',','',',''cos'cos
2

1
2112   

 rrrr rr 
diCdddd

 

      Rrrr ',0,','cos 11    sVdd       Rrrr ',0,','cos 22    sVdd
 

      Rrrr ',0,','cos 1    sdVdd                                    (3.71) 
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where      4',', 11 b rr  and     b  ',', 22 rr , the superscripts 

denoting the solvent-solvent interaction types: d-d (dipole-dipole), i-i (ion-ion) and i-d (ion-

dipole). Note, for i=2, the polar angle =0 since it has no dipole where  r
10

i  is defined by 

the polar angle associated with the radius vector. Minimization of   ', riF , with respect 

to the constraints  

    ii Ndd  ','cos  rr ,                                                  (3.72)              

where Ni is the number of ith ion type in medium (N1=N2 for electroneutrality) yields two 

separate equations for two species. For the dipolar cation: 

      0','cos 1111    rrddF ,                                     (3.73) 

1 being the Lagrange‟s multiplier for species 1, which in limit     14',  br yields 
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    11 ',0,',0,   Rr Rr sds VV .                                (3.74) 

Using the definitions in Eq. 2.18 for  r
10  and Eq. 3.36 for  Rr 110C  in Eq. 3.74 we 

obtain:  
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 1010

1

10

2

110,

12
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1
sds

di VVCd                  (3.75) 

Next, in a similar fashion from Eq. 3.71 and 3.72 we can write for the anion 

      0','cos 2222    rrddF ,                                     (3.76) 

2 being the Lagrange‟s multiplier for the anionic species. Equation 3.76 gives us, through 

the same analysis as described above for the cation that  



Chapter 3  70 

 

        







 

  Rrrrrrr
 10

2

10

1

110,

12

10

2
2

1
43

3

2
s

di

b VCd                   (3.77)  

Now, Eq. 3.75 and 3.77 are self-consistent equations for  r
10

1  and  r
10

2  respectively 

which are solved iteratively using the appropriate DCFs. Finally, Fourier transform gives the 

 k
10

i s. 

(ii) Electrolyte solution 

 For an ES, we can write down the free energy functional as 
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      Rrrr ',0,','cos 3    sdVndd                                   (3.78) 

 where     b

iii nnn  ',',  rr  for the ions (i=1,2) and      4',', 333

bnnn  rr  for 

the dipolar solvent with b

in being the bulk density for the ith species. The minimization 

conditions: 

    ii Ndd  ','cos  rr ,     for the ions where N1=N2            (3.79) 

and,                        dNndd  ','cos 3  rr     for the dipolar solvent                 (3.80) 

Minimization of free energy with respect to the constraints in Eq. 3.79 and 3.80 gives: 

      0','cos    rr iiii nddnnF ,          for i = 1, 2, 3             (3.81) 

i being the Lagrange‟s multiplier for ith species. Rest of the treatment is very similar to the 

IL case. We finally arrive at the following self-consistent expressions for the local densities: 
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and  

         



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di
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ddb nCdnCdnn rrrrrrrrr
  

 

 Rr  10

sdV                                                            (3.83) 

Using DCFs obtained in Appendix C-(ii), we solve Eq. 3.82 and 3.83 in iterative manner to 

obtain the spatial  r
10

in  and the Fourier components  k
10

in . Here we have used an average 

molecular diameter for all the components for simplicity. 
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Chapter 4 Solvation dynamics in fluids under nano-meter 
scale confinement 
 

4.1 Introduction 

Recently fluids in nanometer (nm) scale confinements have drawn considerable 

attention as important media in various branches of science and technology
37, 38, 40-43

. Several 

experiments focus on the dimensional crossover from 3D to 2D behaviour, observed when a 

fluid is kept under a confinement of about a nm. In an enclosed environment many static and 

dynamic properties of the fluid alter dramatically
44

 compared to the bulk, like self-diffusion, 

refractive index, mechanical relaxation and so on. Such changes lead to confinement-induced 

effects on physical and chemical processes in fluid phase.  

 Confined water has been quite extensively studied in the recent past: Surface force 

measurements show that water molecules confined to a film of three to four molecular 

diameters (~ a nm) thickness, undergo ordering similar to a solid
47

. The mechanical 

relaxation timescale, for dissipating the stress against an external strain, becomes almost an 

order of magnitude larger
47

 compared to the corresponding bulk value under a confinement 

less than a nm. The melting temperature of water drops significantly when confined in silica 

nano-pores of diameter ~ 3 nm as revealed by Raman scattering measurements
186

. Water 

confined in reverse micelles (RM) of diameter ~ nm has a static dielectric constant (0) 3-4 

times lower
187

 than the bulk value (~ 80)
35

. Sudden jumps in the viscosity  and diffusion 

coefficient D have been observed
33

 in case of linear alkanes and alcohols in organosilicate 

nano-pores of diameter less than 2 nm. Measurements of refractive index (n) and the 

equilibrium film-thickness of cyclohexane confined within two mica plates have shown a 

sudden transition from a 3D bulk fluid to a 2D adsorbate for plate separation around couple 

of nm. This transition is accompanied with significant enhancement in fluctuations of n, 

changes in phase-transition temperatures and normalized enthalpies, lowering of critical 

temperature and anomalous fast self diffusion
46

. However, the changes in fluid properties 

under confinement depend on the nature of the confining potential. Li et al
48

 have studied 

water in sub-nanometer confinements where the viscosity increases substantially in a 

hydrophilic environment but having not so much effect in a hydrophobic confinement. There 

have been a number of theoretical studies on confinement induced effects. Schoen and co-

workers
188

 have reported on extensive grand-canonical Monte-Carlo (GCMC) simulation
123

 

to calculate static properties of confined fluid and shows their sensitivity to the wall structure. 

A weighted density functional theory of a 2D fluid has also been derived
189

 as a limiting case 
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of the corresponding functional for an inhomogeneous 3D fluid within linearized 

approximation. The 3D to 2D crossover under confinement has been studied extensively near 

the critical point
190-192

. However, the question how the confinement-induced crossover takes 

place in various fluid properties, even far from critical point, has remained largely 

unaddressed.  

The rates of various non-equilibrium processes are also highly affected in confined 

media. Solvation is one such process which governs nearly all chemical reactions in fluid-

phase
45, 50

. Any stabilizing interaction leading to the organization of the solvent molecules 

around a solute is conventionally termed as solvation. Therefore, study of solvation dynamics 

(SD) under confinement is extremely important for understanding chemical reactions in 

confined media, ranging from catalysis in nanopores
37

 to charge-transfer in biomolecules
193

.  

Conventionally, SD is studied via monitoring the relaxation of solvent distribution 

around the solute after a perturbation of the solute-solvent interaction
30, 45, 53, 194

 from an 

existing equilibrium solvated state. The solvent response to the perturbation is given by
124

  

)(tS  
)()0(

)()(





UU

UtU
.                                                  (4.1) 

Here  

 )(tU
)]0()(),()([3  tUtUrd unpertpert r,RrrRr  .              (4.2) 

where )( Rr unpertU  and )( Rr pertU  are the interaction potentials between the solute at 

position R and a solvent molecule at position r before and after the perturbation. ),( tr  is 

the time-dependent local solvent density
124

 around the solute particle. Eq. 4.2 can be rewritten 

as: 

)(tU  = )]0(),()[({3  ttUrd pert r,rRr   

)}0()]()([  tUU pertunpert r,RrRr  .                       (4.3) 

Simple hydrodynamic results
111

 show that the Fourier components of )]0(),([  tt r,r   

decay as ]exp[ 2tDk for wave vector k. Consequently, the solvent relaxation represented by 

)(tS  shows typical exponential dependence
124

, ]/exp[ t ,  being the solvation timescale, 

governed primarily by D. Since D is dramatically altered in confinement, SD also is affected 

by confinement. Several studies exist on SD of fluorescent dyes in confined fluids. The 

confining frameworks have been diverse
30, 45, 195, 196

, for instance, solvophilic lipid vesicles 
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and RM
194

; and solvophobic carbon nanotubes
37

, sol-gel glasses
197

 and silica nano-pores
52

. In 

a bulk fluid  is generally tens of ps
45

, whereas in solvophilic nanoconfinements
30, 45

,   may 

extend from hundreds of ps to even ns. For instance, the longest timescale for a dye coumarin 

480 turns out to be about 10 ns in spherical water-pools of aqueous AOT (dioctyl sodium 

sulfosuccinate) RMs (solvophilic) of 1-10 nm diameter
198

, in sharp contrast to a sub-ps 

solvation timescale observed for the same dye in bulk water
199

. The solvation time for 

coumarin dyes increase typically by factor of 2 to 3 in solvophobic nanopores
196, 200

. Recent 

computer simulations
51-53

 also show such slowing of the SD in various confined systems 

compared to the bulk. Although these studies bring out various aspects of solvation in 

confinement in details, there is, as yet, no general understanding of how the confinement-

induced changes in solvent properties bring about the slowing down of SD under 

confinement. 

The effects of confinement become severe when the thermodynamic condition of the 

surrounding bulk fluid falls in the sub-critical region of the phase diagram (Figure 1.2). It is 

well known that presence of any surface drastically alters the phase behaviour of a sub-

critical fluid
62

. If a solvophobic surface is placed in a bulk sub-critical liquid, close to the 

liquid-gas phase coexistence, it stabilizes the coexisting low density gas-phase in vicinity of 

the surface. This surface-mediated evaporation in a solvophobic pore is commonly known as 

capillary drying
61

. The diffusion of the fluid molecules becomes much faster in a dried 

solvophobic pore compared to the surrounding bulk liquid. On the other hand, a solvophilic 

surface, placed in the bulk gas, induces the high density coexisting liquid phase near the 

surface. This surface-mediated wetting inside a pore is called the capillary condensation
68

 

which slows down the fluid diffusion. The typical interfacial width between the gas and the 

liquid phases induced by surfaces near the bulk phase-coexistence extends to several nms
201, 

202
 that becomes comparable to the size of the nanoconfinement. If a solvophilic solute 

particle is inserted in a dried solvophobic nanoscale pore, the solute tends to wet the pore, 

posing a competition
62, 203, 204

 with the wall-mediated drying. This competition decides the 

fluid diffusion in the pore which in turn affects the SD. Therefore, the studies on how the SD 

responds to this competition would throw light on surface-induced effects on various physical 

and chemical processes in a sub-critical nanoconfined solvent. Despite many applications
56-58

 

of the sub-critical liquids and several studies on capillary drying and condensation 

phenomena
55, 59-63

, there have not been many attempts to elucidate the roles of sub-critical 

solvents in solvation process. Recent MD simulations
64

 on SD in a bulk Stockmayer fluid 

show that the density of the sub-critical fluid phase controls the solvation behaviour. Thus, 
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SD under confinement near bulk phase-coexistence has remained largely unexplored to the 

best of our knowledge.  

In this chapter we study the three different aspects of nanoconfined fluids. First we 

study, using computer simulations, the dimensional crossover in fluids under nanoscale 

confinements where the surrounding bulk fluid is far away from any phase transition point. 

The wave vector (k) dependent fluctuations in density govern majority of properties of a fluid 

including static quantities like 0 and n
††

, as well as long-time dynamic quantities like , D 

and so forth
111

. Hence, the crossover in all such properties should be generically related to 

that in density fluctuations. We calculate
65

 the fluctuation in number of particles N in a slit of 

parallel walls with a fixed volume V at absolute temperature T at the same chemical potential 

 as in the bulk shown schematically in Figure 4.1. The fluctuation is defined as:  

NNN 2)(  ,                                                 (4.4) 

the angular brackets representing ensemble averages generated by GCMC simulations
123, 205

. 

The generality of experimentally observed crossover, independent of system specific 

details, leads us to consider a model LJ fluid with model wall-fluid potential to capture 

qualitatively the generic effect of confinement. We show
65

 that  undergoes a crossover from 

3D to 2D behaviour without any accompanying phase-transition below a confinement 

extending only a few molecular diameters, measuring about a nm, the same length scale of 

crossover observed in the experiments. The crossover in  can be understood from the 

suppression of the density fluctuations in the system in direction perpendicular to the slit, 

beyond the wavelength given by the length scale of the confinement. The dynamic density 

fluctuations, given in terms of the Van Hove correlation function (VHCF), computed from 

MD simulations with initial conditions chosen from the GCMC configurations, also exhibit
65

 

similar crossover in the in-plane diffusivity D||. However, the crossover is dependent on the 

confining potential: 3D to 2D crossover in  and D|| for a fluid in solvophobic slit is 

significantly different from that in solvophilic pore due to strong layering of the fluid-

particles near the wall by large wall attraction in the later case. We relate our observations to 

experimental observations on different fluid properties dependent on density fluctuations. 

                                                 
††

 For instance, 0 of a dipolar fluid is related to the long-wavelength limit of the dipole moment 

density M(k) of the system  =  Ltk0 Mk M-k / NkBT. Now, M(k)  (k) 

which connects 0 with the long-wavelength limit of density fluctuation. The refractive index 
n is also related to density fluctuations. 
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Next we consider SD of a spherical non-polar solute in the confined LJ fluid. 

Although SD in general gets slower under confinement
30, 45

 there is a caveat in the existing 

interpretation of the data. The surrounding equilibrium bulk-phases have not been clearly 

specified in all these cases. This leads us to consider the SD when the bulk is well-specified. 

Moreover, we observe that ||D  suddenly exceeds the bulk-value in strong solvophobic 

confinement, while ||D  becomes very small compared to bulk under strong solvophilic 

confinements
65

. This prompts us to examine any subtle interplay between the heterogeneous 

solvent distribution and ||D  leading to slowing down of SD in confined geometry, 

irrespective of the nature of the confining potential. The choice of a non-polar system to 

study SD is not so restrictive, for the long-time SD is primarily governed by non-polar 

interactions in the system
124

. The model system also offers a scope to single out the effects of 

confinement avoiding the various complicating factors of realistic systems. At a phase point, 

far away from any phase transition, we show
66

 that two fundamentally different aspects of the 

dimensional crossover are responsible for the confinement-induced slowing down of SD in 

presence of two kinds of walls. The confined geometry reduces the solvent relaxation due to 

restricted dynamics which alone slows down the SD. The reduced dimension of solvent 

dynamics adds up to slower ||D  in a solvophilic confinement to result in a sharp increase in 

solvation timescale. On the other hand, slowing down of the dynamics due to reduced 

dimensionality competes with the faster diffusion in a solvophobic slit, resulting in marginal 

slowing down in solvation time. 

Another phase point is taken
67

 at a sub-critical temperature where the fluid is confined 

in a solvophobic slit in equilibrium with the bulk sub-critical liquid, close to liquid-gas phase 

coexistence. Here SD in confinement becomes faster compared to the bulk liquid, but not 

driven by the gas-like diffusion in the dried solvophobic pore. This can be explained as an 

outcome of the competition between the wall-induced evaporation effect trying to make 

diffusion faster and condensation in the pore due the solvophilic solute increasing the density 

creating an opposite effect. SD slows down linearly as the slit separation increases. Finally, 

we discuss the implications of our results in the light of confinement effects on various 

chemical processes in confined geometry.  

The rest of the chapter is organized as follows: In section 4.2 we consider the 

dimensional crossover in nanoscale confinements. Section 4.3 includes the studies on SD 

under confinement. Then we conclude in section 4.4. 
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Figure 4.1: System details and phase diagram. (a) Schematic diagram of the simulated slit 

placed in bulk fluid. (b) *(=) vs. * plots for bulk fluid at T*=2.0. The working phase-

point is point ‘A’ (*=0.4, *=0.67). 

 

4.2 Dimensional crossover 

In this section, we first present the details of the simulations. Then we discuss the 

structure of the confined fluids in terms of density profiles and in-plane radial distribution 

functions. Next, we consider the crossover behaviour of  in different type of slits which is 

followed by the results of crossover in ||D . 

4.2.1 Simulation details 

For the studies on dimensional crossover, the model fluid is taken in a rectangular 

simulation box with two parallel plates placed at a separation H on the z -axis at z = -H/2 and 

z = H/2 (Figure 4.1a), with fixed box lengths along x and y axes (Lx = Ly = 20,  being the 

particle diameter). Here, the periodic boundary condition is applied along x and y directions 

only. We consider a truncated LJ potential with a cut-off radius Lx/2 as the interparticle 

interaction:  612 )()(4)( rrruLJ   ,   being the interaction strength and r, the 

interparticle separation. Due to large cut-off we have not added any corrections due to 

truncation. The confining potential type is varied: hard walls only reflecting the colliding 

particles; repulsive walls with wall-fluid interaction for a particle at z : 

10)2/(4)2/( HzHzu fw    and attractive walls: )2/( Hzu fw 

 39 )2/()2/(4 HzHz    where  10 .  

We calculate the fluid density profiles in the direction normal to the slits (z-axis) 

given by (z)*  N(z)3
/AΔz where N(z) is the number of particles in a particular fluid-

segment of width Δz located at z and A, the area of the x-y plane. We calculate the radial 

a 
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distributions functions (RDF) 
111

, describing the probability of finding two particles at a given 

separation. The in-plane 2D RDF
188

 is defined as nzrrrNrg l
D )(2/)()( 2||||||||    for a layer 

at z of width z () with n particles  where 22
|| yxr  , layer-density Anzl

D /)(2  . 

For a wider layer (z), we compute the 3D nrrrNrg l
D3

24/)()(    where 

222 zyxr  , layer-density zAnl
D  /3 . 

In the MD simulations, we adopt NVE ensemble (constant N, volume V and total 

energy E) using the Verlet algorithm
123

 to integrate the equations of motion with time-step 

0.005 LJ units (0 = (m2
/ ~ 2.8  10

-12
 s for Argon where m is the mass of Argon 

atom)
111

. We calculate T from fluctuations of kinetic energy and  by inserting test 

particles
123

. The mean values of the T and  in MD runs agree to those of the GCMC 

simulations. Furthermore, these quantities remain similar also for different initial conditions 

chosen from equilibrated GCMC configurations. The self part of in-plane VHCF
206

 are 

computed: 

 
i

ii

s tNtrG ))()0(()/1(),( |||||||| rrr  ,                            (4.5) 

where ||r  is the space variable parallel to the walls (along x-y plane) and )(|| ti
r , the position of 

the ith particle along x-y plane at time t. In the long-time limit, the VHCF is Gaussian: 

]4/exp[)4/1(),( ||
2

|||||| tDrtDtrGs   . 

4.2.2 Characterization of fluid structure under confinement 

Figure 4.1b shows the - diagram obtained from GCMC simulations for the bulk 

fluid in absence of any solute. The diagram confirms that there is no phase transition
207

 at LJ 

temperature T*(= TkB )=2.0 where the point „A‟, with chemical potential
123

 )(* TkB 

= 0.4, represent the phase point of our interest for dimensional crossover. The behaviour of 

(z)* is shown in Figure 4.2 for different wall types which exhibit layering similar to those in 

earlier studies
48, 188, 189

. We characterize the structure of different layers from the RDFs. 

Structurally, the wall-adjacent layers for any type of wall assume 2D behaviour as suggested 

by g(r||), shown in Figure 4.3a. For reflecting walls, at H = 4, the central region is a fluid-

segment of one diameter width, the corresponding g(r||) revealing 2D structure (Figure 4.3b). 

For H > 4, central region of uniform density appears which gets extended as confinement is 

relaxed. We calculate the 3D g(r) in that region, for instance, 3z  in Figure 4.2c and 6z  
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in Figure 4.2e. Unlike the bulk 3D g(r), the g(r) for the central region drops off to small 

values at large r till H = 10 (Figure 4.3c), characterizing a finite spatial extent 

(perpendicular to the wall). At sufficiently large H (H  12), the central region approaches 

the 3D limit with proper asymptotic behaviour, g(r) ~ 1 for large r. These features of the 

central region are qualitatively same for the other wall types as well. The well-formed central 

region resembles the bulk-like inner-core of water inside large reverse micelles
194

. The other 

layers formed in between the central region and the wall-adjacent layers behave quite 

similarly as a 2D fluid.  

