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Chapter 1

Introduction and Overview

The content of this thesis is focused on two aspects of disordered alloys: Vibrational

(phononic) properties and magnetic phase transition study. In our day today life we

come across disordered systems like glass, amorphous silicon, brass (Cu-Zn) jewellery

(i.e. alloys like Au-Cu, Au-Ag) so on. By introducing randomness we may tune the

physical and chemical properties (like ductility, tensile strength, elasticity etc) of ma-

terials. The study of the electronic and vibrational (phononic) properties is the key

to the understanding of the behavior of such systems. Recent advance in technology

gives us a insight into the physical and chemical properties of these materials, so the

onus lies on us theoretician to formulate theories to understand and predict experi-

mental behavior.

Disorder in alloys may be of various types like, topological, substitutional, inter-

stitial and so on. However, in this work we shall confine ourselves to substitutional

disorder. This type of disordered alloys have underlying lattice structure but each

lattice point is occupied randomly by the constituent atoms as shown in schematic

diagram (Fig. 1.1). Thus conventional lattice translational symmetry breaks down.

1



Chapter 1. Introduction and Overview 2

Few mean-field theories [1, 2, 3] were proposed to overcome this problem. In these

ORDER bcc DISORDER bcc

Figure 1.1: Schematic diagram of bcc (left) ordered and (right) substitutional disordered structure.

approaches, the disordered system is replaced by a lattice periodic effective medium,

with effective atoms occupying lattice sites. Coherent potential approximation (CPA)

[5] emerged as most successful mean-field approximation, however when environment

effects become important: like short ranged ordering (SRO), chemical affinity driven

local clustering it fails. Although further generalization of CPA [6] exists in the lit-

erature, most of these are limited to either very special type of off-diagonal disorder,

or violated the lattice translational symmetry and Herglotz analytic properties of the

configuration averaged Green function. Out of various such methods, one approach

emerged out to be somewhat promising namely the non-local coherent potential ap-

proximation (NL-CPA) [7] & [8]. As CPA is averaging technique so it is impossible to

implement structure relaxation, which contrasts with the experimental observations

because bond distance between atomic pairs (e.g. A-A, B-B and A-B in a binary al-



Chapter 1. Introduction and Overview 3

loy) are generally different. Another method proposed by Zunger et.al.[9] the Special

Quasi-random Structure (SQS), in which the distribution of distinct local environ-

ments (e.g. A or B surrounded by the various AmB8−m coordination shells with m

between 0 to 8 in body-centered cubic (bcc) A1−xBx alloys) is maintained. In particu-

lar SQS is an ordered super-cell which is constructed in such a way to mimic the most

relevant pair and multi-site correlation functions of the disordered phase. The above

mentioned approximation by mean-field theories is overcome by Augmented Space

Recursion (ASR) introduced by Mookerjee (1973)[10]. ASR is one of the powerful

tool available to deal with substitutional disorder. It goes beyond standard mean-

field approximation to consider randomness not only at onsite but also in its nearest

neighborhood. In Chapter 4, we integrate a first-principles SQS method with the

augmented space formalism to demonstrate the interplay of force constants within a

disorder environment.

We will focus our study to binary disordered alloys. For the study of lattice vibra-

tional properties of disordered alloys, when two constituent atoms in a substitutional

alloy have different masses and force constant matrices then there are in general three

sources of disorder : (a) diagonal disorder, arising from the mass difference mA−mB

; (b) off-diagonal φij (where j is a neighboring site of i) which can take values φAA
ij ,

φAB
ij or φBB

ij ; and (c) environmental disorder at a site which arises from the sum rule

φii = −∑
φij. The problem becomes even more complicated if we look into the short-

range features of atomic arrangements. We have carried out a detailed first-principles

study for the short-range ordering (or local atomic configuration), thermal transport

properties, and vibrational entropy of several alloy systems.

Another important physical property we studied is the Phase stability. Here the

disorder depends on the potential difference between the constituent ion-cores: VA −
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VB. To study magnetic phase we obtained the pair energy for different compositions

using orbital peeling technique of Burke[11], based on tight-binding linear muffin-tin

orbital and Augmented space recusrion.

1.1 Overview of lattice dynamics

Starting with the many-body Hamiltonian, let us consider a system consisting of Nc

ion cores in a solid having Ne valence electrons

H =
Nc∑

k=1

Pk
2

2Mk

+
Ne∑

l=1

pl
2

2ml

+ Vee(~r) + Vei(~r, ~R) + Vii(~R) (1.1)

where Pk, Mk and pl, ml are momentum and masses of ions and electrons. While Vee,

Vii, and Vee are electron-electron, ion-ion and electron-ion interactions. Equation 1.1

can be rewritten as

H = He + Hi + Hei

Now we focus on the ionic motion part of Hamiltonian (H), and use the Born-

Oppenheimer (adiabatic) approximation to reduce the electronic Hamiltonian to one

electron Hamiltonian. According to Born-Oppenheimer approximation massive ions

are assumed to be frozen or stationary compare to dynamical movement of electrons.

After a tedious implementation of the Born-Oppenheimer approximation, the ion-

Hamiltonian becomes

Hi
∼=

∑

k

Pk
2

2Mk

+ Eeff (R1, R2, ...., Rn) (1.2)

where Eeff = average total energy for all ions at positions Rk. Eeff acts as an effective

potential energy for the ion motion. Since Eeff depends on the electronic states of

all electron and position of all ions, hence one has to perform electronic calculation
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to calculate Eeff with high degree of accuracy (as function of Rk).

Now as a result of thermal fluctuation at finite temperature, the constituent atoms in

a crystal lattice oscillates about its equilibrium positions. Let the displaced position

of each vibrating ion is

Rk = Rk0 + δRk

where Rk0 is equilibrium ion position and δRk is vibrational displacement amplitude.

Expanding Eeff in eq. 1.2 in a Taylor’s series about Rk0 ,

Eeff (Rk) = Eeff (Rj0) + E ′(δRj)

Expanding E ′(δRj) for small δRj, the first-order term canceled (i.e. ∂Ee

∂Rk
= 0). Ne-

glecting the higher terms of expansion expression for effective potential will looks

like

Eeff (Rk) = Eeff (Rj0) +
1

2

∑

kl

∑
µν

∂2Eeff

∂uµ(Rk)∂uν(Rl)
uµ(Rk)uν(Rl) (1.3)

The above eqn. 1.3 is known as harmonic approximation and now the equation of

motion takes the form

Mküµ(Rk) = − ∂Eeff

∂uµ(Rk)
=

∑

kν

ΦRkRl
µν uν(Rl) (1.4)

where ΦRkRl
µν are the force constant having expression,

ΦRkRl
µν = − ∂2Eeff

∂uµ(Rk)∂uν(Rl)

Now let us choose an oscillatory solution of eqn. (1.4) as:

u(R, t) =
1√
N

ei(k.R−ωt)ε

which leads to the equation

[Mω2 −D(k)]ε = 0 (1.5)
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where D is dynamical matrix (Hermitian) whose elements are

Dµν(k) =
∑

R

ΦRkRl
µν eik.R

Eqn.1.5 represents three linear homogeneous equations for three unknown εν(ν =

1, 2, 3). The three solutions ωp(k) (p=1,2,3) for each value of k are obtained by

finding roots of the secular equation det(Mω2 − D) = 0. The relation between the

frequency ω and the wave-vector k gives the dispersion relation.

The basic problem in phonon theory is to solve the secular eqn. (1.5). To do so we

use Green’s function technique followed by recursion method of Haydock et.al.[12].

The Green’s function corresponding to the displaced vector ε is given as

Gss(k, ω2) =< s|(ω2I − A(k))−1|s > (1.6)

with A(k) = M− 1
2 D(k)M− 1

2 , where M and D(k) are Mass operator and dynamical

matrix. Tight binding representation having projection operator P (k) and transfer

operator Tklof above is

M =
∑

k

mkδµνPk (1.7)

D =
∑

k

Dµν
RkRk

Pk +
∑

kl

Dµν
RkRl

TRkRl

Imaginary part of Green’s function Gss(k, ω2) gives us the spectral function. Dis-

persion relation are the peaks of spectral function for each wave-vector k along par-

ticular symmetry direction

1.2 Disorder handling techniques

For disordered medium Green’s function 〈〈G(k, ω2)〉〉 is configuration averaged quan-

tity. Very few methods can deal with such kind of disorder. As already mentioned
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in beginning of this chapter, CPA and other mean-field methods cannot take care of

environmental and nearest neighbor effect, which is clear from eqn. (1.4) and (1.5).

To overcome this we carried out Augmented space recursion (ASR) and Special quasi-

random structure(SQS) based method.

1.2.1 Augmented space recursion

We will start with the concept of Augmented space theorem proposed by Mook-

erjee(1973) [10]. The theorem states that “To each variable tR there is associated

configuration space ∅ spanned by the states |k〉 of realization of tR and self adjoint

operator TR ” such that probability density

PR(tR) = − 1

π
Im〈∅|(tR + iδ)I − TR)−1|∅〉 (1.8)

then the average of any functions of the set of random variables {tRi
} is

〈〈f(tR)〉〉 = 〈∅|f̂(T̂R)|∅〉 (1.9)

The product space Φ contains information about all possible configuration of the

disordered system. Operator T̂R is built up from the operator TR as

T̂R = I ⊗ I ⊗ I ⊗ .....⊗ TR ⊗ I ⊗ .. (1.10)

This is known as the Augmented space theorem. Suppose if one wants to carry out

the configuration averaging of the phonon Green’s function

GRR(ω2, tR) = 〈R|(M(TR)ω2 −D({tR}))−1|R〉 (1.11)

The theorem says

〈〈GRR(ω2)〉〉 = 〈R⊗ {∅}|(M̂({TR})ω2 − D̂({TR}))−1|R⊗ {∅}〉 (1.12)
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where M̂({TR}), and D̂({TR}) are the operators having a functional form same as

that of M({tR}) and D({tR}). The operation in the right hand side of eqn. 1.12 have

no randomness and hence can be evaluated easily.

The power of the theorem is now apparent. The average is seen to be a particular ma-

trix element of the Green’s function of an augmented Hamiltonian. This is constructed

out of the original random Hamiltonian by replacing the random variables by the cor-

responding configuration space operators built out of their probability distribution.

The augmented Hamiltonian is an operator in the augmented space Ψ = H⊗Φ, when

H is the space spanned by the tight binding basis and Φ the full configuration space.

The result is exact. Approximation now can be introduced in the actual calculation

of this matrix element in a controlled manner. The augmented Hamiltonian has no

randomness in it and therefore various techniques are available for the calculation of

the Green’s function for non-random system. In particular we have used recursion

method by Haydock[12] which suited well to obtain matrix elements in augmented

space.

1.2.2 Special quasi-random Structure

The core problem of the phonon calculation is extraction of dynamical matrix ele-

ments. For disorder case the dynamical matrices are not symmetric and hence it is

always a tedious task to get it theoretically. One has to depend fully on neutron scat-

tering experiment data of the system. To overcome this situation we carry out the

special quasi-random structure (SQS) based calculation. The advantage of SQS over

normal mean-field techniques are that the distribution of distinct local environment

(i.e. nearest neighbor) is maintained.

SQS is based on a design “Special N-atom periodic structure” S whose distinct cor-
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relation functions Π̄k,m(S) best match the ensemble average 〈Πk,m〉R of random alloy.

For configurational disordered alloy AxB1−x there is no correlation in the occupation

between various sites, which leads to the correlation function Π̄k,m to be a product of

the lattice-average site variable, relating to the composition by 〈Si〉 = (2x− 1). Thus

in random alloy, the pair and multi-site correlation function takes a simple form

〈Π̄k,m〉R = (2x− 1)k (1.13)

The SQS approach is computationally expensive to find the small unit cell ordered

structure with

(Πk,m)SQS
∼= 〈Π̄k,m〉R (1.14)

An attempt to describe the random alloy by small unit cell periodically repeated

structure gives rise to enormous correlation beyond certain distance, hence one should

take only the nearest neighbor interaction.

1.3 Some important quantities

One of the most important observable quantity in our method is the configuration

averaged Green’s function 〈〈G(k, ω2)〉〉 for the disordered medium. Recursion method

of Haydock et.al.[12] is one of key technique that has been used to calculate 〈〈G〉〉.
Unlike the ordinary recursion for simple tight binding Hamiltonian [12], we, in ASR,

recurse in the space of all possible random configurations which the Hamiltonian

may acquire in a disordered system. Essentially the Green function is expanded as a
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continued fraction [13],

〈〈G(k, ω2)〉〉 =
1

ω2 − α1(k)− β2
1(k)

ω2 − α2(k)− β2
2(k)

... T (k, ω2)

=
1

ω2 − ω2
0(k)− Σ(k, ω2)

(1.15)

The above continued fraction expansion is terminated after a suitable number of steps

by the so-called Beer-Pettifor terminator T (k, ω2) [14] which preserves the Herglotz

analytic properties of the Green’s function. The disorder-induced self-energy Σ(k, ω2)

is a signature of the damped vibrations arising out of random scattering and ω0 are

the band frequencies in the absence of disorder. Phonon self-energy Σ is intrinsically

dependent on the wave-vector k as is evident from most neutron scattering experi-

ments.

1.3.1 Spectral function and Phonon DOS

Once the Green’s function 〈〈G(k, ω2)〉〉 is calculated, the spectral function is obtained

as,

A(k, ω2) = − 1

π
=m〈〈G(k, ω2)〉〉 (1.16)

A more frequently used quantity is the Coherent Scattering Structure Factor Scoh(k, w2),

which is basically the same as the spectral function except that the fluctuation in the

scattering length of different atomic species is also included in the definition of Scoh.

All of our results are based on the structure factor. The dispersion curves for differ-

ent modes are then obtained numerically by calculating the peak frequencies of these

structure factors.
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The disorder-induced widths are the quantities which are more sensitive to the

effect of randomness as compared to the dispersion, and as such is one of the focus of

the present work. In order to extract these full widths at half maxima (FWHM), we

have fitted the coherent structure factors to lorenzians exactly as experimentalists do

to extract the same.

The phonon DOS is obtained by integrating the structure factor over the Brillouin

zone,

n(ω) =
∑

λ

〈〈nλ(ω)〉〉

= − 2

3π

1

ΩBZ

∑

λ

∫

BZ

=m〈〈Gλ(k, ω2)〉〉ωdω

(1.17)

where λ is the normal-mode branch index and α is the SRO parameter.

1.3.2 Vibrational entropy

The lattice heat capacity (Cβ
v ) of a phase (β) is determined by its phonon DOS

n(w, α). The difference ∆Cβ−β′
v for two phases β and β′ of a compound depends on

the difference in their phonon DOS as,

∆Cβ−β′
v (T ) = 3NkB

∫ ∞

0

[
nβ(ω)− nβ′(ω)

]

×
(

hν

kBT

)2
ehν/kBT

(ehν/kBT − 1)2
dν, (1.18)

where ω = 2πν

The thermodynamic importance of vibrational entropy has often been neglected,

but recent measurements show that it affects the relative stability of chemically or-

dered and disordered phases [15, 16, 17]. As a matter of fact, in many systems, the



Chapter 1. Introduction and Overview 12

vibrational entropy difference between two phases comes out to be comparable to the

configurational entropy difference. The difference in vibrational entropy of two phases

β and β′, ∆Sβ−β′
vib can be obtained from the difference in their lattice heat capacity

∆Cβ−β′
v as:

∆Sβ−β′
vib (T ) =

∫ T

0

∆Cβ−β′
v (T ′)
T ′ dT ′ (1.19)

In the higher temperature limit (T ≥ ΘDebye), combination of Eq. 1.18 and 1.19

yields,

∆Sβ−β′
vib (T ) = −3NkB

∫ ∞

0

[
nβ(ν)− nβ′(ν)

]
ln(ν)dν (1.20)

Configurational entropy is a measure of the degree of disorder for an alloy. For a

homogeneously disordered binary alloy, the configurational entropy is given by,

Shomog = −kB [x ln(x) + (1− x)ln(1− x)] (1.21)

This approximation assumes that all the lattice sites are equivalent and uncorrelated.

However in an alloy with certain degree of order, not all lattice sites are equivalent

and a certain degree of correlation always exists between lattice positions.

1.3.3 Thermal Conductivity and Diffusivity

The expression for the lattice thermal conductivity requires the configuration average

of the response functions of,

〈〈κ(z1, z2, T )〉〉 =∫
d3k

8π3
Tr [〈〈S(k, T )G(k, z1)S(k, T )G(k, z2)〉〉] , (1.22)

where S is the heat current operator, G is the phonon propagator and 〈〈 〉〉 de-

notes configuration averaging. The expression for thermal diffusivity is similar to
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conductivity 〈〈κ〉〉 and given by,

〈〈D(ν)〉〉 =
1

π2

∫
dν ′

∫
d3k

8π3

Tr [〈〈=mG(k, ν ′)S(k)=mG(k, ν ′)S(k)=mG(k, ν)〉〉] . (1.23)

One can notice that thermal conductivity Eq. 1.22 involves the configuration average

of four random functions while thermal diffusivity Eq. 1.23 involves the configuration

average of five random functions whose fluctuations are correlated.



