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Abstract 

 

This thesis describes the unusual effects in some disordered binary (Ni-Mn) and 

ternary (Ni-Fe-Cr) alloys seen through structural and magneto-transport measurements.  

  Magnetic phase diagram has been constructed in disordered Ni100-xMnx system over a 

wide concentration range (15 ≤ x ≤ 37) encompassing the critical concentration (x ~ 25) in 

the temperature range 5 ≤ T ≤ 300 K. From different magnetic data at several temperatures 

and applied fields, we find a double transition, one from a paramagnetic to a ferromagnetic 

long-range order (LRO) at TC and then another to a ferro-spin-glass mixed phase at TSG for x 

≤ 25 at. %  Mn. Then a conventional/canonical spin-glass state appears which gradually 

evolves to an antiferromagnetic LRO around 37 at. % Mn. From transport measurements 

below and above the  multicritical point (MCP)  we found, in the ferromagnetic/ferro-spin-

glass (x ≤ 25) phase, ρ(T)  is dominated by large electron-phonon and electron-magnon s-d 

scattering while in the spin-glass/antiferromagnetic regime (x ≥ 25) resistivity minima show 

up due to larger disorder with resistivity ~ (150-185) μΩcm.  Here ρ(T) is dominated by e-e 

interaction ~ - √T and electron-phonon s-d  scattering. The magnetoresistance is negative 

below and positive above the MCP. 

  Another systematic study has been done to determine the magnetic and transport 

properties as well as the critical exponents of a set of Cr-rich γ-Ni-Fe-Cr alloys. The static 

critical exponents and the amplitudes, related to the transition near TC, are obtained through 

detailed DC-magnetization and AC-susceptibility measurements. The values depart 

significantly from those of the 3D-Heisenberg model predictions and those of pure Ni due to 

the competing pair interactions in the system. In addition, both the resistivity and the 

magnetoresistance measurements  reveal their diverse magnetic phases. For FM and AFM 

alloys, the resistivity varies as CT
2
 above the resistivity minima and the value of C decreases 

while approaching the higher temperature region and finally it varies as T, consistent with the 

magnetic states.  
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1 

 

CHAPTER I  

Introduction  

1.1   Disordered  systems and their applications 

 
 Disordered magnetic alloys and compounds are backbones of modern technology and 

attract physicists ever since the development of solid-state physics. “Disorderness” governs 

extrinsic magnetic properties, such as coercivity, remanence, and energy of an intrinsically 

magnetic material. Nowadays we are getting benefitted from numerous applications of magnetic 

materials in electronics, detectors, magnetic storage devices, etc. Even if magnetic properties of a 

material are not used in a particular application, the presence of magnetic order often influences 

and must be taken into the account when describing other physical properties and processes, 

which are not directly connected to magnetism – like mechanical properties, structural stability, 

type of chemical order, temperature dependence and anisotropy of the electrical resistivity, and 

even recently invented magnetically mediated superconductivity. An atom is characterized by a 

magnetic moment which is a result of fundamental symmetries of nature and laws of quantum 

mechanics, such as, in particular, the Pauli Exclusion Principle. On the other hand, when atoms 

are put together to form a solid body, all atomic symmetries are broken, and it seems at first that 

there is no space for magnetism in this case. However, the collective behavior of electrons in a 

solid brings about new effects caused by quantum correlations between electrons, and magnetism 

arises as a subtle balance between different sorts of correlations.  The term “disordered alloy” in 

general include liquid, vapour or plasma quenched materials as well as alloys obtained by solid 

state synthesis, whose x-ray diffraction patterns show characteristic broad rings. In solid 

solutions, the correlations between chemical and magnetic interactions play an important role in 

determining the magnetic phase diagram of transition-metal alloys.  These alloys lack long-range 

atomic order and consequently exhibit high metallic resistivity (100-200 µΩcm) and no 

macroscopic magneto-crystalline anisotropy due to the absence of crystal structure. As a result, 

ferromagnetic 3d transition metal-based ones are generally good “soft” magnetic materials with 

both low dc hysteresis loss and low eddy current dissipation. In addition, they are characterized 
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by high elastic limit (i.e., they resist plastic deformation) and for this character they are good 

corrosion resistant metals.  Studying magnetic properties of disordered alloys is important both 

for the understanding of phase transformation in alloys and from the point of view of 

fundamental issues of magnetism in solids. Disorder and its degree of ordering in a magnetic 

system can result in unconventional magnetic structures, such as canonical spin glass, re-entrant 

spin glass, etc. C. Zener, as early as 1955, in his seminal work “Impact of magnetism on 

metallurgy”
1
, noted that understanding of magnetism is crucial for production and application of 

alloys. The “exchange bias” phenomena, discovered by Meiklejohn and Bean
2
, is the subject of 

flourishing studies connected to applications in spin-valve devices. Recently, much attention has 

been given to the studies of the magnetic coupling across a ferromagnet and an antiferromagnet, 

which is the key element towards understanding the phenomenon. The interaction between an 

antiferromagnet and a ferromagnet results in a unidirectional anisotropy, which manifests itself 

through a displaced hysteresis loop. The shift can be useful in controlling the magnetization in 

devices, such as spin-valves which sense changing magnetic fields through magnetoresistance 

effects. 

 

1.2   Magnetic Ordering: Different types 

 

The basic criteria for the onset of magnetic order in solids are (i) individual atoms should 

have magnetic moments (spins) and (ii) exchange interactions must exist between the atoms that 

couple them together. Exchange coupling originates from overlapping of the electronic wave 

functions of neighbouring atoms. The exchange interactions depend sensitively upon the 

interatomic distance and the nature of the chemical bonds, particularly of nearest neighbour 

atoms. The subject of disordered magnetic systems comprises of the whole field of applied 

magnetic materials, ranging from extremely soft permalloys to the hardest permanent magnets as 

well as the physics of model systems of strongly disordered magnetic materials like spin glasses. 

Magnetic ordering requires that the electron system forms local or itinerant magnetic moments 

and that there is interaction between these moments. Such interacting magnetic moments will 

eventually become correlated with temperature and in certain cases form a long-range ordered 

phase at some critical temperature. A wide variety of magnetic order exists in disordered systems 
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in the presence of various kinds of disorder. The most commonly known among them are 

ferromagnetism, paramagnetism, diamagnetism, ferrimagnetism, and antiferromagnetism. Except 

diamagnetism, all other magnetic properties can be understood classically by the molecular field 

theories. Some more possible magnetic ordering in disordered systems apart from conventional 

ferromagnetic and antiferromagnetic orderings are superparamagnetism, spin-glass, cluster-glass, 

re-entrant spin-glass, etc. A few atomic percent of magnetic impurity in noble metal host or vice 

versa can give rise to a new magnetic phase known as spin glass, where randomness invokes a 

competition between the impurity spins/moments when it comes to ordering. The magnetism of 

intermediate concentration regime of these systems, from time to time, has been interpreted in 

terms of “ensemble of mutually interacting ferromagnetic and antiferromagnetic domains”
3
; 

“micromagnetism”
4
, “rock magnetism”

5
 and “superparamagnetism” based on phenomenological 

model of Néél
6,7

  and developed as “magnetic clusters” or “magnetic clouds”
8
 

 
; and finally 

“spin-glass”
9
 and “cluster-glass”

10
. The two crucial ingredients necessary to produce a spin-glass 

are disorder and frustration. The canonical representatives of spin-glasses have an oscillatory 

indirect  long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) spin-spin interaction mediated by 

conduction electrons
11

. The standard Edwards-Anderson model
12

 has quenched random nearest-

neighbor couplings of both signs which mimics the frustrating effect of the longer-range RKKY 

interaction. In both cases, as well as in many others, it is the interaction which is both disordered 

and frustrating (i.e. mixture of ferromagnetic (FM) and antiferromagnetic (AFM) couplings) that 

is responsible for the appearance of a spin-glass phase. There is also a large class of materials 

where frustration has geometrical origin: the combination of the AFM interactions and geometry 

of the lattice suppresses the natural AFM order
13

 and makes the system extremely susceptible to 

perturbations. In this case often even a small disorder in the coupling strengths, that does not 

change their AFM character, is enough to obtain a spin-glass phase
14,15

.  

            Thus when we keep on substituting randomly transition metals with unpaired 3d-

electrons like Mn, Fe, or Cr, first we encounter the Kondo regime where the 3d-electrons of 

magnetic ion interact antiferromagnetically with the conduction electrons. At low 

temperatures, this interaction makes the isolated magnetic ion non-magnetic and enhances the 

electron scattering cross-section giving rise to resistivity minimum. When we add more of 

magnetic ions in the system, they start interacting with each other through, say, RKKY 
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interaction. This indirect inter-impurity interaction opposes the weakening of moments due to 

Kondo effect, and beyond a certain concentration of magnetic ions we see the stabilization of 

magnetic moments where, what is called “good” moment, is formed. Here we encounter a 

magnetic phase which is commonly known as spin-glass.  Below a certain glass transition 

temperature, many interesting magnetic phenomena like irreversible effects, time-dependent 

magnetic properties resulting from the randomly frozen (for time intervals over which 

experiments are carried out) magnetic moments with a degenerate ground state, etc. take place. 

Also, we come across the effect of “measurement time” on the freezing in a particular 

experiment, indicating non-equilibrium phenomena, often referred to as non-ergodicity. The 

manifestation of the irreversible effects, time-dependent magnetic properties, and effects of 

“measurement time” on the freezing can be seen from many experimental signatures. The state 

of randomly frozen spins can give rise to a quenched disorder in an otherwise crystalline solid. 

The randomly distributed magnetic ions interact with one another through RKKY interaction, 

whose magnitude and sign depend on the distance between the magnetic ions. Thus, spins 

interact with one another ferro- or antiferromagnetically, depending on their distances. As a 

result, we find that contradictory interactions coming through different paths are experienced 

by a magnetic ion. This conflicting situation is called “frustration”
16

. Thus, quenched magnetic 

disorder and frustration are the basic ingredients of the spin-glass phase which is achieved 

without having a spatial long-range magnetic order.  

 

 

                               Fig.1.1 Example of random freezing in a spin-glass.    
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The meaning of random freezing may get clarified in Fig. 1.1 where <m> is the average 

magnetization while <q> , an auto correlation function, is the order parameter of the spin-glass 

state and we see that, though the spins in both the paramagnet and the spin-glass are randomly 

oriented, unlike paramagnets the spin-glass are frozen in time. The spins in an antiferromagnet 

(shown above at T = 0) seem to be frozen but they are not random and have a long-range order. 

Quenched disorder and frustration are the two important common features of all the spin-

glasses, irrespective of the origin of these two characteristics. This is the reason why we 

observe spin-glass phenomenon in conducting crystalline and amorphous alloys as well as in 

insulating systems. Mydosh
17

 has classified various types of spin-glasses.  

1.3   Magnetic properties 

1.3.1 Time Dependent Magnetization 

 

A time-dependent magnetization is not a unique property of canonical spin glass only. It 

is observed for ferromagnetic and superparamagnetic clusters as well
18

. When a system with 

superparamagnetic clusters is slowly cooled in a magnetic field H from a temperature which is 

more than the freezing temperature (Tf) or the blocking temperature (TB), the system acquires a 

magnetization M at low temperatures ( T<Tf) which is almost the equilibrium magnetization at 

that temperature and field. The change in magnetization with time is given by    

                                                         M (t) = M0e
-λt 

,                               (1.1) 

 
where λ is the relaxation rate. 

This type of change in magnetization involves a single relaxation time or barrier height with a 

constant energy. However, in real systems this type of decay is not observed. So, Street and 

Woolley
19

 considered the change in magnetization with time involving a distribution of 

relaxation times or a distribution of energy barriers [f (E,t)] and according to their treatment the 

magnetization varies with time as  

     M (t) = M0 – S ln t,                          (1.2) 
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where S ∞ < m > and < m > is the average magnetization. 

In ferromagnets, attempts have been made to explain the magnetic relaxation using a model 

based on magnon relaxation on a percolation distribution of finite domains
20

. The other popular 

prediction of relaxation is the power law decay
21

  which can be obtained from scaling theories of 

domain growth
22

  and internal dynamics
23

. 

 

1.3.2 Saturation Magnetization  

 Saturation magnetization Ms is the maximum magnetization under finite large magnetic 

fields. Assuming each magnetic atom has the same magnetic moment, Ms is dependent only on 

the magnitude of the atomic magnetic moment ‘m’ and the number of atoms per unit volume ‘n’. 

Theoretically, we expect saturation magnetization to be insensitive to the metallurgical 

conditions of the specimen, i.e., saturation magnetization is an intrinsic property of a material. 

However, for nanostructured materials, as a large fraction of atoms are at the surface and 

interface, Ms can be significantly affected by the particle size and synthesis route. For example, 

nanoparticle samples prepared by ball-milling are found to give a value of saturation 

magnetization much lower than samples prepared by chemical synthesis. Saturation 

magnetization is found to be reduced with respect to its bulk counterpart. This has been 

attributed to the existence of magnetic disordered surface called dead layer surrounding 

ferro/ferrimagnetically aligned core region
24

. According to the other proposed models by 

Morrish et al.
25

 lower values of the observed magnetization were due to surface spin canting. In 

another study, Pankhurst et al.
26

 have argued that this is due to non saturation effects because of 

the random distributions of anisotropy axes in ferromagnetic particles. Parker et al.
27

 have 

suggested that the canting occurs in the whole particle because of quantum size effects. On the 

other hand, the microscopic surface magnetic moment has been found to be higher. Moreover, 

for a bulk material the temperature dependence of saturation magnetization is found to follow 

Bloch’s T
3/2

 law, but the nanometric particles show a deviation from T
3/2

 behavior.  
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1.3.3 Hysteresis Loss and Coercivity  

 

Fig.1.2 Magnetic flux density versus the magnetic field strength for a ferromagnetic material that 

is subjected to forward and reverse saturations (points S and S'). The hysteresis loop is presented 

by the solid red curve; the dashed blue curve indicates the initial magnetization. The remanence 

Br and the coercive force Hc are also shown. 

A hysteresis effect is produced in which B lags behind H. This behavior and saturation 

magnetization may be explained by the motion of domain walls. Upon reversal of the field 

direction from saturation, the process by which domain structure changes is reversed. First, there 

is a rotation of the single domain with the reverse field. Next, domains having magnetic 

moments aligned with the new field form and grow at the expense of the former domains. 

Critical to this explanation is the resistance to movement of domain walls that occurs in response 

to the increase of the magnetic field in the opposite direction; this accounts for the lag of B with 

H, or the hysteresis. When the applied field reaches zero, there is still some net volume fraction 

of domains oriented in the former direction, which explains the existence of remanence Br. To 

reduce the field, B, within the specimen to zero, and applied field, H, of magnitude -Hc must be 

applied in a direction opposite to that of the original field; Hc is called the coercivity, or 

sometimes the coercive force. Upon continuation of the applied field in the reverse direction, as 

indicated in the figure, saturation is ultimately achieved in the opposite sense. A second reversal 

of the field to the point of the initial saturation completes the symmetrical hysteresis loop and 

also yields both a negative romance (-Br) and a positive coercivity (+Hc). Irreversibility gives 
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rise to hysteresis, a phenomenon that can be visualized  by plotting either M or B= μ0(H+M) as a 

function of H. Positive values of B and H represent fields in one direction, while negative values 

represent fields in the opposite direction.  

1.3.4 AC susceptibility  

AC magnetic susceptibility, in which an AC field is applied to a sample and the resulting 

AC moment is measured, is an important tool for characterizing many states of materials. Since 

the induced sample moment is time-dependent, AC measurements yield information about 

magnetization dynamics as well which are not obtained in DC measurements, where the sample 

moment is constant during the measurement time. In AC magnetic measurements, a small AC 

drive magnetic field is superimposed on the DC field, causing a time-dependent moment in the 

sample.  

As long as the AC field is small, the induced AC moment is MAC = (dM/dH) HAC sin (ωt) where 

HAC is the amplitude of the driving field, ω is the driving frequency, and χ = dM/dH  is the slope 

of the M(H)curve, called the linear magnetic susceptibility. In the higher frequency case, the 

magnetization of the sample lags behind the driving field. Thus, this linear AC magnetic 

susceptibility measurement yields two quantities: the magnitude of the susceptibility, χ, and the 

phase shift, φ (relative to the drive signal). Alternately, one can think of the susceptibility as 

having an in-phase, or real, component χ' and an out-of-phase, or imaginary, component χ". They 

are related by  

                        χ' = χ cos φ   and  χ" = χ sin φ .       (1.3) 

In general, the nonlinearity of magnetization in the presence of a magnetic field is given by
28

 the 

series expansion : 

                       m = m0+χ0h+ χ1h
2
+ χ2h

3
+…….,     (1.4) 

where m0 is the spontaneous magnetization, χ0 the linear, and χ1, χ2 are the non-linear 

susceptibilities, and h is the applied field.  For ferromagnetic (FM) samples m has no inversion 

symmetry with respect to the applied field because of the spontaneous magnetization, unlike an 

SG. Hence for an SG where no spontaneous magnetization is present, m can be expressed as an 

odd power series in h as
29

  

                                         m = χ0h+ χ2h
3
+ χ4h

5
+…….,         (1.5) 
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1.4    Characterization 

1.4.1   Crystal structure 

X-ray powder diffraction (XRD) is an experimental technique that is commonly used to 

study crystalline materials. The three-dimensional structure of non-amorphous materials is 

defined by regular, repeating planes of atoms that form a crystal lattice. When a focused X-ray 

beam interacts with these planes of atoms, parts of the beam are transmitted, absorbed by the 

sample, refracted, scattered, and diffracted. When an X-ray beam hits a sample and is diffracted, 

we can measure the distances between the planes of the atoms that constitute the sample by 

applying Bragg's Law. Bragg's Law is  nλ=2d sinθ, where the integer n is the order of 

diffraction, λ is the wavelength of the incident X-ray beam, d is the distance between adjacent 

planes of atoms (the d-spacings), and θ is the angle of incidence of the X-ray beam. Since we 

know λ and we can measure θ we can calculate the d-spacings. The characteristic set of d-

spacings and theirs intensity generated in a typical X-ray scan provides a unique "fingerprint" of 

the phases present in the sample. When properly interpreted, by comparison with standard 

reference patterns and measurements, this "fingerprint" allows for identification of the material. 

