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Abstract

It has been proposed that spin–waves, particularly those with frequencies in microwave and
submillimetre wave bands, can be used for information transmission and processing. Having
shorter wavelengths as compared to electromagnetic waves of the same frequency, spin–wave
based devices hold the potential to aid the miniaturization of microwave communication.
Designs have been proposed which use nanoscale magnetic systems to create elements which
can function as attenuators, filters, phase–shifters, interferometers and logic gates. Here, we
study the magnetization dynamics of spin–wave dispersion and magnetic vortex gyration.
Both phenomenon are related and have their characteristic frequencies in the microwave
frequency band. The nanoscale systems considered here are ferromagnetic thin films, uni-
form waveguides, magnonic crystals (spatially modulated magnetic systems) and magnetic
vortices. Effects like magnetization pinning and mirror symmetry breaking, which alter the
spin–wave dispersion characteristic call for greater spatial resolution and precision in fab-
rication. Thus, we summarize with what needs to be done and the future directions the
research needs to take in order to make nanoscale devices technically feasible.

The spectrum of spin–waves propagating in magnetic systems is important from both
fundamental and applied points of views. Propagating spin–waves in magnonic crystals will
form the building blocks of future microwave data processing and communication. While
magnonic modes and band gaps can help in the formulation of filters and attenuators, un-
derstanding other phenomena like spin–wave reflection, refraction and interference will help
in designing magnonic circuit elements like logic gates and diodes.

The Landau–Lifshitz–Gilbert (LLG) equation has been used in this work to simulate the
spin dynamics in different nanoscale magnetic systems. This equation was solved mainly us-
ing the finite difference method based Object–Oriented Micromagnetic Framework (OOMMF)
or the finite element method based Nmag. In addition to using some existing software pack-
ages, we also developed our own LLG equation solver (which can also take spin–transfer
torque terms into account) using MATLAB programming. The combined packages of sim-
ulation and post–processing has been named DotMag. DotMag can simulate spin dynamics
in two–dimensional systems and can analyse results for any kind of nanoscale system —
even those solved using third party packages, such as OOMMF. The results obtained from
the newly developed software have been inspected for any magnonic bands and bandgaps
using multi–domain discrete Fourier transform. Various issues related to the numerical cal-
culations like aliasing, spectral leakage and scalloping loss have been addressed in Chap. 3.
The tools prepared for analysing these magnonic conductors will also allow for the visual-
ization of propagation and power and phase distribution of the spin–wave over the entire
region of interest. These tools will be generically designed, so as to accommodate any kind
of magnonic conductor.

The newly developed package DotMag, was used for the calculations of magnonic band
structures of one– and two–dimensional periodic arrays of dots, anti-dots (holes created in
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continuous magnetic medium) and filled antidots (the holes are now filled with a differ-
ent magnetic medium). Influence of different structural and material parameters over the
spin–wave band structure was studied in these cases. The results obtained using the micro-
magnetic simulations were also compared with those obtained from the plane wave method
(PWM) and any differences were examined. Iso–frequency lines, which are magnonic ana-
logues of the electronic Fermi surfaces were also calculated in the case of two–dimensional an-
tidot arrays. With the knowledge obtained from above we investigated magnonic waveguides
embedded with regular and filled antidots to design magnonic filters of tunable bandwidth
and bandgaps. Some of the numerically examined magnonic crystals have been fabricated by
using different lithography techniques. The low wavevector magnonic modes in some of these
magnonic crystals were experimentally investigated by using our TR–MOKE experimental
setup.

In Chap. 5, we study the spin–wave spectra in magnonic antidot waveguides (MAWs) ver-
sus the surface anisotropy at the ferromagnet/air interface. The MAWs under investigation
have the form of a thin stripe of permalloy with a single row of periodically arranged antidots
in the middle. The introduction of a magnetization pinning at the edges of the permalloy
stripe and the edges of antidots is found to modify quantitatively the spin–wave spectrum.
This effect is shown to be necessary for magnonic gaps to open in the considered systems.
Our study demonstrates that the surface anisotropy can be crucial in the practical appli-
cations of MAWs and related structures and in the interpretation of experimental results
in one- and two-dimensional magnonic crystals. We used three different theoretical meth-
ods i.e. PWM, finite difference method and finite element method to validate the results.
We showed that PWM in the present formulation assumes pinned magnetization while in
micromagnetic simulations special care must be taken to introduce pinning.

In Chap. 6, we show that structural changes breaking the mirror symmetry of a MAW can
close the magnonic bandgaps. But, the effect of these intrinsic symmetry breaking factors
can be compensated by a properly adjusted asymmetric external bias magnetic field, i.e., by
an extrinsic factor. This allows for the recovery of the magnonic bandgaps occurring in the
ideal symmetric structure. The described methods can be used for developing parallel models
for recovering bandgaps closed due to an intrinsic defect, e.g. a fabrication defect. The
theoretical model developed here is particular to the field of magnonics, a rapidly emerging
field combining spin dynamics and spintronics. However, the underlying principle of this
development is squarely based upon the translational and mirror symmetries associated
with the crystal structure. Thus, we believe that this idea of correcting an intrinsic defect by
extrinsic means, should be applicable to spin–waves in both exchange and dipolar interaction
regimes, as well as to electron, electromagnetic and acoustic waves in general.

In Chap. 7, we present the possibility of tuning the spin–wave band structure, particularly
the bandgaps in a nanoscale MAW by varying the shape of the antidots. The effects of
changing the shape of the antidots on the spin–wave dispersion relation in a waveguide have
been carefully monitored. We interpret the observed variations by analysing the equilibrium
magnetic configuration and the magnonic power and phase distribution profiles during spin–
wave dynamics. The inhomogeneity in the exchange fields at the antidot boundaries within
the waveguide is found to play a crucial role in controlling the band structure at the discussed
length scales. The observations recorded here will be important for future developments of
magnetic antidot based magnonic crystals and waveguides.
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In Chap. 8, we demonstrate that the magnonic band structure, including the band gap
for a MAW, can be significantly tuned by a relatively weak modulation of its structural
parameters. The calculations were performed with consideration of both the exchange and
dipolar interactions. For the exchange dominated regime, we discuss, in details, the impact of
the changes of the lattice constant, size, and shape of the antidots on the spin–wave spectra.
We have shown that a precise choice of these parameters is crucial for achieving desired
properties of the antidot waveguides, i.e., a large group velocity and filtering properties
due to existence of magnonic band gaps. We discuss different mechanisms of magnonic gap
opening resulting from Bragg scattering or anticrossing of modes. We have shown that the
dipolar interactions start to assert their role in the spin–wave spectrum when the waveguide
is scaled up, but even for a period of few hundreds of nanometres, the magnonic band
structure preserves qualitatively the properties found in the exchange dominating regime.
The obtained results are important for future development of magnonic crystal based devices.

In Chap. 9, we present the observation of a complete bandgap and collective spin–wave ex-
citation in two–dimensional magnonic crystals comprised of arrays of nanoscale antidots and
nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave
band, these findings can be used for the development of suitable magnonic metamaterials
and spin–wave based signal processing. We also present the application of a numerical pro-
cedure, to compute the dispersion relations of spin–waves for any high symmetry direction in
the first Brillouin zone. The results obtained from this procedure has been reproduced and
verified by the well–established PWM for an antidot lattice, when magnetization dynamics
at antidot boundaries is pinned. The micromagnetic simulation based method can also be
used to obtain iso–frequency contours of spin–waves. Iso–frequency contours are analogous
of the Fermi surfaces and hence, they have the potential to radicalise our understanding
of spin–wave dynamics. The physical origin of bands, partial and full magnonic bandgaps
has been explained by plotting the spatial distribution of spin–wave energy spectral density.
Although, unfettered by rigid assumptions and approximations, which afflict most analytical
methods used in the study of spin–wave dispersion, micromagnetic simulations tend to be
computationally demanding. Thus, the observation of collective spin–wave excitation in the
case of nanodot arrays, which can obviate the need to perform simulations may, also prove
to be valuable.

DotMag was developed with the ability to excite vortex core gyration by using external
magnetic field and spin transfer torque. Magnetic vortex dynamics was investigated in
the cases of isolated and coupled vortices. Transducer and transistor like operations were
demonstrated based on these results. Transistors constitute the backbone of modern day
electronics. Since their advent, researchers have been seeking ways to make smaller and more
efficient transistors. In Chap. 12, we demonstrate a sustained amplification of magnetic
vortex core gyration in coupled two and three vortices by controlling their relative core
polarities. This amplification is mediated by a cascade of antivortex solitons travelling
through the dynamic stray field. We further demonstrated that the amplification can be
controlled by switching the polarity of the middle vortex in a three vortex sequence and the
gain can be controlled by the input signal amplitude. An attempt to show fan–out operation
yielded gain for one of the symmetrically placed branches which can be reversed by switching
the core polarities of all of the vortices in the network. The above observations promote the
magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).



xi



Contents

Acknowledgements iii

Patent and Publications v

Abstract viii

List of Abbreviations xvi

List of Symbols xviii

Material Parameters Used During Simulations xx

List of Tables xxi

List of Figures xxii

1. Introductions 1
1.1. Spin–Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Magnetic Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Theoretical Background 11
2.1. Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2. Magnetic Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1. Zeeman Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2. Exchange Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3. Magnetostatic Self–Energy . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4. Magnetocrystalline Anisotropy Energy . . . . . . . . . . . . . . . . . 16

2.3. Magnetization Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1. Brown’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2. Landau–Lifshitz–Gilbert Equations . . . . . . . . . . . . . . . . . . . 18
2.3.3. Ferromagnetic Resonance and The Kittel Formula . . . . . . . . . . 20
2.3.4. Laser Pulse Induced Ultrafast Demagnetization . . . . . . . . . . . . 23

2.4. Magnonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1. Exchange Dominated SWs in Thin Films . . . . . . . . . . . . . . . . 24
2.4.2. Dipole Dominated SWs in Thin Films . . . . . . . . . . . . . . . . . . 25
2.4.3. Effect of Lateral Confinement on SW Band Structure . . . . . . . . . 27
2.4.4. Magnonic Crystals (MCs) . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.5. Magnonic Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Contents xiii

2.5. Magnetic Vortex Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.1. Polarity Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2. Vortex Core Gyration . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3. Methods 38
3.1. Micromagnetic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2. FDM and OOMMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1. Numerical Approximations of Magnetic Energies . . . . . . . . . . . . 42
3.2.2. Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.3. Solving The LLG Equation in OOMMF . . . . . . . . . . . . . . . . 46

3.3. FEM and Nmag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1. FEM Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2. Solving The LLG Equation using Nmag . . . . . . . . . . . . . . . . 49

3.4. Plane Wave Method (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5. Fabrication Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1. Thin–Film deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.2. Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6. Sample Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4. Thin–Films, Waveguides and One–Dimensional Magnonic Crystals 57
4.1. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5. Free and Pinned Boundary Condition in a Magnonic Antidot Waveguide 74
5.1. Waveguide Structure and the Calculation Methods . . . . . . . . . . . . . . 75

5.1.1. Micromagnetic Simulation . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.2. Plane Wave Method for a Magnonic Antidot Waveguide . . . . . . . 78

5.2. The effect of pinning on the magnonic spectrum . . . . . . . . . . . . . . . . 81
5.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6. Manipulation of Intrinsic and Extrinsic Mirror Symmetry in a Magnonic
Antidot Waveguide 88
6.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1. Magnonic Band Structure in Symmetric and Asymmetric MAW . . . 89
6.2.2. Compensation of the Effect of an Intrinsic Symmetry breaking . . . . 95

6.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7. Effect of Antidot Shape on Spin–Wave dispersion in a Magnonic Antidot
Waveguide 102
7.1. MAW and The Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1. MAW Structural and Material Parameters . . . . . . . . . . . . . . . 103
7.1.2. Micromagnetic Simulations . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2. Results and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



Contents xiv

8. Effects of Other Structural Parameters 112
8.1. The Waveguide Structure and the Calculation Methods . . . . . . . . . . . . 114
8.2. The Influence of Structural Changes in the MAW on the SW Band Structure 115

8.2.1. The Influence of Antidot Size . . . . . . . . . . . . . . . . . . . . . . 116
8.2.2. The Influence of Lattice Period . . . . . . . . . . . . . . . . . . . . . 119
8.2.3. The Influence of Antidot Shape . . . . . . . . . . . . . . . . . . . . . 122
8.2.4. The Influence of Size Factor . . . . . . . . . . . . . . . . . . . . . . . 124

8.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9. Two–Dimensional Magnonic Crystals 129
9.1. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.1.1. Magnonic crystal lattice and material parameters . . . . . . . . . . . 131
9.1.2. Micromagnetic simulations and the plane wave method . . . . . . . . 131

9.2. Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.Bandgaps in The Submillimetre Frequency Range in a Magnonic Antidot
Waveguide 145
10.1. Precessing Vector Fourier Transform (PVFT) . . . . . . . . . . . . . . . . . 145
10.2. Increased Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.3. Reduced Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

11.Experimentation Involving Magnonic Antidot Waveguides 151
11.1. MAW Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.2. Magneto–Optic Kerr Effect (MOKE) . . . . . . . . . . . . . . . . . . . . . . 153

11.2.1. Description of The Pump–Probe Optical Setup . . . . . . . . . . . . 154
11.3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

11.3.1. TR–MOKE Measurements from the Ni80Fe20 Antidot Waveguide . . . 156
11.3.2. Dependence of SW Spectrum on the Lattice Parameters . . . . . . . 159
11.3.3. Bias Field Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 162

11.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

12.Coupled Magnetic Vortices for All–Magnetic Transistor Operations 166
12.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.2. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

12.2.1. Isolated Magnetic Vortex . . . . . . . . . . . . . . . . . . . . . . . . . 169
12.2.2. Coupled Magnetic Vortices Pair . . . . . . . . . . . . . . . . . . . . . 170
12.2.3. Magnetic Vortex Transistor (MVT) . . . . . . . . . . . . . . . . . . . 175
12.2.4. Fan–Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

12.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

13.Conclusions 182
13.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
13.2. Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



Contents xv

A. Appendix 189
A.1. Supplementary Note for Chap. 12 . . . . . . . . . . . . . . . . . . . . . . . . 189
A.2. Supplementary Figures for Chap. 12 . . . . . . . . . . . . . . . . . . . . . . . 190

Bibliography 194



List of Abbreviations

1D : One–Dimensional.

2D : Two–Dimensional.

3D : Three–Dimensional.

ADL : AntiDot Lattice.

BV : Backward Volume.

BZ : Brillouin Zone.

CAD : Computer Aided Design.

CCD : Charged Coupled Diode.

CMOS : Complementary Metal–Oxide–Semiconductor.

CW : Clockwise.

CCW : Counter–Clockwise.

Co : Cobalt.

DE : Damon–Eshbach.

DFT : Discrete Fourier Transform.

ESD : Energy Spectral Density.

FDM : Finite Difference Method.

FEM : Finite Element Method.

FFT : Fast Fourier Transform.

FIB : Focused Ion Beam.

FV : Forward Volume.

LLG : Landau–Lifshitz–Gilbert.

MAW : Magnonic Antidot Waveguide.

MC : Magnonic Crystal.



Contents xvii

MMA : Methyl MethAcrylate.

MRAM : Magnetic Random Access Memory.

MS : Micromagnetic Simulation.

OBD : Optical Bridge Detector.

ODE : Ordinary Differential Equation.

OOMMF : Object Oriented MicroMagnetic Framework.

PBC : Periodic Boundary Condition.

PPDP : Power and Phase Distribution Profile.

PMMA : PolyMethyl MethAcrylate.

PWM : Plane Wave Method.

PVFT : Precessing Vector Fourier Transform.

Py : Permalloy (Ni80Fe20).

SEM : Scanning Electron Microscopy.

SHG : Second Harmonic Generator.

STT : Spin–Transfer Torque.

SW : Spin–Wave.

TR–MOKE: Time–Resolved Magneto–Optic Kerr Effect.

YIG : Yttrium Iron Garnet.

w.r.t. : with respect to.



List of Commonly Used Symbols∗†

Γ : Centre of the Brillouin zone.

µB : Bohr magneton.

α : Gilbert damping.

γ, |γ̄|, |γ| : Gyromagnetic ratio.

µ0 : Magnetic permeability of free space.

µB : Bohr magneton.

θf : Phase of SWs.

ω : SW angular frequency.

A : Exchange coefficient.

Hanis : Anisotropy field.

Hbias : Bias field.

Hdem : Demagnetizing field.

Heff : Effective field.

Hexch : Exchange field.

Hext : External field.

Hsig : Excitation signal.

J : Total angular momentum quantum number.

K1, K2, K ′1, K ′2: Magneto–crystalline anisotropy.

M : Magnetization.

Ms : Saturation magnetization.

m : M/Ms.

Sf : Energy spectral density of SWs.

∗These symbols are used to mean the following, unless stated otherwise in a chapter.
†Magnitude of vector quantities has been represented by the italicized non–boldface version of its symbol.



Contents xix

f : SW frequency.

h; ~ : Plank constant; Reduced Plank constant.

k : SW wavevector.

kB : Boltzmann constant.

kx : x–component of SW wavevector.

ky : y–component of SW wavevector.

kz : z–component of SW wavevector.

t : Time.

u : Film or waveguide thickness.

w : Width of waveguide or sub–waveguide.

x : x–coordinate.

y : y–coordinate.

z : z–coordinate.



Material Parameters Used During
Simulations∗

Material Ms(106) A/m A(10−12) J/m K1(103) J/m3 α
Co 1.4 30 520 10−4

Py 0.8 13 0 10−4

∗Gyromagnetic ratio |γ̄| = 2.21× 105 m A−1 s−1 is used in all cases. Gilbert damping α = 0.9 or 0.95
is used to develop the steady state before starting the magnetization dynamics; which is observed at low
values of 10−4 to obtain sharper peaks in the frequency domain. Where specified, more realistic values of
α = 0.008 or 0.01 is used.



List of Tables

2.1. Magnetocrystalline anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1. Micromagnetic simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9.1. SW bandgaps in a 2D ADL . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11.1. Samples for TR-MOKE experiment . . . . . . . . . . . . . . . . . . . . . . . 152
11.2. SW peaks with changing lattice parameters . . . . . . . . . . . . . . . . . . 161



List of Figures

1.1. (Colour) Time scales of magnetization dynamics . . . . . . . . . . . . . . . . 2
1.2. (Colour) Spin–wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3. (Colour) Magnetic vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1. Macroscopic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2. Perpendicular standing SW mode . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3. Magnetostatic SW modes in a film . . . . . . . . . . . . . . . . . . . . . . . 26
2.4. (Colour) SW dispersion in a uniform waveguide . . . . . . . . . . . . . . . . 28
2.5. (Colour) BV SWs in a uniform waveguide . . . . . . . . . . . . . . . . . . . . 29
2.6. A generic magnonic device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7. (Colour) Magnetic vortex core reversal . . . . . . . . . . . . . . . . . . . . . 33

3.1. (Colour) Modelling in FDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2. Delaunay triangulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3. (Colour) Thin–film deposition . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4. (Colour) Optical and e-beam lithography . . . . . . . . . . . . . . . . . . . . 53
3.5. Scanning Electron Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1. (Colour) SW dispersion relations in an uniform waveguide . . . . . . . . . . 61
4.2. SW dispersion relations calculation algorithm . . . . . . . . . . . . . . . . . 62
4.3. (Colour) Effect of windowing functions . . . . . . . . . . . . . . . . . . . . . 63
4.4. (Colour) Effect of excitation signal . . . . . . . . . . . . . . . . . . . . . . . 65
4.5. (Colour) SWs in a thin–film . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6. (Colour) SW dispersion in a MAW . . . . . . . . . . . . . . . . . . . . . . . 68
4.7. (Colour) SW dispersion in a bi–component MAW . . . . . . . . . . . . . . . 69
4.8. (Colour) Effect of number of antidot rows on SW dispersion in a MAW . . . 71
4.9. (Colour) SW power and phase distribution in a MAW . . . . . . . . . . . . . 72
4.10. (Colour) SW power and phase distribution in a MAW with 3 rows . . . . . . 73

5.1. (Colour) MAW structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2. (Colour) SW dispersion in a MAW: unpinned . . . . . . . . . . . . . . . . . 82
5.3. (Colour) SW dispersion in a MAW: pinned . . . . . . . . . . . . . . . . . . . 84

6.1. (Colour) Antidot lattice waveguide under investigation . . . . . . . . . . . . 90
6.2. (Colour) Intrinsic mirror symmetry breaking: antidot row . . . . . . . . . . . 91
6.3. (Colour) Symmetry breaking calibration . . . . . . . . . . . . . . . . . . . . 93
6.4. (Colour) Extrinsic mirror symmetry breaking: bias field . . . . . . . . . . . . 94
6.5. (Colour) Extrinsic compensation of intrinsic mirror symmetry breaking . . . 98
6.6. (Colour) Mirror symmetry breaking and compensation: hole shape. vs. bias 100



List of Figures xxiii

7.1. MAW: shape of antidots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2. (Colour) SW dispersion in a MAW: antidot shape . . . . . . . . . . . . . . . 106
7.3. (Colour) SW ESD and Phase: hole shape . . . . . . . . . . . . . . . . . . . . 107
7.4. (Colour) Exchange and demagnetization field profiles: hole shape . . . . . . 109

8.1. (Colour) MAW structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.2. (Colour) SW dispersion in MAW: antidot size . . . . . . . . . . . . . . . . . 118
8.3. (Colour) SW dispersion in MAW: lattice constant . . . . . . . . . . . . . . . 121
8.4. (Colour) SW dispersion in MAW: antidot shape . . . . . . . . . . . . . . . . 123
8.5. (Colour) SW dispersion in MAW: scale . . . . . . . . . . . . . . . . . . . . . 125

9.1. (Colour) Two–dimensional antidot lattice . . . . . . . . . . . . . . . . . . . . 132
9.2. (Colour) SW dispersion in a 2D ADL . . . . . . . . . . . . . . . . . . . . . . 136
9.3. (Colour) SW dispersion in a 2D ADL: new approach . . . . . . . . . . . . . 138
9.4. (Colour) SW dispersion in a 2D ADL: ESD and phase . . . . . . . . . . . . . 140
9.5. (Colour) SW dispersion in a 2D dot lattice: BV to DE transition . . . . . . . 142

10.1. Mapping of precessing vectors into the complex plane . . . . . . . . . . . . . 146
10.2. PVFT: amplitude gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.3. (Colour) PVFT: reduced aliasing in the case of a 2D ADL . . . . . . . . . . 148
10.4. (Colour) PVFT: reduced aliasing in the case of a MAW . . . . . . . . . . . . 149

11.1. Fabricated MAW samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.2. Kerr rotation and ellipticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.3. (Colour) A schematic diagram of TR–MOKE microscope . . . . . . . . . . . 154
11.4. BV and DE SW modes in a fabricated MAW sample . . . . . . . . . . . . . 158
11.5. (Colour) Power and phase distribution . . . . . . . . . . . . . . . . . . . . . 160
11.6. Lattice dependence of SW spectrum in a MAW . . . . . . . . . . . . . . . . 161
11.7. Field dependence of SW spectrum in MAW . . . . . . . . . . . . . . . . . . 163
11.8. (Colour) Curve fitting of experimentally observed SW modes . . . . . . . . . 164

12.1. (Colour) Isolated vortex and coupled vortex pair. . . . . . . . . . . . . . . . 169
12.2. (Colour) Gyration amplification. . . . . . . . . . . . . . . . . . . . . . . . . . 171
12.3. (Colour) Gyration amplification: Stray field distribution . . . . . . . . . . . 172
12.4. (Colour) Magnetic vortex transistor: ESD . . . . . . . . . . . . . . . . . . . 175
12.5. (Colour) Magnetic vortex transistor: stray field . . . . . . . . . . . . . . . . 177
12.6. (Colour) Fan–out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.1. Isolated vortex core gyration . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.2. Coupled vortices: effect of cell size . . . . . . . . . . . . . . . . . . . . . . . . 192



1. Introductions

Magnetization dynamics at nanoscale had been predicted to be characterized by a few in-

teresting phenomena, which are deemed useful for practical applications such as information

transmission, processing and storage. For example, the theorization of some key aspects of

spin–waves (SWs) occurred over fifty years ago.1,2 Recent advances in fabrication techniques

have allowed for the examination of such phenomena on micro– and nanoscale. As SWs

of microwave frequency have considerably lower wavelengths (in comparison to light), the

potential to miniaturize microwave communication appears to be the guiding motivation of

most of the recent studies. SWs can be more dispersive than sound or light waves and have a

band structure which typically starts at a certain non–zero minimum frequency. SW disper-

sion is also anisotropic in most cases. The ability to alter the response of nanoscale magnetic

structures simply by controlling the external field has also attracted a lot of attention.3,4

The characteristic time scales τ , of different manifestations of magnetization dynamics can

be obtained using the Heisenberg relation τ = h/E, where h is the Planck constant and E

is the involved interaction energy.5 This has been presented in Fig. 1.1.

As seen from Fig. 1.1, the exchange interaction, which favours the parallel alignment of

spins in a ferromagnet, has a characteristic time–scale between one and ten femtoseconds.

The effects of spin–orbit coupling and spin–transfer torque (STT) are apparent under a

picosecond. Laser induced ultrafast demagnetization can typically be obtained within a few

hundred femtoseconds.6 The precession of magnetization7 and its (Gilbert) damping8 feature

a timespan of one picosecond to tens of nanoseconds (see Fig. 1.1). SWs have the similar

characteristic time–scales depending upon the strength of the damping. The phenomena

of magnetic vortex core gyration9 has a characteristic timespan of one nanosecond to tens

of nanoseconds. The movement of magnetic domain walls, on the other hand, occurs in a
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Figure 1.1.: Characteristic time scales for different manifestations of magnetization dynam-
ics. Source: Ref. 5.

time–scale above 10 ns.

The focus of this thesis is to study SWs and magnetic vortex dynamics in nanoscale

systems. As seen from Fig. 1.1,6 these two roughly span the microwave and the submil-

limetre wave frequency bands. These two forms of magnetization dynamics are also very

closely related in theory. Nanoscale magnetic systems exhibit interesting phenomena, such

as, giant magnetoresistance,10,11 giant Faraday rotation12 and high out–of–plane magnetic

anisotropy.13,14 Current nanofabrication techniques give us the ability to create systems with

artificial periodic modulation with high spatial resolution. SW propagating through such

artificial mediums feature a characteristic spectrum complete with bands and bandgaps –

forbidden regions in frequency domain. To this end, SW dynamics has been studied in

nanoscale ferromagnetic systems such as thin–films, uniform and patterned waveguides, and

nanodot and antidot arrays. Antidots are holes in planer ferromagnetic structures. Bi–

component waveguides, where the antidots are replaced with another ferromagnet, have also

been considered. Dynamics of magnetic vortices, which can also be used for the generation of
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SWs15 along with very efficient signal transmission and logical operations, have been studied

in isolated and dipole coupled ferromagnetic nanodisks.

1.1. Spin–Waves

If the local magnetization M of a ferromagnet gets misaligned with the effective field Heff,

it experiences a torque leading to its precession. The precessing magnetization vector also

changes its surrounding exchange and dipolar fields and spreads the information of the orig-

inal misalignment of effective field to its neighbourhood. Owing to spin–orbit coupling and

several other factors (like spin diffusion, magnon–phonon interaction, etc.16) the precession

slowly gets damped. The processes of magnetization precession and its damping can be mod-

elled using the Landau–Lifshitz–Gilbert (LLG) equation. Since the LLG equation describes

the magnetization dynamics in terms of incremental changes in the magnetization vector,

they can model any given systems as long as the involved parameters, such as the saturation

magnetization, do not vary greatly during the dynamics. Thus, phenomena like SW dynam-

ics and magnetic vortex gyration, which occur above one picosecond in time–scale and one

nanometre in length–scale can be described accurately by the LLG equation.5 Theoretical

details of this equation has been presented in sub–Sec. 2.3.2.

The Gilbert damping is preferred over the Bloch–Bloembergen damping 17 description while

dealing with ferromagnets, as the former keeps the amplitude of magnetization constant

with time.18 Non–Gilbert type magnetization relaxation can also be introduced by magnon–

magnon scattering19,20 or spin–polarized current.21 In this work, we focus only on the Gilbert

type damping. In frequency domain analysis of various magnetization dynamics, damping

manifests itself as line–width. As it causes the information in a signal to loose coherence,

damping is considered undesirable in most cases. Some recently published literature22,23

seeks to lower this damping by working with different types of materials. Long range co-

herence of SW edge modes has also been theorized in an insulating ferromagnet24 and other

nanoscale systems.25

The largest contributor to Heff is typically the bias field Hbias, while the SW is usually

produced during a simulation by using the excitation signal Hsig. To study the nature of
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SWs generated with different bias directions, it is sometimes desirable to avoid the anisotropy

field Hanis by using materials like permalloy (Py: Ni80Fe20) which have negligible magne-

tocrystalline anisotropy. Typically, a high bias field of strength (> 1 T) is used to completely

saturate the Py medium. A high value of α ≥ 0.9 is used at the beginning of any simula-

tions; so that the magnetic ground state may be achieved quickly. Later, α is reduced to an

artificially low value of 10−4; so that a better resolution may be obtained in the frequency

domain during a Fourier analysis. Any deviations from these parameters will be explicitly

stated.

When the information of the any misalignment between the effective magnetic field and

the magnetization starts to propagate as a collective excitation, SWs are said to be gen-

erated.1,26–28 SWs can also be produced by STT from spin polarized current.29 Figure 1.2

depicts this wave as a green curve being traced by one of the dynamical components of

magnetization M. As in the case of photonic or phononic waves, SWs too are capable of

carrying information in the form of energy and momentum.

Heff M

Figure 1.2.: (Top panel) Precession of blue magnetization M vector around the black effective
field Heff vector. Here the spins are arranged in an one–dimensional chain with
discrete translational symmetry. (Bottom panel) Top view of the precessional
dynamics showing an imaginary green wave–like curve being traced by one of
the components of M.

Magnons were theorized2,30 as the quasi–particles associated with the quantization of SWs.

Like photons or phonons, magnons too are classified as bosons.31–33 The same, however, is

not the case with electrons. Nevertheless, several techniques developed to study electrons,

photons or phonons as information carriers can also be used in the case of magnons. Com-

pared with light or sound waves, the dispersion relation in the case of SWs can be much

easily controlled by controlling an extrinsic parameter — the external field,4 even while the
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SW dynamics is in progress.3 This introduces the most significant advantage that a SW

based system can have over its electronic, photonic or phononic analogues.

Magnonic crystals 34–39 (MCs) are metamaterials typically created by spatially modulat-

ing the magnetic parameters such as saturation magnetization, Ms or exchange coefficient,

A40–42 of a known material and where SWs are the transmission waves. MCs can be re-

garded as the magnonic analogues of photonic and phononic crystals. Knowledge of SW

dispersion within such structures is necessary for their design and operation. An MC can

be realized by a combination of periodic modulation of structural and material parameters

of a magnetic material and a control over the external bias magnetic field.40–42 This creates

a periodic magnetic potential within an MC, which scatters the SWs eventually yielding a

characteristic dispersion relation comprising of stop and pass bands. Most MCs that form

the topic of current research in magnonics are either 1D43,44 or 2D45–50 as they are easier to

fabricate on a wafer when compared to 3D MCs. Nevertheless, few theoretical reports on the

study of dispersion of SWs in 3D MCs have been made.2,51,52 Magnetic antidots arrays, which

support higher group velocities (as compared to MCs based on dot arrays), have emerged as

an important system of MCs; and a thorough investigation of high frequency magnetization

dynamics in them have been reported in the literature.50,53–59 Recently, the first MCs made

by arranging two ferromagnetic materials with nanoscale discrete translational symmetry

(bi–component MCs) have been fabricated49 and bandgaps in their SW spectrum was ex-

perimentally verified.60–62 Tunability of SW spectra based on the lattice symmetry in a 2D

lattice of nanodots has also been reported.63,64 2D antidots lattices, formed by periodic array

of holes in a ferromagnetic film, can be fabricated much easily. These systems have been

intensively studied in recent years on different length–scales as well.65,66

For antidot lattices with large spatial periodicity,66 the inhomogeneity of the internal

magnetic field is decisive for the formation of the magnonic band structure.67 With the

decreasing period of antidot lattice the Brillouin zone (BZ) border will move to larger wave–

vectors and the exchange interactions at some point will start to play a primary role in

the formation of magnonic band structure.68 Thus, based on the nature of this dependence

SWs can be classified as dipole–dominated and exchange–dominated, respectively. Dipole–

dominated SWs have wavelengths much greater than λex, where λex =
√

2A/ (µ0M2
s ) is
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the characteristic exchange length of the ferromagnetic medium. Typically, the wavelength

of dipole–dominated SWs is in the order of a few microns. On the contrary, exchange–

dominated SWs have wavelengths of the order of λex. This value is commonly of the order

of 5 nanometres. SWs with intermediate wavevector values are called dipole–exchange SWs.

Magnonics 37,38,69–71 is an emerging sub–field of solid state physics, which deals with the

study of SWs and related aspects of magnetization dynamics. Magnonics is mainly aimed

at exploiting the properties of SWs for technological applications in the fields of microwave

systems, metamaterials for electromagnetic waves, spintronics, and other magnonic devices

using SWs for information communication. Compared to microwave technology, the other

three fields are relatively new and in their nascent stage.69,72–75 Signal processing in electronic

devices relies on the electronic band structure of semiconductors. Recent developments in

silicon photonics, such as the cascaded Raman laser,76 also exploit the discovery of suit-

able bands and bandgaps. Thus, one cannot proceed with the design or development of

nanoscale magnonic devices 77,78 without the study SW band structure. The possibility of

tailoring metallic magnetic materials with nanoscale precision provides a tool for miniatur-

ization and shaping the dispersion of high–frequency SWs. Apart from magnonic crystals,

waveguides,79 SW interferometers80–82 and phase shifters83 are some of the important com-

ponents of magnonic devices. Like photonic devices, magnonic devices too promise a lower

power consumption compared to today’s electronic devices. However, once an electronic

or photonic device is designed, not much can be changed to alter its characteristics during

operation. This, however is not the case with SW based devices whose characteristics can be

changed extrinsically by the control of Hbias.3,4 Further, structured SW waveguides84–86 have

recently attracted considerable attention due to their selective transmission of microwave

bands in the micro– and nano–scales and their potential applications in on–chip microwave

signal processing and communication.

Prototypes of basic magnonic devices have already been demonstrated to be promising

for technological applications,3,69,70,73,87 but the scaling down of magnonic elements to tens

of nanometres in size and tens to hundreds of GHz of operating frequencies88–91 are still

a challenge. Waveguides for SWs are deemed to be of vital importance in most magnonic

devices.69 Various forms of waveguides, such as, flat stripes having filtering properties due
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to periodically modulated width85 or based on a (missing) row defect in 2D MCs have been

studied.38,55,92–97 But so far, experiments are only done for SWs in the frequency range up to a

few gigahertzs. Owing to the recent advances in fabrication techniques, it has become feasible

to fabricate structures with resolution better than 10 nm. For example, the spot size during

focused ion beam lithography can go below 10 nm with low (≈ 30 pA) ion current.50,98–100

To predict properties of magnonic devices at nanometre length scale, more basic research

needs to be conducted. Therefore, theoretical investigation of the SW waveguides and MCs

operating in the range of tens to hundreds of GHz is a frontier field of research.

Another topic of technological importance deals with the generation and detection of

SWs on nanoscale. The interactions of magnons with electrons, photons and phonons have

been exploited to generate and detect SWs. SWs can be produced by spin torque nano–

oscillators101,102 or spin–polarized current103 or by using phenomenon such as spin–Hall ef-

fect104 or spin–Seebeck effect105–108 and they can be detected using the inverse spin–Hall ef-

fect.109 SWs can also be generated by certain magnon–soliton interactions.15 A time–resolved

magneto–optic Kerr effect (TR–MOKE) experimental setup uses high energy photons to

excite SWs110–114 and low energy photons to detect them.115–117 Any time–resolved measure-

ment done on SWs should have a temporal resolution below one picosecond to account for

SWs upto 500 GHz. Short bursts of terahertz SWs have been also optically excited in fer-

romagnetic118,119 and anti–ferromagnetic120,121 mediums, testifying to the quantum nature

of magnons. A vector network analyzer122,123 can be used to directly detect the SW spectra

while a Brillouin light scattering setup111,124,125 can be used to experimentally examine the

SW dispersion relation in wavevector domain as well.

1.2. Magnetic Vortices

Micro– and nanoscale ferromagnetic disks can support a non–trivial spin configuration called

a magnetic vortex,126,127 which is another kind of magnetic system studied here with the view

point of information processing. Magnetic vortices can find applications in magnetic data

storage, magnetic random access memory,128–131 magnetic logic circuitry,132 information

processing devices132 or the detection of impurities in a magnetic material.133 Often the
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magnetization aligns itself along the boundaries of laterally confined geometries in order to

minimize the energy stored in the stray field. This can lead to an anti–parallel arrangement of

magnetization close to the centre of the geometry. Thus, in ferromagnetic circular nanodisks,

the exchange interaction pushes the magnetization at the centre of the disk out of plane:

either up or down. The sense of flux closed magnetization structure — clockwise (CW)

or counter–clockwise (CCW) — represents the chirality of the vortex.134 The part of the

vortex with out of plane component is called its core which can support either ‘up’ or ‘down’

polarity.135 The chirality and the polarity of the magnetic vortex can be seen in Fig. 1.3.127

Figure 1.3.: Colour coded cyclic arrangement of magnetization in a magnetic vortex. The
spikes in middle of the geometry represent the vortex core, which can be switched
by applying an in–plane rotating magnetic field. Source: Ref. 127.

Apart from waveguides and MCs, micro- and nanomagnetic disks and rings are also useful

in signal processing as they cover the sub-GHz regime, which is usually inaccessible by SWs.

Resonating vortices, for example can be phase locked using SWs.136 As seen in Fig. 1.3,

magnetic vortex cores can be switched from ‘up’ to ‘down’ by the application of an external

magnetic field. This polarity reversal can also be used for SW generation.15 It can also be

brought to gyration137,138 by the application of the magnetic fields and spin polarized cur-

rents.128,139–143 External magnetic fields and spin polarized currents couple to the magnetic

moments of the vortex core and drive it away from the equilibrium position. In addition

to these external forces, the displaced vortex core experiences an internal force arising from

the demagnetizing field of the non–equilibrium magnetization pattern. This force attempts

to restore the core to its equilibrium position, thus aiding the gyrotropic motion. For large

amplitude excitation, the internal force increases nonlinearly and this results into a non

linear vortex core gyration, and vortex core switching occurs along with creation and annihi-
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lation of new vortex and antivortex.144,145 For small amplitude excitation, the internal force

increases linearly and the vortex core motion remains in the linear regime.146 Apart from

saturation magnetization, the natural gyration frequency of a magnetic vortex also depends

on the aspect ratio (the ratio of disk’s diameter and thickness) of the ferromagnetic disk.147

The presence of polarity dependent rotational asymmetry makes them very attractive can-

didates for studying the interaction between the local magnetization and externally applied

magnetic fields or spin polarized currents.139,148–157 The magnetization dynamics resulting

in the gyrotropic vortex core motion can also be described by the LLG equation8,158 (see

sub–Sec. 2.3.2). In the linear regime, the vortex core equation of motion can be derived from

the Thiele’s equation.146 The CW or CCW sense of vortex core gyration direction is solely

controlled by its polarity. In the linear regime, vortex core can be described by a harmonic

oscillator model.159 Consequently, magnetostatically coupled vortex gyration can be consid-

ered as coupled oscillators. Therefore, one expects mutual energy transfer and a consistent

phase relation between the gyrating vortices.160,161 Logic operations based on magnetic vor-

tex state networks have been demonstrated experimentally via the vortex gyration mediated

information signal transfer mechanism.162

Subsequently, the mutual transfer of energy between magnetostatically coupled vortices

where one of the vortices is locally excited is extremely important for microwave commu-

nication and logic operations. In this regard, the parameters like the signal transport rate

and efficiency are the key factors in determining the device performance. Vortex gyration

transfer rate and energy attenuation coefficients have been calculated by analytical method

and micromagnetic simulations.163 Stimulated vortex gyration based energy transfer between

spatially separated dipolar coupled magnetic disks has been observed by time resolved soft

x-ray microscopy.155 The rate of energy transfer is found to be determined by the frequency

splitting caused by the dipolar interaction between the vortices.162

This energy transfer efficiency may depend on several factors such as the frequency of the

exciting field pulse as compared to the gyration frequency of the vortex core, the amplitude

and nature of the exciting pulse, the distance between the vortices and their relative polarity.

Until recently,155 the energy transfer efficiency was found to be well below 100%160,161 and

no amplification has been reported thus far. It has also been reported that the interaction



1.2 Magnetic Vortices 10

strength between coupled vortices is maximum when their core polarities are opposite,155

although, higher interaction strength is not the sufficient condition for higher transfer ef-

ficiency. For higher amplitude input, the vortex motion enters the non–linear regime and

vortex core switching occurs; making it impossible to increase and maintain a large ampli-

tude output and a constant phase relation between gyrotropic motion of both the vortices.

On the other hand, if the input signal is very weak and the frequency is close to the gyration

frequency of the vortex core, the amplitude of the response gradually increases indicating

that the core switching may occur at some point, which is not desirable for device application.

In Chap. 2, we introduce the background theory on which the new contributions presented

in this thesis are based. Some state of the art prior to this work has also been presented here.