Chapter 2

Phononic properties with short-range order (SRO)

2.1 Introduction

Study of lattice vibrations and their effect is a long-standing problem for first-principles

calculation of substitutional alloy thermodynamics. The complicated nature of phonon

problem is due to existence of off-diagonal disorder in the dynamical matrix. More-

over, the sum rule obeyed by the diagonal and off-diagonal parts of the force con-

stants leads to another kind of disorder called environmental disorder [18]. Including

short-range features make the problem even more complicated. One then requires

to carry out a conditional configuration averaging scheme discussed in chapter (1)

for the disordered alloy, which captures the effect of correlated disorder. Typically,

the ranges of inter-atomic force constants are not much larger than inter-atomic dis-

tances. Although phonons have many wavelengths, most of them in solids have high

0The contents of this chapter has been published in two papers :

1. Aftab Alam, Rajiv Kumar Chouhan, and Abhijit Mookerjee Phys. Rev. B 83, 054201(2011)

2. Rajiv Kumar Chouhan, Aftab Alam, Subhradip Ghosh and Abhijit Mookerjee, J. Phys.
Condensed Matter 24 375401 (2012)
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frequencies and short wavelengths. Nevertheless, there have been no detailed first-

principles investigation of how the phonon density of states (DOS) depend on the

short-range ordering (or local atomic configuration) of alloys. In addition since the

phonon DOS is a key quantity for any understanding of vibrational entropy (at least

in the harmonic approximation), such a dependence of short-range ordering (SRO) is

implicitly hidden on the entropy as well. Keeping in mind a growing effort in under-

standing the reason behind the vibrational entropy differences between various states

of materials [19, 20], we formulated a new method which can take into account the

effect of local chemical environment on the lattice dynamics of disordered alloys and

hence provide a deeper insight to understand the origin of such entropy differences.

Within the experimental framework, there have been advances made in this direction.

Experimental literature mainly relies on three basic techniques namely, differential

calorimetry measurement [20, 21], inelastic neutron scattering [22] and nuclear reso-

nant inelastic x-ray scattering method [15]. Of them the nuclear resonant scattering

experiment seems quite promising. Some of the application of this method provide a

better understanding of the micro structure of alloys by assigning the dependence of

local chemical environment on the phonon DOS [23]. Although such topic is littered

by the experimental studies, a complete theoretical understanding is still lacking.

This situation has motivated a few theoretical studies [24, 25, 26], which addressed

properties that are sensitive to the presence of short-range ordering in the alloys.

However, to our knowledge, the application of such methods are either limited to

model systems or based on the use of a separate ab-initio energetics and inter atomic

potentials. It is therefore required to have a direct first-principles calculation of the

lattice dynamics and the vibrational entropy of disordered alloys with short-range

order.
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Taking a challenge of this possibility and motivated by a lack of available knowl-

edge, we present a generalized method to investigate the vibrational properties of

disordered alloys with SRO. This method should explicitly take into account the

fluctuation in masses, scattering length (diagonal disorder) and force constants (off-

diagonal disorder). The generalization should in principle allow the method an extra

capability of capturing effect of correlated disorder arising out of the SRO. This tech-

nique is based on the augmented space theorem suggested by Mookerjee(1973) [10]

combined with the recursion method of Haydock(1972) [12] to obtain the conditional

configuration averaged Green function mentioned in chapter (1).

Keeping in mind the increasing interest in investigating the role of phonon entropy

on the thermodynamic stability of compound, we choose a technologically important

alloy system, namely FeCr. The phase diagram of FeCr at high temperatures, in-

cludes a bcc single-phase region over a broad range of composition, with a σ-phase

region near equiatomic compositions from 725K to 1103K. Experimental observations

in the temperature range 675K - 773K indicate that chemical unmixing occurs ho-

mogeneously by a mechanism like spinodal decomposition [27]. In fact FeCr alloys

constitute the basic ingredient of stainless steels that for a century have been one of

the most important structural material, hence some properties of stainless steel are

inherited from the parent alloy. The present investigation was performed to asses the

phonon DOS and vibrational entropy of mixing of bcc FeCr. In addition, we also

analyze (from the first principles calculation) for the first time the effects of SRO on

these lattice dynamical properties, which in turn is related to the thermodynamics of

the alloy.

Various mechanisms have been suggested from time to time to explain the origin of

vibrational entropy differences in alloys. Some of them are the bond proportion effect
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[28], the volume effect, the size mismatch effect [29] etc. The entropy difference

is actually related to the difference in the phonon DOS between the two concerned

states. An intrinsic quantity from which this phonon DOS is obtained in most of

the theoretical calculation are the phonon dispersion. In disordered alloys, these

dispersion are associated with a full width at half maxima (FWHM), which provide

finite life-time broadening to the phonon scattering. Considering this quantity to

be one of the most basic quantity in any phonon theory of disordered alloys, we

intuitively connect them to explain a general trend of the magnitude of vibrational

entropy difference.

In contrast to the previous semi-emperical calculations [25] and experiments [22,

16], we found a comparatively smaller value of the phonon entropy of mixing. We

shall provide plausible explanations for the comparatively large value of vibrational

entropy difference obtained in previous studies. While this result does not rule out the

possibility that lattice vibrations play a significant role in other systems, it does point

out that vibrational effects in Fe-Cr may be comparatively smaller than originally

claimed.

We carried out similar kind of study for Rhenium Tungsten (ReW) alloys perform-

ing ab− initio study of the phonon properties. Technologically W is the core material

making up the shield in fusion devices and Re1−xWx and large doses of neutron ra-

diation during fusion process converts some of the W atoms into Re. This happens

at random sites on the W lattice. After continuous radiation for years, the material

converts to a disordered binary alloy within a certain atomic % of Re (' 27% ) in a

body-centered cubic (bcc) structure. Beyond these concentrations, the bcc structure

slowly becomes dynamically unstable [30]. Alloys of Re are also of interest to mate-

rials scientists, as when Re alloyed with group VI metals reinforces their mechanical
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strength, at the same time it improves their plasticity [30]-[31]. Alloying with Re is

an efficient way of designing materials with specified mechanical properties. These

Re doped alloys are prepared by chemical vapor deposition [32]. In spite of this alloy

being of technological importance, there have been very few theoretical or experi-

mental works reported in literature. The only theory was by Persson et.al.[31]. We

choose three different alloy concentrations: x = 0.75, 0.43 and 0.29. The choice is

deliberate because persson et.al.[31] have investigated the same set of alloys with a

different method. They, however, have not provided a complete picture for the three

alloys in the bcc phase. In addition, due to the nature of their theoretical method,

it is not clear whether they are able to calculate quantities like phonon lifetime (an

important observable from neutron scattering), self energy, SRO effects etc.

The augmented space method has been described in great detail in chapter (1) of

this thesis, we shall introduce here only those salient points which will be of direct

relevance to our generalization to SRO for phonon problem. Detailed discussion were

done by Alam et.al.(2004) and Mookerjee et.al.(2003) [13, 33].

2.2 Multiple Scattering Phenomenon

During the process a phonon propagates in a random alloy, it encounters irreducible

multiple scattering both repeatedly off a single fluctuations and successively off fluc-

tuations on the different sites. As mentioned in beginning of this chapter, being a

single-site mean-field approximation CPA takes into account only the single fluctua-

tion. This is precisely shown in the left panel of Fig. 2.1, which is a 2-dimensional

cartoon diagram of the multiple scattering phenomenon captured by CPA. The black

circle is a single fluctuation site embedded in an average medium denoted by light cir-

cle. Within the CPA (diagonal disorder), the irreducible scattering by the defect size
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CPA (Single site Mass Disorder) ASR (Multisite Mass & Force Const. Disorder)

Fluctuation site (or defect site) Sites in the average medium

Figure 2.1: (Color Online) Multiple scattering picture for the singles-site CPA, and the multi-site
ASR. The black dark circles indicate the fluctuation site and the red square around them indicates
the region of influence. Within CPA the effect of fluctuation is limited to the single site itself,
however ASR takes into account the influence to neighboring sites as well.

is confined to the defect site itself. The red box around the fluctuation site indicates

the region of influence of the perturbation. This is an oversimplified model of phonon

problem for disordered alloys, since none of the springs are affected by the presence of

this defect as the force constants are same everywhere. In other words, the averaging

is done over all possible occupation of single site only. The right panel in Fig. 2.1

illustrates the multiple scattering phenomenon captured within our augmented space

method. One can easily see the difference compared to the CPA case. In this picture,

the main difference is the region of perturbation which is not only the site of fluctua-

tion but also its neighboring environments. The box around the dark circles shows the

region of influence, which is an example of a model including the effect of 2nd nearest

neighbor environment. One can perform calculation for extended neighbors as well.
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During the process of propagation, the phonon at the fluctuation site scatters from

all of its neighbors, and their force constants also undergo fluctuations ( indicated by

thick spring lines in contrast to the thin ones for the average medium). In fact, the

whole cluster of atoms (within the red box) undergoes fluctuations both in masses

(diagonal disorder) and force constants (off-diagonal disorder). This is an example

of homogeneous disorder. Another thing to notice is the way scattering is spreaded

all over the lattice, although the strength of scattering decreases with distance be-

cause of the short-range nature of phonon interaction. Apart from the fluctuations in

masses and force constants, the scattering length of the alloy species might be very

different from one another. For the sake of completeness, we have also included the

fluctuations in scattering lengths.

2.3 Short range order (SRO) in phonons

Here we shall present a generalization of the Augmented space formalism to the

phonon problem for the first time and hence relate it to the phonons DOS and vibra-

tional entropy. We shall first present the salient features of the method for homoge-

neous disorder, and then discuss its generalization to inhomogeneous (or correlated)

disorder.

The basic idea behind the augmented space method for configuration averaging is

to extend the usual real Hilbert space H to include a configuration space Ψ. Disorder

fluctuations are described in Ψ. Suppose {nR} be a collection of discrete indepen-

dent random variables and F ({nR}) be some function of these variables. If each

random variables nR takes on values {m1,m2, . . . , mr, . . .} one can decompose the
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joint probability distribution function of these variables P ({nR}) as:

P (n1, n2 . . . , nr, . . .) = p1(n1) p2(n2) . . . pr(nr) . . .

Each pi is +ve definite and has finite moments to all orders. A Hilbert space ΨR

(spanned by the state of nR) is constructed for each density pR, and the full system

configuration space is defined as Ψ =
∏⊗

R ΨR. A self-adjoint operator NR ∈ ΨR is

associated with each random variable nR, such that

pR(nR) = − 1

π
lim
δ→0

=m〈νR
0 | [(nR + iδ)I −NR]−1 |νR

0 〉, (2.1)

where νR
0 =

∑α
j=1 wj|mR

j 〉 is a specific member of ΨR. The ground state |ν0〉 in the

full product space Ψ is defined as |ν0〉 =
∏⊗

j |νj
0〉.

According to augmented space theorem, the configuration average of F ({nR}) is

〈F 〉 = 〈ν0| F̃ (Ñ (1), Ñ (2), . . . , Ñ (R), . . .)|ν0〉,

where

Ñ (R) = I ⊗ . . .⊗NR . . .⊗ I ⊗ . . . (2.2)

and F̃ is the same function of Ñ (R) as F was of n′Rs. The calculation of the config-

uration average 〈F 〉 thus reduces to the problem of obtaining the above expectation

value.

However if the random variables {nR} are correlated (instead of being indepen-

dent), then the joint probability distribution should be decomposed as:

P (n1, n2 . . . , nr, . . .) = p1(n1) p2(n2|n1) p3(n3|n1, n2) . . . (2.3)

And in general for a correlated variable nR, one has an associated operator,

Ñ (R)
corr =

∑

l1

. . .
∑

lR−1

P l1
1 ⊗ P l2

2 ⊗ . . .⊗N
l1,...lR−1

R ⊗ I ⊗ . . . (2.4)
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where the operator N
l1,...li−1

R is associated with the conditional probability density

P li
i and pi(ni|n1, n2, . . . ni−1) are projection operators on a specific state li. The

elegance of the formulation is that, the basic augmented space theorem still holds

good rigorously, but Ñ(R) instead being of the form given by Eq. 2.2, now has the

form of Eq. 2.4.

For a binary alloy, the macroscopic state of order is described in terms of the

Warren-Cowley short-range order parameter,

αAB
R = 1− PR(B|A)

y

where the center of R-th shell is occupied by A-atom, y denotes the macroscopic

concentration of species B, and PR is the probability of finding a B-atom anywhere

in the R-th shell centered around an A-atom.

In terms of the above defined SRO parameter, the probability density associated

with the sites belonging to first nearest neighbor shell is given by,

p(nR2|nR1 = 1) = (x + αy)δ(nR2 − 1) + (1− α)yδ(nR2)

p(nR2|nR1 = 0) = (y + αx)δ(nR2) + (1− α)xδ(nR2 − 1),

(2.5)

where nR1 is the variable associated with central atom. Also α = αAB
1 and x + y = 1.

The construction of operator corresponding to the conditional probability density

for the occupation variable has been discussed in detail by Alam and Saha [34]. Here

we mention only the final form of augmented space operators associated with the
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conditional probability density given by Eq. 2.4 as,

Ñ (R)
corr = xp0

1 ⊗ p0
R + yp0

1 ⊗ p1
R + X1 p1

1 ⊗ p0
R + X2 p1

1 ⊗ p1
R

+U1 p0
1 ⊗ (τ 01

R + τ 10
R ) + U2 p1

1 ⊗ (τ 01
R + τ 10

R )

+U3 (τ 01
1 + τ 10

1 )⊗ p0
R + U4 (τ 01

1 + τ 10
1 )⊗ p1

R

+U5 (τ 01
1 + τ 10

1 )⊗ (τ 01
R + τ 10

R ), (2.6)

where p0
k, p

1
k denotes the projection operators and τ 01

k , τ 10
k are the transfer operators.

The constants are defined as:

X1 = x− α(x− y), X2 = y + α(x− y)

U1 = x
√

(1− α)y(x + αy) + y
√

(1− α)x(y + αx)

U2 = y
√

(1− α)y(x + αy) + x
√

(1− α)x(y + αx)

U3 = α
√

xy, U4 = −α
√

xy

U5 =
√

xy
[√

(1− α)y(x + αy)−
√

(1− α)x(y + αx)
]

We should also mention at this point that the augmented space operator Ñ (R) asso-

ciated with independent probability density pR(nR) is:

Ñ (R) = x p0
R + y p1

R +
√

xy(τ 01
R + τ 10

R ) (2.7)

The next step is to use these operators and the central theorem for correlated ran-

dom variables to set up an effective Hamiltonian in augmented space for the phonon

problem. For the phonon problem, the Green function for a disordered binary alloy

in reciprocal space representation is given by,

〈〈G(k, w2)〉〉 =
1

N

∑

R R′
eik.(R−R′)〈〈R|(Mw2 −D)−1|R′〉〉,
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where

M =
∑

R

mRPR, mR = mAnR + mB(1− nR)

D =
∑

R

ΦRRPR +
∑

R,R′ 6=R

ΦRR′TRR′

along with the sum rule,

ΦRR′ = −
∑

R′ 6=R

ΦRR′

and in terms of random variables,

ΦRR′ = ΦAA
RR′nRnR′ + ΦBB

RR′(1− nR)(1− nR′) +

ΦAB
RR′{nR(1− nR′) + (1− nR)nR′}. (2.8)

〈〈〉〉 stands for the configuration averaging over random variables, R,R′ refer to lattice

positions. M and D are the mass and dynamical matrices in vibrational mode space.

{nR} are the random site-occupation variables.

A convenient way of representing states in the configuration space Ψ =
∏⊗

R ΨR is

the use of cardinality sequence, which is basically the sequence of sites {C} at which

one has an atom of type B corresponding to the value of random variable nR = 1.

In the language of ising model, we shall denote such a state by a ↓ configuration

and those sites occupied by an atom of type A by ↑. For example, for the state

{C} = |{↓2, ↓5, ↓7, . . .}〉, the site numbers 2, 5, 7, . . . are occupied by B-atoms. If we

define |{↑, ↑, . . . , ↑ . . .}〉 as the reference configuration, then the cardinality sequence

of this configuration is a null sequence {∅}
According to augmented space theorem, the configuration averaged Green function

can be expressed as,

〈〈G(k, w2)〉〉 = 〈k⊗ {∅}|(M̃w2 − D̃)−1|k⊗ {∅}〉, (2.9)
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where the augmented k-space basis has the form

|k⊗ {∅} =
1√
N

∑
R

e−ik.R|R⊗ {∅}.

The augmented space operators M̃ and D̃ are constructed from the original random

operators (Eq. 2.8) by replacing all the random variables {nR} associated with corre-

lated disorder (i.e. nR corresponding to the sites in the nearest neighbor shell of the

central site) by ÑR
corr (given by Eq. 2.6) and all the other variables {nR} associated

with un-correlated disorder by ÑR (given by Eq. 2.7). M̃ and D̃ are the operators

in the enlarged augmented space Ξ = H⊗Ψ, which contains the information about

both the real Hilbert space and the statistical fluctuation of the system arising out

of disorder.