The unit-cell parameters and the crystal structure could be also refined for the identified phases. 

Powerful modern softwares (RietVeld, FullProf Suite, Powder Cell, etc.) are used to solve these 

problems.  

XRD methods for crystallite size determination are applicable to crystallites in the range 

of 2-100 nm. The diffraction peaks are very broad for crystallites below 2-3 nm, while for 

particles with size above 100 nm the peak broadening is rather small. If analyzed crystals are free 

from microstrains and defects, peak broadening depends only on the crystallite size and 

diffractometer characteristics. In this case classical Scherrer equation is used for crystallite size 

determination: d=(Kxl)/(b x cosq) ,  where d is the crystallite size, l is the X-ray wavelength, b is 

the width of the peak (full width at half maximum (FWHM) or integral breadth) after correcting 

for instrumental peak broadening (b expressed in radians), q is the Bragg angle and K is the 

Scherrer constant.  The d value, calculated for the (hkl) peak, should be understood as mean crystallite 

size in the direction that is perpendicular to the (hkl) plane (hkl  is Miller indices). 
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Our systems are L10 type magnetic alloys. The fcc structures have all their faces and their 

corner sites occupied by the same atoms, or in the case of an alloy, the probability of each site 

being occupied by a specific type of atom is the same. L10 is a crystallographic derivative 

structure of the fcc and has two of the faces occupied by one type of atom and the corner and the 

other face occupied with the second type of atom. An important crystallographic feature of the 

L10 structure is its c/a ratio. For most structures c/a is less than one. It should be pointed out that 

even if the values of a and c were equal, the symmetry of the unit cell is tetragonal since there is 

no three-fold axis and only one four-fold axis. Another important aspect of the structure is the 

number and type of near neighbors. Since the distortion is small we can say that in the L10 

structure there are 12 near neighbors (along the <110> directions) and six next near neighbors 

(along the <100> directions). 

 

1.4.2 Chemical Compositions 

 

Each of the alloying elements and their concentrations, in these Ni-based alloys are 

significantly important for their magnetic and structural properties. So determination of chemical 

composition of constituent alloys has been done using Energy Dispersive X-Ray analysis, 

referred to as EDXA. This is an x-ray technique to identify the elemental compositions of 

materials. EDXA makes use of the X-ray spectrum emitted by a solid sample bombarded with a 

focused beam of electrons to obtain a localized chemical analysis. All elements from atomic 

number 4 (Be) to 92 (U) can be detected in principle. Qualitative analysis involves the 

identification of the lines in the spectrum and is fairly straightforward owing to the simplicity of 

X-ray spectra. Quantitative analysis (determination of the concentrations of the elements present) 

entails measuring line intensities for each element in the sample. By scanning the beam in a 

television-like raster and displaying the intensity of a selected X-ray line, element distribution 

images or 'maps' can be produced. Also, images produced by electrons collected from the sample 

reveal surface topography or mean atomic number differences according to the mode selected.  
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1.4.3  Density of states 

 

The number of available electron states as a function of energy E is the density of 

available states D(E). This density of states is independent of the available electrons to fill the 

states; it is simply an expression of what energy values are allowed. The occupational density of 

states N(E) describes the number of electron states per unit energy interval as a function of 

energy. This is related to the density of available states D(E) through the probability of 

occupancy f(E) by the equation  

     N(E) = 2 f(E) D(E),          (1.6) 

where the factor 2 arises because electrons  have 2 spin states, up and down
30

 and therefore each 

available energy state can be occupied by two electrons, one with spin-up and the other with 

spin-down. This simple expression allows the electron distribution to be described in terms of the 

available levels D(E) as determined by the ionic potential, and the distribution of electrons 

among these levels f(E)  as determined by temperature, for example. 

In alloys, the crystal potential depends upon the kind of atoms and sometimes it is 

considerably higher at the sites occupied by one kind of atom. Then the energy levels belonging 

to the atom of higher potential go up and are detached from the remaining levels. The detached 

levels are “antibonding orbitals” and the remaining levels are “bonding orbitals”. The Density of 

States (DOS) of ordered magnetic Ni-Mn alloys is calculated by Linear Muffin Tin Orbital 

Potential (LMTO) method. These are ferromagnetic Ni3Mn and antiferromagnetic NiMn alloys. 

The DOS of NiMn and that of Ni3Mn in the minority spin-state show a remarkable character. 

There appears a narrow and high band in the high energy region, which is separated up from the 

main band. There is a region in the low DOS between them and the Fermi energy lies in it. This 

means that bonding and antibonding orbitals are well separated in Ni3Mn and NiMn. 
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Fig.1.3   Density of states of AFM NiMn alloy for Ni (↑↓) and Mn (↑↓).  

 

The above figure is the density of states of AFM NiMn alloy for Ni (up and down) and Mn (up 

and down). In this phase the main contribution comes from the d state. The above figure 

indicates that the density of states for Ni is nearly the same for up and down spin bands but for 

Mn sites it differs significantly. That’s why magnetic moment of Mn exceeds that of Ni. The 

values of μ obtained for Mn is 3.5 μB which agrees satisfactorily with the experimental value ~ 

3.8 μB and the magnetic moment of Ni is nearly zero. 

 

 

1.4.4  Phase Diagram 

A phase is characterized by a thermodynamic function, typically the free energy. A 

thermodynamic function is a function of a few macroscopic parameters such as the temperature 

and the pressure. A phase diagram is a graph with those parameters as the axes on which the 

phase is specified for each point.  A typical phase diagram has several specific features including 

phase boundaries, a critical point, and a triple point. A phase boundary separates different 

phases. A change in parameters such as the temperature across a phase boundary causes a sudden 

change in the phase of a substance.  A phase boundary sometimes disappears at a critical point 

where the two phases become indistinguishable and the substance shows anomalous behaviour. 

Three different phases coexist at the triple point. A phase can be characterized by various 



 

13 

 

physical quantities, especially the order parameter, which measures how microscopic elements 

constituting the macroscopic phase are ordered in a state.  

 

In magnetic materials, for example, magnetization is a characteristic order parameter. With the 

values of antiferromagnetic, ferromagnetic, spin-glass, or re-entrant spin-glass like transition 

temperatures on Y-axis and the concentration of transition metal elements in X-axis, one can 

construct this magnetic phase diagram. This diagram gives a clear idea about different magnetic 

states at different temperatures as well as at different concentrations of constituting elements. 

 

1.5 Effect of  disorder 

1.5.1   Magnetic moment variation 

 

The magnetic moment of most amorphous alloys is lower than those of the pure crystalline 

constituting transition metals. Normally structural disorder in alloys causes little change in the 

average magnetic moment/atom. The moments are mainly reduced by the change in the local 

chemical environment caused by the presence of non-magnetic materials. In disordered systems, 

the fluctuation in nearest neighbour (NN) distance and the degree of overlap of electronic wave 

functions on neighbouring sites as well as exchange splitting change from site to site giving rise 

to the variation in local moments. 

 

Magnetic moment variation with composition has been interpreted in Slauter-Pauling like 

plots. In the general amorphous alloys (TM)1-z-yFzGy , the magnetic moment of the transition 

metal atoms can be expressed as
31

  

                                            μ = [m(1-z-y)fz-gy]/(1-z-y)                  (1.7) 

Or for the moment per atom of alloy as μ = m(1-z-y)fz-gy,                   (1.8) 

where F and G represent the metalloid or glass forming atomic species, m is the original number 

of unpaired spins in the transition metal alloy and f and g are the number of electrons transferred 

from F and G atoms, respectively. 

  Some models have been developed to describe the magnetic property variation with alloy 

content. Magnetic valence model is one of them which is based on Friedel’s concept of virtual 
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bound states and generalized by Terakura and Kanamori
32

. It accounts for the variation of 

average magnetic moment with alloy content by defining an atom averaged magnetic valence  

                                                   Vm = 2Nd
↑ 
- V                                 (1.9) 

where V is the average electronic valence V = Nd
↑
+Nd

↓
+ Nsp

↑
+ Nsp

↓
 and Nd

↑
 is the number of 

majority-spin d-electrons. Substitution of  V in the previous equation leads to the relation 

                                                   Vm = μav - 2Nsp
↑          

                     (1.10) 

which demonstrates the Slater-Pauling like behavior. This model is applicable to a wide range of 

transition metal and metalloid alloys. 

There is another model, namely, coordination bonding model, which is developed in the local 

environmental spirit and throws light on the role of co-ordination in the interesting variations of 

magnetic moments. According to this model, suppression of host magnetization in a transition 

metal alloy T1-xMx depends upon how strongly M is bonded with T and the extent of p-d bonding 

is assumed to be proportional to the number of T atoms surrounding an M atom. Hence, the 

magnitude of the average magnetic moment μ per T atom in the alloy is suppressed below that in 

the pure host nB by an amount proportional to Z
T

M, the T co-ordination about the metal alloy as:  

                                            μT = nB [1 - Z
T

MNM /5NT] ,                   (1.11) 

where NM/NT is the ratio of the number of M and T atoms. This model is applicable to metallic 

glasses as well as crystalline solid solutions based on strongly magnetic host like iron, cobalt, 

and nickel. 

However, Jaccarino and Walker
33

 explained the magnetic moment variation in a large number of 

dilute alloys by a simple phenomenological model based on local environment effect. In this 

model the influence of very distant neighbors are neglected which are assumed to be unimportant 

by the damping of "magnetic interactions" by the finite electron mean free path. The variation in 

the saturation magnetization in binary NiMn, NiCu, and NiRh alloys can be described well by 

this model.  
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1.5.2  Exchange interaction 

 

The exchange energy can only alter the alignment of the moments if the reduction in 

energy due to exchange is greater than the energy difference between the lowest available spin-

up state and the highest occupied spin-down state. In other words, the system of spins will 

always configure itself to the lowest possible energy state, taking the exchange energy into 

account. If the exchange energy is present but not large enough to alter the ground state in this 

way then no net magnetic moment will arise. 

The exchange field gives an approximate representation of the quantum mechanical 

exchange interaction. The energy resulting from the exchange interaction, U, is usually 

represented by the Heisenberg model
34

 as 

                                                             ,                (1.12) 

where Jex is the exchange integral related to the overlap of the  charge distributions  of the atoms 

i,j. Si and Sj  are the electron spins of the atomic sites i, j . 

 Jex > 0 indicates a ferromagnetic interaction (favouring ↑↑ alignment). 

Jex < 0 indicates an antiferromagnetic interaction (favouring ↑↓ alignment). 

So when Jex > 0, then we have a tendency to parallel alignment which minimizes the exchange 

energy and leads to ferromagnetism, but this can only occur if  

                                                            |U| ≥ ΔE, 

where ΔE is the energy difference between the lowest available spin-up state and the highest 

occupied spin-down state. This condition simply ensures that any change in orientation of 

electronic magnetic moment causes a reduction in the total energy of the system. 

 

1.5.3 Anisotropy energy 

 

Experimental study of ferromagnetic single crystals show that the magnetic field required to 

magnetize them depends on crystallographic directions. The difference in magnetic energy to 

produce saturation along easy and hard directions is called the magnetocrystalline or anisotropy 

energy. The anisotropy field Ha is defined as the field needed to saturate the magnetization along 
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the hard direction. The magnetic anisotropy energy E is defined as the work required to rotate the 

magnetization from the easy axis to the hard axis with an applied magnetic field and is given by   

                            E = Kusin
2
θ – μ0MsH cos (π/2 – θ)                 (1.13) 

Minimizing E, ∂E/∂θ = 0 and setting θ = π/2, Ha = 2Ku/μ0Ms, Ku is anisotropy constant which is 

material specific constant.   

Since μ0Ms ≈ 1 T for a typical ferromagnet, Ha can range from < 2 kAm
-1

 to more than  

20 MAm
-1

, with typical values of shape anisotropy of 200 kAm
-1

. 

 For a cubic crystal, the anisotropy energy can be expressed as  

                          Eani = K1 (α
2
β

2
+β

2
γ

2
+γ

2
α

2
) + K2 α

2
                (1.14) 

where K1 and K2 are anisotropy constants and α,β,γ are the direction cosines of the magnetization 

vector with respect to cubic axes. The exchange energy, magnetic field energy, and anisotropy 

energy are the main determinants of the domain characteristics. The size of the domain is 

determined by a balance between the exchange energy and the magnetic field energy. On the 

other hand, the thickness of the domain wall is determined by a balance between the exchange 

energy and the anisotropy energy. 

 

1.5.4   Extraordinary Hall coefficient and the Split-Band (SB) model  

 

Hall effect in magnetic materials is commonly described by the equation:  

                                ρH = 0R0B+0RSMS        (SI units),           (1.15) 

where ρH is the Hall resistivity, B is the magnetic induction along the z-axis. R0, the ordinary Hall 

coefficient, is related to the Lorentz force acting on the moving charge carriers. RS, the 

extraordinary or the anomalous Hall coefficient, is associated with a left-right asymmetry in the 

differential scattering cross-section about the x-y plane due to the spin-orbit interaction present 

in a ferromognet. The extraordinary Hall coefficient, RS, changes sign for the same electron-to-

atom ratio in Ni-Fe and Ni-Co alloys which is associated with the Fermi level crossing some 

degeneracy in the Ni-band
35

. These are satisfactorily  discussed in terms of the split-band (SB) 

model
36

  where all the three constituents have distinctly separate sub-bands. Figure 1.4 is the 

band picture suggested by the SB model. 
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Fig.1.4 The schematic density of states for ternary Ni-Fe-M (M = Cr, V, etc.) alloys 

according to the SB model. 

 

From Fig. 1.4 it can be seen that the bands of Ni are at the bottom while that of M  are split from 

the host and are  at the top due to large valence difference between Ni and M. The sign change of 

RS is associated with Fermi level (EF) crossing the point where the spin-down sub-bands for Fe 

and Ni meet. 

As the total number of states in a 3d sub-band is 5 times the concentration of the corresponding 

atoms, the Fermi level crossover will take place when the total number of holes in the ternary 

alloy system is equal to the 5 times the concentration of Fe atoms (5CFe), i.e.,  

                                         5CFe = 0.55 + 2 CFe – (10+Z) CM                    (1.16) 

Here, C is the concentration, Z is the valence difference between M and Ni (Z = - 4 for Cr ) and 

0.55 is the number of holes per atom in Ni. 

 

1.6.   Electron-scattering in metals and alloys 

1.6.1 Electron-phonon scattering 

For simple metals and alloys, one of the major contributions to the temperature dependent 

resistivity which originates from the lattice contribution ρL, is scattering of conduction electrons 
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by lattice vibrations (i.e., phonons). This temperature dependent part is well described by the 

Bloch-Grüneissen (BG) function, f (T/θD), 
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where A is a constant and θD is the Debye temperature. This is known as the Bloch -Grüneissen 

relation which, on simplification, gives  

ρphonon(T) = BT
n
      T < θD         

                                                                          = CT        T > θD         (1.18) 

n = 3 (Bloch–Wilson) for magnetic metals and alloys with large d-band density of states giving 

rise to electron–phonon scattering involving s – d transitions. The single band (s – s) electron–

phonon scattering is described well with n = 5 (Bloch –Grűneissen) in simple metals and alloys. 

 

1.6.2 Spin-disorder scattering 

 

Studies of spin-disorder resistivity provide important information on magnetic short range order 

in ferromagnets and it is an intrinsic thermodynamic feature of spin disorder. Spin disorder 

intermixes the spin channels and thereby introduces finite spin diffusion length in ferromagnets. 

In these metals the resistivity has an “anomalous” contribution which contains signatures of 

magnetic phase transitions. This magnetic contribution ρmag may be extracted from the measured 

resistivity assuming that Matthiessen’s rule is valid, and that the anomalous contribution is 

temperature independent well above the Curie temperature
37

. The anomalous resistivity ρmag may 

be attributed to spin disorder scattering, which has been studied using the s-d model 

Hamiltonian
38

.  This approach assumes that 3d electrons in transition metals are localized at 

atomic sites while the conductivity is due to mobile 4s electrons forming an itinerant band and 

coupled to the d electrons by exchange interaction. At finite temperatures, the directions of the d-

electron spins fluctuate, and the conducting s electrons scatter from the fluctuating exchange 
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potential. As the temperature is increased toward the Curie temperature TC, the spins become 

more disordered, and ρmag quickly increases, sometimes surpassing the phonon contribution. At 

elevated temperatures the s-d model calculations of ρmag were done using the mean-field 

approximation. In this approximation, the spins are completely disordered above TC, and hence 

ρmag is constant. In the Born approximation below TC it decreases as   

                                   ρmag (T) = ρmag  (TC) [1-M
2
(T)/M

2
(0)],             (1.19) 

where M(T) is the magnetization at temperature T
39

 . 

 In general, ρmag is sensitive to magnetic short-range rather than long-range order
40

. 