In Chap. 3, we introduce parts of the scientific method employed during this work. Basics

of the numerical methods have been presented in Chap. 4. Here we show how to obtain

the SW spectra in different kinds of nanoscale magnetic systems. In Chap. 5, we study

the effect free or pinned boundary conditions may have on the SW dispersion relation of a

magnonic antidot waveguide (MAW) — a magnetic waveguide like structure with a row of

holes (or antidots) milled along their central axis. We noticed that bandgaps can be opened

in the same system if pinned boundary conditions are used without changing any material or

geometrical parameters. From Chaps. 6 to 8, we consider the effects of different geometrical

parameters of a MAW over its characteristic SW dispersion. Among other things, we also

establish that bandgaps which collapse due to a loss of physical mirror symmetry can be

recovered by using an asymmetric bias field. We extend the numerical methods to analyse

the SW dispersion in 2D MCs in Chap. 9. In Chap. 10, another enhancement of the numerical

method is introduced which nullifies the aliasing associated with the Fourier transforms of

real valued data. As a result, we could confirm the existence of bandgaps in submillimetre

frequency band in the case of a MAW. The dependence of SW spectra on lattice and bias

field has been experimentally examined in Chap. 11. Polarity dependent asymmetric gain

in the gyrotropic modes of magnetostatically coupled magnetic vortices has been presented

in Chap. 12. Based on this observation, we also demonstrate how the operational states of a

conventional transistor may be obtained using a chain of magnetic vortices. We summarize

the observation made during this work in Chap. 13.



2. Theoretical Background

2.1. Ferromagnetism

A material placed within a magnetic field H, may develop a non–zero magnetic moment.

Magnetic moment per unit volume is termed as magnetization and is conventionally repre-

sented by the symbol M. Magnetic susceptibility χ is defined as the ratio of magnetization

M to the magnetic field H:

M ≡ χH. (2.1)

The dependence of magnetic susceptibility χ, on field H determines the magnetic ordering

of the material. On the basis of this criteria a material can be classified as diamagnetic,

paramagnetic, ferromagnetic, antiferromagnetic or ferrimagnetic. Langevin’s classical theory

of diamagnetism uses the electron’s orbital angular momentum to adequately explain why

the diamagnetic susceptibility χd (typically of the order of 10−6 cm3/mol), is always negative

and independent of changes to temperature or magnetic field H. If the material has N atoms

per unit volume and each atom contains Z electrons, then the diamagnetic susceptibility χd

is given as

χd = − Ne2

6mc2

Z∑

i=1

〈

r2
〉

ri. (2.2)

Here, m is the mass of an electron and c is the speed of light.

Curie’s law for paramagnetism uses a quantum mechanical model to explain why the sus-

ceptibility in a paramagnetic material χp, is independent of the magnetic field and varies

inversely with temperature T . If g represents the Landé g–factor, the paramagnetic suscep-

tibility is given as

χp =
C

T
, (2.3)
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where

C =
Ng2J(J + 1)µ2

B

3kB
. (2.4)

The ferromagnetic susceptibility χf is similarly given by the following Curie–Weiss law:

χf =
C

T −WC
=

C

T − Tc
, (2.5)

where Tc = WC is called the Curie temperature below which, all ferromagnetic materials

demonstrate spontaneous magnetization. In order to derive the Curie–Weiss law (Eq. (2.5)),

Weiss assumed an average molecular field of the form H + WM, where W is known as the

Weiss constant. The Heisenberg theory establishes that this molecular field comes from the

quantum mechanical exchange interaction. Pauli’s exclusion principle dictates that the two

electronic wavefunctions of a hydrogen molecule must combine antisymmetrically. Using

separation of variables, the wavefunction ψ (ri, si) of an electron can be expanded as

ψ (ri, si) = ρ (ri) σ (si) , (2.6)

where ρ and σ are functions of electron’s position ri and spin si, respectively. Now, the

antisymmetric wavefunctions can be expressed as either

ψS = ρsym (r1, r2)σanti (s1, s2) , or (2.7)

ψT = ρanti (r1, r2) σsym (s1, s2) . (2.8)

Here, ψS and ψT represent the singlet and the triplet states, respectively. They can be

expanded as

ψS = A [ρa (r1) ρb (r2) + ρa (r2) ρb (r1)] [σα (s1)σβ (s2)− σα (s2) σβ (s1)] , and (2.9)

ψT = B [ρa (r1) ρb (r2)− ρa (r2) ρb (r1)]










σα (s1) σα (s2)

σα (s1) σβ (s2) + σα (s2) σβ (s1)

σβ (s1) σβ (s1)










. (2.10)

Spins are antiparallel in the singlet state with a total spin quantum number S = 0. How-



2.1 Ferromagnetism 13

ever, in the triplet state, the total spin quantum number S = 1 allows for a degeneracy of

(2S + 1) = 3 states. The energies for singlet (ES) and triplet (ET ) states can be written as

ES = A2 (K12 + J12) , and (2.11)

ET = B2 (K12 − J12) . (2.12)

Here, K12 and J12 denote the Coulomb interaction and exchange integral, respectively. They

can be expressed by the following two integrals:

K12 =
∫

ρ∗a (r1) ρ∗b (r2)H12ρa (r1) ρb (r2) dτ1dτ2, and (2.13)

J12 =
∫

ρ∗a (r1) ρ∗b (r2)H12ρa (r2) ρb (r1) dτ1dτ2. (2.14)

Here H12 = e2/rab + e2/r12− e2/r1b− e2/ra2 : rij = |ri − rj |, is the Hamiltonian for electrons

1 and 2 in a hydrogen molecule with nuclei a and b.

A positive J12 favours the triplet state – and the parallel arrangement of spins – as ET

decreases. This is the case with ferromagnets, where the interatomic spacing rab is larger as

compared to the radii of the d and f electronic orbitals. J12 becomes negative in antiferro-

magnetic materials leading to an antiparallel arrangement of neighbouring spins. This results

in a zero net magnetism. In the case of ferrimagnets the antiparallel magnetic moments do

not have the same magnitude. This is due to the presence of two sublattices hosting two

types of ions with differing magnetic moments. This bestows ferrimagnets with some net

magnetization at low temperatures. Analogous to the Curie temperature for ferromagnets,

there exists a Néel temperature for antiferromagnets and ferrimagnets above which the ther-

mal energy overcomes the energy of the magnetic ordering and a paramagnetic behaviour

unfolds.

In this work, we deal with ferromagnetic materials like permalloy (Py: Ni80Fe20) and

cobalt (Co) only (the description of the hydrogen molecule has been used for the sake of

simplicity). Hence, the term ‘magnetic material’ is used interchangeably with ‘ferromagnetic

material’.



2.2 Magnetic Energies 14

2.2. Magnetic Energies

Different components of the effective field Heff, is the vector sum of the external field, the

demagnetizing field and the magnetocrystalline anisotropy field. Each of these components

of the effective field Heff, contribute to the total magnetic energy Etot of the system:

Etot = EZ + Ee + Ed + EK , (2.15)

where EZ , Ee, Ed and EK are the Zeeman energy, the exchange energy, the magnetostatic

self–energy and the magnetocrystalline anisotropy energy, respectively. These different en-

ergy terms and their dependence on magnetization M are discussed in the following subsec-

tions. Other magnetic energies, such as magnetostriction can be considered in Eq. (2.15) as

well. However, they are outside the scope of this work.

2.2.1. Zeeman Energy

Zeeman energy EZ , is the energy which originates from the interaction of external magnetic

field Hext (which itself can be described as the sum of the bias magnetic field Hbias and any

applied signal Hsig), with magnetization M. It can be expressed as follows:

EZ = −µ0

∫

M ·HextdV . (2.16)

Here, V is the volume of the magnetic material. The external field is generally specified

explicitly. The Zeeman energy is minimized when magnetization is parallel to the external

field.

2.2.2. Exchange Energy

Exchange energy is the main cause of ferromagnetism (see Sec. 2.1). Assuming an isotropic

exchange interaction, the Heisenberg Hamiltonian for exchange energy Ee can be evaluated

as164

Ee = −2
∑

ij

(JeSi · Sj) , (2.17)
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where Je is the isotropic exchange integral and Si and Sj are total spins at neighbouring

sites i and j. We can replace the summation with an integral to rewrite Eq. (2.17) for a

continuous geometry as

Ee = A
∫

(∇m)2 dV , (2.18)

where m = M/Ms is the ratio of magnetization to the saturation magnetization, (∇m)2 is

a shorthand for (∇mx)2 + (∇my)2 + (∇mz)2. A is the exchange coefficient given by

A = Aij =
2JeS

2

∆ij

, (2.19)

where ∆ij is separation between neighbouring sites i and j. Isotropy is assumed with A = Aij .

For ferromagnets such as nickel, permalloy (Ni80Fe20), iron and cobalt, the typical values of

the exchange coefficient are6 9× 10−12 J/m, 13× 10−12 J/m, 21× 10−12 J/m and 30× 10−12

J/m, respectively.

2.2.3. Magnetostatic Self–Energy

The Maxwell’s equations for a ferromagnet can be written as6

∇×Hdem = 0, and (2.20)

∇ ·B = 0. (2.21)

Here, Hdem is the demagnetizing field. Using B = µ0 (Hdem + M) and the fact that curl of

a gradient is zero, we can now deduce

Hdem = −∇Udem, and (2.22)

∇ ·Hdem = −∇ ·M. (2.23)

Thus, we arrive at

∇2Udem = ∇ ·M. (2.24)

Here, Udem is a scalar potential corresponding to the demagnetizing field Hdem.

The component of Hdem parallel to the ferromagnet’s surface S needs to be continuous
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near S. Similar constraint is obeyed by the component of B which is normal to the surface

S. Apart from these boundary conditions, far away from the ferromagnet, we also have

Udem → 0. Equation (2.24) can be solved analytically with these boundary conditions to

obtain165,166

Udem (r) =
1

4π

(

−
∫

V ′

∇′ ·M (r′)

|r− r′| dV ′ +
∮

S′

n̂ ·M (r′)

|r− r′| dS
′
)

, (2.25)

where V ′ represents the volume of the ferromagnet bounded by surface S ′. Thus, from

Eqs. 2.22 and 2.25, we get

Hdem (r) =
1

4π

(

−
∫

V ′

(r− r′)∇′ ·M (r′)

|r− r′|3
dV ′ +

∮

S′

(r− r′) n̂ ·M (r′)

|r− r′|3
dS ′

)

. (2.26)

Knowing Hdem from Eq. (2.26), the magnetostatic self–energy Ed can now be calculated as

Ed = −µ0

2

∫

V
(Hdem ·M) dV . (2.27)

2.2.4. Magnetocrystalline Anisotropy Energy

Spin–orbit coupling in a crystal structure can force the electronic spins to favour some

crystallographic directions more than others. Thus, depending upon the crystal structure

of a ferromagnet, certain directions may be preferred by the magnetization vector M. The

magnetocrystalline anisotropy energy is minimum if M points along these crystallographic

axes. They are defined as easy axes. Hard axis is the crystallographic direction along which,

it is very difficult for the magnetization vector to align itself as doing so would result in a

high magnetocrystalline anisotropy energy EK . It is conventional to express such uniaxial

anisotropy as a polynomial of sines of the angle θ made by magnetization M with the easy

axis:164

EK = K1 sin2 θ +K2 sin4 θ, (2.28)

where, the anisotropy constants K1 and K2 (typically K1 ≫ K2) change with temperature.

If K1 < 0, the easy axis lies in plane — known as the easy plane — perpendicular to a

predefined crystallographic direction.

Similar to the uniaxial anisotropy, the cubic anisotropy can be expressed in terms of
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Table 2.1.: Magnetocrystalline anisotropy for some common ferromagnets. Source: Ref. 6.
Metal Crystal Easy axis Hard axis K1 or K ′1 K2 or K ′2

Structure (J/m3) (J/m3)
Py fcc — — — —
Ni fcc [111] [110], [100] −5.0× 103 —
Fe bcc [100], [110] [111] 4.6× 104 1.5× 104

Co hcp c ∗ a, b ∗ 4.1× 105 1× 105

cosines α1, α2 and α3 of the angular direction of magnetization w.r.t. the edges of the cubic

crystal:164

EK = K ′1
(

α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1

)

+K ′2α
2
1α

2
2α

2
3. (2.29)

Ni and Fe exhibit cubic anisotropy, while (hcp) Co features uniaxial anisotropy. Py does

not have a significant magnetocrystalline anisotropy. Thus, it is ideally suited for cases

where one wishes to examine the magnetization dynamics without considering the effects of

magnetocrystalline anisotropy. The values of K1 (or K ′1) and K2 (or K ′2) for some common

ferromagnets are presented in Tab. 2.1.

2.3. Magnetization Dynamics

2.3.1. Brown’s Equations

Let us recall the Eq. (2.15):

Etot = EZ + Ee + Ed + EK .

Assuming uniaxial anisotropy, we can now substitute the terms on the right hand side of the

above equation by using Eqs. (2.16), (2.18), (2.27) and (2.28) to obtain:

Etot =
∫

V

(

−µ0M ·Hext + A (∇m)2 − µ0

2
M ·Hdem +K1 sin2 θ

)

dV . (2.30)

∗
a, b and c are the basis vectors of the hcp lattice.
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The value of total energy Etot, near its minima should not change with minor variations

in the magnetization:
δEtot

δM
= 0. (2.31)

With that assumption we get the following Brown’s equations:167

m×
(

2A∇2m + µ0Ms (Hext + Hdem) + 2K1 cos θĉ
)

= 0, or (2.32)

M×
(

λ2
ex∇2m + Hext + Hdem +

2K1

µ0Ms
cos θĉ

)

= 0. (2.33)

Here, ĉ is the unit vector along the easy axis and λ2
ex is the ratio of the exchange coefficient A

to the stray field energy constant µ0M
2
s /2. λex is called the exchange length below which the

exchange field is believed to play a greater role in magnetization dynamics when compared

to the demagnetizing field.

As the cross product of magnetization with another term in Eq. (2.33) is zero, both of

them must be collinear. So we define the effective field as:

Heff =

Hexch
︷ ︸︸ ︷

λ2
ex∇2m +Hext + Hdem +

Hanis

︷ ︸︸ ︷

2K1

µ0Ms

cos θĉ . (2.34)

Here Hexch and Hanis are the exchange and anisotropy fields, respectively.

If the torque M×Heff is not zero then magnetization M will keeps precessing about the

effective field Heff until the dynamics gets damped out. The same is discussed in the next

sub–section.

2.3.2. Landau–Lifshitz–Gilbert Equations

The Hamiltonian H for a spin observable S in the presence of a magnetic flux density B is

given by

H = −gµBS ·B/~, (2.35)

where µB is the Bohr magneton and ~ is the reduced Plank constant. The time rate of change

the spin observable S, can be expressed in terms of its commutation with the Hamiltonian
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as:6

i~
d

dt
〈S〉 = [S,H] . (2.36)

As per the commutation rule between different components of the spin operator, we have

[Sx, Sy] = i~ǫxyzSz. (2.37)

From Eqs. (2.35), (2.36) and (2.37), we get

d

dt
〈S〉 =

gµB

~
S×B. (2.38)

Using Eq. (2.38), Landau & Lifshitz7 suggested:

dM

dt
= − |γ|M×Heff, (2.39)

where |γ| is known as the gyromagnetic ratio and the local effective field Heff is defined

by Eq. (2.34). Equation (2.39) is known as the Landau–Lifshitz equation. It describes the

precession of magnetization M in the presence of an effective field Heff.

This precession is gradually damped by dissipative processes such as spin–orbit coupling,

spin diffusion, magnon–phonon interaction or misalignment of atomic spins.16 Gilbert mod-

ified Eq. (2.39) to account for this damping by introducing a phenomenological damping

term:
dM

dt
= − |γ|M×Heff +

α

Ms
M× dM

dt
. (2.40)

Here, the Gilbert damping constant α > 0 needs to be determined by careful experimenta-

tion. For transition metals α≪ 1. Its respective values for nickel, iron, cobalt and permalloy

(Ni80Fe20) are 0.064, 0.0019, 0.011 and 0.008.168–170 Equation (2.40) is known as the Gilbert
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equation. Upon replacing dM/dt on the right–hand–side of Eq. (2.40) with itself, we get

dM

dt
= − |γ|M×Heff +

α

Ms
M×

(

− |γ|M×Heff +
α

Ms
M× dM

dt

)

= − |γ|M×Heff −
α |γ|
Ms

M× (M×Heff)− α2dM

dt

=⇒
(

1 + α2
) dM

dt
= − |γ|M×Heff −

α |γ|
Ms

M× (M×Heff)

=⇒ dM

dt
= − |γ̄|M×Heff −

α |γ̄|
Ms

M× (M×Heff) (2.41)

Equation (2.41) is known as the Landau–Lifshitz–Gilbert (LLG) equation and is equivalent

to the Gilbert equation under the relation |γ| = (1 + α2) |γ̄|. |γ| and |γ̄| are known as

Gilbert and Landau–Lifshitz gyromagnetic ratios, respectively. Since, α ≪ 1 in most cases

considered here, we can sometimes assume |γ| ≈ |γ̄|. In most cases, an analytical solution

is not possible and a numerical approach is adopted by using micromagnetic solvers (see

Tab. 3.1). As the time derivative appears on only one side of the LLG Eq. (2.41), it is

preferred over the Gilbert Eq. (2.40).171

2.3.3. Ferromagnetic Resonance and The Kittel Formula

As per the LLG Eq. (2.41), the frequency ω with which the magnetization vector M (of

a continuous ferromagnet) precesses around the effective field Heff can be approximated by

ω ≈ |γ̄|Heff. If a small signal Hsig, varying with the same frequency ω, is applied orthogonally

to the external bias field then a resonance occurs and the magnetization dynamics starts to

draw power from the signal. This is known as the ferromagnetic resonance.

In the absence of any external field, Eq. (2.23) could have been used to determine Hdem for a

uniformly magnetized ferromagnet of infinite size. The macrospin model deals with uniformly

magnetized ferromagnets. Magnetization tends to align itself parallel to the surfaces of

ferromagnetic body. The effects of this shape anisotropy is significantly pronounced in the

case of nanoscale systems such as thin films or nanowires. This is also why the experimentally

reported precession frequencies172 were two to four times higher than that predicted by the

macrospin model.173

Consider a uniformly magnetized ferromagnetic slab depicted in Fig. 2.1 (a) with a face
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x

z(a) (b)

Hsig

Hbias

Figure 2.1.: Uniformly magnetized ferromagnetic (a) slab and (b) ellipsoid.

at y = 0. Let the applied external field Hext be given by

Hext = (Hsig, 0, Hbias) , (2.42)

where Hsig is the microwave frequency signal and Hbias is the external bias field. Exploiting

the continuity of the normal component By of magnetic flux density B, one can write Hy =

−My. Thus, the effective field Heff of (Hsig,−Mz, Hbias) should be used for calculation of

the resonant frequency with the LLG Eq. (2.41). The exchange field does not affect the

ferromagnetic resonance frequency.173 Ignoring the damping in Eq. (2.41), we get:

dMx

dt
= − |γ̄| (MyHz −HyMz)

= − |γ̄| (Mz +Hz)My

= − |γ̄|BzMy/µ0, (2.43)

dMy

dt
= − |γ̄| (MzHx −HzMx)

= |γ̄|MxHbias, and (2.44)

dMz

dt
≈ 0. (2.45)

Equation (2.44) is obtained with the assumption that the signal amplitude is sufficiently

small. From Eqs. (2.43) and (2.44), we can now write

d2Mx

dt2
= − |γ̄|2 BzHbiasMx/µ0. (2.46)
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Solving the above equation, we get the ferromagnetic resonant frequency of

ω = |γ̄|
√

BzHbias/µ0, (2.47)

which agrees well with the experimentally observed value. Thus, it is important to consider

the effect of demagnetization while interpreting any results involving ferromagnetic resonance

at the nanoscale.

The demagnetizing field Hdem, can be expressed using an inner product of magnetization

M with the demagnetizing tensor
←→
N :174

Hdem = −←→N ·M. (2.48)

Here
←→
N is a second rank symmetric tensor with unit trace:166

←→
N =










Nxx Nxy Nxz

Nxy Nyy Nyz

Nxz Nyz Nzz










: Nxx +Nyy +Nzz = 1. (2.49)

Equation (2.49) can be used to obtain the ω at which the ferromagnetic resonance (of a

uniformly magnetized body with uniform demagnetization) will occur:27

ω =
{

(ωH + |γ̄|NxxMs) (ωH + |γ̄|NyyMs)− |γ̄|2 N2
xyM

2
s

}1/2
, (2.50)

where we assume Mz ≈Ms and

ωH = |γ̄| (Hbias −NzzMs) . (2.51)

Equation (2.50) can be used when z–axis points in the direction of bias magnetic field. If

needed, an analogous tensor
←→
N anis, which can be defined for magnetocrystalline anisotropy

field should also be used along with the demagnetizing tensor
←→
N .

As shown in Fig. 2.1 (b), if the principal axes of an ellipsoidal ferromagnet are aligned

with the coordinate axes, only the diagonal components of tensor
←→
N remain non–zero. This
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gives a resonant frequency for a generic ellipsoidal ferromagnet as

ω = |γ̄|
√

(Hbias + (Nxx −Nzz)Ms) (Hbias + (Nyy −Nzz)Ms). (2.52)

Equation (2.52) is known as the Kittel formula.173

2.3.4. Laser Pulse Induced Ultrafast Demagnetization

One type of magnetization dynamics that is not completely described by the LLG equa-

tion is an ultrafast demagnetization process which can be triggered by a femtosecond laser

pulse.175 As seen in Fig. 1.1, this happens within a picosecond. But, how is the magneti-

zation quenched so quickly while conserving the net angular momentum176? Photons from

the laser pulse interact with the spin degrees of freedom of electrons while non–linearly

modifying their own angular momentum. Hot electrons, with temperature up to 103 K,177

are then created due to electron–electron scattering.178 This is followed by electron–magnon

interaction mediated thermalization of spin population.179,180 This causes the loss of phase

memory of electronic wavefunctions w.r.t. the excitation, eventually leading to the ultrafast

demagnetization. The exact mechanism of this process is the subject of hot debate,181–184

but most scientists believe that a phonon mediated spin–flip scattering plays an important

role.113,176,178,185–187

Some time after the ultrafast demagnetization, the spins begin to relax in two time scales.

The faster relaxation time scale of a few picoseconds is the result of electrons and spins

exchanging energy with the lattice by the electron–phonon interaction. A three temperature

model 175,188 involving electrons, spins and phonons has been proposed to describe this pro-

cess. As the magnetocrystalline anisotropy field changed with rapidly changing temperature

of phonons, it works as a trigger to initialize the precession of magnetization around the

local effective field. The longer relaxation time scale of hundreds of picoseconds results due

to the diffusion of electron and lattice heat.189,190 Relaxation dynamics in both these time

scales can be modelled by the LLG equation.
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2.4. Magnonics

Like other physical waves, SWs exhibit phenomena like resonance,172,173 reflection and re-

fraction,191–196 dispersion,197 interference and diffraction,80,198–201 tunnelling,202,203 Doppler

effect204–206 and formation of envelop solitons.207–209 Magnons, the quanta of SWs, have been

identified as bosons.2,30 Bose–Einstein condensation of magnons has also been observed in

different magnetic systems.31,32,210 Magnonics is the study of various aspects of SWs — both

classical and quantum mechanical.38,69,70 In the following sub–sections, we first introduce

the theory of SW dynamics in terms of its dispersion relation in different kinds of nanoscale

magnetic systems, then we discuss how magnonics as field of study has been developed so

far.

2.4.1. Exchange Dominated SWs in Thin Films

SWs are called exchange dominated if their wavenumber k ≫ 1/λex. It has been demon-

strated that the spectrum of exchange dominated SWs can be tuned by controlling the

exchange field.68 SW dispersion relation ω (k) for a 1D chain of ferromagnetic sites of spin

S and distance a apart has been calculated as211

ω = 4JS (1− cos ka) /~, (2.53)

where k is the SW wavevector. In the long wavelength limit (ka≪ 1), Eq. (2.53) reduces to

ω =
(

2JSa2/~
)

k2. (2.54)

As the presence of boundaries or surfaces in a magnetic medium alters the exchange field

in their immediate neighbourhood, the dispersion relation of exchange dominated SWs is

generally regarded to be isotropic within a bulk magnetic medium. In the case of thin films,

SWs obey the following dispersion relation212

f (k)− f (0) = |γ̄|Msλ
2
exk

2. (2.55)
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un=1 n=2

Figure 2.2.: Profile of perpendicular standing SW mode with n = 1 and 2 nodes in a thin
film with antinodes at the surfaces.

Exchange dominated SWs, which propagate normal to the surface of a thin film, form a

standing wave with quantized wavenumber k = πn/u, where n is the number of nodes in

the mode profile and u is the thickness of the thin film. These are known as perpendicular

standing SWs. A mode profile with one and two nodes is sketched in Fig. 2.2 such that the

magnetization dynamics at surface is completely unpinned.213

2.4.2. Dipole Dominated SWs in Thin Films

The behaviour of SWs becomes dipole dominated if their wavenumber k ≪ 1/λex. It means

that the band structure of a dipole dominated SW can be controlled by manipulating the

demagnetizing field. Dipole dominated SWs are also known as magnetostatic waves. Un-

like the exchange dominate SWs, the dispersion relation of magnetostatic waves depends

heavily upon the relative orientation of the film, the effective magnetic field Heff and the

SW wavevector k. The orientation of Heff can change during SW dynamics. In the context

of this sub–section we consider only the orientation that Heff had during the steady state

(dM/dt = 0).

When Heff (and magnetization) is normal to the surface of the thin film and the SW’s

propagation direction is in the plane of the film (k ⊥ Hbias), the spin wave (SW) mode is

called forward volume (FV) magnetostatic mode. If Heff is in the plane of the thin film then

the conditions k ‖ Heff and k ⊥ Heff give rise to backward volume (BV) and surface — or

Damon–Eshbach (DE) SWs, respectively. The dispersion relation of SWs in these different

configurations is given as79,214

f 2 =







f0

(

f0 + fM
1−e−ku

ku

)

(BV),

f0

(

f0 + fM

(

1− 1−e−ku

ku

))

(FV),

f0 (f0 + fM) +
f2

M

4

(

1− e−2ku
)

(DE),

(2.56)



2.4 Magnonics 26

0 2 4 6 8 10
0

4

8

12

16

20

f
(G

H
z)

ku

k

k

k

Heff
Magnetostatic Surface Wave

Mode

Forward Volume

Magnetostatic Mode

Backward Volume

Magnetostatic Mode Heff

Heff

Figure 2.3.: Dispersion relation of magnetostatic SW modes in a film for different relative
orientations of wavevector k and effective field Heff in the steady state (dM/dt =
0).

where fM = |γ̄|Ms and

f0 =







|γ̄|Hbias BV and DE;

|γ̄| (Hbias −Ms) FV.
(2.57)

The forms of these dispersion relations are shown in Fig. 2.3. For k → 0, Eq. (2.56) converges

to describe the Kittel modes of ferromagnetic resonance as presented here in sub–Sec. 2.3.3.

BV modes are characterized by anti-parallel phase and group velocities. This character is

evident till the angle φ between the in-plane Heff and SW wavevector k increases from 0

to a critical value φc = tan−1
√

Hbias/Ms. Here Hbias is the magnitude of the applied bias

field. The power of DE modes decay exponentially away from the surface.6 The associated

penetration depth δ, is zero for φ = φc and increases with increasing φ : φc ≤ φ ≤ π/2.

Dispersion relation for SWs for a more general relative orientation of wavevector and effective

field has been covered by Kalinikos and Slavin.214

For kλex ≫ 1, Eq. (2.56) converges to a value independent of k. Thus, if we take only
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the dipolar field into account, all SWs will have negligible group velocity for larger values

of kλex. If kλex ≈ 1, the SWs are classified as dipole–exchange SWs. We can obtain the

dispersion relation in that case by substituting f0 with fex = f0 + k2λ2
exfM in Eq. (2.56).

2.4.3. Effect of Lateral Confinement on SW Band Structure

In this sub–section∗ we discuss the SW dispersion in laterally confined uniform waveguides

while taking both dipolar and exchange fields into consideration and ignoring any magne-

tocrystalline anisotropy. Rewriting Eq. (2.56) after replacing f0 with fex = f0 + k2λ2
exfM, we

get the relation:

f 2 =







fex

(

fex + fM
1−e−ku

ku

)

(BV),

fex

(

fex + fM

(

1− 1−e−ku

ku

))

(FV),

fex (fex + fM) +
f2

M

4

(

1− e−2ku
)

(DE).

(2.58)

Let the two components kx and ky of wavevector k point along length and width of the

waveguide, respectively; such that k · k = k2 = k2
x + k2

y. Here, a uniform magnetization

across the thickness of the waveguide has been assumed.79 Broken continuous translational

symmetry near the edges of the waveguides impose the following quantization along the

width w of the waveguide:215

ky = (n+ 1)π/weff, n = 0, 1, 2, . . . (2.59)

Here,

weff =
wd

d− 2
, (2.60)

d =
2π

p (1− 2 ln (p))
, (2.61)

p =
u

w
≪ 1. (2.62)

Different values of n, which denotes the number of lateral nodal lines in SW mode profile,

∗This sub–section are based on Venkat et al. 79
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(a)
(b)

(c)

Figure 2.4.: Frequency – wavevector dispersion calculated under a bias field strength µ0Hbias

of 1.01 T form numerical (solid lines) and analytical (dotted lines; see Eq. (2.58))
methods for (a) BV, (b) DE and (c) FV configurations. (d) Dimensions of the
geometry under considerations with relative orientation of the bias field. Source:
Ref. 79.

yield different modes for the same configuration as shown by the dotted lines in Fig. 2.4.

SW dispersion relations for BV, DE and FV arrangements in the case of a 50 nm wide and

1 nm thick uniform Py waveguide under a bias field strength µ0Hbias of 1.01 T,79 are shown

is Fig. 2.4 (a), (b) and (c), respectively. It can be noticed that dotted lines calculated using

Eq. (2.58) agree well with those calculated using micromagnetic simulations (MSs) for lower

values of frequency and wavevector. For larger values of kx the simulated branches of SW

dispersion relation start to bend due to creation of false Brillouin zone boundaries during

FDM related discretization of the waveguide.
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Figure 2.5.: Dispersion relation of SWs of the case presented in Fig. 2.4 (a), recalculated with
exchange coefficient A = 2.515 × 10−13 J/m using (a) MSs and (b) analytical
models (as noted in the legend). Source: Ref. 79.

For higher order bands, the simulated results underestimate the frequency values. It can

also be noted that the opposite sign of phase and group velocity, which is the hallmark of

BV configuration is not observed in Fig. 2.4 (a). The effect of exchange field, which gives

a parabolic shape to dispersion curves, is too dominant to allow that phenomenon. Thus,

the case presented in Fig. 2.4 (a) is recalculated with a reduced exchange coefficient A =

2.515×10−13 J/m. The results obtained using MSs are presented in Fig. 2.5 (a). This can be

compared to results obtained using the analytical expression for BV configuration as given by

Eq. (2.58), with and without the quantization specified by Eq. (2.59). Another model, which

assumes comparable exchange and dipole interaction was presented by Morgenthaler216 as

f 2 = fex

(

fex + fM

k2
y + k2

z

k2
x + k2

y + k2
z

)

, (2.63)

where for the first mode, kz can be obtained from kx = kz tan (kzu). As seen from Fig. 2.5,

this result most closely reproduces the first mode that is yielded by simulations.

The differences between simulated and analytical results presented here demonstrate that

some finite size effects are not captured by analytical expressions. More complex nanoscale

systems will be discussed in dedicated chapters, and there, we will need to rely more heavily
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on results obtained from complete simulations instead of analytical models. Before continu-

ing that study, let us now get an overview of technological aspects of magnonics.

2.4.4. Magnonic Crystals (MCs)

Using lithography techniques and nanofabrication, material can be removed from a uniform

waveguide to create patterned waveguides85 with discrete translational symmetry. This leads

to a periodic variation in total energy Etot as well. As Etot depends upon both magnetization

M and effective magnetic field Heff, its variation can also be controlled by controlling Heff.3

Similar to how Bloch theorem may be used in terms of electronic or photonic crystals,38 a

theory for calculation of SW dispersion in magnonic crystals has also been developed.51,217

MSs can also be used to calculate SW dispersion in MCs. These methods have been discussed

in some detail in Chap. 3. Patterned waveguides are essentially 1D MCs. The dependence of

SW dispersion in an 1D antidot waveguide on various factors is also studied in the following

chapters. We also discuss 2D MCs in Chap. 9. Let us now consider how elements like

magnonic waveguides and crystals function as active and passive components of magnonics

devices.

2.4.5. Magnonic Devices

Magnonic devices – which aim to use SW for information processing – have attracted the

attention of the research community due to the following potential advantages over their

electronic and photonic counterparts:69

• Easy manipulation of device characteristics by controlling the bias magnetic field Hbias.

• Magnetic nano–elements are also non–volatile memory elements, thus facilitating their

easy integration with current technological ecosystem, e.g., magneto–optical disks and

read heads in MRAMs.

• In microwave and submillimetre ranges, SWs have considerably lower wavenumbers,

which can be used for miniaturization of certain devices.
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A B

C

D

Figure 2.6.: A schematic of magnetostatic SW based generic magnonic device. Input and
output antennae, waveguide and device’s functional medium are marked as A,
B, C and D, respectively. Source: Ref. 69.

A schematic of a typical magnonic device is presented in Fig. 2.6. Here, A and B are SW

source and detector antennae. C is an uniform waveguide which conducts SWs as it is, and

D is the functional medium such as an MC which manipulates the information contained in

SWs. This assembly is usually micron sized and used with magnetostatic SWs. Ferrites, such

as YIG, are typically used for waveguide C, because they tend to have very low SW damping

and thus allow the signal to carry for longer (≈ 1 mm) distances. Magnetic parameters may

or may not be homogeneous in D. In the former case, it becomes uniform and similar to

C. By controlling the external magnetic field and material parameters, D can be made to

function69 as a phase shifter, an amplifier, a frequency mixer, a filter or a generator of short

trains of magnetostatic SWs.

The functional region D can also divide the SW signal into two parts and recombine them

after a phase–shift, either constructively or destructively to mimic a Mach–Zehnder–type

interferometer 38 for SWs. Apart from logical switches this can also be used to transduce an

electric signal to a magnonic one.5 Even the NAND (an universal gate) functionality has

now been demonstrated.82

Although, YIG has a very low (SW) damping,70 their films are difficult to grow on silicon

and Py, as a ferromagnet, is better suited for integration with current silicon based tech-

nologies.38 It has also been projected74 that the number of operations per unit area per unit

time (throughput) of magnonic logic can outperform CMOS logic by more than three orders

of magnitude.
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2.5. Magnetic Vortex Dynamics

The core of a magnetic vortex is marked by out of plane magnetization. The radius of this

core, rcore, depends largely on the exchange length λex, and the film thickness u as16

rcore = 0.68λex
3

√

u/λex (2.64)

For vortices formed in circular nanodisks, the out of plane component of magnetization mz

can point either up or down at the centre. Based on this polarity p of the vortex (core) can be

assigned a value 1 or −1. Immediately around core mz takes the sign of −mz (r = 0), before

taking near zero values. This gives the magnetic vortex core its ‘halo’ or ‘dip’. Multiple

analytical models218–220 have been offered to describe the profile of magnetization within

its core, however the experimentally observed halo,134 has so far only been reproduced by

MSs221 and the generalized trial function introduced by Hubert and Schäfer.174 This halo

plays a key role in ultrafast vortex dynamics.16 Apart from polarity, another attribute of a

magnetic vortex is known as chirality c, which, depending upon the curl of magnetization

around the edge of vortex can either be 1 (CCW) or −1 (CW).

If ϕ = tan−1 (my/mx), the winding number n of a vortex with boundary S is defined as

n ≡ 1

2π

∮

S

dϕ

dS
(2.65)

The winding number is 1 for a vortex and−1 for an antivortex.16 A non–zero winding number

provides topological stability to vortices and antivortices,222 imposing a rule regarding the

conservation of winding number unless a high torque is applied to undo it.223,224 This also

implies that the formation of a vortex must occur simultaneously with the formation of an

antivortex, unless the vortex core nucleation occur on the boundary S. Skyrmion number

(also called Pontryagin index) q,225 is another conserved topological index, which is defined

as226

q ≡ pn/2. (2.66)

This means that vortex–antivortex annihilation can be spontaneous only if the pair has

the same polarity. Otherwise, it must be mediated by a singularity like a Bloch point,227
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where change in magnetization direction is marked by the presence or a region with van-

ishing magnetization. Energy released in such vortex–antivortex annihilation leads to SW

generation.228

2.5.1. Polarity Switching

mz

1

-1 Equilibrium

tmax+ 0 ps tmax+ 12 ps

tmax+ 22 ps tmax+ 32 ps tmax+ 44 ps

Figure 2.7.: Time evolution of z–component of magnetization in a magnetic vortex undergo-
ing a core reversal. Source: Ref. 16.

Creation and annihilation of vortex–antivortex pairs also mediate polarity switching — a

process where the polarity p changes to −p.15 A time evolution of this core reversal, which

lasts about 40 ps has been shown in Fig. 2.7.16,229 Here, a circular nanodisk of radius 100 nm

and thickness 20 nm are used with material parameters of Py assuming a damping α = 0.01

and surface anisotropy KS = 0.1 mJ/m2. An in–plane Gaussian signal of 60 ps duration and

a maxima of 80 mT at time tmax.

A production of vortex–antivortex pair, seen at tmax + 12 ps in Fig. 2.7, is believed to be

mediating the polarity reversal.128 While the energy from the signal is being absorbed, the

winding and skyrmion numbers before and after this pair production remain conserved. Next,
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the new antivortex annihilates with the old vortex, leaving the new vortex with opposite

polarity intact. However, here the skyrmion number changes from 1/2 to −1/2. This, is

marked by a release of energy in the form of SWs. Apart from the generation of SWs, the

use of polarity switching in data storage has also been envisioned.128,230

2.5.2. Vortex Core Gyration

If the excitation signal, either in the form of a spin–polarized current or a changing magnetic

field, is sufficiently small, it induces a translation of the vortex core around its equilibrium

position. This is referred to as magnetic vortex core gyration. In the steady state — when the

velocity of the core v does not change in magnitude, and if the shape of the magnetic structure

is not altered greatly, the following Thiele’s equation146,174,231 describes this gyration:

Fext + G× v + α
←→
D · v = 0, (2.67)

where G is the gyrotropic vector and
←→
D is the net dissipation tensor. Using spherical polar

co-ordinates where θ and φ are the polar and azimuthal angles, these quantities can be

expressed as16

G = −µ0Ms

|γ|
∫

(sin θ∇θ ×∇φ) dV , and (2.68)

←→
D = −µ0Ms

|γ|
∫ (

∇θ∇θ + sin2 θ∇φ∇φ
)

. (2.69)

For a magnetic vortex in a nanodisk, the above equations can be rewritten as149,232,233

G = −2
πµ0uMs

|γ| npẑ

= −Gpẑ : G > 0 (2.70)

←→
D =






Dxx Dxy

Dyx Dyy






=






D 0

0 D




 , (2.71)
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where

D = −πµ0uMs

|γ| ln
R

rcore
. (2.72)

Here R is the radius of the nanodisk.

Gyrotropic Frequency

If the vortex core is away from the centre of the nanodisk, a demagnetizing field is created,

which attempts to restore the core’s position r to the centre of the disk, resulting in a force

Fms ≡ −κr, (2.73)

where the positive constant κ is given by137,234

κ = π
µ0M

2
s u

χ0
, (2.74)

where, the initial susceptibility χ0, can be obtained from the relation

1

χ0
=

2u

R

[

ln
(

8R

u

)

− 1

2

]

:
u

R
≪ 1. (2.75)

Taking this into account while ignoring damping and any external forces, Eq. (2.67)

changes to

−κr + G× v = 0 (2.76)

=⇒ −κr−Gpẑ× (2πf0pẑ× r) = 0 (2.77)

=⇒ f0 =
|γ|Ms

4πχ0

(

∵ r ⊥ ẑ & p2 = 1
)

. (2.78)

Equation (2.78) systematically overestimates137 the gyration frequency f0, because the rigid

vortex model149 used here, predicts the development of additional surface charges at the edge

of nanodisk, attributing greater energy to the dynamics. By imposing a boundary condition

which prohibits the development of surface charges we get137,153

f0 =
|γ|Ms

9πχ0

, (2.79)
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where
1

χ0
=

9.98u

R
:
u

R
≪ 1. (2.80)

The frequency of vortex core gyration as predicted by Eq. (2.79) has been verified by simu-

lation137 and also experimental results147,235 using a Py (where damping is low). It can be

seen from Eq. (2.79), that the gyrotropic frequency of a vortex in a nanodisk only depends

upon its aspect ratio and the saturation magnetization of the material used.

External Forces on The Vortex Core

Let us rewrite Thiele’s Eq. (2.67), taking the restoring force Fms from Eq. (2.73):

Fext − κr + G× v + α
←→
D · v = 0. (2.81)

At equilibrium r = 0 and v = 0. Thus, a non–zero Fext is required to trigger the dynamics.

This force is usually provided by an external magnetic field or by spin–transfer torque (STT).

Force experienced due to an external magnetic field Hext is given by151 µ (ẑ×Hext) where

(assuming no side charges153), factor145 µ = 2πMsRuc/3. We can see that this force depends

upon the chirality c of the vortex. Thus, the initial response to an applied magnetic field is

mainly controlled by the chirality of the vortex.

STT can contribute to both gyrotropic and dissipative forces. In the presence of spin–

polarized current where the drift velocity of the electrons is u, the Thiele’s equation changes

to the following form:236–239

− κr + G× (v− u) +
←→
D · (αv− βu) = 0. (2.82)

Here, the dimensionless factor β (typically of the order of 10−2)236 is a measure of non–

adiabaticity of the spin–current. When α ≈ β and r ≈ 0, we get v ≈ u. Thus, the initial

displacement of vortex core is along the direction of the electrons’ drift velocity, and unlike

the initial displacement from the external field, it is independent of the vortex chirality.239

This can be useful as chirality of vortex is difficult to manipulate.240,241
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In a network of N interacting vortices, the force Fi
ext on the ith vortex is given by

Fi
ext = −δW (r1, r2, r3, · · · , rN)

δri
(2.83)

After an initial disturbance which can be triggered either by an external field or by dint

of STT, the equation of motion (assuming no external forces and negligible damping) can

be described by Eq. (2.76). We can also see from Eq. (2.70) that G depends on the polarity

of the vortex (or antivortex). Thus the sense of rotation of the vortex core is controlled by

polarity of the vortex. It has also been observed that an excitation signal rotating CCW

(or CW) induces a greater gyration of the vortex core when the polarity is up (or down).152

Further, polarity dependent logical operations162 and high signal transfer efficiency155 has

also been reported. In Chap. 12, we note that an asymmetric amplification of gyration can

be obtained when signal is transferred from one vortex to another by carefully controlling

the relative polarities of the interacting vortices. This can be used to mimic the states of a

conventional electronic transistor.