Atom A Atom B Sites in the average medium

A

AA A

A

A A

AA

A

AA

A A

B

B B

B

Clustering tendency (with SRO param    = 1)α Ordering tendency (with SRO param     =−1)α

Figure 2.2: (Color Online) Multiple scattering picture for the disordered alloy with short rang
ordering. Left panel shows a clustering tendency while the right panel an ordering tendency. The
range of short-range correlation is extended up to the 2nd nearest neighbors in this cartoon diagram
(shown by the red box).
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Keeping in mind the two forms of operator Ñ (i.e. ÑR
corr and ÑR: one indicating

the signature of correlated disorder cluster with conditional probability and the other

the rest of the homogeneous disordered medium), the augmented space operators M̃

and D̃ can be expressed as:

M̃ = mBĨ ⊗ I + δm

[ ∑

R 6∈corr

ÑR +
∑

R∈corr

ÑR
corr

]
⊗ PR,

(2.10)

D̃off =

[ ∑

R 6∈corr

∑

R′ 6∈corr

{
ΦBB

RR′ Ĩ + Φ
(1)
RR′(Ñ

R + ÑR′) + Φ
(2)
RR′Ñ

RÑR′
}

+

∑
R∈1

∑

R′∈corr

{
ΦBB

RR′ Ĩ + Φ
(1)
RR′(Ñ

R + ÑR′
corr) + Φ

(2)
RR′Ñ

RÑR′
corr

}]
⊗ TRR′ ,

=

[ ∑

R 6∈corr

∑

R′ 6∈corr

Φuncorr
RR′ +

∑
R∈1

∑

R′∈corr

Φcorr
RR′

]
⊗ TRR′ ,

D̃dia = −
[ ∑

R 6∈corr

∑

R′ 6∈corr

Φuncorr
RR′ +

∑
R∈1

∑

R′∈corr

Φcorr
RR′

]
⊗ PR,

D̃ = D̃dia + D̃off , (2.11)

where

δm = mA −mB, Φ
(1)
RR′ = (ΦAB

RR′ − ΦBB
RR′),

Φ
(2)
RR′ = (ΦAA

RR′ + ΦBB
RR′ − 2ΦBB

RR′).

Once the augmented space operators M̃ and D̃ are constructed, the configuration

averaged Greens function is obtained from Eq. 2.9 using the recursion method of

Haydock et.al.(1972) [12].

In terms of multiple scattering picture, the above mathematical formulation can

explain a number of situations describing the short-ranged correlations depending
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on the value of warren-cowley parameter α. Out of various other possibilities, the

tendency of clustering and ordering are described in Fig. 2.2 for the two extreme

values of α (+1 and -1) for a 50 − 50 alloy. The left panel shows the clustering

tendency with the effect of short-range correlation maintained till the second nearest

neighbor (shown by the red box), and the right panel shows the ordering tendency

with the same range of correlation.

An important SRO effect we studied for configurational entropy (see chapter 1).

In this case there exists a finite cluster up to which the correlation between sites

remain stronger and decay rapidly with increasing distance. All the correlations are

described within the basic cluster and the rest of the lattice sites are considered to be

homogeneously disordered. Since one of our focus in this chapter is to describe states

with certain degree of SRO, we choose the basic clusters to be pairs for simplicity.

The configurational entropy (including pairs up to n-th nearest neighbor distance)

for a random binary alloy with SRO is given by,

S(n)
corr = Shomog − Shomog

(
n∑

j=1

N (j)

)
− kB

n∑
j=1

N (j)

2
.... (2.12)

....
[
PAA

j ln(PAA
j ) + 2PAB

j ln(PAB
j ) + PBB

j ln(PBB
j )

]
,

where N (j) denotes the number of atoms in the j-th neighboring shell, Also the pair

probabilities Pj’s are given by,

PAA
j = y2 + xyαj, PAB

j = xy(1− αj), P
BB
j = x2 + xyαj,

where αj is the SRO-parameter in the j-th nearest neighbor shell.

It is easy to verify that for αj = 0(∀j), Scorr reduces to Shomog. In addition,

the term under the summation converge to zero with increasing distance, meaning

that lattice sites separated by large distances are uncorrelated. In our case of bcc
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disordered alloy, we verified that the inclusion of third neighbor pairs modifies the

entropy only by 0.005% confirming the short-range nature of the correlations.

2.4 Case 1: Fe1−xCrx bcc binary alloy

Ab-initio Quantum Espersso [35] code has been used to compute the Fe-Fe, Fe-Cr and

Cr-Cr dynamical matrices at different bond lengths with different ordered structures.

Force constants for B2 FeCr, DO3 Fe3Cr and FeCr3, and bcc Fe and bcc Cr at their

equilibrium lattice parameters have been used to estimate the random alloy dynam-

ical matrix. Quantum Espresso is based upon the density functional perturbation

theory (DFPT) [36], which is basically a linear response method to study the elec-

tronic structure and phonon excitations in condensed matter systems. Within this

method, the dynamical matrix associated with the lattice dynamics of the system

can be obtained from the ground state electron charge density and its linear response

to a distortion of the nuclear geometry. In terms of computational efficiency, one of

the greatest advantages of DFPT (as compared to other non-perturbative methods)

is that within this method the responses to perturbation of different wavelengths

are decoupled. This feature allows one to calculate phonon frequencies at arbitrary

wave-vectors avoiding the use of supercells and with a workload that is indepen-

dent of the phonon wavelength. The calculation were done at the alloy lattice con-

stants: a=2.873Ȧ for Fe75Cr25, a=2.876Ȧ for Fe50Cr50 and a=2.879Ȧ for Fe25Cr75.

Ultra soft pseudo-potentials with nonlinear core corrections [37] were used. PBE-

96 spin-polarized generalized gradient approximate (GGA) functionals were used for

exchange-correlation part of the potential. The reason for choosing GGA functionals

is its better capability to calculate the ground state properties. Plane waves with

energies up to 55 Rydberg are used in order to describe electron wave function and
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Fourier components of the augmented charge density with cut-off energy of up to

650 Rydberg are taken into account. The Brillouin zone integrations are carried

out with Methfessel Paxton smearing [38] using a 14 × 14 × 14 k-point mesh. The

value of smearing parameter is 0.01 Rydberg. These parameters are found to yield

phonon frequencies converged to within 5%. Once the electronic structure calcula-

tion is converged within a desired accuracy, the force constants are then computed

first in reciprocal space on a finite q-point grid and then a Fourier transformation

is employed to obtain the real space force constant. In this work, we have used a

8× 8× 8 q-point mesh, which provide a sufficiently dense grid.

The augmented space recursion (ASR) calculation for the random alloy is done

by generating a map from a real space cluster of 700 atoms. The disorder in the force

constants were considered till the 2nd nearest neighbor shell, which consists of 14

sites for a bcc structure. The phonon DOS is calculated on a frequency mesh of 1001

points with a small smearing of 0.005. However for a more accurate calculation of

vibrational entropy, the phonon DOS used in the entropy expression was calculated

at 2001 points.

In terms of computational efficiency, one of the advantages of k-space recursion

(over the real space one) is the possibility of working in an enormously reduced space

(compared to the Hilbert space required in the real space recursion method). It

can be shown explicitly [39] that the operation of effective Hamiltonian (in k-space

recursion method) can entirely be done in configuration space only and the calculation

does not require us to involve the Hilbert space H at all. Thus, for example, for a

system with N-sites and m-possible realizations of the random variables associated

with each site, the augmented space involved N×mN basis functions. The standard

real space method for implementing this on a computer would require handling an
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impossibly large (NmN)×(NmN) matrices. The first reduction of computational cost

in a k-space recursion comes in the form of dealing with smaller sub-space of such

a huge product space. Since in the k-space recursion, one requires to deal only

with the configuration space, so instead of handling the enormously large matrix of

rank (NmN)×(NmN), one need to work with a matrix of rank (mN)×(mN) only. In

addition, the approximation involved in truncating the full lattice to a large cluster

(in real space method) is also avoided. Secondly, we can utilize the local symmetries of

the configuration space (as described earlier [40]) to further reduce its rank. Finally

we have used memory reduction and time saving for ASR by taking advantage of

multi-spin coding technique. In other words, one can utilize the bit manipulation

technique and predefined logical functions in the computer to store the basis vectors

of configuration space in bits associated with different words.

2.4.1 Fe1−xCrx Alloy (x = 0.25, 0.47, 0.75)

In this section, we focus on the lattice dynamics of three bcc Fe1−xCrx (x = 0.25, 0.47

and 0.75) alloys. The present study will be based on the phonon dispersion, phonon

DOS, lattice heat capacity, vibrational and configurational entropy for these alloys.

The trend and the magnitude of the phonon entropy as a function of the alloy com-

position (x) will be discussed in some detail. We also provided plausible explanation

for our smaller value of vibrational entropy of mixing(compared to other findings).

In Fig.2.3 we display the phonon dispersion curves for the three Fe1−xCrx (x =

0.25, 0.47 and 0.75) alloys. The error bars in all the three panels represent the full

widths at half maxima (FWHM) at various ζ-values. Interestingly, the gross feature

of dispersion for all the three alloys, including the Cr-rich Fe25Cr75, resemble much

more the phonon dispersion of bcc Fe, than that of bcc Cr. The disorder-induced line-
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Figure 2.3: Phonon dispersion curves for three Fe1−xCrx (x = 0.25, 0.47 and 0.75) alloys. The
error bar in all the three panels represent the full width at half maxima (FWHM) at various ζ-values.

widths on the other hand varies from one alloy to another along the different high

symmetry directions. The Cr-rich alloy tends to have a larger width (i.e. smaller

phonon life-time) than the other two alloys. Being dominated by the force constant

disorder, we expect augmented space recursion (ASR) to perform a good job (as

done before [13] as well in case of Ni-Pt alloy ) in capturing the essential off-diagonal

disorder in the present case. The advantage of ASR over the other approximate

theories (VCA or single-site CPA) is more significant if one look at the feature of

phonon dispersion at higher wave-vectors, where the improper inclusion of disorder
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Figure 2.4: Phonon DOS for pure bcc Fe, bcc Cr and the three Fe1−xCrx (x = 0.25, 0.47 and 0.75)
alloys.

effect in other theories deviate the dispersion curves lower in frequency and away

from the one calculated from ASR (as well as those measured). The distinction in

the low wave-vector regime is not that big, because the self averaging of both masses

and force constants over a single wavelength reduces the result of ASR or any other

accurate theory to become close to VCA.

The phonon DOS for the three alloys along with those of pure bcc Fe and bcc Cr

are shown in Fig. 2.4. As reflected by the dispersion curves, the phonon DOS for

all the three alloys resemble much more the phonon DOS of bcc Fe than that of bcc
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Figure 2.5: (Color Online) Temperature dependence of phonon entropy of mixing ∆Svib =
Svib(x) − [xSCr

vib + (1 − x)SFe
vib] for the three Fe1−xCrx alloys. The inset shows a similar estimate

of the difference in lattice heat capacity ∆Cv(x) between the alloy with composition x and the
corresponding chemically unmixed state.

Cr. The overall shape of the phonon DOS curves calculated in the present work is

similar to the previous findings [22, 15] for almost similar alloy composition. Since

the change in the phonon DOS as Cr is added to bcc Fe is rather small, so there

should in fact be little difference in the integral
∫∞
0

n(ν)ln(ν)dν for bcc Fe and that

of the three alloys. This will be shown more explicitly by our data on the vibrational

entropy for these set of alloys.

The temperature dependence of the vibrational entropy of mixing for the three
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Fe1−xCrx alloys are shown in Fig.2.5. This entropy difference is calculated by using Eq.

1.19, where Svib(x) (β-state) is the vibrational entropy of the alloy with composition

x, and Savg
vib (β′-state) is the average of the chemically unmixed state of bcc Fe and

bcc Cr weighted by the factors 75 : 25, 53 : 47 and 25 : 75 for the alloys Fe75Cr25,

Fe53Cr47 and Fe25Cr75 respectively. The inset shows a similar estimate of the difference

in lattice heat capacity between each of the bcc Fe-Cr alloy and the corresponding

chemically unmixed state. it is immediately clear from the inset that the specific

heat curves have similar shapes, but increases in weight with the concentration of Cr.

Because of the similar shape of the phonon DOS curve of alloy as that of the DOS

curve for pure Fe, a linear scaling of ∆Cv(T ) with the Cr-concentration x is expected.

In the moderate temperature limit, we obtained ∆Svib(T ) to be 0.033 kB/atom and

0.039 kB/atom for Fe75Cr25 alloy at 150 k and 300 K respectively. These entropy

difference for Fe53Cr47 alloy are 0.062 kB/atom and 0.075 kB/atom, and for Fe25Cr75

alloy are 0.107 kB/atom and 0.132 kB/atom at respective temperatures. These values

are smaller than those obtained experimentally [22, 16].

How can we explain the apparent discrepancy between our findings (smaller en-

tropy difference) and the results from inelastic neutron scattering [22, 16]? One of the

reason for such a discrepancy is the so called neutron weighting problem [16] in the

calculation of phonon DOS in inelastic neutron scattering measurements. For alloys,

different alloy components have different efficiencies for phonon scattering, which are

proportional to the ratio of their neutron scattering cross sections σsc to their atomic

mass. The displacements of different atoms in different phonons usually have different

amplitudes, so different phonons may be over or under represented in a DOS directly

obtained from experimental measurements. This distortion of phonon DOS should be

corrected to get a reliable estimate of vibrational entropy. In fact for Fe-Cr alloy, the
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phonon scattering from natural Fe is approximately three times stronger than that

from natural Cr i.e. σFe
sc /mFe ' 3 σCr

sc /mCr. Such a neutron-weighting problem has

been investigated recently [16] for Fe-Cr alloy, and an attempt has been made to avoid

such a problem by estimating a neutron weight-corrected phonon DOS. As a matter

of fact, phonon entropy of mixing calculated from the neutron weight corrected DOS

is smaller than those evaluated from the directly measured DOS. This is an indica-

tion of the right trend of our calculated phonon entropy of mixing if the measured

phonon DOS accurately takes into account the effect of different efficiencies of phonon

scattering for alloy components. A related reason for the mentioned discrepancy can

be attributed to the use of the virtual crystal approximation (VCA) for analyzing

the coherent inelastic neutron scattering data from chemically disordered alloys. The

VCA does not allow for high frequency vibrations in disordered alloys at the frequen-

cies of optical modes in the ordered alloys. It, therefore, may overestimate the change

in phonon DOS upon chemical ordering. In addition, it has also been mentioned by

Fultz et al.[22] that the absolute error in the value of vibrational entropy of mixing

(∆Svib) obtained from their inelastic neutron scattering experiment can be as large as

0.05 kB/atom. Keeping this error in mind, our theoretical phonon entropy of mixing

then lie on the same ball part as that measured by them.

In order to understand the general trend of the phonon entropy of mixing with

varying alloys, we shall next make a connection with a more intrinsic quantity, the

so called full widths at half maxima (FWHM) associated with the disorder-induced

lifetime broadening of the phonon groups. Life time broadening is a consequence of

the local vibrational modes mainly arising out of the disorder in the inter-atomic force

constants. Fig. 2.6 shows the FWHM as a function of the wave-vector magnitude

(|ζ|) along the high symmetry directions for the three bcc Fe1−xCrx alloys. One
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Figure 2.6: Disorder induced Full Widths at Half Maxima (FWHM) along the high symmetry
directions for three Fe1−xCrx (x = 0.25, 0.47 and 0.75) alloys.

can easily notice that the disorder broadening increases quited rapidly as we move

towards the Cr-rich alloy. For example the maximum value of line-width along H-

P direction for Fe75Cr25 alloy is ' 0.4 THz, however it increases to ' 0.78 THz

for Fe53Cr47 alloy and increases further to ' 1.85 THz in case of Fe25Cr75 alloy. A

damped harmonic oscillator function fit to the two phonon groups ( one along [100]

and the other along [111]) for Fe53Cr47 alloy has been made by Fultz et.al.[22]. They

estimated a resonance width of 0.2 THz for [100] Q = 0.5 phonon group and 0.96 THz
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Figure 2.7: (Color Online) Concentration dependence of phonon entropy of mixing ∆Svib(x) at
various fixed temperature. The high temperature (T→∞) limit of ∆Svib(x) is calculated from Eq.
1.20. Composition dependence of the configurational entropy (indicated by magenta dot-dashed
line) for the fully random solid solution is also shown to compare the relative magnitude of the
phonon entropy of mixing.

for [111] Q = 0.6 phonon group. We obtained a similar estimate for the widths for

Fe53Cr47 alloy. Broadened peaks were also observed for phonons near Brillouin-zone

boundaries.

Usually the line broadening of the phonon groups is more if the strength of the

disorder is more, which causes smearing of the sharp features in the phonon DOS

curves for the alloys. Such a smoothening of the vibrational energy spectrum will

have benign consequences on the phonon entropy calculation provided the phonon
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structure factors are broadened neither too asymmetrically nor excessively towards

low frequencies. The phonon line shapes in our calculation for Fe75Cr25 and Fe53Cr47

came out to be quite symmetric except in some of the higher frequency regime. The

line shapes for Cr-rich Fe75Cr25 alloy are comparatively less symmetric with a larger

disorder broadening. Keeping in mind the magnitude of calculated vibrational entropy

difference for the three alloys as quoted before and looking at the FWHM for the same

three alloys in Fig. 2.6, one can arrive at a conclusion that the disorder broadening of

the phonon groups tend to increase the phonon entropy of mixing. Such a theoretical

prediction has also been supported by previous experimental investigations [22].

In Fig. 2.7, we display the phonon entropy of mixing as a function of alloy com-

position (x) at different temperatures (T). The high temperature limit of ∆Svib were

obtained from Eq. 1.20 and are shown by blue-dotted curve. The configurational en-

tropy of the fully random solid solution is also plotted to show the relative magnitude

of the phonon entropy.