 

Figure 4.2: Density profile in the slits: (z)* in reflecting (solid), repulsive (dotted) and 

attractive (dashed) slits for different H: (a), (b) 4, (c), (d) 10 and (e), (f) 20. Dash-dot 

lines mark the bulk density. Profiles shown here are for the half-slit width along z and 

they are symmetric about z axis. 

 

 

Figure 4.3: Structure of fluid in confinement. (a) g(r||) for wall-adjacent layers at H = 10 

for reflecting (solid), repulsive (dashed), attractive (dash-dot) slits and the pure 2D case 

(dotted). g(r)s for the central region in a reflecting slit at (b) H = 4, along with pure 2D 

g(r||) (dotted), (c) H = 8 (dotted), 10 (dashed), 12dash-dotdash-dot-dotand 

20dash-dash-dashhe solid line represents the bulk 3D g(r).  



Chapter 4  80 

 

4.2.3 Crossover in equilibrium density fluctuations: Reflecting and repulsive walls 

The bulk 3D and 2D limits of  shown in Figure 4.4a are evaluated from the bulk 

simulations of a 3D fluid and 2D disks respectively at the same  and T. Figure 4.4a shows  

as a function of H for reflecting and repulsive walls. exhibits a clear 3D to 2D crossover in 

case of reflecting walls: A steep rise in  takes place around a critical separation 4cH  

where the structural crossover takes place in the central region as well. Similar crossover is 

observed for the repulsive walls also. The intimate connection of crossover in  and the 

structural changes at the central region is illustrated by Figure 4.4b, showing the behaviour of 

 calculated over the central regions. The striking similarity of these plots with those in 

Figure 4.4a confirms that the central fluid layer holds the key to this crossover. The constant 

volume specific heat
123, 205

 CV as a function of H are featureless for both kind of walls (Figure 

4.4c), ruling out any thermodynamic phase-transition associated with the crossover. This 

crossover in  qualitatively matches the sudden increase in fluctuations in refractive index of 

cyclohexane confined between solvophobic mica plates with separation just below 2 nm (~ 

Hc), measured from surface force experiments
46

. Thus, Hc matches with the length scale at 

which the jumps in , 0, , D and n are observed in experiments
33, 35, 46, 47

. 

 

Figure 4.4: Different quantities in slits as functions of H: (a) , reflecting (triangles: 

simulation; dotted line: theory) and repulsive (circles: simulation; dashed line: theory); 

(b)  in the central region, reflecting (triangles) and repulsive (circles). (c) CV, reflecting 

(triangles) and repulsive (circles).  

 

The crossover in  around Hc can be made more explicit within a simple theoretical 

treatment focusing on the long-wavelength cut-off due to the confinement.  is given by the 

long-wavelength ( 0k ) limit of the static structure factor S(k) in bulk
111

. S(k) can be 

calculated from the liquid direct correlation function c(r) via the OZ relation
111

. Within mean-
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field approximations for LJ fluids, the c(r) is split into correlations due to the short-ranged 

hard core, given by the Percus-Yevick form
111

 C
PY

(r) for r< and an attractive tail, C
LR

(r) = 

4(k(/r)
6
 for r. In a slit geometry, we integrate over ||r  in c(r) to yield c(z). We 

compute  zkS , zk being the transverse component of wave vector, using the OZ relation: 

  1)](1[   zz kckS where  is the average fluid density in the slit obtained from GCMC 

simulations. We ignore the density inhomogeneity near the walls which is a good 

approximation here, since the homogeneous central region, showing the crossover, 

encompasses majority of the slit. The spatial integration for the Fourier Transform of c(z) to 

calculate  zkc  becomes restricted as z runs from zero to H/2 corresponding to a minimum 

wave vector Hk z /2min   . Here,  is defined by the value of  min

zkS . The comparison of 

simulation and theoretical results for reflecting walls (Figure 4.4a) reveals nearly quantitative 

agreement. This indicates that the crossover is a manifestation of cut-off in long-wavelength 

density fluctuations due to geometrical constraint. The repulsive slit results also show good 

qualitative agreement between simulations and the theoretical estimate (Figure 4.4a). This is 

because the fluid layers in this case are formed away from the walls due to their repulsive 

nature, creating geometrical constraint similar to reflecting walls. 

4.2.4 Crossover in dynamic density fluctuations: Reflecting and repulsive walls 

The crossover shows up in the dynamic density fluctuations as well, as demonstrated 

in Figure 4.5a by the long-time (t ~ 100 times larger than the diffusion time scale required for 

a tagged particle to traverse the length of its diameter) behaviour of ),(ln || trGs  as a 

function of 2
||r for different values of H. The plots, shown for the reflecting slits, are straight 

lines with slopes changing from 2D to 3D limit with a sudden change above H = 4. Note 

that the crossover in )]/[( 2/12

||

*

|| mDD   almost coincides with that in . *
||D , for both the 

reflecting and repulsive walls (Figure 4.5b), become maximum at the smallest value of H and 

drops around H = 6 to meet the bulk 3D value. Physically, under maximum confinement, 

there is only one fluid layer resembling 2D fluid where the self-diffusion is faster compared 

to the 3D situation. The in-plane diffusivity drops, as the confinement is relaxed to 

accommodate multiple fluid layers, due to contributions from inter-layer diffusion. Figure 

4.5c shows 
*
||D  for the central layer which indicates that the crossover in 

*
||D is primarily is 

due to the central region. Similar faster diffusion than bulk have been observed for 

cyclohexane in mica pores of a few nm width from NMR measurements
208

, for water in 
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carbon nanotubes  using flow measurements
49

 and in earlier simulations
209

. This trend, 

however, is absent in the shear viscosity data of water from Atomic Force Microscopy 

(AFM) experiments with a hydrophobic graphite substrate
48

. This could be due to the fact 

that the geometry of a spherical tip sliding close to a planar solid does not represent the 

strong confinement limit. 

 

Figure 4.5: Dynamic density fluctuations in solvophobic slits. (a) long-time limit of 

),(ln || trGs  vs. 2
||r  in reflecting slits for H = 3.5triangles 4 (circles), 6 (dotted), 

8solid), dashed16dash-dotand 20dash-dot-dotalong with the 

corresponding 2D (diamonds) and 3D (squares) limits. (b) *
||D  for reflecting (triangles) 

and repulsive (circles) slits. (c) *
||D  of only the central region in a slit with reflecting 

(triangles) and repulsive (circles) walls. (d) Layer wise value of *
||D  in a slit of H=14 with 

reflecting (triangles) and repulsive (circles) walls. The left-most layer is the central 

region and the right-most one is for the wall-adjacent layer. The middle one is for a layer 

in between the two.  

 

We extract the in-plane diffusion coefficient for different layers as well. In Figure 

4.5d we show the *
||D data for different layers for a reflecting and repulsive slit with H=14 

There are only three different layers present in the slits with these walls: the central region, 

the wall-adjacent layer and the layer in between. Nearly 3D bulk like diffusion is observed in 

the central region. The relatively faster in-plane diffusion observed in the wall adjacent layer 

compared to the other layers is probably due to the fact that unlike other layers, the particles 
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in this layer are in contact with the smooth wall in one side which makes the particles to 

move faster compared to those which are in between two layers of particles. 

 

Figure 4.6: Different variables for the attractive slits as functions of H: (a) , (b) *
||D  and 

(c) calculated )(/)( *

||min

*

|| HDHD (squares) with a similar quantity )(/)( minHH   for 

confined water48 (diamonds). (d) Layer wise value of *
||D  in a slit of H=14 with attractive 

walls. The left-most layer is the central region and the right-most one is for the wall-

adjacent layer. The data in between are for the middle layers.  

 

4.2.5 Dependence of crossover on wall-fluid potential   

Let us now consider the effect of different wall-particle interaction on the crossover. 

The case of the attractive walls is different compared to the reflecting and repulsive walls. 

Due to attractive nature of the walls, the density in the fluid layers close to the wall becomes 

very high. This suppresses the fluctuation in the system which is reflected in very low values 

of in the extreme confinement limit (H~3) far from the bulk 2D value (Figure 4.6a). 

Unlike the reflecting and repulsive slits, here  gradually approaches the 3D limit for large H 

from low values. The dependence of  on H (Figure 4.6a) agrees qualitatively with the 

observed trends in 0 for the water pool confined inside hydrophilic cavities of RMs
35

. Under 

the strong confinements, *
||D  is about an order of magnitude smaller for the attractive slit 

(Figure 4.6b), compared to those for the reflecting and repulsive walls. Variation of *
||D  is in 

agreement with the earlier simulation reports on water in hydrophilic silica pores
48, 210

. Figure 

4.6c shows the trends of the inverse of *
||D , qualitatively in agreement with the observations 

of estimated viscosity ( of water confined between an AFM tip and  hydrophilic surfaces
48

. 
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The layer-wise diffusion is shown in Figure 4.6d for H=14 Note, here we get five distinct 

layers in total. *
||D  gradually decreases from the central to the wall-adjacent layer. The 

diffusivity in the central region is near the 3D bulk value while the particles in the high-

density layer close to the wall are almost immobilized due to the attractive wall-fluid 

potential resulting in almost zero diffusivity. 

 

Figure 4.7: Schematic diagram of the simulated slit with solute. The LJ solute particle is 

placed at the centre of the slit. The dotted line around solute marks its change in size as 

the perturbation. (b) * vs. * plots for bulk fluid at T*=0.9 (triangles). The working 

phase-point is B (*=3.7 and *=0.79). 

 

4.3 Solvation dynamics under confinement  

First we summarize the details of simulations and calculations. Then the results on 

confinement effects on SD in solvophilic and solvophilic slits are presented to highlight 

different mechanisms of slowing down. Afterwards, we show how SD is modified from that 

in a bulk sub-critical solvent, in presence of competition between drying effect of 

solvophobic slit and wetting effect of solvophilic solute. Finally, we compare our results with 

various realistic systems to discuss some future implications of the observations.  

4.3.1 Simulation details 

The simulated system for SD (Figure 4.7a) is very similar to that in Figure 4.1a with 

the additional solute particle with diameter 3 fixed at the middle of the box. The solute is 

solvophilic interacting with the solvent particles via ),;(|)(|  bauU LJ |Rr|Rr   where 

2a and 2b , determined from the Lorentz-Berthelot mixing rules
211

. For the high 

temperature studies we use same parameters as above for wall-fluid interactions. For the low 

temperature studies (Figure 4.7b) we set  5 where our simulations are stable with the 

solvophobic slits. 

B 
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To calculate the S(t) we first run equilibrium MD from stored GCMC configurations 

at the average  and T same as that of the respective GCMC runs
65

. After equilibration of the 

dynamics we increase the solute diameter by 5% (shown by dotted circle in Figure 4.7a) 

which acts as the perturbation to study the SD using Eq. 4.1. Such change in solute-size is 

fundamental in any solute-excitation process leading to chemical reactions
212-215

. The solvent 

is in equilibrium before the perturbation and relaxes to the new equilibrium after the 

perturbation. The averages represented by the overhead lines in Eq. 4.1, equivalent to the 

averages over solvent density as in Eq. 4.2, are performed in simulation by averaging over 

400 trajectories. Each such trajectory is generated from an equilibrium snapshot chosen from 

the GCMC runs. In general, S(t) contains a short-time Gaussian part
45

 followed by multi-

exponential decay given by  
i

ii ta ]/exp[   where the ia s are the amplitudes and i s are the 

associated decay timescales, obtained by suitable fitting procedure. The error in  has been 

estimated from the error of the fitting parameters. 

4.3.2 Mechanisms of confinement-induced slowing down 

Let us now consider effects of confinement on SD when the bulk fluid surrounding 

the slits is at point „A‟ on Figure 4.1b. We observe two different regions in S(t) in bulk fluid 

(solid line in Figure 4.8a): A short-time (<1ps) Gaussian component is followed by a single-

exponential decay of S(t), as shown in the inset of Figure 4.8a, having a time-scale  ~ 5 ps 

within the error bars (Figure 4.8b). We ensure, as a check of consistency, that in all cases we 

get back the bulk-behaviour as the walls are removed far apart (H=20. 

The single exponential behaviour of S(t) remains similar in confined fluid as in the 

bulk, shown in Figure 4.8a by the dashed (solvophilic) and dotted (solvophobic) lines. 

However, the effects of the confinement on the values of  are significant particularly in 

solvophilic slits compared to those in solvophobic ones. Figure 4.8b shows -data along with 

the error bars. As the solvophilic confinement is made stronger by reducing H from H=20  

remains similar to that in the bulk up to H=5We observe a sharp jump in around 

H~4(circles in Figure 4.8b)At the strongest confinement (H=4we find ps which 

is about four times slower than the bulk. This qualitatively matches with earlier observations 

of SD
45, 51

. At the strongest confinement the solute experiences the sharp layers with liquid 

structure. The fluid diffusion in these layers would govern the SD. We have shown in 

4.2.5that such strong layering in presence of the attractive walls (Figure 4.2b) leads to slower 

D|| compared to the bulk diffusion. The slowing down of  is similar to that in D||. However, 
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the detailed features show qualitative differences: D|| decreases gradually


 from the bulk 3D 

behavior with decrease in H from 20(Figure 4.6b), whereas  values show a sharp jump 

under strong confinement conditions. 

 

Figure 4.8: Solvation data at point A: (a) S(t), in bulk (solid) and in solvophobic (dotted) 

and solvophilic (dashed) slits with H=12. (b)  as function of H, with the error bars, in 

solvophobic (triangles) and solvophilic (circles) slits. The bulk timescale marked by 

dashed line through the open circle with error bar.  

 

Although the increase in  in solvophobic slits is marginal (triangles in Figure 4.8b), it 

occurs around H=5 similar length scale where dimensional crossover has been shown in 

4.2.3 in solvophobic slits. We find ps at the strongest confinement (H=5) which is 

slightly slower than the bulk in agreement qualitatively with earlier results
51, 196, 200

 on SD in 

solvophobic confinements. Unlike the solvophilic case there is no jump in the  values for 

small H. Such marginal slowing down of SD in the solvophobic slits is interesting for our 

earlier results show that under similar condition D|| gets faster than the bulk diffusion by a 

factor of two (Figure 4.5b) with a sharp jump at H=5  

The contrasting qualitative behaviors of and D|| indicate that further confinement-

induced effects are important to understand SD under strong confinements. The confinement 

restricts the solvent motion in the z-direction, hindering the solvent relaxation in that 

direction. For instance, the solvent forms distinct layers in the strongest solvophilic 

confinement (Figure 4.2a). Under strongest solvophobic confinement, the solvent forms a 

single layer of about two diameter thickness inside the pore (Figure 4.2b). All these layers 

exhibit the fluid properties resembling a quasi-2D system


. Thus, the solvation of solute of 

diameter 3 is due to solvent response from these strong layers of restricted z-motion. To 

assess the possible effects of this reduced dimensionality on SD we simulate the SD from the 

GCMC equilibrated snapshots of the quasi-2D system at  without the solvophobic 
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walls. The system is shown schematically in Figure 4.9. The solvophobic walls are removed 

(Figure 4.9) so that the particles do not feel any effect of wall. We update the x and y 

coordinates of the particles, but keep the z-coordinates fixed. Thus, we completely cut off the 

z-component of the solvent response. Then we ensure proper equilibration of the system in 

the MD run with these restrictions and calculate S(t) as usual by averaging over hundreds of 

trajectories. We find slower (~ 3-times) SD here than the bulk 3D case. This observation 

confirms that reduction of solvent response along z-direction alone leads to the slower 

solvation than bulk. In presence of solvophobic walls this slowing effect competes with the 

higher in-plane diffusivity resulting in marginal increase in . In solvophilic slits this effect 

adds up with slower diffusion resulting in much sharper change in . 

 

Figure 4.9: Scheme for the system simulated to understand the effects of walls. 

 

 

Figure 4.10: S(t) and density profiles at point B. (a) Solvent response functions S(t), in 

bulk (solid) and in solvophobic (dotted) slit with H=8. Bi-exponential fits to both data 

are shown: dash-dot line for the bulk S(t) and the dashed line for the S(t) in slit. The zero 

line is highlighted in the figure. Inset, comparison of the logarithm of the fitted S(t) data 

for the two cases. (b) Density profiles z* in the same slit in presence (dotted) and 

absence (solid) of solute. 

 

4.3.3 Effects of drying-wetting competition on SD  

Our studies on SD in solvophobic slits placed in a bulk sub-critical fluid near liquid-

gas coexistence are performed at a sub-critical isotherm at T*= 0.9 (Figure 4.7b) which is 

well below the critical temperature of LJ fluids (Tc*=1.3)
124

. The liquid-gas phase-

coexistence accompanies a sharp change in density around the coexistence chemical 
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potential
207

9.3* coex . We consider 7.3*  , just above 

coex  (marked „B‟ in Figure 

4.7b), corresponding to liquid bulk phase. 

Next we discuss the behaviour of bulk SD. S(t) for the bulk liquid phase has three 

regions: the Gaussian component, followed by a bi-exponential decay (the solid line in Figure 

4.10a), with timescales 1 = 3.2 ps and 2 = 40 ps. Such behaviour of S(t) has been observed 

earlier for ambient non-polar solvents
216

. 1 has been interpreted as the timescale originated 

from the solvent-cage expansion
217

 following the initial Gaussian response and 2 as the 

longer diffusive relaxation timescale. 

. 

 

Figure 4.11: Solvation Data at point B. (a) solvation timescale 2 in solvophobic slits 

placed in bulk sub-critical liquid. The dotted lines indicate the linear fit to the data. (b) 

*

||D  at different H. A fit line is shown to highlight the 1/H dependence. The bulk limits are 

marked in both panels by dashed line. 

 

Let us now consider the SD data in a solvophobic slit. The observed S(t) show bi-

exponential decay as in the bulk liquid with which the slit is in equilibrium. We show one 

such representative case for the strongest confined situation Hmin=8 by the dotted line in 

Figure 4.10a. Here SD is somewhat faster than the bulk as is evident from the zero line in the 

figure. This is also clear from the comparison of logarithm of the fitted S(t) data in the inset 

of Figure 4.10a. The initial slopes in the inset reflect the smaller timescale which are similar 

in the two cases. Here 1 ~ 2 ps and 2 ~ 14 ps which is about 1/3-rd of the value in the bulk 

liquid. Interestingly, this 2 is considerably longer compared to the diffusive timescale in the 

coexisting bulk gas-phase (~ 1 ps) which is stabilized by the solvophobic slit in absence of 

the solvophilic solute. This longer 2 occurs due to formation of a meta-stable fluid phase 

(Figure 4.7b) in the slit, with a density profile as shown by the dotted line in Figure 4.10b, via 
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competition between the wetting effect around the solvophilic solute and the drying effects 

by the solvophobic walls. This competition enhances the mean density inside the slit up to ~ 

0.45, much higher than the density at dried condition (~ 0.03) in the solvophobic slit without 

the solute (solid line in Figure 4.10b), but much less than the coexisting bulk liquid density.  

We now look at the effect of changing H on the timescales. Out of the two timescales 

observed in the S(t), 1 is nearly unaffected by confinement, as observed in earlier 

experiments
45

. It remains about 2-3 ps which is very similar to that in the bulk S(t). However, 

2 rises almost linearly with H, approaching the bulk-behaviour beyond H=16(Figure 

4.11a) Figure 4.11b shows that the ||D  in solvophobic slits, estimated in presence of the 

solute, attains maximum at the strongest confinement where the mean-density in the slit is 

minimum. With increasing H, ||D  linearly decreases as 1/H (fit shown in Figure 4.11b) to 

approach the bulk value beyond H=16he observations of larger ||D  in solvophobic 

confinement compared to that in bulk liquid is qualitatively similar to our earlier 

observations
65

.  