3. Methods

The scientific method followed in this thesis can be outlined in terms of the following steps:

• Problem design: To study the phenomena of SW dispersion in nanoscale systems,

we first design the system. Then we agree upon either a geometrical or a material

design parameter of the system which is theorized to affect SW dispersion.

• Simulation: Once the design of the system is finalized, we perform simulations to

predict the nature of dependence of SW dispersion on the considered design parameter.

Typically, the FDM based OOMMF is used for this purpose as it yields sufficiently

accurate results in a manageable time frame.

• Analysis of simulation data: The simulation data is in the form of magnetization as

a function of space and time where both space and time coordinates are evenly spaced.

Discrete Fourier transform (DFT) is performed on this data, to obtain the energy

spectral density (ESD) in different real and inverse domains. This gives us valuable

information about the magnetization dynamics, such as, SW dispersion relation, iso–

frequency lines or the eigenfrequency of vortex gyration.

• Fabrication: If the simulated results contain something of interest, we may want to

verify the finding experimentally. In order to do that we first fabricate the simulated

system as per the design. Fabrication can be done by using different synthesis or

lithography techniques. Although, significant advancements have been made recently

in this area, it is still difficult to fabricate huge arrays with features involving deep

nanoscale precision. As it will be discussed in the following chapters, some aspects

of the magnetization dynamics, such as SW dispersion, can tolerate some fabrication

defects.242 On the other hand, given finite amount of computational resources, it is also
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impossible to simulate systems exactly as they are fabricated. Some, techniques like

the use of periodic boundary condition (PBC)243,244 have helped abridge this divide

between simulated and fabricated systems, but there is still a lot of ground to be

covered.

• Characterization: Some imaging techniques, such as scanning electron microscopy

(SEM), are needed to verify if the fabricated sample is in good condition. This step is

similar to quality inspection of a manufactured part or device. Any samples featuring

systematic defects are rejected at this point. Magnetic parameters, which are also

measured at this point, should be in good agreement with known values.

• Experimentation: Experimental techniques, such as Time Resolved–Magneto–Optic

Kerr Effect (TR–MOKE) is used to directly observe the magnetization dynamics. The

experimental technique should be chosen carefully to allow the study of the effects of

geometrical or material parameter as determined during the problem design.

• Analysis of experimental data: Experimental data may also need to be analysed in

order to obtain the characteristic response in different cases of the designed problem.

• Conclusion: A close agreement between simulated and experimental results validate

our finding. These results may also be compared with existing theoretical models

discussed in Chap. 2. If no analytical models exist at this point, a new one may be

proposed. These results are now disseminated through a conference presentation, a

journal publication or a patent application.

The effort described in this thesis is largely focused on problem design, simulation and

analysis. The methods of simulation, fabrication and characterization are covered in further

detail in the following sections of this chapter. Analysis techniques are described in dedicated

chapters as they have evolved over time. A summary of the analysis techniques in its generic

form is presented in the concluding chapter. Experimental techniques, which are used to

validate some basic findings presented here are discussed in Chap. 11. As, some aspects of

the numerical techniques were developed during the course of this work itself, it has been

validated by using a comparison with the well established plane wave method (PWM). The

underlying theory of the PWM has been discussed in Sec. 3.4.
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3.1. Micromagnetic Simulation

Most analytical methods, like the PWM51 or the dynamical matrix method,245 often make

simplifying assumptions of perfection (e.g. a perfect MC) or linearity (linear dynamics)

to solve the magnetization dynamics. Simplifying boundary conditions213 are also used

sometimes to make the task easier. Nevertheless, analytical methods are used very widely to

treat simple systems for obtaining qualitative results as they are considerably faster and more

scalable with system geometry when compared to simulation based computational methods.

In contrast, computer simulations can be performed for real world finite systems or infinite

ideal MCs (by the use of periodic boundary conditions243,244). They also yield more accurate

and experimentally realizable results. Both, analytical and computational methods solve the

LLG Eq. (2.41) recalled below:

dM

dt
= − |γ̄|M×Heff −

α |γ̄|
Ms

M× (M×Heff) .

The advantage of writing the LLG equation as an ordinary differential equation (ODE) in

time, while abstracting the spatial derivatives in the components of effective magnetic field

Heff, is the ease with which standard ODE solving algorithm, such as one of the Runge–Kutta

type algorithms, may now be used.

Table 3.1.: Micromagnetic simulators. Source: Ref. 5.
Name Developers Open Source Method

LLG Simulator M. R. Scheinfein Paid FDM
MAGPAR W. Scholtz Free FEM

MicroMagus
D. V. Berkov

Paid FDM
and N. L. Gorn

Nmag
H. Fangohr

Free FEM
and T. Fischbacher

OOMMF
M. Donahue

Free FDM
and D. Porter

Micromagnetic simulators246 solve Eq. (2.41) with the help of the finite difference method

(FDM) or the finite element method (FEM). The later of the two yields more precise results

at the cost of greater computational resources in most cases.247 OOMMF and Nmag are open

source and very widely used by different groups around the world. Table 3.15 lists popular
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micromagnetic simulation (MS) platforms commonly used for the purpose of simulating SW

dynamics.

3.2. FDM and OOMMF

While modelling the sample geometry FDM based solvers, such as OOMMF uses cuboidal

discretization cells where the cuboids (or cells) have the same dimensions. This is shown in

Fig. 3.1248 for the case of a semi–circular disk. Some disagreement, in the form of steps, can

be seen. This produces some errors while estimating the magnetization dynamics which can

be reduced by using smaller cell sizes.

O

P

r

r'r'

(i', j', k')

(l', m', n')

x

yz

Figure 3.1.: A semi–circular disk modelled in terms of cuboidal regions. The straight red
lines and the curved black lines mark the physical and numerical boundaries of
the geometry. Source: Ref. 248.

Let us now recall Eq. (2.34):

Heff = Hext + Hexch + Hdem + Hanis.

Thus, the effective field can be calculated as the sum of fields corresponding to different

energies as described in Sec. 2.2. Alternatively, one can calculate the total energy first and

find out the effective field as its functional derivative w.r.t. magnetization:249

Heff = − δetot

µ0δM
. (3.1)
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Here etot is the total energy density. This energy based approach is used by OOMMF. Let

us now discuss how different energy terms described in Sec. 2.2 can be approximated for a

discretized sample.

3.2.1. Numerical Approximations of Magnetic Energies

Let a geometry be discretized into N cuboidal cells with ri and Vi denoting the position (of

centre) and volume of the ith cell. Then, the Zeeman energy can be approximated as

EZ ≈ −µ0

N∑

i=1

M (ri) ·Hext (ri)Vi. (3.2)

The maximum error with this approximation is of the order of248 ∇2V , where ∇ is the

maximum cell dimension and V is the total volume of the geometry.

While computing the exchange energy numerically, one can approximate Eq. (2.18) in the

following manner:250

Eexch ≈ −
N∑

i=1

Vi

∑

j∈{N(i)}
Aij

m (ri) · (m (rj)−m (ri))

|rj − ri|2
, (3.3)

where {N (i)} is the set of sites in the neighbourhood of site i. The corresponding exchange

field may be approximated as

Hexch (ri) = λ2
ex (ri)

∑

j∈{N(i)}

(m (rj)−m (ri))

|rj − ri|2
. (3.4)

Here too, the error is O∇2 = O |rj − ri|2. Equation (3.3) can be simplified using the fact

that m (ri) ·m (ri) = 1. However, that may degrade numerical precision if m (ri) is almost

parallel to m (rj).251 If the cell size is too big, larger angles between m (ri) and m (rj)

may lead to issues like collapse of Néel walls248,252 or artificial pinning hindering the motion

of Bloch points.253 As discussed in sub–Sec. 2.5.1, Bloch points play an important role in

polarity switching. These issues can be overcome by reducing the size of cuboids used for

discretization of the geometry.248
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The anisotropy energy given by Eq. (2.28) can be approximated as following:248

EK ≈







−
N∑

i=1
K1 (ri) (m (ri) · û (ri))

2 Vi (Uniaxial)

N∑

i=1
[K1 (ri)

(

m2
x (ri)m2

y (ri) +m2
y (ri)m2

z (ri) +m2
x (ri)m2

z (ri)
)

+K2m
2
x (ri)m2

y (ri)m2
z (ri)]Vi (Cubic)

. (3.5)

If K1 is positive, û is an unit vector in the direction of easy axis. Otherwise, it is normal to

the easy plane. In the case of cubic anisotropy, the crystal axes need to be oriented parallel

to the coordinate axes. Here too, the error in numerical approximation is O (∇2). The

corresponding field equations can be written as

Hanis (ri) =







(m (ri) · û (ri))
2K1

µ0Ms
û (ri) (Uniaxial)

−2
←→
N K(ri)·m(ri)

µ0Ms
(Cubic)

. (3.6)

Here,
←→
N K is a tensor with diagonal entries only:

←→
N K (ri) =










NK
11 (ri) 0 0

0 NK
22 (ri) 0

0 0 NK
33 (ri)










, (3.7)

such that:

NK
11 (ri) = K1 (ri)

(

m2
y (ri) +m2

z (ri)
)

+K2 (ri)m
2
y (ri) ·m2

z (ri) , (3.8)

NK
22 (ri) = K1 (ri)

(

m2
x (ri) +m2

z (ri)
)

+K2 (ri)m
2
x (ri) ·m2

z (ri) , (3.9)

NK
33 (ri) = K1 (ri)

(

m2
x (ri) +m2

y (ri)
)

+K2 (ri)m
2
x (ri) ·m2

y (ri) . (3.10)

The demagnetizing energy and the corresponding field terms can be approximated as

Ed ≈
µ0

2

N∑

i=1

ViM (ri) ·
N∑

j=1

←→
N (ri − rj) ·M (rj) , and (3.11)

Hdem (ri) ≈
N∑

j=1

←→
N (ri − rj) ·M (rj) , (3.12)
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respectively. Here
←→
N is the discrete analogue of the demagnetizing tensor introduced in

Eq. (2.49), whose components can be calculated using

4πdV Nij (r) = 8f (r)− 4
∑

s∈{A}
f (s) + 2

∑

s∈{B}
f (s)− 2

∑

s∈{B}
f (s) . (3.13)

Here dV = dxdydz is the volume of the cuboid with its centroid at (r) = (x, y, z), and

i ∈ {x, y, z} and j ∈ {x, y, z}, and {A}, {B} and {C} are sets of position vectors in

neighbourhood of r, such that

{A} = {(x± dx, y, z) , (x, y ± dy, z) , (x, y, z ± dz)} , (3.14)

{B} = {(x± dx, y ± dy, z) , (x, y ± dy, z ± dz) , (x± dx, y, z ± dz)} , (3.15)

{C} = {(x± dx, y ± dy, z ± dz)} . (3.16)

For diagonal (Nii) and off-diagonal (Nij) terms of
←→
N , the function f (r) = f (x, y, z) in

Eq. (3.13) can be expressed as248

f(x, y, z) =







1
2
y (z2 − x2) sinh−1

(
y√

x2+z2

)

+1
2
z (y2 − x2) sinh−1

(

z√
x2+y2

)

−xyz tan−1
(

yz
xr

)

+ (2x2 − y2 − z2) r/6 : i = j = x.

xyz sinh−1
(

z√
y2+z2

)

+1
6
y (3z2 − y2) sinh−1

(

x√
y2+z2

)

+1
6
x (3z2 − x2) sinh−1

(
y√

x2+z2

)

−1
2
y2z tan−1

(
xz
yr

)

− 1
2
x2z tan−1

(
yz
xr

)

−1
6
z3 tan−1

(
xy
zr

)

− xyr/3 : i 6= j 6= z 6= i.

Here sinh−1 (l) = log
(

l +
√

1 + l2
)

.

Equation (3.12) essentially defines demagnetizing field Hdem as the discrete convolution of

demagnetizing tensor
←→
N , with magnetization M. This can allow for efficient computation
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of the field using fast Fourier transform (FFT) techniques.254

Once energy or field terms are computed numerically w.r.t. to position r, we can now find

the Heff as the sum of its constituents and proceed with solving the LLG ODE w.r.t. time

while giving due considerations to initial and boundary conditions.

3.2.2. Boundary Conditions

Differential equation require some boundary and initial conditions to obtain a unique so-

lution. In the case of the LLG equation, the initial condition is typically supplied in the

problem design as M (r, t = 0). This is a relaxed state of magnetization before a signal is

provided to trigger the dynamics.

The general form of boundary conditions ∗ (in addition to the Maxwell boundary conditions

at external faces of the ferromagnetic plane of thickness u, proposed by Guslienko and

Slavin255 takes into account both dipolar pinning and pinning induced by uniaxial surface

anisotropy:

M×
(

λ2
ex

∂M

∂n̂
+

2KS

µ0M2
s

(M · n̂a) n̂a + uHdem

)

= 0, (3.17)

where ∂M

∂n̂
is the directional derivative of magnetization at the boundary. The uniaxial surface

anisotropy is defined by its strength KS and orientation n̂a. Hdem depends on the thickness

u and in–plane sizes R of the system (e.g., stripe width). It was shown255 that for small

systems(
√
Ru < λex) the magnetization pinning can be achieved only in the presence of

strong surface anisotropy. Therefore, in the exchange limit the Rado–Weertman boundary

condition,256 which simply neglects the dipolar pinning, is sufficient.

Note that the surface anisotropy field (second term in the brackets in Eq. (3.17)) depends

monotonously on KS. As a result, the logarithmic derivative of the components of dynamical

magnetization
(

∂mi

∂n̂

)

/mi (i indicates the Cartesian components of m) taken on the side faces

of the waveguide also has monotonous dependence on KS in the regime of linear dynamics255

and approaches the values ±∞ – pinned boundary conditions – and 0 – unpinned boundary

conditions – for high and low values of KS, respectively. Once we have our boundary

conditions in order, we can proceed to solve the LLG ODE.

∗Parts of this sub–section is based on K los et al. Phys. Rev. B 86, 184433 (2012).
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Sometimes, a problem may require us to model geometries where one (e.g. a wave-guide) or

two (e.g. a 2D MC) dimensions are infinite. If these systems posses translational symmetry,

1D or 2D periodic boundary condition (PBC) may be used. In OOMMF these boundary

conditions are presently enabled by employing some publicly written extensions.243,244 Under

periodic boundary conditions the exchange and demagnetizing fields are calculated with the

following in mind:

Hexch (r) =







Hexch (r + a1) (1D PBC)

Hexch (r + a1 + a2) (2D PBC)
(3.18)

Hdem (r) =







Hdem (r + a1) (1D PBC)

Hdem (r + a1 + a2) (2D PBC)
(3.19)

Here a1 and a2 represent the periodicity in mutually orthogonal directions.

3.2.3. Solving The LLG Equation in OOMMF

In this work, the 4th order Runge–Kutta method has been used to solve the LLG equation

as an ODE in time.

4th order Runge–Kutta method

Let magnetization be known at time t1 as M (r, t1) or M1 (r). Since different magnetic

energies, depend upon magnetization and the external field Hext (r, t1), the effective magnetic

field can be expressed as a function of magnetization, position and time as

Heff (r, t) = h (M, r, t) . (3.20)

Thus the LLG equation can be rewritten as

dM

dt
= − |γ̄|M×Heff −

α |γ̄|
Ms

M× (M×Heff)

= − |γ̄|M× h (M, r, t)− α |γ̄|
Ms

M× (M× h (M, r, t))

= f (M, r, t) . (3.21)
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So for ith cuboid with centroid at ri, we can write

dM

dt

∣
∣
∣
∣
∣
r=ri

= f (M, r = ri, t) = fi (M, t) . (3.22)

Here, the rate of change of magnetization at site i is being described by a vector function fi.

Let us now define ki1, ki2, ki3 and ki4 as following:

ki1 = fi (M1, t1) , (3.23a)

ki2 = fi

(

M1 +
h

2
ki1, t1 +

h

2

)

, (3.23b)

ki3 = fi

(

M1 +
h

2
ki2, t1 +

h

2

)

, and (3.23c)

ki4 = fi (M1 + hki3, t1 + h) . (3.23d)

Now, we can obtain M (r, t2) = M2, where time step h = t2 − t1 as

M (r, t2)|
r=ri

= M (r, t1)|
r=ri

+
h

6
(ki1 + 2ki2 + 2ki3 + ki4) . (3.24)

Thus we can find how magnetization changes as time goes from t1 to t2 in a time step

h for each position ri. Now, let M′ (r, t2) be calculated using Eqs. 3.23 and 3.24 with two

equal time steps of h′ = h/2. Thus the error ǫ (r, t2) going from t1 to t2 in one step can be

defined as

ǫ (r, t2) =
h

2
|f (M′, r, t2)− f (M, r, t2)| . (3.25)

For a step to be successful, max(ǫ) should be less than a given value, which can be made

smaller and smaller to get more and more accurate results. However this will cause simula-

tions to run for longer periods of time. Thus, once a physical output parameter appears to

converge, it is no longer necessary to further reduce these error limits. In simulations per-

formed during this work convergence was tested based on the dimensions of cuboid. Limits

of time steps h was decided based on the time–scale of underlying magnetization dynamics

(e.g. 1 ps for SW dynamics and 10 ps for a vortex core’s gyration). OOMMF allows the

users to decide these limits for themselves.
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3.3. FEM and Nmag

FEM based Nmag uses an adaptive tetrahedral mesh of varying edge lengths. Nmag yields

more accurate results by sacrificing significant computational time and resources. Thus,

OOMMF was the preferred platform of doing simulations in this work. Nmag has also been

used on one occasion for the purpose of a comparative analysis where high accuracy was

necessary. Most of the results produced here were validated against those yielded by the

PWM.

3.3.1. FEM Meshing

In FDM a geometrical body is modelled as a set of packed cuboids. In the case of FEM

tetrahedrons are used instead of cuboids. It makes the modelling much more accurate.

In some cases it can also save computational resources by avoiding empty areas. Here we

describe the Delaunay triangulation algorithm 257 which is popular due to its efficiency and

robustness.

To start the mesh generation a set of distinct forming points {P} = {p1, p2, p3, ..., pN} is

randomly selected in the space of the geometry to be modelled. A Voronoi region {V (pi)}
is defined as the set of points in space which are closer to pi than any other point pj ∈
{P}. Points which belong to two Voronoi regions {V (pi)} and {V (pj)} (pi, pj ∈ {P})
form the boundaries of the regions. Forming points whose Voronoi regions share a common

boundary can be connected together to form the edges of a tetrahedral structure such that

the circumsphere of any tetrahedron does not enclose any forming point. The edges of the

tetrahedrons should be small enough to resolve magnetic domains such as a Bloch point.

If that is not the case, or if the forming points do not approximate the finer features of

the geometry, additional forming points need to be included in {P} and the process of

triangulation needs to be repeated. This algorithm is also presented in Fig. 3.2 for a planer

system where tetrahedrons are replaced by triangles and circumspheres are replaced by

circumcircles. Forming points and their respective Voronoi regions are seen in 2D space

in Fig. 3.2 (a). A mesh of triangles is created using the forming points, such that their

circumcircles do not include any forming points. If a new forming point has to be introduced
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(a) (b)

(c) (d)

Figure 3.2.: (a) Forming points and their Voronoi regions. (b) A mesh of triangles using the
forming points as vertices. Triangles whose circumcircle encompass any forming
points are rejected. (c) A new forming point is introduced near an unacceptably
long edge. This causes the rejection of two triangles whose circumcircles include
the new forming point. (d) New smaller triangles are created whose circumcircles
don’t encompass any forming points. Source: Ref. 16.

to avoid an unacceptably long edge, new triangles are created to redefine the mesh.

3.3.2. Solving The LLG Equation using Nmag

Nmag can work with meshes produced by freewares such as Netgen. Once a mesh of tetra-

hedrons and their vertices are available, Galerkin discretization258 is used to approximate

the magnetization and effective magnetic fields. This is conceptually similar to the approxi-

mation process described in sub–Sec. 3.2.1. Following, this approximation of magnetization

and effective field one can proceed to solve the LLG equation by implementing an algorithm

of differential equation solution.
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3.4. Plane Wave Method (PWM)

The PWM considers linear approximation of the LLG equation∗. The magnetization dy-

namics is treated in the form of harmonic time precession of the magnetization with the

angular frequency ω, expressed by the dynamical components of magnetization vector:

mx(r, t) = mx(r)eiωt and my(r, t) = my(r)eiωt. The dynamics of magnetization in the

direction of bias field is neglected, i.e. we assume Mz(r, t) ≈ Ms. As a result the linearised

LLG equations have a form of two linear differential equations for the precession amplitudes:

mx(r) and my(r). The amplitudes mx(r) and my(r) can be transformed to the reciprocal

space with the use of Bloch theorem. This allows to convert the linearized Landau-Lifshitz

equations into the algebraic eigenvalue problem:






{mx(G)}
{my(G)}




 M̂ =

iω

γµ0H0






{mx(G)}
{my(G)}




 (3.26)

by Fourier transformation of material parameters (Ms, λex) and the periodic factor of Bloch

functions, where {mx(G)} and {my(G)} denote the vectors with the set of Fourier coefficients

for periodic parts of Bloch functions. The matrix M̂ of the eigenvalue problem can be written

in a block-matrix form:

M̂ =






M̂xx M̂xy

M̂yx M̂yy




 . (3.27)

The submatrices in (3.27) are defined as follows:

M̂xx
ij = −M̂yy

ij = −i ky +Gy,j

H0|k + Gj|
S(k + Gj)Ms(Gi −Gj), (3.28)

∗This section is based on parts of K los et al. Phys. Rev. B 89, 014406 (2014).
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M̂xy
ij = δij +

∑

l

(k + Gj) · (k + Gl)

H0
λ2

ex(Gl −Gj)Ms(Gi −Gl)

+
(ky +Gy,j)2

H0|k + Gj |2
(1− C(k + Gj))Ms(Gi −Gj)

− (Gz,i −Gz,j)2

H0|Gi −Gj |2
Ms(Gi −Gj)(1− C(Gi −Gj)), (3.29)

M̂yx
ij = −δij −

∑

l

(k + Gj) · (k + Gl)

H0
λ2

ex(Gl −Gj)Ms(Gi −Gl)

− 1

H0
C(k + Gj)Ms(Gi −Gj)

+
(Gz,i −Gz,j)2

H0|Gi −Gj|2
Ms(Gi −Gj)(1− C(Gi −Gj)), (3.30)

where indexes i, j, l of reciprocal lattice vectors Gi are integers. Ms(Gi) and λ2
ex(Gi) are

the Fourier coefficients associated with the saturation magnetization and exchange constant,

respectively. The additional functions used in the equations above are defined as follows:

S(k) = sinh (|k|u/2)e−|k|u/2;

C(k) = cosh (|k|u/2)e−|k|u/2, (3.31)

where u denotes the thickness of the 1D or 2D magnonic crystal.

In order to use PWM for 1D structure one has to make the structure artificially periodic

along the direction perpendicular to the waveguide axis. Here, the supercell method can be

used, which exploits the fact that the properties of the confined system are equivalent to the

properties of the set of its non–interacting copies. In Eqs. (3.28), (3.29), and (3.30) we have

already used 2D wave vectors k and reciprocal lattice vectors G in the (x, y) space, which

refers to the infinite sequence of parallel waveguides separated by an artificial material.213

In 1D nanoscale waveguides, calculations are performed for y component of the wavevector

equal 0, i.e. the direction of propagation of SWs is limited to the axis of the waveguide.
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3.5. Fabrication Techniques

3.5.1. Thin–Film deposition

Ar
+

Py

Target

(a)

Ar
+

Target

Substrate

S SN

(b)

Low Pressure

Thin-Film

Py

(c)

Figure 3.3.: (a) Incoming Ar+ ion collides with atoms in the target. A sputtered atom is
released upon a cascade of collisions. (b) A sketch of sputtering vacuum chamber
showing dashed field lines. (c) My picture with a sputtering setup at the S. N.
Bose National Centre for Basic Sciences, Kolkata.

The first step in fabrication is to deposit a thin layer of a magnetic material such as Py

over a (typically silicon) substrate. This is accomplished by sputter deposition. Sputtering is

a process where fast moving ions cause an ejection atoms from a target. These atoms from

the target can be caught by the substrate allowing the thin–film to increase its thickness

with time. The incoming Ar+ ion triggers a cascade of collisions within the target as shown

in Fig. 3.3 (a). Atoms are only able to leave the surface of the target if they have more

energy than the surface binding energy. Dashed field lines in Fig. 3.3 (b) denote the electric

and magnetic fields generated by a magnetron. This helps trap the argon plasma, which is

sustained at a very low pressure of ≈ 10 mTorr, close to the target. The neutral atom leaving

the surface is not affected by these fields. Atoms arriving to settle at the substrate increase

the deposited film’s thickness. A sputtering setup at the S. N. Bose National Centre for

Basic Sciences is shown in Fig. 3.3 (c). Sometimes the use of multiple targets is considered

desirable so that a thin dielectric layer may be placed over the magnetic thin–film. This will

help prevent the oxidation of the thin film layer.
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3.5.2. Lithography

Material can be removed from different locations in a deposited thin film using lithogra-

phy techniques such as photolithography, e–beam lithography and focused ion beam (FIB)

milling. The resolution of the lithography process depends upon the energy of the particles

(or quasi–particles) being used. Thus, photolithography should be used to etch micron sized

vast regions, while FIB milling should be used where resolution is below 50 nm. Anything

in between those limits may be handled using e–beam lithography. A schematic diagram

showing optical and e–beam lithography is presented in Fig. 3.4.6

Silicon dioxide (SiO 2)

Step 3: Exposure with optical or electron beam

Step 4: Dissolved exposed polymer Step 5: Deposition of metal thin film

Step 7: Lifting -off residual resistStep 6: Deposition of capping layer

Step 2: Resist coating with spin coaterStep 1: Substrate cleaning

Optical or Electron beam

UV

Mask

Projection lens

Si substrate

Si E-beam irradiated

resist
PMMA/MMA resist

Metal film

Spin coater

Figure 3.4.: Step–wise description of optical and e–beam lithography. Source: Ref. 6.

A photo–mask, which may be designed using computer aided design (CAD), containing a

desired pattern. This facilitates the parallel growth of the micro–structures. In the case of

e-beam or FIB lithography, the focus of etching needs to be controlled and moved from one
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spot to another during the lithography process.

The first step in optical lithography is cleaning of the Si(100) substrate by removing any

organic or inorganic materials from its surface. This is done by submerging the substrate in

an ultrasonic bath of acetone and water (20 mins each), respectively. The substrate is then

dried with dry N2 from a nitrogen gun. Then a spin coater is used to coat the surface of the

substrate with a uniform layer of positive photoresist dissolved in an organic solvent. The

thickness of the photoresist layer depends upon the its viscosity and the spinning speed of the

spin coater. These parameters needs to calibrated to obtain a layer of desired thickness. A

photo–mask containing the patterns to be fabricated is then placed on top of the substrate.

A projection lens is used as shown in Fig. 3.4 to ensure a proper exposure of the coated

substrate. This exposure causes the the polymer chains in the resist to break, which is

then put into distilled water at room temperature, rinsed for 60 s and dried using dry the

nitrogen gun. Next, the substrate is submerged into MIBK:IPA (1:3) (methyl isobutyl ketone

: isopropyl alcohol) solution and rinsed for another 30 s. Finally, the substrate is submerged

into acetone and rinsed (for 60 s) and dried again. This step causes the two dimensional

pattern of the photo–mask to appear as a three dimensional structure on the substrate. Now

a film of Py can be deposited as described in sub–Sec. 3.5.1. Finally, the film deposited on

the resist can be lifted–off using a stripper solution along with the resist leaving only the

desired Py structure onto the Si surface.

High energy electrons are generated by accelerating a beam of electrons across a high volt-

age. The cleaning process is similar in optical and e–beam lithography. The spin coating is

then done to produce a bilayer of polymethyl methacrylate (PMMA) and methyl methacry-

late (MMA). The thickness of individual layers is controlled by calibration. As the PMMA

layer develops faster than the MMA layer, the resulting overhung structure gives an undercut

edge profile (of the resist) after development. A scanning electron microscope (SEM) can

now be used to expose the resist with focused electrons. The pattern of this exposure can

be controlled using a CAD software. The beam current and dose time are typically of the

order of 100 pA and 1µs, receptively. The exposed resist is then dissolved using developer

solutions. A required 3D structure of the unexposed resists now survives on the substrate.

A ferromagnetic layer can now be deposited as described in sub–Sec. 3.5.1. The lift–off to
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remove the unexposed resist (along with the film deposited over it) can now be done using

stripper solutions. FIB milling, where heavier gallium ions are used instead of electrons

can now be used to create even finer nanostructures after this point. The steps of cleaning,

spin–coating, development and lift–off are similar to what is described before in the cases of

optical and e–beam lithography techniques.

3.6. Sample Characterization

Even with all the recent advancements in nanofabrication, there are often numerous defects

in the fabricated nanoscale samples. Any sample with serious systematic defects can not

be used for experimentation. Due to the finite spot size of optical, electron or ion beams,

deformations like rounded corners of the square dots or holes are always found. Inaccurate

calibration of spin–coating, development of lift–off steps can also result in severe defects. A

slow cooling of sputter deposited Py thin film can develop an inhomogeneous distribution of

iron and nickel. During FIB milling gallium ion can get redeposited around the edges of the

geometry which has just been removed. This can lead to pinning of magnetization dynamics

at these edges.213 Apart from these fabrication related defects, mechanical defects may also

appear due to poor handling or storage of the samples. The oxidation and contamination

of the magnetic sample is mitigated by coating the sample with a non–reactive dielectric

substances like glass or Al2O3.

Once all the steps of fabrication are properly calibrated, and the sample is handled and

stored carefully, even then one should examine the samples to verify that it is in good

condition to start experimentation. SEM imaging was used in this work to observed the

structure of the fabricated systems. A schematic of scanning electron microscope is presented

in Fig. 3.5.6 The sample is mounted on a small specimen stage by using a double–sided

carbon tape. The sample’s surface should be electrically conductive grounded to prevent

any accumulation of electrostatic charge. A stream of electrons, or an electron beam, is

emitted either from an electron gun fitted with a tungsten filament cathode (thermionic) or

from a field emission cathode. The later method produces narrower electron beam leading

to a superior spatial resolution. The energy of the electrons in eV can typically vary from
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Figure 3.5.: Schematic of scanning electron microscope. Source: Ref. 6.

two to five orders of magnitude. After emission, the electrons are further accelerated by

applying a voltage. The beam passes through a series of electromagnetic condenser lenses

(see Fig. 3.5), which alter the spot size of the beam. An electromagnetic scanning coil, which

can scan a rectangular region in a raster fashion, finally focuses the beam in the plane of the

sample.6 Upon an inelastic collision with the atoms in the sample, the energetic scanning

electrons produce secondary electrons. The relative intensities of scanning and secondary

electrons is then compared to generate the surface topography and morphology of samples.



4. Thin–Films, Waveguides and

One–Dimensional Magnonic

Crystals

∗The spectrum of spin–waves (SWs) propagating in magnetic systems is important from both

fundamental and applied points of view. Propagating SWs in spatially modulated magnetic

systems, namely the magnonic crystals,3,69 will form the building blocks for future microwave

data communication. Recently, much effort has been made in understanding and tailoring the

magnonic band structures (frequency versus wavevector) in various magnonic crystals with

nanoscale features. The numerical simulation method is particularly important because this

can be effectively used to design the desired magnonic band structures before starting the ex-

pensive nanofabrication methods. However, conventional micromagnetic simulators provide

only the space–time data by solving the Landau-Lifshitz-Gilbert equation (LLG equation)7,8

and meaningful conversion of that data to frequency and wavevector domains259,260 poses

several computational challenges. Object Oriented Micromagnetic Framework (OOMMF)250

exploits the finite difference method to calculate magnetization dynamics.

The dispersion curves obtained by a 2D discrete Fourier transform (DFT)261 of the space–

time data obtained from micromagnetic simulations may contain artefacts. These mainly

include lack of resolution in the frequency or wavevector domain, aliasing, spectral leakage

and scalloping loss. These artefacts render the resultant dispersion diagram, unreadable.

Discretization of continuous magnetic objects also leads to the appearance of an artificial

period and as a result to the formation of an artificial band where the spectrum should

∗This chapter is based upon Kumar et al. J. Phys. D: Appl. Phys. 45, 015001 (2012).
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be continuous.259,260 The effect of most of these problems can be reduced by sampling the

magnetization over a larger sample size or over a longer period of time. Range in frequency

and wavevector domains can be increased by sampling the magnetization at a higher sampling

rate in time and space domains, respectively. But, these measures will soon consume the

available computational resources without providing much clarity to the obtained results. In

this chapter we aim to document and standardize a sequence of steps that help in obtaining

better results without compromising on the speed or extent of the numerical analysis. The

improvement in quality, made by these methods, is established by a numerical comparison,

which is further verified by the manual observation of the obtained dispersion diagrams. The

presented method can also be used to compute the dispersion of SWs in different kinds of

magnonic conductors,5 which form a rich family of spatially modulated magnetic structures

or artificial lattices designed to control the spectrum of SWs. Based on their geometry these

magnonic conductors can be classified as one (1D), two (2D) or three dimensional (3D) and

based on their continuity they can be either continuous waveguides or magnonic crystals

(discrete arrays of dots or antidots). Magnonic crystals can also be made of more than

one magnetic material, which allows us to classify them on the basis of homogeneity (as

homogeneous and heterogeneous). While processing the results from a 3D magnonic crystal,

the limited computational resources force us to use slower forms of computer memory.

In the following sections we explain how dispersion curves of SWs can be obtained by a 2D

DFT of magnetization data which, in turn, is the output of a finite difference based ordinary

differential equation (ODE) solver, such as OOMMF. We further discuss the shortcomings

of this method and demonstrate how various techniques can be used to mitigate them. Ma-

terial parameters of Py are used for the results shown here. Heavy damping is used to reach

the state of saturated magnetization sooner under a constant bias. We have further applied

the newly developed numerical technique to a range of magnonic media including magnetic

nanostripes, magnetic nanowires and thin film elements. We have further calculated the

dispersion curves for simple magnonic crystals with 1D and quasi-2D arrangements of peri-

odic antidot arrays in permalloy thin films, which opens up allowed and forbidden magnonic

bands.
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4.1. Method

OOMMF produces the output data in several files where each file corresponds to a particular

instance of simulation time and contains the information of magnetization distribution over

the entire magnetic object. Being a finite difference method based ODE solver, OOMMF

divides a magnetic object into an artificial periodic array of rectangular cuboids. The region

of space, where no magnetic material is present, is assumed to have zero saturation mag-

netization. Subroutines were written to read the data into three four-dimensional matrices

(one matrix for each component of magnetization), namely M i(t, x, y, z), M j(t, x, y, z) and

Mk(t, x, y, z). The variables t, x, y and z represent discrete equally spaced values of time and

space. A dynamic component of magnetization (in our case orthogonal to the external bias

field as we consider fully saturated samples) should be selected for the purpose of dispersion

analysis. If Mk(t, x, y, z) is one such component, we set Mk
xm,yn

(t, z) = Mk(t, xm, yn, z) to

obtain a 2D matrix of the magnetization component, Mk at x = xm, and y = yn. The

coordinate system should be appropriately rotated if the direction of propagation of spin–

wave is neither of x, y or z. A 2D DFT can now be performed on this matrix to obtain

the output M̃k
xm,yn

(f, kz) = F (Mk
xm,yn

(t, z)). The magnitude of this output corresponds to

the magnitude of the corresponding Fourier components. If we take some particular fre-

quency f , the corresponding wavevector kz can be found by finding the high values of the

Fourier component magnitudes for this particular frequency f . In order to visualize the

dispersion curve we record a colour–weighted 3D plot (or a colour weighted scatter plot) of

Pxm,yn
(f, kz) ∝ log10

∣
∣
∣M̃k

xm,yn
(f, kz)

∣
∣
∣ versus f and kz. Thus, as seen in Fig. 4.1, when viewed

from the top, the colour scale represents the Fourier power on a proportional decibel scale.

Let the sum of
∣
∣
∣M̃k

xm,yn
(f, kz)

∣
∣
∣

2
over all values of xm and yn be represented by

∣
∣
∣M̃k (f, kz)

∣
∣
∣
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then P (f, kz) ∝ log10

∣
∣
∣M̃k (f, kz)

∣
∣
∣ will contain information of all the modes present in the

magnetic medium for the chosen direction, namely z.

4.2. Results and Discussion

As evident from Fig. 4.1 (a), there are several issues with the results obtained by the method

described above. Introducing the Hanning window function has clearly improved the contrast
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as seen in Fig. 4.1 (b). Since using a window function already reduces the scalloping loss,

zero padding, as shown in Fig. 4.1 (c), does not affect the end result significantly in this

case. However, it is still useful in improving the computational performance as described

later in this section. Sinc excitation signal controls aliasing. This is better demonstrated in

the case of a nano–wire, as described later in this chapter, where the range of observation (in

frequency and wavevector domains) is higher than that in Fig. 4.1 (d). We now enumerate

the major issues and establish some techniques to overcome them. Figure 4.2 depicts this

entire procedure schematically.

High resolving powers in both frequency and wavevector domains are often desirable for

studying the fine structures of the dispersion curves. The difference between two consec-

utive values of frequency (resolution in frequency) equals 1/t, where t is the duration of

observation, and resolution in the wavevector domain equals 1/l, where l is the length of the

sample. If a dynamic phenomenon finishes too rapidly, possibly due to very high damping,

it would be impossible to have a good frequency resolution. Similarly, if the size of the mag-

netic medium is very small then we will obtain bad resolution in the wavevector domain.

Resolving power in frequency and wavevector domains can, respectively, be improved by

running the dynamics for a longer duration and by using longer samples in the direction of

SW propagation.

Since we deal with the LLG equation within a continuum micromagnetic framework, phe-

nomena associated with time–scale faster than 1 ps and length scale below 1 nm are beyond

the scope of this framework. This gives upper bounds (Nyquist frequency) of range in both

frequency and wavevector domains as 500 GHz and 5× 108 m−1 (or 3.141 rad/nm), respec-

tively. Higher rates cost more memory for the same desired resolution. Unless necessary,

these rates may be kept as low as possible. For exchange interaction to be effective, the size

of the rectangular cuboid should be less than the exchange length of the magnetic material.

The rate of sampling of magnetization in time should be high enough to capture the preces-

sional motion correctly. Hence, it should not be less than one ‘snapshot’ per 10 ps in most

cases. Fourier expansion for the N element sequence xn may be written as

X̃k =
N−1∑

n=0

xne
−2πikn

N . (4.1)
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Figure 4.1.: Dispersion along a 5 µm long and 30 nm wide permalloy waveguide with thick-
ness = 10 nm. Bias field µ0Hbias = 0.05 T is applied along the length of the
waveguide. The dispersion in (a) uses a rectangular window; (b) introduces a
Hanning window; (c) adds zero padding and (d) uses a sinc excitation signal as
opposed to a Gaussian excitation signal used in (a)-(c). Source: Ref. 262.

For a propagating wave X̃0 may be ignored as it represents the amplitude of a wave

with no frequency (or no wavevector depending upon the dimension used for the Fourier

expansion). Ideally X̃0 should be zero for a propagating wave, but often, in the case of a

DFT, it has a finite value due to the lack of resolving power and aliasing. Moreover, the

initial magnetization distribution of a magnetic medium may contain some demagnetized

regions. High bias fields may be used to minimize these regions. Furthermore, for the

purpose of dispersion analysis, the initial magnetization state should be subtracted from the

entire time domain response. This subtraction makes it easier to visualize the propagation

of spin waves but it will not affect the resultant dispersion curves.

Spectral leakage263 is another issue associated with DFT, which needs to be taken care

of. If power is being delivered at a certain frequency (and wavevector) and that frequency



4.2 Results and Discussion 62

M r( , )t

M t  x  y  z( , , , )
i

M t  x  y  z( , , , )
j

M t  x  y  z( , , , )
k

Step 1

M t  z( , )=
k
x ym n, M t  x  y  z( , , , )

k
Step 2

M f  k( , )z
k
x ym n,

~
Step 3

|M f  k( , )| =z

2 Σk~
M f  k( , )z

k
x ym n,

~

x ym n,
Step 4

P f  k( , z)∝log ( , )|10|M f  kz

k~
P f  k( , z)∝log ( , )|10|M f  kz

k~
x ym n, x ym n,

On dB ScaleOn dB Scale

Window + Zero Padding + DFT

Step 5

Figure 4.2.: Representation of steps involved in obtaining the dispersion curve for SWs in
given magnetic objects. Source: Ref. 262.

(or wavevector) value is missing on the DFT output scale, that power is represented by

amplitudes over the entire spectrum. These amplitudes are proportional to a sinc function,

sinc(Dn) whose parameter Dn is the difference in number of cycles in time (or space) domain

and number of sampling points (in the same dimension). The effect of spectral leakage

becomes especially evident when power is represented on a proportional decibel scale. This

can be controlled using a window function. Apart from controlling spectral leakage, most

window functions help in mitigating aliasing. A 2D window function is needed for a 2D

DFT. Two 1D window functions (one for each dimension) are multiplied for this purpose.

A common side effect of using a window function is the broadening of the central peak.