It is expected intuitively that all thermodynamic functions should change mono-

tonically during spinodal decomposition. A smooth change occurs for configurational

entropy for example. However, due to the small changes in phonon DOS curve, the

phonon entropy will not change significantly during the early stages of spinodal de-

composition. For the Fe-Cr alloy, the transition of the shape of phonon DOS curve

from being Fe-like to Cr-like occur at high Cr-concentration. Therefore, vibrational

entropy affect differently the solubility of Fe in bcc Cr-rich phase compared to the

solubility of Cr in bcc Fe-rich phase. Although this asymmetry does not occur for the

configurational entropy of mixing, the phonon entropy has a different dependence on

composition (x) and hence the reason for an asymmetric curve in Fig. 2.7. This is

precisely the reason that the inclusion of vibrational entropy into the alloy thermody-
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namics alter the shapes of phase boundaries, and not simply re scale the temperature

of the miscibility gap. The critical temperature and composition of the miscibility

gap in Fe-Cr are 905 K and x = 0.51 respectively. [41] As a matter of fact, it has been

found that, in the absence of phonon entropy of mixing, the miscibility gap shifts up

in temperature and towards pure Cr, with a critical temperature and composition

of 1208 K and x = 0.64 respectively. Thus the role of phonon entropy is to lower

the critical temperature of the miscibility gap and shift it towards the equiatomic

composition.

2.4.2 Short Range Ordering Effect in Fe-Cr alloy

Here we investigate the effect of local chemical environment on the vibrational prop-

erties of bcc Fe50Cr50 alloy. The effect of local environment will be studied via the

Warren-Cowley short-range order (SRO) parameter. The existence of inter-metallic

phases in compounds is a consequence of the strong ordering tendency of the alloy.

The same driving forces, in various systems, make the alloy exhibit chemical short-

range order (SRO) in that phase. Depending on the system of interest, the chemical

SRO might result a complete ordering or a phase segregating tendency or even a

combination of the two. Although there exist few experimental work [23, 42] to study

the effects of local chemical environment on the lattice dynamics of disordered alloys,

a reliable theoretical understanding of the same from a first-principles calculation is

still lacking. The present investigation is undertaken to analyze the effects of local

atomic environment (via the warren-cowley SRO parameter α) on three basic lattice

dynamical properties, namely, phonon DOS, vibrational and configurational entropies

within a first-principles calculation.

Fig.2.8 shows how the phonon density of states for a 50−50 Fe-Cr alloy changes as
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Figure 2.8: Local chemical environmental effect on the Phonon density of states (DOS) of Fe50Cr50
alloy. The phonon DOS of fully random solid solution (α = 0) is also plotted for the sake of
comparison. The local environmental effect is dictated via the warren-cowley short-range order
parameter (α). α = −1 indicates an ordering tendency, α = +1 indicates a clustering (phase
segregating) tendency and α = 0 corresponds to a fully random solid solution with no SRO

a function of the Warren-Cowley short-range order parameter (α). The two extreme

limits α = −1 and +1 corresponds to the tendency towards ordering and phase segre-

gation respectively. The DOS for the completely random (homogeneously disordered)

alloy (α = 0) is also shown for the sake of comparison. It is clear from the figure, that

the alloys show moderate differences in DOS for samples with chemical short-range

order. A general connection between the phonon DOS and chemical short-range or-

der may be made from the slopes of the phonon dispersion curves. A high density
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of phonon states is obtained from a flat dispersion curves, especially when they in-

clude Brillouin-zone boundaries. They also provide a slow group velocity of sound.

Much of the energy of lattice vibrations is associated with localized atomic move-

ments for slowly propagating phonon wave packets. The SRO affect these localized

atomic movements quite strongly and hence have a major effect on the corresponding

regime of the phonon DOS. Those parts of the phonons DOS not associated with

the flattened dispersion curves should be less sensitive to SRO. Based on these ar-

guments, one can easily notice from Fig. 2.8 that the phonon DOS in the frequency

range (' 4.5 − 7) THz are mainly arising from the contribution of flat parts of the

dispersion curves, and hence are influenced by SRO more strongly than the feature

of the DOS beyond ' 7 THz.

It is even more interesting to look at the effects of SRO on the entropy of mixing.

In the lower panel of Fig. 2.9, we display how the vibrational entropy of mixing in

the high temperature limit (T≥ ΘDebye) varies with the short-range order parameter

(α) for a 50 − 50 Fe-Cr alloy. For comparison sake, we also plotted the short-range

order variation of the configurational entropy (Upper panel) as calculated from Eq.

2.13 (including only the first nearest-neighbor shell SRO effect α = α1). The small

variation of phonon DOS curve as a function of SRO parameter is also reflected in the

phonon entropy of mixing. For the homogeneously disordered (α = 0) Fe50Cr50 alloy,

the phonon entropy of mixing came out to be 0.094 kB/atom. However, in different

local chemical environment, the phonon entropy of mixing ranges from 0.082 kB/atom

(for α = −1) to 0.101 kB/atom (for α = +1), which is not a big change compared to

the completely random solid solution. The dependence of phonon entropy of mixing

on the local arrangement of atoms delivers a deeper insight to the understanding of

thermodynamic stability of complex alloys.
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Figure 2.9: SRO dependence of the configurational and phonon entropy of mixing for a disordered
Fe50Cr50 alloy.

As obvious from the phonon DOS curves (See Fig. 2.8) for the three Fe1−xCrx

alloys, the total DOS looks very similar to that of bcc Fe than bcc Cr. Unfortunately,

we do not exactly know the concentration above 75 at. % of Cr for which the phonon

DOS changes from being Fe-like to Cr-like. However at low concentrations of Fe in

a Cr-host, there is a substantial distortion of the Fe partial DOS (PDOS) curves

compared to pure bcc Fe. The PDOS of both Fe and Cr atoms undergo an average

softening upon alloying, which leads to a net +ve phonon entropy of mixing, but with

a net softening of Cr PDOS to be larger than that of Fe. At low concentrations of Fe



Chapter 2. Phononic properties with short-range order (SRO) 43

in Cr, this larger softening of Cr PDOS curves causes the phonon entropy of mixing to

increase rapidly with Fe concentration, yielding a skewed shape of the concentration

dependence of phonon entropy (See Fig. 2.7). The interplay of such softening of

phonon modes in alloys with short-range order is even more dramatic, because in this

case the total phonon entropy of mixing is not just affected by the different entropic

weights of their atomic species, but also by the nature of correlated disorder present

in the short-ranged clusters considered.

The main reason behind investigating the SRO dependence of the phonon DOS

and phonon entropy in this work was to satisfy ourselves and at the same time provide

a validation for our correct smaller value of phonon entropy of mixing compared to

other findings. It was our intuition that SRO effect might enhance the magnitude of

phonon entropy of mixing to bring it closer to other findings, but we figured out that,

that’s not the case at least in case of Fe1−x Crx alloy. And the reason we gave in

the previous subsection IV(A) for the comparatively smaller value of our calculated

phonon entropy is indeed valid. While this result does not restrict the possibility

that SRO play an important role in the lattice dynamics of alloys in other systems,

it does indicate that the local environmental effects in Fe-Cr alloy may not be that

significant.

2.5 Case 2: Re1−xWx alloy (x=0.29, 0.43, 0.75)

For this alloy too, we have used a first-principles derivation of the dynamical matrices

we have used the ab-initio Quantum-Espresso code. We estimated Re-Re, W-W and

W-Re, Re-W dynamical matrices from the ordered bcc and B2 structures respectively,

by density functional perturbation theory (DFPT). The calculations were done at the

alloy equilibrium lattice constants.
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Dynamical Matrix Dµν(|R|)
Direct. Distance x = 0.75 x = 0.43 x = 0.29 x = 0 x = 1

(in units of a) Newton/meter
111xx 0.866 5.556 5.852 7.274 3.961 23.200
111xy 0.866 27.732 30.571 32.099 31.339 19.500
200xx 1.000 40.876 45.572 47.194 8.306 47.800
200yy 1.000 7.411 8.267 8.851 2.052 -1.100

Table 2.1: Dynamical matrices calculated from first-principles for the Re1−xWx alloys. The data
for pure W is taken from the paper by Chen et.al.[43]

Actually, the alloys we are currently looking at are disordered and to a good

approximation this is a valid procedure. However, if accuracy demands that the

dynamical matrices be calculated from large super-cells with random occupation of

sites by atoms, we have to do so instead of our present calculations. As mentioned

earlier, the calculations were done at the alloy lattice constants: a=5.871 a.u. for

Re25W75, a=5.840 a.u. for Re57W43 and a=5.812 a.u. for Re71W29. Vanderbilt ultra-

soft pseudo-potentials with nonlinear core corrections were used. Convergence was

checked with respect to the kinetic energy cutoff, which for wave-function comes out

to be ∼ 35 Ry and that for the charge density and potential is ∼ 100 Ry. Spin

polarized calculation with magnetization along z-axis was carried out to get better

force constants for this metallic system. The Brillouin zone integration was carried

out with Gaussian smearing using a 14×14×14 k-point Monkhorst-Pack grid with grid

displaced by half the grid space in the corresponding direction. The value of smearing

parameter was 0.02 Ry. Once the electronic structure calculation is converged within

the desired accuracy, the force constants were obtained first in reciprocal space on a

4× 4× 4 Monkhorst-Pack grid. Then a Fourier transform led to the real space force

constant. The masses of Re and W were taken to be 186.21 and 183.84 amu and their

scattering lengths 9.2 and 4.86 fm, respectively.
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Figure 2.10: (Color Online) Phonon dispersion curves for three Re1−xWx alloys (x = 75, 43 and
29 %) along the high symmetry directions of the bcc Brillouin zone (BZ). Error bars in all the panels
represent our calculated full widths at half maxima (FWHM). Filled symbols in the left panel are
the cluster expansion results for Re25W75 from Persson et al.[31]

Table 2.1 shows the calculated nearest neighbor ({111xx}, {111xy}) and next

nearest neighbor ({200xx}, {200yy}) dynamical matrices for the pure Re and W

(x = 0 and 1) and those of the three Re1−xWx alloys. One can notice the dramatic

changes in the values of the force constants in alloys due to the different nature of

effective embedded medium in different alloys. B2 ordering can be considered as one

of the configuration out of various configurations in the actual random alloy. Within a

B2 ordering, the nearest neighbor ({111xx}, {111xy}) of a central A-atom is a B-atom

and the next nearest neighbor ({200xx}, {200yy}) is an A-atom itself. As such, one

can compare the next nearest neighbor A-A force constants (f.c.) in the alloys with

the same in the pure A-element itself. For example {200xx} f.c. in pure Tungsten

changes from 47.8N/m to 45.57 N/m in Re57W43, while {200yy} f.c. changes from

−1.1 to 8.2 N/m. Thus the screening effects (due to a Re-atom at the nearest neighbor

site) in the 57− 43 alloy is quite significant along the {200yy} direction. The effects

in other two alloys are even more significant due to a very different nature of the

random environment around each sites.



Chapter 2. Phononic properties with short-range order (SRO) 46

0

0.2

0.4

0.6

0.8

1

F
W

H
M

 (
T

H
z
)

0.0 1.0 0.5 0.0 0.5

 Γ H P  Γ N

L

T

L

T

L

T

L

T2

T1

 [ξ00]  [ξξξ]  [ξξξ]  [ξξ0]

Re   W7525

0

0.4

0.8

1.2

1.6

2.0

F
W

H
M

 (
T

H
z
)

0.0 1.0 0.5 0.0 0.5

 Γ H P  Γ N

L

T

L

T

L

T

L

T2

T1

 [ξ00]  [ξξξ]  [ξξξ]  [ξξ0]

Re   W57 43

0

0.4

0.8

1.2

1.6

2.0

F
W

H
M

 (
T

H
z
)

0.0 1.0 0.5 0.0 0.5

 Γ H P  Γ N

L

T

L

T
L

T

L

T2

T1

 [ξ00]  [ξξξ]  [ξξξ]  [ξξ0]

Re   W71 29

Figure 2.11: (Color Online) Full widths at half maxima (FWHM) for three Re1−xWx alloys
(x = 75, 43 and 29 %) along the same high symmetry directions as in Fig. 2.10.

2.5.1 Results and discussions

Phonon dispersion curves for the three Re1−xWx alloys are calculated from the coher-

ent structure factors (CSF) Scoh(k,ω2). In the absence of disorder the CSF has poles

on the real frequency axis and exhibits delta function peaks at ν0(k) = ω0(k)/2π.

In the presence of disorder, when we have the self-energy Σ (as shown in Eq. 1.15),

the peaks shift to ω0 +Re[Σ(k, ω2
0)] and are broadened by a width =m[Σ(k, ω2

0)]. We

usually locate the peak positions numerically to plot the phonon dispersion and fit

a Lorentzian function in the vicinity of the peaks to extract the full widths at half

maximum (FWHM). Depending on the complex interplay between the mass and force

constant matrices of the concerned alloy, the CSF function can be very different com-

pared to a simple lorentzian e.g. doubly peaked structure, significantly broadened in

certain k-range etc. as shown in an article [13] on NiPd alloy.

Figure 2.10 shows the phonon dispersion curves for the three Re1−xWx alloys

along the high symmetry directions of the bcc Brillouin zone. L and T’s indicate the

longitudinal and transverse modes. Within a bcc symmetry, transverse modes are
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degenerate except along the [ξξ0] direction. The error bars in all the three panels

represent our calculated full widths at half maxima (FWHM) at various values of

k. Filled symbols in the left panel indicate the cluster expansion results by Persson

et.al.[31] We could not find any other theoretical or experimental data on this system.

There are some discrepancy along the direction Γ-N which may be due to the different

way of handling the off-diagonal disorder in the two methods. Interestingly, however,

the results from cluster expansion in all the directions lie within the error bar of our

calculation. We find that the effects of disorder-induced scattering is much stronger

in the Re-rich alloys compared to that in the W-rich ones, which is evident from the

larger FWHM’s (smaller scattering length) in the middle and the right panels. For

visualization purpose, we have shown the FWHM’s of the T2 modes along the [ξξ0]

direction by dashed error bars. Due to the highly asymmetric nature of the CSF

along H-P directions, we cannot find enough data points for the longitudinal modes

in this direction, we have therefore fitted a polynomial to these points only for the

L-modes. Interestingly, the gross feature of the dispersion for all the three alloys,

resemble each other and that of pure Re as well. The disorder-induced line-widths

on the other hand varies from one alloy to another along the different high symmetry

directions. This is clearly evident in Fig. 2.11, which shows the FWHM’s vs the wave

vector along the same high symmetry lines as in Fig. 2.10.

We note that as we go from Re concentration 0.25 to 0.71, the FWHM of some

of the branches increase drastically, e.g. longitudinal mode in H-P direction and the

T1 and T2 modes in the Γ-N direction. This points towards the possible instability

of the bcc phase which is already seen in experiments [30]. Such a drastic change

(increase) in the FWHM arise due to a stronger k-dependence of the phonon self-

energy Σ(k, w2) for these particular modes. The frequency dependence of the phonon
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Figure 2.12: k-dependence of the imaginary part of the phonon self energy Σ(k, w2) along [ξξξ]
(H to P) and [ξξ0] (Γ to N) directions for Re57W43 alloy.

self-energy for various k-values along the [ξξξ] and [ξξ0] directions for Re57W43 is

shown in Fig. 2.12. One can notice rapid changes in the shape of of =m[Σ(k)] as we

go from H-point to P-point (along [ξξξ]) and Γ to N-point (along [ξξ0]). This is in

complete contrast to the CPA-based self energy which is shown to be k-independent.

This is due to the single-site, mean-field nature of the CPA which is unable to capture

the multi-site effects as is essential for the phonon problem.

The phonon DOS for the three alloys as well as the pure bcc Re and W are shown

in the left panel of Fig. 2.13. As reflected by the dispersion curves, the main effect of
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Figure 2.13: Phonon density of states for Re1−xWx alloys, (Left) x = 1.0 to 0.0 (top to bottom)
(Right) at x=0.5 with SRO parameter α (see Ref. [45]) varying from 1 to -1.

alloying with W is to smear out some of the sharp features of pure DOS and rearrange

the right hand peak. As the concentration of W increases, the prominent right peak

of the DOS at around 6 THz begins to show up. The effect is of course maximum for

the most concentrated alloy with x=0.43. Now, because of the rather small change in

the overall shape of the phonon DOS as W is added to bcc Re, there should be little

difference between the integral
∫∞
0

n(ν)ln(ν)dν for the composition averaged DOS

and those for the corresponding three alloys. This will be evident from our results on

the specific heat and vibrational entropy for these set of alloys.
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Figure 2.14: (Color Online) (Top) Temperature dependence of the vibrational entropy of mixing
∆Svib =SAlloy

vib (x)− [xSW
vib +(1−x)SRe

vib] for the three Re1−xWx alloys. (Bottom) A similar estimate
of the difference in lattice heat capacity ∆Cv.

The right panel of Fig. 2.13 shows the effect of short-ranged order on the alloy

with x=0.5. As the Warren-Cowley parameter α traverses in value from 1 to -1, we

go from complete segregation to local B2 ordering. When local order/segregation has

set in, we still have background disorder. The situation resembles that of clusters

embedded in a disordered medium. The remaining disorder provides the smoothing

of the DOS. Although the overall structure of the DOS does not seem to change

appreciably with the SRO, however such a small change is sufficient to induce a local

ordering from a completely segregated phase.