 

1.6.3 Kondo spin-flip model 

 

Anderson
41

 showed how a transition metal impurity can either retain or lose its local magnetic 

moment when dissolved in a metal. Kondo
42

 first realised the complexity of the behavior when 

the local moment is retained. The relevant part of the Hamiltonian is 

                                             ,                 (1.20) 

where the i 
th

 electron of spin σi has a spin-flipping interaction with the l 
th

 magnetic impurity 

with spin Sl. Perturbation theory for spin-flipping interactions differs from ordinary potential 

scattering from non-magnetic impurities in having a time dependent impurity spin. For any time-

dependent perturbation in a metal, the sharpness of the Fermi distribution causes logarithmic 

singularities in integrals. These diminish with T at least as fast as log (εF/kBT) because of 

blurring of the Fermi distribution. An exact solution was found by Wilson
43

 using the 

renormalization group, and by Andrei
44

  using the Bethe Ansatz. These solutions were given a 

physical interpretation by Nozieres
45

. In particular, advanced experimental tools applied to 

nanosystems permit more detailed exploration
46

. Finite biases in tunnel junctions allow the 

‘‘Kondo resonance’’ to be explored by inelastic spectroscopy
47

. 
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1.6.4   Weak localization and quantum interference effects 

 

A huge range of fascinating low T transport effects goes under the various names ‘‘weak 

localization’’, or ‘‘mesoscopic fluctuations’’, or ‘‘interaction effects’’ or ‘‘quantum 

corrections.’’ These effects show up as small corrections when electrical resistivities are large, 

but can be more significant when samples are small, especially in lower dimensions, d = 1 or 2. 

Quantum coherence is not just a property of well-organized propagating Bloch states where 

coherence is easily predictable. All solutions of t-independent Schrödinger equations are 

coherent. Components of a wave function interfere with other components of a superposition 

state. The coherence is only destroyed by t-dependent environmental perturbations such as 

scattering by phonons. Let ħ/τinel be the lifetime broadening of a single particle state caused by an 

environmental inelastic process. At low T, the scattering rate gets very small. Electrons therefore 

remain coherent for a long time, and may diffuse coherently over distances Lcoh = √ Dτinel, where 

the diffusion constant D is determined by elastic processes. In weakly disordered materials, D ≈ 

ħ/4eHiτelast, Hi being the elastic field  while in strongly disordered systems the diffusion constant 

is a
2
/τhop where  τhop is the time to hop to a nearest neighbor a distance ‘a’ away. This time is of 

order ħ/W, where W is the band width. When the sample is smaller than Lcoh, large 

‘‘mesoscopic’’ fluctuations could be expected. The same wave function coherence is required for 

a single particle state to become Anderson-localized. This is why quantum coherency corrections 

are called ‘‘weak localization’’ even though the system may be very far from true localization. 

Electron–electron Coulomb interactions also become enhanced at low T by the effects of 

disorder. For perfect Bloch states, Coulomb interactions are suppressed by Fermi degeneracy, 

ħ/τC ≈ εF (kBT/εF)
2
. However, if the propagation is diffusive, two electron states, close enough to 

interact with each other, see the same pattern of disorder and tend to propagate similarly, giving 

an enhancement of the Coulomb interaction. When samples are fairly clean, the corrections to 

ballistic propagation are weak and perturbative theories predict leading corrections
48

.  These 

theories go beyond conventional Fermi liquid theory and have been confirmed in numerous 

experimental tests. 
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In highly disordered systems in which the electron mean free path is of the order of lattice 

spacing, motion of electrons at low temperatures is diffusive rather than ballistic and this 

realization has prompted many workers to propose quantum corrections to the normal Boltzmann 

conductivity, arising from enhanced electron-electron interaction (EEI) effects and quantum 

interference or weak localization (WL) effects. The conduction electrons in disordered systems 

with high values of resistivity undergo more frequent collisions than in crystalline systems. Such 

an increased scattering reduces the effective electronic screening and thus enhances the electron-

electron interactions The enhanced electron-electron interaction gives rise to an additional 

contribution to conductivity, which can be expressed as
49
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where F is the average static screened Coulomb interaction potential over the Fermi surface and 

D is the diffusion constant. The above equation is rewritten in the following form representing 

the EEI contribution to resistivity 
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The contribution of electron-electron interaction to total resistivity is thus proportional to √T. It 

turns out that the effect of this Coulomb anomaly is an additional contribution to the resistivity, 

which varies as –T
1/2 

at low temperatures. 

 

1.7 Magnetoresistance  

Magnetoresistance, the change of a material's resistivity with the application of a 

magnetic field, is a well known phenomenon. It is usually measured in two orientations, one is 

longitudinal mode and the other is transverse. In the longitudinal mode, the magnetic field is 

applied along the direction of the electric current while the field is perpendicular in the 

transverse mode. Classically, the MR effect depends on both the strength of the magnetic field 

and the relative direction of the magnetic field with respect to the current. Several distinct types 
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of magnetoresistance are found: ordinary magnetoresistance (OMR), anisotropic 

magnetoresistance (AMR), giant magnetoresistance (GMR), tunnel magnetoresistance, and 

colossal magnetoresistance (CMR). The materials and mechanisms for these five types are 

distinctly different. 

 

Magnetoresistance in ferromagnets (AMR) 

 

The discovery of anisotropic magnetoresistance in ferromagnetic metals was made by 

William Thomson
50

. In ferromagnetic materials, due to the presence of spontaneous 

magnetization, magnetoresistance in both longitudinal (LMR) and transverse (TMR) orientations 

are quite different from the normal magnetoresistance. In general, at low applied magnetic fields, 

longitudinal (LMR) and the transverse magnetoresistance (TMR) are positive and negative, 

respectively. At higher fields, they show only a small decrease with field, called the technical 

saturation. This negative magnetoresistance (i.e.,
dH

d



1 ) beyond technical saturation could be 

understood from the localized model and is the characteristics of ferromagnets. 

     

According to this model, the magnetoresistance is proportional to (Ms(H,T)
2
 – Ms(0)

2
), 

Ms(0) being the spontaneous magnetization. The negative slope in magnetoresistance arises 

when the value of magnetization (Ms(H,T)) dominates over the spontaneous one (Ms(0)) with 

increasing magnetic field. However, at very low temperatures (T<<TC), this slope disappears 

since Ms(T)  Ms(0). According to the domain  theory
51,52

, the zero- field magnetoresistance, for 

isotropic distribution of domains, is written as  

s + (2/3)s,               (1.24) 
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The ferromagnetic anisotropy of resistivity (FAR) is defined as  

                                               

,
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here the values of s / and s/are obtained from the high-field LMR and TMR data 

extrapolated to zero internal magnetic field (Hint) and this  internal field Hint is defined as Hint = 

Hext -Ms where  is the demagnetization factor. This factor depends on the dimensions of the 

sample and its orientation with respect to the applied field. It is interesting to note that the FAR 

is independent of the zero-field resistivity and is an inherent property of ferromagnetic materials. 

The origin of FAR is generally attributed to the spin-orbit interaction present in a ferromagnet. 

 

1.8  Summary and Outline of the Thesis 

     This thesis will describe our studies on the magnetic and transport properties of disordered   

binary (Ni-Mn)   and ternary (Ni-Fe-Cr) alloys as a function of temperature, magnetic field, and 

composition. Our study clearly shows that the magnetic moment of Ni-Mn and NiFeCr alloys 

depends sensitively on the concentration and local chemical environment. We present 

experimental results for the Curie temperature, magnetization, and paramagnetic susceptibility of 

disordered states. The interplay between magnetic and transport properties in magnetic materials 

have been utilized in several electronic applications from the memory element to magnetic field 

sensors and is still a subject of extended basic research. Sometimes these could be used as 

corrosion resistant materials. The behavior of the alloys strongly depends on the exchange 

interaction between the neighboring atoms. The application of magnetic fields and temperature 

as external control parameters shows different magnetic phases. The high-field magnetization 

and magnetoresistance measurements indicate an intimate relationship between their transport 

and magnetic properties. These magnetic alloys with competing exchange interactions exhibit 

long-range order as well as spin-glass-like ordering depending upon the concentration of the 

non-magnetic component present. They show double transitions (PM→FM→RSG) below 

certain critical concentration which might be important for application potentials. The main 

purpose of our investigation is to study the interplay between atomic ordering and magnetic 

behavior, both theoretically and experimentally, by determining the magnetic transition in the 

alloys with different degrees of short and long range order. In this work we report a detailed 

determination of chemical and magnetic phase diagram in a wide temperature-composition 
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range. Furthermore, we also show that the experimental results can be accurately explained by a 

simple model Hamiltonian, solved by using the density functional based first-principles 

theoretical approximation that includes chemical and magnetic interactions. In both alloy 

systems there are ferromagnetic and antiferromagnetic concentration region in which only 

magnetic short-range order (MSRO) develops. Though they are well studied in the low 

concentration spin-glass regime, the high concentration range up to the long range ordered state, 

and concentrations near and around the critical concentration have their own glories and 

difficulties. As the system proceeds toward long-range order, it goes through a state which tries 

to retain the signatures of spin-glass, while some manifestation of long-range order is also 

evident. Hence the phenomenon of the coexistence of different magnetic phases and double 

transitions show up.  
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CHAPTER II 

Sample Preparation and Experimental Details 

2.1 Preamble 

In this chapter, a brief overview of the sample preparation and their characterization as 

well as various experimental set-ups are discussed which were used during this thesis work. The 

magnetic and the transport property measurements were done using Quantum Design’s Magnetic 

Property Measurement System (MPMS) along with Lake Shore’s Vibrating Sample 

Magnetometer (VSM) and Quantum Design’s Physical Property Measurement System (PPMS) 

respectively. The structural and phase characterizations of the samples are done using SEM, 

EDXA, and XRD.  

2.2   Sample Preparation 

Samples of both Ni-Mn (six samples) and Ni-Fe-Cr (seven samples) alloy series are 

prepared by arc melting, in pure argon atmosphere, of required amount of 99.999 % 

spectroscopically pure constituent elements, obtained from Johnson–Mathey, Inc. (England). The 

elements are cleaned with organic solvent and etched with dilute HNO3. For NiMn series, we 

have taken a little more Mn than that required anticipating some Mn loss due to evaporation. 

The melting is performed in a water-cooled coil type induction furnace, with a maximum 

power of 7 kW, fed by an “Ajax Magnethermic Converter” which converts line current of 50 Hz 

to a value between 20 to 40 kHz. The elements are taken in a high quality alumina crucible 

which is placed in a graphite susceptor and the whole thing is put in a vacuum-sealed quartz 

tube. This zone was repeatedly evacuated to 10
-3

 torr and flushed with high purity argon gas. 

Finally, this quartz tube is filled with argon gas at less than atmospheric pressure. During heating 

process the temperature is monitored with an optical pyrometer. The furnace is switched off as 

soon as the melting of the constituents is completed. The alloy ingot thus prepared is subjected to 

a homogenization process. The ingot is put in a quartz capsule which is then repeatedly 

evacuated and flushed with argon gas and finally sealed in a partial pressure of argon. The 
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capsule is then heated for 3 days in a vertical furnace at a temperature which is roughly 100
o
C 

less than the melting point of the alloy, decided from the phase diagram. The alloy is then 

dropped in a bucket full of brine to quench it to room temperature. Then the alloy ingot is 

swaged, cold-rolled and cut into various shapes for different measurements. The sample pieces 

are then sealed in quartz tubes in argon atmosphere and heated for a day in a vertical furnace at 

temperatures close to their melting points and then fast quenched in brine. This heat treatment is 

very important since this process helps in preserving both the high temperature crystallographic 

phase (γ- phase) and the random substitutional nature of the polycrystalline samples and 

preventing any possible chemical clustering. The quenching process has to be done as fast as 

possible as slow quenching can introduce other lower temperature crystallographic phases. 

 

2.3 Characterization techniques 

2.3.1 Superconducting Quantum Interference Device (SQUID) 

 

One of the most sensitive forms of magnetometry is SQUID magnetometry.  The 

technique of combination of superconducting material and Josephson junction is being used here. 

Most of the magnetic measurements of our Ni-Mn and Ni-Fe-Cr alloys were carried out using 

Quantum Design’s Magnetic Property Measurement System (MPMS) magnetometer which is 

basically a Superconducting Quantum Interference Device (SQUID) magnetometer. A SQUID 

magnetometer consists of a superconducting ring containing one or more Josephson junctions. A 

brief description
1
 of the superconducting ring with two junctions is given below as shown in Fig. 

2.1. 
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Fig.2.1 Superconducting quantum interference device (SQUID) as a simple magnetometer. 

 

If a current I is passed through this circuit, current I/2 flows through each junction. Now if a 

magnetic field of gradually increasing flux density B is applied perpendicular to the plane of the 

ring then a circular current i is induced within the ring. This means that currents i+(I/2) and i-

(I/2) flow through the right-junction and the left-junction of the ring, respectively. The phase 

change of an electron around any closed superconducting circuit is 2πn, where n is an integer. An 

applied magnetic field produces a phase change around a ring, which in this case is equal to 

 Δφ(B) = 2π (φa/φ0)          (2.1) 

where φa  is the flux produced in the ring by the applied magnetic field. The magnitude of the 

critical measuring current is dependent upon the critical current of the weak-links and the limit of 

the phase change around the ring being an integral multiple of 2π. For the whole ring to be 

superconducting, the following condition must be met:  

α + β+ 2π(φa/φ0) = 2πn,     (2.2) 

where α and β are the phase changes produced by the currents across the weak-links. Here, φa is 

the magnetic flux passing through the ring and φ0 is the quantum of magnetic flux (= h/2e = 

2.0678 × 10
-15

 T m
2
). 

In the absence of any measuring current, α = β = π [n-(φa/φ0)].  
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When the measuring current I is applied, α ≠ β. Since α + β = constant, the phase changes can be 

written as  

α = π [n-(φa/φ0)] – δ                                               (2.3) 

and β = π [n-(φa/φ0)] + δ                                        (2.4) 

where δ is related to the magnitude of the measuring current I. 

Using the relation between current and phase: i  I/2 = ic sin{π [n-(φa/φ0)]  δ}         (2.5) 

we obtain, I = 2ic cos{π [n-(φa/φ0)]} sinδ.       (2.6) 

As sinδ  ≤ 1,     I ≤ 2ic cos|π(φa/φ0)|.               (2.7) 

The critical measuring current is Ic = 2 ic cos|π(φa/φ0)| which is an oscillating function with a 

period of φ0 and whenever the magnetic flux φa becomes a multiple of φ0 there is a maximum. 

Hence, the magnetic flux passing through the ring can be measured as multiples of φ0. The 

measurement of such a digitized quantity can be made very accurately, particularly since the 

magnitude of φ0 is extremely small which helps us to measure very weak magnetic field
2
.  

This SQUID magnetometer does not directly detect the magnetic field created due to the sample. 

A measurement is performed by moving a sample through the superconducting detection coils 

which are located at the center of the magnet provided with a constant dc magnetic field required 

during measurements. The sample moves along the symmetry axis of the detection coil and the 

magnet. Moving sample induces an electric current in the detection coils which are connected to 

the SQUID input coil with superconducting wires, allowing the current from the detection coils 

to inductively couple to the SQUID sensor. The detection coil is basically a second-order-

gradiometer detection coil. It is a single piece of superconducting wire wound in a set of three 

coils. In this configuration, the upper coil is a single turn wound 

clockwise, the center coil comprises two turns wound counter-clockwise, and bottom coil is a 

single turn wound clockwise. 
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              Fig.2.2 Sample position in SQUID detection coil and the corresponding signal. 

 

Figure 2.2 shows the calculated output (in arbitrary units) of the SQUID electronics as a function 

of sample position. The x-axis shows the sample position, when x = 0, the sample is at the center 

of the detection coils. In this figure the single turn upper and bottom coils are ± 1.5 cm from the 

central coil. For our magnetic measurements, we have used straw packing to fit the sample in the 

sample holding straw. Quantum Design provides two standard transport options to be used with 

the MPMS. The DC transport and RSO transport. The RSO transport is primarily used for 

samples with small magnetic moments. 

 

2.3.2 Vibrating Sample Magnetometer (VSM) 

           Vibrating sample magnetometer (VSM) is based on Faraday’s law that states, an emf 

(electromotive force) ‘V’ will be generated in a coil if there is a change in magnetic flux, Φ 

linking the coil. The induced emf in a coil with ‘n’ turns with a cross-sectional area of ‘a’ can be 

written as 

V = -n a (dB/dt).                               (2.8) 

When the coil is positioned in a constant magnetic field ‘H’,  
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B = µ0H,                                           (2.9) 

where µ0 is permeability of vacuum. Now if we place a magnetic sample having magnetization 

‘M’ near the coil, then 

B = µ0 (H + M).                                (2.10) 

The corresponding change in B due to the magnetic sample can be written as  

∆B = µ0M.                                           (2.11) 

The induced emf in the pick-up coils can therefore be expressed as 

Vdt = -naµ0M.                                     (2.12) 

The above equation implies that the output signal of the coil is proportional to the magnetization 

M but independent of the magnetic field in which the magnitude of M is to be determined. 

Schematic diagram of a VSM is shown in Fig. 2.3. In a VSM, the sample is subjected to a 

sinusoidal motion (of frequency ) and the corresponding voltage is induced in suitably located 

stationary pickup coils which generate output signal of frequency . Also, the intensity of the 

signal is proportional to the magnetic moment of the sample, the vibration amplitude, and the 

frequency . The sample to be measured is centered in the region between the poles of an 

electromagnet which can generate a uniform magnetic field H0. A thin vertical non magnetic 

sample rod (made of plastic/quartz) connects the sample holder with a transducer assembly 

located above the magnet. The transducer converts a sinusoidal as drive signal (generated by an 

oscillator/amplifier circuit) into a sinusoidal vertical vibration of the sample rod. The sample is 

thus subjected to a sinusoidal motion in the magnetic field H0. 