Several window functions were compared based on this criterion. A 5 µm long 1D Py
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Figure 4.3.: (a) Comparison of mode widths for some window functions. A loss of power of
100 dB for a given value of wavevector was considered as mode cut-off limit.
(b) Form of some window functions in frequency domain. As designed, the
Chebyshev window maintains a main lobe to side lobe difference of 100 dB here.
This is why a very high cut-off value of 100 dB is used in (a). This high cut-off
value has led to high numerical mode widths. With good colour contrast visually
discernable widths are much lower. Source: Ref. 262.

nanowire with a square cross section of side 9 nm was used for this purpose. Figure 4.3

(a) shows a plot of this width in frequency domain as a function of the wavevector for a

few of these window functions. Another way of comparison between window functions is to
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compare the difference between the main lobe and side lobes as a function of their position,

as shown in Fig. 4.3 (b). For the Chebyshev window this difference can be better controlled.

However, when this window is used, a higher difference results in further broadening of the

central lobe. This broadening is especially pronounced for a low resolving power. Also, a

higher assigned difference in frequency (or wavevector) domain causes a spike at both ends

of this window.264 This should not be a problem if the values of magnetization component

under consideration at the beginning and end of simulation have near zero values. Hence,

the Chebyshev window is found to be very useful when the numbers of sampling points in

space and time domains are high and the duration of simulation has allowed damping to

decrease the considered magnetization component to zero.

Due to the nature of DFT, amplitudes beyond the Nyquist frequency are represented at

false frequency values. One of the ways these amplitudes can be identified is by sampling at

different rates and checking whether they have changed their positions on the axis. Another

way to avoid this problem is to ensure that the excitation signal does not supply any power

beyond a certain frequency (which is lower than the Nyquist frequency). This can be done

by using a signal which varies as a sinc function in both space and time domains (as Fourier

transform of a sinc is a rectangle function). In the case of a magnonic crystal (e.g. a 2D array

of dots), the sinc signal in space acts upon regions of finite and zero saturation magnetization.

A sinc signal should still be considered if the effect of aliasing in the wavevector domain is

too pronounced (for example, due to a low number of sampling points in space). A localized

excitation signal may be used otherwise. This use can also be mandated by problem design.

The resultant aliasing can then be controlled by sampling the magnetization at different

spatial frequencies and identifying the amplitudes, which have moved on the wavevector

axis.

Data sampled over a finite interval of space or time effectively uses a rectangular window

function. This causes a drop in power from one frequency (or wavevector) value to the next.

This is termed as scalloping loss. This loss can be reduced by the use of a non-rectangular

window. For example, the scalloping loss, from lobe centre to half-way down the lobe centre,

for a Hanning window is 1.45 dB, while that for a rectangular window is 4 dB. Scalloping loss

can be further reduced by using zero padding263 which effectively increases the number of
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Figure 4.4.: Dispersion in a 1D nanowire of square cross section of side 9 nm with bias field,
µ0Hbias = 1.01 T: (a) kcut = 3 rad/nm, (b) kcut = 0.5 rad/nm and (c) ‘powered’
region of dispersion. A linear colour map is used to represent power from 400
to -200 dB. Source: Ref. 262.

output targets (or ‘bins’) on the frequency (or wavevector) axis. Zero padding can also take

advantage of some fast Fourier transform (FFT) algorithms261,265 by ensuring that the length

of data is an integral power of a prime number for delivering better computational speed.

The window function is applied before zero padding because doing the reverse gives incorrect

result as a part of window function would be multiplied by padded zeros. Zero padding does

not improve the resolving power in the sense that the width of the mode remains the same on

the frequency or wavevector axis. It also consumes memory. Therefore, it may be preferable

to wait till the magnetization values are damped naturally to zero, rather than to artificially

pad the data with zeroes, as waiting would also increase the resolving power in the frequency

domain without consuming any extra memory which is not already required for zero padding.

Figure 4.4 shows the dispersion of SWs in a 5 µm long 1D nanowire with a square cross

section of edge 9 nm. Excitation signal is proportional to sin (2πfcutt
′) / (2πfcutt

′). Here t′

represents time and fcut is the parametric frequency of the signal, beyond which it carries

no power. A similar cut-off value, say kcut, can be set in the wavevector domain by making

the signal proportional to sin (2πkcutx) / (2πkcutx). fcut and kcut cannot be more than the

Nyquist frequency (or wavevector) values in their respective domains. For the purpose of

simulation, material parameters of Py were used along with a cell size of 1 nm. Figure 4.4

(a) shows the dispersion when a signal with fcut = 450 GHz and kcut = 3 rad/nm was
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used. Figure 4.4 (b) was produced with kcut = 0.5 rad/nm. A sudden drop in power beyond

the cut-off values may be noted. Figure 4.4 (c) shows this ‘powered’ region of dispersion,

which has a much better clarity and sharper width as opposed to what is observed in Fig. 4.4

(a).

(a) (b)

(c) (d)

Figure 4.5.: Spin wave propagation in a confined Py thin film element of dimensions 1.2 µm
× 1.2 µm × 10 nm at (a) t = 249 ps and (b) t = 449 ps for µ0Hbias = 1.01 T
applied along the horizontal edge of the Py element. Dispersion curves (c) along
the horizontal edge (y = 2.5 nm) and (d) at the centre (y = 592.5 nm) of the
Py element. Source: Ref. 262.

Figures 4.5 (a) and (b) show the snapshots of the SWs with time in a confined Py thin

film element of dimensions 1.2 µm × 1.2 µm × 10 nm. A bias field µ0Hbias = 1.01 T was

applied parallel to the horizontal edge of the element to saturate the magnetization along the

direction. Figures 4.5 (c) and (d), respectively, show the dispersion of SWs along the centre

(y = 592.5 nm) and along the edge (y = 2.5 nm) of this element. The dynamics is excited

by a sinc signal in the time domain, which is spatially localized at the centre of the element

so that the SWs can propagate uniformly within the x− y plane. Two prominent dispersion
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curves are observed in the former case, while a single curve is prominent in the latter. The

lowest branch corresponds to the uniform magnetization dynamics (n = 0) across the width

of the magnetic element while the upper one corresponds to the quantization (n = 1 or half-

wavelength) across the width of the element. Due to the dynamic boundary conditions255

the lowest branch is barely excited when we consider the direction along the horizontal edge

of the element as one can see from Fig. 4.5 (d). The spin wave wave-front takes an elliptical

shape due to the dependence of group velocity on the angle between wavevector and the

direction of static magnetization (bias magnetic field).

Propagating SWs in continuous magnetic media show continuous dispersion of frequency

as a function of wavevector. Formation of periodic modulation of the magnetic medium

results in opening of band gaps at the Brillouin zone (BZ) boundary. Magnetic antidot

lattices serve the purpose due to the creation of discontinuity at the magnetic material and

air interface or at a different magnetic material filling the antidots.55,56,105,242,266,267 In the

following, we apply the described numerical techniques to calculate the dispersion curves of

magnonic crystals made up of 1D and 2D arrangements of magnetic antidots in permalloy

thin films. Cuboidal cells of edge 3 nm are used during the simulation for magnonic crystals

examined in this chapter. Figures 4.6 (a) and (b) show the static magnetic configurations of

a 1D array of square antidots with edge and separation of 12 nm carved into a permalloy strip

with width = 24 nm, length = 2.4 µm and thickness = 3 nm. A bias magnetic field (µ0Hbias)

of 1.01 T was applied (a) along the length and (b) across the width of the sample so that the

dispersions of SWs in the backward volume magnetostatic spin-wave (BV) configuration268

and magnetostatic surface wave or Damon–Eshbach (DE) configuration269 are obtained.

Figures 4.6 (c) through (d) show the computed dispersion curves of SWs with wavevector for

this sample. The confinement along the width of the permalloy strip, on which the square

antidots are imprinted, will cause a number of symmetric and anti-symmetric modes for all

allowed values of the wavevectors. The spatial modulation of magnetic parameters due to

the introduction of the square antidots introduces a band spectrum and we investigate the

effect of that on the symmetric and anti-symmetric modes in the resultant dispersion curves.

In Fig. 4.6 (c), we show the excitation of only the symmetric modes in the 1D array

of antidots, while in Fig. 4.6 (d) both symmetric and anti-symmetric modes are excited
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Figure 4.6.: Static magnetic configurations (in-plane) of the central portion of the simulated
sample with the bias field, µ0Hbias = 1.01 T, applied (a) along the length and
(b) across the width of the sample. The sample is a permalloy strip with width
= 24 nm, length = 2.4 µm, thickness = 3 nm and with 1D array of square
antidots carved in it. The antidots are square in shape and have both width and
separation of 12 nm. Simulation of SW dispersion of (b) symmetric mode only
and (c) both symmetric and anti-symmetric modes for the BV configuration.
(e) Symmetric only and (f) both symmetric and anti-symmetric modes in DE
configuration are also shown. The vertical white lines mark the boundaries of
the BZ which has a total width of 0.2618 rad/nm. Source: Ref. 262.

in the same sample. The anti-symmetric modes can be excited if the applied signal is

anti-symmetric across the width of the crystal. The anti-symmetric modes do not interact

with symmetric modes270,271 and four new branches are created in the observed frequency

range of dispersion curves. We have further calculated the dispersion of a bi-component

medium to demonstrate the effects of variation of the periodic potential in the magnonic

medium as a result of the inclusion of a second ferromagnetic medium within the antidot

regions. Figure 4.7 (a) and (b) show the static magnetic configurations of a bi-component
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Figure 4.7.: Static magnetic configurations (in-plane) of the central portion of the simulated
sample with the bias field, µ0Hbias = 1.01 T, applied (a) along the length and
(b) across the width of the sample. The sample is a bi-component medium with
1D array of square-shaped Co inclusions in a permalloy strip with width = 24
nm, length = 2.4 µm and thickness = 3 nm. The sides of Co squares are 12 nm
and the edge-to-edge separations between the two squares is 12 nm. Simulated
dispersion of symmetric modes in the above samples with the bias field applied
(c) along the length and (d) across the width of the sample. The vertical white
lines mark the boundaries of the BZ which has a total width of 0.2618 rad/nm.
Source: Ref. 262.

medium with 1D array of square-shaped Co (K = 520× 103 J/m3, Ms = 1400× 103 A/m,

A = 30×10−12 J/m, |γ̄| = 2.21×105 rad s−1 T−1) inclusions in a permalloy strip with width

= 24 nm, length = 2.4 µm and thickness = 3 nm. The edge and separation of Co squares

are 12 nm. The static magnetic field µ0Hbias = 1.01 T is applied (a) along the length and

(b) across the width of the simulated samples. Figures 4.7 (c) and (d) show the dispersion

of symmetric modes in this medium for the bias field geometries of (a) and (b), respectively.
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The band gaps in Fig. 4.7 (c) are considerably reduced as compared with those in Fig. 4.6 (c)

due to the reduction in the difference between the values of the magnetic parameters in the

bi-component medium as compared with the unfilled antidots. Similarly, with the exception

of first band gap the others are significantly smaller in Fig. 4.7 (d) when compared with the

modes in Fig. 4.6 (e). For the long permalloy strip the shape anisotropy is along the length

of the sample and hence the application of bias field across the width causes a reduction

in the effective field and consequently a downward shift in the overall frequencies in the

dispersion curves is observed. In the DE (Fig. 4.7 (d)) geometry the curvature of dispersion

(and the corresponding group velocities) and band gaps are significantly different from that

in the BV geometry (Fig. 4.7 (c)) due to the difference in the initial magnetization state as

a result of the competition between the Zeeman, demagnetization and magnetocrystalline

anisotropy energies in two different materials in the bi-component magnonic crystal.

We now extend our calculation of dispersion curves to three rows of 1D arrays of antidots

(quasi-2D antidot arrays). The introduction of quasi-periodicity across the width of the

magnonic crystal and the dipolar interactions between the different rows of antidot arrays

cause significant modifications in the dispersion curves. In Fig. 4.8, we show the dispersion

curves of the quasi-2D antidot arrays with length = 2.4 µm, width = 72 nm and thickness

= 3 nm. The bias field µ0Hbias = 1.01 T was applied along the (a) length and (b) across the

width of the magnonic crystal. A comparison of Figs. 4.6 (c) and (e) with Figs. 4.8(c) and

(d) reveals that the latter show band intersection and very rich dispersion patterns. The two

lowest frequency branches of dispersion in Fig. 4.8 (c) have the same curvatures, signifying

the same group velocity but different phase velocities. However, the group velocities of the

two lowest dispersion branches in Fig. 4.8 (d) are different. The higher frequency branch

also has a lower spectral power.

Figures. 4.9 (b) and (c) show the spatial distribution of the power and phase of mag-

netization for specific frequency values on different branches of the dispersion curves for

the 1D array of antidots as shown by the white dotted lines in Fig. 4.9 (a). The power

and phase distribution information are obtained by fixing one of the spatial co-ordinates

in Mk(t, x, y, z) and performing a DFT with respect to time domain. The bias field was

applied along the length of the 1D antidot array. The mode corresponding to f = 39.99
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Figure 4.8.: Static magnetic configurations (in-plane) of the central portion of the simulated
sample with the bias field, µ0Hbias = 1.01 T, applied (a) along the length and
(b) across the width of the sample. The sample is a permalloy strip with width
= 72 nm, length = 2.4 µm, thickness = 3 nm and with three rows of 1D array
of square antidots imprinted in it. The antidots are square in shape and have
both width and separation of 12 nm. Simulated dispersion of symmetric modes
in the above samples with the bias field applied (c) along the length and (d)
across the width of the sample. Source: Ref. 262.

GHz (Fig. 4.9 (b)) belongs to the lowest band (band index n = 1) and propagates with

uniform phase along the length of the array. The mode at f = 60.84 GHz (Fig. 4.9 (c))

belongs to the band with n = 2 and propagates with regions around alternating antidots

oscillating out-of-phase. Figure 4.10 shows the spatial distribution of power and phase of the

quasi-2D array of antidots. The four branches of dispersion are highlighted in Fig. 4.10 (a).

The power and phase distributions of the lowest (n = 1) and highest branches (n = 4) of

the quasi-2D array are similar to the n = 1 and n = 2 bands, respectively, for the 1D case,

as shown in Figs. 4.10 (b) and (e). The power and phase distributions for the two middle

branches (n = 2 and 3) are shown near the BZ boundary where dispersion becomes flat
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Figure 4.9.: (a) Selected part of the dispersion image, as shown in Fig. 4.6 (c), showing
the frequencies at which the spatial distribution of power and phase of SWs is
shown. The power and phase corresponding to modes at (b) f = 39.99 GHz
and (c) f = 60.84 GHz. The excitation was done at the centre of the array
(x = 1200 nm) and only a small part of the array is shown for visual clarity. A
bias field of 1.01 T is applied along the length of the array. Source: Ref. 262.

and the group velocity close to zero. The power and amplitude distributions are distinctly

different from the propagating modes, as shown in Figs. 4.10 (b) and (e).

4.3. Conclusion

In this chapter, we have reported a technique, which can be employed to obtain dispersion of

SWs in different kinds of magnetic micro- and nanostructures with high numerical contrast

and clarity. The use of DFT windows and sinc functions to control the spectral leakage and

aliasing is highlighted. The examples of dispersion calculations for magnetic nanostripes,

magnetic nanowires and confined thin film elements are shown to validate the method. We

then employed the described technique to calculate the dispersion curves on 1D and quasi-

2D magnonic crystals based upon magnetic antidot arrays in BV and DE configurations.

The effect of inclusion of a second magnetic component in 1D arrays of antidot lattice

on the dispersion curves is also demonstrated. The dispersion curves obtained using this

technique can be used in conjunction with analytical modelling to form guiding principles
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Figure 4.10.: (a) Selected part of the dispersion image, as shown in Fig. 4.8 (d), showing
the frequencies at which the spatial distribution of power and phase of SWs is
shown. The power and phase corresponding to modes at (b) f = 34.97 GHz,
(c) f = 48.03 GHz, (d) f = 53.01 GHz and (e) f = 67.03 GHz. The excitation
was done at the centre of the array (x = 1200 nm) and only a small part of
the array is shown for visual clarity. A bias field of 1.01 T is applied along the
width of the array. Source: Ref. 262.

in investigating and controlling the details of magnonic band structures in different kinds of

magnonic crystals.



5. Free and Pinned Boundary

Condition in a Magnonic Antidot

Waveguide

∗In this chapter we focus on the boundary conditions imposed on the dynamic components

of the magnetization vector and their effect on the spectrum of SWs in magnonic waveguides.

These boundary conditions are additional to the electromagnetic ones, which describe the

degree of freedom of the magnetization vector at the edges of the ferromagnetic material.

The effect of the boundary conditions on the spectrum of SWs in uniform thin films has

been investigated broadly.215,272,273 However, no such research has been conducted so far in

antidot lattices, in which the interfaces with air play an important role in the formation of

magnonic bands.274,275 Only free boundary conditions are assumed in the vast majority of

papers dealing with periodic waveguides. Thus, there is a gap in the research, which we

attempt to fill in with this study.

In this chapter we study the magnonic band structure in waveguides, a basic element of

any magnonic device.93,95 Waveguides for exchange SWs have been recently investigated the-

oretically with the use of micromagnetic simulations;84,259,267 periodic waveguides have been

demonstrated to have filter properties due to the folding effect and the opening of magnonic

gaps in the SW spectrum.5,94 Here we investigate a periodically modulated waveguide with

a series of antidots in the centre. Aware of the fact that the periodicity of the waveguide can

be realized in many different ways—by width or shape corrugation, or by applying a specific

magnetic field5,94,267 — we are confident that the fundamental features of this quasi-1D pe-

∗This chapter is based upon K los et al. Phys. Rev. B 86, 184433 (2012).
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riodic system are conserved and the conclusions drawn for the model considered will be of

general nature.

We show that a magnetization pinning introduced at the edges of the waveguide can

significantly change its SW spectrum. To cross–check our results we perform calculations

based on different methods: micromagnetic simulations and the plane wave method (PWM).

These techniques have already been successfully used for the interpretation of experimental

data obtained for systems of various geometry in the formulation used here.

We show that the pinning is intrinsic for PWM at the interface of magnetic/nonmagnetic

material. For micromagnetic calculations the magnetic moments are not forced to be pinned

by default.We introduce pinning by placing on the interface a thin layer for which the dy-

namics of magnetization is frozen (with the amplitude of precession set to zero).

The chapter is organized as follows. In Sec. 5.1 we describe the structure under investiga-

tion and the calculation methods used. In Sec. 5.2 we explain the effects that the boundary

conditions imposed on the dynamic magnetization components at the edges of the ferromag-

netic material have on the magnonic spectrum. Our results are summarized in the closing

Sec. 5.3.

5.1. Waveguide Structure and the Calculation

Methods

The magnonic waveguide under consideration is shown in Fig. 5.1. It has the form of a thin

and infinitely long permalloy stripe with a single row of square holes disposed periodically

along the central line. A bias magnetic field is applied along the stripe and assumed to be

strong enough (Hbias = 1 T) to saturate the sample. The material parameters of Py were

used in all calculations.

We use three methods of calculating the dispersion of SWs in the permalloy MAW: the fi-

nite difference method, the finite element method and the PWM, with OOMMF,250 Nmag276

and a home-developed Fortran code, respectively.
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Figure 5.1.: Magnonic antidot waveguide under investigation: a 3 nm thick and 45 nm wide
infinite Py stripe with a periodic series of 6 nm × 6 nm square antidots disposed
centrally along the x-axis with a period of a = 15 nm. Bias magnetic field
µ0Hbias = 1.01 T is oriented along the x− axis. The 1.5 nm wide red lines
at the Py/air interfaces mark the regions in which pinning is assumed in the
OOMMF calculations. The dashed box shows the supercell size used in PWM
calculations. Source: Ref. 213.

5.1.1. Micromagnetic Simulation

The micromagnetic simulations (OOMMF, Nmag) are performed in two steps. The magnetic

ground state is obtained first. We let the magnetization evolve in the presence of damping to

reach the static equilibrium orientation. In the next step, with damping neglected (α = 0),

a small pulse of magnetic field was applied as given by Eq. (5.1) with a small amplitude

(which guarantees the linear regime of spin dynamics). After recording the magnetization

in each mesh point for each time step, Fourier transformation is performed in the time and

space domains to obtain the SW dispersion, i.e., the wave-vector dependence of the SW

frequency.260,262

The excitation signal used to study the dynamics is of the form

hz (t, x, y) = h0
z sinc {2πfcut (t− t0)} × sinc

{

kcut

(

x− 1

2
xmax

)}

×
N∑

n=1

sin

(

nπ
y

ymax

)

, (5.1)

where the sinc function is taken in the form sinc(θ) = sin(θ)/θ. The strength of the signal is

defined by µ0h
0
z = 5 mT. The parameter fcut = 490 GHz sets the upper limit of frequencies

of SWs excited by the sinc like pulse. An offset t0 = 50 ps was given to avoid the high spikes

close to the fcut in the frequency domain of the signal. The kcut is a wave number cut–off

defined later. The symbols xmax = 3 µm and ymax = 15 nm denote the sizes of the sample.
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The summation in Eq. (5.1) was done for N = 30 subdivisions.

The benefits for using such a signal and the procedure to obtain the desired dispersion

relation are described in Sec. 4.2. In the case of an antidot lattice the effect of convolution of

the periodic array of holes will be observed in the wave-vector domain. A wavevector cut–off

kcut, which is an odd multiple of half the Brillouin zone (BZ) length (here 3π/a), may be

used to mitigate this effect. Also, in order to generate both symmetric and antisymmetric

wave fronts a suitable dependence (which, here, is a sum of symmetric and antisymmetric

excitations along the width) on y has been applied to the signal.

The OOMMF simulations are performed with 1D periodic boundary conditions243 applied

along the x− axis. A 1.5 nm mesh is used in these simulations. The correctness of the

assumed discretization was verified by comparing the results with those of simulations using

a 0.5 nm mesh.

The micromagnetic simulations do not assume by default any torque acting on the external

interfaces (numerical calculations are limited to the magnetic medium only). Therefore, the

spins are precessing freely on the systems boundaries with dipolar effects taken fully into

account.

We can force the pinning in all mesh cells located on the interfaces between magnetic

and non-magnetic materials (see the red-coloured pinning area in Fig. 5.1). It can be done

by freezing the magnetization dynamics ∂
∂t

M (r, t) = 0 with initial conditions Mz(r, t =

0) = 0 and My(r, t = 0) = 0 at the beginning of the second stage of calculation when the

system managed to reach the ground state. From the LLG equation, it follows that the

initial condition for z and y components of magnetization will be sustained, if the conditions

My(r, t = 0) = 0 and Mz(r, t = 0) = 0 are set in the pinned layer. We checked that for the

strong external field that we used (µ0Hbias = 1.01 T) the magnetization in the ground state

is uniform and parallel to the direction of Hbias even in the vicinity of the interfaces.

Because of the use of the finite difference method in OOMMF simulations, space is dis-

cretized into small cuboids. Nmag uses the finite element method, in which, in contrast,

the modelled object is discretized on a tetrahedral mesh. In general, this allows for bet-

ter modelling of arbitrarily shaped objects, but for the considered antidot waveguide, this

does not provide an advantage because our simulating object consists basically of orthogonal
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walls. For the mesh creation, we use the open source generator “NETGEN”. When creating

the unstructured mesh, care must be taken in providing the software with a proper value of

the maximum-mesh size parameter. Only when this value is small enough is it possible to

calculate the exchange and magnetostatic fields with reasonable accuracy. Unfortunately, as

the maximum mesh- size parameter decreases, the number of tetrahedral elements increases,

making the computing time and memory demands increase as well. One way to partially

overcome this problem is to use an adaptive mesh with the smaller cell sizes in the vicinity

of antidot edges. We must select a value below the exchange length, which in the case of

permalloy is 5.1 nm. Therefore, we selected a maximum size of 4.5 nm for the edge length of

all tetrahedra to achieve accurate results. However, the average edge length was about 2.5

nm with standard deviation equal to 0.6 nm. It was decided not to use periodic boundary

conditions in Nmag simulations but instead use a finite segment of this waveguide of length

1.8 micrometer, containing 120 repetitions of the unit cell. The waveguide is surrounded

by non–magnetic material, which does not have to be discretized. This is because Nmag

used a hybrid finite elements/boundary elements method to calculate the magnetostatic

contribution.

The steps to obtain the dispersion relation are the same as in OOMMF. As a first step,

a high value of the Gilbert damping parameter is chosen and the system is evolved under

the external field to find the energy-minimizing configuration of the system. This state is

used as the starting point during the second part. Now damping is neglected and the system

is excited with a pulse containing a broad frequency range. Using the Fourier transform,

the resonating values of (k, ω) are obtained as local maxima. These values constitute the

dispersion diagram.

5.1.2. Plane Wave Method for a Magnonic Antidot Waveguide

PWM has been discussed in some detail in Sec. 3.4. Here we revisit the method while

elaborating its application in the case of a 1D MAW. In the PWM, periodic Bloch conditions

are applied both along the MAW axis and in the direction perpendicular to this axis. An

artificial periodicity in the y direction creates a periodic series of non–interacting copies of

the original waveguide — this is the supercell approach.277 We used the supercell marked
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in Fig. 5.1 by dashed line. The assumed periods are 15 nm (antidot period) and 100 nm

(artificial supercell) along the x and y axes, respectively.

The antidots and spacer areas were filled with artificial material characterized by a high

value of volume anisotropy field and an extremely low value of magnetization saturation

that squeezed the magnetization dynamics in this region (effect of the low magnetization

saturation) and shifted the frequencies of spurious modes appearing in the results into a

very high-frequency range (impact of the high volume anisotropy field). Note that according

to the Landau-Lifshitz equation the increase of the effective field in the artificial material

(as a result of big volume anisotropy) will also decrease the amplitudes of dynamical mag-

netization if one wants to keep the SW frequency constant.We have made sure that the

assumed 65 nm waveguide spacing is sufficient to neglect the interactions between adjacent

copies. We plotted the dispersion relation in the Γ − Y direction (i.e., for a propagation

direction perpendicular to the waveguide’s axis). The branches that we obtained were flat

which confirmed the localization of SWs in the Y direction and the lack of crosstalks between

adjacent copies of waveguides.We also checked the amplitude of SWs in the spacers sepa-

rating waveguides, which occurred to be cancelled. The cancelling of spin dynamics in the

air gaps (spacers and antidot areas) results in magnetization pinning at the interface with

magnetic material. In order to simulate the system of planar geometry with partially pinned

magnetization on the interfaces with non–magnetic material one can artificially change the

in-plane sizes of the system from R to effective Reff to achieve a non–zero value of dynamical

magnetization when the position r coincides with R.215 We used this procedure to perform

PWM calculations in the dipolar-exchange regime for 2D antidot lattices.57

We are considering the magnetization dynamics without damping in the linear approx-

imation only. We are assuming that the magnetization precesses around X-axis in a cone

with small angle (as it is presented in Fig. 5.1). Under this assumption we can write:

Mx(r) ≈Ms,

My(r, t) = my(r)eiωt,

Mz(r, t) = mz(r)eiωt.

(5.2)
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The exchange term can be expressed as:27

Hexch = ∇λ2
ex∇M(r, t), (5.3)

which directly deviates from the Heisenberg model.278

To describe demagnetizing field for periodic slab of finite thickness we used the ideas

proposed by Kaczér and Murtinová279 and then developed in Ref. 280 where each component

of (static Hdem(r) and dynamic hdm(r, t)) demagnetizing field is depending, in general, on

the spatial distribution of all component of magnetization. The components of the static

and dynamic demagnetizing fields within the linear approximation taken into account are

Hdm,x(r) = −
∑

G

Ms(G)
(
Gx

G

)2

(1− C(z,G)) e−i(G·r‖), (5.4)

hdm,z(r, t) =
∑

G

[

−mz(G)C(z, |G + k|)

+ i my(G)
|ky +Gy|
|G + k| S(z, |G + k|)

]

eiωte−i((G+k)·r‖), (5.5)

hdm,x(r, t) =
∑

G

[

−my(G)
(ky +Gy)2

|G + k|2 (1− C(z, |G + k|))

+ i mz(G)
|ky +Gy|
|G + k| S(z, |G + k|)

]

eiωte−i((G+k)·r‖), (5.6)

where G = [Gx, Gy] and r‖ = [x, y] are 2D reciprocal lattice vector and position vector in

real space. The symbols: Ms(G) and mα(G) denote the coefficient of Fourier expansion for

magnetization saturation Ms(r‖) =
∑

G M(G)e−i(G·r‖) and periodic part of Bloch functions:

mα(r‖) = mα(G)
∑

G M(G)e−i((G+k)·r‖), where α = y, z and k is a wavevector. The functions

C(z, κ) and S(z, κ) are defined as:

C(z, κ) =
sinh(zκ)

sinh(cκ) + sinh(cκ)
, (5.7)

S(z, κ) =
cosh(zκ)

sinh(cκ) + sinh(cκ)
, (5.8)

where 2c is the thickness of MAW (in z-direction). The demagnetizing fields do not change

a lot across the slab accept the regions in the close vicinity of the external surfaces (note

that the structure is uniform in z-direction). Therefore we assumed that all fields: Hdem(r‖)
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and hdm(r‖, t) are independent on z-coordinate by taking its values form the centre of the

slab. This simplification allowed us to consider the system as 2D one.

In the linearisation procedure we took advantage from the assumption: mα(r)≪Ms, α =

y, z and dropped all small terms with precession frequency higher than ω. Then after ap-

plying the Fourier transformation we were able to convert the linearised differential equa-

tions for my(r), mz(r) into the set of algebraic equation in the form of eigenproblem with

my(G), mz(G) as eigenvectors and ω playing the role of eigenfrequency.

We checked that the sufficient convergence for the presented dispersion plots (Fig. 5.3) is

achieved for 11×91 plane waves propagating in x and y direction, respectively (described by

different x and y components of reciprocal vectors G). The details of the PWM, its supercell

formulation, and the application of this technique are available in the literature.51,57,277,280

5.2. The effect of pinning on the magnonic spectrum

Figure 5.2 (a) shows the magnonic band structure obtained in the OOMMF simulations.

The SW spectrum is very rich, with a clear evidence of periodicity and folding effects. Three

repetitions of the Brillouin zone (BZ), delimited by vertical solid lines, are considered. Free

boundary conditions for the dynamic components of the magnetization vector (unpinned

magnetization) at the edges of Py were used in these calculations. The lack of pinning is

confirmed by the mods profiles (bottom of Fig. 5.2) computed with OOMMF (not shown) and

Nmag where the non–zero values of |mz|2 at the air/Py interfaces are observed. Very similar

SW dispersion (Fig. 5.2 (b)) were obtained also in the Nmag simulations. Surprisingly, the

results obtained by the PWM are different. The PWM spectra are shown in Fig. 5.3 (red

dashed lines). The bands are seen to be shifted up in the frequency scale, and the modes

seem less numerous.

In search of explanation of this discrepancy we calculated the profiles of the dynamic

components of the magnetization vector in the PWM. The coloured maps in Fig. 5.3, bottom,

represent the modulus |mz|2 of the z component for a number of lowest-frequency modes;

blue and red correspond to low and high values of |mz|2, respectively. In all the modes in

question the magnetization is pinned at the Py/air interfaces (thin white lines). Therefore,
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Figure 5.2.: Dispersion of SWs in the MAW presented in Fig. 5.1, as calculated with (a)
OOMMF and (b) Nmag. The vertical lines delimit the first Brillouin zone. The
magnetization is assumed to precess freely at the Py/air interface, i.e., unpinned
magnetization. Bottom in (a) and (b): maps of |mz(x, y)|2 for the different values
of frequency (I to IV) calculated with (a) OOMMF and (b) Nmag. Note that
each distribution of |mz(x, y)|2 obtained by micromagnetic calculations contains
contributions of the eigenmodes differing in the wave numbers. Source: Ref. 213.
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we suspect that the main reason for the discrepancy between the results of PWM and the

micromagnetic simulation are the different boundary conditions applied in this two methods.

Unfortunately, no extension of the PWM method has been developed yet to allow for

unpinned magnetization at the interfaces with non–magnetic material. We can extend the

micromagnetic simulations, though, imposing various boundary conditions on the dynamic

components of the magnetization vector M. The procedure described in the previous section

allows one to achieve m = 0 (i.e., pinning of the magnetization M) at the interfaces with

nonmagnetic material. Figure 5.3, top panel, shows the results of the OOMMF simulations

(grey lines) and, superimposed, the PWM data. The agreement between the OOMMF and

PWM results is satisfactory now, and the effect of the pinning on the magnonic spectrum of

the MAW can be explained in detail.

The changes in the SW spectrum resulting from the introduction of pinning are relatively

simple in uniform thin films. The main difference is the occurrence of an extra mode, uniform

across the film thickness, in the case of unpinned surfaces; surface-localized modes (surface

SWs) can occur, too.273,281 The frequencies of the higher modes for pinned and unpinned

surfaces are quite similar. As we have shown already, the changes in a MAW are more

significant and complex. Many additional modes are seen to occur in the MAW spectrum

calculated for unpinned magnetization (see Fig. 5.2) compared to those obtained in the

pinned case (see Fig. 5.3). Due to the pinning in the row of antidots some modes existing in

an unpinned system (the modes with high amplitude of |mz|2 in the centre of the MAW —

see modes I and III in Fig. 5.2) can appear in a pinned system. The pinning in the centre of

the MAW reduces the degrees of freedom of the SWs and practically divides the waveguide

into two parallel sub–waveguides weakly coupled through the barrier formed by the antidot

series. This is due to the small edge-to-edge distance between neighbouring antidots, which

results in a minor crosstalk between the SWs propagating in the two sub–waveguides. The

confinement of the modes increases their separation on the frequency scale in the case of

an MAW with pinned magnetization. Moreover, due to the minor interaction between the

sub–waveguides, the eigenstates are almost degenerate for frequencies up to 200 GHz in a

wide wave number range.

In the absence of pinning, SWs spread freely over the whole width of the waveguide. This is
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Figure 5.3.: Dispersion of SWs in the MAW presented in Fig. 5.1, as calculated with OOMMF
with dynamic magnetization pinned at the Py/air interfaces (grey lines). PWM
results are plotted with red dashed lines. Yellow bars represent the magnonic
bandgaps (in OOMMF calculations). Bottom: maps of |mz|2 at points (a) to (u)
in the plot above. Green (a–h) and blue (i–p) labels refer to modes originating
from the first and second dispersion parabolas, respectively, of each isolated
sub–waveguide at the right and left of the central row of antidots. Brown labels
denote high-frequency modes localized in the row of antidots. The maps plotted
in full colours scale and hot colours scale present the results calculated with
OOMMF and Nmag, respectively. The horizontal colour lines in the dispersion
plot mark the contributions from different Bloch bands to the OOMMF profiles.
Source: Ref. 213.
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why the unpinned modes are distributed more densely on the frequency scale. The dispersion

branches of some unpinned modes are reminiscent of the continuous parabolas in Fig. 5.2.

In the low-frequency range this behaviour is seen in every alternative band, i.e., the 2nd,

4th, and 6th bands from the BZ centre, where a nodal line should appear in the centre of

the MAW. The lower amplitude of the SWs in the centre of the MAW results in a negligible

impact of the antidot series on the spin dynamics. The effect of the antidot series on the

spin dynamics is similarly small in (1) the dispersion branches of unpinned modes with a

nodal line in the centre of the MAW [see Fig. 5.2 (c)] and (2) all the dispersion branches of

pinned modes. In spite of this, their frequencies are not equal due to the different boundary

conditions at the external edges of the MAW. Therefore, no frequency agreement can be

expected between the unpinned and pinned modes in wires of the same width.

Another important property of the magnonic band structure of MAWs found in our study

is that the magnetization pinning at the edges of the MAW results in the opening of magnonic

gaps (yellow bars in Fig. 5.3). This means that even MAWs with as little as 5% air can be

used as filters with stop and pass bands. As the first magnonic gap occurs at the border of

the BZ, its opening is clearly related to the periodicity of the MAW. However, the second

gap (between the 4th and 5th bands) is seen to open inside the BZ. This indicates a different

origin of this gap.

The second gap results from the anticrossing between two pairs of modes: modes with no

nodal line within each sub–waveguide and modes with a nodal line in each half of the MAW.

In other words, the anticrossing occurs between two parabolas (connected with the lower

and higher harmonics across the MAW width) of the SW dispersion crossing due to folding

to the first BZ.

It is worth noting that the closing of the gaps in the system with unpinned magnetization

is due to the presence of additional bands (1st, 3rd, 5th, . . . ) corresponding to modes with

a significant magnetization amplitude in the centre of the MAW [see Figs. 5.3 (a) and 5.3

(b), first and third mode]. These modes are, in fact, more affected by antidots and more

separated from each other than the modes with a nodal line in the centre of the MAW,

but their presence makes the spectrum of the unpinned system denser and results in more

effective bands overlapping.
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The relatively small width of the gaps in the system with pinned magnetization is due to

the less effective impact of antidots on modes with low value of dynamical magnetization in

the centre of the MAW.

The above discussion applies to the low-frequency range, in which the mode quantization

is related to the confinement of SWs between one edge of the waveguide and the central

row of antidots. In the high-energy range the following effects can interfere with this simple

mechanism: (1) SWs can be localized between antidots in the central region of the MAW;

(2) the crosstalk can be much more efficient in the case of short SWs, which can easily “leak

out” from one sub–waveguide to the other.

Let us discuss in detail the profiles of the dynamic magnetization component |mz|2 pre-

sented in the bottom panel of Fig. 5.3. Three types of modes can be distinguished by profile:

(1) modes (a—h) originating from the first mode of each sub–waveguide (no nodal line inside

each sub–waveguide); (2) modes (i—p) related to the second mode in the completely isolated

sub–waveguides (one nodal line in the MAW); (3) modes (r—u), which are high-frequency

excitations localized mostly between antidots in the centre of the MAW. The modes are

plotted for different BZ points, indicated in the top panel of Fig. 5.3. The modes in the

centre of the BZ have no nodal line perpendicular to the MAW axis, while the modes at

the edge of the BZ only have one such line in each BZ. At intermediate points the non–zero

amplitude oscillates more smoothly along the MAW axis.

In the low-frequency range the SW modes show the following characteristics: (1) modes

occur in pairs with in phase and out-of-phase correlation between excitations in the two

sub–waveguides; (2) the frequency difference between the modes in each pair increases with

growing frequency; (3) the mode splitting can be suppressed (even for relatively high fre-

quencies) in every second pair of modes at the edge of the BZ, where the nodal line between

antidots blocks the crosstalk between sub–waveguides (cf. modes o, p to m, n).

In order to verify the mode profiles calculated using PWM we plotted also some profiles

with the aid of micromagnetic simulation (OOMMF). They are presented in Fig. 5.3 in a

hot colours scale and their frequencies are marked by horizontal lines to show from which

bands they collect the contributions. The labels a, b, e, f, and k, l, m, n present what kind

of mixture of Bloch states (calculated using PWM) exist in the profiles calculated with the
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aid of OOMMF.

Helpful for practical realizations of MAWs is the insensitivity of the magnonic gaps to the

shape of the antidots until its filling fraction and mirror symmetry of MAW is unchanged.

On such a small scale, with a feature size of a few nanometres, the shape can be expected

to play a minor role. The situation will be different in the magnetostatic regime, i.e., for

smaller wave vectors and larger antidot periods where the demagnetizing field is strongly

shape dependent and can affect the SW spectrum in the low–frequency regime.63

5.3. Conclusions

We have shown that the boundary conditions for the dynamic components of the magneti-

zation vector at ferromagnetic material/air interfaces are of much importance for the SW

spectra in nanoscale magnonic antidot waveguides. Our results demonstrate that the mag-

netization pinning facilitates the opening of magnonic gaps in magnonic antidot waveguides

with air filling fraction even as low as 5%. This indicates an additional functionality of these

types of waveguides as filters with tunable stop and pass bands. Also, our results show that

the pinning will be an important factor to be considered in the interpretation of experimental

data obtained for antidot lattices or designing new devices in which the antidot arrangement

is periodic in nanoscale. The pinning or unpinning at the interfaces is usually related to

the surface magnetic anisotropy, determined by the shape of the atomic orbitals modified at

the interfaces by the surrounding material and the reconstruction or relaxation processes.

Thus the surface anisotropy can depend on many factors, such as the interface structure on

the atomic or nanometre scale, the strain, the crystallographic structure, or the chemical

composition.282 In two-dimensional systems the investigation of these effects can be regarded

as an extension of the research in magnetic bilayers and multilayers, which were in focus at

the time of the discovery of the giant magneto–resistance effect. We have also shown that

peculiar properties of computational methods often used in the calculations are related to

specific boundary conditions for dynamical components of magnetization implicitly assumed

in each method.



6. Manipulation of Intrinsic and

Extrinsic Mirror Symmetry in a

Magnonic Antidot Waveguide

∗Recently, micromagnetic simulations (MSs) were used to show that periodic waveguides

have filter properties due to the opening of magnonic gaps in the SW spectrum at high

frequencies.5,84,267 In this chapter we investigate the influence of the fundamental property

of symmetry on the magnonic band structure. We study how loss of mirror symmetry

within an one-dimensional nanoscale magnonic antidot waveguide (MAW) may affect the

magnonic bandgap. When this symmetry exists then based on their profiles with respect to

the central longitudinal axis, the SW spectra can be separated into two groups: symmetric

modes and anti-symmetric modes. The breaking of the mirror symmetry will automatically

make the classification impossible. We will study two types of the symmetry breaking

mechanisms: categorizing them as intrinsic and extrinsic. To demonstrate the generality

of the methods discussed here, we have considered two intrinsic factors and two different

kinds of field profiles: stepped or ramped (extrinsic factors). The intrinsic factors discussed

here are the shape of the antidots and their positions within the MAW. The question is:

how do these changes influence the magnonic spectra and the existing bandgaps? Also,

how “big” the symmetry breaking needs to be in order to close the gaps? The answers

to these questions are very important for the applications of nanoscale SW waveguides in

magnonic signal processing and also from the point of view of the basic research, as it

concerns fundamental properties of a diverse group of systems. We address these questions

∗This chapter is based upon K los et al. Sci. Rep. 3, 02444 (2013).