The dependences of ||D
 
and

 
2 on H can be understood from simple qualitative 

arguments. The diffusion of fluid molecules in weak interaction limit is given by D0/ T  

where the T  is the isothermal compressibility and D0 is the Stoke diffusion of a tagged 

particle
5
. By definition TT VPV )/)(/1(  where P is the pressure and V is the volume of 

the system. If two walls are at separation H=2, no solvent particle can enter the slit. For H > 

2, the available volume for the solvent particles in the pore V= )2(2 HL . For low H the 

density in the pore is much smaller than the bulk liquid where we ignore the effect of 

correlations. In such a case, TNkHL BT /)2(2   . Therefore, we can write 

)2(/ 2

0||  HLTNkDD B  which indicates a 1/H-dependence of ||D , as shown by the fitted 

line in Figure 4.11b. Comparing the exponential behaviours of )]0(),([  tt r,r   and S(t), 

given in section 4.1, we can write )/(1 2Dk . Since, the majority of the solvent response 

comes from the solvent movements in the first few coordination spheres of the solute 

corresponding to 1k , we get in slit geometry where the relevant diffusion is in planes 

parallel
65, 210

 to the walls of the slit: 
||

2 / D  . Thus we can write here ||

2

2 / D 

 TNkDHL B0

22 /)2(   . This clearly indicates a linear relation between 2 and H as we 

observe in Figure 4.11a. 
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4.3.4 Implications of the results 

Let us now discuss various perspectives of our observations on confinement induced 

changes in SD. The mechanisms of slowing of SD we bring out here would control various 

chemical reactions in confined geometry. One important class of chemical  reaction, for 

instance, is charge-transfer (CT) or proton-coupled electron-transfer in biological systems
193

. 

Effects of SD on rates of CT reactions have been studied widely in biomimetic systems, like, 

RMs which show
45

 qualitatively similar slowing of rate as confinement becomes stronger. 

Although such systems, for instance, the fluorescent dyes in an associative solvent like water, 

are very complex with complicated interactions, both the RM and the reacting species are 

solvophilic. Our results on the solvophilic confinement show that one contribution to the 

observed slowing down in the rates of CT reactions in these systems is due to slow SD in 

response to the suppression of fluid diffusion under strong confinement. Interestingly, 

considering the four times slowing of SD in a slit geometry, one would expect ~12 times 

slowing down in a confining framework in all directions, like that in a spherical RM which is 

qualitatively similar to the experimentally observed (10 to 100 times) slowing down
45

. Fluid-

phase reactions in carbon nanotubes
37

 using metal nanoparticles as catalysts in alcohol 

solvents, like, methanol have drawn lot of attention recently where the confining frameworks 

are solvophobic. The reaction rates and the yields are found to be enhanced significantly in 

the nanotubes
37

 compared to the bulk. This phenomenon can be qualitatively explained from 

our observations with solvophobic slits. Here SD is slower, but the in-plane fluid diffusion is 

faster than the bulk case. As a result the reacting particles encounter each other at a faster 

rate, even before they are solvated by the medium.  

It would be interesting to discuss our results of 4.3.3 in light of the earlier 

observations with sub-critical water confined in solvophobic environment. Several studies
204, 

218
 on the phase behaviour and fluctuations of water molecules near hydrophobic surfaces in 

nanoscale slits to show similar evaporation effects as we have seen here. However, the 

presence of a single hydrophilic site resists
204

 the evaporation and leads to similar 

competition we have observed. This competition has been interpreted
203, 219

 in terms of 

changes in density fluctuation behaviour of water molecules near a hydrophobic surface via 

the hydrophilic interaction which plays very important part in deciding the phase behaviour 

of water at a biomolecular interface. Our simplified model captures all these essential 

physics. Our results reflect the dynamical aspects of solvation affected by such competing 

interactions. In general biomolecular surfaces are heterogeneous having both types of 

interactions. Solvation plays very important role in associations of biomolecules
203

 where two 
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such surfaces with competing interactions come in close vicinity. Our results on solvation 

dynamics may be helpful to understand the kinetics of such biomolecular and 

macromolecular associations. Moreover, the fixed solute approximation would be useful for 

large solutes
212

, like the biomolecules and different macromolecules in general where the 

movement of solute is much slower compared to the solvent molecules. The perturbation 

chosen here in terms of change in solute size also would be applicable for the 

macromolecular solutes, since any perturbations leading to chemical reactions always 

accompany changes in shape and conformation of the participating solvated species.  

The most interesting aspect of our results on SD under solvophobic confinement, in 

equilibrium with a sub-critical bulk liquid, is the faster SD under strong confinement and its 

linear approach to bulk behaviour with increasing H. This behaviour is in sharp contrast to 

the confinement induced slowing down where the confined fluid is far away from any phase-

transition. Our results also clearly show that experimental observation of this slowing of SD 

cannot be rationalized without precise specification of the surrounding equilibrium bulk fluid. 

More interestingly, the solvation of solvophilic solute in a solvophobic pore in equilibrium 

sub-critical liquid near phase-coexistence offers a wonderful scope for tuning of solvation 

timescales which may be useful in controlling chemical and physical processes in the 

confined media. In particular, the sub-critical liquid in solvophobic confinements, like, 

carbon nanotubes, graphene nanochannels, sol-gel matrix, could be attractive media for 

controlling the chemical reactions, namely, large scale catalysis, charge-transfer, nanoparticle 

synthesis and physical processes, for instance, industrial scale separations and extractions, 

and so on. 

4.4 Conclusion 

In conclusion, we have shown that the dimensional crossover in static density 

fluctuations for a confined fluid can be understood from the modifications in long-

wavelength response of the fluid due to confinement-induced geometrical constraints. The 

dynamic density fluctuations also show the signature of this crossover. Our results provide a 

clear relation between the crossover of different physical properties and the length scale of 

confinement although the detailed nature of the crossover is sensitive to the confining 

potential. Thus, we suggest a possible general mechanism for the crossover in large number 

of diverse static and long-time dynamical quantities under confinement.  

We also show that the SD of a solute in a nanoconfined fluid is affected by the 

dimensional crossover in fluid properties. In fact, two different aspects of crossover in 
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solvophilic and solvophobic slits lead to different mechanisms of slowing down of SD 

observed in several confined systems. There is sharp slowing down of solvation timescale in 

solvophilic slits due to suppression of fluid diffusion by the attractive walls, in addition to the 

restricted solvent dynamics in confining direction. The slowing down of SD is marginal in 

solvophobic slits which can be explained via a competition between two opposite effects: 

reduction of dimensionality in solvent dynamics and faster solvent diffusion in narrow 

repulsive slits. Experiments and further theoretical investigations are required to verify the 

suggested mechanisms which could shed important light on solvation dominated chemical 

processes under confinement.   

Finally we examine the effects on surface-induced phase transition on the SD of a 

solute in a fluid confined in solvophobic environment when the bulk is a sub-critical liquid 

close to the liquid-gas phase coexistence. The solvent response is bi-exponential as in the 

bulk liquid. This happens due to the formation of a meta-stable high density phase by the 

wetting induced by the solvophilic solute in competition with the drying effects of the 

solvophobic walls. However, SD slows down linearly to approach the bulk character as the 

confinement becomes weaker. Thus, we bring out clearly how geometric constraints, in 

combination with the influences of the confining potential, nature of solute and the 

thermodynamic state of the surrounding bulk fluid lead to a dramatic behavior of the SD in a 

nanoconfined fluid. Our results would help in further theoretical and experimental 

investigations on nanoconfined fluids with well-specified surrounding bulk fluid phase. 
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Chapter 5 Conformational fluctuations in biomacromolecules 
 

5.1 Introduction  

Biomacromolecules are large flexible molecules which exist in numerous possible 

conformations in biological environments. Fluctuations among these conformations are of 

fundamental importance from various perspectives, like, structure, function and applications. 

Specific conformations are required for thermodynamic stability of biomacromolecules. One 

classic example of such conformational fluctuation is the folding of proteins into its native 

conformation
220

. The biomacromolecules need to adopt suitable conformations in general to 

participate in molecular recognition, signal transduction, gene expression and so on
69-72

. 

Furthermore, subtle conformational changes of different biomacromolecules have been 

utilized in various nano-biotechnological applications
73, 74, 221

. Thus, microscopic 

understanding of conformational changes in biomacromolecules is important from both 

biological and technological standpoints.  

The biomacromolecules, like proteins, are characterized by a large number of internal 

degrees of freedom which specify the conformations. When a biomacromolecule binds with a 

binding partner, these large molecules themselves experience conformational changes, to 

stabilize the complex
85

, along with the changes in surrounding solvent
84

. Not only that these 

changes take place simultaneously over different binding regions consisting of large number 

of conformational variables, but also the interactions between different groups of atoms are 

diverse. A microscopic understanding of biomacromolecular binding at the level of the 

binding regions, essential for understanding most of the biophysical and biochemical 

processes in detail, is thus one of the most challenging problems
86, 87

.  

The most important equilibrium aspect of conformational fluctuations is the 

thermodynamic characterization including both entropy and free energy contributions
91

. 

Experimentally, the binding entropy and the binding free energy for biomacromolecular 

complexes have been measured by isothermal titration calorimetry (ITC)
69

. However, this 

macroscopic method cannot yield the information on the changes of individual binding 

regions. With the advent of NMR relaxation experiments
92-95

 to measure the conformational 

entropy costs in biomacromolecular complexes, the role of conformational changes in the 

binding regions has been emphasized. Computer simulations provide a useful route to extract 

thermodynamic data at the microscopic level in controlled manner
81

. The computer 

simulations
222-225

 to estimate the conformational entropy from the normal modes
226

 associated 



Chapter 5  94 

 

with atomic vibrations or quasi-harmonic (QH) analyses
227

 have been numerically very 

challenging, while the approaches based on purely statistical scoring functions from the 

crystal structure databases
228, 229

 are devoid of microscopic details. Atomic Cartesian 

coordinates often are not suitable to capture all possible bond rotations, thus providing poor 

estimates
230

 of conformational entropy. Furthermore these methods are often limited due to 

huge collective motional correlations inherent to changes in atomic Cartesian coordinates.  

Recently, the protein dihedral angles have been widely used as the conformational 

variables. Multidimensional histograms of the dihedral angle distributions have been 

constructed to estimate the conformational entropy
97

. However, such calculations are 

computationally demanding thus limiting the applicability to small systems only. A detailed 

approach
79

 incorporating correlations among the dihedral angles up to different order (pair-

wise correlations, three-point correlations and beyond) has shown that ~80% of the 

conformational entropy for different small molecules could be recovered by neglecting all 

sorts of correlations. In biomacromolecules, the long-ranged dihedral correlations have been 

found
90, 231

 to be negligible except some short-ranged correlations among the side-chain 

torsions. These observations practically illustrate the importance of completely reduced one-

dimensional histograms
80, 232

 based on a single dihedral angle. A recent Monte-Carlo based 

approach
98

 has considered a fixed-backbone implicit solvent model to probe the contributions 

of side-chain entropies towards the binding entropy for protein-ligand interactions. Their 

estimates correlate quite well with the ITC data
233

 for several Calmodulin-target peptide 

complexes.  

Accurate and efficient estimation of conformational free energy is quite challenging 

till date. The conformational states of a small biomacromolecule have been explored via UV 

resonance Raman measurements
96

 where the free energy difference between two states has 

been calculated by the population ratios of those two states. Computational methodologies for 

calculation of conformational free energies are of two types: 1) estimating the absolute free 

energies of a conformational state; and 2) evaluating the free energy differences between two 

states. One recent example of the former class is the reference system method
234

. It is an 

implicit solvent model based on the description of a reference system for a biomacromolecule 

using the internal or Cartesian coordinates. Though this method gives good measures of 

conformational free energies for dipeptides, application to larger systems is computationally 

very costly. There are a number of methods belonging to the latter class. For instance, the 

confinement method
235

, a variation of the normal mode analyses and the deactivated 

morphing method
236

, based on non-physical transformations between two conformational 
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states where all the interactions are turned off before the change. Non-equilibrium MD 

simulations
82

 have been employed, based on differential fluctuation theorem
237

, to evaluate 

free energy differences with implicit solvent contributions. Explicit solvent MD 

simulations
238

 have also been used to calculate the free energy differences between two 

conformational states of a polymer chain, using a path variable connecting two states on the 

configurational phase space. A Common limitation of all these approaches is their 

inefficiency to study medium to large biomacromolecular systems and focus on individual 

binding regions. 

The dynamic conformational fluctuations control various fundamental non-

equilibrium processes in biological systems including allosteric regulations
239

. The 

remarkable ability of biomacromolecules to transmit responses over large distances is known 

as allosteric regulation which governs a host of cellular processes, ranging from signal 

transduction to gene expression
240-243

. For example, binding of a ligand at one sub-unit of a 

protein affects the subsequent ligand binding at another sub-unit through propagation of 

change in protein shape or conformation far away from the first ligand binding site
103

. Recent 

experiments
244-249

 indicate that even in absence of any structural changes, the ligand-induced 

modifications of dynamic fluctuations of a protein can link two sites via allosteric regulation.  

The current understanding of allosteric regulation is based on population shift 

experienced by the biomacromolecule into different conformational states
104, 105, 250

 upon 

ligand binding. This shift occurs through the participation of a large number of dynamically 

coupled conformational degrees of freedom. The simplest system showing dynamical 

coupling are a set of coupled harmonic oscillators. However, the conformational degrees of 

freedom are much more complex in nature. In fact, experimental characterization of the 

dynamic coupling among conformational degrees of freedom has been quite challenging, 

despite several techniques to probe conformational dynamics of biomacromolecules
75-78

. 

NMR experiments have been widely used to probe allostery
251

. Changes in intrinsic dynamics 

at allosteric sites, observed via measurement of NMR relaxation rates of backbone motions, 

have been a good marker of dynamic-driven allostery in proteins
244, 245

. A solution-NMR 

residual dipolar coupling analysis have shown that significant rotational motions of different 

sub-domains control the allosteric regulation in a heat-shock protein
252

. Covariance analysis 

of NMR chemical shifts has been used
253

 to study the coupling between residues which 

participate in allosteric regulation in a protein during ligand binding events. Using this 

method, other dynamics-driven allosteric networks have also been identified from the inter-

residue chemical shift correlations. However, the nature of dynamic coupling among 
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allosteric degrees of freedom revealing a complete molecular picture has remained elusive. A 

microscopic characterization of dynamics of the conformational variables is thus of primary 

importance to understand the allosteric events. 

In the absence of detailed knowledge on dynamic coupling among the conformational 

degrees of freedom, the processes responsible for population shift are taken to be Markovian 

so that the transition to a conformational state depends only on the previous one
254

. Although 

the Markovian model has been tested for few biomacromolecules in the long-time limit using 

a Master equation approach
105

, its validity needs the knowledge of all the dynamical variables 

associated with the processes
254

 which is a really difficult task. Apart from the Markovian 

model of population shift, various other techniques have been employed to understand the 

mechanism of allosteric regulation in biomacromolecules. Many of the approaches
255-262

 are 

based on different network-models of biomacromolecules to highlight allosteric pathways for 

conformational transitions. Such models have also formed the basis of normal-mode 

analyses
257

 to describe allosterically regulated large domain motions, induced by ligand-

binding, in biomacromolecules. Despite revealing important insight to allosteric regulation
256, 

260
, the coarse-grained network models lack any atomistic detail. However, there are a 

number of atomistic approaches, like models
263, 264

 based on fluctuations of distances between 

different parts in a biomacromolecule; structure-based statistical mechanical model
265

 based 

on large backbone and side-chain entropic contributions as driving factors of allosteric 

transitions in proteins; statistical coupling analysis
266

 to map the equilibrium correlations 

among parts of biomacromolecules; cross-correlation matrices
267

 between position vectors of 

C atoms of different residues; force distribution analysis
241

; and investigation
268

 of 

evolutionarily conserved pathways of allosteric signal transmission via energy propagation. 

The distance fluctuation matrices and the correlation maps, although point at key allosteric 

sites or correlated regions in biomacromolecules, cannot reveal the nature of dynamic 

correlation between allosterically coupled dynamical variables. Since the biomacromolecules 

feature a wide distribution of timescales of various kinds of motions, the temporal behaviour 

of such correlations could be very important for specific allosteric events occurring in a given 

time-domain. Recent studies
79-83, 90, 105, 269, 270

 have shown that the dihedral angles are 

convenient variables to microscopically describe conformations of biomacromolecules, 

including the conformational thermodynamics
83

 and allosteric regulation in proteins
105, 269, 270

. 

However, these studies do not directly address the dynamic coupling of the dihedral angles.  
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In the present chapter, we study both the equilibrium and non-equilibrium aspects of 

conformational fluctuations. We extract thermodynamics of the conformational changes from 

the one-dimensional histograms of the dihedral angles. These histograms can be sampled 

efficiently from the equilibrium trajectories from all-atom MD simulations of a 

biomacromolecular complex and its components in their respective free states, all being in an 

explicit solvent. The connection between the underlying thermodynamics and the histogram 

can be understood as follows: Since the histograms can be treated as the probability of 

finding the system in a given conformation, they can be interpreted as given by the 

Boltzmann factors of the corresponding effective free energies; while the entropies are given 

by the Gibbs formula
98

. The histogram-based method (HBM)
83

 can yield both the information 

simultaneously from a single set of simulations, unlike the existing expensive computation 

methodologies which provide the entropy and free energy separately. Moreover, the HBM is 

capable of yielding the conformational thermodynamics data for each binding regions in the 

complex. 

We apply the HBM
83

 to experimentally well studied Calmodulin-peptide complexes. 

Calcium (Ca
2+

) saturated Calmodulin (CaM) is the primary mediator of target protein 

activities responding to changes in intracellular calcium levels
271

. CaM belongs to the class of 

EF-hand proteins. EF-hand
272

 is a helix-loop-helix structural motif that generally binds a Ca
2+

 

ion via the loop. CaM has two globular domains: N-terminal (N-domain) and the C-terminal 

domain (C-domain). Each domain has two EF-hands, I and II in the N-domain and III and IV 

in the C-domain (Figure 5.1a). Two domains are connected via a linker region consisting of 

29 residues (residues 68-92). Metal-free (apo) CaM, upon Ca
2+

-saturation, undergoes subtle 

conformational changes
273, 274

 in the metal-bound (holo) form (Figure 5.1a) with the linker 

becoming a long helix and thus exposing the target-binding hydrophobic faces of CaM for 

target peptides
69

. Moreover, the linker gets deformed to wrap around the peptides (Figure 

5.1b) which are CaM-binding sequences of large number of proteins including several 

regulatory enzymes
275, 276

 e.g. protein kinases, phosphodiesterases, cyclases etc. Here we 

consider five such peptides: CaM-binding sequences of smooth muscle myosin light chain 

kinase (smMLCK)
277

, the neuronal and endothelial nitric oxide synthases (nNOS and eNOS 

respectively)
278

, the calmodulin kinase I (CaMKI)
69

 and the calmodulin kinase kinase 

(CaMKK)
279

. For all these CaM-peptide complexes the ITC data
69, 233, 277

 and conformational 

entropy changes ( confS ) measured via NMR relaxation experiments are known
75, 233, 280, 281

. 

According to observations, the total changes in conformational entropy (
tot

confS ) is linearly 

correlated with the total binding entropy ( tot

bindS ) for the complexes. Recent work
75

 shows 
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that confS
 
for CaM and the target peptides are linearly related to 2

MeS , the average 

changes in residue-weighted methyl group order-parameters 2

MeS  which describes the 

rotational freedom of the methyl group. We estimate confS of the complexes and the 

components correctly and recover the experimental observations. Further, we estimate the 

conformational free energy cost of binding to predict different contributions of the individual 

binding regions of CaM. Our calculations show that the deformations in linker helix to wrap 

around the peptides cost huge free energy and entropy. The unfavourable changes are 

outweighed by the favourable changes at different binding regions dominated by the 

interactions among the charged residues and the hydrophobic residues.  

 

Figure 5.1: Binding events of CaM. (a) Apo- to holo- transition of CaM using cartoon 

representations. The EF-hand loops are coloured: I (purple), II (yellow), III (pink) and IV 

(cyan). The part of linker that undergo loop to helix transformation is marked by circle. 

(b) CaM bound to a target peptide (blue), smMLCK.  