 Pickup coils made of copper and mounted on the poles of the electromagnet pick up the 

signal resulting from the motion of the sample. The magnetic moment readings taken simply by 

measuring the amplitude of the signal are subjected to errors due to the variation in amplitude 

and frequency of vibration of the sample. In order to avoid this difficulty, a nulling technique is 

introduced employing a vibrating capacitor for generating a reference signal that varies with 

vibration amplitude and frequency in the same manner as the signal coming from the pickup 
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coils. When these two signals are processed in an appropriate manner, it is possible to eliminate 

the effects of vibration amplitude and frequency shifts. In that case, one obtains readings that 

vary only with the moment of the sample. 

 

 

                                  

Fig. 2.3 Schematic diagram of a VSM unit. 

 

The VSM in our laboratory (Lakeshore make) has maximum magnetic field generating capability 

of 2.1 T without cryogenic system and 1.76 T can be achieved with LN2/LHe dewar between the 

coils. The moment versus temperature and isothermal hysteresis loops at various temperatures 

can be measured using a cryogenic system (Liq. N2) that can operate within a temperature range 

of 80 to 400 K with temperature stability of ± 0.2 K and temperature resolution of 0.001 K. 

Noise level of 1.25 µemu (RMS value) in moment measurement can be achieved using the 

system
3
. 

 

2.3.3   Physical Property Measurement Systems (PPMS) 

           The electrical transport and ac susceptibility measurements were done using Quantum 

Design’s Physical Property Measurement System (PPMS)
4
. The resistivity of the samples was 
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measured down to 2 K and magnetic fields up to 5 T using standard dc four-probe methods.  Fig. 

2.4 shows the schematic diagram of the 8 T PPMS system along with the pucks used for 

resistivity measurements.  The system works down to 2 K in standard form and down to 300 mK 

with 
3
He insert. Fields up to 8 T is achieved using hybrid NbTi and Nb3Sn magnets. The 

temperature can be controlled to better than 10 mK.  A 9.3 Hz square wave is used for resistivity 

measurements and noise reduction is done by lock-in technique and data averaging.  

 

Fig.2.4 Schematic diagrams of QD-PPMS system and the photograph of pucks used for 

mounting samples. 

 

The ac transport measurement system (ACT) option has a precision current source and 

voltage detector that support four different types of automated, electrical transport 

measurements: ac resistivity, five wire Hall effect, I-V curve, and critical currentS. The ac 

measurement systems (ACMS) provide the capability to perform both ac susceptibility and dc 

magnetization measurements. The sample is mounted near the center of the detection coils 

(approximately (10.5 ± 0.8) cm from the end of the long sample rod on the ACMS sample 

holder); the ACMS sample transport can automatically center it by adjusting the sample position 

relative to servo motor zero.  The samples were pasted on the sample holder using GE varnish 

(good thermal conductor but bad electrical conductor). One end of the silver wires (due to 

softness) was soldered on the sample puck copper connectors with zinc-cadmium solder. The 

other end of the silver wire was connected to the sample using silver paste. After making the 
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contacts the samples were kept under IR lamp for drying. Indium has not been used as it 

becomes superconducting around 3.6 K. 

 

2.3.4 Scanning Electron Microscope (SEM) 

In an Electron Microscope a stream of electrons is formed in high vacuum (by electron 

guns). The stream is accelerated towards the specimen (at a positive potential) and is confined, 

focused and directed in a particular direction using metallic charged plates and magnetic lenses 

resulting in a monochromatic beam. As the beam is incident on the sample, it interacts with the 

atoms of the sample and which in turn affects the electron beam. These interactions and effects 

are detected and transformed into an image.  

In SEM (Schematically shown in Fig. 2.4 ), the electron beam is either thermionically or field 

emitted from an electron gun
5
 and focused in vacuum into a fine probe that is rastered ( A 

scanning pattern of parallel lines that form the display of an image projected on a display screen 

) over the surface of the specimen. SEM works on a voltage between 2 to 50 kV and its beam 

diameter that scans the specimen is 5 nm-2 µm. A field-emission cathode in the electron gun of a 

SEM (FESEM) provides narrower probing beams at low as well as high electron energy.  

When the electron beam interacts with the sample, the energy exchange between the electron 

beam and the sample results in the deceleration of incident electrons through energy dissipation 

and produces a variety of signals. These signals include secondary electrons (produced 

by inelastic scattering of incident electrons with the atoms of the sample), backscattered 

electrons, diffracted backscattered electrons, characteristic X-rays (produced by inelastic 

collisions of the incident electrons with electrons in discrete orbitals of the atoms of the sample), 

visible light (cathodo-luminescence), and heat. Secondary and backscattered electrons are 

conventionally separated according to their energies
6
. The electrons are detected by suitable 

detectors placed in the microscope in proper positions. The secondary electrons produce the 

SEM micrograph of the sample.   

http://en.wikipedia.org/wiki/Thermionically
http://en.wikipedia.org/wiki/Electron_gun
http://en.wikipedia.org/wiki/Inelastic_scattering
http://serc.carleton.edu/research_education/geochemsheets/xrays.html
http://serc.carleton.edu/research_education/geochemsheets/semcl.html
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                                        Fig. 2.5 Schematic diagram of a SEM unit. 

 

 

Fig. 2.6 SEM micrographs of  Ni75Mn25 sample to check short range ordering. 

 

2.3.5 Energy Dispersive X-Ray Analysis (EDXA) 

When a high-energy electron beam hits a specimen, X-rays characteristic of the atoms in 

the specimen are generated within the region illuminated. This allows the possibility of 

microanalysis, that is, the chemical analysis of a small amount of material, or a small part of a 

larger specimen. If we can measure the energy of the X-rays (or equivalently their wavelength, 
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since they are related by Planck's constant, E = hc/λ or specifically EkV = 12.4/λAngstroms), then we 

can immediately tell qualitatively which elements are present in the part of the specimen under 

investigation. If we measure X-ray intensities, we also get an immediate rough idea of how much 

of each element is present. EDXA makes use of the X-ray spectrum emitted by a solid sample 

bombarded with a focused beam of electrons to obtain a localized chemical analysis. Qualitative 

analysis determining the concentration of elements present entails measuring line intensities for 

each element in the sample and for the same elements in calibration standards of known 

composition. X-ray intensities are measured by counting photons. As well as producing 

characteristic X-ray lines, the bombarding electrons also give rise to a continuous X-ray 

spectrum, which limits the detachability of small peaks owing to the presence of a background. 

 The characteristic peaks carry the compositional information
7
. They arise when the energy of 

the incident electrons is high enough to eject inner-shell electrons from atoms in the specimen. 

For example, the ejection of a K-shell electron leaves the atom in an excited state. One of the 

ways it can lower its potential energy is by an electron from an outer shell falling to the vacant 

inner-shell position and at the same time emitting an X-ray of characteristic energy (Fig. 2.7). 

This characteristic energy is determined by the difference in the electron energy levels of the 

atom and therefore can provide direct information about the chemistry of the electron 

beam/specimen interaction volume. 

 

Fig. 2.7 Transitions leading to the generation of characteristic X-rays. 
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Fig. 2.8  EDXA spectra of Ni63Mn37. 

 

  

 

 

 

 

 

A typical X-ray spectrum is shown in figure 2.7. It consists of characteristic peaks superimposed 

on a background of "Bremsstrahlung".  The width of a characteristic X-ray peak is given by the 

equation: 

FWHM = [N
2
 +5.5FεE] 

1/2
                      (2.13) 

where: N = electronic noise in the system  

F = Fano factor (0.11 for Si) 

ε = Energy to produce an electron hole pair (3.8 eV) 

E = X-ray line energy  

Typical values of FWHM for modern detectors are 133 eV for Mn Kα. 

EDAX ZAF Quantification (Standardless) Element Normalized 

Elem  Wt %  At %  K-Ratio     Z         A          F 

------------------------------------------------------------- 

MnK   36.85  38.41  0.3919  0.9756  0.9878  1.1034 

NiK     63.15  61.59  0.6060  1.0141  0.9464  1.0000 

Total  100.00  100.00  
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2.3.6 X-ray Powder Diffraction (XRD) 

X-ray crystallography relies on the dual wave/particle nature of x-rays to collect 

information about the crystalline structure of crystalline samples under test among which X-ray 

powder diffraction is the most common technique for powder samples.  

The physics and mathematics describing the generation of monochromatic X-rays (an 

electromagnetic radiation) and the diffraction of those X-rays by crystalline powdered materials 

are very complex. However in short, X-rays are generated by a cathode ray tube, filtered to 

produce monochromatic radiation, collimated to concentrate, and directed toward the 

sample
8
. The X-ray we use is of Kα emission of a copper metal with an average wave length of ~ 

1.5418 Ǻ. Upon incidence on crystalline samples, atoms within the sample elastically scatter the 

X-ray waves, primarily through the atomic electrons.  The regular array of scatterers (electrons) 

within a crystalline sample produces a regular array of outgoing spherical waves of scattered X-

rays. Although these waves cancel one another in most directions through destructive 

interference, they add constructively in a few specific directions, determined by Bragg's law. 

These diffracted X-rays are then detected, processed, and counted. By scanning the sample 

through a range of 2θ angles, all possible diffraction directions of the lattice should be obtained 

due to the random orientation of the powdered material. Conversion of the diffraction peaks to d-

spacings allows identification of the elements/compound present in the sample because each 

element/compound has a set of unique d-spacings. Typically, this is achieved by comparison of 

d-spacings with standard reference patterns (i.e., ICSD or Inorganic Crystal Structure Database). 

 

 

         Fig. 2.9 Schematic diagram of X-ray diffraction optics used in θ/2θ mode. 

http://en.wikipedia.org/wiki/Destructive_interference
http://en.wikipedia.org/wiki/Destructive_interference
http://en.wikipedia.org/wiki/Bragg%27s_law
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           Powder diffractometers come in two basic varieties: θ-θ in which the X-ray tube and 

detector move simultaneously or a θ-2θ in which the X-ray tube is fixed, and the specimen 

moves at half the rate of the detector to maintain the θ-2θ geometry.  We use X-ray Panalytical 

(X’Pert Pro) system which has a θ-2θ system during data collection as shown in Fig. 2.9.   

    The angles and intensities of diffractions are recorded electronically using a detector, 

electronics, and specialized software resulting in a plot of 2θ (horizontal axis) vs. intensity 

(vertical axis) for the specimen. Fig. 2.10 shows a typical XRD pattern obtained for one of our 

f.c.c alloys.  

 

Fig. 2.10 X-ray diffraction pattern of Ni79Fe1Cr20.  
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CHAPTER  III 

 

Magnetic ordering in Ni-Mn alloys around the multicritical 

point: Experiment and Theory 

3.1  Preamble 

We have carried out an experimental study of Ni-rich Ni100-x Mnx (15≤ x≤ 37) alloys in a 

series of compositions across the multicritical point and determined the phase diagram within 

that range. We have observed ferromagnetic long-range order with re-entrant spin-glass/ferro-

spin-glass phase for x ≤ 25, an antiferromagnetic long-range order around x ∼ 37, and a gradual 

change from a canonical spin-glass state to a long-range antiferromagnetic phase in the 

intermediate composition region. In order to explain the experimental observations, we have 

examined the physical properties from a density functional based first-principles theoretical 

analysis and used it to understand the experimental results. Using atomic spin dynamics 

simulations based on the Landau-Lifshitz-Gilbert equation, we have found the aging behaviour 

and anomalously slow relaxation of magnetization in the composition range where experiments 

show spin-glass behaviour. 

3.2   Motivation behind the work 

 

Magnetism in Ni100−xMnx (x = Mn content in atomic %) alloys provides a classic example 

of a disordered system with competing interactions. Magnetic parameters, such as transition 

temperatures, saturation magnetization, and coercivity, for different compositions are useful in 

assessing their application potentials. In an earlier work, Hahn and Kneller
1
 carried out magnetic 
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studies on Ni-Mn alloys as a function of heat treatment. They found that in spite of quenching 

from well above the ordering temperature, there exists small ferromagnetically ordered Ni3Mn 

regions of about 20 Ǻ in diameter in a matrix of disordered material. This made the preparation 

of single-phase Ni-Mn alloys a difficult task. Soon after, Kouvel and Graham
2
 established the 

coexistence of ferromagnetism and spin-glass like state coming from competing pair exchange 

interactions between the components at low temperatures in disordered Ni100−x Mnx alloys with x 

= 20, 25, and 30, through hysteresis loop and torque measurements. Abdul-Razzaq and J. S. 

Kouvel
3
 reported the magnetic phase diagram in the composition range 23 ≤ x ≤ 27. They 

observed, below the multicritical point (MCP) of x = 23.9 and T = 102 K, a double transition 

from a paramagnetic to a ferromagnetic state at TC followed by a spin-glass (SG) like state at Tfg 

< TC with a re-entrant character. Above x = 23.9 they found a paramagnetic to a normal SG state 

at Tg. Aitken et al.
4
 found the MCP to be above x = 26. This difference could arise from the 

difference in atomic short-range order in the two reports. Hauser and Bernardini
5
 studied 

sputtered films of Ni100−x Mnx alloys and their bulk counterparts. They observed paramagnetic to 

spin-glass transition through ac susceptibility, χ measured at 10 kHz and 4 Oe ac field. Bulk 

samples with x = 22, 27, and 31 gave Tg of 40, 78, 73 K (much lower than 110 K found by 

Aitken et al.
4
) and the Curie-Weiss plot (1/χ vs T) for x = 27 gave a Neel´ temperature θ = 125 K 

and neff of 2.5 μB which lies in between 0.3 and 3.2 μB found from neutron scattering 

experiments. It also gave a displaced hysteresis loop. Ferromagnetism disappeared at x = 27 

since χ fell abruptly to 0.767 × 10
−3

 from 14.7 × 10
−3

 for x = 22 where TC ∼ 290 K and Tg ∼ 40 

K. They concluded that the presence of ferromagnetism below x = 26 is independent of 

preparation conditions, be they induction melted or quenched bulk alloy or sputtered films. 

However, the magnetic parameters such as TC, Tg, and χ (T) varied considerably. Needless to say 

that a more detailed magnetic phase diagram of this interesting system is certainly necessary, 

especially away from the multicritical composition. In the experimental part of this paper we 

have investigated in detail the magnetic properties of six samples of disordered Ni100−x Mnx 

alloys encompassing the critical concentration (x = 25) in the composition range x = 15 – 37 at. 

% Mn which was the transition region from ferromagnetism to antiferromagnetism. For alloys 

with x = 15 and 20, with decreasing temperature, we observed a paramagnetic (PM) to a 

ferromagnetic (FM) transition at TC and then below Tfg the occurrence of a spin-glass(SG)-like 
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phase. Previous theoretical studies
6
 had also shown that this SG-like phase below Tfg  has a 

spontaneous FM moment with the transverse spin components ordered in a spatially random 

manner. It has therefore been called a “mixed phase”. We indeed found that the SG-like phase 

has a spontaneous moment and the FM to SG-like transition temperature (Tfg) increased while 

the FM Curie temperature (TC) decreased with increasing Mn concentration. They met at x = 25 

and T ∼ 100 K, the multicritical point (MCP). For alloys with x = 30 and 35, we observe only a 

single transition from a paramagnetic to a spin-glass-like (or an antiferromagnetic for x = 35) 

phase which is different from that of the previous “re-entrant spin-glass” phase. At higher 

concentrations such as x = 37, a paramagnetic to an antiferromagnetic transition is noticed. 

 

We shall interpret the above behaviour in terms of the work of Carr Jr.
7
 which takes the 

view that for the 3d electrons a Heitler-London approximation holds and so the electrons are to 

be associated with the individual atoms. For Ni-Mn alloys, the dominant exchange energies are 

antiferromagnetic Mn-Mn and ferromagnetic Ni-Ni and Ni-Mn interactions. For low Mn 

concentration (x), Mn-Mn interaction is negligible and hence all the spins become parallel 

resulting in an increase in M falling on the right segment of the Slater-Pauling (SP) curve
8
 with a 

slope of −1, as shown in Fig. 3.1. For slightly higher x, there is hardly any Mn—Mn nearest 

neighbors for the ordered alloy, such as Ni3Mn. So, the points still continue to fall on the -1 slope 

line (See Ni3Mn point on Fig. 3.1). However, for the disordered alloys at still higher x, the Mn-

Mn AF interaction wins over the Ni-Mn FM interaction and Mn spins tend to cancel each other. 

As a result, M shows a bending over beyond which the magnetic moment comes mainly from 

nickel ions and decreases with increasing Mn which causes the filling up of the nickel d shell. 

Finally, M decreases with x following the left segment of the SP curve and ferromagnetism is 

lost around x ~ 30 at. % Mn. This is found in most experiments. So, our findings that in the 

present alloys long-range FM disappears at x = 25, is more or less justified. 
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Fig. 3.1 Slater-Pauling Curve: The average atomic moment is plotted against the number of 

valence (3d + 4s) electrons. 

 

Finally, the magnetic behaviour of Ni-Mn alloys is typical of a competing interacting 

system with ferromagnetic and antiferromagnetic regimes enclosing a concentration range in 

which only magnetic short-range order (MSRO) exists. 