6.1 Methods 89

in this article and go even further in terms of magnonic band engineering. We will study the

possibility of compensating the changes introduced by the structural modifications in the

magnonic spectra by modifying the bias magnetic field. We will demonstrate how collapsed

bandgaps in asymmetric waveguides can be restored by the application of the asymmetric

bias magnetic field. The extent of this restoration is also studied.

6.1. Methods

The calculations of the magnonic band structure are performed with the finite difference

method MS and the PWM, with OOMMF250 and a Fortran code developed by us, respec-

tively. Both methods solve the Landau-Lifshitz-Gilbert (LLG) equation. The damping is

neglected in PWM calculations and included in MS (α = 10−4). The effective magnetic field

Heff here consists of the bias magnetic field Hbias = (H0, 0, 0), demagnetizing field and ex-

change field. The pinned dynamical components of the magnetization vector were assumed

at Py/air interfaces in calculations with both methods. The pinning in OOMMF was intro-

duced by fixing magnetization vector in all cells of the discretization mesh, which border the

antidots, i.e., for the width 0.5 nm along y axis. (In MS the discrete mesh size of 1.5×0.5×3

nm along x, y and z axis, respectively, were used. The MS were performed for 4 ns. In the

PWM we use 961 plane waves.) Further details on obtaining the SW dispersion relations by

analysing the results of MSs are discussed in Sec. 4.1. In the PWM the pinning is applied

exactly at the edges of Py. Due to small thickness of the MAW, uniform SW profile across

the thickness is assumed. Both methods were already used in the calculations of the SW

dynamics and proved to give correct results.57,58,213,262

6.2. Results

6.2.1. Magnonic Band Structure in Symmetric and Asymmetric

MAW

We study the symmetric and asymmetric magnonic waveguides based on the antidot lattice

structure shown in Fig. 6.1. It has the form of a thin (thickness u = 3 nm) and infinitely long
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permalloy (Ni80Fe20) stripe with a single row of square holes (s = 6 nm antidots) disposed

periodically along the central line. The stripe width and the lattice constant are fixed at

2× w + s = 45 nm and a = 15 nm, respectively. The row of holes is placed at the distance

w = 19.5 nm from the top (and bottom) edge of the stripe in the case of the symmetric

MAW. A bias magnetic field, strong enough to saturate the sample (µ0H0 = 1 T), is applied

along the length of the stripe. The material parameters of Py were assumed in calculations.

x

y
M(t) m

(t)

MS

H
0

z

a s
w

w
s

u

Figure 6.1.: Antidot lattice waveguide under investigation: u = 3 nm thick and 2w+ s = 45
nm wide (infinitely long) Py stripe with a periodic series of square antidots (of
edge s = 6 nm) disposed along the waveguide with a period of a = 15 nm. The
row of antidots divides the waveguide into two sub-waveguides of width w =
19.5 nm each. Bias magnetic field µ0H0 = 1 T is oriented along the waveguide,
(x−axis). Source: Ref. 4.

We start our investigation with the symmetric MAW (Fig. 6.1).213 The dispersion relations

of SWs in the symmetric MAW is shown in Fig. 6.2. The results of the OOMMF simulations

are shown in Fig. 6.2 (a) and of the PWM in Fig. 6.2c (black solid lines). The agreement

between results from these two methods is satisfactory. The presence of two magnonic

bandgaps (of about 4 GHz each) is evident and they are marked in yellow. The origins of

these two bandgaps were found to be different. The first one opens at the BZ boundary

due to the Bragg reflection of SWs, while the second gap opens up within the BZ.213 It was

shown that this splitting of the bands within the BZ is due to the anti-crossing between two

families of modes,84 those with and without a nodal line in the upper and lower parts of the

MAW (see the first row of profiles in the bottom panel of Fig. 6.2). We showed in Sec. 5.2213

that the pinning at the edges of Py (at the waveguide edges and at edges of antidots) is

crucial for the existence of these magnonic gaps.
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Figure 6.2.: Magnonic band structures of MAWs (shown in insets above the main figures
where the thin dashed lines mark the middle of the MAW) calculated with
OOMMF in (a) and (b), and with PWM in (c). The band structures for the
symmetric MAW are shown in a) and in c) with black solid lines. The results for
MAW with upward shifted antidots row are shown in (b) and (c) with red lines
calculated with OOMMF (∆w = 1 nm) and PWM (∆w = 0.9 nm), respectively.
In the bottom panel, the squared amplitudes of the dynamical magnetization
|mz|2 for first four modes in the center (first and second row) and boundary
(third and fourth row) of the BZ is calculated with PWM–cf. (c) are shown for
symmetric (first and third row) and asymmetric (second and fourth row) MAW.
Source: Ref. 4.

The structure investigated above has a mirror symmetry with respect to the central axis

of the MAW. Thus, the 1st and the 3rd modes are symmetric while the 2nd and the 4th are

antisymmetric. The frequencies of first two modes (symmetric and antisymmetric one) are
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degenerate in the entire wavevector regime and their maps of square of the amplitude of

these modes are identical (see the first and third rows of profiles for BZ center and border in

the bottom panel of Fig. 6.2). The degeneracy of symmetric and antisymmetric oscillations

in the waveguide points at very weak coupling of oscillations localized in the upper and the

lower parts of the MAW (in the two equivalent sub-waveguides, Fig. 6.1). The shift of the

row of antidots from the central line will break the mirror symmetry of the MAW. If this

shift is in +y direction, the upper and lower sub-waveguides will become narrower and wider,

respectively. Frequencies of modes localized in the two sub-waveguides will split, with one

mode shifted up and the other shifted down on the frequency scale. The dispersion relations

of SWs in asymmetric MAWs, obtained by shifting the row of antidots by ∆w = 1 nm and

0.9 nm upward, calculated using OOMMF and PWM, are presented in Figs. 6.2 (b) and (c)

(red lines), respectively. (In OOMMF slightly larger value of ∆w were used because of the

limitations of the discretization mesh and time needed for simulations.)

We see that a shift of the antidots row (along the width of MAW) by only 2% of 2w + s

is enough to close both magnonic gaps. At the BZ center, the first (second) mode center

has an amplitude concentrated in the wider (narrower) part of the MAW of width w + ∆w

(w − ∆w) (see profiles in the second row in Fig. 6.2 at the bottom). The modes 3’ and 4’

at the BZ boundary originate from modes 1’ and 2’, respectively due to the folding from

the neighboring BZ. Therefore, their profiles of amplitudes are quite similar. Typically,

lower frequency modes are concentrated in wider regions of space. It means that two lower

(higher) modes must be concentrated in wider (narrower) MAW. Note that, the oscillations

of the magnetization amplitude for the modes at the BZ boundary are related to the shifting

of the phase of the Bloch waves with the period of the lattice. When ∆w = 0, modes 1’

and 2’ are concentrated in relatively larger regions (between the antidots) in the two sub-

waveguides when compared to the coverage of modes 3’ and 4’ (directly above or below

the antidots). However, when the mirror symmetry is lost (∆w 6= 0), 1’ and 3’ cover the

larger regions between the antidots while 2’ and 4’ are limited to the smaller regions directly

above or below the antidots in the two sub-waveguides. Further, 3’ and 4’ are on a narrower

sub-waveguide as compared to 1’ and 2’. This makes the spatial distribution of 2’ and 3’

comparable in shape and expanse. Thus these two modes have similar frequencies at the BZ
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boundary which, in turn, leads to the collapse of the first magnonic bandgap. A very similar

mechanism is responsible for the closing of the second gap as well; even though the origin

of this gap is different and the respective changes of frequencies of the third and the fourth

bands are larger. As we mentioned before, the second gap appears at the anti-crossing of

the modes with different quantization across the width of MAW. The modes 3’ and 4’ have

no horizontal nodal line inside of each sub-waveguides whereas the modes 3 and 4 have one

for each part of the MAW.
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Figure 6.3.: Width of magnonic gaps in the considered MAW as a function of (a) the shift
of the antidots row ∆w, and (b) an additional asymmetric bias magnetic field
∆H0 in the symmetric MAW. The ∆H0 increases the bias magnetic field in the
upper half of the MAW (to H0 + ∆H0) and decreases the bias magnetic field in
the lower half of the MAW (to H0 −∆H0). Source: Ref. 4.

The bandgap widths as a function of ∆w are shown in Fig. 6.3 (a). The width decreases

monotonously with increasing ∆w. The slope for the second gap is larger leading to its

complete collapse at ∆w = 0.45 nm, while the first gap exists up to 0.8 nm. We note that

the shift of the antidots row does not change the translational periodicity in the structure.

Thus the observation of magnonic bandgap closing shown in Fig. 6.3 (a) is purely related to

the loss of the mirror symmetry of MAW and associated movement of different modes.

We now demonstrate that breaking the mirror symmetry by extrinsic means can also lead

to splitting of the bands and closing of magnonic gaps. In Fig. 6.4 we show PWM results

(dashed green lines) with the additional magnetic field ∆H0 (µ0∆H0 = 180 mT) applied (a)

parallel and (b) antiparallel to the original bias H0, in the upper part of the symmetric MAW.

The black solid lines mark the magnonic band structure for the homogeneous magnetic field,



6.2 Results 94

a b

1+

2+

1-

2-

H
0

DH
0

+ H
0

DH
0

-
H

0 H
0

1+

2+ 2-

1-

0.50.40.30.20.10.0
0

50

100

150

200

250

fr
e

q
u

e
n

c
y
 (

G
H

z
)

wave number (2 /a)p

0.50.40.30.20.10.0
0

50

100

150

200

250
fr

e
q

u
e

n
c
y
 (

G
H

z
)

wave number (2 /a)p

Figure 6.4.: Magnonic band structure of the MAW (presented in Fig. 6.1) calculated with
PWM for asymmetric bias magnetic field (green dashed lines). The additional
magnetic field of µ0∆H0 = 180 mT is applied in the upper part of the MAW (a)
parallel and (b) antiparallel to the direction of the bias field H0. The magnonic
band structure for the symmetric MAW with homogeneous bias magnetic field
is shown in black solid lines in (a) and (b). The squared amplitudes |mz|2 for
the first and second modes in the BZ center are presented on both sides of the
figures for the MAW with asymmetric bias magnetic fields. Source: Ref. 4.

i.e., the same as in Fig. 6.2 c). The parts of the MAW where the increased or reduced bias

magnetic fields were applied were 18 nm wide from the closest MAW edge. Similar results

were also obtained from simulations (not shown). The parts of the MAW with changed

(increased or decreased) bias magnetic field are marked with green colour in the insets of

Fig. 6.4. From Fig. 6.4, we can see that the (a) increase or (b) decrease of the bias magnetic

field splits frequency bands by shifting the position of some modes up or down, while other

frequency modes remain unchanged. The squared amplitudes of the SWs pertaining to the

first two modes (1 and 2) are calculated at the BZ centre and are shown at the left and right

of Fig. 6.4. A selective population distribution, predicated upon the changed external field,

is clearly evident amongst these modes. The increase (decrease) of the bias magnetic field in

the upper half of the MAW increase (decrease) the frequency of the modes localized in this

sub-waveguide. It is worth noting that an uniform change of the magnetic field will shift the

whole spectra but preserve the bandgaps in the structure.



6.2 Results 95

6.2.2. Compensation of the Effect of an Intrinsic Symmetry

breaking

We have just shown that the magnonic spectra, especially the magnonic bandgaps for the

considered MAW are sensitive towards loss of its (intrinsic or extrinsic) mirror symmetry. We

now investigate if it is possible to compensate the effect of an intrinsic symmetry breaking

in a MAW by an extrinsic factor. In our case it will be a compensation of the effect of

the structural asymmetry on the magnonic band structure (and magnonic bandgaps) by

asymmetric bias magnetic field. The answer will begin from the development of an analytical

model.

We showed that the amplitudes of modes from the first four magnonic bands in asymmetric

MAW concentrate mainly at the top or bottom part of the structure (see the square of the

amplitude in Figs. 6.2 and 6.4). This allows for a qualitative explanation of the observed

changes in magnonic band structure by a model of two sub-waveguides (in the upper and

lower parts of the waveguide), which are weakly coupled through a row of antidots. This

observation lets us also to make the estimation of a compensation of the symmetry breaking

mechanisms. We will discus first the effect of the changes of the width and bias magnetic

field in a single waveguide on the dispersion relation of SWs.

In the homogeneous waveguide the solutions of the linearised LLG equation (with damping

neglected) can be written in the following form: m(x, y) = m(y)eikxx, where kx is the

wave-vector of the SW along the waveguide and m(y) describes the dependence of the

amplitude of dynamical components of the magnetization m across the waveguide width

(we assume the uniform magnetization across the waveguide thickness, which is much less

than the width). The solutions can be estimated as: m(y) ≈ sin(κy), cos(κy) where the

transversal component of the wave-vector κ = (n + 1)π/weff is quantized (n = 0, 1, 2,

... counts the number of nodal lines across the waveguide width). For strong but not

ideal pinning the effective width weff = wd/(d − 2) depends on the pinning parameter d,

which determines the boundary conditions for magnetization and gives also a possibility

to include the dipolar effects into the model.255 It varies in general from 0 to ∞ for the

transition from unpinned to fully pinned boundary conditions. The pinning parameter d =

2π(1− Ks

πM2
s u

)/[ u
w

(1−2 ln( u
w

)+(λex

u
)2)] depends both on the material and structural parameters
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(Ks denotes the surface anisotropy). It accounts for both the exchange and the dipolar

interactions. For d ≈ ∞, as in our numerical calculations, n = 0 means no nodal line in the

upper or lower part of the MAW (see, Fig. 6.2; modes 1 and 2), n = 1 denotes a single nodal

line (see, Fig. 6.2; modes 3 and 4), etc. The dispersion relation of SWs in the waveguide can

be written in the form:28,255

ω =
√

(ω0 + ωex) (ω0 + ωex + ωdip), (6.1)

where ω is the angular frequency of SWs. ω0 = γµ0H0, ωex = γµ0Ms
λ2

ex

w2 (n2π2 + k2
xw

2),

ωdip = γµ0Ms
1−exp(−kxu)

kxu
denote the contributions from external, exchange and dipolar fields,

respectively.

The estimations of changes in SW dispersion relation resulting from the changes of w

or H0 can be done by calculation of the full differential of the function ω = ω(w,H0). It

will allow one to derive the relation between small changes of ∆H0 and ∆w, for which the

desired compensation between intrinsic and extrinsic symmetry breaking is obtained, i.e.,

when dω(w,H0) = 0:

µ0∆H0

∆w
≈ 2π2µ0Msλ

2
ex(n+ 1)2

w3
× f

(

Ks

πuµ0M2
s

− 1,
λex

w
,
u

w

)

. (6.2)

This ratio, having units of T/m, describes how much extra asymmetric magnetic field needs

to be added to compensate for the shift in the row of the antidots. The function: f(s, l, r) =

[s+ 1
π
(2 l2

r
−4r ln(r))][s+ 1

π
(r+ l2

r
−2r ln(r)−s)]s−2 depends on three dimensionless parameters:

s–the relative strength of the surface anisotropy, l–ratio between exchange length and the

width of the waveguide and r–the aspect ratio of the waveguide. The values of f(s, l, r) with

big absolute value of Ks, refer to the regime of strong pinning. Note that Eq. (6.2) does not

depend on kx, which means that it should be fulfilled for any wave-vector.

In our MAW, we have two sub-waveguides separated by the antidots row. When we

shift the row of the antidots by ∆w along positive y direction, the width of the upper

sub-waveguide decreases by ∆w and the width of the lower sub-waveguide increases by the

same amount. This causes the higher and lower frequency modes to become concentrated

in the narrower and wider sub-waveguide, respectively. To compensate for these changes in
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the dispersion relation by a bias magnetic field we need to do the opposite. According to

Eq. (6.2) we need to apply different bias magnetic fields to upper and lower sub-waveguides.

The dependence of the magnonic gap width under asymmetric bias magnetic field of the

step-like shape applied to the MAW; i.e., in the upper part of the MAW bias magnetic field

is H0 + ∆H0, while in the lower part of MAW is H0−∆H0, calculated with PWM is shown

in Fig. 6.3 (b). We can see decrease in the gap widths with increasing ∆H0, similar to the

changes observed with increasing ∆w.

After these estimations we perform the PWM calculations. The results are presented

in Fig. 6.5 (b) and (c) for ∆H0 to recover the first and the second magnonic gaps in the

asymmetric MAW (i.e., when ∆w = 0.9 nm and 0.5 nm), respectively (see Fig.6.3 (a)). It

is interesting that we found it possible to recover the first and the second magnonic gaps

but with different values of the ratio µ0∆H0

∆w
. The analytical values of this ratio (calculated

from the Eq. (6.2)) with w = 18.5 nm, i.e., the distance between pinned layers used in MS)

for the ideal pinning (f(s, l, r) = 1) for the first gap (when n = 0) and the second one (n =

1) are 101 mT/nm and 406 mT/nm, respectively. To validate our predictions we performed

MSs for µ0∆H0 = 105 mT and ∆w = 1 nm. The simulation results are shown in Fig. 6.5

(a) with the first frequency gap opened and in good agreement with the PWM calculations

shown in Fig. 6.5 (b). Although, the second bandgap is formed due to the anti-crossing of

the n = 0 and n = 1 modes, at ∆w = 0.5 nm the splitting of the n = 1 dominates (see

Figs. 6.2 (b) and (c)). Hence, in order to open the second gap we have to target the shifts

for the bands with a single nodal line (n = 1) by applying the field for which µ0∆H0

∆w
is about

4 times bigger than that for the first gap (410 mT/nm). This confirms the applicability

of Eq. (6.2) with a square dependence on n + 1. The profiles of SWs (compare bottom

panels of Fig. 6.2 and Fig. 6.5) further establish the restoration of amplitude distribution

by extrinsic compensation. The presented results proved that the asymmetric bias magnetic

field can reduce the effect of the intrinsic symmetry breaking introduced by the shifting of the

position of antidots on magnonic spectra. Small differences in the extent of bandgap recovery

obtained from numerical calculations and the analytical model, show that the pinning in the

middle of MAW is not perfect.

Our predictions should also be applicable to MAWs where the loss of the mirror symmetry
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Figure 6.5.: Magnonic band structure of the MAW showing the compensation effect of an
intrinsic asymmetry by an asymmetric extrinsic field. In (a) and (b) (green lines)
the first gap (for the modes n = 0) is reopened. The calculations with OOMMF
(a) and PWM (b) were performed for ∆w = 1 nm and 0.9 nm, respectively, with
µ0∆H0 = 105 mT (µ0H0 = 1 T). The reopening of the second gap (opened in
the anti-crossing of the mode n = 0 with n = 1) is presented in (c). Calculations
in (c) were done with PWM for µ0∆H0 = 205 mT and ∆w = 0.5 nm. The left
insets in (b) and (c) show enlarged results for the step-like field profile of the
bias magnetic field; and the right ones show the outcomes for linear change of
the magnetic field profile (ramp-like profile) across the MAW. At the bottom,
profiles of SW calculated with PWM are shown. Profiles for modes 1 and 2
are calculated for the band structure in (b) and modes 3 and 4 for the band
structure in (c) at the BZ centre. Source: Ref. 4.

has occurred due to a change in a different intrinsic parameter. In order to establish the

same, we now perform calculations for MAW with rectangular antidots. The new MAW

structure is shown at the top row of Fig. 6.6. The MAW consists of the rectangular antidot

row with dimensions 6 nm × 4.5 nm, along the waveguide and across its width, respectively.

The sub-waveguides formed on both sides of the antidots have now different width of w =19.5

and w + ∆w = 21 nm. Study of this kind of asymmetry can be of practical importance,
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because such unintended defects can occur during the design or fabrication stages. The

magnonic band structures calculated with PWM and OOMMF for this MAW are shown in

the Fig. 6.6 (a). We can see that the mirror symmetry breaking by the decrease of antidots

size across the waveguide width results in the splitting of magnonic bands and consequently

the collapse of bandgaps in a manner similar to the results presented in Fig. 6.2 (b). The

analytical formula Eq. (6.2) still can be used to estimate the bias magnetic field necessary

to reopen magnonic bandgap in the spectra. According to Fig. 6.6 (a) we need to increase

the frequency of the first and third modes without affecting the second and forth modes.

According to our models, we should be able to achieve this simply by increasing the magnetic

field in the wider (21 nm wide) part of the MAW by µ0∆H0 = 0.02 T. The result of the

calculations for the step-like magnetic field is shown in Fig. 6.6 (b). The first magnonic

bandgap has almost the same width as for the symmetric waveguide. The results of the

PWM calculations are confirmed by MSs, which are shown in Fig. 6.6 (a) and (b) as colour

maps. The good agreement is found.

6.3. Discussion

We have shown that a small mirror symmetry breaking in MAW by the shift of the row of

antidots from the waveguide axis or by an asymmetric change of their shape (i.e., by changes,

which leave the discrete translational symmetry of the lattice intact) can result in closing of

magnonic bandgaps in the range of the spectra determined mainly by exchange interactions.

We observed that the loss of symmetry causes a redistribution of the amplitude associated

with different SW modes in the physical space of the MAW. This results in the movement

of modes in the SW spectrum. Although, the two bandgaps observed and discussed here

have different origins, their collapse is demonstrably a direct result of the loss of the mirror

symmetry and the associated redistribution of SW amplitude.

Moreover, we have shown that the magnonic bandgap in the asymmetric MAW can be

reopened by an asymmetric bias magnetic field of a step-like profile across the MAW width.

With the help of an analytical model we were able to extract the main parameters responsible

for closing the gap and its reopening by the external magnetic field. It was presented that
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Figure 6.6.: Magnonic band structure of the MAW with rectangular antidots of dimensions 6
nm × 4.5 nm (shown at the top). The antidots row separate two sub-waveguides
of different widths, 19.5 nm and 21 nm. The uniform bias magnetic field µ0H0 =
1.0 T is applied parallel to the MAW axis. The dashed lines and the colour
maps show the results from PWM calculations and MSs, respectively. (b) The
magnonic band structure for the same MAW as in (a) but with step-like bias
magnetic field with the value of µ0H0 = 1.0 T in the narrower waveguide and
µ0(H0 + ∆H0) = 1.2 T in the wider waveguide. The first magnonic gap marked
by the coloured rectangle has reopened. Source: Ref. 4.

two magnonic bandgaps of different origins can be selectively reopened in the asymmetric

waveguides by this way. It was shown here with an analytical model and also in some

papers,68,213,242 that the detailed shape of antidots and random defects do not play significant

roles in effects studied in the manuscript. Our results can be crucial for practical realization

of SW waveguides for magnonic applications in high frequencies, because precise mirror
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symmetry is difficult to achieve on such small scales, leading to deviations form the ideal

structure. The intrinsic and extrinsic symmetry breaking or its compensation can also be

exploited to tailor the magnonic band structure or manipulate active and inactive waveguide

modes, which couple to the external fields83,283 in a similar way as was predicted for plasmonic

metamaterials.284

The experimental proof of the compensation effect proposed here with the step-like profile

of the bias magnetic field is challenging. More feasible for experimental realization will be

a continuous change of the bias magnetic field. We propose to use a ramp-like profile of the

magnetic field:285 H = H0 + 2∆H0(2y+ ∆w), where y = 0 corresponds to the MAW center.

The values of ∆w and ∆H0 can take the same values as for the step-like profile of magnetic

field considered above. The results of PWM calculations for the ∆H0 and ∆w taken in

the calculations presented above are shown in Fig. 6.5 in right insets. These results were

also confirmed by MSs. We have found, that this kind of field acts similar to the field with

step-like profile, when its value is normalized to the same average value as the step–like field

for corresponding sub-waveguides (the aforementioned formula for ramp-like field meets this

criteria).

The development of the analytical model presented here was made possible solely by dint

of the fundamental properties of discrete translational and mirror symmetries of a crystal

lattice. Thus, the main conclusions should not be limited to the particular cases investigated

here and it should be possible to extend this idea to other SW waveguides, including those

with larger dimensions, or to other types of waves. In the former case the inhomogeneous

demagnetizing field, anisotropy of magnetostatic SW dispersion relation,286 and multi–mode

character of waveguides201 have to be taken into account. Thus, further investigation is

necessary. The compensation effects proposed here should find applications also in other

systems, like electrons propagating in a periodically patterned graphene nano–ribbon by the

external electric field,287–289 or in photonic, plasmonic and phononic waveguides although

with tailored electric and elasticity fields, respectively.



7. Effect of Antidot Shape on

Spin–Wave dispersion in a

Magnonic Antidot Waveguide

∗This chapter aims to help fill that gap in research by numerically simulating the magnonic

dispersion in 1D MAW lattices with different geometric shapes of the antidots. We also

study the spatial magnetization distribution for different frequencies and wavevectors of the

observed dispersion modes. We further plot exchange and demagnetization fields to examine

how they change with differing antidot shapes. We have used antidots, which are n sided

regular convex polygons inscribed within a circumcircle of radius,

rn =

√

2fA

n
cosec(

2π

n
); (7.1)

such that, the filling fraction f , the ratio of area of the hole to the area A of the unit

cell, remains a constant. Micromagnetic simulations were performed for n = 3 (triangu-

lar), 4 (square), 5 (pentagonal) and 6 (hexagonal antidots) in Object-Oriented Micromag-

netic Framework (OOMMF).250 The case of n =∞ (circular antidots) was simulated using

Nmag.276 This chapter is organized as follows. The geometrical structure of the waveguide

and method used for calculating dispersion are described in greater detail in Sec. 7.1. Sec-

tion 7.2 presents the results and analysis linking the ground state field distribution with

changes in the observed SW dispersion modes. Section 7.3 contains the concluding remarks.

∗This chapter is based upon Kumar et al. J. Appl. Phys. 114, 023910 (2013).
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7.1. MAW and The Numerical Method

7.1.1. MAW Structural and Material Parameters
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Figure 7.1.: (Top panel) A part of the 1D MAW structure showing square antidots (white
holes in grey magnetic region) disposed along the central axis of the waveguide
of width, w = 24 nm and lattice constant, a = 24 nm. The square antidots
are inscribed within a circle of radius, r4. (Bottom panel) Other examined
antidot shapes inscribed within their respective imaginary circumcircles. For
n ∈ {3, 4, 5, 6,∞}, rn is given by Eq. (7.1), where filling fraction f = 0.25 and
unit cell area A = wa. Source: Ref. 68.

Figure 7.1 depicts the MAW structures under investigations. The MAWs had both width,

w and lattice constant, a set to 24 nm and a length, l and thickness, s of 2.4 µm and

3 nm in all cases. For f = 0.25, A = wa and n ∈ {3, 4, 5, 6,∞}, Eq. (7.1) dictates rn as

21.06, 16.97, 15.56, 14.89 and 13.54 nm, respectively. The material parameters similar to that

of permalloy (Py: Ni80Fe20) were used during simulations (exchange constant, A = 13×10−12

J/m, saturation magnetization, Ms = 0.8×106 A/m, gyromagnetic ratio, γ̄ = 2.21×105

m/As and no magnetocrystalline anisotropy).

7.1.2. Micromagnetic Simulations

Micromagnetic simulations246 are done with the help of the finite difference method (FDM)

based OOMMF (for n = 3, 4, 5 and 6) or the finite element method (FEM) based Nmag (for

n = ∞). For the cell size used here, Nmag reproduces the circular shape much better than

that obtained in OOMMF. The use of two different simulation packages also ensures that

the established results are independent of the spatial discretization. Both these open source

platforms solve the Landau-Lifshitz-Gilbert (LLG) equation.
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In order to obtain the SW dispersion relations, a 2D discrete Fourier transform (DFT)

was performed on the obtained results.262 Before simulating the SW dynamics, a magnetic

steady state was achieved by subjecting the MAWs to an external bias of 1.01 T (along the

length of the waveguide) under a Gilbert damping constant, α = 0.95. This high external

field saturates the magnetization of MAWs. To observe sharper dispersion peaks α was

artificially reduced to 10−4 during simulation of the dynamics. For simulations done in

OOMMF, cuboidal cells of dimensions dx = dy = d = 1 nm and dz = s = 3 nm were used to

span the MAWs. The resultant gridding of antidot edges which are not aligned with X or Y

axes may cause the entire hole geometry to move towards one of the edges of the MAW. How

this intrinsic mirror symmetry breaking affects the SW dispersion relations was described

in Chap. 6.4 Nmag, being FEM based, uses adaptive meshing and hence, its outputs do not

suffer from this issue. However, spatial interpolation needs to be done in order to obtain

magnetization values at every 1 nm interval before performing the DFT. Data was collected

every dt = 1 ps for both OOMMF and Nmag for a total duration of 4 ns. This gives us a

sampling frequency, fs = 1000 GHz. The excitation signal, Hz is normal to the plane of the

MAWs and is given by:

Hz = H0

(

sin(2πfc(t− t0)

2πfc(t− t0)

)

×
(

sin(2πkc(x− x0)

2πkc(x− x0)

)

×




w/dy
∑

i=1

sin(iπy/w)



 . (7.2)

Here µ0H0 = 6 mT, fc = 490 GHz, t0 = 1/(fs − 2fc) = 50 ps, kc = π/a and x0 = l/2 = 1

µm. This form of excitation signal will excite both symmetric and antisymmetric modes

of the dispersion relations in a width confined MAW. The aliasing associated with DFT is

mitigated by the fact that the signal given by Eq. (7.2) carries no power beyond fc in the

frequency domain. Similarly, power in the wavevector domain is limited to the first Brillouin

zone (BZ) from −kc to kc.

We also calculated the SW power and phase distribution profiles (PPDPs) for a given

(k, f) pair of any dispersion relation. It was done by masking the obtained relation with a

suitable mask in wavevector domain followed by doing an inverse Fourier transform in the

same domain to yield data in physical space. For example, in order to obtain these results

for (k, f) = (K, F ) a mask, Dm was created to span the entire k vs. f space such that:
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Dm(k, f) =







1 if k = 2
a
cπ±K: c is an integer

0 elsewhere.
(7.3)

After multiplying Dm with the obtained dispersion relations we then take an inverse Fourier

transform in k-space to arrive at the desired PPDPs. This mask is designed to include power

only from k = K and nullify the power present in the rest of the wavevector domain. Simply

performing the inverse transform in k-space without using such a mask will allow power from

the entire wavevector range to distort the results.

7.2. Results and Observations

The calculated dispersion relations are tabulated in Fig. 7.2. Frequency ranges from 0 to 120

GHz and wavevector k ranges from 0 to the first BZ boundary (π/a) are displayed. As the

bias field is kept constant at 1.01 T, a forbidden region is observed in all the cases up to the

ferromagnetic resonance mode of about 39 GHz. SW of any k is not allowed in this region.

Bandgap I is also present in all the cases. For triangular, square, pentagonal, hexagonal and

circular antidots, its respective values are 4.3 GHz (43 GHz to 47.3 GHz), 5.6 GHz (44.1

GHz to 49.7 GHz), 4.4 GHz (44.5 GHz to 48.9 GHz), 4.4 GHz (44.8 GHz to 49.2 GHz)

and 3.5 GHz (44.9 GHz to 48.4 GHz). In the case where the square antidots were tilted by

45◦ (diamond shaped antidots), bandgaps I & II were observed; and their respective values

were 3.6 GHz (44.2 GHz to 47.8 GHz) and 3.5 GHz (57.8 GHz to 61.3 GHz). An additional

bandgap (III) of 6.6 GHz (94 GHz to 100.6 GHz) was observed in the case of triangular

antidots. Bandgaps II & III are direct but bandgap I is indirect suggesting a difference in

their origin which can be studied by looking at the spatial PPDPs for the modes between

which they exist.

Figure 7.3 shows the spatial SW PPDPs for the marked (k, f) values in the Fig. 7.2.

Only a part of the entire MAW structures have been shown for convenience. Mode a©
appears to describe the uniform mode showing insignificant power or phase variation in the

medium. The power distribution profile (PoDP) of mode b©, being at the BZ boundary,
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Figure 7.2.: SW dispersion results of MAW structures marked with their respective anti-
dot shapes as insets. Indexed band gaps are highlighted with horizontal bars.
Source: Ref. 68.

features narrow vertical nodal lines at x = x0±(c+ 1/2)a; where c is an integer. The regions

joining these nodal lines are π radians out of phase with each other. This suggests that the

positions of the phase boundaries in the phase distribution profiles (PhDP) depend on the

location of the signal x0 used in Eq. (7.2). Power distribution profiles for mode c© contains

a horizontal nodal line right down the centre of the MAWs in all cases. The upper and lower
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Figure 7.3.: Power (first and third column) and phase (second and fourth column) distribu-
tion profiles corresponding to marked (k, f) locations ( a© to e©) in Fig. 7.2 for
MAWs with triangular, diamond, square and hexagonal shaped antidots. Power
is presented on an arbitrary logarithmic colour map while the phase profile rep-
resentations use a cyclic colour map. Source: Ref. 68.

parts of the waveguide are again π radians out of phase with each other. This hints at the

fact that modes a© and c© correspond to zero and first order modes along the width due to

the lateral confinement of the waveguide.215 Modes d© and e© are calculated at k = π/2a

as they become nearly degenerate at the BZ boundary for square and hexagonal antidots.

This degeneracy can lead one of the modes to affect the results of the other. Vertical

nodal lines for both these modes are now located at x = x0±(2c + 1)a. Yet again, the

position of the phase boundaries appear to be controlled by the location of the signal at x0.

The periodicity of these nodal lines 2a is understandable given the location of modes (half

way from BZ boundary). Slight curvature is observed in all the nodal lines for triangular
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antidots. We attribute this to the lack of mirror symmetry within the hole geometry along

a vertical axis. Similar curvature of nodal lines was detected for the MAW with pentagonal

antidots (not shown) which also lacked such a symmetry. Belonging to the same dispersive

branch of the spectrum, modes c© and d© share a horizontal nodal line which stems from the

aforementioned lateral confinement. The observed effects of such confinement and the shape

of dispersion curve to which modes a© through d© belong reminds us of the first two (nearly)

parabolic dispersion curves observed in the case of a uniform waveguide.79 In contrast, mode

e© belongs to dispersive branch in the spectrum, which curves downwards. This branch

is formed by the anti-crossing of lowest energy modes originating in the two neighbours of

a BZ; and as such mode e© unlike modes a© and b© does not show any horizontal nodal

lines. Since the first two lowest energy branches share the same upward curvature, only

indirect bandgap originating in the same BZ is possible. The third lowest energy branch of

a BZ which originates in its two neighbouring BZs (aided by zone folding) has downward

curvature. Thus, only a direct bandgap can be supported between this and the second lowest

energy curve at the BZ boundary.

A quick visual comparison of different dispersion relations displayed in Fig. 7.2 reveals a

qualitative convergence of dispersion modes starting as early as n = 4 (square antidots). No

new band gaps open or close. Section 5.2 discussed such similarities between results from

different antidot based MAWs and how this convergence, or insensitivity towards the shape

of the hole is desirable for the functioning of MAWs. However, note that when the square

antidots are tilted by 45◦ (diamond shaped antidots) (see Fig. 7.2, left column middle row),

one of the band gaps from n = 3 case is partially restored. The computations of the exchange

and the dipole field profiles (EFPs and DFPs) are done to help understand the cause for

this observation. These profiles are shown in Fig. 7.4. It may be noted how the EFP around

the square antidots matches to that around the hexagonal antidots. They have similar field

orientations and cover similar regions in space. Maximum value of the this field is of the order

of 20% of Ms. However, their demagnetizing field profiles do not match well. On the other

hand, the demagnetizing field profile around the tilted square antidots matches better with

the same around the hexagonal antidots (similar field orientations and elongated coverage in

space and comparable maxima of the order of 50% of Ms). Hence, the demagnetizing field or
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Figure 7.4.: Exchange (left column) and demagnetizing (right column) field profiles at t = 0
for n = 3, 4 & 6 (marked by insets).

its corresponding potential distribution, may not be the cause of the observed changes in the

band structure. Dipole dominated SWs, which occur in much larger structural dimensions

are more likely to be affected by the demagnetizing field distribution. To further test the

postulate, that the dispersion in considered MAWs is largely dependent upon the exchange

field distribution, the case of diamond shaped antidots was considered. It was anticipated

that these antidots will produce elongated regions of inhomogeneous exchange fields (similar
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to what is observed along the slanting edges of the triangular antidots) as opposed to chiefly

circular ones (which is seen in the case of square antidots). Surly enough, the exchange

field profiles of triangular, diamond shaped and square antidots were remarkably different

from each other (as one of the edges of triangular antidot is vertical). This establishes a

correlation of observed SW dispersion on their exchange instead of their demagnetizing field

distribution.

Exchange energy density, Eexch (ri), which contributes to the total energy M · Heff, is

isotropic in a homogeneous magnetic medium with uniform exchange coefficient A. This

field is calculated in OOMMF250 as given below:

Eexch (ri) = Am (ri) ·
∑

rj

m (ri)−m (rj)

|ri − rj |2
. (7.4)

Where rj enumerates the region in the immediate neighbourhood of ri. In the absence of

SW dynamics m(ri)−m(rj)≃0 except where rj lies close to antidot boundary. Therefore, by

changing its geometrical boundary, the exchange field distribution around an antidot can be

changed. This can conceivably scatter exchange dominated SWs differently and alter their

resultant dispersion relation.

It also needs to be considered if the simulations represent the physical reality. Particularly,

how can FDM or FEM based ordinary differential equation solvers like OOMMF or Nmag,

which necessarily discretize the continuous sample, calculate the isotropic exchange energy

and the demagnetization energy247 with good accuracy? Reference 253 concludes that the

discrete representations should yield accurate results for πd/a = π/24 ≪ 1. This was further

confirmed by the fact that using d = 0.5 nm for the MAW with tilted square antidots did

not alter the exchange field distribution significantly.

7.3. Conclusions

We have discussed the dispersion of spin-waves in nanoscale one–dimensional magnonic anti-

dot waveguides. In particular we have observed how an antidot’s geometry can affect the said

dispersion. By dint of power and phase distribution profiles of different spin-wave modes,
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we have explored the origin of direct and indirect bandgaps that were encountered in the

obtained dispersion relations. This understanding can be used, for example, to more readily

design for the direct bandgaps and avoid the indirect ones. We have also studied the degree

and nature of the inhomogeneity in the exchange field distribution around the edges of an

antidot. Apart from offering a way to control the band structure of the exchange dominated

spin-waves, we have also demonstrated their dependence on the exchange field profile around

the antidots. We demonstrated that useful direct bandgaps can be opened at the same fill-

ing fraction without removing additional material during fabrication. Demagnetizing field

profile, whose intensity here reached over 0.5Ms, is expected to affect the dispersion relations

on (thousand times) greater length scales. Without considering the changes in the exchange

field distribution, the same has been established by Ref. 63 in two-dimensional magnonic

crystals where the hole is filled up by another magnetic material. However, forbiddingly vast

computational resources will be required to obtain those results with good frequency and

wavevector domain resolutions without compromising the accuracy of the dynamics.



8. Effects of Other Structural

Parameters

∗The periodic waveguide gives the possibility to design the selective leads which possess the

filtering properties for transmitted SWs due to the presence of magnonic gaps. The position

and the width of those gaps can be controlled by the structural parameters of the waveguides

or by the bias magnetic field. It is also possible to design frequency dependent delay lines

by exploiting the significant reduction of SW group velocity in the vicinity of magnonic

gaps. The subject of periodic waveguides for SWs was extensively studied for few kinds

of geometries: (i) comb-like structures and loop structures, where the SWs interference at

the junctions in those brunched structures is crucial for magnonic band gap opening,290 (ii)

the waveguides with periodically corrugated edges where the periodic change of the width

is the main factor responsible for the generation of the magnonic band structure,5 (iii) the

ferromagnetic stripe with periodicity of the magnetization introduced by ion implantation291

or (iv) periodic bias magnetic field,94 and (v) SWs waveguides with periodicity introduced

by a regular repetition of the bent sections where the bending induces periodic anisotropy

field.292 The other class of the periodic waveguides are the systems with periodically placed

antidots (holes),213 which is not to be challenging for fabrication even with a resolution in

the range of few nanometres.50

In this chapter we numerically investigate magnonic antidot waveguide (MAW) made

of permalloy (Py) with air holes (i.e., antidots) placed equidistantly along the wire in its

center. The considered antidot waveguide having the width and period in nanoscale will then

operate in the frequency range of few tens of GHz. Here, we use two different computational

∗This chapter is based upon K los et al. Phys. Rev. B 89, 014406 (2014).
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techniques, relatively fast plane wave method58,62 (PWM) to perform systematic studies and

extensive micromagnetic simulation5,84,94,267,293 (MSs) (with the aid of OOMMF software)250

to verify the obtained results. Similar MAW structures were already investigated in the

previous papers showing that MAWs have interesting properties, which are relevant for

technological applications.4,68,213

In Chap. 5213 it was shown, that pinning of the magnetization at the edges of MAW can

be an important factor which helps to open magnonic band gaps. Moreover, it was shown,

that antidots occupying as small as 5% of the MAW surface area, are sufficient to open

magnonic band gaps. In the Chap. 64 the influence of the intrinsic and extrinsic mirror

symmetry breaking on the magnonic band gaps in MAW with pinned magnetization at

edges was investigated. It was shown that small deficiencies in the symmetry of the MAW

structure can result in closing magnonic band gaps but it was also demonstrated that these

band gaps can be reopened by asymmetric external magnetic field. In Chap. 768 MAWs with

comparable lattice periods and waveguide width were considered (25% of the area occupied

by the antidots). The influence of the static demagnetizing field and non–uniformity of the

exchange field on magnonic band structure in MAWs with various shapes of antidots were

considered. Nevertheless, the influence of thorough and systematic structural changes in

MAW on magnonic band structure have not yet been considered towards the optimization

of MAW design. Thus, there is a need of the comprehensive studies which will thoroughly

explain the impact of different structural parameters on the SW spectrum of MAW and

reveal interesting properties of the magnonic band structures. Such studies are also of

crucial importance for experimental realizations of MAWs with magnonic band gaps and

their practical applications. In this chapter we study the influence of antidots size, lattice

period, antidots shape and size factor on the dispersion of SWs and magnonic band gaps in

nanoscale MAW.