The temperature dependence of the vibrational entropies of mixing for the three

Re1−xWx alloys are shown in the top panel of Fig. 2.14. The figure in the bottom

panel shows a similar estimate of the difference in lattice heat capacity between

each of the bcc Re-W alloys and the corresponding chemically unmixed states. It is

immediately clear from the figure that the specific heat curves have similar shapes,

but decreases in weight with the decrease in W-concentration. This is a reflection of
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the similar shapes of the phonon DOS curves as in Fig. 2.13. In the large T-limit, the

vibrational contribution to the entropy increases with concentration x. This is due to

an extra weight (in Eq. 2.5) arising out of the difference in phonon DOS between the

alloy and the chemically unmixed state. Phonon contribution of the Tungsten states

are mainly responsible for such increase in both the ∆Cv and the ∆Svib of the alloy.

The intrinsic harmonic diffusion of higher energy delocalized vibrations are mostly

responsible for the relevant dominant mechanism in such instances.

Another important result we noticed that the sudden increase in the life-times of

certain bands, as the concentration of Re increases beyond 27%, had indicated that

the corresponding bands destabilizes and precurses structural phase transitions. It is

known that alloys in this composition range are unstable. An stability analysis must

include the vibrational entropy along with the configurational entropy. Unlike the

previous case of FeCr we do not have experimental data with which to compare. We

suggest that relevant experiments should be carried out before a comparison can be

made.

2.6 Concluding Remarks

We propose a combination of the first-principles Quantum-Espresso method (based

on the density functional perturbation theory) and the ASR to investigate the lattice

dynamics and the vibrational and configurational entropy of disordered alloys at

any arbitrary concentration. A generalized formalism (within the ASR method) to

include the effects of short-range order on the lattice dynamics has been derived and

implemented on a bcc Fe1−x Crx alloy for the first time. We studied three alloys

Fe25 Cr75, Fe53 Cr47 and Fe75 Cr25, the phonon dispersion and phonon DOS of which

were much more similar to those of pure bcc Fe than that of Cr. We obtained
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a comparatively smaller value of phonon entropy of mixing (∆Svib) in contrast to

the interpretations from previous experiments. However, in light of our results, the

upper bounds of ∆Svib obtained from inelastic neutron scattering data should be

reinterpreted. The upper bound from the experiment is unlikely to be appropriate

(i) due to the use of virtual crystal approximation (VCA) in analyzing their data and

(ii) due to the incorrect neutron weighting caused by difference in phonon scattering

efficiencies of the two elements. A connection with the life-time broadening of the

phonon groups has been made to explain the trend of the magnitude of calculated

∆Svib. A comparatively larger softening of the Cr partial DOS (compared to Fe)

curves is found to be the reason behind the compositional asymmetry of the phonon

entropy of mixing. The phonon entropy shifts both the miscibility gap towards the

equiatomic composition and lowers the critical temperature by ∼ 300K. The effect of

SRO did not come out to be significant in terms of the magnitude of phonon entropy of

mixing, which we initially thought not to be the case. Understanding the magnitude

of the phonon entropy variations between different states of a compound remains a

central problem in any first-principles alloy theory. The effect of local arrangement of

atoms on the phonon entropy provide an even higher level of details which we studied

in the present work for Fe-Cr alloy. Although this effect came out to be small in the

Fe-Cr alloy, it still remains of interest to evaluate the magnitude of this effect in other

systems.

In case 2 study we presented a clear picture of the lattice dynamical proper-

ties of the random Re1−xWx alloys within a first principles approach. The density

functional perturbation theory (within the Quantum-Espresso code) is first used to

generate the alloy dynamical matrices of the individual pairs of constituent atoms.

Subsequently, using these dynamical matrices and the augmented space recursion,
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we have studied phonon dispersion, densities of states, self energies, lattice specific

heat and vibrational entropies. Phonon dispersion for the Re-rich alloys is found to

be strongly fuzzy: an outcome of the highly asymmetric CSF with large disorder-

induced broadening. Such a fuzziness in the phonon dispersion is actually related

with the instability of the bcc phase in this composition range. This is also evident

in experiments [30]. Unlike FeCr alloys, there are only a handful of relevant experi-

mental works on Re1−xWx . We, therefore, suggest that such experiments should be

carried out, because Re1−xWx , an alloy used in the core of thermonuclear reactors,

is an extremely important material and a thorough understanding of its behavior is

desirable.



Chapter 3

Thermal conductivity and diffusion-mediated

localization in Fe1−xCrx Alloys

3.1 Introduction

In this chapter we introduced an important formalism we developed to study the

configuration averaged lattice thermal conductivity and diffusivity for random al-

loys. We apply a Kubo-Greenwood-type formula combined with a generalized Feyn-

man diagrammatic technique to carry out a first-principles calculation of the thermal

transport properties of disordered Fe1−xCrx Alloys. The study of phonon excitations

and the associated thermal transport properties is an important field of research in

disordered alloys. In few materials, disorder mediated scattering can shrink the typ-

ical mean free path (MFP) of phonons to such a level that wavelength and MFP no

0The contents of this chapter has been published in two papers :

1. Aftab Alam, Rajiv K. Chouhan and Abhijit Mookerjee, Phys. Rev. B 84, 224309 (2011)

2. Rajiv Kumar Chouhan, Aftab Alam and Abhijit Mookerjee Conference Proceedings of the
31st International Thermal Conductivity Conference and the 19th International Thermal Ex-
pansion Symposium 2011 (in press)
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longer remain sharp concepts, and the usual textbook phonon gas model for thermal

conductivity breaks down. From the theoretical perspective, the development of a

reliable quantum mechanical theory to predict such properties in random alloys is a

difficult task mainly because of two problems : (i) one needs a microscopic description

of inter-atomic force constants with an intrinsic off-diagonal disorder and (ii) one has

to configuration average a two-particle correlation function using a Kubo-type for-

mula. The effects of dominant off-diagonal force constant disorder in alloys can be

quite unusual, as being shown earlier [13] & [46]. Most theories of thermal transport,

developed in the past few decades however, are either based on the single-site coher-

ent potential approximation (CPA) [5], the perturbation-based approach simulating

the Peierls-Boltzmann equation (PBE) [47] or atomistic models with a large unit cell

and periodic boundary conditions [48]. CPA, being a single-site mean-field approxi-

mation, is inadequate for treating multi-site off-diagonal disorder arising out of force

constants. The CPA is unable to adequately explain experimental life-time data on

simple Ni-Pt alloys [49]. The perturbative simulation approach, although rigorously

derived, is limited in applicability to model lattices alone and has not been tested on

realistic materials. The atomistic models are computationally expensive due to the

large unit-cell size, non-self-consistent and suffer from the finite size errors.

Recent work by Aftab et.al.[50] demonstrated a theoretical approach to calculate

the configuration averaged lattice thermal conductivity and diffusivity for random

alloys. This formalism combined a Kubo-Greenwood approach with a generalized

Feynman diagrammatic technique to explicitly incorporate the effect of disorder in-

duced scattering. We showed that disorder scattering renormalizes both the phonon

propagators as well as the heat currents. These corrections are related to the self-

energy and vertex corrections. Unlike the single-site CPA, this approach explicitly
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takes into account the fluctuations in masses (diagonal), force constants and heat

currents (off-diagonal disorder) between different ion-cores and incorporates the sum

rule relating the diagonal element of the force constant to the off-diagonal ones.

We find that the disorder induced scattering effects on the thermal conductiv-

ity, κ(T ), is relatively large in the low frequency regime. κ(T ) shows a quadratic

T -dependence in the low temperature range, where only low energy vibrations are

excited, and then smoothly rises to a T -independent saturated value at high T . Ther-

mal diffusivity manifests the effect of disorder in a more dramatic fashion, and gives

an idea about localization. Based on our calculation on Fe1−xCrx alloys, a large frac-

tion (> 90 %) of vibrational eigenstates are found to be localized with the maximum

localization near 50-50 composition, where the disorder scattering is maximum, as

expected.

3.2 Thermal Transport properties in disordered alloy

For disordered materials, the lattice thermal conductivity requires the configuration

average of the response functions of the kind see [50],

〈〈κ(z1, z2, T )〉〉 =∫
d3k

8π3
Tr [〈〈S(k, T )G(k, z1)S(k, T )G(k, z2)〉〉] , (3.1)

where S is the heat current operator and G is the phonon propagator.〈〈 〉〉 denotes

configuration averaging.

The right hand side of (3.1) involves the configuration average of four random

functions whose fluctuations are correlated. Unlike the configuration average of a

single particle Green function 〈〈G(k, z)〉〉, which can be calculated via a perturbative

self-consistent Dyson’s equation (shown diagrammatically in the 1st row of Fig. 3.1),
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Figure 3.1: (Color Online) (Top row) Dyson’s Equation due to scattering diagrams for the single
particle averaged Green’s functions for disordered alloys. (Middle Row) Bethe-Salpeter equation for
the response functions in disordered alloys. (Bottom Row) Key to diagrams. < G > is the averaged
disorder renormalized Green’s function, < κ > is the two-particle correlation function related to
Thermal conductivity, Σ is the self energy and S is the disorder-renormalized effective current.

the average of a two-particle correlation function such as that in Eqn. 3.1 is non-

trivial. The zeroth order approximation for such an average is the one which assumes

the fluctuations between all four random functions to be uncorrelated, and expresses

the average of the product as the product of the averages (as in the so called Virtual

Crystal Approximation (VCA)). The inherent correlation, however, requires the con-

tributions from averages taken in pairs, triplets and all four random functions. Such

disorder induced corrections can be calculated very efficiently within a Feynman di-

agrammatic technique (details have been discussed in Ref. [50]), which renormalizes

both the phonon propagators as well as the heat currents to provide a mathematical

expression for 〈〈κ〉〉 with an effective heat current Seff related to the self-energy of the

propagators (shown by 1st diagram on RHS of the middle row of Fig. 3.1). The last

term in the middle row gives the contribution from the so called vertex correction
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arising out of the correlated propagation. For a harmonic solid, thermal diffusivity

has a similar expression as 〈〈κ〉〉 except the product of five random functions instead

of four. A similar diagrammatic procedure has been used earlier by Alam et.al.[50]

to calculate the configuration averaged thermal diffusivity as given by

〈〈D(ν)〉〉 =
1

π2

∫
dν ′

∫
d3k

8π3

Tr [〈〈=mG(k, ν ′)S(k)=mG(k, ν ′)S(k)=mG(k, ν)〉〉] .

In this chapter, we used the first-principles Quantum ESSPRESSO(QE) [35] to ex-

tract the force-constants. QE is a linear response based method : the density func-

tional perturbation theory (DFPT) [36]. The dynamical matrix for the phonon ex-

citation of a system is obtained from the ground state electron charge density and

its linear response to a distortion of the ion-core geometry. This alloy, being a basic

ingredient of stainless steel, is a technologically important structural material, domi-

nated by force-constant disorder and hence should serve as a critical test of our theory

for the thermal transport properties.

3.3 Result and dicussion for Fe1−xCrx alloys (x = 0.25, 0.47,

and 0.75)

In Fig. 3.2, we display the frequency dependence of lattice thermal conductivity

κ(ν) and the scaled joint density of states J(ν) at T = 200 K for the Fe53Cr47 alloy.

It is obvious from the figure that the transition rate τ (related to the heat current

operator) is strongly dependent both on the initial and final energies throughout the

phonon spectrum i.e. κ(ν, T ) 6= |τ(ν, T )|J(ν), where J(ν) (shown by dot-dashed line

in Fig. 3.2) is given by
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Figure 3.2: (Color Online) Frequency dependence of Thermal conductivity and Joint density of
states for Fe53Cr47 alloy at T = 200 K. Solid line shows the result including all disorder-induced
corrections + the vertex correction (middle row of Fig. 3.1) and dashed line including the VCA
average alone.

〈〈J(ν)〉〉 =∫
dν ′

∫
d3k

8π3
Tr [=m〈〈G(k, ν ′)〉〉=m〈〈G(k, ν ′ + ν)〉〉] .

The effect of disorder-induced renormalized corrections (black solid lines) to the

zeroth order virtual-crystal-approximation (VCA) (blue dashed line) thermal con-

ductivity is not significant, and becomes negligibly small beyond ν = 2.7 THz. The

traditional single site mean-field approximation is, therefore, expected to describe

well the multiple scattering phenomenon associated with the high frequency mode,

deviating only in the low frequency range where the higher order corrections become

important. Notably, both κ(ν) and J(ν) curve has a dip at a very small energy
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(ν ' 0). Such a dip reflects the missing intraband contribution (κII) to the conduc-

tivity. The origin of this dip is a natural outcome of a smooth convolution of two

Green matrices G(k, ν ′) and G(k, ν ′ + ν) (or two smooth DOS). A similar dip has

also been reported by Feldman et.al.[48] in amorphous Si and Si1−xGex alloys. Unlike

our case (κ(ν) → 0 as ν → 0), this dip in their calculation stands at a finite value

as ν → 0. These authors have introduced an arbitrary Lorenzian broadening of the

delta functions in their Kubo-Greenwood expression for κ, while in our calculation

this arises naturally through the disorder induced broadening of the spectral function

=m[G(k, ν)]. An extrapolation of our κ(ν)-curve (see Fig. 3.2) from a value just

above ν = 0 to a value at ν = 0 yields an estimate of the dc thermal conductivity,

which comes out to be 24.7 W/m/K for the present Fe53Cr47 alloy at T = 200 K. Liter-

ature survey shows a lack of available experimental data for concentrated Fe1−xCrx

alloy, however there exist some on the dilute Cr alloys[90]. For example κexpt for

x=0.25% Cr is ∼ 22W/(mK), with which we shall compare our theoretical estimate

below.

Figure 3.3 shows the temperature dependence of thermal conductivity for three

Fe1−xCrx alloys. Note that κ(T ) behaves quadratically (see inset) in the low tem-

perature regime (T < 20 K) where only low-energy vibrations are excited. As the

temperature is increased further, the T -dependence of κ becomes much milder and

eventually reaches a T -independent saturated value. The origin of such a high T -

saturation is not very well described by most previous theories. Within a harmonic

approximation, such a saturation mainly arise from the T -dependence of Einstein

specific heat piece of the conductivity expression [48]. The intrinsic harmonic diffu-

sion of higher energy delocalized vibrations are mostly responsible for the relevant

dominant mechanism in this regime. Another qualitative explanation can be that
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Figure 3.3: (Color Online) Temperature dependence of Thermal conductivity (κ) for three
Fe1−xCrx alloys. Inset shows the quadratic T -dependence of κ in the low T -range.

: the phonon-phonon scattering in this high T -range becomes so strong that the

phonon MFPs reach a minima, and further enhancing the disorder scattering by rais-

ing temperature would not cause any further reduction in the MFP, hence resulting

in a T -independent thermal conductivity. This, however, is just a physically plausible

explanation based on the MFP and is not intended to reflect a known basis in the

proposed theory itself. One can also notice an overall reduction of κ with increasing

disorder (x), as expected. Such effect usually reflect the scattering arising out of the

difference in masses, radii and force constants between the host lattice atoms and im-

purities. In the present Fe1−xCrx alloy, however, this scattering is mainly dominated

by a large difference of force constants between Fe and Cr atoms in the alloy, while

their masses and radii are almost similar.

Next, we examine the effect of disorder scattering on the vibrational eigenstates



Chapter 3. Thermal conductivity and diffusivity in Fe1−xCrx Alloys 62

0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

νFrequency     (THz)

DO
S 

(S
ta

te
s/

TH
z)

D(
   

)  
(m

  /
se

c 
x 

10
   

)
ν

2
-5

Delocalized
States

νc

Fe   Cr53 47

-5 -4 -3 -2 -1 0-20

-19

-18

-17

-16

-15

-14
Data pts.
Linear Fit

D(   ) = ν

(ν  − ν)

c
α

ln

(ν  − ν)

c

ln
D

(  
) ν
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states.

and hence the localization of the phonon modes based on a thermal diffusivity cal-

culation. In Fig. 3.4, we show the thermal diffusivity (top panel) and the phonon

density of states (bottom panel) vs frequency for the Fe53Cr47 alloy. Above ν '
2 THz, D(ν) decreases smoothly (approximately linear in ν) with a critical frequency

νc = 3.55 THz, where D(ν) vanishes to within a very small level of noise. This

regime is shown, for clarity, as a log-log plot within the inset of the upper panel. The

calculated critical exponent α ' 1.011 agrees with the scaling and other theories of

Anderson localization [51]. The critical frequency νc locates the mobility edge above

which the diffusivity strictly goes to zero in the infinite size limit, and the allowed
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vibrational states below this frequency remain delocalized. This is shown by the area

under the shaded region in the lower panel which gives an estimate of the percentage

of delocalized states.

An alternative way of estimating the fraction of localized (delocalized) states

is to calculate the so called ”inverse participation ratio” 1/pγ defined as, 1/pγ =
∑

µ

∫
(d3k/8π3) εµ

γ(k), where εµ
γ(k) is the µth Cartesian component of the normalized

polarization vector of the γth mode. pγ measures the number of atoms on which

γth vibrational mode has significant amplitude. 1/pγ → 0 for delocalized mode, but

remains finite for localized modes. Although this procedure provides a quick assess-

ment of localization, it suffers from a shortcoming which arises quite often from the

existence of an unexpected few localized modes in the low frequency regime (e.g.

within the shaded region in the lower panel of Fig. 3.4), as discussed earlier[48, 52].