 

We also consider the Ca
2+

-ion binding to apo-CaM. Despite several experimental
100, 

101, 282
 and theoretical studies

283, 284
 on such binding events, the conformational 

thermodynamics of CaM upon Ca
2+

-ion binding is largely unexplored. Using the HBM we 

estimate the contributions from individual metal-binding sites to the conformational 

thermodynamics along with the role of the individual residues in bringing about the 

thermodynamic changes in the conformation space. We find four metal-ion binding sites in 

CaM have different conformational free energy and entropy changes with the major share of 

the changes due to the coordinating residues to the Ca
2+

-ions. The non-coordinating residues 

in the vicinity of the binding sites also undergo thermodynamic changes. We find substantial 

thermodynamic changes in the linker where modification of the secondary structural element 

takes place (Figure 5.1a). Finally, we correlate these results with the experimentally 

measured binding data and discuss the broad implications of our studies.  

The dynamic correlation between the non-equilibrium fluctuations of different 

degrees of freedom have been studied in great detail via time-dependent correlation functions 
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(TDCF) for various non-equilibrium systems
65, 111, 254, 285

. The TDCF between two variables 

describes how the changes in a physical quantity affect the other quantities after certain time. 

The TDCF remains non-zero till a timescale called dynamic correlation time (). Such TDCF 

has not been explored in details in the context of dynamical variables associated with the 

biomacromolecules. We extract the TDCF of the dihedral angles in a protein from the 

temporal evolution of all-atom MD trajectories. Our primary objective is to probe directly the 

dynamic correlation among the conformational variables participating in allosteric regulation. 

We illustrate the TDCFs of the dihedral angles in the case of Ca
2+

 ion binding to apo-CaM 

which is known to involve certain allosteric events. We show that a number of dihedrals 

exhibit long-ranged temporal correlation with non-exponential behaviour. Further, a sub-set 

of dynamically cross-correlated dihedrals of distant residues is affected via binding of Ca
2+

 

ions to CaM, indicating their involvement in allosteric regulation. Our approach, based on 

dynamic correlations, provides a significant advancement to understand allosteric regulation 

of biomacromolecules without any assumption on the underlying dynamical processes. 

The rest of the present chapter is organized as follows: We describe the HBM for a 

protein-ligand binding and its extensions in Section 5.2. The results on conformational 

thermodynamics for CaM-peptide complexes are presented, along with a prediction and 

discussions on merits and demerits of HBM in 5.3. Conformational thermodynamics for 

binding of Ca
2+

 ions to CaM is considered in 5.4. Section 5.5 deals with the allosteric 

regulations in CaM. We conclude in 5.6. 

5.2 The histogram based method for conformational thermodynamics 

In this section we illustrate the theoretical basis of HBM for protein-ligand binding 

and its extensions. 

5.2.1 Protein-ligand binding 

For a system with conformational variable set i , the normalized probability 

distribution is given by:  

      Tk
Z

P Bii  H exp
1

                                            (5.1) 

where kB is the Boltzmann constant, T the absolute temperature,   iH , the Hamiltonian 

and Z, the partition function of the system. The reduced probability distribution for a given 

conformational variable   can be obtained by integrating over the other variables in Eq. 5.1: 
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  iP         i
i

iBi dTkZ    Hexp1      TkGZ B exp1           (5.2) 

which defines the effective free energy G(ξ) or the potential of mean force
111

 associated with 

 . 
 

We consider ≡ where  and are the dihedral angles for protein p and ligand l 

respectively. Subsequently, we use the subscripts p+l, p and l to indicate quantities associated 

with the complex, the protein and the ligand respectively, while the superscripts c and f to 

denote the bound and free state respectively. We define the following effective free energies 

from Eq. 5.2: 

    TkG
Z

P B

c

lp

c

lp /exp
1

   ,             TkG
Z

P B

f

p

f

p /exp
1

   

                         and          TkG
Z

P B

f

l

f

l /exp
1

                                          (5.3) 

Therefore, the free energy change for due to complexation is 

 

   
.ln)(




















f

l

f

p

c

lp

Bconf
PP

P
TkG                                            (5.4) 

The correlation between any two dihedral angles i of ith residue and j  of jth residue 

is defined as
80

  

  jijisC 
 coscoscoscos                                    (5.5) 

where the jis   and the angular brackets denote ensemble average. If correlations are 

negligibly small, the conformational variables can be considered independent. Then we write,

      c

l

c

p

c

lp GGG  and       c

l

c

p

c

lp PPP  to give us from Eq. 5.4:  
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P
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TkG lnln)(                                (5.6) 

so that the thermodynamics is given separately in terms of the individual dihedrals. If we sum 

over all the dihedral angles of protein and ligand we get the total conformational free energy 

change: 

lig

conf

prot

conff

l

c

l

Bf

p

c

p

B

tot

conf GG
P

P
Tk

P

P
TkG  

)(

)(
ln

)(

)(
ln











.                     (5.7) 
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We can express
tot

confG differently to illustrate the nature of approximations in our 

calculations. Let z() be the partition function corresponding to effective free energy G() = 

kBT ln z(). Therefore, z() = exp(G()/kBT) = P()Z, from Eq. 5.3, P() being the 

probability distribution for . Defining z() for the protein variables  and ligand variables  

in free and complex states we can write 

)(
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which, using Eq. 5.7, simplifies to 
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where )()( 


c

p

c

p zZ  and so on. The term in square brackets in Eq. 5.9 is the conformational 

contribution to the equilibrium binding constant. Here we assume that the other degrees of 

freedom like bond angles and bond vibrations change very little in the complex compared to 

the free states and they are decoupled from the dihedral angles, thus cancelling out from the 

ratio in Eq. 5.9. The ratio of partition functions in Eq. 5.9 resembles that used earlier
286

 to 

define the standard free energy of binding of a receptor to a ligand. However, we consider 

here only a restricted set of internal degrees of freedom associated with equilibrium 

fluctuations of the dihedrals. Since we focus only on the conformational part of the 

thermodynamics we do not consider the solvation components, although the effects of solvent 

on dihedral distributions have been taken into account through explicit solvent molecules. We 

also ignore the external contributions to the thermodynamics as in Marlow et al
75

. 

The normalized probability distribution of a protein dihedral  is given by the 

histograms )(c

pH and )(f

pH
 
and that for a ligand dihedral by )(c

lH and )(f

lH in the bound 

and the free state, respectively. They can be generated from equilibrium trajectories obtained 

by molecular simulations. The peak of the histogram defines the equilibrium value of the 

relevant dihedrals. Then the equilibrium conformational free energy cost associated with any 

protein dihedral  is  

)](/)(ln[)( max,max,  f

p

c

pB

eq

conf HHTkG                                   (5.10)  
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where the subscript „max‟ denotes the maximum of histogram. Such a treatment is sufficient 

since the population at the base of a peak is insignificant (1-10%) compared to that at the 

maximum for a typical histogram. 

The free energy contributions from the neighbourhood of the maximum can be 

accounted for within a QH expansion about the maximum. We expand a histogram )(H

about the maximum at 0 up to the quadratic term: 2

00 ))(()2/1()(   HHH mox

where )()( 00  CH  , the curvature near the maximum. Therefore, the effective free energy 

for   can be written using Eq. 5.3 as:  

ZCHTkG B ln]))(()2/1(ln[/)( 2

00max   .                         (5.11)  

Equation 5.11 can be rearranged to give   ]1[ln/)( 2

max BxZHTkG B   where 0 x  

and moxHCB 2/)( 0 . For 12 Bx , we get   2

maxln/)( BxZHTkG B  . This can be 

further approximated as   1]exp[ln/)( 2

max  BxZHTkG B  to yield 

  ]exp[ln/)( 2

max BxeZHTkG B                                     (5.12) 

Considering contributions from all x, Eq. 5.12 can be written as: TkG B/)(
~
  ]ln[ maxeZH

 
dxBx 




]exp[ 2 . This integration essentially implies that the contributions around the peak 

have been taken into account at QH level. The integration gives the modified free energy  

)]1)/exp(ln[/)(
~

max  BZHTkG B  .                                (5.13)  

The corresponding free energy difference is then 

 f

p

c

p

f

p

c

pBconf BBHHTkG //)](/)(ln[/)(
~

max,max,   .                    (5.14) 

Similar expressions like Eq. 5.10 and 5.14 can be written for the ligand dihedrals as well.  

For multi-modal histograms we compute the free energies by taking average, 

weighted by the maximum values of the peaks. For a particular dihedral  with multi-modal 

histograms in both free and complex states, the free energy cost is given by 
ji

ijij Gc
,

where

)/ln( max,max,

f

i

c

jBij HHTkG   representing the free energy cost for transition from ith peak 

in free state to jth peak in the complex state and )/( max,max,max,max, 
j

c

j
i

f

i

c

j

f

iij HHHHc , the 

respective weights. 
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The conformational entropy for a particular dihedral can be estimated directly using 

the Gibbs entropy formula, given for a dihedral by 

)(ln)()(  
i

iiBconf HHkS                                         (5.15) 

where the sum is taken over the histogram bins i with a non-zero value of Hi(). Therefore, 

the conformational entropy change for the dihedral is  
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c

iBconf HHHHkS .                  (5.16) 

In the QH-limit, the entropy associated with the histogram of any dihedral can be 

expressed in terms of the entropy of a harmonic oscillator fitted to the peak. The frequency of 

the oscillator of mass  and force constant k is given by  // Ck  . So, entropy is 

given by )]//2ln(1[)(  ChTkkS BBconf  , h being the Planck‟s constant. If Cf and Cc 

are the curvatures near maxima for the dihedral-histogram in free and complexed states 

respectively, we have 

)/ln()2/1()( cfBconf CCkS                                           (5.17) 

For multi-peak histograms QH entropies are obtained by weighted average over the peaks 

with finite curvature around the maxima.  

The thermodynamics of conformational changes of a given residue are finally 

obtained by adding all the associated dihedral contributions. confG  and confS  of a given 

region are computed by adding the contributions of all residues in that region. Similarly, the 

total changes are calculated by adding all residue contributions. 

5.2.2 Metal-ion binding to protein 

We can write down the free energy cost for dihedral  for apo- to holo-transition of 

the protein as 

)(confG )()(  apoholo GG     ]/ln[  apoholoB PPTk ,                           (5.18) 

where the respective states are indicated by the appropriate subscripts. To arrive at Eq. 5.18 

we assume the total partition function Z of the system to remain unchanged in the apo- and 

the holo-state. These two states differ only by (i) the Ca
2+ 

ions and (ii) a few added counter 

ions that replace some water molecules to maintain constant N. The replacement of water 

molecules with ions may lead to difference in Z between apo- and holo-state. However, this 
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difference is proportional to the ratio of fugacities
111

 of the added ions (including Ca
2+

) and 

replaced waters, given by )/exp()/exp( TkTkz BwaterBion    where ‟s are chemical 

potentials of the respective species. Since the densities of the ions ( ion ) are too small, we 

have ionion  ln~  and hence z ~ 0, indicating that the difference in Z between the two 

states can be safely neglected. This is further supported by very small difference in ionic 

strengths between the apo-CaM system (0.26) and the holo-CaM system (0.29) simulated 

here. The total free energy change is then 

   ]/[ln 


apoholoB

tot

conf PPTkG  .                                          (5.19) 

Here, the contributions from other variables like bond angles, bond vibrations etc. are 

considered to remain similar in apo- and holo-states since metal-ion binding only alters the 

secondary and/or tertiary structure of the protein. Consequently, they get decoupled from the 

dihedrals and their distributions cancel from the ratio in Eq. 5.19. Thermodynamics of 

solvation are not considered as we focus only on the conformational changes. However, the 

solvent-effects on conformation have been incorporated via the explicit solvent. The total 

equilibrium conformational free energy difference in terms of histograms is given from Eq. 

5.19 by  

)](/)([ln maxmax 


apoholoB

tot

conf HHTkG  ,                                          (5.20) 

The conformational entropy change for any dihedral is obtained from Eq. 5.16: 
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5.3 Conformational thermodynamics of CaM-peptide complexes 

In this section we discuss the conformational thermodynamics of CaM-peptide 

complexes. First we describe the details of the simulations. Then the results in the following 

order are presented on methyl order parameters, dihedral correlations, histograms, 

conformational entropy and conformational free energy. Then we discuss changes at different 

binding regions, scaling between methyl order parameters and conformational entropy and 

predictions using HBM. Finally we discuss different merits, demerits and possible routes to 

extend the HBM. 

 



Chapter 5  105 

 

5.3.1 Simulation details 

For CaM-peptide complexes, we perform all atom MD simulation of the free protein, 

free peptide and the complex in explicit water. Simulations are done with the NAMD 

program
287

 at 308K and 1 atm pressure in isothermal-isobaric (NPT) ensemble under standard 

protocols
288

, using the CHARMM force-field
289

, periodic boundary conditions and 1 

femtosecond time-step. TIP3P model is used for solvent water molecules. Electroneutrality is 

maintained via addition of counter-ions (Na
+
 or Cl


). The particle-mesh Ewald method

290
 is 

used to treat the long-ranged electrostatic forces. The initial configurations are chosen from 

following protein data bank (PDB) entries: 1CDL (smMLCK), 1NIW (eNOS), 2O60 (nNOS), 

2L7L (CaMKI), 1CKK (CaMKK) and 1CLL (free CaM). The peptide coordinates in the 

complexes are taken as the initial configurations of the free peptide simulations. We keep the 

number of total particles including water, pressure and temperature fixed for each case to 

make the simulated ensembles equivalent. We run 50 ns long simulations to capture most of 

the protein motions and peptide motions relevant for binding. The equilibration is ensured in 

any run by monitoring the root mean square deviation of the biomacromolecules, shown in 

the Figure A1 in Appendix. We analyze the data at two levels: First, we consider the 

trajectories up to 10 ns since the conformational entropy is dominated primarily by sub-ns 

side-chain motions
75, 233

, and calculate the histograms for the dihedral angles from 

equilibrated configurations sampled beyond 2 ns. Subsequently, we consider the longer 50 ns 

trajectory and compare data with the shorter run. The dihedral angles are calculated from 

angle between the relevant atomic planes
89

 given by the Cartesian coordinates of the 

associated atoms.  

5.3.2 Methyl order parameters 

By definition 2

MeS  of a methyl group increases from zero to unity as its rotation about 

the long-axis gets restricted indicating lowering of entropy. We compare our calculated 

methyl group (Figure A2) order-parameters 2

MeS (calc) (method in Appendix A) to the 

experimental data 2

MeS (exp)
75

 in Figure 5.2a (CaM) and 5.2b (peptide) for a representative 

case: eNOS-complex. Most of the Ala, Met, Val and Thr methyls are close to the perfect 

correlation line ( 2

MeS (exp)= 2

MeS (calc)) or within the 2

MeS (exp)= 2

MeS (calc)0.2 region, 

indicating reasonable agreement between the theoretical and experimental values. There are 

some overestimations, mostly for the Leu methyls, as expected for force-field based MD 

simulations
291, 292

. Results of other complexes are shown in Figure A3 and A4.  
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Figure 5.2: Methyl order parameter data. 2

MeS are shown for different types of methyls (a) 

CaM and (b) peptide in the eNOS-complex. Here, the experimental data (exp)2

MeS are 

plotted against the theoretical )calc(2

MeS values. The straight lines show (exp)2

MeS =

)calc(2

MeS (solid), (exp)2

MeS = )calc(2

MeS +0.2 (dotted) and (exp)2

MeS = )calc(2

MeS 0.2 

(dashed) situations.  

5.3.3 Equilibrium correlations among dihedral angles 

We choose the backbone dihedrals ,  and the side-chain dihedrals 1, 2, 3, 4 and 

5.  Figure 5.3a-c show the equilibrium correlations (Eq. 5.5) among different dihedrals. The 

correlation data among different dihedrals in CaM (Figure 5.3a) and peptides (Figure 5.3b) in 

various complexes and the cross-correlations between CaM and peptide dihedrals (Figure 

5.3c) indicate nearly zero correlations among the dihedrals which is consistent with the 

earlier observations
80, 231

.  

 

Figure 5.3: Equilibrium dihedral correlations and histograms. (a-c)  - correlations 

 sC    (Eq. 5.5) where   and    are dihedral angles from two residues and s is the 
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difference between their locations. (a) Dihedrals of CaM in different complexes: 

   in the eNOS-complex (solid line),  in smMLCK-complex (dashed), 1 angles in 

nNOS-complex (dotted) and 2 in CaMKI-complex (dash-dot). (b) Dihedrals of peptides in 

different complexes:    in the eNOS-complex (solid line),  in CaMKI-complex 

(dashed), 1 angles in smMLCK-complex (dotted) and 2 in CaMKK-complex (dash-dot). 

(b) Cross-correlations among side-chain dihedrals   from protein and    from peptide: 

1   in nNOS-complex (solid), 2 in eNOS-complex (dashed), 1 in CaMKI-complex 

(dotted) and 2 in CaMKK-complex (dash-dot). Representative histograms of (d)  of 

Glu45 of CaM in free and bound form in smMLCK-complex. The inset shows the near-peak 

region for the free case. In each case three convergent histograms are shown in solid, 

dashed and dotted lines sampled from different parts of the MD-trajectory; (e) of 

Lys802 of smMLCK peptide in free (dotted) and CaM-bound form (solid). Multi-modal 

histograms are shown for (f) 2 of CaM residue Leu69 in free and bound form in CaMKK 

complex and (g)2 of CaM residue Asp118 in free and bound form in CaMKI complex. 

 

Figure 5.4: The convergence of conformational entropy during the simulation. A 

representative case of smMLCK complex is shown. The CaM and peptide contributions 

individually remain almost invariant with time demonstrating the robustness of the 

histogram technique. The errors in calculated Sconf for free CaM (0.05 kJ K-1mol-1) and for 

CaM in the complex (0.04 kJ K-1mol-1) are quite small. The errors in the peptide-data are 

nearly zero. 

 

5.3.4 Histograms of dihedrals and convergence of thermodynamics 

In absence of significant correlations, we consider the histograms of the individual 

dihedrals for the calculation of thermodynamics. The histograms are calculated over 10 sets 

of equilibrated configurations each having 1000 samples from different parts of the 

trajectory. Figure 5.3d shows three such histograms in free and complex states for the 
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dihedral angle  of CaM-residue Glu45 in smMLCK-complex. The similarities of these 

histograms indicate the convergence of thermodynamic quantities calculated based on them, 

for instance, conformational entropies (Figure 5.4). Due to equivalence of the samples we 

compute the overall changes in entropy and free energy via a flat average over the entire 

equilibrium trajectory. All the backbone dihedrals exhibit sharply single-peaked histograms 

with the maxima around the equilibrium values in the initial configuration (PDB 

coordinates). Histograms of  dihedral of a peptide residue Lys802 of smMLCK peptide are 

shown in Figure 5.3e. Multi-modal histograms have been mostly observed for the side-chain 

dihedrals, as illustrated in Figure 5.3f for 2 of CaM residue Leu69 and Figure 5.3g for 2 of 

CaM residue Asp118, indicating different rotameric states.  

 

Figure 5.5: Conformational entropy data. (a-b) Comparison of theoretical and 

experimental 
tot

confS  for CaM-peptide binding plotted against the experimental tot

bindS  

from ITC measurements233: (a) Calculated 
tot

confS (Gibbs formula) from the 10 ns runs 

(filled circles), the 50 ns runs (open circles) along with the experimental 
tot

confS (Marlow 

et al75) (filled triangles). The lines represent the best linear fits: 10 ns (dashed), 50 ns 

(dash-dot) and the experimental data (dotted). The stars represent the 50 ns 
tot

confS data 

in QH-limit. (b) Calculated 
tot

confS from 10 ns simulations (filled circles) and 50 ns 

simulations (open circles) using QH approximation. The best linear fits: 10 ns (dashed, 
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m=0.39, R2=0.53) and 50 ns (dash-dot, m=0.47, R2=0.32). (c) The conformational entropy 

contributions of the components from 50 ns run plotted against tot

bindS : CaM contributions 

(open squares) with the best fit line (dashed) and peptide contributions (open diamonds) 

with the best fit line (dash-dot). The corresponding experimental data75 are also shown 

for CaM contributions (filled squares) with the best fit line (solid) and peptides (filled 

diamonds) with best fit line (dotted). 