This chapter is organized as follows. In Sec. 8.1 we describe the structure of the MAW

and calculation methods in brief. Subsequently, we explain the magnonic band structure in

MAW and the influence of the structural changes i.e., antidots size, lattice period, antidots

shape and size factor in Sec. 8.2. Finally, we summarize our results and discuss the prospects

of practical realizations.
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8.1. The Waveguide Structure and the Calculation

Methods
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Figure 8.1.: The structure of the antidot waveguide, where the row of the equidistant square
holes was placed in its center. The size s and the distance between antidots (i.e.,
the period of the structure a) are 6 and 15 nm, respectively. The thickness of
the waveguide is 1 nm. The sketch below the waveguide structure depicts the
precession of magnetization around the direction of external magnetic field H0.
Source: Ref. 66.

We study here the symmetric magnonic waveguides based on a one-dimensional (1D)

antidot lattice structure shown in Fig. 8.1. It has the form of a thin (thickness 1 nm) and

infinitely long permalloy (Ni80Fe20) stripe with a single row of square holes of side s = 6

nm disposed periodically along the central line. The stripe width and the lattice constant

are fixed at 45 nm and a = 15 nm, respectively. The row of holes is placed at a distance of

19.5 nm from both top and bottom edges of the stripe. Thus, the waveguide possesses an

axis of mirror symmetry down the middle of the waveguide. A bias magnetic field is applied

along the stripe and it is strong enough to saturate the sample (µ0H0 = 1 T) and make

the magnetization collinear and equal to its saturation value even in the regions close to the

sides of the waveguide and antidot edges. The material parameters of Py are assumed in

calculations.

The calculations of the magnonic band structure are performed with the PWM and the

finite difference method based OOMMF. Damping is neglected in PWM calculations and

included in MS (α = 0.0001). The effective magnetic field Heff here consists of the bias

magnetic field H0, exchange field Hexch = ∇λ2
ex∇M and demagnetizing field Hdem. For

OOMMF calculations the standard formula for dipole-dipole interaction in the lattice of
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magnetic moments was used. In our PWM implementation we use Kaczer formula279 for

demagnetising field in planar periodic structures. The pinned dynamical components of the

magnetization vector were assumed at Py/air interfaces in calculations with both methods.213

The pinning in OOMMF was introduced by fixing magnetization vector in all cells bordering

the Py/air interfaces ∗. The boundary conditions for dynamical component of magnetization

do not result from Landau-Lifshitz equation. They can results from the presence of surface

anisotropy (which depends on the physical and chemical states of the surface) or from so

called dipolar pinning.255,256 Although we have limited our investigation to the case of pinned

magnetization, the conclusions we draw will be still valid in systems with partially free

magnetic moments on the external interfaces.4

The pinning at the edges of antidots forces the decay of the magnetization dynamics in the

center of the MAW for small values of lattice constants a and relatively large antidot sizes

s. By varying these parameters we can observe the gradual transition from the case of two

weakly coupled periodic sub-waveguides (formed by each of the two semi-isolated 19.5 nm

wide halves of the whole MAW) to the case of one waveguide (45 nm width, being the whole

MAW) with small periodic perturbation (the further discussion with the numerical results

will be presented in sub–Sec. 8.2.2). In the PWM, the pinning is exactly at the edges of Py,

whereas in MS the pinning was applied in the layer of the finite thickness. This difference can

slightly influence results obtained with both methods. The effect of magnetization pinning

is seen in the profiles of SW dispersion relations shown in Figs. 8.2 and 8.3. Due to the

small thickness of the MAW and relatively large ratio of the width to thickness of MAW, a

uniform SW profile across the thickness is assumed.

8.2. The Influence of Structural Changes in the MAW

on the SW Band Structure

The dispersion relation, i.e., frequency as a function of the wavevector, f(k), is a periodic

function with the period equal to the reciprocal lattice vector G = 2π/a. This dispersion

∗In MS the discrete mesh size of 1.5× 1.5× 1 nm3 along X , Y and Z axis, respectively, was used. The
MSs were performed for 4 ns. In the PWM we use 781, 1065, 1647 plane waves, depending on the value of
the period a.
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also has a mirror symmetry with respect to the point k = 0. Because of that it is enough to

show f(k) only in the half of the first Brillouin zone (BZ) but for the purpose of clarity of

analysis, we will present results in the full BZ.

8.2.1. The Influence of Antidot Size

Figure 8.2 presents the SW spectra of MAW for three different sizes s × s of the square

antidots: for s = 4, 6 and 8 nm. We kept the period of the MAW constant (a = 20 nm).

For fixed period a, the increase of the antidot size makes the two sub-waveguides (formed

by halves of MAW) more isolated, because it reduces the crosstalk between magnetization

dynamics in these two sub-waveguides. It is noticeable both in the SW dispersion and in the

profiles of the squared amplitudes of the dynamical magnetization in Fig. 8.2 (the profiles in

Fig. 8.2 show the out-of-plane component of the magnetization vector). Let us compare two

lowest modes for s = 4 and 8 nm denoted in Fig. 8.2 by (a) and (b). For s = 4 nm the lowest

mode (a) is formed by strongly coupled SWs propagating in two sub-waveguides. This mode,

as the lowest one, has no nodal line in the center of MAW and therefore the SWs are allowed

to penetrate in the areas between the antidots. The antidot with larger size (s = 8 nm) can

however successfully extinguish the SW dynamics in the MAW center. In this case (s = 8

nm) the modes (a) and (b) are almost degenerate with in-phase (a) and out-of-phase (b)

SWs precession between two sub-waveguides. Their amplitudes and position of dispersion

branches are almost the same. The mode (b) is however more robust to the changes in the

antidot size. It is due to the fact that this mode has a nodal line in the center of the MAW,

which leads to the decaying of the SW dynamics in the vicinity of the antidots row. As a

result the SWs mode (b) is weakly affected by the presence of the series of antidots placed

in the middle of the structure. The comparison of the maps of mode (b) for s = 4 nm and

for s = 8 nm do not show significant differences.

It is also visible that the shrinking of the antidots size, from 8 nm to 4 nm splits the

levels of modes (a) and (b) gradually. The difference between the frequencies of these modes

become larger as the antidot sizes decreases. This increase of splitting between these modes

can be attributed to increasing of dynamical coupling between SWs in sub-waveguides, as

is discussed in the next paragraph. One can notice also the small changes in the position
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for two lowest modes in the frequency scale. The lowering of frequency of the modes can

be attributed to the slight increase in the effective width of each sub-waveguide with the

reduction of the size of antidots.

The red dashed lines in the dispersion plots show the SW spectra for plain waveguide of

width of 19.5 nm,79 which corresponds to the width of single sub-waveguide with s = 6 nm.

The artificially introduced periodicity (a = 20 nm) folds the parabolic dispersion branches

(typical for exchange dominated regime) to the first BZ. In the considered frequency range (0-

300 GHz) two folded-back dispersion parabolas are visible related to the mode confinement

and quantization across the waveguide. By comparing MAW spectra to the spectrum of

the plain sub-waveguide the following features can be noticed. (i) The MAW dispersion

branches, which mimic the spectrum of the plain sub-waveguide (e.g., modes (a) and (b))

are confined mostly in the interior of the sub-waveguides of MAW, whereas modes of MAW

completely distorted from the parabolic shape (e.g. modes (c) and (d)) have amplitudes

concentrated at the row of antidots. (ii) When the interaction between sub-waveguides in

MAW increases (for smaller antidot size), then the distortion of parabolic-like dispersion

branches is more significant. This effect is stronger for higher modes. For our system

already MAW modes related to the second parabola of plain sub-waveguide are strongly

perturbed. We can recognize at least two features of such distortion: the splitting between

the modes being even and odd with respect to the MAW center (e.g., modes (a) and (b)), the

frequency down–shift (stronger for modes originating from the second parabola) resulting

form the increase of the effective width of the sub-waveguides in MAW. For instance the

modes (e) and (f) can be hardly identified as those related to the crossing of the folded arms

of the second parabola in the BZ center(the modes have one nodal line in the center of each

sub-waveguide). They are significantly shifted down as the antidots are reduced.

Due to the periodicity in the system the magnonic band gaps can be opened in the SW

spectrum. If the periodicity can be regarded as a small perturbation in a plain waveguide

possible bandgaps occur in three different scenarios: (i) at BZ edges – it happens for the low-

est dispersion branch (originating from the first dispersion mode of the uniform waveguide),

(ii) in the BZ center – as a result of the first self-crossing of the branches related to the same

dispersion mode, after folding-back to the first BZ (only if there is no overlapping with higher
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Figure 8.2.: The dependence of size of antidots on SW spectra of MAW. The inset above the
central part of the figure shows the system under investigation: 1 nm thick and
45 nm wide, infinitely long Py stripe with a periodic series of square antidots
of size s×s, where s = 4, 6, and 8 nm, disposed along the waveguide with a
period of a = 20 nm. Bias magnetic field µ0H0 = 1 T is oriented along the
waveguide. The row of antidots divides the waveguide into two sub-waveguides.
The coupling between sub-waveguides is controlled by the size of antidots with
small antidots resulting in strong coupling (s = 4 nm) and big antidots in weak
coupling (s = 8 nm). Red dashed lines show the dispersion for homogeneous
waveguide of the width w = 19.5 nm with artificial folding-back of the dispersion
to the first BZ. The coloured maps present the squared amplitude of the out-of-
plane component of dynamical magnetization for bands marked by letters from
(a) to (i) in the SW spectra. Source: Ref. 66.
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modes, which can be supported by the sufficiently large value of the ratio period/width), (iii)

inside of the BZ – being the effect of the anti-crossing of branches related to different disper-

sion modes. The scenarios (i) and (ii) are related to the Bragg scattering for the spin waves

differing in wave number by ∆k = (2n)2π/a and ∆k = (2n+1)2π/a, respectively, where n is

integer number. Such simple picture of the mechanisms can be used for very weak periodic

modulation, where the dispersive branches in the system can be referred to as modes of the

plain waveguide, and does not exhaust all possible mechanisms of band gap formation.294–296

The magnonic gaps marked by yellow bars in Fig. 8.2 are related to the first and second

scenario mentioned above. The gap generated by the anti-crossing of branches related to

the different dispersion parabolas of the plain sub-waveguides (i.e, the third scenario) can be

observed in the first column in Fig. 8.3 (see the second gap for a = 15 nm). For considered

range of antidot sizes (s = 4, 6 and 8 nm) both gaps (the first and the second one) become

slightly wider with the increase in the antidot size. However, introduction of much larger

antidots (when s ≈ a) will cancel the periodicity in the system and will lead to the gaps

closing. This behaviour can be understood by considering two competing mechanisms. The

gap will be wide when the periodicity is strong (large antidots with the inter–antidot dis-

tance comparable to the antidot sizes) and the crosstalks between sub-waveguides are small

(values of the ratio s/a close to 1 allows to separate sub-waveguides). The first condition

will enhance the Bragg scattering, the second one will reduce the splitting of the even and

odd modes with respect to the MAW center.

8.2.2. The Influence of Lattice Period

Figure 8.3 shows the variation in the magnonic spectra with the lattice constant (a = 15,

21 and 30 nm). We change the separation between the antidots keeping their size constant

(s = 6 nm). The increase of lattice constant a contracts the size of the BZ. We decided not

to change the range of the wave number k for successive values of a in Fig. 8.3. Therefore,

the dispersion plots for a = 15, 21 and 30 nm encompass: 1, 11
3

and 2 BZs, respectively.

To, discuss the impact of the lattice constant on the MAW spectrum one has to include

this additional factor. The reduction of the BZ size can affect the spectrum of the 1D

periodic SW waveguide in two ways: (i) The SW spectrum contains more bands in the same
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frequency range. The edges of successive BZ appear more frequently in wavevector domain

and therefore the dispersion foldings at the BZ edges splits the bands more often in frequency

domain. (ii) The group velocity is reduced. If the spectrum is folded back multiple times,

thus the number of bands reaching the BZ edge and center (where the group velocity drops

to zero) increases. Both the Bragg scattering and self-crossing of bands leads to the band

repulsion and their flattening.

Because of much more complex evolution of the magnonic spectrum with changes in the

lattice constant, it is more difficult to trace the variations in the origin of the bandgaps

width. The shrinking of the BZ (with the increase of a) changes the frequency position of

the bandgaps opened at the BZ edges and can also result in opening or closing of gaps formed

due to self-crossing or anti-crossing of dispersion branches. Nevertheless some characteristic

features for this evolutions can be noticed. (i) The magnonic bandgaps are shifted down

in the frequency range. It is caused by the dense folding of the dispersion branches in the

narrower BZ. The reasonably strong bands overlapping, for larger values of a, can also close

the bandgaps in higher frequency range [see Fig. 8.3 for a = 30 nm]. (ii) There is no simple

answer to what value of a is optimal for the existence of a wide magnonic bandgap. The limits

of very small and very large lattice constant (with a fixed antidot size) do not support the

wide bandgaps in the system. For short periods the antidots start to overlap, which cancels

the periodicity and makes two sub-waveguides isolated (in terms of exchange interactions)

and the bandgap closes. In the limit of large lattice constants (a≫ s) the periodicity in the

system can be treated as a small perturbation and therefore, the Bragg scattering should

be weak and it leads to a gradual bandgap closing. But the localized modes with flat bands

appear in the low frequency spectra [see mode (a) in Fig. 8.3 for a = 30 nm] and the simple

picture does not hold.

The increase of the lattice constant with the fixed size of the antidots makes the separation

between the antidots larger. For a ≫ s, MAW can not be treated as two weakly coupled

sub-waveguides. The data presented in the right column of Fig. 8.3 shows that considered

system (a = 30 nm) is close to this limit. For even larger values of a, one may interpret the

spectrum as a perturbation of the spectrum of the plain waveguide of width 45 nm (equals

to the total width of MAW and shown in the right column of Fig. 8.3 with dashed lines),
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Figure 8.3.: The dependence of SW spectra of MAW on the waveguide period. The size
of the antidots is kept constant s = 6 nm. The increase of the period (from
a = 15 to 21 and 30 nm) leads to increase of the coupling between SWs in
the sub-waveguides. Note the change in location of the BZ edges marked by
blue vertical lines. In the first row schematic plots of the MAW are shown, in
the second and third row the dispersion of SWs calculated by micromagnetic
simulations (OOMMF) and PWM are presented respectively. Together with the
PWM results the dispersion for homogeneous waveguides of width w = 19.5 nm
(for a = 15 and 21 nm) and w = 45 nm (for a = 30 nm) with artificial folding-
back of the dispersion to the first BZ is shown with dashed (red online) lines.
The coloured maps on the bottom of the figure show the squared amplitude of
the out-of-plane component of magnetization calculated with PWM for points
of the magnonic band structure labelled by (a) - (f). Source: Ref. 66.

rather than those in two sub-waveguides. Let us discuss how the increase in the ratio a/s

affects the spatial distribution of modes [bottom row in Fig. 8.3]. Two trends are evident.
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(i) The modes localized at the antidots row are shifted to the lower frequency range. Modes

(c) and (f) for a = 21 and 30 nm have SW amplitudes localized between the antidots. With

the increase of the period the size of these areas extend; and the SWs confined in the larger

areas decrease their frequencies. (ii) The modes even with respect to the MAW center, start

to leak their amplitudes to the middle of MAW. For larger values of a, the pinning at the

antidot edges is not sufficient to diminish the SW power at the center of the MAW even for

the lowest modes. We can observe this process by analysing the evolution of modes (a) and

(b) while increasing lattice constant. For a = 15 nm it is almost impossible to distinguish

between the profiles of the (a) and (b) modes. When a = 21 nm the power from even

mode (a) starts to penetrate in the areas between the antidots. It leads to the coupling of

excitation in the two sub-waveguides and splits the dispersive branches of even (a) and odd

(b) modes. The lowest mode of the large considered lattice constant a = 30 nm spreads its

amplitude over the whole MAW width with maximum concentration in its center. Due to

smoother spatial variation of the amplitude across the whole width of MAW (in comparison

to the cases a = 15 nm or a = 21 nm) the frequency of this mode is lowered.

The second row in Fig. 8.3 presents the dispersions obtained from MS. The agreement

with PWM is evident. The small discrepancies start to appear in the high frequency range

where the bands calculated using OOMMF are slightly shifted down. This can be attributed

to finite cell sizes used in the finite difference method based solver. The maximum difference

between the positions of the bands calculated in OOMMF and PWM reaches about 5% at

the top of the presented spectra.

8.2.3. The Influence of Antidot Shape

The effect of antidot shape on SW dispersion in MAW has been discussed in some detail

for dipole dominated SWs45,63 and exchange dominated SWs without pinning at Py/air

interfaces.68 Here, we revisit some of those findings for the completeness of this study. In

order to make the systems of various antidots shape comparable, we fixed the area of the

antidots independent of their shape. We compared two basic antidot shapes: the square

shape and the circular shape. The results for a = 15 nm, s = 6 nm for square antidots

and radius of 3.38 nm for circular antidots are presented in Fig. 8.4. The SW spectra for
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Figure 8.4.: The SW spectra for the MAW with square (black solid line) and circular (green
dashed lines) antidots. The lattice constant is fixed (a = 15 nm) and areas of
square and circular antidots are the same (36 nm2). The maps in the two columns
on the right presents the out-of-plane components of dynamical magnetization
for selected modes in the center and the edge of the BZ for square and circular
antidots, on the left and right, respectively. Source: Ref. 66.

these two antidot shapes do not differ significantly. The branches coinciding with the first

dispersion parabola [cf. the red dashed line in the left column of the Fig. 8.3] almost overlap

with other. There is no discernible difference between modes (a) and (b) for both the MAWs

with square and circular antidots. The levels associated with the second dispersion parabola

[e.g. modes (c) and (d)] for the MAW with circular antidots are slightly lowered in reference

to the corresponding modes of the MAW with square antidots. The differences in the profiles

of (c) and (d) mode are also very subtle for two considered geometries. The more pronounced

dissimilarity can be noticed for the modes localized at the row of antidots (e). For this case

almost all SW amplitude is focused in the vicinity of the antidots. Therefore this kind of

excitation is relatively sensitive to the difference in shape of antidots, which is in fact the

very small change in the geometry of the whole system. Similar effects were also found for

other structures investigated in this chapter, i.e., for lattice constants 21 and 30 nm, and

antidots sizes of 4 and 8 nm. Antidot geometry affects the exchange and demagnetizing

field distribution around itself. Thus their periodicity in an MAW provides the periodic and

inhomogeneous potential necessary for the Bragg scattering and the resultant characteristic
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SW spectrum. The demagnetizing field distribution is shown to play a more prominent role

on larger length scales.63 On the considered length scales, where we have exchange dominated

SWs, the spectrum is affected only if the hole shape causes the exchange field distribution

to change.68 From the application point of view, perhaps the first direct magnonic bandgap

and related dispersive modes are the most important in the SW spectrum. Thus we find

that, for exchange dominated SWs, even if minor periodic deformations of antidot shape

occur during the fabrication of an MAW, its SW spectrum will remain practically unaffected

as long as the exchange field distribution is unchanged.

8.2.4. The Influence of Size Factor

For the MAW of the width 45 nm discussed in the previous subsections, the exchange interac-

tion dominates over magnetostatic interactions. It results from the small values of dynamic

demagnetizing fields in comparison to exchange field for large values of wave numbers. Even

the amplitudes of static demagnetizing field reach the values 0.1 T at the interfaces of

Py/air perpendicular to the direction of external filed, which are quite small in comparison

to the value of external filed 1 T and to the width of the bands [taking γµ0Hdm for compari-

son]. Therefore the SW dispersion manifest purely exchange behaviour with parabolic trend

visible even for wave numbers close to the BZ center [see e.g., Fig. 8.4].

The models we use in calculations include both kinds of interactions: exchange and dipolar.

To observe the noticeable impact of dipolar interaction on the SW dispersion, one has to scale

up the structure of MAW. We magnified the MAW structure with square antidots presented

in Fig. 8.4 by the factor of 6 [the width, thickness, antidots size and lattice constant were all

increased 6 times]. For this structure in the first BZ we observe a negative group velocity

near the BZ center for the first two bands [Fig. 8.5], i.e., the feature characteristic for the

backward volume magnetostatic waves.28 For lager values of the wave number, a quadratic

dispersion typical for exchange interaction begin to dominate. As a result the two lowest

dispersion branches have a minimum with a group velocity reaching zero away from the BZ

center. The discussion of SW eigenmodes presented in the previous section has assumed the

domination of exchange interactions. We have interpreted the magnonic band structure as an

effect of cross-talks of two quasi-parabolic dispersion relations related to two sub-waveguides
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Figure 8.5.: The PWM calculations of SW spectra for the MAW magnified by the factor of 6
in reference to the structure presented in Fig. 8.4 with square holes showing the
crossover of exchange and dipolar effects related to the stronger manifestation
of dipolar interactions. The structural parameters are: the lattice constant:
a = 90 nm, antidots size: s = 36 nm, thickness and width: 6 nm and 270 nm,
respectively. Red dashed lines show the dispersion for homogeneous waveguide
of the width 135 nm [i.e., half of the total MAW width]. The maps (a) and
(b) presents the out-of-plane components of dynamical magnetization for two
modes in the center of the BZ. (c) The map of the static demagnetizing field, its
component along the waveguide, Hdm. The peaks of the static demagnetizing
field are significantly smaller than the value of external magnetic field µ0H0 = 1
T. Source: Ref. 66.

folded at the edges of the BZ. From Fig. 8.5 it is clear, that even in a crossover of dipolar

and exchange regime, this picture can be still valid and the spectrum presented in Fig. 8.5

preserves most of the features found for exchange dominated systems [cf. Figs. 8.2, 8.3 and

8.4]. We can also link the spectrum of the MAW [black lines in Fig. 8.5] to the spectra of

homogeneous sub-waveguides [red dashed lines] as well.

One of the important differences in comparison to exchange dominated systems, is the

increase of the strength of interactions between two sub-waveguides. This effect is manifested

by the stronger splitting of the levels of even [Fig. 8.5(a)] and odd [Fig. 8.5(b)] modes with

respect to the MAW center. The increase of the coupling between these two SW excitations

in different sub-waveguides can be attributed to three factors: (i) to the enhancement of

long range dipolar interactions due to increased thickness of MAW, (ii) to the decrease of
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the band width [resulting from the large lattice constant and consequently smaller first BZ]

and thus the relative increases of the role of a non–uniformity of the static demagnetizing

field [Fig. 8.5 (c)], and finally (iii) to the increase of separation between antidots, thus the

lowering of frequency of quantize SWs between neighboring antidots.

The considered regime of sizes [the width of the MAW presented in Fig. 8.5 equal to 270

nm] can be realized by a much broader spectrum of fabrication techniques which make this

system more interesting from experimental point of view.

8.3. Conclusions

We have presented in-depth theoretical study of the impact of structural changes on the

spin wave spectrum of the new type of thin nanoscale magnonic waveguides with the row

of antidots placed in its center. The influence of the antidots size and shape, distance

between antidots and the scale factor of antidots waveguides on magnonic band structure

and magnonic band gaps have been investigated. These studies allow us for the identification

of main parameters and mechanisms which influence the width of magnonic band gaps in

nanoscale MAW. Moreover we have described the roles of exchange and dipolar interactions

in the formation of the magnonic band structure in the thin MAW with widths from tens to

hundreds of nm. In summary we have found that:

• The increase of antidot size in relation to the waveguide period makes the effective

pinning in the center of the waveguide stronger. By controlling the strength of this

pinning one can affect the crosstalk between SWs propagating in two adjacent halves

of the waveguide (sub-waveguides). The gradual degeneracy of the (a, b) modes occurs

as the antidot size increases.

• When the size of antidots is small enough, or the edge to edge distance between the

neighboring antidots are large enough, the SWs localized on the periodic row of antidots

are observed in lower frequency range (together with the lowest dispersion branches

for modes propagating in sub-waveguides)–see, e.g. modes (c) and (i) in Fig. 8.2 [and

also modes (c) and (f) in Fig. 8.3].
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• The magnonic gaps are expected to open at the BZ edges or BZ center (Fig. 2). The

gap can be opened for the intermediate values of the wave number as well, where it is

caused by the anti-crossing of the bands originating from different transverse modes in

homogeneous sub waveguides cf. the modes (a,b) and (c,d) in the left panel in Fig. 8.2

[modes (a,b) and (c,d) differ in the number of horizontal nodal lines] and the second

gap in this sub-figure [a = 15 nm, s = 6 nm].

• When the waveguide period a is fixed then the existence of magnonic band gap and

change of its width and position is easier to analyse as a function of the antidot size

s [Fig. 8.2], than for the opposite case, s fixed and a–varied [Fig. 8.3]. It is because a

change in a alters not only the strength of the periodicity but also affects the location of

BZ edges. Nevertheless, the period of the MAW, and its relation to the antidots size,

are important factors which influenced magnonic band gaps and the group velocity

of SW. Thus, its proper choice will be crucial for application of nanoscale MAW in

magnonics, to transmit or filter SW signals.

• The shape of the antidots does not affect the SW spectrum of exchange dominated

SWs unless the exchange field distribution is altered. High frequency modes, which

contain power close to the row of antidots show greater sensitivity towards changes in

the shape of the antidots. Thus for modes from the low frequency part of the spectra

the antidots shape is not important parameter in nanoscale MAW.

• Enhancement of the size of the MAW increases the crosstalk between SWs propagating

in two adjacent halves of the waveguide (sub-waveguides) and the backward volume

magnetostatic wave character of dispersion relation near BZ center for these SWs is

found. But still the main features the magnonic band structure in the exchange dom-

inating systems are preserved.

Thus, we have shown that SW waveguides based on thin ferromagnetic stripes with single

row of periodically spaced antidots in nanoscale are promising for magnonic applications in

frequencies from few to tens of GHz. Only a single row of antidots offer enough room for

manipulation of the SW spectra to design single mode waveguides or waveguides with filtering

properties due to existence magnonic band gaps. The insensitivity of main part of the
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magnonic spectra on the detailed shape of antidots, promises the possibility for fabrication

of high frequency magnonic waveguides with the current technology.



9. Two–Dimensional Magnonic

Crystals

∗Analogous to photonic crystals, magnonic crystals (MCs)35,69,71 are magnetic meta-materials

designed for the propagation of spin waves (SWs).28,37,38,297 Based on their design, MCs ex-

hibit a characteristic SW dispersion relation complete with bands and, sometimes, band

gaps which can be tuned by controlling material and structural parameters as well as the

strength and orientation of the bias magnetic field.45,298 This phenomenon makes MCs useful

as potential candidates for the design of SW based signal processing and logic devices.299

The knowledge of dispersion relation of a wave propagating through a medium is nec-

essary to understand its transmission characteristics. Although MCs have been a subject

of intense study lately,49,50,52,58,68,79,83,86,213,300 reports on a time domain numerical calcu-

lation of dispersion relations of SWs propagating in two-dimensional (2D) MCs are very

rare.5,97,301 As other analytical methods are available, the use of time domain simulations

and spatial Fourier transform to obtain the dispersion relation in a photonic or phononic

crystal is rarely seen302 as well. We hope to fill that gap in research with this work. The

underlying principles, over which the procedure described here is used, has been discussed

more generally in Chap. 4. Here too, we essentially use a micromagnetic simulator called

Object Oriented Micromagnetic Framework250 (OOMMF) to obtain magnetization M, as a

function of position r, and time t. Then we use a multi-domain discrete Fourier transform to

obtain the desired dispersion relation: SW power as a function of wavevector k = (kx, ky),

and frequency f . However, while simulating the magnetization dynamics in large (ideally

infinite303) 2D crystals, one can be expected to need far greater computational resources

∗This chapter is based upon Kumar et al. J. Appl. Phys. 115, 043917 (2014).
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than during the simulations of their one-dimensional (1D) counterparts.213 Using a finite

sample size may produce some spurious modes in the obtained dispersion relation.303 Thus,

the use of 2D periodic boundary condition244 (PBC) becomes mandatory in order to obtain

good numerical resolution in wavevector and frequency domains while consuming finite com-

putational resources. Also, 2D crystals have more high symmetry directions when compared

to their 1D analogues. Different techniques will be required to obtain the results for different

directions in the 2D reciprocal space covering the entire irreducible part of the Brillouin zone

(BZ).211 Moreover, the signal which generates the waves will have to be carefully designed so

that the resulting spectrum represents the physical dispersion relation of plane propagating

SWs. Due to all these complications, a need to validate the results obtained here with a well

established method, such as the plane wave method (PWM)51 becomes very clear.

The details of MC considered here are presented in sub–Sec. 9.1.1. Simulation parameters

and PWM are described further in sub–Sec. 9.1.2. OOMMF uses the finite difference method

(FDM) to solve the LLG equation as an ordinary differential equation in time and space

(derivatives with respect to space are hidden away in Heff). PWM is based on the Bloch wave

formalism. As these two methods are fundamentally different in approach, some quantitative

differences in results are to be expected. The results from both the methods and their

differences have been discussed in Sec. 9.2 for the antidot lattice (ADL). Due to small

lattice constant, the considered system is an exchange dominated one and consequently, the

differences in dispersion relations along the bias magnetic field and perpendicular to it are

subtle. These differences have been explored by calculating the iso–frequency contours in the

wavevector space using both MS and the PWM. The iso–frequency contours are the curves

of the constant frequency plotted in the wavevector space, they are wave counterparts of

the Fermi surfaces known from the theory of the solid state physics.211 The iso–frequency

contours are very important tool for the analysis of the wave propagation phenomena, giving

a deep insight into direction and velocity of propagating, reflected and refracted waves in

artificial crystals. Such type of analysis, while widely explored in photonic and phononic

crystals for designing their metamaterials properties,304–306 is almost absent in magnonics.

Thus, developing the ability to compute these iso–frequency contours using MS can be a

breakthrough in exploring magnonic metamaterials based on MC; because the MSs can be
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performed without approximation limited applicability of the PWM (or other analytical

methods245), and thus yields experimentally realizable results even with complex magnetic

configurations.

We also plot the energy spectral density and phase distributions associated with different

modes in the SW spectrum in order to understand their physical origin and explain any

observed partial or complete bandgaps. Finally, we use the method described here to obtain

the SW dispersion relations in the case of 2D dot array where the SW propagation is mediated

by inter-dot stray magnetic field as opposed to dipole-exchange interaction in ADL. This

brings about an interesting change in the spectra, which is discussed in Sec. 9.2 along with

their effective properties.

9.1. Method

9.1.1. Magnonic crystal lattice and material parameters

The structure considered here is an infinitely large square array of square antidots with their

ferromagnet-air interface under pinned boundary conditions.213 The geometrical structure

of the sample is shown in Fig. 9.1 (a). The lattice constant a = 30 nm and the antidots are

square holes of edge length, l = 12 nm. The material parameters of permalloy (Py: Ni80Fe20)

are used during simulations and in PWM calculations: exchange constant, A = 13×10−12

J/m, saturation magnetization, Ms = 0.8×106 A/m, gyromagnetic ratio, γ̄ = 2.21×105

m/As and no magnetocrystalline anisotropy. A saturating bias magnetic field of µ0Hbias = 1

T points in x direction.

9.1.2. Micromagnetic simulations and the plane wave method

The micromagnetic simulations involve solving the LLG equation using a finite difference

method based ordinary differential equation solver; and then, Fourier transforming the ob-

tained space and time dependent magnetization data to get SW spectral density in wavevec-

tor and frequency domains.262 Cell size (d, d, s) = (1.5, 1.5, 3) nm along (x, y, z) axis was

used during the FDM based simulations. The pinning in micromagnetic simulations was
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Figure 9.1.: (a) The 2D antidot lattice under consideration. A square lattice with a lattice
constant ax = ay = 30 nm is assumed for simplicity. The thickness s of the film
is 3 nm. The antidots are square (white) air holes of edge l = 12 nm in ferromag-
netic Py (black) medium. Dynamics is pinned at the edge of holes. The pinned
region is marked with a different texture. Element geometry used in micromag-
netic simulations extends to over hundred repetitions in length (horizontal dark
arrows in (b), (c) and (d)) for good wavenumber resolution. 2D PBC is applied
over these elements to mimic the infinite geometry. White arrows in (b), (c)
and (d) show the direction of bias field used for simulations of SW dispersion
for BV and DE configuration. (d) shows the first BZ in the reciprocal lattice
with typical symmetry point labels.

introduced by fixing magnetization vector in all cells of the discretization mesh, which bor-

der the antidots, i.e., in regions marked with different texture in Fig. 9.1. Figures 9.1 (b),

(c) and (d) show parts of the elements over which 2D PBC are used to simulate the dis-

persion relation for different directions of the wave vector. These elements extend over 100

(up to 300) repetitions of unit cells in the horizontal direction to yield good resolution in

the wavenumber domain. The 2D PBC is also implemented in order to improve the results

with finite computational resources.244 Figure 9.1 (e) shows the first BZ, the path in its

irreducible part and typical symmetry points: Γ = (0, 0), X = π/a(1, 0), Y = π/a(0, 1) and

M = π/a(1, 1).211 Note that when the bias field is in the plane, an asymmetry is expected

between the two orthogonal directions of SW propagation: Hbias||k (BV) and Hbias ⊥ k

(DE).79 Thus, the triangle ΓXM is no longer the irreducible BZ. However, in the forward

volume arrangement when Hbias is perpendicular to the plane of the 2D MC, the symmetry
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is restored and dispersion is the same in the two orthogonal directions.97,307 The technique

described here can be used independent of the direction of Hbias.

In order to get the results in the Γ−X and Y −M directions, we use different excitation

signals of the form Hsig = (0, 0, Hz), on elements shown in Figs. 9.1 (b) and (c), respectively.

Hbias is horizontal along the x axis (dashed white arrows). Similarly, dispersion along the

Γ−Y and X−M directions can be obtained when Hbias is across the width of the elements

(vertical arrows along y axis). Here, Hz = H0NtN(x)ny with µ0H0 = 5 mT and Nt, N(x)

and ny as given by Eqs. (9.1), (9.2) and (9.3), respectively:

Nt =
sin(2πfc(t− t0))

2πfc(t− t0)
, (9.1)

N(x) =
sin(kcx)

kcx
, (9.2)

ny = cos(2πy/ymax) + sin(2πy/ymax). (9.3)

See Eq. (7.2) for the detailed description of the terms involved in these equations. Here, the

origin of coordinates is at the center of the considered geometry. It is due to Nt and N(x)

that the signal contains power between ±fc and ±kc in frequency and wavevector domains

respectively.262 ny should be asymmetric to ensure that both symmetric and antisymmetric

modes are present in the resulting spectrum.297 In Eq. (9.3), y goes from 0 to ymax. While

computing dispersion along Γ− X and Γ− Y directions (Fig. 9.1 (b)), ymax = a. However,

for Y −M and X −M directions (Fig. 9.1 (c)), ymax = 2a. Both the elements in Figs. 9.1

(b) and (c) will span the same infinite 2D geometry under a 2D PBC; except, in the later

case we can control whether the dynamics in the neighboring rows will be in phase or out of

phase. Thus we can fix the wavevector component ky or kx to 0 or π/a in the simulations.

This is necessary to differentiate between the parallel directions Γ−X and Y−M or Γ−Y

and X−M. Also, nmn
y given by the expression

nmn
y = Cm cos(2mπy/ymax) + Cn sin(2nπy/ymax) (9.4)

can be used instead of ny to selectively alter the amplitude of m-th symmetric or n-th an-

tisymmetric mode. The freedom of choice of amplitudes Cm and Cn allows us to artificially
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control the statistical temperature of the magnons in the crystal and also helps in isolating

a single mode in the case of a degeneracy. We can also sum over m and n to alter multiple

modes in a single dynamic simulation. We also attempt to obtain the dispersion in Γ −M

direction by using the element shown in Fig. 9.1 (d). However, as there are two scatter-

ing centres (antidots) per cell in this arrangement, we can obtain the dispersion relations

correctly only up to half of the BZ in that direction.97

Until now, we could use a signal similar to the one we did in the case of an 1D lattice.68

But, this limitation forced us to come up with a new signal

Hz = H0NtN(x)N(y)n(x)n(y), (9.5)

which has to be used in a larger 2D lattice of 100×100 antidot array (with the cell size d

increased to 3 nm to decrease time of computations). Here, n(x) is given by:

n(x) =
5∑

m=1

(sin(2πmx/a)− cos(2πmx/a)) , (9.6)

with analogous formula for n(y). This signal is a point like source with the amplitude decay

with distance as described by sinc function (in N(x) Eq. (9.2) along x axis and in similar

form for N(y) for y dependence), having sharp cut-off in Fourier domain and able to excite

symmetric and antisymmetric modes with respect to x− or y− axis. This signal was arrived

upon largely by intuition, nevertheless, its agreement with the results obtained from PWM

validates the usefulness of this signal. Spectral density, periodicity and asymmetry of the

excitation signal (or source) should also be considered while developing similar techniques

for other kinds of crystals (e.g. photonic or phononic crystals).

Three fold (one in time and two in space) Fourier transforms was needed to obtain the

SW dispersion here. Magnetization was assumed to be uniform across the thickness of the

film. We can now easily generalize that in the case of three-dimensional MCs, a signal of

the form Hz = H0NtN(x)N(y)N(z)n(x)n(y)n(z) will be required followed by a four fold

discrete Fourier transform.

We have also calculated the spatial distribution of energy spectral density (ESD), Sf and
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phase, θ from the following equations:

Sf = |m̃(r, f)|2 ; (9.7)

θ = tan−1

(

Im (m̃(r, f))

Re (m̃(r, f))

)

. (9.8)

Here, m̃(r, f) is the time domain Fourier transform, of a dynamical magnetization data.

Unlike the new method used in Chap. 7, this gives us power from the entire wavevector

domain for a selected frequency f . However, if power is present for just one particular

wavevector then both methods yield qualitatively identical results.

The PWM is a spectral method in which the eigenproblem is numerically solved in the

frequency and wavevector domains by the standard numerical routines. We solve here LLG

equation in linear approximation without damping. The PWM calculations are performed

with the assumption of the full magnetic saturation of the ADL along the bias magnetic

field. As pinning during simulation will occur at the cell’s center, a hole size of l + d was

assumed during PWM calculations. Due to small thickness of the ADL, uniform SW profile

across the thickness is assumed. The PWM in this formulation was already used in the

calculations of the SW dynamics in 2D ADL and proved to give correct results.4,57,62,213 The

detailed description of the method can be found in Refs. 62 and 308.

9.2. Results and Discussions

The dispersion along the path in the first BZ shown in Fig. 9.1 (e) calculated with MSs by

using the elements shown in Fig. 9.1 (b)-(d) is assembled as Fig. 9.2 (a) using solid lines.

An overlay of dashed lines representing the SW dispersion relation obtained from the PWM

is provided for comparison. Both these results appear to agree with each other except for

the Γ −M direction where the numerical method was able to yield results for only half of

the total BZ extent. This is because we set kc to π/
(√

2a
)

here (the spatial periodicity is
√

2a). Compared to the element shown in Fig. 9.1 (b), which can be used to produce results

for Γ − X or Γ − Y directions, the one in Fig. 9.1 (d) features two scatter centres per unit

cell. And, if we artificially increase kc to
√

2π/a, both scattering centres will be activated

to produce additional spurious modes.97 To demonstrate the same we plot Sf (normalized
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Figure 9.2.: (a) SW dispersion calculated using MSs (solid line) and PWM (dashed lines).
ESD Sf , distribution for the horizontal line (f ≈ 62 GHz) shown in (a) in
parts of the sample when the propagation direction is along Γ − M for (b)
kc = π/

(√
2a
)

and (c) kc =
√

2π/a. Corresponding phase θ, distribution is
shown in (color online) (d) and (e), respectively.

between 0 and 1) and θ (given by Eqs. (9.7) and (9.8), respectively), for frequency f ≈ 62

GHz in Figs. 9.2 (b) to (e). Note that the horizontal separation between regions of high

ESD is about
√

2a in Fig. 9.2 (b) for kc = π/
(√

2a
)

. This reduces to a/
√

2 in Fig. 9.2

(c) for kc =
√

2π/a when both scattering centres in the unit cell (of the element shown in

Fig. 9.1 (d)) are activated at once. The phase distributions also confirm that neighbouring

locations of high ESD are about π and π/2 radians out of phase with each other in former
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(kc = π/
(√

2a
)

: Fig. 9.2 (d)) and later (kc =
√

2π/a: Fig. 9.2 (e)) cases, respectively. Apart

from incomplete result for the Γ−M direction, we can also see that the modes here (shown

by solid lines) do not match with those for Γ− Y direction at the Γ point. This is because

(cell size) d =
√

2 nm was used while simulating for the Γ − M direction as opposed to

d = 1.5 nm, which was used in the case of Γ−Y direction. Also, there are additional modes

of lower amplitudes visible in the case of Γ−M direction. This is due to the fact that N(x)

becomes a stepped approximation of the right hand side of (9.2) by the use of the FDM;

thus compromising the effectiveness of the cut off at kc = π/
(√

2a
)

, and exciting the second

scattering centre to some extent (but not as well as kc =
√

2π/a).