 

3.3 Experimental Procedure  
 

The electronic configuration of Ni is [Ar] 3d8
 4s2

 and that of Mn is [Ar] 3d5
 4s 2

. The 

melting points of nickel and manganese are as high as 1455 
◦
C and 1245 

◦
C, respectively. Hence 

it is difficult to make homogeneous alloys with them as constituents. Ni-Mn alloys with 15, 20, 

25, 30, 35, and 37 at. % Mn were arc melted in argon atmosphere with appropriate proportions of 

Ni and Mn. Then the ingots were homogenized for 3 days at 1000 
◦
C and small cylindrical 

samples were spark cut for each composition. Their sharp corners were rounded off so that the 

demagnetization factor is reasonably uniform. Each sample was encapsulated in a quartz tube in 

argon atmosphere, annealed for 3 hours at 1100 
◦
C, and then quenched in water. This treatment 

ensured the absence of an ordered Ni3Mn phase which is strongly ferromagnetic (TC ~ 700 K). 

However, atomic short-range ordering could not be ruled out. A final annealing was done in 

argon atmosphere at 1000 
◦
C to reduce strain introduced due to cold rolling. We performed the 

magnetic measurements using a vibrating sample magnetometer (VSM), a superconducting 
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quantum interference device magnetometer (SQUID, MPMS of Quantum Design), and a PPMS 

VSM of Quantum Design. The x-ray diffraction of the samples was carried out using a Philips 

XRD machine (X
_
Pert PRO Diffractometer) with a Guinier-type camera employing a focusing 

geometry and a solid-state detector. The radiation used was Cu Kα1. The chemical composition of 

the alloys was determined using standard analytical methods such as energy-dispersive x-ray 

analysis (EDAX). 

 

3.4   Experimental Results and Discussions  

3.4.1   Structural Properties  

XRD measurements revealed that all the alloys are of single face-cantered-cubic phase. A 

typical XRD pattern for the Ni85Mn15 sample is shown in Fig. 3.2. Table 3.1 shows the measured 

lattice constants as a function of alloy composition. These lattice constants differ by only 1.4 to 

2.8 % from that of pure Ni. We also note that the lattice constant increases monotonically with 

the increase of Mn concentration implying a good control of the alloy composition. As 

mentioned earlier, there are significant difficulties in forming the fully random alloy. The 

problem is the precipitation of a second phase of ordered L12 Ni3Mn which is ferromagnetic with 

TC ~ 700 K and lattice parameter ~ 3.60 Ǻ as against ~ 3.57 Ǻ for the disordered Ni75Mn25. 
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Fig. 3.2 XRD pattern of 15 % Mn alloy. The inset shows the variation of the lattice parameter 

with increasing Mn content (at. %). 
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For any disordered system, there may be some local preferences between like or unlike 

atoms. This is called clustering or short-range order. Cowley
9
 introduced a parameter αi which is 

a measure of the average number of unlike nearest neighbours throughout the crystal. We have 

applied the Rietveld method to analyze the x-ray diffraction data to calculate this short-range 

order parameter of the Ni75Mn25 sample. By definition αi = 1 − pi /xA, where pi is the probability 

that the atomic site i is occupied by an A atom. The probability that we get from Rietveld 

analysis is 0.7373, which deviates from 0.75. Hence the value of the short-range order is given 

by αi = 1 − (0.7373/0.75) = 0.0169. Therefore the percentage of short-range order is ∼1.7 %. Our 

alloys are definitely not “fully random” but contain ∼ 98.3 % of disordered Ni75Mn25. The point 

to note here is that the observed exotic complex mixtures of magnetic phases that include short-

range ordering, clustering, randomness on the nm scale, etc., do not affect our phase diagram. 

The small amount of ordered ferromagnetic Ni3Mn phase (∼ 1.7 %) only adds a small 

temperature-independent moment since TC ˃˃ 300 K. Our M vs. H data for the MCP alloy (x = 

25) at 300 K is a straight line passing through the origin, just like that of a paramagnet without 

any detectable hysteresis (see Fig. 3.3). 

 

 

 

TABLE 3.1. Alloy compositions and their        

lattice constants with errors. 

Mn Conc. (at. %) Lattice Parameter (Ǻ)  

15 3.572 ± 0.004  

20 3.583 ± 0.007  

25 3.595 ± 0.007  

30 3.615 ± 0.005  

35 3.654 ± 0.006  

37 3.670 ± 0.004  
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3.4.2 DC Magnetization  

 

Magnetization measurements M(T ) of Ni100−x Mnx (15≤ x ≥  37) samples were done in 

the temperature range of 5–350 K, both in low (∼ 20 Oe) using a SQUID magnetometer and 

high (∼ 120 kOe) fields. For zero-field-cooled (ZFC) measurements, the samples were cooled 

down from 350 to 5 K in zero magnetic fields. After cooling, a small field of 20 Oe was applied 

and held constant while M was measured as the temperature was raised slowly up to 350 K. 

Subsequently the temperature was lowered down to 5 K and the field-cooled (FC) data were 

taken while heating till 350 K. During this temperature cycle, M (T) was quasistatically 

measured for finding the various transition temperatures as shown in Fig. 3.4. Many of the 

conclusions in this section are supported by the hysteresis loop data reported in the next 

subsection on high-field magnetization. 

 

 

 

Fig. 3.3 M (H) data for the MCP alloy (x = 25) at 300 K showing paramagnetism without any 

detectable hysteresis. 
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Fig.3.4 Magnetization vs. temperature curves for Ni-Mn alloys between 5 and 350 K on 

heating after ZFC (black/full line) and then again heating after FC (red/dashed line) in a 

magnetic field of 20 Oe.  

   

  We see from Fig. 3.4 that for alloys with x = 15 and 20, ZFC and FC M(T ) curves show 

irreversibility in the low-temperature region. As T increases from 5 K, there is a bifurcation 

between ZFC and FC M(T ) curves at Tfg indicating a transition from a re-entrant ferro SG-like 

state to a ferromagnetic state. In the intermediate temperature range, both ZFC and FC M(T ) 

remain constant almost until TC is reached, as found from the dip in dM/dT vs. T plots (not 

shown here), which is the point of inflection of the M(T ) vs. T curve. This is in contrast to the 

concave M(T ) curve beyond the kink points in Fig. 1 of Ref. 1, for x = 23 and 23.5. At low 

temperatures, our alloys with x = 15 and 20 exhibit a re-entrant/ferro spin-glass-like mixed phase 

having a spontaneous FM moment as well as glassy behavior below Tfg [as seen from M(H ) 

curves at 5 K in the next subsection]. The sample with x = 15 has Tfg = 37 K and TC = 310 K 

while the sample with x = 20 has Tfg = 60 K and TC = 270 K. This “re-entrant” phase having a 
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“mixed” character was predicted theoretically
6
 long back and involves below Tfg a SG ordering 

of the spins transverse to the coexisting FM moments, while in the FM state above Tfg the 

transverse SG ordering is absent and only the FM remains. It must be stressed here that this 

coexistence of FM and SG phase below Tfg is not a spatially segregated coexistence of infinite 

ferromagnetic clusters decoupled from finite clusters. The coexistence takes place over the whole 

sample. The FM ordering persists down to the lowest temperatures (T << Tfg). AuFe
10

  is the first 

system where the coexistence was observed just below the percolation threshold of 15 at. %  Fe. 

Fe80−x Nix Cr20 (10 ≤x ≤30) alloys, with a variation of Ni from 10–30 at.% at the cost of Fe with 

Cr remaining fixed, is another system, similar to the present Ni-Mn, which offered a unique 

opportunity of observing various magnetic phases such as ferromagnetic, mixed ferro-spin-glass, 

spin-glass, and antiferromagnetic.
11-13

There the dominant competing interactions were from FM 

Ni-Cr and AF Cr-Cr interactions which produce FM-SG-like coexisting phases.  

 

 

 

 

 

 

 

 

 

Fig. 3.5 Zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves at H = 20, 50, 200, 

and 3000 Oe for the alloy Ni75Mn25. The inset shows the AT plot giving the glass transition 

temperature Tg ~ 75 K.  
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We associated the lower temperature transition at Tfg for x = 15 and 20 and the single 

transition for x = 25 (MCP alloy) with a spin-glass-like phase. Figure 3.5 shows zero-field-

cooled (ZFC) and field-cooled (FC) magnetization curves at H = 20, 50, 200, and 3000 Oe for 

the MCP alloy Ni75Mn25. We find a gradual shift of Tm [where ZFC M(T ) shows a peak] toward 

lower temperatures at higher external fields. The ZFC peak at Tm in the SG-like state is due to 

the gradual unfreezing of moments which allows the magnetic field to align them. Beyond Tm we 

observe the paramagnetic ∼1/T fall for both the ZFC and FC M(T ) and hence no irreversibility 

for T > Tm. At higher applied fields the magnetic field itself tends to disrupt the freezing and 

hence thermal unfreezing is effective only till a gradually lower value of Tm. This approaches the 

glass transition temperature Tg as H → 0 as given by de Almeida-Thouless (AT) relation
12

 1/Tm 

~ (H/Tm)
2/3

. The inset of Fig. 3.5 shows the AT plot giving the glass transition temperature Tg ~ 

75 K, quite different from Tg/Tfg found from the bifurcation temperature of 100 K in Fig. 3.4 and 

ac susceptibility data reported in Section 3.4.4.               

The samples with x = 25, 30, 35, and 37 have only one type of transition which can be 

clearly seen from the steep rise in the M(T ) curves [Figs. 3.4(c)– 3.4(f)] until a maximum is 

reached and then a clear knee indicating a paramagnetic to a spin-glass-like (PM-

SG)/antiferromagnetic (AF) transition. Tg/Tfg for x = 25 is 100 K and Tg of x = 30 is 29 K. T = 

40 K for x = 35 may be a spin-glass freezing temperature or a Neel´ temperature (Tg/TN) whereas 

for x = 37, 237 K is clearly the Neel´ temperature TN, since the moment decreases abruptly at 

this concentration from 0.6 to 0.0016 emu/g as x changes from 35 to 37. For x = 30–37, the spin-

glass-like/antiferromagnetic state goes directly to the paramagnetic one without passing through 

any intervening ferromagnetic phase. 
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                        Fig. 3.6  χm/χ0 vs. Mn concentration (at. % Mn) in Ni1−xMnx alloys.  

 

In Fig. 3.6, the ratio χm/χ0 vs. Mn concentration (at. % of Mn) is plotted, where χm and χ0 

are the demagnetization-corrected low-field susceptibilities (after zero-field cooling) at the 

maximum values and at 5 K, respectively. We find that the ratio value decreases with increasing 

x. It is as large as ∼ 15 for x = 15 indicating a long-range ferromagnetic order, while at x = 25, 

the ratio approaches the value ~ 4.4. It is interesting to note that subsequently the value of the 

ratio reaches a minimum around 35 at. % Mn and then it starts increasing indicating the onset of 

another long-range order (here antiferromagnetic). 

   

We also show in Fig. 3.7 the data taken for all the samples with a VSM but only down to 80 K at 

20 Oe. Excellent reproducibility of the data taken by two different instruments of widely varying 

sensitivity (SQUID and VSM) gives us great confidence in our data and hence the conclusions 

drawn there from. 
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Fig. 3.7 Magnetization (emu/g) vs. temperature curves for Ni-Mn alloys between 80 and 350 K 

on heating after ZFC (black line) and then again heating after FC (red line) in a magnetic field of 

20 Oe using a vibrating sample magnetometer (VSM). 

 

3.4.3 High-field magnetization and hysteresis loops 

 

Hysteresis loops were obtained for each sample after cooling in zero fields to 5 K from 

above TC/Tfg/Tg/TN and measured in fields up to 50 kOe using the vibrating-sample 

magnetometer. In Fig. 3.8 we have plotted the magnetization of all six samples at 5 K only till 16 

kOe. They show drastic changes with Mn content. For the samples with x = 15 and 20, 16 kOe 

was sufficient for magnetic saturation. In case of x = 25, the magnetization was still rising at the 

highest attainable field of 120 kOe, as shown in the inset of Fig. 3.8, top panel and this locates 

the tri-critical point. The re-entrant/ferro spin-glass (FSG)-like mixed phases for x = 15, 20, and 

25 have spontaneous FM moments below Tfg. This is seen clearly from their respective values of 

HC of 30, 90, and 400 Oe at 5 K which is much less than their Tfg of 37, 60, and 100 K, 

respectively. Finally their HC’s tend to zero above their TC’s of 311, 270, and 100 K, 

respectively. The increase of HC with Mn is what is expected. HC increases with the increase of 
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impurity content and the associated lattice strain. The bell-shaped low-field region for x = 25 

resembles those observed in spin glasses but the sample still retains a high susceptibility at low 

temperatures. For lower values of x, the M(H ) curves saturate at fields ∼1 kOe like those of 

ferromagnets but with the increase of x, the lack of saturation gradually becomes more evident 

and finally around x = 37 their curvature disappears and M(H ) becomes almost linear implying 

an antiferromagnetic character (bottom panel of Fig. 3.8). 
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Fig. 3.8 Magnetization measured at low temperatures (5 K) as a function of applied fields H till 

50 kOe (shown only till 16 kOe). The inset in the top panel shows the M(H) data till 120 kOe of 

the sample with x= 25. 
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Fig. 3.9 Average magnetization (M) and uniaxial anisotropy field (Hk) vs. x (at. % Mn). 

 

We also observe that every sample has an uniaxial anisotropy field (Hk) which we found 

by using the singular point detection technique
14

 (the second derivative of the virgin M-H curves 

gives a sharp peak at Hk). Hk is plotted against Mn concentration, x in Fig. 3.9 and so is M(x) at 

16 kOe which shows a sharp decrease from ~ 46 to ~1 emu/gm from the FSG to the AFM phase. 

It should be noted that the anisotropy field changes with the magnetic phase of the samples, e.g. 

from x =15 to the multicritical point (x = 25), Hk increases slowly, then it drops till x ~ 30 and 

then rises sharply as the AFM state grows. Here larger fields are necessary to change the 

preferred orientation as LRO antiferromagnetic phase develops thereafter.  We notice that HK 

shows anomaly while passing through the multicritical point which is the boundary between 

ferromagnetic and antiferromagnetic phases. Table 3.2 gives the values of x, M at 16 kOe, Hk, 

Tfg/Tg/TN (obtained from the bifurcation of ZFC and FC curves), and Tc.  The sudden fall of 

magnetization beyond x = 25 is obvious from its values at H = 1 kOe  as given in Table 3.2 and 

is indicative of the disappearance of long-range ferromagnetism. 
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                                         Table 3.2 Magnetic properties of Ni1-xMnx samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M(T) data for x = 15, 20, and 25 at 3000 Oe from 5-40 K have been analyzed (fits not 

shown) in terms of Bloch’s  spin-waves spin-wave theory. We found that the spin-wave stiffness 

constants are 236±12, 117±3, and 110±2 meV Å
2
 as against 525 meV Å

2
 for Ni. This establishes 

firmly that ferromagnetism persists even below Tfg. 

 

 

 

x 

(at. % Mn) 

 

M at H = 1 

kOe (emu/g) 

 

 

Hk 

(Oe) 

 

Tfg / Tg/ TN 

(K) 

 

Tc 

(K) 

15 43.33 536 37 311 

20 36.12 632 60 270 

25 6.80 654 100 100 

30 0.31 395 29 - 

35 0.22 400 40 - 

37 0.05 800 237 - 
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3.4.4   AC susceptibility  

 

AC-susceptibility (χAC) was measured in Ni100−xMnx alloys with x = 25, 20, and 30 after 

ZFC to 5 K from 300 K and measuring in small ac-fields of 1 Oe at 2.9, 29, 290, 590 and 601 Hz 

and 5 Oe at ~ 100 to 10,000 Hz using MPMS and PPMS, respectively for probing the possible 

spin-glass-like ordering observed in dc M(H,T) studies. The spin-freezing temperatures of the 

alloys were estimated from the temperature dependence of χAC. They agreed reasonably well in 

most cases with those found from the DC magnetization measurements. We found that improper 

thermal treatment (quenching) leads to irreproducible Tg/Tfg but TC is too robust to be affected 

by short-range order. 
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Fig. 3.10 Real part of ac-susceptibility χ (emu) vs. T between 10 and 300 K for x = 25 at several 

frequencies using MPMS. 
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Fig. 3.11   Fig. 3.10 on an expanded scale between 85 and 120 K for x = 25 for finding the 

frequency dependence of Tg. 

 

Ni75Mn25 is the most interesting as well as complicated composition because it is the 

MCP with three co-existing magnetic phases. Figure 3.10 shows the real part of ac-susceptibility 

χ (emu) vs. T for x = 25 at several frequencies. All of them have rounded maxima around 100 K; 

the lowest frequency has the highest χ which is rather obvious since at low frequencies clusters 

of all size respond to magnetic fields whereas at high frequencies only smaller clusters do. They 

converge to a non-zero χ(T)/χ(Tg) of ~ 0.1 as T → 0 K and are frequency independent above Tg. 

In canonical spin glasses, say, CuMn (4.4 at. %)
12

, χ(T)/χ(Tg) ~ 0.5 as T → 0 K. As shown in 

Fig. 3.10 which is actually Fig 3.10 on an expanded scale, there is an increase in Tg of ~ 3 K 

around 100 K with a 200-fold increase in frequency from 3 to 600 Hz. For canonical spin glasses 

Tg decreases with increasing frequency since the smaller clusters have lower freezing 

temperature.  Many of the above features in x = 25 are not typical in canonical spin glasses since 

after all, x = 25 and T ~ 100 K is the MCP where spin-glass, ferro-spin-glass, and ferromagnetic 

phase boundaries intersect. 