This is mainly due to a sensitive dependence of pγ on the boundary condition used

in the concerned model. In other words, finite-size theory (even for large model sys-

tems) causes an unphysical gap at the bottom of the spectrum, and the states in

a macroscopic sample, however, may not be localized but propagating (or may be

resonant)[48]. The percentage of localized (delocalized) states calculated using the

area above (below) µc of DOS curve and using pγ may differ, if calculated from such

finite-size theories. However, being a k-space based formulation, our theory does not

suffer from such differences and is free from the unexpected errors arising from the

existence of few localized modes in the low-energy regime.

The location of the mobility edge (νc) and the percentage of localized states with

varying Cr-content in Fe1−xCrx alloy is shown in Fig. 3.5. Such a non-monotonous

variation of the fraction of localized states is an artifact of the varying band-width

of the phonon spectrum with x. Unlike the mass dominated Si1−xGex alloys [48]
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Figure 3.5: Mobility edge (top) and the percentage of localized states (bottom) vs Cr-concentration
for Fe1−xCrx alloy.

which show an increasing percentage of localized states, towards the upper end of the

phonon spectrum, with increasing Ge-concentration, the Fe-Cr alloys show maximum

localization at xCr = 47 %. We believe that, this arises due to the dominance of

the force constant disorder in the present alloy which causes an enhanced disorder

scattering at x = 47 % and hence localize the vibrational modes maximally.

3.4 Concluding Remarks

In summary, we combine a generalized Kubo-Greenwood type formula with the linear-

response based Quantum Espresso calculation to make a first principles prediction

of the thermal conductivity and diffusivity of disordered Fe-Cr alloys. The effect

of disorder-induced scattering on thermal conductivity(κ) is found to decrease with

increasing phonon energy. Thermal conductivity shows a quadratic T -dependence in
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the low T -regime, increasing smoothly to a T -independent saturated value at high

T . Thermal diffusivity provides an estimate of the location of mobility edge, which

subsequently gives an idea about the disorder-induced localization in the system.

Vibrational modes in the present Fe1−xCrx alloy are maximally localized at x = 47 %,

where the effect of disorder scattering is maximum.



Chapter 4

Phonon study based on Augmented space

recursion and Special quasi-random structure

4.1 Introduction

Interatomic force constants in disordered alloys is one of the key factors to the study

of phonon. A reliable prediction based on first principles method is still missing. The

main reason is due to the presence of off-diagonal (multisite) disorder arising out of

the dynamical matrices Dµν(Ri − Rj) in the phonon problem. In additions the sum

rule Dµν(Ri) = −∑
Rj

Dµν(Ri − Rj) which needs to be satisfied, makes the disorder

at a site depend upon its immediate neighborhood. As we already discussed in chap-

ter 1, coherent potential approximation (CPA) and other mean-field approaches are

inapplicable to this problem. A striking approach, that has emerged in recent years,

is the so called special quasirandom structure (SQS) proposed by Zunger et al. [9],

which carries the signature of configuration correlation with them. In particular, SQS

is an ordered supercell which is constructed in such a way to mimic the most relevant

pair and multisite correlation functions of the disordered phase. Unlike CPA and

other related approaches, SQS is a local structural model which captures the most

66
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relevant microstates of disordered phase.

As far as the calculation of force constants for random alloys are concerned, three

approaches have been mainly utilized in the past. The first attempt [54, 13] was to

fit an empirical set of force constants to match the available experimental phonon

spectra. The second approach was to compute the force constants from selected

ordered structures and then use them for random alloys [46]. This is of course not a

proper solution, because dynamical matrices are not directly transferable across the

environment [55]. In later studies [56], few SQS methods have been used, but only

≤ 8-atoms cell were used which is not enough to capture the detailed properties of

phonons.

In addition to configuration averaging the estimation of reliable force constants

plays an important role in getting the phonon spectra, DOS etc for disorder alloys.

Augmented space recursion is a powerful technique to deal with configuration disor-

der which is being explained in Chapter 1 of this thesis. Here we have merged a first

principles SQS method with the ASR to demonstrate the interplay of force constant

within a disordered environment. Unlike previous approaches, a systematic calcula-

tion of the force constants with increasing size of the SQS cell is made. Stress on

the atomic sites are directly related to the force constant matrix and hence a small

disturbance leads to a large change. To overcome this effect we use the SQS cell

in conjunction with the small displacement method [60], to construct the dynamical

matrix Dµν . Based on the predicted bond length distribution and the calculated force

constants for each pairs A-A, B-B, and A-B, it is concluded that a minimum of 32-

atom SQS cell is needed to capture the important disorder correlation, and hence a

reliable phonon dispersion. Two different alloy systems, bcc TaW and fcc NiPt, are

chosen to demonstrate the reliability of the approach. Inelastic neutron scattering
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data is available for both the system, to compare our theoretical results. In NiPt

(fcc) alloy Ni and Pt has large size and mass mismatch (size ∼ 12%, mass of Pt is

3-times heavier than Ni) as well as force constant (φPt-Pt is 55% larger than φNi-Ni).

On the other hand for TaW (bcc) alloy Ta and W belong to 5-d metal series with

similar size and atomic masses, but quite different force constants. We compare our

theoretical force constant matrix to the experimental data available.

4.2 Treatment to force constants (FC)

4.2.1 Non-symmetric FC computation

To keep the real picture of disorder in force constants we first develop a structural

model based on the SQS method [9], which is an N -atom periodic structure con-

structed in such a way that the associated set of correlation function of this structure

mimic the ensemble average correlation functions of the random alloy. For both

cases, fcc and bcc system we used three different sized SQS-cells (8-atom, 16-atom,

and 32-atom).

We use Vienna ab-initio simulation package (VASP) [58] with a pseudo-potential

and a projected-augmented-wave (PAW) basis[59] based on the local density approx-

imation (LDA). The cut-off energy for the electronic wavefunctions is 500 eV. All the

structures are fully relaxed until the energy converges to within 10−6 eV and the forces

on each atom is less than 0.001 eV/Å. A Monkhorst-pack Brillouin zone integration

with a 83 k-mesh is used for > 16-atom SQS calculation. Smaller k-meshes are used

for 8-atom 2x2x1 supercell. Magnetic (non-magnetic) calculations are done for NiPt

(Ta-W) systems. Relaxed lattice constants for 8-atom, 16-atom, and 32-atom SQS

calculation for fcc Ni50Pt50 are 3.72Å, 3.72 Å, and 3.70 Å respectively, compared to
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Figure 4.1: (Color online) Number of occupation for Ta-Ta, W-W and Ta-W pairs along various
neighbor directions with 32 (top), 16 (middle) and 8 (bottom) atom SQS for bcc Ta50W50.

the experimental value of 3.785 Å [61], For bcc Ta50W50, they are 3.23 Å for all the

structures, compared to 3.23 Å as observed [62]. To extract the force constant matri-

ces, we use the fully relaxed SQS structures and apply the small displacement method

using PHON package [60] implemented within VASP. Force fields are constructed

by applying 48 displacements for Ni50Pt50 and 96 displacements for Ta50W50 along

3-cartesian axes, each of amplitude 0.04 Å.
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Figure 4.2: (Color online) Number of occupation for Ni-Ni, Pt-Pt and Ni-Pt pairs along various
neighbor directions with 32 (top), 16 (middle) and 8 (bottom) atom SQS for fcc Ni50Pt50.

4.2.2 Symmetrization of FC matrices

Special quasi-random structures are having low symmetry in the underlying lattice

(fcc and bcc in present case) which result to the non-symmetric force constant. As

we have relaxed the structure the proper symmetry for FCC (along [1
2

1
2
0]) and BCC

(along [1
2

1
2

1
2
]&[100])
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From To Transformation matrix

[1 0 1] → [1 1 0] F1 =




1 0 0
0 0 1
0 −1 0




[0 1 1] → [1 1 0] F2 =




0 0 1
0 1 0
−1 0 0




[1̄ 1 0] → [1 1 0] F3 =



−1 0 0
0 1 0
0 0 −1




[1̄ 0 1] → [1 1 0] F4 =




1 0 0
0 0 −1
0 1 0




[0 1̄ 1] → [1 1 0] F5 =




0 0 −1
0 1 0
1 0 0




Table 4.1: Transformation matrices for FCC upto 1st nearest neighbour

Φfcc = −




α β 0

β α 0

0 0 γ




, Φbcc = −




α1 β1 β1

β1 α1 β1

β1 β1 α1




&−




α2 0 0

0 β2 0

0 0 β2




is not maintained and get the general form as nearest neighbor is

Φij =




a11 a12 a13

a21 a22 a23

a31 a32 a33




modified as (1
2
± δ1

1,
1
2
± δ1

2,±δ1
3), (1

2
± δ2

1,
1
2
± δ2

2,
1
2
± δ2

3), and (1 ± δ3
1,±δ3

2,±δ3
3)

respectively. To overcome this Lattice imposed symmetric dynamical matrices are

required to perform a direct configuration average within the ASR scheme. These

symmetric matrices are also directly comparable to the neutron scattering data and
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other theoretical results, if available. In order to resort to the symmetry of the under-

lying lattice, we followed two steps: (1) For a particular SQS-cell of a given lattice,

one can see various atom-pairs along specific crystal directions (See Fig. 4.1 and 4.2

for occupancy number for each pair A-A, B-B, and A-B along various neighbor di-

rections). Depending on the occupancy number, the force constants are averaged for

each configurations (i.e. A-A, B-B, and A-B pair) along every directions (upto first

nearest neighbor [nn] for fcc and second neighbor [nnn] for bcc lattices). (2) Having

done the directional averaging, we still lack the proper symmetry of the dynamical

matrices for the underlying lattice. This is due to the relaxation effect, which modifies

the atomic positions by δ. For example, a particular atom at (1/2,1/2,0) in a perfect

fcc lattice moves to (1/2± δ1
1,1/2± δ1

2,±δ1
3) or atoms at (1/2,1/2,1/2) and (1,0,0) in

a bcc lattice moves to (1/2± δ2
1,1/2± δ2

2,1/2± δ2
3) and (1± δ3

1,±δ3
2,±δ3

3) respectively.

In order to retrieve the desired symmetry of the dynamical matrix, we apply trans-

formation operation on these average matrices to get the direction specific dynamical

matrices e.g. φ111 = B1φ−111B
T
1 along one of the nearest neighbor direction of bcc

lattice, where B1 is the transformation matrix. The Transformation matrices along

specific direction (i.e. [110] for fcc and [111], [200] for bcc) are given in table 4.1 and

4.2 respectively.

4.3 Ta50W50 and Ni50Pt50 alloys

In earlier section we have mentioned about the occupancy of A-kind and B-kind of

atoms in A-B alloy along different directions (Fig. 4.1 and 4.2). Figure 4.1 shows the

number of occupation for three different pairs Ta-Ta, W-W, and Ta-W along various

neighbor directions (1st and 2nd neighbors) for 32-atom (top), 16-atom (middle), and

8-atom (bottom) SQS cell for bcc Ta50W50.
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From To Transformation matrix

[1̄ 1 1] → [1 1 1] B1 =



−1 0 0
0 1 0
0 0 1




[1 1̄ 1] → [1 1 1] B2 =




1 0 0
0 −1 0
0 0 1




[1 1 1̄] → [1 1 1] B3 =




1 0 0
0 1 0
0 0 −1




[0 2 0] → [2 0 0] B4 =




0 1 0
−1 0 0
0 0 1




[0 0 2] → [2 0 0] B5 =




0 0 1
0 1 0
−1 0 0




Table 4.2: Transformation matrices for BCC upto 2nd nearest neighbour

As expected, 32-atom SQS-cell shows the largest number of each pairs, and provide

a proper averaging for both bond distances and the force constant matrices for each

pairs. We have tried larger SQS cells as well, but the calculated force constants did not

change much compared to those from 32-atom SQS results. The calculated dispersion

in the occupancy for each pairs reflect the sensitivity of the bond distances on the local

environment. This eventually affects the calculated force constants. The calculated

nearest neighbor (next nearest neighbor) average bond distances for three pairs dTa-Ta,

dW-W, and dTa-W are 2.837 Å (3.220 Å), 2.775 Å (3.226 Å), and 2.788 Å (3.235 Å)

respectively for 32-atom SQS Ta50W50. The nn-bond distance for Ta-Ta in the alloy is

found to be ∼ 0.8% smaller compared to that in pure Ta, while W-W bond distance

in the alloy is ∼ 1.7% larger than that in pure W. Such a sensitivity of the bond

distance on the disordered environment in turn affect the alloy force constants. The

calculated dynamical matrices (upto 2nd neighbor) for 8-atom, 16-atom, and 32-atom
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bcc Ta50W50
8-atoma 8-atomb 16-atom 32-atom Expt.[66] direction

Ta-Ta 27.707 23.573 25.103 22.324 16.983 111xx

W-W 28.934 19.581 24.568 21.063 23.000 111xx

Ta-W 27.734 22.186 26.071 23.192 23.984 111xx

Ta-Ta 11.504 16.404 15.727 16.120 11.201 111xy

W-W 6.655 10.584 8.348 9.418 19.200 111xy

Ta-W 8.585 12.240 13.080 13.668 17.603 111xy

Ta-Ta -0.009 15.202 9.114 25.937 1.182 200xx

W-W 0.016 20.136 17.693 36.233 47.300 200xx

Ta-W 16.448 29.435 13.442 30.733 24.803 200xx

Ta-Ta -0.001 -0.751 3.105 -2.909 1.423 200yy

W-W 0.008 -0.114 2.755 -1.648 -0.800 200yy

Ta-W -1.634 -0.667 3.656 -2.163 1.184 200yy

Table 4.3: Dynamical matrices Dµν(|R|) (Newton/meter) for bcc Ta50W50. N-atom represents
the size of the SQS supercell. 8-atom SQS calculations are done with two supercell size: 1 × 1 × 1
(8-atoma) and 2× 2× 1 (8-atomb). Other experimental[66] data are give for comparison.

SQS Ta50W50 are shown in the Table 4.3. In order to compare the sensitivity of long

ranged environment, 8-atom SQS calculation is done with two cell size (i) conventional

8-atom SQS indicated by 8-atoma and (ii) a 2 × 2 × 1 supercell of the conventional

8-atom SQS-cell indicated by 8-atomb. Notice that the conventional 8-atoma SQS-

cell can not capture the second neighbor information properly as reflected by the

vanishingly small force constants for Ta-Ta and W-W pairs. Note that, experimental

force constants for Ta-Ta and W-W pairs are not for the alloy, but for pure Ta [64]

and pure W [65] respectively. Force constants for Ta-W [66] pair, however, are indeed

for the alloy. Notably our calculated Ta-Ta force constants in the alloy are stiffer

compared to those in pure Ta. On the other hand, the calculated W-W force constants

are softer than those in pure W. This prediction actually be with the calculated bond

lengths between these two pairs. Alloying shrinks (expands) the Ta-Ta (W-W) bond

lengths making the springs relatively stiffer (softer). As far as the force constants
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fcc Ni50Pt50

8-atoma 8-atomb 16-atom 32-atom Other[67] direction
Ni-Ni 6.289 8.901 8.433 9.813 8.231 110xx

Pt-Pt 13.755 26.575 34.576 36.317 33.494 110xx

Ni-Pt 12.421 17.098 17.387 21.210 17.868 110xx

Ni-Ni 3.791 9.432 8.845 11.115 9.580 110xy

Pt-Pt 9.008 30.877 36.546 43.377 39.655 110xy

Ni-Pt 8.026 19.511 18.287 25.091 20.740 110xy

Ni-Ni 5.394 -0.107 0.946 -1.845 -0.525 110zz

Pt-Pt 9.487 -4.739 2.310 -8.351 -6.854 110zz

Ni-Pt 8.785 -1.443 1.035 -4.124 -2.820 110zz

Table 4.4: Dynamical matrices Dµν(|R|) (Newton/meter) for fcc Ni50Pt50. N-atom represents
the size of the SQS supercell. 8-atom SQS calculations are done with two supercell size: 1 × 1 × 1
(8-atoma) and 2× 2× 1 (8-atomb). Other theoretical[67] data are give for comparison.

for Ta-W pair goes, 32-atom SQS results are our best numbers to compare with the

experiment [66]. Experimental force constants are computed using using a polynomial

fit to their measured dispersion (extended upto 7th nearest neighbors). Keeping in

mind the sensitivity of the estimates both on the theoretical and experimental front,

the overall agreement between the 32-atom SQS results and the experiment for Ta-W

force constants is fairly well.