In pursuit of our quest to close the gap in the Γ −M direction we eventually decided to

simulate the SW dynamics in a large 2D MC with signal defined by Eq. (9.5) and perform

a three-fold Fourier transform in contrast with the two-fold transforms done earlier. We

transformed time to frequency domain and x− and y− dimensions to the 2D wavevector

domain. The resulting dispersion relation as calculated from the numerical method is shown

in Fig. 9.3 (a) using solid lines. Thus, we have obtained the magnonic band structure along

all high the symmetry directions. The overall agreement with the PWM results (shown by

dashed lines) although is poorer in comparison with Fig. 9.2 (a). This is due to the fact that

cell size in the later attempt was increased from d = 1.5 nm to d = 3 nm. The complete and

partial bandgaps width and center frequency, as seen from the dashed lines in Fig. 9.3 (a),

are extracted in Tab. 9.1. Here, values for partial bandgaps depend upon the path, which

has been used to plot the dispersion. Bandgap I is the only complete bandgap observed here

with the maximum width of 15.37 GHz.

Most bands observed in Fig. 9.3 (a) increase or decrease almost monotonously along any

high symmetry direction. Consequently, the width of bandgap I too, appears to decrease

monotonously as we move either along Γ → X → M or Γ → Y → M. Both upper and

lower limits of bandgap I are present at point M which suggests an anti-crossing of bands at

that point. This can also be regarded as the cause of the gap formation. Narrower bandgap

widths have been observed by different techniques before.60 The relatively high width of 15.36

GHz of bandgap I here can be attributed to small lattice dimensions and edge pinning.213

Bandgaps II to XI (Fig. 9.3 (a) and Tab. 9.1) are direction dependent partial bandgaps.
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Figure 9.3.: (a) SW dispersion calculated using MS (solid line) and the PWM (dashed lines).
The full and partial magnonic bandgaps are marked and numbered by Roman
numerals. The circled Arabic numerals indicate the points on the dispersion for
which the mode profiles are calculated in Fig. 9.4. Iso–frequency lines from (b)
63 GHz to 67 GHz (c) 86 GHz to 107 GHz (it is around the top and bottom
of the first and second magnonic band, respectively) using the PWM is shown
with dashed lines. Iso–frequency lines for (b) f ≈ 67 GHz and (c) f ≈ 100 GHz
calculated by the numerical method is shown using solid lines.
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Table 9.1.: Magnonic bandgap widths and center frequencies across different high symmetry
directions as calculated by the PWM and labeled in Fig. 9.3 (a).

Label Extent Center (GHz) Gap Width
(GHz)

I Complete Bandgap 76.39 15.36
II Γ− X 100.18 9.24
III Γ− X 114.45 7.7
IV Γ− X−M− Γ 155.85 1.9
V X−M 107.75 5.9
VI X−M 149.6 8.4
VII Γ−Y 100.68 10.24
VIII Γ−Y 114.2 8.2
IX Y −M 85.80 3.01
X Y −M 108.1 4.6
XI Y −M 150.1 9.4

This is mainly because bands approaching point M from other high symmetry directions

(with the exception of the band starting at Γ 5©) tend to show greater slopes. As X 5©→ Y 5©
is a relatively flatter line, bandgap IV survives for three high symmetry directions. In a

more isotropic forward volume arrangement,97,307 bandgap IV might also have qualified as a

complete bandgap if the dispersion in the X−M direction was also calculated. On the other

hand, if wavevector dependent anisotropy is overlooked,5 partial bandgaps (e.g. bandgap

IV, or II and VII, or III and VIII) will appear as a complete bandgap. Partial bandgaps IV,

V, VIII, X and XI are direct, while II, III, VI, VII and IX are indirect. Direct bandgaps are

formed when the minimal and the maximal frequency of the magnonic bands surrounded the

bandgap, from the top and bottom, respectively, are characterized by the same wavevector.

While two different wavevectors are involved in the formation of indirect bandgap. In Fig. 9.3

(a) the minimal and maximal frequencies appear at high symmetry points. Occasionally, a

bandgap may form between two high symmetry points due to anti-crossing of modes in a

folded BZ,4 but that is not observed here.

Now we calculate mode profiles ESD Sf and phase θ, at the high symmetry points, using

the PWM, for the first five modes as marked in Fig. 9.3 (a). The results are tabulated

as Fig. 9.4 where Sf is represented by colour saturation and θ is represented by hue. A

general trend of higher frequency mode profiles limiting themselves to smaller regions in real

space is observed. This trend has been seen for 1D systems as well.4 Here, mode profiles
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Figure 9.4.: (Color online) ESD Sf , and phase θ, for high symmetry points Γ, X, M and Y
at points 1© through 5© marked on Fig. 9.3 (a).

appear similar in size at points X 5©, M 5© and Y 5©. Although, the distribution at Y 5© is

vastly different due to a (nearby) mode–crossing in the Y −M direction (see Fig. 9.3 (a)).

Mode profile at Y may be obtained by rotating the mode profiles at X by 90◦. Modes

with negligible group velocity are trapped and forbidden to move in specific high symmetry

directions. Also, the number of nodal lines, which controls the spatial quantization of modes,

generally increases with mode number i©: i ∈ {1, 2, 3, 4, 5}. No nodal lines are evident for

Γ 1©. Vertical and horizontal nodal lines are seen at X 1© and Y 1©, respectively; while M 1©
features both vertical and horizontal nodal lines. From Fig. 9.3 (a), we can see that points

Γ 2©, X 2©, M 3© and Y 3© belong to the same mode and points Γ 3©, X 3©, M 2© and Y 2©
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belong to a different mode. As the crossing between these modes occurs along the X −M

direction, the mode profiles at X 2© and M 3© are comparable. Similarly, mode profiles at

X 3© and M 2© are also comparable except, X 3© has higher frequency and consequently, is

more confined is space. In general, vertical and horizontal nodal lines dominate at points

X and Y, respectively; while a more isotropic distribution is observed at point Γ and M.

Modes 1©, 2©, and 5© are isotropic along x− and y−axes for the Γ point. However, modes

3© and 4© are disposed along rows and columns, respectively. Their local shape and size are

comparable and accordingly, they are also degenerate as seen in Fig. 9.3 (a). Going from Γ

to either X or Y, 4© maintains its size and frequency; except the DE309 geometry is evident

in the later case. Similarly, the expanses of mode profiles at M 2© and 3© are comparable (as

their frequencies are within 5 GHz of each other), and yet their orientations are mutually

orthogonal.

Iso–frequency lines are shown in Figs. 9.3 (b) and (c), using both the PWM (dashed lines)

and the MSs (solid lines). Iso–frequency contours calculated using the proposed method

are thicker because small a yields a low wavevector resolution. The agreement between the

results obtained from the two methods as 67 GHz line calculated using the MSs and the 65

GHz line calculated using the PWM is clear, but the 2 GHz difference in frequencies is due

to the shift of the dispersion curves calculated with both methods shown in Fig. 9.3 (a). In

contrast to Fig. 9.3 (b) the two methods appear to give identical results for the 100 GHz

iso–frequency line, where the results of MS and PWM coincide. The shapes of iso–frequency

lines control the direction of the propagating waves and consequently also alter the shapes

of their wavefronts. Thus, although the dispersion along Γ − X and Γ − Y directions may

appear comparable, the wavefronts of the propagating SWs from the first band will quickly

uncover the underlying anisotropy, because of slightly different group velocity and curvature

of different iso–frequency contours in two orthogonal directions, which is easily noticeable

by the inspection of the contours for 63 and 65 GHz in Fig. 9.3 (b). This anisotropy is a

manifestation of dipolar interactions hardly visible in this size and frequency regime in the

magnonic band structure shown in Fig. 9.3 (a). Backward volume modes are characterized by

negative group velocity in the case of dipole dominated or dipolar-exchange SW propagating

in a ferromagnetic thin film.28 This is not seen in Fig. 9.3 (a) as due to weakness of the dipolar
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interactions the exchange field makes a significant contribution with increasing wavevector

k already near the BZ center.
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Figure 9.5.: First mode in a permalloy nano–dot array with varying angle φ, between the
bias field Hbias (µ0Hbias = 1 T), and wavevector k, showing the transition from
magnetostatic BV mode to DE configuration. The dashed lines are calculated
using the analytic expressions for these two configuration with a reduced satura-
tion magnetization. The structure considered here is given in the top left corner
with a = 9 nm, l = 6 nm and thickness s = 3 nm. Material parameters remain
the same as before.

The developed method is not limited to the antidot lattices nor exchange dominated

SWs. To prove this and better understand the properties of dipolar waves in MCs we

take a look at the dispersion of SWs in the case of 2D MC composed of a square array

(of lattice constant a = 9 nm) of square dots (of edge l = 6 nm and 3 nm thick). This

structure is shown in the top left panel of Fig. 9.5 along with the dispersion relations of

the first mode with increasing angle φ (from φ = 0 to φ = 90◦), between Hbias and k in

the subsequent panels. Here the wave propagation is mediated by the dipolar field only.

We have found a strong anisotropy in the spectrum of the collective magnetostatic SW

excitation, similar to already observed in the arrays of ferromagnetic dots of larger size in

Ref. 47. We note here how the mode’s group velocity gradually increases from negative (BV)

to positive (DE) as φ goes from 0◦ to 90◦.47,301 The transition appears to occur at a critical

angle φ = φc ≈ π/3. Note that here the direction of Hbias is being changed as opposed

to that of k in the previous case. It is interesting to note that the dispersion relations

obtained here for the array of nano–dots reminds us of the dispersion of magnetostatic

waves in thin ferromagnetic film. To verify this hypothesis we calculate the dispersion
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relation of magnetostatic waves in the thin ferromagnetic magnetic film (3 nm thick) with

reduced magnetization, i.e. with the effective value of the saturation magnetization Ms,eff.

The dashed lines overlaid in Fig. 9.5 are computed using the analytical expression for BV

and DE configuration in the case of thin film28 with a reduced saturation magnetization

Ms,eff = Msl
2/a2. A good agreement between the dispersion in the array and the effective

thin film is found. A minor disagreement is introduced by the presence of the BZ boundaries

but only near these boundaries. Further, the critical angle, φc = tan−1
√

Hbias/Ms,eff
310 in the

case of such thin film is also 56.24◦ ≈ π/3. This implies that one should also be able to use the

analytical expression to calculate the SW manifold between BV and DE geometries. This also

shows, that a thin film MC composed of an array of saturated ferromagnetic nanodots can be

used as a magnonic metamaterial, i.e., an artificial crystal with tailored effective properties of

spin wave dynamics.311–314 Further studies are necessary to elucidate the limits of the effective

saturation magnetization approach presented here. The influence of the dot–shape, their

arrangement and inter–dot separation (mode-splitting has been experimentally demonstrated

for nano–dot arrays315) need to further examined. However, these considerations are outside

the scope of this work.

9.3. Conclusions

We have described a numerical algorithm to calculate the dispersion of plane propagating

SWs in a 2D MC using multi-domain Fourier transform of results obtained from micromag-

netic simulations. At the core of this technique is a new excitation signal, which is capable

of generating SWs whose energy spectral density corresponds to the characteristic dispersion

relation of the 2D MC. The lack of such signal has been discussed before in the case of 1D

MCs.270,271 The results obtained from this procedure were verified by the plane wave method

when magnetization dynamics at antidot boundaries is pinned. We noted that both methods

were in qualitative agreement with each other. The fact that better quantitative agreement

was observed while using 2D PBC over 1D elements was due to lower cell size.4

Apart from a new numerical algorithm to compute the dispersion relation in any given

direction of a two- or three-dimensional inverse lattice, this method will also allow for the
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numerical computation of iso–frequency contours from micromagnetic simulations. Thus

the numerical tool to study metamaterials properties of MCs was provided. It gives the

possibility to design the properties of SWs relevant to technological applications and po-

tentially exceeding these known from the homogeneous ferromagnetic thin films. The nega-

tive refraction, unidirectional media or caustic propagations are only some of the examples

here.195,316,317 Further, this method can be generalized to aid the numerical computation of

dispersion or iso–frequency contours in the case of two– or three–dimensional phononic318

and photonic319,320 crystals as well.

The dispersion here appeared to be similar in Γ − X and Γ − Y directions. However,

a noticeable anisotropy between the BV and DE geometries was very evident from the

study of the mode profiles and the iso–frequency contours. As dipole field mediates the

SW propagation in a 2D dot array we were able to obtain the negative group velocity

associated with the first mode in the case of a BV magnetostatic configuration. We were

also able to analyse the nature of bands and complete and partial bandgaps that were

obtained from the dispersion calculations in the case of an MC. This can be useful in the

design of attenuators,321 phase–shifters,83 filters85 and logic gates.77

Low lattice constants were chosen in this article for both the antidot and the dot lattices

to ensure a realistic computational time within the available computational resources. For

larger lattice constants, larger cell sizes may be used with OOMMF. Cell sizes should not

exceed the exchange length (about 5.6 nm in Py), if the exchange interaction is to be taken

into account. In the case of 1D antidot waveguide, we noted66 that a larger value of lattice

constant a, brings the BZ boundaries closer and makes the modes less dispersive. Thus a

smaller value of a = 9 nm is used in the case of the nanodot array. In Ref. 47, some dispersion

is observed (particularly in DE configuration), as nanodots are 30 nm thick. Simulating for a

structure which is ten times thicker will similarly increase the required computational time.

Recent advances in lithography techniques50,98–100 have made it possible to fabricate dot

and antidot lattices with a resolution below 10 nm. Thus, one can fabricate samples with

dimensions comparable to the systems considered here. Experimental techniques similar to

Brillouin light scattering spectroscopy111 can be used to explore the SW dispersion relation.



10. Bandgaps in The Submillimetre

Frequency Range in a Magnonic

Antidot Waveguide

Even with all the improvements suggested so far to the numerical methods to compute SW

dispersion, it is still difficult to confirm the existence of magnonic bandgaps – particularly

in the submillimetre frequency range due to the aliasing which occurs during the Fourier

transform of real valued magnetization data. As discussed in Chap. 4, the use of excitation

signals in the form of sinc functions helps mitigate the aliasing. However, since the signal is

applied only for a finite duration and only as a discrete approximation of the sinc signal, some

aliasing is still seen. Close to the Nyquist frequency (≈ 500 GHz in most cases), aliasing

becomes well pronounced and obscures any bandgaps that may be existing there. Most of

this work has been focused on magnetization dynamics in the microwave range; however,

this chapter discusses an advancement made to the numerical method which nullifies aliasing

in the entire SW spectrum and also raises the measured amplitude of the peaks.

10.1. Precessing Vector Fourier Transform (PVFT)

In order to avoid getting mirrored peaks (aliasing) from the Fourier transform of real valued

data, we thought to generate complex valued data from the rotating components of the

precessing magnetization vector. This has been shown in Fig. 10.1 where the projection, mz

of magnetization m(t) = M(t)/Ms along the bias field Hbias (here we assume that the bias

and the effective magnetic fields point almost in the same direction) does not change much
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with time (Fig. 10.1 (a)) while the other two components, mx & my do (Fig. 10.1 (b) & (c)).

These three components are mutually orthogonal. This mapping was possible as one of the

rotating components lead the other by a constant phase difference of π/2 radians and they

both have the same amplitude. As shown in Fig. 10.1 (c), these features can also be seen in

a complex number z given by z = eiωt .

Hbias

m(t)

mz Re(z)

Im
(z

)(a)

(b) (c)

m (t)
┴

m (t)
┴

mx

m
y

z = e i tw

Figure 10.1.: A comparison between a precessing magnetization vector M with a complex
number of the form z = eiωt. The bias field Hbias points along the z− axis.

Consider the harmonic oscillator with the characteristic equation r̈ = −ω2r. Test functions

r = z+ = eiωt and r = z− = e−iωt satisfy the equation. The real valued position variable r

can then be expressed as

r =
1

2
(z+ + z−) . (10.1)

Fourier transforming, z+ or z− w.r.t. time t will give a peak of unit amplitude at ω or

−ω, respectively. On the other hand, Fourier transforming r (as given by Eq. (10.1)) will

produce two peaks with half the amplitude: one at ω and the other at −ω. Thus, Fourier

transforming z+ or z− halves the number of peaks and doubles their amplitudes. This will

improve the overall readability of the spectral data. So, instead of Fourier transforming any

one component mx or my (as marked in Fig. 10.1), we decide to transform mi = mx + imy.

It is assumed here that mx leads my. Fourier transformation of mi shall henceforth be

referred to as Precessing Vector Fourier Transform (PVFT). Below, we will demonstrate the

improvements achieved in the case of SW dispersion analysis as a result of this development.
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Figure 10.2.: A comparison between a precessing magnetization vector M with a complex
number of the form z = eiωt. The bias field Hbias points along the z− axis.

10.2. Increased Amplitude

To appreciate the increase in amplitude, on can compare the peaks corresponding to a

SW dispersion mode with low frequency (f ≈ 0) noise level. Figure 10.2 shows power vs.

wavevector profile of the first mode of a SW dispersion spectrum in a nano–wire with a cross

section of 3 nm × 3 nm. Peaks at f ≈ 0 is also presented for comparison. The dynamics

is simulated to have occurred in a bias of field µ0Hbias = 1.01 T along the wire. Material

parameters of Py were used during simulation. An uniform increase of power (about 2.4

dB) is observed across the wavevector range. A Hanning window after zero–padding (see

Chap. 4) was used during both the conventional Fourier transform of mx and the PVFT of

mi.

10.3. Reduced Aliasing

Consider the case of 2D ADL as shown in Fig. 9.1. In Fig. 10.3, we compare the result

obtained by Fourier transform of real mx and complex mi. Here the lattice constants along

x− and y− axes are ax = 18 nm and ay = 24 nm, respectively. The antidots are square

holes (in a Py film) of edge l = 12 nm. Film thickness u = 3 nm. 2D PBC244 is used

to simulate an infinite lattice. We can clearly see that aliasing has reduced drastically in
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Figure 10.3.: SW dispersion in Γ−X direction in the case of a 2D ADL as shown in Fig. 9.1
without any edge pinning. Here lattice constants ax = 18 nm, ay = 24 nm,
antidot edge l = 12 nm and film thickness u = 3 nm. A bias field µ0Hbias = 1.01
T points along the x− axis. Material parameters of Py are assumed during
simulations. (a) mx and (b) mi are used during Fourier transformations.

the submillimetre frequency range (> 300 GHz) when we used PVFT in Fig. 10.3 (b). It

is clearly observed that several aliased modes have disappeared in high frequency range

(above 150 GHz). This demonstrates how the described technique has helped to improve

the readability of the obtained results all the way up to the Nyquist frequency. As aliased

modes get nullified, new bandgaps may appear. This has happened in the presented case

where a 14.4 GHz wide bandgap (marked by a purple rectangle) appears above the 400 GHz

mark. Thus, this new method has the potential to help reveal additional band gaps, which

were previously unresolved and hence unavailable to any designer in a much higher frequency



10.3 Reduced Aliasing 149

range.
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Figure 10.4.: SW dispersion in the case of a MAW as shown in (a) with w = 4.5 nm, a = 18
nm, s1 = 12 nm, s2 = 9 nm and u = 3 nm under a bias field µ0Hbias = 1
T pointing along the x− axis. Material parameters of Py are assumed during
simulations. (a) mx and (b) mi are used during Fourier transformations.

Similar improvements were observed in the case of a MAW as shown in Fig. 10.4. Disper-

sion calculated using Fourier transformation of mx and mi are presented in Figs. 10.4 (a)

and (b), respectively. A row of rectangular antidots of size (s1, s2) = (12, 9) nm is placed
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centrally in 2w+s2 = 18 nm wide and u = 3 thick Py waveguide. A bias field of µ0Hbias = 1

T points along the length of the waveguide. During simulation, free boundary condition was

used along with 1D PBC243 (to mimic an ideal 1D magnonic crystal). A single 2.2 GHz

wide bandgap marked by a blue rectangle is evident centred at 50.05 GHz in both cases.

The new method, which yielded results shown in Fig. 10.4 (b) has successfully mitigated

aliasing to verify the existence of two more bandgaps. Of these new bandgaps, the lower one

of width 8.55 GHz (marked by a blue rectangle) is in the microwave frequency band (centred

at 287.83 GHz) while the higher one (marked by a purple rectangle) is in the submillimetre

frequency band (centred at 322.02 GHz).

Thus we established that the use of PVFT can increase the amplitude of peaks while also

largely eliminating aliasing. This technique may be used in any problem where precessing

vectors are encountered. In our case it enabled us to positively identify the existence of

bandgaps in the submillimetre frequency band.



11. Experimentation Involving

Magnonic Antidot Waveguides

In this chapter, we discuss the some experimental results following the numerical works

presented on one–dimensional (1D) magnonic antidot waveguides (MAWs). However, even

with the recent advancements in nanofabrication, it is still not possible to fabricate large

1D or 2D periodic arrays of fine features with great precession. The samples presented here

were fabricated using lithography techniques discussed in Sec. 3.5.

11.1. MAW Samples

The generic form of samples fabricated for this study is described in Fig. 11.1. The length

and width of the waveguide was approximately 60µm and 5µm, respectively. Thickness was

about 20 nm. Circular antidots of diameter d were milled in a 6× 30 array placed close to

the middle of this waveguide. Their edge to edge separation was ax along the length. The

separation, ayi between ith and (i+ 1)th row is given as

ayi =







ay1 i is odd

ay2 i is even
. (11.1)

Four such samples were studied experimentally using a time–resolved magneto–optic Kerr

effect (TR–MOKE) setup. The approximate values of the parameters used for these samples

are tabulated in Tab. 11.1. The exact values of antidots’ diameters and their edge–to–edge

separations (ax, ay1 and ay2) are within 10% of the tabulated values. Henceforth, the samples

will be referred to by their Sample IDs as given in the table.
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Figure 11.1.: (a) Dimension of the Py waveguide in which antidots were milled using focused
ion beam lithography. (b) A scanning electron microscopy image produced
during the inspection of the fabricated sample showing the 20 nm thick Py
waveguide along with the antidot array, deposited over the Si substrate. (c)
Dimensions within the antidot array.

Table 11.1.: Assignment of sample IDs to an instance of geometrical parameters as labelled
in Fig. 11.1.

Sample ID d (nm) ax (nm) ay1 (nm) ay2 (nm)
1© 180 410 410 410
2© 210 410 430 320
3© 210 330 320 320
4© 210 520 550 550
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11.2. Magneto–Optic Kerr Effect (MOKE)

MOKE is a type of magneto–optic interaction associated with the change in polarization

of light reflected from a magnetized surface. This effect was first observed by John Kerr

in 1877.322 The interaction of light with the applied magnetic field and magnetization of

the material has been theorized to be the cause of this effect.6 Upon reflection from a

magnetized surface, a linearly polarized light transforms to an elliptically polarized light

where the major axis of the ellipse is rotated from the plane of polarization of incident light

by an angle proportional to the magnetization. This angular deviation can be measured to

estimate the magnetization.

e
K

qK

Major Axis

Minor
Axis

Incident
Polarization

Plane

Refelected
Polarization

Ellipse

Figure 11.2.: Incident polarization plane and reflected polarization ellipse shown in dotted
lines. Major and minor axes of the ellipse are shown in dashed lines. Kerr
rotation and ellipticity are represented by angles θK and ǫK , respectively.

The angular distance between the major axis of the ellipse (of the elliptically polarized

reflected light) and the plane of polarization (of the plane polarized incident light) is define

as Kerr rotation. This is marked as angle θK in Fig. 11.2. Kerr ellipticity measures the

flatness of the ellipse and is represented by angle ǫK in Fig. 11.2. In our experiments we are

interested in the Kerr rotation signal only.
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11.2.1. Description of The Pump–Probe Optical Setup

A schematic of the TR–MOKE setup is presented in Fig. 11.3.6 This setup is mounted on an

optical table which is engineered to facilitate rapid attenuation of any acoustic vibrations.

The table also features a very smooth surface covered with a square array of circular holes

(25 mm grid) which facilitates the equipment setup process.
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Figure 11.3.: A schematic diagram of an all optical TR–MOKE microscope with collinear
pump–probe geometry as housed in the lab at the S. N. Bose National Centre
for Basic Sciences. Source: Ref. 6.

As seen in Fig. 11.3, a diode laser is used to pump a solid state laser (Millenia), which in

turn pumps the Ti–sapphire laser (Tsunami) with a maximum power of 10 W using a 532

nm light. Regenerative mode locking is used here to produce a train of laser pulses with ≈ 70

fs pulse width and average power of ≈ 1.6 W. The pulses come at a frequency of 80 MHz

(≈ 20 nJ/pulse). The output of a Ti–sapphire laser can be tuned from 690 nm to 1080 nm.

However, here we keep the output wavelength at 800 nm. The Tsunami laser features control

knobs which manipulate prisms in optical path to change the mean wavelength, pulse-width

and power of the output beam. This output beam is vertically polarized with a spot size of
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≈ 2 mm.

About 70% of the beam is directed towards a second harmonic generator (SHG) using the

beam splitter B1 (see Fig. 11.3). An SHG uses non–linear methods323 to halve the beam

wavelength to 400 nm. This beam is used to excite the magnetization dynamics and is

referred to as the pump beam. The Kerr rotation and thus the magnetization dynamics is

probed using the 800 nm beam. This is referred to as the fundamental beam or the probe

beam. The paths of the pump and probe beams are marked by blue and red lines, respectively

in Fig. 11.3. A spectral filter Fb is used to ensure that no trace of the fundamental beam

remains mixed with the probe beam. A sequence of mirrors (Mb1, Mb2 and Mb3) is used to

guide the pump beam on to the sample. An attenuator is used to control the intensity of the

incident pump beam. A chopper modulates the intensity of the pump beam at 2 kHz. This

modulation frequency also serves as a reference signal during the lock–in detection process

of the probe beam. The path of the pump beam remains fixed.

The probe beam passes through a computer controlled variable delay stage, which uses a

retro–reflector to turn the beam by 180◦ with some lateral off–set. Fixed mirrors (Mr1, Mr2,

Mr3 and Mr4) are used to guide the probe beam on to the retro–reflector. An attenuator

is also used here to control the intensity of the probe beam. Mirrors Mr5, Mr6 and Mr7

are used to guide the retro–reflected probe beam on to the sample. A pair of collimating

lenses L1 (focal length = 75 nm) and L2 (focal length = 200 nm) are used in telescopic

arrangement to increase the probe beam’s diameter to ≈ 5 mm, so the entire back–aperture

of the microscope objective (MO) may be used. A Glan–Thompson polarizer (extinction

coefficient 100, 000 : 1) is used to refine the polarization state of the probe beam.

Both pump and probe beams are combined at beam combiner B2, which is essentially a

50 : 50 non–polarized beam splitter set at 45◦ to the optical of the probe beam. Meticulous

effort is required to ensure that both the pump and the probe beams remain collinear from

this point.6 The combined beam then passes through a MO (M–40X; N. A. = 0.65) at normal

incidence which focuses the probe beam on the surface of sample to a diffraction limited spot

size of about 800 nm. The pump beam is slightly defocused (spot size = 1µm) on the sample

due to chromatic aberration. The sample is held by using a sample holder mounted on a

computer controlled piezoelectric scanning x− y − z stage.
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A white light source is used to illuminate the surface of the sample. This helps see micron

size features on the sample using a charged coupled diode (CCD) camera and ascertain that

the pump and probe beams are aligned on a desired spot on the sample. White light from

the white light source is reflected into the MO by using a glass slide (G1). A beam–splitter

B3 is used to turn the reflected pump, probe and white lights by 90◦ (see Fig. 11.3). The

white light is guided into the CCD camera by using another glass slide (G2). The white

light is turned off once the initial alignment has been verified. The probe is filtered out

using a spectral filter Fr. Thus only the reflected probe beam, which contains the Kerr

rotation signal is allowed to reach the optical bridge detector (OBD). Due to the conical

symmetry of the beam focused using the MO, the effect of the in–plane (longitudinal and

transverse) components of magnetization gets averaged out and only the out of plane, or

polar component of magnetization contributes to the observed Kerr rotation.

Within the OBD, a polarized beam–splitter is used to split the elliptically polarized re-

flected probe beam into two mutually orthogonal plane polarized beams. The intensity

of these plane polarized beams is converted into electronic signals, A and B, using Si–

photodiodes. The sum (A+B) and difference (A−B) of these signals give total reflectively

and Kerr rotation. The polarized beam–splitter is kept at 45◦ to the initial plane of polariza-

tion to ensure the balance of the bridge: A−B = 0. Generally, A−B ∝Mz, where Mz is the

z− component of the magnetization. The reflectivity signal (A + B), contains information

regarding carrier dynamics and phonon dynamics.

11.3. Results and Discussion

11.3.1. TR–MOKE Measurements from the Ni80Fe20 Antidot

Waveguide

Figure 11.4 shows the time–resolved Kerr rotation and the corresponding spin wave spectra

and the simulation data corresponding to 1© in (top panels) backward volume (BV) and

(bottom panels) Damon–Eshbach (DE) configurations (see sub–Sec. 2.4.2). The Kerr rota-

tion signals θK ∝ A − B ∝ Mz as obtained from TR–MOKE microscopy for BV and DE

configurations is given in Figs. 11.4 (a) and (b), respectively. Here the BV and DE configu-
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rations refer to arrangements where the bias magnetic field is applied along x− and y− axes

of the geometry described in Fig. 11.1 (c). In both cases, an ultrafast demagnetization fol-

lowed by a fast re-magnetization and a slow re-magnetization and a precessional oscillation

superposed on the relaxing magnetization is observed. A bi–exponential background (see

sub–Sec. 2.3.4) is subtracted from the raw data to obtain θ′K :

θ′K(t) = θK(t)− θ1 exp(−t/τ1)− θ2 exp(−t/τ2). (11.2)

Here t is the time delay (controlled by the delay stage) in the arrival of the probe (beam)

pulse w.r.t. to the pump (beam) pulse. θ′K(t) is shown for BV and DE configurations

in Figs. 11.4 (c) and (d), respectively. The variables θ1, θ2, τ1 and τ2 are obtained using

curve fitting techniques while minimizing the standard deviation of θ′K(t). τ1 and τ2 are the

relaxation times as discussed in sub–Sec. 2.3.4. The values of τ1 and τ2 obtained from curve

fitting the experimental data presented in this chapter are of the order of 5 ps and 200 ps,

respectively. Uniform waveguides registered a higher value of τ1 (≈ 10 ps). These results

are in agreement with known values for permalloy.6

Energy spectral densities (ESDs) – squares of Fourier transforms of θ′K(t) for BV and

DE configurations are plotted in Figs. 11.4 (e) and (f), respectively in arbitrary units using

a non–logarithmic scale. Figs. 11.4 (g) and (h) are ESDs obtained using micromagnetic

simulations for BV and DE configurations, respectively. The material parameters of Py

were used during simulation with a cell size of 5 nm × 5 nm × 20 nm. A Gilbert damping

constant of 0.008 was used for the dynamic simulation. A pulse excitation field was used

to trigger the magnetization dynamics. Here the Fourier transforms are done directly on

the spatially averaged z− component of magnetization. 1D periodic boundary condition

(PBC) is used on a column of holes (as shown in Fig. 11.1)to mimic a large array. The same

material parameters of Py, as used in the previous chapters (see page ‘xx’) were used during

simulations in all cases examined in this chapter.

The experimental results differ from the simulated ones to some extent as the actual

material parameters may differ to some degree from their ideal values due to fabrication

defects. Also, some geometrical parameters vary from one column of antidots to another.

On the other hand, while using the PBC all column are assumed to be identical. Further,
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Figure 11.4.: TR–MOKE and simulation data for 1© in (top row) BV and (bottom row) DE
configurations. (a) and (b) show the time resolved Kerr rotation (θK) signal
on a linear scale as obtained during experimentation. (c) and (d) represent the
same signals with their bi–exponential backgrounds subtracted (θ′K). (c) and
(g) show the corresponding ESDs. ESDs are also calculated using micromag-
netic simulations for (d) BV and (h) DE configurations. Bias field strength is
1 kOe in all cases.

the simulations are performed at an absolute zero temperature. Also, the use of PBC causes

a reduction in observed number of modes.303 PBC is used nonetheless, because simulation

of the entire geometry would otherwise require forbiddingly vast computational resources.

Thus, we generally expect a mode which is observed in simulation to be present in the

experimental measurements, but not vice–versa. However, in few simulation results, artificial

periodicity may produce a spurious mode or cause a mode to shift along the frequency axis.

Henceforth, we represent the set of peaks observed during a simulation by {fS} : fS ∈ {fS}.
The set of experimentally observed peaks {fE} can then be constructed such that the sum
∑

(fE − fS)2 is minimized.

For a deeper understanding of the origin of SW band structure, one needs to consider the

power and phase distribution of SWs as a function of position.4,49,50,64,65,68,117,262,324–326 The

same has been tabulated in Fig. 11.5 for different cases. The first and the third columns mark

the case by declaring the sample ID, the peak frequency fS, the magnetic bias field strength

Hbias and the configuration (BV or DE). The second and the fifth columns depict the power
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profiles and the third and the fourth columns depict the phase profiles. Six columns of holes

are shown in each case by placing the simulated geometry nine times side–by–side (1D PBC

has been used along the length of the waveguide).

In the simulated geometry, the presence of antidots divides the waveguide into two sub–

waveguides. However, in reality this division is not complete as the rows of antidots are

shorter than the waveguide itself. For the BV configuration corresponding to Fig. 11.4

(g), we have {fS} = {8.06, 9.77, 12.70} GHz and {fE} = {8.20, 9.38, 10.94} GHz. As seen in

Fig. 11.5, the first two modes correspond to BV mode (located amidst the antidot lattice) and

the ferromagnetic resonance mode (of the two sub–waveguides), respectively. The third mode

is a highly quantized mode resonating in the antidot lattice itself. Since, during fabrication,

the distance between any two column of antidots, ax, can vary by ±10%,64 we can see a

number of modes around this region in Fig. 11.4 (e). For the DE configuration corresponding

to Fig. 11.4 (h), we have {fS} = {6.59, 7.81, 9.03} GHz and {fE} = {6.25, 8.20, 9.38} GHz.

As the bias field points along the width of the waveguide, demagnetized regions develop near

the edges. Thus, the first mode here corresponds to the edge mode which is also confirmed

by Fig. 11.5. The second mode is the DE mode, which corresponds to the demagnetized

regions in the antidot lattice itself. Apart from the antidot lattice, this mode also resonates

some distance away from the edges of the waveguide. Most of the power of the third mode

is present in the two sub–waveguides. Another mode seen above 12.5 GHz possibly results

due to highly quantized SW resonance as seen in the BV configuration as well. As the

use of 1D PBC creates a stronger partition between the two sub–waveguides the resulting

demagnetization becomes more pronounced leading to an overall negative shift in the SW

frequency domain.

11.3.2. Dependence of SW Spectrum on the Lattice Parameters

The dependence of SW spectrum on the lattice parameters of the arrays (as given in

Tab. 11.1) is shown in Fig. 11.6. The observed peaks have been analysed qualitatively

to understand their nature. These peaks are also tabulated in Tab. 11.2 for a quantitative

comparison. As the peaks move with changes in the lattice constants, a clear tunability

transpires. Their power and phase distribution has also been presented in Fig. 11.5. A high
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amplitude peaks is observed in all simulated cases at fS = 9.77 GHz. This corresponds to

the ferromagnetic resonance in the sub–waveguides (see Fig. 11.5). As the sub–waveguides

occupy a vast area, a peak of high amplitude can be expected. As ay1 + ay2 is the highest

for 4©, the area of sub–waveguides is minimized, resulting in a peak with lower amplitude.

Thus we note that the average relative SW power of different modes can be controlled by

changing the areas of the regions that they occupy. Depending upon the position of the

array of antidots, the width of the sub–waveguides may be different. As seen in Fig. 11.5,

this can lead to a small phase difference (≪ π) between the sub–waveguides in a few cases.
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Figure 11.6.: SW ESD calculated using (left column) Kerr signal and (right column) sim-
ulations for 1©, 2©, 3© and 4© with a constant bias magnetic field strength
Hbias = 1 kOe along the length of the waveguide. A linear scale is being used
to represent the peaks here.

Table 11.2.: {fS} and {fE} for results presented in Fig. 11.6.
Sample ID {fS} (GHz) {fE} (GHz)

1© {8.06, 9.77, 12.70} {8.20, 9.38, 10.94}
2© {8.79, 9.77, 11.23} {8.20, 9.77, 10.55}
3© {7.08, 8.54, 9.77} {6.64, 7.81, 9.38}
4© {8.79, 9.77} {8.98, 9.77}

The peaks attributed to the ferromagnetic resonance of the sub–waveguides appear to

agree well with corresponding experimentally observed peaks. In all cases at least one BV

mode, localized amidst the antidot array, is observed between 8 GHz and 8.8 GHz with little

or no quantization. For 3© another BV mode is seen at 7.08 GHz. For 2© as well, multiple

BV modes are seen below 5 GHz, with relatively lower quantization (these modes are not

shown in Fig. 11.5). As these modes are localized in the antidot lattice, their position (in the
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frequency domain) is more sensitive to fabrication related fluctuations of lattice parameters

d, ax, ay1 and ay2. Quantized modes in the antidot lattice is also seen for 1© and 2© above

10 GHz. When compared with the experimental results, these modes show more movement

possibly because the quantization increases the sensitivity towards any variance in the lattice

structure. These observations suggest that modes localized amidst the antidot array may be

more sensitive to the precision of the fabrication processes.

11.3.3. Bias Field Dependence

We noticed that the peak associated with the ferromagnetic resonance of the sub–waveguides

did not vary significantly with lattice constant in Fig. 11.6. This peak largely depends upon

the magnitude of the applied bias field. In Fig. 11.7, we show the field dependence of

SW band structure for a uniform waveguide and 1© and 3©. Bias field strengths of 1 kOe

(maximum), 821 Oe, 692 Oe, 587 Oe and 492 Oe (minimum) were used for this experiment. A

low frequency peak is visible in some experimental measurements. Typically it is associated

with normal low frequency noise which occurs during TR–MOKE measurement and is filtered

out during post processing by using a high pass filter. However, here the peaks, which appear

systematically for certain bias magnetic field magnitudes — 821 Oe in all cases and 692 Oe

for 3©, have been presented as it is to allow for the readers to develop their interpretation

independently.

A single peak which decreases monotonously with decreasing Hbias is seen in the case of

the uniform waveguide. Experimentally observed peaks also appear to (qualitatively) agree

with this Kittel mode (see sub–Sec. 2.3.3). This also helps to confirm that magnetic material

parameters for simulations have been well chosen and the bias field values are well calibrated.

Let us recall the Kittel formula (Eq. (2.52)):

ω = |γ̄|
√

(Hbias + (Nyy −Nxx)Ms) (Hbias + (Nzz −Nxx)Ms),

where the bias field points along the x− axis for the wide waveguides considered here. Thus,

we can also assume Nxx ≈ 0 and Nzz ≈ 1 (normal to the plane of the waveguides). Hence,
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Figure 11.7.: SW spectra calculated using (left panel) Kerr signal and (right panel) sim-
ulations for a uniform waveguide and samples 1© and 2© with varying bias
magnetic field strength Hbias along the length of the waveguide.

the Kittel formula reduces to:49

ω = |γ̄|
√

(Hbias +NyyMs) (Hbias +NzzMs). (11.3)

Substituting Nzz = 1−Nyy (see Eq. (2.49)) in the above equation, we get

ω = |γ̄|
√

(Hbias +NyyMs) (Hbias + (1−Nyy)Ms). (11.4)

While using Eq. (11.4) to fit the simulated results, we get Nyy as 0.004378, 0.009288 and

0.01148 for uniform waveguide, 1© and 3©, respectively. Thus, we note that the presence

of the antidot array close to the centre of a uniform waveguide can nearly double the de-

magnetizing factor Nyy — which can be further tuned by changing the lattice parameters
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(from 1© to 3©). The plots of Eq. (11.4) corresponding to the aforementioned values of Nyy

are shown in Fig. 11.8. Experimentally observed modes in different cases are represented

by open symbols. For decreasing bias field strength, the modes in patterned waveguides ( 1©
and 3©) appear to drop more rapidly than predicted. This may be the result of a change in

the equilibrium magnetic configuration leading towards a more non-uniform magnetic state

and a reduced effective magnetic field and precession frequency.
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Figure 11.8.: (Solid lines) Curve fitting of simulated modes (shown in Fig. 11.7) using the
Kittel formula (Eq. (11.4)). (Open symbols) Experimentally observed modes.

It can be noted that the experimentally observed peaks in Fig. 11.7 are always wider

than the those seen in simulation. This can be corrected by using a higher Gilbert damping

constant. However, doing so will compromise the resolution of simulated results. 4© is visibly

asymmetrical (see Fig. 11.5). We know from Chap. 64 that the wider and the narrower sub–

waveguides should resonate at different frequencies. However, here the difference is merely

of about 0.5 GHz and the currently used Gilbert damping constant of 0.008 does not allow

to resolve this phenomena. Also, since the wider sub–waveguide occupies a greater area, its

peak is seen more prominently due to averaging. The evidence of this undetected splitting

can be noticed by comparing the power and phase profiles at 9.77 GHz and 10.25 GHz in

Fig. 11.5 for 1© (Hbias = 1 kOe). The peak seen in Fig. 11.7 for 1© (Hbias = 1 kOe) is at 9.77

GHz. In Fig. 11.5, this peak is seen to have greater power in the wider sub–waveguide. The

narrower sub–waveguide shows more power at 10.25 GHz. This splitting is not resolvable in

the experimental results as well probably due to the presence of an even higher damping.

From Fig. 11.5, we can see that the three modes which are evident at all bias field strengths
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Hbias, shift negatively along the frequency scale with reducing Hbias. The lowest and the

highest modes are the BV and the quantized modes (with power distribution close to the

antidot lattice) in all cases. The mode in the middle corresponds to the ferromagnetic

resonance of the two sub–waveguides. As mentioned earlier, the two sub–waveguides resonate

at slightly different frequencies, where that difference is lower than the mode width observed

here. As seen in Fig. 11.5, 3© features two BV modes (with limited quantization) with power

close to the antidot array for all cases except Hbias = 821 Oe. As in the case of 1©, the most

powerful mode for 3© (as seen from Fig. 11.7), is again situated in the space of the two

sub–waveguides. The entire band structure shifts negatively for 3© with decreasing values

of Hbias.