 

60 

 

Measuring χ (T) in ac-fields of 5 Oe between 10 and 300 K using the PPMS we get what 

is shown in Fig. 3.12. Here ΔTg ~ + 7 K around 100 K as ν changes from ~ 100 to 5000 Hz. 

 

 

 

 

 

 

 

 

Fig.3.12 Real part of ac-susceptibility χ (emu) vs. T for x = 25 at several frequencies between 

100 and 5000 Hz using PPMS. 

 

 

 

 

 

 

 

 

Fig.3.13 Imaginary part of ac-susceptibility χ (emu) vs. T for x = 25 at several frequencies 

using MPMS 
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Fig.3.14 Imaginary part of ac-susceptibility χ  (emu) vs. T for x = 25 at several frequencies 

between ~ 100 and 5000 Hz using PPMS. 

 

The imaginary part χ, the absorption part of the susceptibility is the Fourier transform of 

the two-spin correlation function which characterizes the dynamics of the magnetic system. χ  is 

expected to show some anomaly near the magnetic phase transitions. χ  extrapolates to ~ 50 %  

of its peak value as T → 0  in Cu-Mn and Ag-Mn spin glasses
12

  but in EuSrS, this extrapolates 

to zero as T → 0. Figures 3.13 and 3.14 show the imaginary part of ac-susceptibility χ (emu) vs. 

T for x = 25 at several frequencies, measured with an MPMS and a PPMS, respectively. The 

peaks are much sharper than those of χ. χ extrapolates to zero as T → 0 as in EuSrS. Also their 

magnitudes increase with ν as in many SG’s. χ shifts by ~ + 10 K from 80 K for ~ 3 to 600 Hz 

(MPMS) and + 14 K for  ~ 100 to 5000 Hz (PPMS). 
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 (ii)    x = 20 
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                                           (a)                                                            (b) 

Fig.3.15 (a) Real part of ac-susceptibility χ (emu) vs. T and (b) Imaginary part of ac-

susceptibility χ (emu) vs. T for x = 20 at 699 Hz, using MPMS. 

 

DC measurements in the alloy with x = 20 had indicated two transitions at Tfg = 60 K and 

TC = 270 K. Figure 3.15(a) shows in the real part χ of the susceptibility a shoulder at 30 K and a 

peak at 275 K whereas in Fig. 3.15(b) the imaginary part χ gives a very sharp peak at 20 K and 

another at 280 K. Both χ and χ extrapolate to ~ 25 % of their peak values as T → 0.  Whereas 

TC remains more or less the same in DC and ac-χ measurements, the contradiction in the value of 

Tfg forced us to probe ac χ and χ with PPMS and shown in Figs. 3.16 and 3.17, respectively. 
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Fig.3.16 Real part of ac-susceptibility χ (emu) vs. T for x = 20 between 100 and 5000 Hz using 

PPMS. 

 

 

 

 

 

 

 

 

Fig.3.17 Imaginary part of ac-susceptibility χ (emu) vs. T for x = 20 between 100 and 5000 Hz 

using PPMS. 

 

Here χ shows a shoulder at 29 K and a peak at 275 K whereas χ gives a very sharp peak 

at 22 K and another at 278 K. So, MPMS and PPMS give the same data even quantitatively. So 

we conclude that Tfg is possibly quite sensitive to quenching conditions and repeated the ac χ 

0 50 100 150 200 250 300
0.02

0.03

0.04

0.05

0.06

0.07

0.08

 

 


' (

em
u
)

T (K)

 97 Hz

T
g
 = 29 K

Tc = 275 K PPMS Ni
80

Mn
20

H
dc

 = 0 Oe

H
ac

 = 5 Oe

 497 Hz
 1001 Hz

 4997 Hz

0 50 100 150 200 250 300
0

2

4

6

8

 

 


" 

(1
0

-3
em

u
)

T (K)

 97 Hz

 497 Hz

 1001 Hz
Ni

80
Mn

20

H
dc

 = 0 Oe

H
ac

 = 5 Oe

 4997 Hz

T
g
 = 22 K

T
c

= 278 K

PPMS 



 

64 

 

measurements with a different piece of the same composition (x = 20) annealed for 48 hrs and 

quenched to room temperature from 1200
0 

C. Figure 3.18 plots χ  vs. T showing clearly the 

standard increase in Tfg with frequency and ∆Τfg  ~ 12 K (62  to 74 K) in the frequency range 

111-9997 Hz. This also confirms that Τfg ~ 60 K as found from DC measurements and more 

importantly the sensitivity of transition temperatures to annealing conditions.   

 

Fig.3.18 Plot of χ vs. T with a different piece of the same composition (x = 20) annealed for 48 

hrs and quenched to room temperature from 1200
0 

C and using a PPMS. It shows that Tfg 

increases with frequency. 

 

 (iii) x = 30 

The zero-DC field AC susceptibility of Ni70Mn30 was done with an AC drive field of 5 

Oe between 11 and 7111 Hz using PPMS. Figure 3.19 shows the imaginary part of ac-

susceptibility χ (emu) vs. T for x = 30 with different frequencies. From the temperature 

dependence of the in-phase (χ) (not shown here) and the out-of-phase (χ) we notice a steep rise 

around 18 K which is not too different from Tfg (29 K) found from the DC data. The cusp like 
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peak in χ and the dependence of the location of the cusp on frequency confirms the freezing 

temperature. χ increases with frequency as expected.  
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Fig.3.19 Imaginary part of ac-susceptibility χ (emu) vs. T for x = 30 with different frequencies 

using PPMS. 

 

3.4.4   Magnetic relaxation 

Thermoremanent magnetization is a thermally activated process. When the applied 

magnetic field is removed, the magnetization tries to approach the remanent magnetization in 

order to minimize the energy of the system. A magnetic field of 100 Oe was applied to the 

sample at 300 K and the sample was cooled down to the measuring temperature. After the 

temperature was stabilized, the magnetic field was set to zero and the magnetization vs. time 

M(t) measurements were started and continued for about 13000 s. Figure 3.20 plots the 

experimental time decay of normalized magnetization ln[M(t)/M(0)] for 0 < t < 10,000 s for 

Ni75Mn25 alloy at different temperatures. The magnetization shows anomalously slow relaxation 

as we approach and cross the glass-transition temperature. Around and below 70 K, although for 

long times (> 6000 s) ln[M(t )/M(0)] can be fitted to a straight line; its slope is so small that 

anomalously slow (power law or logarithmic) decay is suggested. 
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Fig.3.20 Time decay of magnetization for Ni75Mn25 alloy at different temperatures. The 

magnetization shows anomalously slow relaxation as we approach and cross the glass-transition 

temperature below 100 K where we can no longer fit the data to exponential decay functions. 

 

On the theoretical side, the magnetic pair energies J
QQ/ 

(R) are used to calculate the time-

dependent magnetic moment via a Landu-Lifshitz-Gilbert (LLG) equation of motion. This is an 

important tool to study the existence of the spin-glass phase. We have used an atomistic 

approach as proposed by Skubic et al.
15

 based on density functional theory, starts with the LLG 

equation. Figure 3.21 shows the behaviour of log[M(t)/M(0)] vs. t for the composition Ni75Mn25 

(MCP). The linear fits at small and asymptotic times indicate decays at two time scales: a fast 

decay initially, indicating decay to a local minimum in the energy landscape. At long times the 

system slowly relaxes toward the global minimum. Table 3.3 shows these decay rates associated 

with the two relaxation processes just described. This has been done for both the experimental 

data and the LLG results. We note that across the whole temperature range they agree rather well 

with exponential relaxations at high temperatures to an almost logarithmic relaxation at 10 K. 

This is a definite signature of the spin-glass phase. 
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Fig.3.21 LLG results for the time decay of magnetization for Ni75Mn25 at different temperatures. 

Here too the alloy magnetization shows anomalously slow relaxation as we approach and cross 

the glass-transition temperature below 100 K. This is to be compared with Fig. 3.20 

(experimental). 

 

 

Table 3.3 The decay rates for the initial fast decay and the subsequent decay to a global 

minimum [m(t)/m(0) = exp (-t/τ)] are shown for both the experimental data and LLG simulation 

results. The alloy shows freezing behavior at low temperatures. The asterisk (*) indicates that the 

fit is a straight line which is almost horizontal. 
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3.4.5 Experimental Phase Diagram  

 

Figure 3.22 depicts our magnetic phase diagram of disordered Ni1−xMnx alloys showing 

ferromagnetic (FM), ferro-spin-glass (FSG), conventional (canonical) spin-glass (SG), 

paramagnetic (PM), and antiferromagnetic (AFM) regions. The values of TC, Tfg, Tg, and TN are 

taken from Fig. 3.4 (H = 20 Oe). The lines joining the first three all meet at a point which is 

called the multicritical point (MCP; x = 25, T = 100 K). Beyond the MCP, at higher at. % of Mn, 

the spin-glass state directly goes to the paramagnetic state (up to 30 at. % Mn) or the 

antiferromagnetic state to the paramagnetic state (for 35 and 37 at.% Mn) with no intervening 

ferromagnetic phase. Beyond x = 25 till 30, Tg goes down; then at 35 there is a slight increase in 

the bifurcation temperature while M gradually decreases all the way (from ∼1 to 0.6 emu/g). 

However, according to the neutron diffraction work
16

 long-range antiferromagnetism does not set 

in for x = 30 but x = 35 at. % Mn is indeed antiferromagnetic but TN could not be found because 

of the weak Bragg peak and the temperature-dependent diffuse scattering. For x = 35, they found 

long-range antiferromagnetic order with TN anywhere between 90 and 360 K.  For lower values 

of x, below the multicritical point, the samples pass through two phases—ferromagnetic (FM) 

and re-entrant spin-glass or ferro-spin-glass. In re-entrant spin-glass (RSG or FSG) systems, with 

decreasing temperature one observes a paramagnetic-ferromagnetic transition at TC. Then at a 

lower temperature Tfg, spin-glass-like properties show up. In the phase diagram we get a critical 

concentration which is the point (x = 25) where TC and Tfg (100 K) come together. We further 

note that the value of Tfg increases and TC decreases with increasing x. The variation of Tg with 

Mn concentration is very interesting. Up to x = 30, it decreases linearly with increasing x, then 

we get TN in place of Tg signifying AFM order which increases with Mn concentration. The 

boundary between the re-entrant/ferro-spin-glass (FSG) and the canonical spin-glass (SG) phases 

is a vertical line which touches the multicritical point (x = 25). 
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         Fig.3.22 Experimental phase diagram (temperature vs. composition) of disordered  

                                                          Ni1-xMnx alloys.  

 

                                        

 

Fig.3.23 Magnetic phase diagram of disordered Ni1-xMnx alloys (x = 23-27) obtained by Kouvel 

et al.
3
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For comparison we show in Fig. 3.23 the magnetic phase diagram of disordered Ni1-xMnx 

alloys for x = 23-27 obtained in 1987 by Kouvel et al.
3
. In this narrower composition range, there 

is good qualitative agreement with the phase diagram of the present work, except that i) the MCP 

is at x = 24 instead of 25 at % Mn which  is not a big difference in view of the fact that the 

disordered state depends very much on the effective quenching of the alloys from  high 

temperatures and ii) the 2-phase (SG-PM) line from the MCP has a positive slope resulting in 

further increase of  Tg  till x = 24.5 and then a negative slope till x = 27. In contrast in the present 

work the 2-phase lines starting from the MCP (x = 25) has a positive slope on the ferromagnetic 

(FM) side and a negative slope on the antiferrromagnetic (AFM) side. On the Mn-poor side the 

two-phase (FM and FSG) line gives lower Tfg as Mn decreases and on the Mn-rich side the two-

phase (PM and SG) line gives lower Tg as Mn increases. This is most logical since the short-

range order or the autocorrelation function of the spin-glass state is gradually destroyed with the 

advent of long-range order of both kinds, FM and AFM. 

         The phase diagram that we obtained  from magnetization data shows an interesting 

concentration range (15  x  25) in which the system undergoes two magnetic transitions on 

lowering the temperature: from paramagnetism to ‘ferromagnetism’ and from ‘ferromagnetism’ 

to a spin-glass-like state. For (25  x  35), however, only paramagnetic to spin-glass-like 

transition is observed and x = 37 shows only one transition but that is from a paramagnetic to an 

antiferromagnetic state. Since the magnetic properties of quenched Ni-Mn alloys depend strongly 

on composition around 25 at. % Mn, it is essential to ensure an accurate determination of 

composition. So, we have taken EDAX (Energy dispersive X- ray analysis) of every sample and 

got satisfactory results as seen from Table 3.4. We find (inset of Fig. 3.2) that the lattice 



 

71 

 

parameter increases monotonically with x, the Mn concentration and shows no anomaly as the 

magnetic state widely changes from a mixed FM-SG-like state to an AFM one. 

 

 

Table 3.4.  EDAX Quantification 

 
Sample 

 

Element Wt. % 

Ni85Mn15 Ni 

Mn 

85.6 

14.4 

Ni80Mn20 Ni 

Mn 

81.4 

18.6 

Ni75Mn25 Ni 

Mn 

73.7 

26.3 

Ni70Mn30 Ni 

Mn 

69.2 

30.8 

Ni65Mn35 Ni 

Mn 

64.2 

35.8 

Ni63Mn37 Ni 

Mn 

63.2 

36.8 

 

 

3.5   Theoretical Analysis  

3.5.1   Electronic Structure 

 

Using a first-principles theoretical analysis we have obtained an accurate electronic 

structure of these alloy systems. This involves two steps: first a density-functional based 

derivation of the Hamiltonian “potential parameters” and structure matrix which describe the 

chemistry and crystallography of the alloys. Second, we need an accurate technique to deal with 

the disorder in the system and average over the disordered configurations. For the former we 

have chosen the tight-binding linear muffin-tin orbital (TB-LMTO) method
17

  and for the latter 

the augmented space recursion (ASR) formalism.
18

This formalism gives a prescription of how to 

obtain the configuration average of Green’s and response functions in a disordered system by 

downfolding onto a specific subspace of the configuration space. Details have been discussed in 
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detail in a monograph.
19  

This method goes beyond the single-site, mean-field coherent potential 

approximation (CPA) and three of the successful generalizations of the CPA are based on this 

theorem (traveling cluster CPA
20

, itinerant CPA
21

, and cluster CPA
22

). The configuration-

averaged Green’s function   )(  iEG
LRLR ii

  leads to the local density of states, the charge 

and magnetization densities, and the local magnetic moment per atom: 

           (3.1) 

 

Here Ri labels an atomic sphere around an ion core sitting at the site i, L are the angular 

momentum quantum numbers (l,m),  σ is the spin label, and AS is the atomic sphere |r − Ri | < 

r0. The interesting result that comes out of these calculations is the composition variation of the 

average local magnetic moment per atom. This is something we can compare with experiments 

and ascertain whether our electronic structure method is appropriate for further study. Figure 

3.24 shows this comparison to be satisfactory within the limits of our approximation and gives us 

confidence for the next step. 

 

 

 

 

       Fig.3.24 Experimental and theoretical magnetic moments as functions of composition. 
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3.5.2 Mean-field and Monte Carlo analysis of the random 

Heisenberg Model 

 

We have obtained a mean-field calculation of the critical temperatures and obtained the 

magnetic phase diagram in Fig. 3.25. If we compare this phase diagram with Fig. 3.22 we see 

that our mean-field-based calculation qualitatively yields phase boundary as a function of Mn 

concentration with a ferromagnetic phase for x < 15, an antiferromagnetic phase for x > 37, with 

glassy phases in between. Of course, it grossly overestimates critical temperatures, which is not 

surprising for a simple mean-field calculation and the shape of the paramagnetic-spin-glass 

boundary is rather crudely reproduced. 

 

We followed up the mean-field analysis with a Monte Carlo simulation using the Jij
QQ

’ 

calculated by us earlier. We note two points: First, the Monte Carlo had to be carried out in a 

chemically disordered alloy. This is because in the temperature range where the magnetic 

transition takes place, the alloy remains chemically disordered. To obtain a disordered unit cell, 

we first calculated the chemical exchange integrals based on a philosophy identical to the 

magnetic case: starting from a disordered background and embedding an AA, AB, or BB pair 

configuration before calculating the total energy differences. Having obtained these, we ran a 

Monte Carlo routine to obtain the disordered background. Finally, we turned on a Monte Carlo 

analysis of magnetic moments against the random atomic background. Second, Monte Carlo can 

give us information only across a para-ferro transition. The compositions were so chosen as to be 

in the region where we have a para to ferromagnetic transition: at compositions with x = 15, 20, 

25, 30, 35, and 37 at. %. Comparison between Figs. 3.25 and 3.22 shows that the Monte Carlo 

transition temperatures are now quite near the experimental values. 
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Fig.3.25 Top: Phase diagram based on a mean-field calculation. The critical temperatures are 

overestimated. Bottom: The same based on a Monte Carlo estimates. Now the critical 

temperatures and compositions are nearer to the experimental values. 

 

3.6   Conclusions  

We conclude from a detailed experimental magnetic study of several disordered Ni1−x 

Mnx alloys that the spin-glass-like state in these alloys below Tfg has a spontaneous (FM) 

moment. This moment decreases slowly with rising temperature and merges smoothly with the 

spontaneous moment of the FM state at the multicritical point (MCP) around 25 at. % Mn. The 

existence of the re-entrant SG phase, a canonical SG phase, and the onset of an antiferromagnetic 

phase around 37 at. % Mn is also confirmed. In brief, we found ferromagnetic LRO with re-

entrant spin-glass (RSG)/ferro-spin-glass (FSG) phase for  x ≤ 25, an antiferromagnetic LRO 
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around x ∼ 37, and a gradual change from a canonical spin-glass state to a long-range AF phase 

in the intermediate composition region. 