 

5.3.5 Conformational entropy 

In Figure 5.5, we compare our calculated total conformational entropies
tot

confS of the 

complex with the available experimental results. First we consider the results calculated using 

the Gibbs formula (Eq. 5.16) (Figure 5.5a). Here we compare the 10 ns and 50 ns data with 

the experimental 
tot

confS  (filled triangles) reported in Marlow et al
75

. Both the theoretical and 

experimental 
tot

confS  are plotted against the corresponding tot

bindS  from ITC
233

, showing linear 

correlations between 
tot

confS
 
and tot

bindS . The 10 ns data (filled circles) can account for the 

experimental trend (filled triangles) except for CaMKI and CaMKK. However, the best fit 

correlation line has slope m = 0.3 and linear correlation coefficient R = 0.3 which are far 

from the experimental data (m = 0.95 and R = 0.75). The 50 ns data (open circles) provide an 

overall better estimate for all cases where the correlation line (m = 1.3 and R = 0.95) agree 

quite well with the experimental data. One reason of the underestimation by the 10 ns data for 

CaMKI and CaMKK could be the fact that the initial configurations for simulations in these 

two cases are NMR determined structures. For other complexes the initial structures are from 

crystallographic data where the 10 ns and 50 ns data hardly make any difference. NMR-data 

generate an ensemble of structures, unlike the only structure obtained from crystallography. 

Therefore, equilibration of the solution-NMR structures may not have been completed 

properly in the 10 ns simulation run. Figure 5.5a further shows that 
tot

confS from QH 

approximation (Eq. 5.17) (open stars) leads to underestimation, although the linear 

correlation between 
tot

confS and tot

bindS  is observed here as well (Figure 5.5b). 

The confS (in kJ K
-1

 mol
-1

) for all the side-chain dihedrals in the complexes showing 

multi-peak histograms are 0.43 (nNOS), 0.23 (eNOS), 0.57 (CaMKI), 0.56 (smMLCK) 

and 0.58 (CaMKK) obtained using the Gibbs formula. Such multi-modal histograms 

contribute more than 60% of the total conformational entropy stabilizations of the complexes, 

indicating the importance of the redistributions of populations among various side-chain 

rotamers in the binding. In Figure 5.5c, we report the contributions of the CaM and peptide 

separately in the complexes, estimated from the 50 ns runs. The CaM contributions show 
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good agreement between the theoretical (open squares) and the experimental data (filled 

squares). The best fit theoretical line (dashed, m = 1.1, R = 0.88) almost quantitatively 

matches the experimental correlation line (solid, m = 1.0, R = 0.94)
75

. We find CaM in 

CaMKI to be entropically most stabilized and least stabilized in nNOS which support the 

same experimental observations
75

. In the same line for the peptide, we get similar entropic 

stabilization for all the cases.  

 

Figure 5.6: Conformational free energy data. (a) Calculated 
tot

confG  and the individual 

protein and peptide contributions along with the experimental tot

bindG . All data are in kJ 

mol-1. Surface representations of CaM-peptide complexes showing the residue-wise (b) 

Gconf of CaM for the cases where the protein is most stabilized (CaMKK) and least 

stabilized (eNOS); (c) Sconf of CaM in most ordered (CaMKI) and disordered (nNOS) 

complexes. The stabilized residues are green and destabilized ones are red. The residues 

undergoing minor changes are white. Peptide is in violet cartoon representation. 

 

5.3.6 Conformational free energy 

The total conformational free energy changes 
tot

confG
 

calculated from histogram 

maxima (Eq. 5.10) and the contributions of the components are shown in Figure 5.6a along 

with the experimental total binding free energy cost
233 tot

bindG . The  tot

bindG  values fall in a 

very narrow window (45-52 kJ mol
-1

). Our estimated 
tot

confG also lie in a similar range (27-

47 kJ mol
-1

) for four complexes except CaMKK where the extent of stabilization is nearly 

double. This separates out CaMKK from the others which may be a signature of its opposite 

binding orientation compared to other four: While binding to CaM, N-terminal of four of the 

peptides interact with the C-terminal of CaM, except CaMKK for which C-terminal of the 

peptide interacts with the N-terminal of the protein and so on
279

. We also estimate the 
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contributions to 
tot

confG due to finite width of the histograms using Eq. 5.14, to be only 1-5% 

of the estimate from histogram maxima for all the complexes except smMLCK for which this 

difference is ~15%. Although it seems from tot

bindG -data that all the peptides exhibit similar 

affinity to CaM, the conformational contributions of the components bring out a different 

picture. The protein is conformationally most stabilized in CaMKK-complex, while least 

stabilized in eNOS-complex. The peptide, on the other hand, is stabilized similarly in all the 

cases except in CaMKK-complex.  

 

Table 5.1: Conformational thermodynamics of different highly stabilized peptide binding 

regions of CaM in the complexes. The residue numbers according to the PDB indices are 

listed. The conformational free energy and entropy contributions of these binding 

regions are shown along with their percentages of charged and polar residue 

contributions (CPRC) and hydrophobic residue contributions (HRC).  

peptide CaM residues 

Gconf (kJ mol-1) Sconf (kJ K-1 mol-1) 

Total 
CPRC 
(%) 

HRC 
(%) 

Total 
CPRC 
(%) 

HRC 
(%) 

nNOS 11-19, 36-41, 42-50, 84-92     31 29 

eNOS 11-19, 117-123     76 4 

CaMKI 
7-10,36-41, 42-50, 52-55, 71-76, 84-

92, 105-116 
    68 15 

smMLCK 
11-19, 36-41, 52-55, 84-92, 105-116, 

117-123 
    65 12 

CaMKK 
7-10, 11-19. 36-41, 42-50, 52-55, 84-

92, 105-116, 124-128 
    49 22 

DAPK2 11-19, 35, 36-41, 42-50,124-128     55 23 

 

5.3.7 Thermodynamics at individual binding regions 

The thermodynamic changes at each protein residue are shown by surface 

representations in Figure 5.6b-c for the most and least stabilized complexes, both free-

energetically and entropically. In Figure 5.6b, CaMKK and eNOS complexes are shown, 

where the green residues are stabilized, the red residues are destabilized and the white 

residues undergo a marginal change in conformational free energy. In Figure 5.6c we show 
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the entropy changes for CaMKI and nNOS complexes where the green residues are ordered 

while the red residues are disordered in the bound protein compared to the free state. Similar 

surface representations showing residue-level changes of the other complexes are included in 

Figure A5. 

 Next we examine closely the changes in the peptide binding regions (PBR) of CaM. If 

any atom of a protein residue comes within a distance of 5Å of a peptide atom, we consider 

the corresponding residue to be part of the PBR. The thermodynamic contribution of a PBR is 

obtained by summing over the contributions of the residues that are part of the PBR. 

Different PBRs show different degree of thermodynamic stabilizations. The residues in linker 

helix responsible for the wrapping the peptide, constitute the most destabilized PBRs. The 

deformation of linker helix occurs for different peptides at slightly different locations where a 

coiled region is formed due to loss of secondary structure element. For instance, in nNOS-

complex the coil is produced over the residues 77-83 (Gconf = +19.8 kJ mol
-1

 and Sconf = 

+0.07 kJ K
-1

mol
-1

), whereas it is 73-76 for smMLCK (Gconf = +11.7 kJ mol
-1

 and Sconf = 

0.0 kJ K
-1

 mol
-1

) and 76-81 for CaMKK (Gconf = +20.6 kJ mol
-1

 and Sconf = +0.08 kJ K
-1

 

mol
-1

). For the other two complexes these regions are residues 77-83 with the changes being 

for eNOS (Gconf = +15.6 kJ mol
-1

 and Sconf = +0.08 kJ K
-1

 mol
-1

) and CaMKI (Gconf = 

+12.8 kJ mol
-1

 and Sconf = +0.12 kJ K
-1

 mol
-1

). 

The huge free energy cost at the destabilized PBR is compensated by the favourable 

changes at the other PBRs and the peptides. The changes at the most stabilized PBRs for 

different complexes are shown in Table 5.1. Furthermore, CaM being an acidic protein 

interacting with all these peptides rich with basic residues, the electrostatic contributions are 

also expected to play an important role. We analyze from our calculations the contributions 

of these protein-peptide interactions in some highly stabilized PBRs. It is quite apparent from 

Table 5.1 that the charged and polar residue contributions dominate in all the cases, for both 

conformational free energy as well as entropy. The highly stabilized common binding regions 

in all the complexes are CaM-residues 11-19 (EFKEAFSLF), 36-41 (MRSLGQ), 42-50 

(NPTEAELQD), 52-55 (INEV), 84-92 (EIREAFRVF) and 105-116 (LRHVMHNLGEKL). 

Evidently, these PBRs are rich in charged (E, D, R, K, H) and polar (S, Q, N, T) residues 

making it the dominating stabilizing factor in CaM-peptide complexes. Table 5.1 also shows 

that there are stabilized residues with hydrophobic side-chains (F, A, L, I, V, M) as well, 

undergoing substantial conformational stability in the binding, as pointed out earlier from 

structural analyses
69

 and recent NMR studies
280

.   
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5.3.8 Scaling of conformational entropy with methyl order parameters  

The agreement between our results on confS and those of Marlow et al.
75

 has got a 

strong implication. Marlow et al.
75

 connects the NMR data on 2

MeS , the average changes 

of residue weighted 2

MeS , to confS for several CaM-peptide complexes. By definition, 

2

MeS
peptide

2
CaM

2

MepepMeCaM SnSn  where nCaM  and npep are the numbers of residues 

in CaM and peptide respectively.
CaM

2

MeS
CaM

2
CaM

2

f
Me

c
Me SS  and 

peptide
2

MeS

peptide
2

peptide
2

f
Me

c
Me SS  where the average is taken over the available methyl groups in the 

respective system. The underlying assumption is that 2

MeS  is a measure of conformational 

disorder at any residue so that 2

MeS  is a dynamical proxy for conformational entropy. This 

identification heavily relies on the linearity of ( tot

bindS  solS ) with experimental 2

MeS  (

solS  being the calculated solvent contribution
75

) as shown in Figure 5.7a (dotted line, 

m=0.039) that leads to linear dependence of 
tot

confS  on 2

MeS  with the same slope.  

 

Figure 5.7: Conformational entropy and methyl order parameters. (a) ( tot

bindS  solS ), 

taken from Marlow et al.75, plotted against experimental75 (triangles with error bars) and 

our calculated (open circles) values of 2

MeS . CaMKK is an outlier to the experimental 

best fit line (dotted, m=0.039, R=0.97) as well as the best fit through the calculated data 

(dash-dot, m=0.042, R=0.98). (b) Plot of 
tot

confS (circles) and 
tot

confH /T (squares) vs. 

2

MeS  from our calculations excluding CaMKK. Both the best fit lines (dash-dot for 
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tot

confS and solid for 
tot

confH /T) have m=0.05. The solid symbols represent the data for 

the CaM-DAPK2 complex. 

 

We calculate 2

MeS  from our simulation data on 2

MeS  in order to check whether we 

could recover the experimentally observed linearity between ( tot

bindS  solS ) and 2

MeS . The 

estimation of 2

MeS  from simulation is somewhat tricky. Although 
CaM

2

c
MeS  and 

CaM
2

f
MeS  

remain very similar over the entire equilibrium trajectory, 
peptide

2

c
MeS  and 

peptide
2

f
MeS converge 

slowly with convergence achieved typically beyond 12 ns (Figure A6). Such slow 

convergence is probably due to the presence of fewer methyl groups than in protein. The 

convergence for smMLCK is the poorest, for it has the least number (8) of methyl groups. 

This slow convergence for peptides leads to pronounced variations in 2

MeS  arising due to 

large multiplicative factors (nCaM = 148 and npep ~20). Therefore, we consider only the long-

time part of the trajectory to estimate 2

MeS . The ( tot

bindS  solS ) from Marlow et al
75

 is 

linear with our calculated 2

MeS  (dash-dot line in Figure 5.7a, m = 0.042) excluding the 

data for CaMKK which is an outlier in the experimental plot as well. A microscopic 

justification for the use of 2

MeS as a dynamical proxy of conformational entropy in Marlow et 

al
75

 is provided by Figure 5.7b showing the linearity between our estimated 
tot

confS  (open 

circles) from dihedral distributions and simulated 2

MeS  (dash-dot line) with very similar 

slope (m = 0.050). Since, our calculated 
tot

confG values are very similar for different 

complexes except CaMKK, the conformational enthalpy changes )( tot

conf

tot

conf

tot

conf STGH 

should also have the same linearity with 2

MeS  as 
tot

confS for thermodynamic consistency. 

We find this indeed is the case in Figure 5.7b, also showing the plot of TH tot

conf /  values 

(open squares) of the complexes, excluding the outlier CaMKK.  

5.3.9 Prediction 

We apply our approach to make predictions on the conformational thermodynamics of 

binding of a target peptide from death associated protein kinase (DAPK2)
293

 to CaM. Here, 

the S308D mutant of DAPK2 has been considered with a high resolution crystal structure 
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(PDB ID 1ZUZ) and known ITC data ( 5.39 tot

bindG kJ mol
-1

 and 28.0 tot

bindS  kJ K
-1

 

mol
-1

 at 300K)
293

. However, nothing is known regarding the conformational entropies of this 

system to the best of our knowledge. We perform 20 ns runs for this complex and the free 

peptide as we have seen earlier that shorter runs are sufficient to capture the conformational 

thermodynamics if crystal structures are employed as starting configurations. The residue-

wise 2

MeS data are given in Figure A7. We find 29.1 tot

confS kJ K
-1

 mol
-1

 using the Gibbs 

formula where the CaM and peptide contributions are 0.98 and 0.31 kJ K
-1

 mol
-1

 

respectively. The 
tot

confS value follow the same linear scaling with 2

MeS  as the other 

complexes as shown by the closed circle in Figure 5.7b. We get 1.38 tot

confG  kJ mol
-1

 with 

CaM and peptide contributions being 15.4 and 22.7 kJ mol
-1

, respectively. These free 

energy values are very similar to the case of smMLCK. The calculated 
tot

confH  (filled square) 

falls, just like 
tot

confS , on the line drawn for other complexes in Figure 5.7b. Residues 77-83 

constitute the maximum destabilized PBR in DAPK2-complex with very similar changes as 

earlier: Gconf = +21.2 kJ mol
-1

 and Sconf = +0.02 kJ K
-1

 mol
-1

. Surface representations of 

CaM-DAPK2-complex are included in Figure A5 where contributions of different CaM-

residues are shown. The changes of highly stabilized PBRs are listed in Table 5.1 along with 

the associated contributions of charged and hydrophobic residues. 

5.3.10  The HBM: merits, demerits and extensions 

Efficiency of any computational method depends on the simulation length to generate 

a convergent thermodynamics. The present method is highly advantageous from that point of 

view as indicated by the convergence of the histograms and conformational entropy (Figure 

5.4) obtained from different parts of trajectory. The convergence has been achieved with 

shorter runs (10 ns) where initial configurations are taken from available crystal structures, 

while longer runs (50 ns) are required for the solution-NMR derived initial structures. The 

reduced histograms can also be generated from suitable model initial structures in the absence 

of PDB structure. However, the equilibration may depend on how the initial conditions are 

constructed.  

As far as the efficiency of the method used to extract confS from the histograms is 

concerned, both the Gibbs formula and QH-approximation are computationally comparable 

when the dihedrals are uncorrelated. Although the Gibbs formula is more accurate, the QH 

approximation is often used for its simplicity and as a benchmark-tool for analyses with 
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probability distributions of conformational variables. However, the QH approximation 

underestimates confS in our studies. It may be stressed that we use the QH approximation to 

incorporate the free energy contributions for conformations away from the equilibrium value 

marked by histogram maxima. Such treatment is meaningful due to low weightage of those 

conformations compared to the equilibrium conformation.  

Experimentally, large amplitude rigid body domain motions have been observed for 

CaM in time scales much longer than 50 ns
78

. Due to high conservation of the compact 

structures among all the complexes these domain motions are not expected to vary much 

from one to another. Such motions of time scale ~milliseconds
78

, in both free and complex 

states, would be decoupled from the sub-ns highly localized side-chain motions
75

 that control 

the conformational thermodynamics. Even if we consider the entropy change associated with 

such motions, given by the logarithm of the ratio of two high-frequencies in free and complex 

states, the contribution would be insignificant.  

The uncorrelated dihedral angles reduce the computation-cost enormously. However, 

when the correlations of the conformational variables cannot be neglected, the correlation 

matrix can be diagonalized to obtain the uncorrelated basis and used for the calculations. For 

any two conformational variables i  and j  the covariance matrix is symmetric since

jiij CC  . Therefore, one can determine a set of uncorrelated variables }
~

{ i  by diagonalizing 

the covariance matrix, 
j

jiji 
~

where ][ ij  is the transformation matrix found by the 

eigenvalues. The maximum of a sharp histogram of a given variable is essentially equal to its 

mean and the curvature given by the variance. The mean of the transformed variable, 


j

jiji 
~

, the variance: Var( i
~

) = .))
,

2  
kj

kjjkijiii  Cov(Var(

 

5.4 Conformational thermodynamics for Ca2+-ion binding to CaM 

In this section we consider the thermodynamics of conformational changes for Ca
2+

-

ion binding to apo-CaM. The equilibrium dihedral correlations and histograms in apo- and 

holo-CaM are shown in section 5.4.1. Overall thermodynamics and domain contributions are 

discussed in 5.4.2. Then we present the contributions of the Ca
2+ 

binding loops in detail in 

5.4.3. Changes in the linker in CaM are discussed in 5.4.4. We comment on generalization of 

our observations for other proteins in section 5.4.5.  
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5.4.1 Dihedral correlations and histograms 

To study metal-ion binding to apo-CaM we simulate from the PDB structure 1CFD 

for apo-state of CaM. The equilibrium correlations (Figure 5.8a-b) among different side-

chain dihedrals in both apo- and holo-CaM turn out to be negligible (Figure 5.8a), although 

the backbone dihedrals show short-ranged correlations (Figure 5.8b). In section 5.3.3 we have 

shown that one can ignore such correlations in the calculations of the thermodynamic 

quantities. Accordingly, we treat the dihedrals as independent conformational variables
80, 83

.  

Some sample histograms of apo- and holo-CaM dihedral angles are shown in Figure 

5.8c-f. The backbone dihedral histograms generally have one sharp peak typically around the 

values in PDB structure. This is illustrated in Figure 5.8c-d for  of a loop I residue Glu31 

(Figure 5.8c) and  of Thr79, residue in the linker (Figure 5.8d). We find significant increase 

in the histogram peak value with reduction of width from apo- to holo-state indicating 

increase in rigidity of the protein backbone due to binding to Ca
2+

. The Ca
2+

-coordinating 

side-chains are more prone to changes induced by metal-ions. For instance, the 2-histogram 

of Ca
2+

 binding residue Asp133 (loop IV) exhibits two broad peaks in apo-state (Figure 5.8e) 

each indicating a rotamer, while there is one sharp peak in holo-state. For Ser81 in the loop 

region of the linker helix in apo-CaM (marked in Figure 5.1), the 1-histogram (Figure 5.8f) 

shows a very similar behaviour as in Figure 5.8e. This observation demonstrates the 

suppression of side-chain fluctuations induced by the binding of metal-ions. 

 

Figure 5.8: Equilibrium dihedral correlations and histograms in apo- and holo-CaM. 