11.4. Conclusions

In this chapter, we were able to demonstrate the tunability of magnonic spectra of MAWs

based on their geometrical parameters and the bias magnetic field. All discussion here was

limited to modes seen at the centre of the Brillouin zone. We showed that SW modes in

the sub–waveguides were very stable towards any variance in the fabrication parameters.

They were largely controlled by the orientation and magnitude of the bias magnetic field

Hbias. Edge mode of the MAW was clearly observed in the DE configuration. No edge

mode was observed in the BV configuration due to the inherent shape anisotropy of the

waveguide. Modes with power close to antidot lattice showed a greater dependence on the

geometrical parameters as minor disagreement between simulation and experimental results

was observed here. Quantized modes were also seen to have power close to the antidot

lattice. The experimentally observed modes here showed greater disagreement hinting at

higher sensitivity towards changes in the geometrical parameters from one column of antidots

to another. We can thus conclude that some advances in the fabrication procedures relating

to reducing variance in geometrical parameters of the fabricated samples need to happen in

order to readily create reliable SW waveguides or filters.



12. Coupled Magnetic Vortices for

All–Magnetic Transistor

Operations

∗There has been a revolution in the study of inhomogeneous and non-trivial magnetic nano–

structures such as magnetic vortices and antivortices due to their suggested applications

in magnetic data storage, magnetic random access memory,128–131 magnetic logic132 and

information processing devices.132

In our study we show that off–resonant signals327 of lower amplitude can be used to design

suitable transducers with isolated vortices, which will be required to convert other kinds of

external signals (e.g. a rotating field) to vortex core gyration. In the case of a pair of

magnetostatically coupled vortices, if a signal is applied to only of them then the other

one shows a greater core gyration i.e., amplification when the core polarities are opposite.

Antivortex solitons moving through the stray field are held responsible for this behaviour.

We postulate some rules regarding their dynamics and use them to mimic transistor–like

operations of switching and amplification with a chain of three vortices. Furthermore, we

attempt to couple the output of this three vortex chain to two symmetrically placed daughter

chains in an attempt to demonstrate a fan–out operation. However, the antivortices involved

in the dynamics favoured one branch over the other resulting in a higher level of asymmetry

– one of the branches received more power than the other.

∗This chapter is based upon Kumar et al. Sci. Rep. 4, 4108 (2014).
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12.1. Methods

Magnetic vortex dynamics was simulated using the finite difference method based Landau-

Lifshitz-Gilbert (LLG) ordinary differential equation solver called Object Oriented Micro-

magnetic Framework (OOMMF). Before the dynamics could be observed, a magnetic ground

state has to be achieved with required vortex core polarity and chirality.128,129,148,230,328–332

This was accomplished by using a pulse field Ht = H0 exp(−t′2). Here, µ0H0 = 1 T and

normalized time t′ = (t − t0)/(
√

2σ). t0 = 75 ps and σ is the standard deviation of this

Gaussian pulse in time whose full width at half maximum is 30 ps. Close to the centre of

the circular geometries we apply Hz = ±Ht/10 along the Z axis where the sign controls the

core’s polarity. If the origin of co-ordinates is brought to the centre of the vortex then X−
and Y−components of fields, Hx and Hy that would produce the desired chirality are given

below

Hx = ∓Ht sin(θ);

Hy = ±Ht cos(θ).

Here, θ = tan−1(y/x) and the upper or lower signs were chosen for CCW or CW chiralities,

respectively. It is to be noted that this pulse signal controlled by Ht, dies down quickly

while the magnetic ground state is obtained by running the simulation for 40 ns under a

high damping (Gilbert damping constant α = 0.95 is used in the LLG equation). We have

used saturation magnetization, Ms = 0.8×106 A/m, exchange constant, A = 13×10−12 J/m

and zero magneto–crystalline anisotropy. During vortex dynamics simulations we reduce α

to a more realistic value of 0.008 for Py. Magnetization was observed every 10 ps for about

40 ns during dynamics. The cell size used during simulation was 5 nm × 5 nm × 40 nm.

Before we start to explore the dynamics of magnetic vortices, we first need to obtain

the natural frequencies associated with a single isolated vortex. A broadband excitation

signal was given to reveal these frequencies. The signal had only X-component, HS
x which

contained power up to fcut = 45 GHz and depended upon time t as given by:

HS
x = H0

x

sin(2πfcut(t− t0))

2πfcut(t− t0)
.
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Here, µ0H
0
x = 0.05 T and t0 = 200 ps.

Upon obtaining the magnetization data from OOMMF, we chose to analyse the results by

looking at the time evolution of spatial average of normalized X−component of magnetiza-

tion, 〈mx〉 for each vortex, and its corresponding ESD. Normalization is done by dividing

the X−component of magnetization, Mx by Ms; such that mx = Mx/Ms. The Hanning

window is used on 〈mx〉 to reduce spectral leakage. The windowed data is then zero padded

and Fourier transformed to obtain the required ESD, |m̄x|2.262 This is plotted in figures on

decibel scale as wH×20 log10 |m̄x|, where a window scaling factor of wH = 2 is used for the

Hanning window. These ESDs were calculated after running the dynamics for over 40 ns, so

that any transient vortex core dynamics are suppressed and steady state dynamic solutions

appear to be more prominent in the spectrum. Power spectral density is considered to be

more desirable in the case of persistent signals. However, here we run the simulations for

finite amount of time. Also, natural damping ensures that net power input to the system

becomes zero before the simulations finish. The stray field is also obtained from OOMMF

during dynamics. The stray field plots were created using MATLAB. The contour colouring

is based on the sum of squares of X− and Y−components of the stray field.

12.2. Results and Discussion

We use permalloy (Py: Ni80Fe20) with negligible magneto–crystalline anisotropy in the form

of a 40 nm thin disk of diameter 2R = 200 nm to ensure a stable vortex structure.258 The

darker shade in Fig. 12.1 (a) represents such an isolated vortex. Figure 12.1 (b) shows a pair

of coupled vortices whose centre to centre distance is a = 250 nm. A chain of three vortices,

with the same centre to centre distance a, has also been studied with different orientations

of polarity. Spatially averaged X−component of magnetization 〈mx〉 has been used as an

indicator of core displacement away from their equilibrium positions. The square of the

amplitude of Fourier transform of 〈mx〉 (t) (with respect to t) – also known as the energy

spectral density (ESD) – shows the peaks in vortex core dynamics as a function of frequency.
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Figure 12.1.: Dark regions represent the 40 nm thick (a) isolated and (b) coupled pair of
magnetic vortices each of diameter 2R = 200 nm. The centre to centre sepa-
ration in the case of coupled vortices is set to a = 250 nm. (c) Time evolution
and (d) corresponding energy spectral density of 〈mx〉 in response to the signal
HS

x .

12.2.1. Isolated Magnetic Vortex

Figure 12.1 (c) shows a plot of 〈mx〉 vs. time and Fig. 12.1 (d) shows the associated ESD

(in decibel) for the single vortex excited by a broadband signal. The gyrotropic mode is

observed at frequency f = f0 ≈ 1.27 GHz. Higher frequency modes associated with the

generation of spin-waves333 are also observed. Here, we concern ourselves with frequencies

f ≤ f0 while using signals that are rotating CW or CCW in the plane of the magnetic
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vortices. With up polarity p = 1, CCW signals are known to produce greater gyration152

which can lead to polarity switching. This can be useful in terms of data storage.327 However,

if the polarity switching is somehow avoided, one can use this to create a suitable transducer

for appropriately rotating signals. To that end we can use signals with lower amplitude.

Signals with off–resonant frequency f < f0, should be used to reduce the convergence time.

As shown in the Fig. A.1, anharmonicity of the gyration dynamics results in a beating

frequency when off–resonant signals are used. A trade–off between convergence time and

beating frequency needs to be further explored as a design consideration.

12.2.2. Coupled Magnetic Vortices Pair

We have examined the transfer of energy from one vortex to another in terms of their core

gyration amplitude (measured in terms of 〈mx〉) when excitation is only given to one of

them. Here, 〈mx〉 is computed for both the vortices separately. The dynamics was examined

with all sixteen combinations of polarity and chirality of the two vortices. When a small

external bias field is applied, the vortex cores may move up or down along the Y−axis.

This changes their separation and causes magnetic surface charges to appear on the vortex

boundaries; consequently affecting the strength of their magnetostatic coupling.9,137 Hence,

in the presence of a bias field, if both the vortices have the same chirality, their coupling

will remain relatively unaffected, than when they have different chiralities. This phenomena

can be used to affect a chirality dependent dynamics and signal transmission. However, in

the absence of an external bias, we observed that chirality does not play any role towards

enhancing the asymmetry in dynamics, as described below. Thus, henceforth all vortices

in this work have CCW chirality. Furthermore, observable changes only appeared to occur

between cases with similar and opposite polarities.156 Mediated by several factors,150,334–337

the resonant frequencies of a pair of vortices can differ from that of an isolated vortex.

However, in this study, we used an excitation signal rotating at frequency f0, which is

applied only on the left disk (Fig. 12.1 (b)). Figures. 12.2 (a) and (c) show the results for

the case when both polarities are up (p1p2 = 1) and Figs. 12.2 (b) and (d) show those when

left core is up and right core is down (p1p2 = −1). Figures 12.2 (a) and (b) correspond to a

signal amplitude of 0.5 mT and Figs. 12.2 (c) and (d) correspond to a signal amplitude of
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1.5 mT. To ascertain that the results discussed here are independent of cell size, Fig. 12.2

was reproduced using a cell size of 2.5 nm × 2.5 nm × 40 nm. The same has been shared as

Fig. A.2. Although the form of the peaks have changed to some extent, the relative gains at

f = f0 remain largely unaffected.
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Figure 12.2.: ESDs of left and right magnetic vortices shown in the insets with ((a) and (c))
similar and ((b) and (d)) opposite polarities. (a) and (b) show the results for
a signal amplitude of 0.5 mT while (c) and (d) show those for an amplitude of
1.5 mT, both rotating CCW at f = f0.

With increase in the signal amplitude from 0.5 mT to 1.5 mT, we see a splitting338 of the

peak. Furthermore, when p1p2 = −1, more energy is transmitted and stored in the right

vortex. For signal amplitude of 0.5 mT and p1p2 = 1, the left vortex, exhibits 60.72 dB of

ESD at its gyrotropic mode while the right vortex exhibits 68.43 dB. While for p1p2 = −1,

these values become 30.99 dB and 53.69 dB, respectively. Thus, the difference in ESDs of

gyrotropic modes of left and right vortices increases by about 15 dB. When signal amplitude

is increased to 1.5 mT, these values become 81.66 dB (left vortex) and 79.76 dB (right

vortex) for p1p2 = 1 and 46.67 dB (left vortex) and 72.45 dB (right vortex) for p1p2 = −1.

Here (for p1p2 = −1), the ESD (at f = f0) of the right vortex is 25.78 dB greater than that

of the left vortex. This shows that opposite core polarity facilitates amplification of signal

transfer, which is further enhanced by the input signal amplitude. An increase in about 9.5
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dB in signal power (from 0.5 mT to 1.5 mT) has caused the difference in gain to increase by

12.69 dB. The dependence of this relative amplification on the strength of the input signal is

essential to mimic the transistor operation where the base current controls the amplification.
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Figure 12.3.: Stray field distribution showing the path of travelling antivortex packets for
p1p2 = 1 (a) and p1p2 = −1 (b). With time the packets shift their path from
the dashed to the solid lines.

These observations, along with the ones made for an isolated vortex, testify to the existence

of anharmonic and asymmetric dynamics present in the vortex core gyration, which cannot

be explained by solutions of the Thiele’s equation with linear approximations;146,233,339 even

if vortex core deformation221 is taken into account. Although, the type of amplification

described here has not been seen before, asymmetry based on polarity in terms of energy

transfer rate and efficiency has been observed experimentally. Stronger or weaker stray field

coupling can affect the rate of energy transmission,155 but it does not guarantee the observed

asymmetry in general and amplification in particular.

One may draw an analogy of this observation with a driven double pendulum made of

identical pendulums. In this case, when the driving frequency is same as the eigenfrequency

of the isolated pendulum then the top pendulum mass becomes stationary while the bottom
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pendulum mass moves with an amplitude twice as that of the driving amplitude. This may

be considered as an infinite amplification (although, the angular displacement of the top

pendulum will still not be zero). However, for a coupled pendulum, where two pendulums

are connected with a spring and dynamics is not pinned at any end (this system is closer

to the coupled vortices presented here in terms of underlying equations of dynamics), no

such amplification occurs when the driving frequency is the same as the eigenfrequency of

the individual pendulum340 (see Sec. A.1). Either way, a direct comparison of the energy

transfer mechanism of coupled magnetic vortices with that of coupled mechanical oscillators

is difficult due to the presence of additional parameters in the former case. The gyrovector,

which serves as the inertia of the vortex core149 can switch direction with core polarity

resulting in the amplification observed here. Hypothetically, this will be comparable to

obtaining an amplification in one of the coupled pendulums by changing its inertia from I

to −I. An analytical model is yet to be developed to describe this phenomenon; but, this is

outside the scope of this work (see Sec. A.1). Here, we considered a numerical approach and

calculated the temporal evolution of the stray field and discovered that packets of antivortex

structures travelling through the stray field mediate the transfer of energy between the two

vortices. The path of these antivortices are shown in Fig. 12.3 for both polarity combinations

when the excitation signal amplitude is at 1.5 mT. As time progresses the path shifts from

dashed to solid lines.

As seen from Fig. 12.3 (a), a single antivortex packet moves in a closed path for p1p2 = 1.

This packet collides with other antivortex structures which originate at the boundaries of

the nanodisks. We understand that the antivortex packets discussed here are not particles

in the true sense and their apparent ‘collision’ is only a result of the interacting stray fields.

This interaction (or collision) is also shown in the Supplementary Movie M1∗. It is only

during this collision that these antivortex ‘solitons’ (‘soliton’ has been used loosely here to

describe even those short–lived antivortex packets which do not possess consistent form for

significant duration) are allowed to change their size (local field distribution) significantly.341

When it collides with the left disk, which initially has more gyrotropic energy, it becomes

smaller and when it collides with the right disk, it becomes larger. This indicates that there

∗Movie M1: https://www.youtube.com/watch?v=RBLSFu8RHx0

https://www.youtube.com/watch?v=RBLSFu8RHx0
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is an inverse relation between the size of the antivortex and the gyrotropic energy that it

can transfer. As time progresses and the amplitudes of the gyrating vortex cores become

comparable, the path of this bouncing soliton becomes smaller and it moves to a location

shown by the solid line 1© in Fig. 12.3 (a). The soliton itself does not change greatly in size

after this point indicating no significant transfer of energy.

Figure 12.3 (b) shows that more than one antivortex solitons are involved in the energy

transfer for the case when p1p2 = −1. On a given vortex boundary, as one soliton gets

terminated, another one is created. This creates a cascade of solitons, which vary in size (see

Supplementary Movie M2∗). At first, the dashed lines mark the path of this cascade with

the large arrowheads showing where a soliton gets localized. Branches are numbered from

1© to 4©, in an order such that the path of the new soliton is shown by the next branch.

The path of this cascade changes gradually with time as well. Specifically, the number of

rebounds between the boundaries of the vortices (the length of branch 3©) may vary quite

often. However, it is observed that as branch 1© terminates, the remaining solitons, which

follow branches 2© and 3© are relatively smaller. When branch 3© terminates, a soliton of

the same size as the first one (which traversed branch 1©) emerges from the right vortex to

trace the final branch 4©. Thus the right vortex gains gyrotropic energy in the beginning

of the dynamics. This cascade occurs twice every cycle, suggesting that signal transfer rate

or efficiency can be controlled not only by the saturation magnetization155 but also by the

frequency of the signal and further optimization of signal transfer efficiency by tuning the

dimensions of the coupled vortices is possible. As time progresses, the cascade starts to occur

along the solid lines 1© to 4©, shown in Fig. 12.3 (b). When the gyration amplitude of the

right vortex becomes a certain degree greater than that of the left one, we notice that the

soliton, which was traversing the dashed branch 3© earlier, now starts from the boundary

of the left vortex. However, it is deflected back by another soliton, which emerges from the

right vortex – much like an electron or hole charge carrier being prohibited from crossing

the depletion layer of a junction diode. We can turn this amplification ‘on’ or ‘off’ simply by

switching the polarity p2; but it may be technologically more desirable to have this control

via a third vortex.

∗Movie M2: https://www.youtube.com/watch?v=CKTtnawFYU4

https://www.youtube.com/watch?v=CKTtnawFYU4
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12.2.3. Magnetic Vortex Transistor (MVT)

In order to examine this transistor–like behaviour, we now add another vortex towards

the right of the vortex pair shown in Fig. 12.1 (b) to form a three vortex sequence with

polarities (from left to right) p1, p2 and p3, which take values of 1 or −1 denoting up or

down polarities. In the previous sub-section, we identified relative polarity as the source

of the observed amplification. Hence, here we study only the four cases with p1 = 1 (up),

p2 = ±1 and p3 = ±1. Chirality in all cases is CCW. Signal is applied to the left vortex

only. The ESDs for these cases around frequency f0 are shown in Fig. 12.4 (as shown in the

insets, the excitation is given to shaded vortices only).
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Figure 12.4.: ESDs of left and right magnetic vortices with (p1, p2, p3) equalling (a) (1, 1, 1),
(b) (1, 1,−1), (c) (1,−1, 1) and (d) (1,−1,−1) as shown in the respective
insets. A 1.5 mT signal rotating CCW at frequency f0 is applied only to the
left (shaded) vortex. (e) Gain B, versus logarithm of signal amplitude h0.
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Splitting can be observed in a few cases in Fig. 12.4. Unlike the splitting seen with increase

in signal amplitude (see Fig. 12.2 (c)), which happens due to inherent non–linearities of the

dynamics,338 here it occurs for a different reason: an increase in the number of vortices

leading to an increase in the number of permutations of couplings in the system.342 Below,

we consider any difference in ESD at the signal driving frequency of f = f0 only.

As seen in Figs. 12.4 (a) and (c), the transmission efficiency is equivalent for a persistent

signal in both cases: (1, 1, 1) and (1,−1, 1); with the latter faring slightly better. Although,

a third vortex was added in the chain, a gain of 12.84 dB (between right and left most

vortices) is observed in Fig. 12.4 (d). Also, transistor like switching is observed clearly with

the three vortex sequence considered here when changing from p2 = −1 (high base current)

(Fig. 12.4 (d)) to p2 = 1 (low base current) (Fig. 12.4 (b)) changes the difference in signal

levels of the right vortex (collector) from 12.84 dB to −15.71 dB. We define the gain B in

Eq. (12.1) as below:

B ≡ ESD3(f0)− ESD1(f0). (12.1)

Here ESD1(f0) and ESD3(f0) are ESD at f = f0 for left and right vortices, respectively.

We further checked if this gain B, also depended upon the input signal amplitude h0.

Figure 12.4 (e) shows a plot of B versus h0 for h0 = (1e-6, 1e-5, 1e-4, 1e-3, 5e-4, 0.25, 0.5,

1, 1.5, 2) mT. Left vortex’s core reversed for h0 = 3 mT; and hence, we limit ourselves to 2

mT. For lower values of h0, the gain appears to be constant at B = Bactive ≈ 14.8 dB. This is

reminiscent of a bipolar junction transistor (BJT) operating under small–signal conditions.343

At higher signal strength, the gain B, no longer remains constant. This indicates that like

other electronic transistors, our ‘magnetic vortex transistor’ is also susceptible to non–linear

distortion. The maximum value of gain B = Bmax ≈ 15.21 dB is seen for a signal strength

of h0 = hmax = 0.25 mT.

We further investigate the roles of the stray field antivortex solitons on the transistor–

like operations described above. We begin by analysing the temporal evolution of the stray

field for cases where (p1, p2, p3) equals (1,−1, 1) and (1,−1,−1). The same is shown in
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Figure 12.5.: Stray field distribution in the cases where (p1, p2, p3) equals (a) (1,−1, 1) and
(b) (1,−1,−1). The path of antivortex packets after the dynamics has stabi-
lized is marked with solid lines.

Supplementary Movies M3∗ and M4†, respectively. Figures 12.5 (a) and (b) summarize

the path of the solitons involved. Polarity dependent transient gyrotropic energy transfer

between any two neighbouring vortices here too occur in the same manner as shown by the

dashed lines in Fig. 12.3. These lines are omitted in Fig. 12.5 for clarity. Solid lines show the

approximate paths the solitons follow after the dynamics had become relatively stabilized.

For (p1, p2, p3) = (1,−1, 1), where no amplification (B < 0 dB) is observed, the cascade of

solitons form a large oval loop around the central vortex. Energy appears to be transferred

during collisions at 1© and 2©. This creates a closed feedback loop directly between the left

and the right vortices. The solitons skip along the boundary of the central vortex on several

occasions in order to aid their own cascade. Most importantly, we note here as well that

solitons in the bottom half of the loop (right to left vortex) appear larger (lesser energy)

∗Movie M3: https://www.youtube.com/watch?v=PdfHQesec9k
†Movie M4: https://www.youtube.com/watch?v=b-cr5752DwE

https://www.youtube.com/watch?v=PdfHQesec9k
https://www.youtube.com/watch?v=b-cr5752DwE
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than those traversing the top half (left to right vortex). Thus the flow of energy still occurs

from the left vortex, which is excited externally to the right one. However, an amplification

(B > 0 dB) is observed for (p1, p2, p3) = (1,−1,−1) and Fig. 12.5 (b) sheds some light on

this crucial finding. Here, the path of antivortex solitons between the left and the central

vortex does not change greatly from its early transient stage. Here too, energy is transferred

at the sites 1© and 2©, essentially from the left vortex to the right one. However, unlike in

Fig. 12.5 (a), no feedback loop, and thus no energy rebalancing is present here. This leads

to a unidirectional flow of energy as determined by the cascade of antivortex solitons. The

right vortex core, thus builds up gyrotropic energy until its drag (or dissipation) matches the

power influx. Thus an amplification of the gyrotropic mode of the right vortex is observed in

this case. One can simplify the dynamics for the two cases analysed above by considering the

central vortex as an efficient medium and taking it out of the picture. Then we can see that

amplification was observed when p1p3 = −1. However this amplification can be controlled

by switching the polarity of the middle vortex (p2), similar to what is done by switching the

base current in a BJT.

12.2.4. Fan–Out

In an attempt to demonstrate a fan–out operation, which may support the development

of more complex circuits, we placed two more MVTs symmetrically above and below the

original MVT as shown in Fig. 12.6. Same material and structural parameters as before

were used here. Power was given only to the left vortex of the original MVT. To our

surprise, amplification was seen in only one of the branches. As in the inset of Fig. 12.6,

the right vortex of upper branch in this network received about 15 dB more power than the

lower branch. When all the core polarities in this network were reversed, the lower branch

received the greater power by the same amount.

The cause of this asymmetry is the fact that the solitons do not split during a fan–out.

Also, the antivortex seen between the first two vortices in Fig. 12.5 (b) goes on directly to hit

the upper chain as marked in Fig. 12.6. Thus, further study regarding the implementation

of a fan–out is warranted by looking at the path of these antivortices in different network

configurations.
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12.3. Conclusions

We numerically examined the polarity dependent asymmetry and non–linearities in vortex

dynamics. Cases presented in this chapter included isolated vortices and coupled two and

three vortex sequences. We particularly examined the dynamics for gain in the transfer of

gyrotropic mode power from one vortex to another. To start with, we describe the design

considerations in creating a transducer which can convert power from an external rotating

magnetic field signal to gyrotropic power. Best results were observed when the driving signal

frequency was very slightly off–resonant w.r.t. the eigenfrequency of the transducer. In the

case of coupled pair of vortices, when an excitation signal is applied to only one of the

vortices then in certain situations, considerably more energy (a maximum gain of 27.68 dB)

is transferred and stored in its neighbouring vortex if it has the opposite polarity. We further

observed that this amplification of energy transfer can be extended over three vortices for a
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particular case of (p1, p2, p3)=(1, −1, −1). We interpreted these remarkable observations

using the temporal evolution of stray magnetic field and observed that antivortex packets

moving through the stray field were accountable for the observed amplifications. The rules,

which we postulated based upon the motion of the antivortex packets (or ‘solitons’) can also

successfully explain the previous experimental observations in greater detail. We hope that

further study of these solitons will aid the research community in creating a better analytical

model which can predict such useful results as signal amplification without the need to do

complete simulations.

Similar amplification may be observed in coupled mechanical oscillators. However, here

the observed amplification in the energy transfer from left (input) to right (output) vortex

for (p1, p2, p3) = (1,−1,−1) can be controlled by switching the polarity p2 from 1 to −1,

much like changing the states of a BJT between active and cut–off. This can be achieved

by using a local magnetic field or a spin–polarized current; thus, making it a more suitable

candidate for integration with current electronic technological ecosystem. Moreover the ob-

served gain, while remaining constant at Bactive for low signal strength h0, drops dramatically

for h0 > 0.25 mT. Thus the output will not increase over a certain upper limit (76.61 dB

for the MVT described here). This is similar to the saturation state of an electronic tran-

sistor. Direct parallels to all three operational states of a BJT, namely active, cut–off and

saturation have thus been demonstrated for the discussed MVT. Also, both classic transistor

operations of signal switching and amplification have been described. The dependence of

gain characteristic, in particular Bactive and Bmax should be further explored with different

material and geometrical parameters of the MVT and the driving signal frequency (dynamic

response).

Our attempt to demonstrate a fan–out operation uncovered that the solitons involved

in the dynamics do not split easily. This resulted in a higher level of asymmetry between

different branches of a symmetrical network. This asymmetry was unlikely if the dynamic

stray field lacked any of the topologically stable antivortices and treated both the branches

evenly. This helped us to further validate the importance of antivortex solitons in the energy

transfer mechanism. More work will be needed to demonstrate a successful fan–out operation

by considering the cascade of antivortices for different network parameters.
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Pinning, which can occur due to fabrication related issues, is known to affect the natural

frequency of an isolated vortex.344 However, as the dynamics studied here was forced, the

observed results are expected to remain unaffected unless the pinning potential is high enough

to change the trajectory of the vortex core or the cascade of solitons. A stronger pinning may

sometimes occur at the Py–air boundary.213 We have not considered this type of pinning

here as it can affect the generation and dynamics of the stray field which is responsible for

some of the reported observations. Thus, a different soft–ferromagnet may have to be used

if pinning becomes an issue.

While advancing the cause of nano–electronic devices,4 we also hope that these findings will

promote the continued search of new and improved transistors.345 For the type of transistor

proposed here to become technologically viable and competitive, further research towards

miniaturization and reduction of energy consumption and response delay are highly desirable.



13. Conclusions

In this thesis, we studied magnetization dynamics in nanoscale magnetic systems. Two

types of closely related phenomena of spin–wave (SW) propagation and magnetic vortex

gyration were studied as they fall in the microwave frequency band. The propagation of

SW propagation was studied in thin–films, waveguides, one–dimensional (1D) and two–

dimensional (2D) magnonic crystals (MCs). Time–resolved magneto–optic Kerr effect (TR–

MOKE) based microscopy was used to experimentally study SWs in nanoscale magnonic

waveguides. The magnetic vortex core can be made to gyrate in a closed cyclic loop by

using an in–plane rotating excitation field. The dependence of the steady state of this

gyrotropic motion on relative core polarities of magnetostatically coupled magnetic vortex

network was also studied.

13.1. Summary

We start with developing a numerical framework to visualize and analyse the SW dynamics

in different types nanoscale magnetic systems. In order to represent the magnetization data

in frequency or wavevector domains, we used multi–domain Fourier transforms. We enhance

our numerical techniques to overcome some of the artefacts that are conventionally associated

with the Fourier transforms. As a result, we begin to obtain high quality analysis data output

which helped us uncover some new phenomena. In Chap. 4, we highlight the use of DFT

windows and sinc functions to control the spectral leakage and aliasing, respectively. The

efficacies of the numerical methods were established by comparing the results they produced

with those obtained by using other techniques.79,213,315 In Chap. 7, we improve the technique

to compute SW power and phase profile to account for a specific wavevector while ignoring
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the remainder of the wavevector domain. In Chap. 9, we ensure the framework is now able

to compute SW dispersion relation for 2D MCs. This was done largely by designing a new

excitation signal which was capable to exciting the entire SW spectrum without producing

any spurious modes. Here, we also discussed how to numerically obtain the iso–frequency

lines for a MC. In Chap. 10, we improve the framework further by mapping the magnetization

data into the complex plane. This helped us uncover the existence of a magnonic bandgap

in submillimetre wave band. While continuing to improve the framework on the one hand,

we have also reported some remarkable observations on the other.

In Chap. 5, we compare the effects of pinned and free boundary conditions on the SW

dispersion relations of a nanoscale magnonic antidot waveguide (MAW). Here we arrived

at the conclusion that bandgaps can be opened more easily if magnetization dynamics at

ferromagnet–air boundary is pinned. Pinning also shifted the SW band structure positively

in the frequency domain. Thus, we learned that higher frequencies observed during experi-

mental measurements may sometimes be related to this type of pinning.

In Chap. 6, we highlight the importance of the mirror symmetry of a magnonic antidot

waveguide. First, we show that a small shift in the symmetrically placed row of antidots can

cause the collapse of pre-existing magnonic bandgaps. Next, we demonstrate how similar

collapse (of the magnonic bandgaps) can be engineered by employing an asymmetric bias

magnetic field. Here, we observe that although, different bandgaps may have plural origins,

their collapse can occur mainly due to a loss of degeneracy which was originally predicated

upon the existence of mirror symmetry. We also show that intrinsic and extrinsic sources of

asymmetry can be made to work against each other in order to selectively recover the pre-

existing bandgaps. An analytical model to facilitate this procedure has also been developed.

Thus, it can either be done consciously to alter the magnonic band structure of a MAW; or

it can be used to rectify a systematic fabrication defect by calibrating the bias magnetic field

of varying spatial profiles. The analytical model developed here was based on the discrete

translational and the mirror symmetries of a crystal. Thus, the fundamentals behind the

observations drawn here may be extended to other types of waves. The compensation effects

should also be observable and usable in other systems outside the field of magnonics.287–289

It was known that the spectrum of dipole dominated SWs can be controlled by changing
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the shape of the scattering centres on larger length scales.63 In Chap. 7, we observe how

the antidot’s geometry can influence the SW dispersion in a MAW. Antidots in the shape

of regular polygons are used for this analysis. We demonstrate that the band structure of

exchange dominated SWs can be altered by changing the antidot shape. This change is

seen to be effective only when the shape of the antidot actually changes the profile of the

neighbouring exchange field. Power and phase distribution profiles were used to understand

the origin of SW bands and bandgaps in different cases. As direct bandgaps are more

desirable, this understanding can be used to improve the design of MAWs. Especially, since

the direct bandgaps seen here can be opened at the same antidot filling fraction by simply

changing the orientation of the holes.

After considering the effects of boundary conditions, mirror symmetry and antidot shape,

in Chap. 8, we consider the effects of other geometrical parameters on SW dispersion in a

MAW. The parameters considered here are antidot’s size and MAW’s lattice constant and

scale. We also revisited the effect of antidot shape while considering MAWs on a different

scale. The results obtained here can allow us to further characterize and control the magnonic

band structure in a MAW. While examining the effect of MAW’s scale we gained additional

insight into the influence that exchange and dipolar interactions wield in the formation of the

magnonic band structure. Using the PWM, it was found that an increase in the scale of the

MAW can reveal backward volume magnetostatic bands in the spectrum. These bands are

characterized by anti–parallel phase and group velocities close to the BZ centre. Although, a

stronger splitting of degenerate modes was observed here the formation of SW band structure

occurred in a manner which was qualitatively comparable to the case of exchange dominated

SWs.

This study was conducted under the pinned boundary conditions. It was noticed that the

effect of pinning becomes more pronounced with increase in the size of the antidots. This can

allow one to control the crosstalk between the two halves of the waveguide (sub–waveguides)

to increase or reduce the splitting of the degenerate modes. When the antidots’ size is small

in comparison the lattice constant of the waveguide, lower SW modes were localized amidst

the row of the antidots. We also noticed that as a MAW’s lattice constant was increased it

started to resemble a uniform waveguide. However, unlike in the case of a uniform waveguide,
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where the SW dispersion modes are parabolic, here they became flatter. This was due to the

fact that an increase in the lattice constant caused the BZ boundaries to come closer. Thus,

the anticrossing of modes at the BZ boundaries starts to occur more frequently resulting in

a flattening of the SW dispersion modes.

As magnonic analogues of the electronic Fermi surfaces, iso–frequency lines can help us

explore the SW dynamics in the wavevector space. In Chap. 9, the use of iso–frequency

lines helped us underscore the anisotropy that existed between two mutually orthogonal SW

propagation directions. We also explored the band structure of 2D MCs in more detail by

analysing the mode profile of SWs using the power and phase analysis of the SW. In this

chapter, we also noticed that SW dispersion in a square dot array was largely mediated by

the dipole field even though the edge of the square dots and the lattice constant were only 6

nm and 9 nm, respectively. A negative group velocity associated with the first mode in the

case of a backward volume magnetostatic configuration was observed here, and unlike the

case described in Fig. 8.5, the upward curve associated with exchange dominated SWs was

never registered.

In Chap. 11, we experimentally explore the tunability of SW band structure of MAWs

based on their geometry and the bias magnetic field. As pump–probe based time–resolved

Kerr effect (TR–MOKE) microscopy was used to observe the dynamics, the discussion here is

limited to a very low wavevector regime. Thus, instead of obtaining an entire band structure,

we get a few peaks associated with k → 0. Based on the agreements (or the lack thereof)

while comparing experimental and simulated results, we showed that SW modes, particularly

the quantized modes, localized amidst the antidot array were more sensitive to any variance

in the fabrication parameters. In contrast, the SW modes in the sub–waveguides were very

stable and only manipulable by magnetic bias field’s strength or direction. Edge mode of the

waveguide was observed only in the Damon–Eshbach configuration and not in the backward

volume configuration as the lateral edges were much farther away.

We also investigated magnetic vortex core gyration. It has a characteristic frequency in

the low gigahertz and sub–gigahertz frequency bands. We first demonstrated that isolated

magnetic vortices can transduce energy from rotating magnetic field to vortex core gyration.

We also noted that core–switching here can be avoided if off–resonance signals of lower
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amplitudes are used. Although, one also needs to consider a trade–off between the time

taken to achieve the steady state and an anharmonic beating that is observed here. Next,

we uncovered gyration mode amplification in magnetostatically coupled magnetic vortices.

As inertia in the case of magnetic vortex cores is a vector (gyrovector) – as opposed to a scalar

in the case of a conventional coupled oscillator, we demonstrated that this amplification can

be switched on or off (by switching vortex core polarities). Based on this finding we also

demonstrate transistor like operational states using a three vortex sequence.

Since these observations could not be explained by the current analytical model, we started

to examine the temporal evolution of the stray field. We then discovered that antivortex

packets moving through the stray field could account for these observations. Consequently

our attempt to demonstrate a conventional fan–out operation was unsuccessful as the in-

volved antivortices were topologically stable and would not split to divide the power equally

in the daughter branches. We note this higher level of asymmetry was unlikely if the dynamic

stray field did not posses these antivortices. This successfully validated the importance of

antivortex solitons in the energy transfer mechanism.

13.2. Future Scope

If some of the techniques described here are to indeed become useful in creating new technol-

ogy, the first thing that needs to be addressed is the resolution of the fabrication processes.

There is a clear and wide divide between the length–scales of magnetic systems which are

fabricable and those that can be handled using finite element or finite difference based nu-

merical methods that exist today. Even with the recent advances in fabrication techniques

which can allow one to pattern with resolutions below 10 nm,50,98–100,346 it is still not possible

to fabricate very accurately. For example, as seen in Chap. 11 the patterned dimensions may

vary by ±10%. This was clearly seen to alter the spectrum of SW modes localized amidst

the antidot array.

In Chap. 5, we pointed out that pinning (at the edges of a geometry) can cause bandgaps

to appear even if the filling fraction of antidots is as low as 5%. However, pinning cannot be

achieved reliably. The results presented in Chap. 11 appear to agree with results simulated



13.2 Future Scope 187

without the pinned boundary condition. Pinning largely depends upon the surface magnetic

anisotropy which can get accidentally altered282 during the fabrication processes. Thus,

further study is required with the aim to control the surface anisotropy during the fabrication

techniques that are involved here.

In Chap. 6, we noticed how important the mirror symmetry of a waveguide is, as far as

the band structure of exchange–dominated SWs are concerned. Similar investigation can

be done for dipole–dominated SWs, after taking the inhomogeneity and anisotropy of the

demagnetizing field286 and the multi–mode character of waveguides201 into account. This

necessitates further research on this subject. Also, since the process of development of the

analytical model presented here was dependent solely on the mirror and discrete translational

symmetries of the MAW — a 1D MC, future research may be undertaken to develop similar

models for photonic or phononic analogues.

MCs were studied in some detail in this work. Useful devices, such as an add–drop filter

can be envisioned by using magnonic quasicrystals. Thus more work needs to conducted

with crystals which do not feature perfect discrete translational symmetry.

While discussing the observed amplifications of the gyrotropic modes in Chap. 12, we

mention (see Sec. A.1) that the present analytical model does not predict these results. We

think that further study, guided by the analysis of the dynamic stray field, can help with the

development of an analytical model capable of predicting these useful results. We also need

to optimize the gain B, as defined in Eq. (12.1), by examining its dependence on various

geometrical and material parameters and the nature of excitation frequency. In the absence

of a more complete analytical model, one will presently need to rely on extensive simulations

to accomplish this task.

More work will also be required in the future in order to miniaturize the single transistor.

The ‘magnetic vortex transistor’ (MVT) described in Chap. 12, spans an area of about 750

nm × 250 nm with a thickness of 40 nm. These dimensions will have to be reduced by an

order of magnitude in order to make the MVT as a more attractive substitute to the kinds

of transistors used today. As the diameter of an isolated nanodisk, which can support a

magnetic vortex cannot be reduced indefinitely, more fundamental research is required here.

We also need to study the power consumption and efficiency of a MVT to minimize the
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losses during transistor operations.

Fan–out is required to facilitate the design of more complex circuits. Since the topologically

stable antivortices, which appear to be responsible for the observed amplification, do not

treat different branches of the circuit symmetrically, more work is required here. Perhaps a

successful fan–out can be obtained by observing the cascade of the involved antivortices and

rearranging the branches of the circuit accordingly.



A. Appendix

A.1. Supplementary Note for Chap. 12

For a pair of coupled harmonic oscillators featuring the same inertia, stiffness and damping,

it is not possible to get an increased oscillation in one of the oscillators while the other

one is being driven with a frequency close to the eigenfrequency of individual oscillators.

Some close parallels can be drawn between such mechanical coupled oscillators and a pair of

magnetostatically coupled vortices as shown in Fig. 12.1 (b). We write the following Thiele’s

equation for both the vortices identifying them with subscripts i = 1 (left vortex) or i = 2

(right vortex):

− κri + Gi × vi +
←→
D · vi −

∂Wint (r1, r2)

∂ri
+ Tsig,i = 0.

Here, κ is a stiffness factor which seeks to restore the displaced vortex core functioning much

like the stiffness of a spring.163 Gi = −Gpiẑ (G > 0),163 is the inertia associated with ith

vortex core. Polarity p1 = 1 and p2 = ±1 depending upon the case under consideration.

Although, Gi depends upon polarity, the term Gi × vi does not. This is because, if the

polarity pi is switched, both Gi and vi change to −Gi and −vi, respectively; thus, preserving

the original cross product. In the case of isotropic damping, the term
←→
D ·vi can be replaced

with Dvi, where D is a scalar independent of polarity.163 Also,151

Tsig,i =







µ (ẑ×Hsig) i = 1

0 i = 2
,
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where, µ is a chirality dependent coupling constant and Hsig is an in plane excitation field

rotating at frequency κ/G. It is important to consider this eigenfrequency because a trans-

ducer which is converting a magnetic field signal to vortex core gyration signal is likely to

show significant peaks around it (see Fig. A.1 (e)). Wint is the interaction energy between

the two vortices, which according to Ref. 149 is given as

Wint = c1c2 (ηxx1x2 − ηyy1y2) ,

where, c1 = c2 = 1 for the CCW chiralities considered here and ηx,y is the interaction

coefficients depending upon certain geometrical and material parameters, but independent

of relative polarity.

It has now been established that all the terms in the Thiele’s equation, with the exception

of the dissipation term, are independent of relative polarity p2 of the vortices. The depen-

dence of the dissipation term upon the direction of velocity does not affect the absolute value

of gain r2/r1. Thus, according to this model, the gain r2/r1 should not depend upon polar-

ity p2. This deviates from the polarity dependent amplification presented here. In the case

of analogous mechanical coupled oscillators, it would be possible to show such gain while

driving at a frequency f (≤ f0), if the inertia of the oscillator (which is not being driven

directly) was changed from I to −I. However, that is a purely hypothetical consideration.

A.2. Supplementary Figures for Chap. 12
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Figure A.1.: (a) Plots of 〈mx〉 vs. time for signals rotating CW and CCW with a frequency f0

and amplitude 1.5 mT. Polarity switching is seen with CCW signal at ts ≈ 2.15
ns. (b) Plots of 〈mx〉 vs. time for signals rotating CCW with frequencies f0 and
0.9f0 and amplitude 0.5 mT. No polarity switching is observed. Convergence for
f0 is taking more time. ESDs of vortex dynamics with excitation signal rotating
CW and CCW with amplitude 0.5 mT and frequencies (c) f0, (d) 0.9f0 and (f)
0.99f0. Beating is observed. Beating frequency decreases systematically with
increasing signal frequency. (e) ESDs of vortex dynamics with excitation signal
rotating CCW with amplitude 0.5 mT and frequencies f1 = 0.95f0, f1 = 0.975f0

and f1 = 0.98f0. As seen in the inset of (c), the core polarity is up and chirality
is CCW.
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