 

A first-principles density functional based theory predicts magnetization, as a function of 

composition, which is in good agreement with experiments. Since we believe that the spin-glass 

transition is a dynamic freezing of spin degrees of freedom, we studied magnetization relaxation 

using LLG formalism. We showed that in the composition range where experiments show spin-

glassy behaviour, we also see anomalously slow relaxation of magnetization. 
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CHAPTER IV 

 

Magneto-transport properties in disordered Ni-Mn alloys around 

the multicritical point 

 

4.1 Preamble  

 
   We present the results of detailed measurements of the temperature and field dependence 

of the electrical resistivity,  of disordered Ni100-xMnx alloys (x = 15, 20, 25, 30, 35, and 37) in 

the temperature range 5 ≤ T ≤ 350 K using the four-probe method. We find distinctly different 

behavior of (T)  below and above the multicritical point (MCP) x = 25 recently found by us 

through detailed magnetic measurements in the same set of samples. In the ferromagnetic/ferro-

spin-glass (x  25) phase, (T)  is dominated by large electron-phonon and electron-magnon s-d 

scattering while in the spin-glass/antiferromagnetic regime (x ≥ 25) resistivity minima show up 

due to larger disorder with resistivity ~ (150-185) cm.  Here (T) is dominated by e-e 

interaction ~ - √T and electron-phonon s-d  scattering. The magnetoresistance is negative below 

and positive above the MCP. 

 

4.2   Earlier studies  

 

The magnetic phase diagram of Ni-rich Ni1-xMnx (15  x  37) alloys around the 

multicritical point was established recently
1
. Now we have taken up the transport studies on the 

same set of alloys. Oftentimes, this is not the case and the interpretation of the resistivity data 

based on their magnetic state becomes less reliable, especially when one of the components (here 

Mn) has a much higher vapor pressure. In general, electrical transport properties of metallic 

alloys, whether amorphous or crystalline, have always attracted a lot of attention. In the present 

disordered Ni-Mn alloy system, frustration due to competing magnetic interactions leads to 

interesting macroscopic properties, both magnetic and transport. Often the spin-glass state is 
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sandwiched between long-range FM and AFM phases. Reentrant behavior has been found in a 

variety of disordered magnetic materials in which there is a coexistence of spin-glass and long-

range ferromagnetic ordering. On cooling, such materials often exhibit a transition from the 

paramagnetic (PM) to the ferromagnetic phase at the Curie temperature TC, and on further 

cooling a spin-glass-like phase appears at Tg when the spins become locally canted and in zero 

fields ferromagnetism along z-direction coexists with transverse freezing of spins in the X-Y 

plane. This is commonly known as the reentrant-spin-glass (RSG) or ferro-spin-glass (FSG) 

phase.  This interpretation is based on the transverse spin freezing approach of Mookerjee and 

Roy
2 

and Gabay and Toulouse
3
.  In the last few decades, a large number of attempts have been 

made both theoretically as well as experimentally, but a complete understanding of their 

electrical transport properties has not yet been achieved. To the best of our knowledge, hardly 

any attempt has been made yet in investigating electron transport properties in Ni-Mn alloys near 

the multicritical point. 

 

In transition metal alloys the electrical resistivity arises due to the scattering of 

conduction electrons by phonons and magnons, apart from the residual resistivity. In simple 

metals, the electron-phonon interaction is well described by Bloch-Grüneissen formula that 

considers intraband s-s electron-phonon scattering whereas in transition metals and their alloys, 

scattering involving s-d transitions, in addition to the above s-s term, has to be considered. 

Besides these, scattering of conduction electrons by localized as well as itinerant magnetic 

electrons (often called spin-disorder resistivity) has got an important role in transition metal 

alloys. 

 

4.3   Theory 

A theoretical calculation for the temperature dependence of resistivity in these 

polycrystalline materials is very difficult for various reasons. The absence of a proper band 

structure calculation poses the main hurdle. No theory has been developed clearly so far which 

can describe the band structure as well as the spin structure of these kinds of 3d transition-metal 

alloys. In concentrated disordered magnetic alloys, the electron transport is much more difficult 
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to understand because of the involvement of a large number of complicated scattering 

mechanisms. In 3d transition metals and alloys scattering of the conduction s electrons by 

phonons and their interaction with magnetic spin system (spin-disorder resistivity) are the main 

sources of the temperature dependence of the resistivity.   

 The measured resistivity in these alloys has contributions from different physical 

phenomena. If we assume the validity of Matthiessen’s rule, then the electrical resistivity has got 

contributions from static disorder, i.e., the residual resistivity (ρ0), the electron-phonon scattering 

(ρph), and the magnetic scattering (ρmag). Hence we can write 

)()()( 0 TTT magph                          (4.1) 

 In the strong scattering regime, near the Anderson localization, the Boltzmann formalism breaks 

down and so is the Matthiessen’s rule. This is one of the reasons for concentrating on the higher 

temperature region where we apply Eq. (4.1) above the resistivity minima, if present. To estimate 

the magnetic contribution to the resistivity from the measured ρ(T), we have subtracted the (ρ0 + 

ρph)  term  from the total resistivity  and assumed the validity of Matthiessen’s rule.  Taking the 

standard Bloch-Wilson formula
4
 for ρph in the case of transition metals and their alloys, the 

expression for ρ(T)  becomes  

          (4.2) 

where ρ0 and A are temperature-independent constants and θD  is the Debye temperature. 

Generally, both in ρph and ρmag, the scattering may take place within a single band (s-s) or may 

involve s-d transitions.  ρph (T) goes as T
3
 at low temperatures and as T above θD.  

  According to Rivier and Adkins
5
 for spin-glass systems ρmag ~ T

3/2 
below the freezing 

temperature (Tf) but Fisher
6
 
 
found a magnetic contribution of the form  BT

2
-CT

5/2
 below Tf with 

constants B and C > 0. He also concluded that the T
3/2

 variation is due to ferromagnetically 

ordered spins in a spin glass. Thus ρ(T) takes the following two different forms due to ρmag  

predicted by the above two theories: 
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    Based on the spin-wave dispersion relation Eq = Dq
2
, Kasuya

7 
had given the following 

expression for the spin-disorder resistivity for ferromagnetic metals:  

2
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


                                 (4.5) 

where Gs-d is a parameter which describes the strength of the s-d interaction, g is the Landé 

factor,  j is the total angular momentum quantum number of each magnetic atom, EF is the Fermi 

energy of the conduction electrons, D is the spin-wave stiffness constant, and  V and  N are the 

volume and the number of atoms in the crystal, respectively. A similar result was obtained using 

a slightly different method by Mannari
8
. He estimated ρmag for Ni and found excellent agreement 

with the measurements of White and Woods
9
  for the case of Fe, Co, and Ni [where ρ = (13-16) 

x 10
-6

 T
2
 Ω cm] in the low–temperature range. Therefore in ferromagnets, the resistivity of the 

system can be written as  

  2
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)( BTdz
ee
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

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


               (4.6) 

The resistance of an electrical conductor has been found to either increase (positive 

magnetoresistance) or decrease (negative magnetoresistance) in the presence of a magnetic field.  

Theoretical models of the positive and negative magnetoresistance relevant to the present work 

are briefly described below. 
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Normal magnetoresiatance: The normal positive magnetoresistance is inherent in all 

systems having free electrons. Theories based on the free-electron model lead to a zero 

magnetoresistance. A two-band model
10

 consisting of two overlapping bands of s and d electrons 

was therefore proposed. In this model the transverse magnetoresistance, in small magnetic fields 

H, is given by,  

2)(
2

1)(


 H

nen 


                 (4.7) 

 where 
n








 




 is called  the “normal magnetoresistance,” ρ being the electrical  resistivity in 

zero magnetic fields, n is the number of electrons per unit volume, and e is the electronic charge. 

The above expression is in fairly good agreement with the experimental results. 

Negative magnetoresistance: Béal-Monod and Weiner
11

 calculated the negative 

magnetoresistivity of dilute alloys containing transition-metal impurities and exhibiting Kondo 

resistance anomaly. Their calculations were based on a third-order perturbation expansion of the 

s-d exchange Hamiltonian. The calculation of the conduction-electron scattering amplitude, in 

the zero-field limit, yielded the famous Kondo logarithmic temperature dependence. The theory 

of Bẻal-Monod and Weiner is restricted to alloy systems in which the spins are isolated and 

hence the spin correlations of the magnetic impurities were ignored. 

 

4.4    Experimental details  

 

The Ni-Mn alloy preparation was described earlier in details in Chapter III, Section 3.3 

and structural properties in Section 3.4.1. A four-probe AC method was used for measuring the 

electrical resistivity in the temperature range 5-350 K using Quantum Design’s Physical Property 

Measurement System (PPMS-6500) with an 8 T superconducting magnet. The electrical contacts 

were spot welded to the sample. The sample current was ~ 100 mA at a frequency of 133 Hz. 

Data were taken at 1 K interval or less in the whole temperature region and at fixed fields till 8 
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T. A typical sample used for resistivity measurements has l (distance between voltage probes) = 

(0.134 ± 0.001) cm, b (breadth) = (0.246 ± 0.001) cm, and t (thickness) = (0.073 ± 0.001) cm. In 

this system the experimental resolution (∆R/R) of resistance is ~ 1 in 10
5
. However, the error in 

the resistivity due to uncertainties in the measurements of geometrical factors of the samples is ~ 

3 %. 

4.5 Results and discussion 

4.5.1 Magnetic phase of Ni-Mn alloys 
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Fig.4.1 Magnetic phase diagram (temperature vs. composition) of disordered Ni1-xMnx alloys (15 

 x  37). 

 

Extensive ac-susceptibility χ (T) and detailed DC magnetization measurements have been 

done under various field-cooling conditions to establish the magnetic phases of disordered Ni100-

xMnx system over a wide concentration range (15  x  37) encompassing the critical 

concentration (x ~ 25)
1
. The resulting magnetic phase diagram is presented in Fig. 4.1. For the 

samples below x = 25 at. % of Mn, we find a double transition, one from a paramagnetic to a 

ferromagnetic long range order (LRO) state at the Curie temperature TC and then another to a 
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ferro-spin-glass mixed phase at Tfg. Through the de Almeida-Thouless (AT) plot and the field-

independent points of inflection in M (T), we further establish the glass-transition temperature 

Tfg of the multicritical point (MCP) to be ~ 100 K for the alloy at x = 25. The values of the Curie 

temperature (TC) and the saturation magnetization are found to decrease with increasing Mn 

concentration and meet the ascending line of Tfg at the multicritical point. For the alloys with x = 

30 and 35, a conventional/canonical spin-glass along with short range antiferromagnetic state 

appears which gradually evolves to an antiferromagnetic state in the intermediate region of 

composition, and then an antiferromagnetic LRO around 37 at. %  Mn.  

 

4.5.2 General features of the experimentally observed )(T   

 

We are presenting in Fig. 4.2 high-resolution AC resistivity data for Ni100-xMnx (15 ≤ x ≤ 

37) alloys between 5 and 350 K. Distinct minima have been observed for all the alloys above the 

critical composition (x ~ 25) but none below it except for a kink around the freezing temperature. 

The resistivity curve of the multicritical composition neither gives minima nor any kink but a 

point of inflection around the multicritical point (T = 100 K). The values of resistivity at 5 and 

300 K, Tmin., temperature coefficient of resistivity, TCR [= ρ
-1

(dρ/dT)] at 100 K, DOM (Depth of 

minima), total change in resistivity Δρ (Δρ = ρ300K - ρmin., where ρmin. =  resistivity at Tmin.), and 

Δρ/ρ300K  are all calculated from the data and are given in Table 4.1 along with the relevant 

transition temperatures. The high values of the electrical resistivity at 5 K imply strong disorder 

in these alloys. We see that DOM and Δρ/ρ300K decreases whereas ρ increases as we move 

towards higher Mn concentration. 
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We see that Tmin is almost constant (33, 36, and 36 K) and DOM’s are about 0.2 % with 

no systematic dependence on the value of the resistivity. This is due to the fact that the variation 

in the resistivity with temperature in the present series is found to be small ~ 5 μΩcm, compared 

to that for concentrated CuMn alloys (say, Cu64Mn36) which also has spin-glass characteristics 

with antiferromagnetic short range order
12

 where it is about 10 μΩcm.  

 

Table 4.1: Mn concentration (x) dependence of magnetic transition temperatures (TC, Tfg, Tg, 

TN), resistivities ρ at 5 and 300 K, Tmin., TCR [ρ
-1

(dρ/dT)]    at 100 K, DOM, and Δρ/ρ300K  of γ-

Ni100-x Mnx ( 15 ≤ x ≥ 37) alloys. 

 

Alloy 

composition 

(x) 

Tc 

(K) 

Tfg / 

Tg/ 

TN 

(K) 

ρ5K 

μΩcm 

    

ρ300K 
μΩcm 

 

 

Tmin 

(K) 

TCR  

ρ
-1

(dρ/dT) 

(×10
-4

/K)  

 

Depth 

of 

minima 

(%) 

Δρ/ρ300K   
(%) 

15 311 37 86 147 -  - - 

20 270 60 101 133 -  - - 

25 100 100 128 148 -  - - 

30 - 29 144 147 33 1.5 0.20 2.0 

35 - 40 149 153 36 2.0 0.23 3.3 

37 - 237 183 188 36 2.5 0.22 3.1 
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Fig.4.2 Experimental ρ(T) plot of Ni100-xMnx alloys (a) x = 15, 20, and 25 (b) x = 30, 35, and 37, 

and (c) dρ/dT vs. T  for x = 35 and 37 (inset for x = 30), all from 5 to 350 K.   
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From the ρ(T) curves of Fig. 4.2, the following observations could be made: 

i) There are distinct signatures of magnetic transitions around their Tfg (for x = 15 and 20) and at 

Tfg/TC/Tg for x = 25. The ρ(T) data for alloys with x = 15 and 20 (Fig. 4.2(a)) show distinct kinks 

around 37 and 60 K, respectively. It is to be noted from Table 4.1 that the ferro-spin-glass 

transition temperatures Tfg of these alloy are 37 and 60 K, respectively which we had obtained 

from earlier magnetic measurements
1
. The variation of ρ(T) is quite linear with temperature 

beyond Tfg. For x = 25 (which is the multicritical composition) we get no kink but a point of 

inflection at Tfg = TC = Tg ~ 100 K indicating a change of phase. For x = 15, 20, and 25, the 

linearity in ρ(T) continues till 350 K (the highest temperature of measurements) indicating no 

saturation effects. The above notable discontinuities/point of inflection around the transition 

temperatures are closely connected to the magnetic transitions in these alloys. The scattering due 

to disorder decreases when the magnetic phase changes from the spin-glass state to the ordered 

ferromagnetic state.  The kinks around ferro-spin-glass transitions, showing a drop in the 

resistivity, indicate a large decrease in the spin-disorder scattering. This is also compatible with 

our dc magnetic measurements. According to the data in the literature
13

, it follows that the 

temperature dependence of the electrical resistivity for ferromagnetic alloys shows a 

discontinuity that corresponds approximately to their transition temperatures. Thus the magnetic 

phase transitions show up very nicely in electrical transport measurements as well. 

            (ii) The ρ(T) curves for x = 30, 35, 37 (Fig. 4.2(b)) start deviating from linearity (slower 

than linear) roughly beyond 100 K (≈ D/3). This behavior manifests itself in the d/dT vs. T 

plots as well (Fig. 4.2(c)).  

         (iii) From Figs. 4.2(a) and 4.2(b), it can be seen that Δρ/ρ300K at 5 K increases with x as 

expected. 
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(iv) To get an overall view of the temperature dependence of the resistivity, the temperature 

derivative d/dT has been found from Tmin (~ 36 K) to 350 K. There are two changes in slope in 

d/dT curves for the alloys with x = 30 (inset of Fig. 4.2 (c)) and 35 (Fig. 4.2 (c)), one at 66 and 

88 K and another at 320 and 324 K, respectively. However, for x = 37, we have three changes in 

slope at 106, 200, and 300 K, respectively as shown in Fig. 4.2 (c). The lower temperature 

change of slope indicates that changes from a non-linear (actually quadratic which is a 

transition region between T
3
 and T in Bloch-Wilson formula

4
 for ρph as analyzed below to a 

linear (electron-phonon scattering) variation with T. The second change of slope at higher 

temperatures where it drastically reduces with T is an indication for a tendency for the electrical 

resistivity to saturate (slower than linear in T). This is often observed in high resistivity alloys
14

 

with   150 cm where thermal and compositional disorders become equally important for 

resistivity saturation. The temperature coefficient of resistivity TCR (= 
-1

d/dT) for the alloys 

with x = 30, 35, and 37 are, respectively (0.59, 0.11, and 0.09) x 10
-4

/K. These are comparable 

with the extrapolated values of TCR of Fig. 4 of reference 12 for FeNiCr alloys of similar values 

of Most likely, the additional change of slope for x = 37 is just an  indication of resistivity 

saturation as early as 200 K.  

 

4.5.3. Analysis of the )(T  data for samples with x=30, 35, and 37  

(a) ρ(T) below Tmin/2  

   

  This region covers the resistivity well below the minima at Tmin. The low temperature 

resistivity minima is generally explained in terms of Kondo effect where ρ(T) is given by 

                                         ρ(T) = ρ0 – m ln (T).                                                      (4.8) 

The Kondo minima have some salient features as: 
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i) The minima disappear in the presence of magnetic fields, ii) Usually these minima appear in 

very  dilute, low resistive alloys, and iii) Tmin depends on the impurity concentration and the 

magnetic state of the alloys. 