)(sC   (Eq. 5.5) for (a)    and (b) 1   in apo- and holo-CaM. Histograms 

for dihedrals (c)  (Glu31), (d)  (Thr79), (e) 2 (Asp133) and (f) 1 (Ser81) in apo and 

holo-CaM. Line description for all panels is same as in panel a. 
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5.4.2 Overall thermodynamics data 

The conformational thermodynamic changes have been calculated for the holo-state 

with respect to the apo-state. A negative value of Gconf means stabilization in holo-state than 

in apo-state, while positive values indicate destabilization. As far as Sconf is concerned, a 

negative value means ordering in holo-state with respect to apo, while positive Sconf suggest 

disordering. We find 
tot

confG = 54.9 kJ mol
-1

 for binding of four Ca
2+

, nearly 30% of the 

experimentally measured binding free energy
282

. The corresponding
tot

confST = 128.7 kJ mol
-1

 

indicating substantial drop in conformational flexibility due to Ca
2+

 binding. In absence of 

any experimental data, we provide an alternative verification of our estimated 
tot

confST  from 

2

MeS
 

calculated from the simulations
83

. We estimate 2

MeS =10.95 (detailed order 

parameter data shown in Figure A8-A10 in Appendix). Using the theoretical value of the 

slope
83

 (0.05) of the linear dependence between 
tot

confST  and 2

MeS , we find 
tot

confST

=169 kJ mol
-1

 which is close to the estimated 
tot

confST from dihedral histograms.  

As far as the domain-specific data are concerned, we find the N-domain of CaM 

conformationally more stabilized ( confG  = 26.5 kJ mol
-1

) in presence of Ca
2+

 ions 

compared to the C-domain ( confG  =  kJ mol
-1

). This observation matches with the 

trend of domain-wise binding free energies in earlier grafting experiment
100

 and isothermal 

titration calorimetry measurement
101

. Entropically both domains get ordered when bound to 

metal-ions, N-domain being more ordered ( confST =  kJ mol
-1

) compared to the C-

domain ( confST =  kJ mol
-1

).  

5.4.3 Conformational changes of the Ca2+ binding loops 

Figure 5.9 summarizes the loop-wise data on conformational entropy change 
L

confST  

(L=I, II, III and IV) (Figure 5.9a) and free energy change 
L

confG  (Figure 5.9b) of the Ca
2+

-

ion binding to CaM. Loop I, II and IV undergo conformational ordering and stabilization 

upon Ca
2+

 binding as indicated by negative values of both 
L

confST and 
L

confG . Loop III, 

however, shows a different trend. The 
L

confST -value of loop III shows slight disordering 

upon the metal-ion binding, while the 
L

confG  value indicates marginal stabilization,. The 

finding of different 
L

confG values for the four loops is consistent with the earlier experimental 

observations
100, 101

 of four different Ca
2+ 

binding constants for CaM, indicating different 

affinities of the four EF-hands.  

Figure 5.9 also shows the contributions of different type of residues in these loops 

towards the respective 
L

confST  (Figure 5.9a) and 
L

confG  (Figure 5.9b). The trends are very 

similar in both the panels for all the loops. In all cases except loop III, the main change comes 
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from the acidic residues, nearly all coordinating to Ca
2+

. However, the ordering and 

stabilization of the acidic residues in loop III is nearly half of those observed in loops I and 

IV. The basic residues in loops I are ordered and stabilized, while that in loop III remains 

almost unchanged. The residues with hydrophobic side-chains and those with polar side-

chains order and stabilize amply in loops I, II and IV.  

 

Figure 5.9: Data of the four EF-hand loops. (a) confST and (b) confG , showing the total 

changes and contributions of different types of residues. The loop descriptions are: loop I 

- residues 20-31 (amino acid sequence DKDGDGTITTKE), loop II - residues 56-67 

(sequence DADGNGTIDFPE), loop III - residues 93-104 (sequence DKDGNGYISAAE) and 

loop IV - residues 129-140 (sequence DIDGDGQVNYEE). 

 

Figure 5.10 presents the residue-wise conformational entropy changes 
i

confST (Figure 

5.10a), i being the residue-index, and conformational free energy changes 
i

confG  (Figure 

5.10b) of the four EF-hand loops using cartoon representations. Earlier studies have shown
100, 

284
 that the stabilities of these loops depend heavily on their amino acid compositions and the 

charge of the binding cation. Although the four Ca
2+

 binding loops of CaM are structurally 

very similar and all of them show strong sequence conservation at three loop positions 1, 6 

and 12, their conformational stabilizations upon binding of Ca
2+

 are different as revealed on 

closer inspection.  

All of the four acidic residues in loop I: Asp20, Asp22, Asp24 and Glu31, coordinate 

to Ca
2+

, get ordered and stabilized. The only uncharged Ca
2+ 

coordinating residue Thr26 also 

undergoes high ordering and good stabilization. There are several non-coordinating loops 

residues as well which show thermodynamic changes. The basic residue Lys21, located 

between acidic Asp20 and Asp22, also undergo favourable changes. The backbone between 

Asp20 and Asp22 closes up somewhat upon Ca
2+

 binding. This brings the side-chain of 

Lys21, projecting outward perpendicularly to the loop-backbone in the apo-state, within the 

range of electrostatic interactions with the negatively charged side-chains of Asp20 and 
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Asp22 in the holo-state. The other basic residue Lys30 is also ordered and stabilized, with its 

side-chain drawn near the polar residue Thr29 undergoing favourable charge-dipole 

interaction. Among the hydrophobic residues Ile27, the structural linker with loop II
100

, gets 

ordered with a high stabilization.  

 

Figure 5.10: Cartoon representations of the EF-hand loops in holo-CaM to show the 

residue-wise data. (a) 
i

confST  and (b) 
i

confG  (in kJ mol-1). The colours are described in 

the figure. 

In case of Loop II, the Ca
2+

 coordinating ligands are acidic residues Asp56, Asp58, 

Glu67 and the polar residues Asn60 and Thr62. All become ordered upon metal-ion binding, 

but the extent of ordering is less compared to the Ca
2+

 coordinating residues in loop I. 

Maximum ordering is observed for Glu67, a bidentate Ca
2+

 coordinating ligand like Glu31 in 

loop I. The smaller 
i

confST of Asp56 and Asp58, compared to their analogue Asp20 and 

Asp22 in loop I, is probably due to absence of any basic residue in between them. 

Interestingly, this is evident from the fact that 
i

confST values of Lys21 and Lys30 and the 

excess 
i

confST of Asp20 and Asp22 over their analogues in loop II add up to ~ 8.0 kJ mol
-1

, 

comparable to the difference in 
L

confST between loop II and loop I. The fourth acidic residue 

Asp64 though does not coordinate to Ca
2+

, gets ordered highly because of the negative charge 

on its side-chain pointing towards the Ca
2+

. Among other non-coordinating residues, Ala57, 

Ile63 and Phe65, all of which are hydrophobic, also become conformationally more ordered 

and stable compared to the apo-state (Figure 5.10).  

The 
L

confST (~ +0.2 kJ mol
-1

) and 
L

confG (~ 2.4 kJ mol
-1

) values of loop III (Figure 

5.9) suggest very different Ca
2+ 

binding behaviour compared to loops I and II. One reason 

could be the lack of any fourth negatively charged residue in this loop. This trend is 
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supported by the enhanced Ca
2+

 binding affinities observed by mutational studies
294

 via 

increasing the number acidic residues in loop III. Flexibility of this loop increases upon Ca
2+ 

binding, indicated by the high disordering of Ca
2+

 coordinating residues Asp93, Tyr99 and 

Glu104. Most ordered residue in this loop is Ca
2+

 coordinating Asn97 which occupies the 

same loop position as Asp24 in loop I and Asn60 in loop II. The other Ca
2+

 coordinating 

residue Asp95 also undergoes ordering and stabilization which is reflected in the movement 

of its side-chain, for coordinating to Ca
2+

,
 
closer to the side-chain of Lys94 for favourable 

interactions. The ordering of non-coordinating residue I100, the structural link to loop IV, is 

very small (Figure 5.10a), while its stabilization is significant (Figure 5.10b). 

The loop IV, on the other hand, shows similar changes as loops I and II. It has five 

acidic residues, maximum among the loops. Four of them: Asp129, Asp131, Asp133 and 

Glu140, coordinate to Ca
2+

 and become highly ordered and stabilized. The disordering and 

instability of the fifth acidic residue Glu139, which is non-coordinating, is due to the local 

repulsive strain its side-chain experiences with that of Glu140. Such repulsions lead to 

somewhat less stabilization of Glu140 compared to its N-domain analogues Glu31 and 

Glu67. Among other non-coordinating residues in this loop, ordering and stabilization of 

Gln135 and that of Val136, the structural link to loop III are also significant. The most 

ordered residue here is Tyr138 (Figure 5.10a) whose stabilization is also high (Figure 5.10b). 

The ordering factors here are: the reorientation of its side-chain brining it near Phe89 gaining 

substantial stacking interaction and favourable charge-dipole interactions with Glu82 and 

Glu140.  

5.4.4 Changes in linker 

The most striking conformational change upon Ca
2+

 binding to apo-CaM occurs in the 

linker (residues 64-92), connecting the two domains, where a loop (the encircled region in 

Figure 5.1a) becomes helical in holo-state helping CaM to expose its hydrophobic surface for 

target-binding. The metal-induced changes of the linker helix in CaM are quite substantial: 

confST = and confG = 13.3 kJ mol
-1

 for all 29 residues in the linker. These values 

account for ~34% of 
tot

confST  and ~25% of 
tot

confG  for the whole protein. The majority of the 

changes in linker helix come from the loop region that becomes helical upon Ca
2+

-binding. 

confST = 20.5 and confG = 10.2 kJ mol
-1

 for these six residues 76-81 account for ~46% of 

confST  and ~77% of confG  estimated for linker helix.  
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5.4.5 Generalization of results on metal-ion binding to protein 

Due to appreciable similarity in sequence, structure and mode of function among 

different EF-hand proteins with CaM, our results on CaM can be useful to understand the 

Ca
2+

 binding activities of the EF-hand proteins in general. It is well known that the EF-hand 

proteins, just like CaM, possess distinct domains containing EF-hand pairs with different 

Ca
2+

 binding affinities. For instance, Calbindin D9k has
295

 two EF-hands, one of which, 

having higher Ca
2+

 binding affinity than the other, is similar in composition and structure to 

one of the EF-hands in CaM. The other one is an unconventional EF-hand with the loop 

containing 14 residues. Both the EF-hands in Parvalbumin
296

 are homologous to those in 

CaM and therefore, could be expected to exhibit similar affinities. Calbindin D28k has
297

 six 

EF-hands out of which four are high affinity sites for Ca
2+

. Troponin-C and Centrin both have 

four EF-hands
298, 299

 distributed over the N- and C- globular domains with a helix linking 

them, just like CaM. They all undergo conformational changes upon Ca
2+

 binding which are 

very similar to CaM. Another EF-hand protein S100A1 is, even, known to compete with 

CaM for binding to the same target
300

. The conformational entropy and free energy costs of 

different key residues in CaM for Ca
2+

 induced conformational changes would be helpful for 

understanding the stabilities and target related activities of analogous residues in these EF-

hand proteins.  

5.5 Allosteric regulations in Ca2+ binding to CaM 

In this section we consider the allosteric regulations in apo- to holo-transition of CaM 

upon binding of Ca
2+

 ions, via the TDCFs of dihedral angles which describe the dynamic 

correlations. First, we describe in section 5.51 the calculations of the TDCFs. The results on 

TDCFs are presented in 5.5.2. Then we interpret the changes of TDCF pattern in terms of 

allosteric regulations and connect our method to existing understanding of allostery in 5.5.3.  

5.5.1 Dynamic correlations between dihedral angles 

We compute the dynamic fluctuations of dihedral angles of the residues in CaM in 

both the apo- and the holo-states. The dihedral auto-correlation function (DACF) of a 

dihedral  of one residue is defined via the TDCF
80

: 

 )cos)]0()(cos[cos)]((cos[)(   ttC                     (5.22)                            

where tand are the values of the dihedral at time t and at time t 0, respectively. The 

dihedral cross-correlation function (DCCF) )(tC   corresponds to the case when and are 

dihedral angles of two different residues. The single angular brackets denote ensemble 
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average, while double angular brackets represent average over 10000 independent initial 

conditions
111

 chosen from the equilibrated part of the MD trajectories.  

5.5.2 Dihedral auto- and cross correlations in CaM 

First, we characterize the nature of fluctuations of the dihedral angles over the 

simulated MD trajectories with respect to their mean values in the simulated ensemble. 

Figure 5.11a shows a couple of sample distributions )(cosH  vs. cos for the dihedral  of 

Ile27 and  of Met76 in apo-(metal-ion free) CaM. Such plots clearly show that the 

fluctuations about the mean value are Gaussian. The mean values agree to the values of these 

dihedral angles in the PDB structure. 

 

Figure 5.11: Statistics and correlations of dihedral angles. (a) The histograms )(cosH for 

the dihedral  of Ile27 and  of Met76 in apo-CaM. (b) DACFs )(tC  for dihedral  of 

Ile27 and that for  of Met76, along with their exponential fits, all in apo-CaM. DCCFs 

)(tC    for dihedrals of different pairs of CaM residues in apo (solid) and holo-states 

(dotted): (a)  of Asp20 and Asp56, (b)  of Ile 27 and Ile63, (c) 1-1 of Ser101 and 

Asn137 and (d) 2-2 of Glu104 and Glu140. All the correlation functions are shown after 

division with their values at t=0

 

The majority of the dynamic correlation functions of the dihedrals show usual 

exponential decay
111, 254, 285

 with short  (~ less than 1 ns) which we designate as the absence 

of dynamic correlation. There are, however, a number of cases where there are large 

deviations from such behaviour. We show in Figure 5.11b a couple of such cases, namely, 
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DACF for the same dihedrals for which the fluctuations have Gaussian distributions. The  

for these cases are as long as about 15 ns. The solid lines in this plot exhibit the exponential 

fits which makes it evident that these DACFs deviate from exponential decay. In particular, 

both of them show anti-correlations which cannot be captured by the exponential functions. 

The non-exponential character is exhibited by several DCCFs as can be seen from 

Figure 5.11c-f and Figure 5.12. The typical  for the DCCFs is around 3-4 ns. Although these 

values are smaller than those for the DACFs, they are much larger compared to the timescales 

of side-chain motions which are predominantly in the sub-ns regime.  

It is interesting to compare the DCCFs in the apo- and the holo-states. Probing into the 

domain-wise behaviour, we first consider the N-domain. Figure 5.11c shows the  DCCF 

between Asp20 (loop I) and Asp56 (loop II) for which ~ 3 ns in apo-state, but the dynamic 

cross-correlation is absent in holo-form. The  DCCF between the structurally linked 

residues
100

 Ile27 (loop I) and Ile63 (loop II) in the apo-state also has ~ 3 ns which vanishes 

in holo-state (Figure 5.11d). In C-domain, only side-chain dihedrals show significant DCCFs. 

In Figure 5.11e we show the DCCF of one such case: 1-1 DCCF between Ser101 (loop III) 

and Asn137 (loop IV) with similar in apo-state, and dynamically uncorrelated in holo-form. 

However, opposite trend is shown in Figure 5.11f by 2-2 DCCF between Glu104 (loop III) 

and Glu140 (loop IV) which is significant in holo, but not in apo.  

 

Figure 5.12: Cross-correlations between dihedrals of linker and loops. DCCFs )(tC    for 

dihedrals of different pairs of CaM residues in apo (solid) and holo-states (dotted): (a) 

 of Met76 and Gly25, (b) - of Lys77 and Lys94 (c)  of Asp78 and Gly59, (d)  of 

Asp80 and Ile63. 
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Figure 5.13: Dynamic cross-correlation patterns in the loops. N-domain: (a) backbone and 

(b) side-chain dihedrals. C-domain: (c) backbone and (d) side-chain dihedrals. Class A 

(green) includes pairs of dihedrals correlated in apo-state, but not in holo. Class B (red) 

includes correlated dihedral pairs in holo, but not in apo-state. One residue pair show 

‘mixed’ (yellow) behaviour. The dashes, coloured according to the classes, connect the 

residues correlated to each other. In panels (a) and (c) the distances between the 

residues in each pair are shown beside the connecting dashes. 

 

Figure 5.14: Dynamic cross-correlation patterns between the dihedrals of linker and loop 

residues. (a) Backbone and (b) side-chain dihedrals. The classification and colouring 

schemes are similar to Figure 5.13. 

 

Next we consider the DCCFs between the dihedrals of the Ca
2+

 binding loop residues 

and those from residues 76-81 of the linker helix in CaM which undergoes loop to helix 

transition upon binding of Ca
2+

 ions to CaM (Figure 5.1a). A few typical such DCCFs are 

shown in Figure 5.12 where  is a dihedral of one of the six residues 76-81 and  is a 
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dihedral of a loop residue. In Figure 5.12a, we show the  DCCF between Met76 and 

Gly25 (loop I) which is non-trivial in apo-state, but is negligible in holo-form. Similar 

behaviour is observed for all other cases:  DCCF between Lys77 and Lys94 (loop III) in 

Figure 5.12b, Asp78 and Gly59 (loop II) in Figure 5.12c and Asp80 and Ile63 (loop II) in 

Figure 5.12d.  

We compare the overall dynamic cross-correlation patterns in N- and C-domains in 

Figure 5.13 in the apo and the holo states. We find two major classes of dihedral-pairs. Some 

pair shows non-trivial dynamical cross-correlation in the apo-state which vanish in the holo 

state, marked as class A (green coloured residues connected by green dots). There is another 

group of dihedral pairs with opposite behaviour, namely, significant dynamical cross-

correlation in the holo state, but not in the apo state, which we mark as class B (collared red 

and joined by red dots). Apart from the classes A and B there are cases where the dihedrals 

show similar or negligible dynamical correlation in both the apo- and the holo-state 

(uncoloured residues). Figure 5.13a shows the dynamical correlations between backbone 

dihedrals of loop-residues in the N-domain. We observe the dominance of class A with 

several pairs of residues, separated by long-distances (5-20Å) and cross-correlated 

dynamically via backbone. For instance, the distance between the C atoms of Asp20 in loop 

I and Asp56 in loop II are 18 Å, yet they show non-trivial  DCCF in apo-state. Similarly, 

significant  DCCF is shown in apo-state by Thr28 in loop I and Asp64 in loop II, 

although C distance of these residues is as large as 20 Å. However, among the side-chains in 

N-domains (Figure 5.13b), there are very few dynamical cross-correlations with two pairs in 

class A (Asp22 in loop I with Asp58 in loop II and Ile27 in loop I with Ile63 in loop II) and 

one pair in class B (Thr29 in loop I with Phe65 in loop II). In C-domain, backbones are 

totally uncorrelated in apo-state shown in Figure 5.13c. In contrast, some long-ranged holo-

state dynamical cross-correlations build up here on the backbone (class B): Lys94 in loop III 

and Ile130 in loop IV with C distance 19 Å; and Asp95 in loop III and Asp131 in loop IV 

with C distance 20 Å. Among the side-chain dihedrals in C-domain (Figure 5.13d), we find 

only two class A pairs: Tyr99 (loop III) and Gln135 (loop IV) with C distance 9 Å; and 

Ser101 (loop III) and Asn137 (loop IV) with C distance 11 Å. A good number of side-chain 

dihedrals belong to class B. The behaviour of side-chains of N97 and Asp133 are mixed, 

since 1-1 DCCF falls in class A, but 2-2 DCCF in class B.  

This linker region is about 20-30 Å away from each of the four loops as shown in 

Figure 5.14a. We find that most of the backbone dihedrals and  of the residues of this 
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loop-segment are dynamically cross-correlated in apo-state with the backbone dihedrals of 

the loop residues, but these correlations are absent in holo CaM (class A). This is clearly 

shown in Figure 5.14a for the linker residue Thr79 as a representative case. Only a few loop 

residues show side-chain dynamical correlations with those of Thr79 (Figure 5.14b) of both 

class A and B types. The situation is very similar for most of the other linker residues as well, 

except the dihedrals of Ser81 which do not show dynamical cross-correlation at all. 

5.5.3 Dynamic dihedral correlations and allosteric regulations 

The autocorrelation functions of dynamical variables are known to show exponential 

decay with time for a stationary, Gaussian and Markovian process according to the Doob‟s 

theorem
254

. Since we construct the DACFs for the dihedral angles from equilibrated MD 

trajectories the stationarity condition holds good. The histogram of the fluctuations of the 

cosine of the dihedral angles (Figure 5.11a) shows that these fluctuations obey Gaussian 

statistics. Thus, the non-exponential character of the DACFs (Figure 5.11b) indicates non-

Markovian dynamical process of the dihedral fluctuations. The non-Markovian behaviour 

indicates persistent memory in the dynamical processes governing the dihedral fluctuations. 