Figure 4.2 shows the variation of occupation for three pairs along the nearest

neighbor directions for 32-atom (top), 16-atom (middle) and 8-atom (bottom) SQS

fcc Ni50Pt50 alloy. This system is interesting because of the large difference in size,

mass and force constants of the constituent atoms. One can notice from the histogram

that there exists a large scatter in the number of occupation between each pair. The

calculated average bond lengths for Ni-Ni, Pt-Pt and Ni-Pt pairs are 2.573 Å, 2.692 Å

and 2.604 Å for 32-atom SQS cell. Ni-Ni (Pt-Pt) bond length in the alloy is ∼ 3.3%

larger (∼ 2.8% smaller) than those in pure Ni (Pt). As such, Ni-Ni (Pt-Pt) force

constants in the random alloy is expected to get softer (stiffer) compared to those in
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Figure 4.3: (Color online) (Left) Phonon dispersion for bcc Ta50W50 alloy using the force constants
of 32-atom SQS. L and T stands for longitudinal and transverse modes. Error bars indicate the
calculated FWHM’s. Square symbols indicate experimental data [66]. (Right) Phonon DOS using
the force constants of 32-, 16-, and 8-atom SQS.

pure Ni (Pt). The calculated ab-initio force constants for the three pairs in disordered

Ni50Pt50 alloy are shown in the Table 4.4. As before, results are shown for 8-atom,

16-atom and 32-atom SQS. The force constants under the column labeled Other [67]

are the results from a recent calculation for Ni50Pt50 alloy by Granas et al. [67] These

force constants for each pair (Ni-Ni, Pt-Pt and Ni-Pt) are within the disordered

environment, and agree fairly well with ours within a few percent. Calculated force

constants for Ni-Ni (Pt-Pt) pairs in the alloy are found to be softer (stiffer) compared

to those in pure Ni (Pt) (See Ref. [68] for the force constants of pure Ni and Pt).

This, again, goes in accordance with the bond lengths of respective pairs in the alloy

vs. those in pure elements.
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Figure 4.3 shows the calculated phonon dispersion (left) and the configuration

averaged phonon DOS (right) for bcc Ta50W50. Dispersion curves are calculated using

the force constants of 32-atom SQS, as listed in Table 4.3. Phonon DOS, however,

are shown with all the three sets of force constants, i.e. 8-, 16- and 32-atom SQS,

for comparison. Error bars in the dispersion curve indicate the full widths at half

maxima (FWHM). Our calculated phonon dispersion compares fairly well with the

experiment [66] (shown by square symbol).

Left panel of Fig. 4.4 shows the phonon dispersion for Ni50Pt50 alloy calculated

using the force constants of 32-atom SQS cell (see Table 4.3). Unlike TaW, NiPt

alloy shows interesting split band behavior along each symmetry direction. This is

due to the strong disorder in both mass and force constants, which gives rise to res-

onant modes, and has been evidenced in previous studies[49, 67] as well. Error bars

with solid circles indicate the calculated FWHM. Error bars with square symbol along

[ζ00] direction indicate the neutron scattering data. [49] The panel on the right shows

the configuration averaged phonon DOS with three sets of calculated force constants.

Square symbols indicate the generalized phonon DOS derived from inelastic incoher-

ent scattering. [49] Notice that the calculated band edge increases with increasing

the SQS cell size, and compare better with experiment. The integral value under

each phonon DOS, however, remain the same. It is important to emphasize that

the experimental phonon DOS is only shown for reference. A one to one comparison

between our calculated DOS and the experimental DOS is not feasible. In inelastic

neutron scattering, phonon DOS can be represented as N(ω) =
∑

j(bj/Mj)nj(ω),

where bj, Mj and nj(ω) are the inelastic scattering cross section, atomic mass, and

the partial phonon DOS of atom j respectively. Although the calculated DOS from

the force constants of 32-atom SQS cell resembles maximally with the experimental
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DOS, the calculated band edge is still less than the measured one. This is an inherent

problem of LDA-based calculations, which usually underestimates the band edge of

the calculated DOS and are also reflected via the bulk modulus.
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Figure 4.4: (Color online) (Left) Phonon dispersion for fcc Ni50Pt50 alloy using the force constants
of 32-atom SQS. L and T stands for longitudinal and transverse modes. Error bars indicate the
calculated FWHM’s. Blue square symbols in both left and right panels indicate the experimental
data [49].

4.4 Conclusion

We proposed a systematic first principles calculation of the interatomic force constants

for disordered alloys. SQS structures of different cell size are used to capture the

effects of random environment at different length scales. Two alloy systems with

very different intrinsic properties (e.g. lattice type, masses, force constants etc.) are
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investigated. In bcc TaW alloy, Ta-Ta force constants are predicted to be stiffer

compared to those in pure Ta, however W-W force constants behave oppositely. In

fcc NiPt alloy, Ni-Ni and Pt-Pt force constants within the disordered environment

behave softer and stiffer than those in pure Ni and pure Pt. Calculated average bond

lengths between each pair of atoms are found to closely dictate the nature of force

constants. For both the alloys, the prediction of bond length distribution and the

force constants are found to be more accurate with a larger size of the SQS-cell; in

particular the 32-atom SQS cell for bcc Ta50W50 yields force constants which agree

fairly well with experiment.



Chapter 5

Magnetic Phase study for Cu-Mn alloys

5.1 Motivation

In this chapter I will discuss the magnetic phase study for Cu-Mn magnetic alloys.

For decades experimental work has been done on Cu-Mn alloy, particularly on its

magnetic properties. As early as 1957 Schmitt and Jacobs [69] studied magnetic

hysteresis in CuMn with 2 at % Mn. Around the same time neutron scattering mea-

surements by Meneghetti and Sidhu [70] showed that for compositions with > 70

at % Mn the alloys exhibited antiferromagnetism, while for compositions with < 70

at % Mn only a diffuse peak near (100) indicated lack of magnetic long-ranged or-

dering. A series of later neutron scattering experiments could not resolve the exact

nature of the magnetic implications of this diffuse peak [71]-[72]. Later work [71]-

[73] indicated the existence of both short-ranged as well as long ranged atomic and

magnetic correlations. A detailed experimental work of Gibbs et.al.[74] established

the magnetic phase diagram of CuMn clearly : with a low-temperature spin-glass

phase at low Mn concentrations, a cluster-glass around 50 at % Mn compositions and

0The contents of this chapter has been published in, Rajiv Kumar Chouhan, Abhijit Mookerjee,
Journal of Magnetism and Magnetic Materials 323 868-873 (2011)

80
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a ‘mixed’ phase or randomly canted anti-ferromagnetic phase for Mn concentrations

> 70 at %. A mixed or randomly canted structures with averaged canting angle

of 5o was proposed by Tsunoda and Nakai [75]. Using a parameter fitted random

Heisenberg model Chowdhury and Mookerjee [76] showed that a mean-field descrip-

tion of the phase diagram reproduced most aspects of the experimental data of the

work of Gibbs et.al.[74]. The unsatisfactory part of that work was the fitting of the

values for the pair energies and the assumption that these were independent of the

alloy composition. The motivation of this work was to satisfy the experimental phase

Figure 5.1: The magnetic phase diagram of quenched Cu-Mn alloys showing the composition
dependence by Gibbs et.al.(1985).

boundaries reported by Gibbs et.al.[74] (see Fig. 5.1). For this we carried out gener-

alized perturbation method (GPM) which expands the total band energy in terms of

composition fluctuations, obtain the pair energies and locate the temperatures where
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the perturbation destabilizes the system. The usual statistical mechanical models

used to study magnetism and magnetic phase diagrams of alloys involve the Ising

and Heisenberg models, both of which involve localized moments. Straightforward

application of such models in our study poses problems as magnetism in such metal-

lic alloys are believed to be itinerant magnetism. Consequently, these localized spin

models may be inappropriate. In order to describe our alloys we have to begin with

an itinerant picture. This we shall do within a local spin density functional (LSDA)

approach. We shall begin with the Kohn-Sham equation for the valence electrons

in the alloy. To perform the electronic structure calculation we follow tight-binding,

linear muffin-tin orbitals method (TB-LMTO) [77]. Since the system is disordered,

our description of self-averaging properties will require configuration averaging, for

which we follow augmented space recursion discussed in Chapter 1.

5.2 System study

The TB-LMTO-ASR allows us to obtain the configuration averaged Green function

¿ Gσ
~RiL~RiL

(E)À. From this we obtain the local density of states, the charge and

magnetization densities and the local magnetic moment per atom

nσ(E, ~Ri) = − 1

π
=m TrL ¿Gσ

~RiL~RiL
(E + i0+)À

ρσ(~r − ~Ri) =

∫ EF

−∞
|Φ(~r − ~Ri, E)|2 nσ(E, ~Ri) dE

ρ(~r − ~Ri) = ρ↑(~r − ~Ri) + ρ↓(~r − ~Ri)

m(~r − ~Ri) = ρ↑(~r − ~Ri)− ρ↓(~r − ~Ri)

m(~Ri) =

∫

AS

d3~r m(~r − ~Ri) (5.1)
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The TB-LMTO-ASR, on which our calculations were based, partitions the solid into

atom centric atomic spheres (AS) labeled by ~Ri. Φ(~r− ~Ri) is the wave function in an

AS and ρ(~r− ~Ri) is the charge density within it. m(~r− ~Ri) is the magnetic moment

density in that AS. From this description it is clear that the magnetic moment is

smeared across the AS. m(~Ri) integrated over an AS is the average magnetic moment

associated with it. These magnetic moments are thus built up out of itinerant electron

charge densities associated with different spins.
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Figure 5.2: Density of states for nonmagnetic CuMn for four compositions (n:m refer to n atomic
% of Cu and m atomic % of Mn). The nonmagnetic alloy forms the background of our GPM method.

Fig. 5.2 shows us the TB-LMTO-ASR component projected and total densities

of states for several characteristic compositions. The top left panel shows that for

the composition Cu30Mn70. The Cu and Mn ‘bands’ are almost non-overlapping and
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CuxMn1−x is a split band alloy. The minority component Cu has a rather feature-

less impurity like spectrum imposed upon a broader Mn ‘band’. Disorder scattering

smoothens out sharp structures in the densities of states. The bottom right panel

shows the results for the composition Cu90Mn10. Here we see the reverse : with a

featureless Mn impurity spectrum and a typical Cu face-centered cubic spectrum at

lower energies. At all compositions the signature of a split band is evident.

5.2.1 Generalized Perturbation Method (GPM)

To describe the magnetic phases of an itinerant magnetic alloy we shall follow the

generalized perturbation method first introduced by Ducastelle and Gautier [78]. We

start from a completely disordered nonmagnetic arrangement of atomic spheres and

into that system introduce local configuration fluctuations as perturbations and ex-

pand the total band energy :

E = Edis +
∑

~Ri∈Mn

E(1)(~Ri) δξQ
i +

∑

~Ri, ~Rj∈Mn

E(2)(~Ri, ~Rj) δξi δξj . . . (5.2)

We can interpret the second and third term as: if EA is the configuration averaged

total energy of a configuration in which any arbitary site labeled Ri is occupied by an

atom of the type A and other sites are randomly occupied, and EAB is the averaged

total energy of another configuration in which the sites Ri and Rj are occupied by

atoms of the types A and B respectively, and all other sites are randomly occupied,

then Eqn. 5.2 can be shown as

E(1)(Ri) = EA − EB; E(2)(Ri, Rj) =
1

2
[EAA + EBB − EAB − EBA] (5.3)

The single site energy E(1)(Ri) correspond to inhomogeneous disorder and E(2)(Ri, Rj),

the pair interaction energy gives the ordering energy.
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In the alloy, Cu carries no magnetic moment. Consequently, the summations

~Ri, ~Rj are over those sites occupied by Mn. The scalar variable δξi takes the value

±1 according to whether the atomic sphere labeled by ~Ri, occupied by a magnetic Mn,

has its average moment. (constructed out of the itinerant electron charge densities)

pointing in the quantization direction or opposite to it. Note that δξi are not spin

variables. Once the magnetic moment in the AS labeled by ~Ri is built up from

itinerant electron densities, the variables δξi describe how the AS and its associated

magnetic moment densities are arranged as a pattern on the lattice.

Although GPM is computationally fast but has major drawback in order to calcu-

late E(2)(Ri, Rj); the terms Eij are very large and comparable in magnitude. Hence ,

the difference between these two quantities is too small, which leads to error in δEij

measurement. This problem is overcome using the orbital peeling method discussed

below.

5.2.2 Orbital Peeling

Orbital peeling technique was first proposed by Einstein and Schrieffer [79] and was

generalized by N. R. Burke [11] to take very small energy differences into account

accurately.

As seen earlier the terms E(1)(~Ri), E(2)(~Ri, ~Rj) are called the renormalized single-

site and pair energies. The former plays no role in ordering of the AS, while the

higher terms like triplet and quadruplet energies are assumed to be small enough to

be ignored. It is easy to note from the above definition that :

E(2)(~Ri − ~Rj) =
1

2

∑

σ,σ′
χσσ′ Eσσ′

~Ri, ~Rj
(5.4)
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where χσσ′ = 2δσσ′ − 1 and Eσσ′
~Ri, ~Rj

is the total energy of a paramagnetic background

with the sites ~Ri and ~Rj occupied by Mn, with σ and σ′ describing the alignment of

averaged magnetic moment in the AS.

This leads to :

E(2)(~Ri − ~Rj) =

∫ EF

−∞
dE (E − EF ) ∆n(Mn)(E) (5.5)

where

∆n(Mn)(E) = − 1

2π
=m

∑

σ,σ′
χσσ′Tr

[
(EI−H(Mn σ,Mn σ′))−1

]
av

where, HMn σ,Mn σ′ is the Hamiltonian where every site is occupied randomly by

either Cu or paramagnetic Mn, but the sites ~Ri and ~Rj are occupied by Mn atoms

with σ and σ′ spins respectively. The configuration averaging is carried out using the

augmented space recursion introduced by Mookerjee (1973) [10]. Here :

Tr
[
(EI−HMn σ,Mn σ′))−1

]
av

=
∑

i

∑

`,m

〈~Ri`m⊗ ∅|(EĨ− H̃Mn σ,Mn σ′)−1|~Ri`m⊗ ∅〉

(5.6)

the tilded operators are in the product space between H (in which H was de-

scribed) and the space of configurations Φ of the randomly occupying Cu and Mn

atoms. ∅ is the ‘reference’ configuration described in Mookerjee [10]. The average

over random configurations is related to a specific element in the augmented product

space. Details can be found in Mookerjee et.al.(2003) [33].

The change in the averaged local density of states is related to a generalized phase

shift η(E) through the relation :

∆n(Mn)(E) =
dηMn(E)

dE
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where,

ηMn(E) = Log

[
det ¿ GMn↑,Mn↑(E) À det ¿ GMn↓,Mn↓(E) À
det ¿ GMn↑,Mn↓(E) À det ¿ GMn↓,Mn↑(E) À

]

GMn σ,Mn σ′ are the resolvents or Green functions corresponding to HMn σ,Mn σ′ . The

behaviour of the phase shift is complicated and the integration over the energy by

standard methods is difficult. In addition the integrand is multivalued. The way

forward was suggested by Burke [11]. Burke’s orbital peeling method was a repeated

application of the downfolding technique on the Hamiltonian H̃Mn σ,Mn σ′ and yields

a ‘pair energy function’ :

f(~Ri − ~Rj; E) =

↑↓∑

σ,σ′

`max∑

`=1




z`,σσ′∑

λ=1

Z`,σ,σ′
m −

p`,σσ′∑

λ=1

P `,σ,σ′
m +

(
p`,σσ′ − z`,σσ′

)
E




where Z`,σ,σ′ and P `,σ,σ′ are the zeroes and poles of the Green functions below E,

while z`,σ,σ′ and p`,σ,σ′ , the number of such zeroes and poles. These zeroes and poles

are obtained by repeated recursions on the peeled Hamiltonian [12].

Finally,

E(2)(~Ri − ~Rj) = f(~Ri − ~Rj, EF ) (5.7)

The Fig. 5.3 shows the pair energy functions for two characteristic compositions

: a low Cu content alloy, Cu20Mn80 and a low Mn content alloy, Cu90Mn10. We note

that although the general shape of the pair energy functions are similar, quantita-

tively they depend upon the composition. As a result, as shown in Fig. 5.3, the pair

energies themselves are composition dependent. In particular, the dominant nearest

neighbour pair energy has a distinct dependence on the Mn concentration. For a low

Mn concentration alloys with almost the same compositions, we may compare our pair
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Figure 5.3: The pair energy functions up to fourth nearest neighbours for (top) Cu20Mn80 and
(bottom) Cu90Mn10 alloys, obtained from the orbital peeling technique.The inset shows the further
neighbour pair energy functions near EF

energy of -1.5 mRy with -2.5 mRy found by Peil et.al.[80]. Our calculation was based

on orbital peeling and augmented space recursion on tight-binding linear muffin-tin

orbitals method (TB-LMTO-ASR), while theirs was based on the single-site coherent

potential approximation on the exact muffin-tin orbitals technique (EMTO-CPA) .

Given that the pair energies are really small energy differences, the two match reason-

ably well. The error in estimates of temperatures will be ∼ 157K which is tolerable

in a mean-field type approach. The further neighbour pair energies rapidly decrease

as is characteristic of disorder damped oscillatory interactions. We have not gone
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Figure 5.4: (top) E(2)(Rij) as a function of Rij for different compositions of CuxMn1−x. (bottom)
Composition dependence of the dominant nearest neighbour pair energy.

beyond the fourth nearest neighbours, since the numbers for more distant neighbours

become smaller than errors characteristic of the TB-LMTO-ASR and hence it would

be meaningless to quote such small numbers.

5.2.3 Mean-field analysis

Our mean-field analysis will begin with the equation :
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∆E ' 1

2

∑

~Ri, ~Rj∈Mn

E(2)(|~Ri − ~Rj|) δξi δξj

First of all, we note that in this analysis we do not deal with spin dynamics. Our

approach cannot deal with the anomalously slow spin dynamics characteristic of the

spin-glass phase. Rather, we shall examine probability distributions of magnetization

patterns in the asymptotic time limit.

The free energy can be obtained from the above :

F = − 1

β
Log

{
Tr{δξi} exp [−β∆E({δξi}]

}

The problem closely resembles a random classical Ising model with fluctuating,

long-ranged interactions. This problem has been dealt with earlier by Mookerjee and

Roy [81] within a mean-field approximation.

In our case the dominant nearest neighbour E(2)(R) < 0 and the transition

should be to a pattern where the lattice sites occupied by Mn have a AB ordering. We

partition the lattice into two sub-lattices L1 and L2 such that the nearest neighbour

of a site in L1 is in L2 and vice versa. We now define a staggered local occupation

variable ξ̂i and a staggered pair energy Ê(2)(R) as :

ξ̂iξ̂j = Iijξiξj and Ê(2)(|~Ri − ~Rj|) = IijE
(2)(|~Ri − ~Rj|) (5.8)

where Iij = ±1 according to whether ~Ri, ~Rj are in same or different sub-lattices.

We shall rewrite the energy difference in terms of the staggered quantities :

∆E =
1

2

∑

~Ri

∑

~Rj∈Mn

Ê(2)(|~Ri − ~Rj|) ξ̂iξ̂j (5.9)
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but now the dominant staggered nearest neighbour Ê(2) > 0. We shall closely follow

the arguments of Mookerjee and Roy [81] for binary alloys. This approach follows that

suggested earlier by Kaneyoshi [82], Plefka [83] and Thouless et.al.[84]. The single-site

mean-field approximation leads to an estimate of the free energy for a binary alloy :

F =
1

2

∑

~Ri∈Mn

hin̂i − 1

β

∑

~Ri∈Mn

log cosh(βhi)

the local staggered occupation parameters are n̂i = 〈ξ̂i〉 are the thermal averages of

the local staggered occupation numbers. The local staggered ’fields’ are given by :

hi =
∑

~Rj∈Mn

Ê(2)(Rij) n̂j (5.10)

where Rij = |~Ri − ~Rj|. On minimizing the Free energy, the thermally stable local

staggered occupation parameters are given by :

n̂i = tanh(βhi) (5.11)

In a disordered alloy the local staggered ‘fields’ are random. We introduce the

configuration averaged order parameters :

n̂ =

∫
dhi n̂i({hi}) P ({hi})

q =

∫
dhi n̂2

i ({hi}) P ({hi}) (5.12)

We evaluate the conditional probability density P ({h̃i}) of the staggered ‘field’

at ~Ri, scaled by the dominant nearest neighbour staggered Ê(R0), provided that the

site is occupied by Mn by the Radon transform :
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P ({h̃i}) =
∑

~R1

. . .
∑
RM

P (~Ri, . . . ~RM)
∏
µ

δ


h̃i −

∑

Q′

∑

~Rj

Ẽ(2)(Rij) n̂j




where Ẽ(2)(Rij) is the scaled pair energy. We assume that there is no clustering

or chemical short-ranged correlations, so that any atom can occupy any site with

equal probability. Following the same arguments of Mookerjee and Roy [81] for the

binary case, we use Eqn.(5.11) and replace the delta functions by their configuration

averages to get :

P ({h̃i}) =
1

(2π)3

∫
dk exp(ikh̃i)

[
1− FQQ′({k})

M

]N

where out of M sites of which N are occupied by Mn atoms.

F ({k}) =
∑

R

∫
dh̃jP ({h̃j})

[
1− exp

{
−ikẼ(2)(R) n̂(βh̃j)

}]

We shall now expand the exponential and, assuming that the spatial moments
∑

R[Ẽ(2)(R)]n rapidly decrease with n (which implies that the spatial distribution of

the pair energies is approximately Gaussian), we neglect all terms n ≥ 3. We note

that limM→∞ N/M = x. We get the conditional probability density of the scaled

h̃ and scale back to get the conditional probability density of the local staggered

occupation ‘fields’ :

P (hi) = (2πJ2
1 )−1/2 exp

{−(hi − J0)
2/2J2

1

}
(5.13)

where



Chapter 5. Magnetic Phase study for Cu-Mn alloys 93

J0 = x n̂
∑

R

E(2)(R) = kBT0 n̂

J2
1 = xq

∑
R

{
E(2)(R)

}2
= k2

BT 2
1 q

where n =¿niÀ and q =¿(ni)
2À are the two coupled long and short-ranged order

parameters respectively, one related to the centers of the distribution of hi and the

other to their widths. They are given by :

n̂ =
1√
2π

∫
dz e−z2/2tanh

[(
T0

T
n̂

)
+

(
T 2

1

T 2
q

)1/2

z

]

q =
1√
2π

∫
dz e−z2/2tanh2

[(
T0

T
n̂

)
+

(
T 2

1

T 2
q

)1/2

z

]

(5.14)

5.3 Result and discussion

As discussed in last section the mean-field approach one can get the phase diagram

by the two equations (5.12) and (5.14). In our case when there is only one magnetic

constituent with concentration x,

kBTN = x
∑

R

E(2)(R, x)

kBTg = x

{∑
R

E(2)(R, x)2

}1/2

How do we distinguish between the paramagnetic, anti-ferromagnetic and ‘spin-

glass’ patterns ? What we study is the probability density of the local field hi related
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Figure 5.5: (Top) The mean-field phase diagram for CuMn (bottom) Experimental phase diagram
after Gibbs et.al.[74]

to n̂i. This is the probability density at t → ∞. Under the approximations stated

the probability density is a Gaussian centered at kBT0n̂ and with width kBT1
√

q(i.e.

the definition of q). It is not the Edwards-Anderson parameter q =< m̂(t)m̂(0) > as

t →∞.

(i) For the paramagnet since hi is certainly 0, the probability density must be a delta

function centered at 0. This happens if n̂ = q = 0. This is one of the solutions.
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(ii) Another solution is n̂ = 0, q > 0 and the probability density is a Gaussian with

width kBT1
√

q and centered at 0. This picture is only possible if we have a

frozen, random pattern of equi-concentration of A (Mn↑) and B (Mn ↓) atomic

spheres. This picture is that of a disordered frozen moment phase with overall

zero moment which persists at long times. It is not an unreasonable picture of

a spin glass.

(iii) The third solution is n̂ > 0 q > 0 and the probability density is a Gaussian

centered at kBT0n̂ > 0 with width kBT1
√

q > 0. This picture is possible if we

have a macroscopic cluster of A (Mn ↑) or B (Mn ↓) atomic spheres occupying

interpenetrating sub-lattices interspersed with a few B (or A) spheres randomly

in the wrong positions, to give the probability density a spread. This is the

picture of a random anti-ferromagnetic phase.

(iv) The mixed or randomly canted phase is not one of the solutions. We expect

this, because the model of itinerant electrons on which our description was

based allowed for only collinear magnetism. In order to study the mixed or

randomly canted phase we have to begin with a formulation that allows for

non-collinear magnetism. Such a formulation of the LSDA exists [85]-[86] and

we shall report this generalization in a future communication.

Mookerjee and Roy [81] have studied the T = 0 phases and have shown that there

exists a critical concentration xc beyond which there is a transition from paramagnetic

to an antiferromagnetic to a re-entrant spin-glass phase. If we assume the the pair

energies E(2)(Rij) are independent of composition, which is approximately the case

with ferromagnetic Fe in AuFe alloys, then the para-ferro boundary behaves as ∼ x

and the para-spin-glass boundary as
√

x. However, for CuMn, as we have seen earlier,
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the pair energies and hence J0 and J1 has additional composition dependence. Fig.

5.5 (upper panel) shows the mean-field magnetic phase diagram for CuMn while the

lower panel shows the experimental results taken from Gibbs et.al.[74]. Mean-field

approaches always overestimates the transition temperatures. With that in mind,

the theoretical prediction matches rather well with experimental data. At low Mn

content we have transition between paramagnetic to the spin-glass phases, while for

high Mn content alloys (> 70at%) we have transition from paramagnetic to collinear

antiferromagnetic to the mixed phase at lower temperatures.

5.4 Concluding Remarks

For CuMn the mean-field picture is not complete. There is enough evidence of both

atomic and magnetic short-ranged order developing in the alloy. Peil et.al.[80, 87]

have carried out a detailed study of one specific composition Cu83Mn17. They have

analyzed the effect of simultaneous atomic and magnetic ordering and have concluded

that their work agreed well with recent neutron scattering experiments [88]-[73]. The

simple mean-field picture of a homogeneous spin-glass phase has to be modified in

the presence of such short-ranged ordering. A similar thorough first-principles study

is called for in the entire composition range.



Chapter 6

Conclusion

In this chapter, we conclude the work carried out in this thesis and summarize what

we have achieved.

Our aim was to study phonon using first-principle. We systematically formulated

a theoretical scheme to study lattice vibrational properties of disordered binary alloy,

which is discussed in chapter 2-4. A short work we did on Cu-Mn alloy to study

magnetic phase in chapter 5 also. The techniques we used while formulating the

methodology to study different phononic properties are augmented space recursion,

special quasi-random structure, feynman diagram method, small displacement method,

density functional perturbation theory, and orbital peeling. In the following, we briefly

describe the steps followed along with the achievement:

• In chapter 1, we briefly introduce the disorder handling techniques and how

they can be used to study lattice dynamics of configurational disordered system.

We mentioned two methodology namely augmented space recursion and quasi-

random structure and described why these methods are more feeble to study

disorder systems.

• In chapter 2, we investigated the lattice dynamics and the vibrational and con-

97
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figuration entropy of disordered alloy using ASR. We formulated short-range

order (SRO) effect on the lattice dynamics. We studied these properties on

bcc Fe1−xCrx (x=0.75,0.45,0.25) and Fe1−xCrx (x=0.29,0.43,0.75) alloy. For

Fe − Cr alloy we reported that the effect of SRO did not come out to be

significant in terms of the magnitude of phonon entropy of mixing, which we

initially thought not to be the case. In Re-W alloy we found that for Re-rich

alloy phonon dispersion to be strongly fuzzy; an outcome of higly asymmetric

coherent structure factor with large disorder induced broadening.

• In chapter 3 we used Kubo-Greenwood formula with density functional per-

turbation theory (Quantum Espresso) based first principle calculation to study

the thermal conductivity and diffusivity for binary bcc Fe1−xCrx alloy. At low

T-regime, thermal conductivity (κ) shows a quadratic T-dependence, While it

increase smoothly to T-independent saturated value at high T. We found that

both κ(µ) and J(µ) have dip at very small energy (µ ≈ 0) similar to Feldman

et.al.[48]. We reported dc-thermal conductivity for x = 47% to be 24.7 W/mK,

which is comparable to κexpt(x = 0.25) ≈ 22.0W/mK.

• In this chapter we proposed a systematic way of calculating the inter-atomic

force constants for disordered alloy using first principles method. To get the av-

eraged force constant in random environment at different bond lengths we incor-

porate special quasi-random structure along with small displacement method,

and did symmetry transformation around the nearest neighbor. For two differ-

ent symmetry bcc (TaW) and fcc (NiPt) we successfully shown the phononic

behaviour and verified it with experimental data. In bcc TaW alloy, Ta-Ta

force constant are predicted to be stiffer compared to the pure Ta, however
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W-W force constants behave oppositely. In case of fcc NiPt, Ni-Ni (Pt-Pt)

force constants within the disordered environment behave softer (stiffer) than

compared to pure Ni (Pt). We also conclude that the average distribution of

bond length between A-A, B-B and A-B in disordered alloy is also related to the

nature of the behavior of inter-atomic force constants. We found that large SQS

cells results are more accurate and promising. Phonon dispersion using 32-atom

SQS cell force constants for bcc Ta50W50 agree well with the experiment.

• In chapter 5 we performed electronic structure calculation to study magnetic

phase of disorder Cu-Mn alloys using orbital peeling technique and ASR. We

found a transition between pramagnetic to spin glass transition for Cu-Mn alloy

at low Mn concentration while a transition from paramagnetic to collinear anti-

ferromagnetic leading to the mixed phases for high Mn (> 70%) concentration

at low temperature. Our result agrees well with experimental phase diagram

shown by Gibbs et.al.[74].

6.1 Future scope

During the investigation of phononic properties using augmented space recursion we

concluded that the key factor is dynamical matrix. The implement of dynamical

matrix using SQS gives more accuracy in the result and matches well with the exper-

imental neutron scattering results, have shown in chapter 4. Our future aspect will

be to perform SQS based calculation for few more systems to check the performance

of our new formulated methodology. We will also in-cooperate SRO again in this

to see the variation to our old calculation. We will also extend our idea to ternary

disordered alloys.
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List of SQS atomic positions
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Table A.1: BCC Spectral Quasi-random Structure (SQS) for concentration A50B50

see ref. [57]

No. of atoms Lattice vectors Unrelaxed atomic positions

32-atom L1 = 1.0 -2.0 0.0 A-atom
L2 = 0.0 -4.0 2.0 0.0 -4.0 0.0
L3 = -2.0 0.0 -2.0 0.0 -2.0 0.0

-0.5 -0.5 -0.5
-1.0 -4.0 -1.0
-0.5 -1.5 -0.5
0.0 -1.0 0.0

-1.0 -3.0 -1.0
0.5 -4.5 1.5
0.5 -5.5 1.5

-1.5 -2.5 -0.5
-1.5 -3.5 -0.5
-0.5 -2.5 0.5
-1.0 -6.0 0.0
-0.5 -3.5 0.5
0.0 -3.0 1.0
-1.0 -5.0 0.0

B-atom
-0.5 -4.5 0.5
-0.5 -5.5 0.5
0.0 -5.0 1.0
0.5 -2.5 0.5
0.5 -3.5 0.5

-1.5 -0.5 -1.5
-1.5 -1.5 -1.5
-1.0 -1.0 -1.0
-1.0 -2.0 -1.0
-0.5 -2.5 -0.5
-0.5 -3.5 -0.5
0.0 -3.0 0.0
0.0 -6.0 1.0
0.0 -4.0 1.0
-1.0 -3.0 0.0
-1.0 -4.0 0.0



No. of atoms Lattice vectors Unrelaxed atomic positions

16-atom L1 = -0.5 -1.5 -2.5 A-atom
L2 = -0.5 2.5 1.5 0.0 0.0 -2.0
L3 = 1.5 0.5 -0.5 0.5 1.5 -0.5

1.0 0.0 -2.0
0.5 0.5 -0.5
0.5 -0.5 -2.5
-0.5 1.5 -0.5
0.0 2.0 0.0
0.5 2.5 0.5

B-atom
1.0 2.0 0.0

-0.5 0.5 -1.5
1.0 1.0 -1.0
0.0 1.0 0.0
0.5 1.5 -1.5
0.0 1.0 -1.0
0.0 0.0 -1.0
0.5 0.5 -1.5

8-atom L1 = 0.5 0.5 -1.5 A-atom
L2 = 1.5 0.5 -0.5 2.0 0.0 -2.0
L3 = 0.0 -2.0 0.0 0.5 -1.5 -0.5

1.0 -1.0 -1.0
1.5 -0.5 -1.5

B-atom
2.0 -1.0 -2.0
0.5 -0.5 -0.5
1.0 0.0 -1.0
1.5 0.5 -1.5



Table A.2: FCC Spectral Quasi-random Structure (SQS) for concentration A50B50

see ref. [57]

No. of atoms Lattice vectors Unrelaxed atomic positions

32-atom L1 = 2.00 0.00 0.00 A-atom
L2 = 0.00 2.00 0.00 1.00 1.00 0.50
L3 = 0.00 0.00 2.00 1.00 0.25 0.75

0.25 1.00 0.75
1.00 0.25 0.25
1.00 0.50 0.50
1.00 0.75 0.75
0.25 1.00 0.25
0.25 0.25 0.50
0.75 1.00 0.75
1.00 0.50 1.00
0.25 0.50 0.25
0.50 0.25 0.25
0.75 0.25 0.50
0.50 0.50 1.00
0.75 0.25 1.00
0.75 0.75 1.00

B-atom
1.00 1.00 1.00
0.25 0.50 0.75
0.50 1.00 0.50
0.50 0.25 0.75
1.00 0.75 0.25
0.25 0.25 1.00
0.25 0.75 0.50
0.50 1.00 1.00
0.50 0.50 0.50
0.50 0.75 0.75
0.75 1.00 0.25
0.75 0.50 0.75
0.25 0.75 1.00
0.50 0.75 0.25
0.75 0.50 0.25
0.75 0.75 0.50



No. of atoms Lattice vectors Unrelaxed atomic positions

16-atom L1 = 1.0 -0.5 -0.5 A-atom
L2 = 0.0 1.0 -1.0 0.250 0.250 0.250
L3 = 1.0 1.5 1.5 0.250 0.750 0.250

0.750 0.500 0.250
0.250 0.000 0.750
0.000 0.250 0.500
0.500 0.750 0.000
0.000 0.500 0.000
0.000 0.000 0.000

B-atom
0.500 0.500 0.500
0.750 0.000 0.250
0.500 0.000 0.500
0.250 0.500 0.750
0.000 0.750 0.500
0.750 0.250 0.750
0.750 0.750 0.750
0.500 0.250 0.000

8-atom L1 = 1.00 0.50 -0.50 A-atom
L2 = 0.50 0.50 -1.00 0.00 0.00 0.500
L3 = -1.00 2.00 1.00 0.50 0.50 0.250

0.75 0.75 0.625
0.75 0.75 0.125

B-atom
0.00 0.00 0.000
0.25 0.25 0.875
0.25 0.25 0.375
0.50 0.50 0.750
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