This should lead to persistence in any dynamically coupled processes, as reflected in the 

temporally non-exponential and long-ranged DCCFs. In general slower DACFs than the 

DCCFs would imply the participation of dynamical variables of different timescales in the 

system.  

Our calculations clearly highlight a dynamically coupled network of residues in apo-

CaM: the N-domain loops which are primarily correlated via the backbone, the C-domain 

loops, correlated via side-chains and the linker, correlated with the four loops through the 

backbone. The estimated  for different cases of cross correlations, compares well to the 

signal transmission time of allosteric control
105

. Unlike short-ranged correlations building up 

the long-range correlations
269

, we find in this network, that there are several cross-correlated 

residues which are separated by large spatial distances (Figure 5.13 and 5.14). This indicates 

long-ranged dynamic communication among different regions in the protein. Therefore, if 

one part of the network is perturbed, other distant parts could be dynamically affected
103

.  

Some of the known allosteric events in CaM can be rationalized from the changes in 

dynamical coupling pattern between distant sites in class A. The consecutive binding of two 

Ca
2+

 ions to a pair of EF-hands in general show positive cooperativity,
272, 282, 301

 such that 

Ca
2+

 binding to one EF-hand loop assists the binding on the other. The cooperativity
301

 of 

consecutive binding of Ca
2+ 

ions to a pair of EF-hands is thus an example of allosteric 
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regulation
272

. The dihedral angles of class A (green patches in Figure 5.13), belonging to the 

residues of adjacent EF-hand loops in a given domain of CaM, take part in allosteric 

cooperativity in Ca
2+

 binding. In case of N-domain, the backbone dihedrals control the 

cooperativity in binding of Ca
2+

 ions. In the C-domain, on the other hand, class A consists of 

the side-chain dihedrals indicating side-chain mediated cooperative binding (Figure 5.13d). 

Thus, the mechanism of allostery is different between two adjacent loops for N- and C-

domain in apo-CaM. Due to the dynamic nature of cooperative binding it is not surprising 

that the equilibrium binding measurements
282, 301

 fail to show significant effect of 

cooperativity. It is interesting that the loops in both the domains do not show any significant 

structural change between apo- and the holo-form. This illustrates dynamic allostery without 

any structural change but via modification in dynamical fluctuations due to Ca
2+

 binding, as 

observed for a class of protein-ligand binding
241, 244, 245, 248, 249

.  

The dynamic correlations between the loops and the linker suggest that the 

perturbations at the linker should allosterically regulate binding in the loops. Experimental 

observations have indeed shown signature of this kind of regulation
77, 302, 303

. When one of the 

domains is loaded with Ca
2+ 

and the linker wraps a target peptide, the binding affinity in the 

other unloaded domain increases substantially
302, 303

 compared to holo-CaM. This clearly 

stands for an instance of allosteric regulation of Ca
2+

 binding in the loops via conformational 

change in the linker.  

Likewise, the changes in the loops would perturb the linker region. Upon binding of 

Ca
2+

 ions in the EF-hand loops, important conformational changes
274, 304

 occur in the linker of 

the two domains in CaM (Figure 5.1a) far away from the metal binding sites. In apo-CaM 

(Figure 5.1a) this linker is broken near the middle with a six-residue (residues 76-81) loop, 

which becomes helical in holo-CaM (circled region in Figure 5.1a). This transformation 

enables the CaM molecule to get into an open conformation exposing its hydrophobic 

residues for binding the targets. Our data on DCCFs indicate that this also in an allosteric 

regulation
265

, the signal being transmitted via the backbone. Recent experiments
305

 suggest 

that the timescale of loop to helix transition is about 2-5 ns for five to 20 residue peptides 

which is comparable to the DCCF timescales we observe here. Unlike the Ca
2+

 binding 

domains, the allosteric regulation in the loop is associated with marked structural changes. 

We observe that the dynamic correlation pattern is different in holo-state compared to 

the apo-state. In particular, there are several dihedrals present in the C-domain belonging to 

class B (Figure 5.13c and d). Various experimental observations
69, 306, 307

 have shown that 
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several target peptides, binding to a particular domain of holo-CaM, prefer the C-domain to 

the N-domain which indicates greater activity of the C-domain. Therefore, the class B 

dihedrals in C-domain may be signature of its higher-target binding activity compared to the 

N-domain. This idea is substantiated by the fact that this communication is formed mainly 

between the dihedrals of side-chains which control the binding processes. The dynamically 

cross-correlated side-chains in the C-domain loops would have role in any allostery 

associated with the peptide binding process.  

Our studies indicate that the changes in dynamical correlation patterns reflect the 

allosteric regulations, albeit via non-Markovian processes. The conventional Markovian 

behaviour may be retrieved only in the large time limit
105

 after the dynamical correlations 

have decayed sufficiently. This clearly shows the limitation of Markovian models to explain 

allosteric regulation. In particular, the long-time Markovian behaviour of dihedral 

fluctuations assumed in earlier works
105, 308

 is not necessarily valid as shown by the DACFs 

in our studies. The allosteric signalling timescale is much shorter (< 10 ns)
105

, indicating that 

the non-Markovian dynamical behaviours, observed in our studies at these timescales, should 

also be relevant in allosteric regulation. Such non-Markovian dynamics would be ubiquitous 

in biomacromolecular systems where a host of complex and heterogeneous dynamical 

processes
309

 take place. The treatment of non-Markovian dynamics is one of the most 

challenging problems in non-equilibrium statistical mechanics
254

. However, since we probe 

directly the dynamical correlation among the conformational variables, our studies yield a 

very general picture of allosteric regulation based on the changes of dynamical correlation 

pattern, even if the underlying dynamical fluctuations may be non-Markovian. Moreover, 

unlike very long simulation trajectories required to ensure the Markovian process, the non-

equilibrium fluctuation of the dihedral angles can be captured with much shorter simulation 

runs. The novelty of our method lies in the fact that we liberate the microscopic picture of 

allosteric regulation, with modest computational efforts, from the current Markovian 

assumptions
105

. However, to study the allostery associated with slow domain motions one 

would require very long simulations, although our method of analysis should hold good in 

such situations as well. Direct identification of allosterically regulated conformational 

variables represents significant advancement in microscopic understanding of allostery in 

biomacromolecules. 

5.6 Conclusion 

To summarize, we have shown that the entire thermodynamic changes in 

biomacromolecular conformations can be extracted from the distributions of the dihedral 
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angles using the HBM. We reproduce the experimentally observed correlation between the 

conformational and binding entropies and quantify the thermodynamic contributions of 

different binding regions for a number of CaM-peptide complexes. The histograms would be 

sensitive to any quantity that undergoes changes upon binding. Hence the present analysis 

can suitably be extended to calculate thermodynamic changes in the solvent and any other 

macromolecular complex like protein-protein, protein-DNA or protein-ligand complexes. The 

detailed thermodynamic information of the binding regions would enable us to identify the 

prime spots of binding, facilitating the manipulation of the macromolecules required for 

various applications such as drug design, drug delivery and so forth.  

We employed the HBM
83

 to also study the conformational thermodynamic for Ca
2+

 

ion binding to CaM. We estimate the quantitative information of conformational changes at 

each residue including the different metal binding domains. The N-domain undergoes a 

higher conformational ordering and stabilization compared to the C-domain. The Ca
2+

 ion 

binding loops I, II and IV are qualitatively similar with respect to conformational changes, 

while loop III is significantly different from them undergoing only nominal stabilization and 

enhanced disorder due to the metal-ion binding. Our results at the level of individual residues 

indicate that the loop residues including those coordinating to the metal-ions dominate the 

overall changes in the loops. Apart from the loops, the linker, far away from the metal 

binding sites, undergoes substantial stabilization and ordering as it becomes a long helix in 

holo-state. One can readily apply the HBM to understand the microscopic picture of metal-

ion binding induced changes in any protein to characterize different metal binding regions. 

Finally, we show that the cosine of the dihedral angles for successive equilibrium 

configurations sampled from MD runs forms a convenient time-series for calculations of the 

dynamic correlations between the dihedral angles
80

. The dynamical correlation functions 

yield the microscopic nature of coupling among different degrees of freedom belonging to 

distant sites in biomacromolecules, highlighting their roles in allosteric regulations. The 

extraction of dynamical correlation depends on the computation of convenient time-series of 

the associated dynamical variable. Such correlation functions can be extended to any set of 

dynamical variables which may provide a unified microscopic insight into non-equilibrium 

phenomena in biological systems.  
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Appendices 

Calculation of order parameters 

In order to calculate the long-axis order parameters 2

MeS of the side-chain methyl 

groups in CaM-peptide complexes we follow the methods described in Yang et al
93

 and 

Krishnan et al
291

. One such methyl group is schematically shown in Figure A2. First, all the 

backbone CA (-carbon) atoms in the equilibrium configurations of the complex are fitted to 

the backbone CA atoms in the average structure calculated over the equilibrium trajectory. 

This way the effect of rotation of the whole complex is removed. This is done using the VMD 

program
288

. The resultant aligned configurations are then subjected to the calculation of 2

MeS

values. The generalized order parameter for the methyl long-axis is given by 
291

 the following 

expression:  

  2/12222/3
2222

2
2

2
2

22 




  zxyzxyzyxSMe  

where  cos)sin( x ,  sin)sin( y  and )cos(  z ,  being the polar angle 

and , the dihedral angle as shown in Figure A2. The angular brackets represent ensemble 

averages over 10000 equilibrium configurations.  

 

Figure A1: Root mean square deviation (RMSD) during simulations. Free CaM and two 

representative cases of the nNOS and smMLCK complex. Note the larger fluctuations in 

case of free CaM as it is free to move in the solution. Fluctuations are suppressed a lot in 

the complexes due to binding of the peptide which is evident from the RMSDs of the 

complexes.  
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Figure A2: Schematic representation of a side-chain methyl group. The associated polar 

angle  and dihedral angle  are shown. Here A is the methyl carbon atom (A = CB for Ala, 

CG or CD for Ile, CD1 or CD2 for Leu, CE for Met, CG2 for Thr and CG1 or CG2 for Val). The 

other atoms B, C and D represent other heavy atoms which are determined by the residue 

identity. 

 

 

 

Figure A3: Methyl order parameter data. 2

MeS for nNOS complex and smMLCK complex are 

shown (a,c) for CaM and (b,d) for the peptide. The symbol and line descriptions are the 

same as those in Figure 5.2. 
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Figure A4: Methyl order parameter data. 2

MeS for CaMKI complex and CaMKK complex are 

shown (a,c) for CaM and (b,d) for the peptide. The symbol and line descriptions are the 

same as those in Figure 5.2. 

 

Figure A5: Surface representations of six CaM-peptide complexes showing the residue-

wise (a) Gconf; (b) Sconf of CaM. Two views separated by 180 rotation about vertical axis 

are shown in each case. The stabilized residues are green and destabilized ones are red. 

The residues undergoing minor changes are white. Peptide is in violet cartoon 

representation. 
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Figure A6: The time-variation of methyl order parameters. CaM

cMeS  2 and peptide

cMeS  2  

(average over available methyl groups) during the simulations for CaM and peptide in 

several complexes. (a) For CaM in eNOS and smMLCK complexes. These values remain 

similar throughout the entire equilibrium trajectory in both cases. (b) For the peptides in 

eNOS and smMLCK complexes. Here convergence is slower than for protein. The 

convergence in smMLCK is poorer than eNOS. This could be attributed to the fact that this 

peptide has only 8 methyls, which is fewest among all the peptides considered here. (c) 

Data for DAPK2-complex. Here, the CaM-data are similar throughout the trajectory, while 

the peptide-data converge beyond 12 ns.  

 

 

Figure A7: The methyl order parameters of CaM-DAPK2 complex. (a) CaM and the (b) 

peptide data, predicted from our simulations. The different types of methyl groups are 

represented by different colours as shown in the legend. 
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Figure A8: Comparison of methyl order parameters of holo-CaM. The experimental 2

MeS

(expt)281 vs. calculated 2

MeS (calc) from our simulation. Few overestimations in S2 are 

observed due to limitations of the force fields291, 292. 

 

Figure A9: Methyl order parameters in apo- and holo-CaM. Residues (a) 5-75, (b) 76-146.  

. 

Figure A10: Change in methyl order parameters from apo- to holo-CaM. 

)apo()holo( 222

MeMeMe SSS  values for different CaM residues. 
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Chapter 6 Thermodynamics of interfacial changes in a 
protein-protein complex 
 

6.1 Introduction  

Biomacromolecules often share large interfacial area
310

 to facilitate formation of 

stable complexes. Recent experiments
75, 106, 311

 suggest that structural modifications at the 

interface play pivotal role at times both in the stability of such complexes and functional 

activities
106

 of the associated biomacromolecules. From structural studies
311-313

 several 

qualitative aspects, like formation of salt bridges and water-mediated contacts, changes in 

secondary-structure elements and so on, associated with the biomacromolecular interfaces 

have been determined. However, there is hardly any quantification of the thermodynamics of 

these interfacial changes. Quantitative information about the interface at the microscopic 

level is of immense importance, not only for understanding the binding mechanism, but also 

for development of functionally potent biomacromolecules via manipulation of the interfacial 

interactions
314, 315

.  

The interfacial changes in biomacromolecular complexes are primarily derived from 

the conformational changes of the binding partners. The advancements with NMR relaxation 

experiments
92-95

 provide a scope of estimating the conformational entropy change for 

biomacromolecular complexation. These measurements highlight the importance of 

conformational changes in the binding interface
75

. Similarly, computer simulations offer a 

very powerful tool to study the microscopic details of the biomacromolecules
79-81, 83, 86

. In 

chapter 5, we have shown that the conformational thermodynamics can be extracted from 

various backbone and side-chain dihedral angles of the amino acid residues in a protein. The 

equilibrium distributions of different dihedral angles in the complex and the free components 

are calculated from all-atom MD simulations. Comparing these distributions in the free and 

the complexed states, one can estimate the changes in conformational entropy ( confS ) as 

well as the conformational free energy ( confG ) for binding. Via this histogram based method 

(HBM)
83

 a comparable confS  as derived from the NMR experiments, can easily be 

calculated. The additional advantage of this methodology enables us to quantitative 

estimation
83

 of the conformational changes at different binding regions for a number of 

protein-peptide complexes.  

Other than the proteins or nucleic acids, the biomacromolecular interface quite often 

contains water molecules. These water molecules which could be integral parts of the 



Chapter 6  137 

 

interfaces
316

, not only help in the formation of the hydrogen bonding between the 

biomacromolecular chains
106

, but also modulate the specificity and the affinities of 

binding
317-320

. Sometimes even a small number of water molecules are found to play key role 

in driving the whole binding process
321

. The thermodynamics for displacement of waters in a 

model cavity with specific electrical property by an incoming ligand has been studied in 

detail
321-323

 to reveal significant contribution of these interfacial water molecules in the 

overall binding thermodynamics. In practice the situation in biomacromolecular interfaces are 

very complex, with competition between the hydrophobic and hydrophilic interactions. 

In the present chapter we apply the HBM
83

 to quantify the thermodynamics of 

interfacial conformational changes in a protein-protein complex between an enzyme Nuclease 

A (NucA) 
324

 and its specific inhibitor
325

 NuiA, a protein (Figure 6.1). NucA, a sugar non-

specific nuclease from Anabaena sp., is one of the most active nucleases known
326, 327

 from a 

class of nucleases containing DRGH structure motif. These nucleases, having the capacity to 

hydrolyze nucleic acids without any base-preference
327

, are very important for their roles in 

host defence mechanisms
328

 providing nutrients to host, DNA-drug binding
329

, RNA 

sequencing
330

, cellular apoptosis
331

 and so on. NuiA, an intrinsic inhibitor, deactivates NucA 

specifically
326

 via formation of a 1:1 complex
332

 with a high stability constant (> 10
9
 M

-1
)
326, 

333
. These enzymes require divalent metal-ion cofactor (like Mn

2+
, Mg

2+
) at the active-site to 

function. The crystal structure data of the NucA-NuiA complex
106

 reveals the conformational 

changes of NucA and NuiA compared to their free forms
107, 334

. The crystal structure also 

indicates the presence of water molecule mediated interactions at the interface, accompanied 

by changes in tertiary structural fold of NuiA. We extend the HBM to estimate the 

thermodynamic contributions due to the interfacial water molecules present in the NucA-

NuiA complex. Here the relevant probability distribution is the pair distribution function
111

 

g(r) for the water molecules which gives the probability of finding the centres of mass of a 

pair of molecules at given separation r. 

Our data on confS and confG  corroborate well with the known structural 

information
106, 333

 on the enzyme-inhibitor interfacial region (Figure 6.1). The binding is 

primarily dominated by electrostatic interactions at the interface, as indicated
106

 by the high 

ordering and stabilizations of the basic interfacial residues of NucA and acidic interfacial 

residues of NuiA. From the generalization of the HBM for interfacial waters we also find that 

the entropy cost due to the water molecules is substantial. These water molecules are 

dynamically arrested at the locked jaw interface in NucA-NuiA complex which demonstrates 

the tight binding of the inhibitor to the enzyme. Our results quantitatively bring out the local 
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order and stabilities of the enzyme-inhibitor interaction sites due to complexation which has 

been hitherto known only qualitatively from structural data. Moreover, the complete 

microscopic picture from our calculation predicts some more residues which could be 

important in the inhibitor binding to the enzyme.  

 

Figure 6.1: Cartoon representation of the NucA (white) – NuiA (violet) complex. The side-

chains of the interfacial residues, coluored in purple, are shown using stick 

representation. The region enclosed by dashed line, representing the interface, is 

zoomed where the important basic NucA residues (regular labels) and acidic NuiA 

residues (italicized labels) are shown. 

 

6.2 Methods 

6.2.1 Simulation details 

MD simulations of free NucA (PDB 1ZM8), free NuiA (PDB 1J57) and the NucA-

NuiA complex (PDB 2O3B) are performed with explicit water and counter ions at 300 K 

using same methods and protocols as described in the previous chapter. The active-site 

divalent metal-ion of NucA in 1ZM8 is Mn
2+

, while that in 2O3B is Mg
2+

. However, hardly 

any difference is observed
107

 in the residue arrangements and coordination geometry around 

Mg
2+

 or Mn
2+

. Therefore, we proceed with these available structures. We use 50 ns 

trajectories for our analyses to compute the normalized histograms of the dihedral angles 

from equilibrated configurations sampled beyond 10 ns. 

6.2.2 Thermodynamics from HBM 

Extending Eq. 5.7 for NucA (N) and NuiA (I), the total conformational free energy 

change for complexation can be written as: 

  )()(  I

conf

N

conf

tot

conf GGG ,                                            (6.1) 
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where )](/)(ln[)( max,max,  f

N

c

NB

N

conf HHTkG   and 

)](/)(ln[)( max,max,  f

I

c

IB

I

conf HHTkG  ,  and  are the dihedral angles of N and I 

respectively. Here the summations are over all dihedrals and the subscript „max‟ denotes 

maximum of histogram. Similarly, the conformational entropy change
83

, using the Gibbs 

formula,  

)](ln)()(ln)([)(   
i

f

i

f

i

i

c

i

c

iBconf HHHHkS                            (6.2)    

i being the bin-index of the histograms. 

6.2.3 HBM for interfacial water molecules 

Next we extend the HBM to estimate the free energy and entropy costs associated 

with the changes of interfacial water distribution. We calculate g(r) for the interfacial water 

(iw) molecules within 5 Å of the interfacial residues in the complex ( )(rg c
), and those within 

5 Å of the binding regions of the free enzyme ( )(rg f

N ) and inhibitor ( )(rg f

I ). Here r is the 

separation between the O-atoms of two water molecules. The free energy cost is given by 

straightforward extension of Eq. 6.1:  

)}]()(/{)(ln[ max,max,max rgrgrgTkG f

I

f

N

c

Biw 
                                       

   (6.3)     

where the peak values in the respective g(r) are used. The corresponding entropy cost ( iwST

) is obtained using the Gibbs formula as in Eq. 6.2:  

]lnlnln[ ,,,,  
i

f

iI

f

iI

i

f

iN

f

iN

i

c

i

c

iBiw ggggggkS                                  (6.4) 

where the the sum has been taken over non-zero bins marked by the index i.  

6.2.4 Dynamics of Interfacial water molecules 

To capture any change in the dynamics of the active-site waters (asw) we determine 

their diffusion behavior from the self-part of Van-Hove correlation function (VHCF)
111

 

defined at time t as:  

 
i

iiasws tNtrG ))()0(()/1(),( rrr  ,                                        (6.5) 

where Nasw is the total number of active-site waters and )(tir represents the position vector of 

the oxygen atom of the ith water molecule. The angular brackets here designate average over 

10000 initial configurations. At long-times (t ~ 100 times larger than the diffusion time scale 

required for a tagged water to traverse the length of its diameter) the self-VHCF behaves like 
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a Gaussian
111

 : ])(exp[)/)((),( 22/3 rtttrGs   where the time-dependent parameter (t) 

~ 1/4Daswt, Dasw being the self-diffusion coefficient of the water molecules. We plot 1/(t) as 

a function of t and Dasw is obtained from the slope of the best linear fit.  

 

6.3 Results  

The RMSD are followed in each simulation to ensure the equilibration (Figure 6.2). 

The equilibrium correlations among different dihedral angles in the NucA-NuiA complex 

turn out to be negligible (Figure 6.3) as in the previous chapter, so that we consider them as 

independent conformational variables for the calculation of thermodynamics.    

 

Figure 6.2: RMSD of free NucA, NuiA and the complex as function of simulation time (t). 

 

Figure 6.3: Simulation data on NucA-NuiA complex. (a) Variation of RMSD of free NucA, 

free NuiA and the complex as functions of simulation time (t). (b) Equilibrium  -

correlations among dihedral angles given by  sC    
where s denotes the separation 

between the locations of the residues having dihedrals  and . 

Few sample histograms of dihedral angles are shown in Figure 6.4 showing similar 

behaviour, as in the previous chapter, for both backbone (Figure 6.4a-b) and side-chain 

(Figure 6.4c-d) dihedral angles. The peak values of the histograms generally increases upon 

binding, indicating decrease in fluctuations of the dihedrals from free to the bound state. 
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Multi-modal histograms are observed here also as illustrated in Figure 6.4d for  of Thr135 

of NuiA which shows two broad peaks in free state, indicating two rotamers, reduce to one 

sharp peak in the bound state after binding to active-site metal-ion.  

 

Figure 6.4: Sample histograms of dihedrals of different residues in free and bound states. 

Histogram of (a)  in NucA residue Arg93, (b)  in NuiA residue Glu24, (c)  in NucA 

residue Asn155 and (d) histogram of in NuiA residue Thr135. 

After taking a close look at our data on histograms we elaborate different aspects of 

the thermodynamic changes in the NucA-NuiA complex. Decrease in free energy indicates 

gain in stability, whereas drop in entropy suggests ordering. 

Overall conformational changesWe estimate the total conformational free energy 

cost of NucA-NuiA complexation 
tot

confG = 138.2 kJ mol
-1

. NuiA gets stabilized by  kJ 

mol
-1 

which is about double the contribution of NucA towards
tot

confG . Similarly, the total 

conformational entropy cost for the NucA-NuiA complexation 
tot

confST =  kJ mol
-1

. 

The individual contribution by NucA is 148.3 kJ mol
-1

 and that by NuiA is 323.3 kJ mol
-1

, 

again almost twice that of NucA as in conformational free energy contributions. The 240 

residue protein NucA experiences a very small confG  or confST value per residue (< 1 kJ 

mol
-1

) which quantifies the experimentally observed 
106

 little conformational change of NucA 

upon inhibitor binding. On the other hand, for the 135 residue inhibitor protein NuiA, the 

confG  value per residue is small (< 1 kJ mol
-1

) but the confST  per residue is quite large (~ 

2.4 kJ mol
-1

).  
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A large contribution to the 
tot

confST  in NuiA is due to the striking difference between 

the tertiary structures of bound NuiA (Figure 6.5a) and free NuiA (Figure 6.5b), reflected in 

the lowered spatial separation across the hinge-like structure of the molecule in the bound 

state. This occurs via rotation of the longest helix in NuiA around the normal to its helical 

axis to facilitate (i) coordination with the active-site of NucA via one end of the hinge and (ii) 

formation of a salt-bridge with NucA at the other end. The two helices constituting the hinge-

like structure become heavily ordered in the enzyme-bound form (Figure 6.5a):  confST

19.7 kJ mol
-1

 for the 12-residue shorter helix (residues 5-16) and  confST 74.5 kJ mol
-1

 

for the 20-residue longer helix containing residues 79-98. This stabilization is because of the 

formation of a hydrophobic core in the space between these two helices in bound NuiA by the 

side-chains of six residues as shown in Figure 6.5a. Each of these six residues participating in 

this hydrophobic region undergoes huge ordering (  i

confST 4 to 11 kJ mol
-1

) to result in a 

total entropy change of  confST 48.3 kJ mol
-1

, further stabilizing the hinge. 

 

Figure 6.5: Cartoon representations of bound and free NuiA. (a) Enzyme bound NuiA and 

(b) free NuiA showing the changes in the hinge-like region. The side-chains of the 

residues forming a hydrophobic core between the two helices in the hinge are also shown 

using stick representations. 

Conformational changes at interfaceIf we now consider the conformational changes 

associated with complexation, the region which will definitely require attention is the 

interface (Figure 6.1). The enzyme-inhibitor interface consists of the residues of NucA and 

NuiA within 5Å separations. This is an open-jaw like interface, consisting of: (i) the active-

site of NucA, (ii) the second interaction-site containing the salt-bridge and (iii) other NucA 

and NuiA residues in contact through either direct or water-bridged hydrogen bonding 
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interactions
106

. The conformational entropy and free energy changes of all interfacial residues 

are shown in Figure 6.6a-b. 

 

Figure 6.6: Surface representations of the complex showing the interfacial 

thermodynamics data and contributions of different types of residues. (a) 

conformational entropy and (b) free energy costs of all the interfacial residues (only 

side-chains shown via sticks). Colour description: residues coloured green if 
i

confST  or 

i

confG  < kJ mol-1, cyan for ~ 1.3 to 3.8 kJ mol-1, yellow for ~ +1.3 to +3.8 kJ mol-1, 

red for > +3.8 kJ mol-1 and left uncoloured for negligible changes. (c) The conformational 

entropy and (d) free energy changes of different types of residues at NucA-NuiA interface 

are shown along with the total interfacial contributions of the respective system. 

The conformational entropy and free energy contributions of the different types of 

residues in the interfacial region are shown in Figure 6.6c and d. The basic residues of NucA 

and acidic residues of NuiA undergo maximum stabilization and ordering out of all 

interfacial residues. In Table 6.1, we list the 
i

confST
 
and 

i

confG  of these interfacial charged 

residues whose locations are shown in Figure 6.1. The stabilizations and ordering of the polar 

side-chain containing residues at the interface are also significant, while the changes in any 

other type of interfacial residues are negligible. All these observations quantitatively confirm 

that the enzyme-inhibitor interaction is predominantly electrostatic as suggested from the 

crystal structure of the complex
106

. We now take a close look at the interface. 

The active-site region is shown in Figure 6.7a-b where the side-chains of different 

metal-ion coordinating and neighbouring residues are labelled according to their 
i

confST

(Figure 6.7a) and 
i

confG (Figure 6.7b) values. Here, four water molecules coordinate to the 
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metal-ion Mg
2+

 along with the side-chain of Asn155 (
i

confST = kJ mol
-1

 and 
i

confG = 

kJ mol
-1

) of NucA and the terminal residue of NuiA, Thr135 (
i

confST = kJ mol
-1

 

and 
i

confG = kJ mol
-1

). A neighbouring NucA residue Arg93, believed to participate in 

transition state stabilization, undergoes a significant rearrangement of its side-chain
106

 and 

experiences high ordering and stabilization. A few more highly stabilized and ordered 

residues in the active-site are tabulated in Table 6.1. They are mostly the hydrogen bonded 

residues involved in nucleolytic activity or its inhibition such as His124, Arg156, Glu163 of 

NucA and Glu24 of the inhibitor. The roles of Arg93, His124 and Glu163 in substrate 

binding to NucA have already been emphasized earlier via mutational studies
333

 where 

significant decrease in enzymatic activity have been observed upon mutation of any of these 

residues. Furthermore, Glu24 (NuiA) induced decrease in inhibition has also been reported 

earlier
106

.  

Table 6.1: The conformational entropy and free energy changes (in kJ mol-1) of interfacial 

basic residues of NucA and acidic residues of NuiA. Lys202 is a non-interface residue, but 

included here for its large entropy change. 

NucA residue 
i

confST  
i

confG  NuiA residue 
i

confST  
i

confG  

Arg93   Glu24  

Arg98   Glu26  

Lys101   Asp75  

Arg122   Glu80  

His124   Glu81  

Arg156   Glu109  

Arg167   Glu111  

Lys202   Glu134  

The second interaction-site in the open-jaw type NucA-NuiA interfacial structure is 

shown in Figure 6.7c-d. The side-chains of the salt-bridge forming Lys101 (NucA) and 

Asp75 (NuiA) are marked along with those of some neighbouring residues. Both of these 

residues are highly ordered (Table 6.1) indicating the strong attractive interaction. Several 

neighbouring residues in NuiA Gln74 (
i

confST = kJ mol
-1

), Trp76 (
i

confST = kJ 
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mol
-1

) and Tyr77 (
i

confST = kJ mol
-1

) get ordered as well which have also been proved 

important for inhibition.  

 
 

Figure 6.7: Changes of the active-site and neighbouring residues. (a) The conformational 

entropy and (b) conformational free energy. The O-atoms of the four water molecules at 

the active-site are shown in pink, while the Mg2+ ions is shown by black sphere. (c) The 

conformational energy and (d) conformational free energy changes of the residues in the 

second NucA-NuiA interaction site. 

Hydrogen bond mediated interaction sites include other NucA and NuiA residues at 

the interface, apart from those in the above two binding regions as indicated in Table 2 of 

Ghosh et al
106

. These residues within the hydrogen bonding distance are found to be highly 

ordered in the complexed state. For instance, Gln94 of NucA, with a polar side-chain undergo 

huge ordering (
i

confST = kJ mol
-1

) after coming close to Arg69 of NuiA. Arg122 (Table 

6.1), polar Ser128 (
i

confST = kJ mol
-1

) and Arg167 (Table 6.1) of NucA, having water-

mediated interactions with metal coordinating NuiA residue Thr135, also undergo substantial 

ordering. Interestingly, earlier mutations
333

 on Arg122 and Arg167 have also lead to 

significant drop in enzymatic activity of NucA. 

Interfacial waterThe g(r) for the interfacial water molecules is shown in Figure 6.8a 

along with those for the waters present around the binding surfaces of free NucA and free 

NuiA. The gross behaviour of these water distributions is the same in all three cases, except 

the peak value being maximum in case of the complex (inset Figure 6.8a). This indicates the 

high localization of the water molecules at the interface due to tight inhibitor-binding. Such 
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localization leads to a substantial drop of entropy ( iwST ~ kJ mol
-1

 for about 300 

interfacial waters) with respect to the free components. However, the free energy cost turns 

out to be negligible ( iwG ~ kJ mol
-1

). It is interesting to compare our results to those of 

an earlier study
322

 where the thermodynamics of cavity-ligand association for different 

systems has been reported with particular emphasis on water contributions. The free energy 

associated with the water molecules depends very sensitively on the property of the cavity 

and the ligand. For instance, neutral ligand in positively charged cavity shows a marginal 

decrease in water free energy, whereas a negatively charged ligand in a positively charged 

cavity shows a large change in the water free energy
322

. In our system, the electrical 

properties of different residues are highly non-uniform having both positively and negatively 

charged as well as polar side-chains. Such a complicated interfacial environment brings in 

compensatory changes in the water free energy leading to only a marginal change. 

 

Figure 6.8: Data on interfacial water molecules. (a) The oxygen-oxygen pair distribution 

function g(r)s of the water molecules at the protein-protein interface of the complex and 

around the binding regions of NucA and NuiA are shown. Inset, a close view of the peaks 

in g(r)-plots. (b) The plot of 1/  as a function of time t along with the best fit line through 

the points for the active-site water in complex and free NucA. 

The immobilization of the water molecules at the active site of NucA in the inhibitor-

bound state is reflected in the VHCFs as well. In Figure 6.8b, we show the long-time-

behaviour of 1/ for the active-site waters in free (the filled circles) and inhibitor-bound 

NucA (the open circles). Clearly, the metal-ion coordinating water molecules move away 

from the active-site of free NucA as indicated by the increase in 1/. The slope of the best 

linear fit through the filled circles gives us the self-diffusion coefficient Dasw of the active-site 

waters. We find Dasw ~ 0.4 cm
2
 s

-1
 which is 5 times smaller compared to the self-diffusion 

coefficient in bulk water
335

, but resembles the values reported for water diffusion near a 

protein or a biomolecular surface
335-337

. On the other hand, we observe no change of the value 
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of  for the active-site waters in the complex, indicating that they are arrested dynamically 

with practically no diffusion.  

6.4 Interpretation of results 

Our results on the thermodynamic changes at the biomolecular interface of NucA-

NuiA complex shed lights on several microscopic aspects of NucA-NuiA binding: 

Importance of interfacial changesIt is known
106

 from experimental observations that 

enzymatic activity of NucA diminishes dramatically upon binding to NuiA. Therefore, it is 

expected that NuiA binds either exactly or adjacent to the substrate binding sites, blocking 

the binding of the substrate to the enzyme. However, isolation of substrate-bound NucA has 

been unsuccessful so far due to its high activity
106

. Consequently, comparison of inhibitor-

bound NucA structure has been done earlier
106

 with a DNA-bound NucA model structure. 

The comparison reveals
106

 that several atoms of Glu24 and Thr135 of NuiA occupy the 

positions where key atoms of DNA could have been. In our calculations, we find large 

ordering and stabilization for both these NuiA residues Glu24 (Table 6.1) and Thr135.  

More importantly, the fact that NucA hardly shows any activity in inhibitor-bound 

form indicates that the inhibitor binding to NucA is tighter compared to the substrate binding. 

Both DNA and RNA carry high negative charges. Therefore, they would prefer to interact 

with the positively charged basic residues of the enzyme. From the structure
106, 107

 it turns out 

that the binding surface of NucA offers at least seven basic residues (Table 6.1). In The 

NucA-NuiA complex there are eight interfacial acidic residues of NuiA (Table 6.1) which 

could satisfy all the interfacial positive charges of NucA. A DNA substrate, on the other 

hand, is unlikely to satisfy all the seven positive charges on NucA interface. This is because 

of the fact that in order to access the phosphate groups the DNA would have bound to the 

enzyme surface through its minor groove. The space covered by NuiA at the NucA-NuiA 

interface, about 31 Å in width, could be accessed at most by 4-5 phosphates present on the 

approaching minor groove of the DNA, as seen from a docking of a DNA double helix on 

NucA using HADDOCK
338

. Similar situation also has been  observed earlier in the DNA-

bound structure of Vvn nuclease (PDB 1OUP)
339

 where only 4 phosphates bind with the 

enzyme. Thus, it is quite possible that the better electrostatic stabilization factor is 

responsible for the preferential binding of the NuiA to NucA in presence of nucleic acid 

molecules.  
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Second interaction siteAnother very important interaction site, other than the active 

site, between NucA and NuiA is the possible salt-bridge interaction
106

 between Lys101 

(NucA)-Asp75 (NuiA) shown in Figure 6.7c and d. Measurements of the inhibition constants 

with several NuiA-mutants have shown
106

 that the looser binding is observed when Asp75 is 

replaced by an Asn or even Glu. This may be indicating that the salt-bridge is formed 

possibly at an optimum separation between Lys101 (NucA) and Asp75 (NuiA) which is 

altered by the mutations. Interestingly, a very similar effect is observed when there is a 

double mutation
106

 at two adjacent residues of Asp75 (NuiA) to replace both Gln74 and 

Trp76 by Ala. From our results, we find that both Lys101 (NucA) and Asp75 (NuiA) are well 

ordered indicating strong attractive interaction between their side-chains. We find that several 

neighbouring residues of Asp 75 (NuiA) undergo substantial ordering as well via van der 

Waals interaction among their side-chains, as shown in Fig, 6.7c-d, to stabilize the loop 

structure around this region. Such stabilization may lead to proper orientation of Asp75 

(NuiA) to be at the optimum distance to form the salt-bridge with Lys101 (NucA). 

Conformational entropy and methyl order parametersIt has been observed via NMR 

relaxation experiments
75

 and detailed molecular simulations
83

 that the generalized order 

parameters for methyl groups ( 2

MeS ) can provide a measure of total conformational entropy 

cost of complexation 
tot

confST . For several calmodulin-peptide complexes
75

, 
tot

confS has been 

observed to vary linearly with the residue weighted average changes in methyl order 

parameter
75, 83

 given by 2

MeS . Here we check whether the same linear scaling is present 

here. The plot of individual conformational entropy changes of NucA (
N

confS = 0.49 kJ K
-1

 

mol
-1

) and NuiA (
I

confS =  kJ K
-1

 mol
-1

) against their respective 2

MeS , computed from 

our simulations using earlier methods
83

, yields a slope m = 0.06 which is close to the m 

calculated earlier
75, 83

.  

Contribution of interfacial watersThe immobilization of the active-site water 

molecules in the inhibitor-bound form during the entire simulation clearly demonstrates the 

extent of tight-binding of the inhibitor to NucA and hence justifies the drop in interfacial 

water-entropy. The binding of inhibitor leads to sufficiently heavy packing of the side-chains 

at the interface of NucA and NuiA, so that the water molecules cannot escape from within or 

come in from outside. These observations also support the proposed catalytic mechanism of 

NucA to hydrolyze a DNA or RNA molecule 
107

 that the water required for hydrolysis is 

provided from the coordination sphere of the active-site metal-ion, not from the bulk or the 

hydration shells around the protein surface.  
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Predictions on possible mutationsWe have already pointed out several interfacial 

residues of NucA and NuiA which undergo large ordering and stabilization upon 

complexation. Roles of many of them, like, Arg93, Arg122, His124 and Arg167 have already 

been explored 
333

 by studying the changes in enzymatic activity of NucA after mutations of 

those residues. In addition to these we predict some other interfacial residues whose roles 

have not been explored via mutational studies. These are basic residue Arg98 of NucA and 

acidic residues of NuiA, like, Glu109, Glu111 and Glu134. All of these residues, shown in 

Figure 6.1, undergo heavy ordering upon complexation (Table 6.1). According to Table 6.1 

ordering of Lys202 is also very large. This is a non-interfacial residue which is part of the six 

stranded -sheet of NucA (Figure 6.1), making it an interesting candidate for such mutational 

studies. Here Arg98 can have very important role in substrate binding to NucA and others 

may be important in the inhibition mechanism. 

6.5 Conclusion  

Our studies might be the first report on the quantitative thermodynamics data of the 

interfacial changes, highlighting both the conformational contributions as well as the water 

contributions, due to binding of inhibitor protein NuiA to the enzyme NucA using the 

HBM
83

. We show that the interfacial changes are governed by the electrostatic interactions. 

This supports quantitatively the idea that the inhibitor mimics the way different nucleic acid 

substrates bind to NucA. The tight inhibitor binding to the enzyme leads to a heavily packed 

interface with bound water molecules undergoing a large change in entropy. The HBM 

depends on the shift in distributions of different degrees of freedom upon binding and should 

be applicable to any biomacromolecular interface. Our study thus provides a novel route to 

microscopic understanding of biomacromolecular interfaces which would help the 

manipulations of interfacial properties to regulate biomacromolecular activities in general.  
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