However, our disordered Ni-Mn alloys satisfy none of the above three criteria since the minima 

do not disappear in magnetic fields, all the three alloys are highly resistive (~140-180 μΩcm), and 

Tmin (~ 36 K) does not depend on the concentration of Mn as well their magnetic state (spin-glass 

or antiferromagnetic). So, Kondo effect could be easily ruled out here. Hence to interpret the 

minima in these disordered alloys we use the theory of Altshuler and Aranov
15 

 wherein electron-

electron interaction effects in the presence of weak localization can explain the increase in 

resistivity with decreasing temperature for T << Tmin.. The basic idea behind this theory is that 

electrons in disordered alloys (where electron mean free path is of the order of interatomic 

distance) do not follow the classical Boltzmann trajectories. More likely, they diffuse from site to 

site with multiple elastic scattering. This leads to a phase coherence between the electron’s 

counter-propagating partial waves which, in turn, enhances the probability for an electron to 

return to its starting point. Thus the electrons get localized and the resistivity increases. Now, this 

phase coherence could be destroyed by inelastic scattering, magnetic fields, and electron-electron 

(e-e) interaction effects and thus the additional resistivity reduces. The electrical conductivity due 

to e-e interaction is given by Lee and Ramakrishnan
16

 as 

           σ(T) = σ0 + mσ √T,                     (4.9) 

where mσ contains  the screening constant for Coulomb interaction Fσ and the diffusion constant 

D. Equation (4.9) in terms of resistivity can be written as 

                                 ρ(T) = ρ0 + mρ√T,                     (4.10)  

where it is assumed that that  mσρ0√T << 1 and mρ = - mσρ0
2
. 
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Fig.4.3 For the alloy with x = 35 (a) the residuals vs. temperature for fitting the data to T
1/2 

and ln 

(T)  and (b) resistivity data (shown every 1 K only) along with  the best fit to T
1/2

, in the 

temperature range 5-15 K. 

 

Fig. 4.3(b) is a plot of the resistivity data along with the best-fit to T
1/2 

from 5 to 15 K 

although we have fitted our data to both Eqs. (4.8) and (4.10). They show two distinct features. 

Firstly, the values of the normalized 

 for the fits to Eq. (4.8) (~ 10

-8
) are found to be an order of 

magnitude higher than that to Eq. (4.10) (~ 10
-9

), the experimental resolution being 1 part in 10
5
. 

Secondly, the plot of (ρRaw-ρFit)/ρFit  vs. temperature for the T
1/2 

fit is found to be random whereas 

that for the ln (T) fit shows a systematic trend. A typical plot of the temperature dependence of 

the residuals is shown for the alloy with x = 35 in Fig. 4.3(a). It is clearly seen that in this region 

ρ(T) data are much better described by the T
1/2

 dependence (correlation coefficients better than 

0.999).  
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The values of mρ, the coefficient of the √T term, are found in the range - (8-13)×10
-

2
μΩcmK

-1/2
 and are of the same order - (8-15)×10

-2
μΩcmK

-1/2
  as found in Cu100-xMnx (x = 60, 

73, 76, and 83) alloys showing similar resistivity minima
17

.  

Again, as shown in Fig. 4.4, the data for x = 37 between 5 and 15 K (well below Tmin = 

36 K) also give an excellent fit to Eq. (4.10), i.e., ρ(T) ~ -√T  with a correlation coefficient of 

0.9996 and a normalized 

 of ~ 10

-9
. Thus the √T dependence of resistivity strongly establishes 

the electron-electron interaction effects in this temperature region. Table 4.2 gives the values of 

the best-fitted parameters and the corresponding values of 

for both the fits (-√T and – ln (T)). 

4 6 8 10 12 14 16

1.8270

1.8275

1.8280

1.8285

1.8290


 (

1
0

-4
 

 c
m

)

T(K)

x = 37

 

 

Fig.4.4 Resistivity vs. temperature data (5 – 15 K, well below minimum of 36 K) for the alloy 

with x = 37 in zero fields and the best fit to ρ(T) = ρ0 + mρ√T.  
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Table 4.2: Sample composition, values of the best-fitted parameters, and the corresponding χ
2 

for 

both the fits to Eqs. (4.10) and (4.8) from 5 to 15 K. 

 

     Ni 100-x Mnx 

           x at. % 

ρ(T) = ρ0 + mρ√T ρ(T) = ρ0 ─ mlnT 

ρ0 (µΩcm) mρ (µΩcm 

K
-1/2) 10

-2
 

χ
 2 

10
-9

 

ρ0 

(µΩcm) 

m (µΩcm 

K
-1/2) 10

-2
 

χ
2 

10
-8

 

30 140 -08 2.3 140 20 4.3 

35 149 -10 3.2 150 33 4.7 

37 180 -13 2.6 180 17 4.5 

 

(b) Tmin /2 ≤ ρ (T) ≤ 2Tmin 

 

In this temperature range we have e-e interaction effects as well as different inelastic and 

magnetic scattering processes competing to give rise to the resistivity minima. For these 

compositions, the alloys pass from a spin-glass to an antiferromagnetic phase. Hence some 

magnetic contribution is expected. Besides this, the usual electron-phonon scattering will have 

their low-temperature contribution to the resistivity. We have satisfactorily fitted our data taking 

Bloch-Wilson formula
4
 for ρph as given by the second term of Eq. (4.2) and the e-e interaction 

effects given by Eq. (4.10).  The coefficients of the interaction term (mρ) lies in the range (13 – 

16) x 10
-2

 μΩcmK
-1/2

 (x = 30, 35, and 37) in the temperature range 16-64 K and the calculated 

values of mσ [mρ = - mσρ0
2
]   are 62, 65, and 49 (ΩcmK

1/2)
-1 

for x = 30, 35, and 37 respectively. 

These are almost an order of magnitude larger than the near-universal value of 6 (ΩcmK
1/2)

-1
. 

However, somewhat similar values were also found in an earlier study
18

. The coefficient of the 

low-temperature phonon term is of the order of 10 μΩcm in agreement with another similar 

system
12 

Cu100-xMnx. However, if the resistivity minima were due to Kondo effect, we tried that 

fit as well by replacing Eq. (4.10) by Eq. (4.8) but the fits are much inferior providing further 
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evidence in favor of e-e interaction effects as the most probable mechanism for the occurrence of 

resistivity minima. The value of normalized χ
2
 is of the order of 910 which is consistent with our 

experimental resolution of ∆R/R ~ 10
-5

. All the fitting parameters, temperature range of the 

above fits, and the values of χ
2 

are given in Table 4.3. Here we observe that with increase in Mn 

concentration the residual resistivity increases ((145-183) μΩcm) but the Debye temperature has 

no systematic dependence on concentration. Figure 4.5 shows the data along with the best-fitted 

graph of ρ(T) to ρ0 + ρph + mρ√T for x = 35 in the temperature range 16-64 K. The high resolution 

of the data makes the depth of minimum (only ~ 0.2 %) so prominent. 
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Fig.4.5 The data along with the best fit of ρ(T) to ρ0 + ρph + mρ√T are shown
  
for x = 35 in the 

temperature range 16-64 K.  
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Table 4.3:  Composition, range of fit, best-fitted parameters ρ0, D, A, and mρ and χ
2 

for fits to ρ0 + ρph + mρ√T. 

 

% of 

Mn 

(x) 

 

Fit 

range 

(K) 

 

ρ0 

(µΩcm) 

 

Debye 

Temp 

D 

(K) 

 

 

A 

 

(µΩcm) 

 

mρ 

(µΩcm 

K
-1/2) 10

-2 
 

 

mρ/ρ0
2 

 

(ΩcmK
1/2)

-1 

 

 

 

   χ
2 

 

30 

 

 

16-64 

 

145 

 

352 

 

08 

 

-13.0 

 

62 

 

2.7E-9 

 

35 

 

 

16-64 

 

149 

 

304 

 

14 

 

-14.6 

 

65 

 

1.4E-9 

 

37 

 

 

16-64 

 

183 

 

340 

 

21 

 

-16.4 

 

49 

 

1.5E-9 

 

 

 (c) Resistivity well above the minima (ρ(T) ≥ 65 K) 

 

The two features, namely the shape of ρ(T)  curve and the occurrence of maxima in 

dρ/dT, give indications of possible magnetic contributions to the electrical resistivity. In this 

temperature range of 65-300 K, the linear temperature dependence is ascribed to the high 

temperature electron-phonon scattering for x = 30 and 35 where ρ(T) = ρ0 + ρph. The presence of 

only the phonon term in the resistivity in this range (65-300 K) is quite reasonable because Tg and 

TN are only around 30-40 K. One does not expect magnetic contribution in this range of 

temperature. Very good fits of the resistivity data of alloys with x = 30 and 35 have been 

obtained. But for the alloy x = 37, we expect magnetic contributions along with that of phonons 



 

94 

 

because NT ~ 240 K. Masharov
19

, considering scattering of conduction electrons by both localized 

and itinerant electrons, found that ρantiferro(T) = B1
2T  with B1 of the order of 10

-5
µΩcmK

-2
. The 

Debye temperature (θD) for these alloys is around ~ 340 K and the mean temperature of this range 

of 65-300 K is ~ θD/2. Hence, ρ(T)  can be written as ρ0 + ρph + B1
2T , where  B1 is as defined 

above. Fitting the data for x = 37 is found to be very satisfactory with normalized mean-squared 

deviation χ
2 

consistent with the experimental accuracy. We have defined normalized χ
2
   as  

                                        

where N is the number of data points, ρmeasured , ρfitted, and ρmean  are the measured, fitted, and the 

mean of the measured values of the resistivity, respectively. The values of the parameters and χ
2 

along with their range of fits are given in Table 4.4. The coefficient of the T
2
 term (B1) comes 

out of the same order as that of the theoretical prediction
19

 of 10
-5 

μΩcmK
-2

. However, no such 

magnetic contributions (~T
2
) was found for x = 30 and 35.  

 Figures 4.6 (a), (b), and (c) show the best-fitted graphs of ρ (T) to ρ0 + ρph  or ρ0 + ρph + B1T
2
, for 

x = 30, 35, and 37, respectively in the temperature range 65-300 K. 
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Fig. 4.6 (a), (b), and (c) The data along with the best fits of ρ (T) to ρ0 + ρph  for x = 30 and 35 

and to  ρ0 + ρph + B1T
2
, for x =37, respectively in the temperature range 65-300 K. 

 

Table 4.4: Composition, fit functions, range of fit, best-fitted parameters A, B1, and the values of 

the normalized χ
2
.  

 

% 

of 

Mn 

(x) 

 

Fit function 

 

Fit 

range 

(K) 

 

A 

Coefficient 

of phonon 

term 

 (μ cm
 
) 

 

 

B1 

 

(μΩcmK
-2

)10
-6 

    

 

χ
2 

(10
-9

) 

 

30 

 

ρ(T) = ρ0 + ρph   

65-350 

 

 11 

 

- 

 

2.9 

 

35 

 

ρ(T) = ρ0 + ρph  

65-350 

 

11 

 

- 

 

3.7 

 

37  

 

ρ(T) = ρ0 + ρph + B1T
2
 

 

65-350 

 

 

9 

 

11 

 

2.5 
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4.5.4. Analysis of )(T  data for samples with x = 15, 20, and 25   

(a) T < Tfg 

Due to exchange interaction between the host conduction electrons and the spins of the 

magnetic impurities, the resistivity of spin glasses at low temperatures (T < Tfg) varies as A+BT
2
-

CT
5/2

 with all positive coefficients
6
. The coefficient B signifies the ferromagnetic contribution 

whereas the last term (CT
5/2

) is due to coexisting spin-glass character. Figure 4.7 shows ρ (T) 

data along with the best-fitted graphs to ρ(T) = A+BT
2
-CT

5/2
 for the three samples with x = 15, 

20, and 25 below Tfg.  Composition, best-fitted parameters A, B, C, and the values of normalized 

χ
2
 and correlation coefficient R

2
 are given in Table 4.5. Here we find that the values of both the 

coefficients B and C decrease with increasing concentration of Mn. However, the overall change 

in resistivity is ~ 5-10 % for 25-50 K change of temperature with no systematic composition 

dependence. 
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Fig. 4.7 ρ (T) data along with the best fit to Eq. ρ(T)=A+BT
2
-CT

5/2
 for the three samples with x 

= 15, 20, and 25 below Tfg.  
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Table 4.5: Composition, best-fitted parameters A, B, C, and the values of  normalized
2 and 

correlation coefficient R
2
. 

 

Mn % A 

(μΩcm) 

Bx10
-5 

(μΩcmK
-2

) 

Cx10
-5 

(μΩcmK
-2.5

) 

χ2 R
2 

 

15 

 

0.5506±0.0002 

 

12±0.5 

 

1±0.1 

 

9.33E-8 

 

0.9993 

 

20 

 

0.7310±0.0002 

 

4.0±0.2 

 

0.43±0.01 

 

1.69E-7 

 

0.9982 

 

25 

 

0.8600±0.0001 

 

1.0±0.1 

 

 

0.12±0.01 

 

2.93E-8 

 

0.9988 

 

 

(b) T well above Tfg 

From Table 4.1 we see that these samples are all ferromagnetic with co-existing ferro-

spin-glass mixed phase. In Fig. 4.2(a) we have already shown their resistivity vs. temperature 

plots in zero fields. The electrical resistivity in these alloys has contributions from static disorder, 

electron-phonon scattering, and magnetic scattering and is given in theory by Eq. (4.1), where 

ρmag (T) = BT
2
 for s-s scattering and ρmag (s-d) has no tractable T-dependence

13
.  Figure 4.8 

shows the data along with the best fits to Eq. (4.1) for the three samples. All the fitting 

parameters and the fit characteristics are given in Table 4.6.  
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Fig.4.8 ρ (T) data along with the best fits to Eq. (4.1) for the three samples with x = 15, 20, and 

25.  

 

Table 4.6: Composition, fit functions, range of fit, best-fitted parameters ρ0, D, A, B, and the 

values of correlation coefficient R
2
 and normalized χ

2
. 

 

 

% of 

Mn 

(x) 

 

Fit function 

 

Fit range 

(K) 

 

ρ0 

(µΩ 

cm) 

 

Debye 

Temp. 

   D  

 ( K) 

 

 

A 

(μcm )  

 

B 

(µΩcmK
-2

) 
610  

 

R
2 

 

   χ
2 

910  

 

15 

 

 
ρ(T) = ρ0 + ρph + 

BT
2
 

 

 

65-300 

 

86 

 

485 

 

83 

 

64 

 

0.99973 

 

42 

 

20 

 

 
ρ(T) = ρ0 + ρph + 

BT
2
 

 

 

80-300 

 

98 

 

346 

 

54 

 

34 

 

0.99973 

 

4.6 

 

 

25 

 

 

ρ(T) = ρ0 + 

ρph  

 

150-300 

 

128 

  

226 

 

40 

 

- 

 

0.99952 

 

0.14 
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 It is seen from Table 4.6 that for the two ferro-spin-glass alloys (x = 15 and 20), ρ(T) has 

some magnetic contributions as well but for the one at the MCP (x = 25) we have found none. 

Also, B, the magnetic scattering strength (s-d scattering at higher temperatures), decreases with 

x, i.e., ferromagnetism is gradually weakening with increasing Mn. Moreover, the fit has become 

significantly better for x = 25 since the latter, above 100 K, has contributions only from phonons.  

 

The most interesting conclusion is that the strength of the electron-phonon interaction, A 

(Tables 4.4 & 4.6) decreases from 83 to 9 μcm as the Mn content increases. Correspondingly 

[ρ (~ 340 K) - ρ (~ 65 K)]/ρ (~ 65 K), a measure of the electron-phonon scattering above 65 K 

also decreases from 54 to 3 %.   

 

 4.6  Magnetoresistance 
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Fig.4.9  Resistivity vs. applied magnetic fields for sample with x = 37 at 5 K and up to 50 kOe.  
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Figure 4.9 is a plot of the resistivity vs. applied magnetic fields for sample with x = 37 at 

5 K (well below the resistivity minimum) and up to 50 kOe. We observe a positive transverse 

MR varying much faster than B
2
, more like B

4
 and ~ 0.36 % at 50 kOe. This positive MR 

provides further evidence for the electron-electron interaction effects at the lowest temperatures 

using which we interpreted the resistivity minima data. The other two samples also having 

resistivity minima, x = 35 and 30, show positive MR ~ B
n
 with n ~ 3.5 and 3, respectively with 

MR ~ 0.27 and 0.17 %.  

The butterfly-kind of structure in MR vs. H at low fields, viz., first a positive MR till ~ 1 

kOe (< 0.01 %), then a negative MR till 5 kOe (magnitude < 0.03 %), and finally a sizable 

positive MR at high fields, has also been observed for the other two samples as well (x = 30, 35; 

plots not shown). But this low-field(< 5 kOe) butterfly-kind of structure of the MR is not very 

clear. However, this could be due to the low-field positive MR predicted for antiferromagnets by 

Yamada and Takada
20

. They argue that when the magnetic field is parallel to the sublattice 

magnetization it might reduce spin fluctuations in one sublattice and enhance it in the other, the 

sum total producing a positive MR. When the magnetic field is normal to the sublattice 

magnetization, the MR is zero. So for polycrystalline samples like the present ones, as the field 

increases, the MR could change from positive to zero and then finally to negative. To 

summarize, all the samples above the critical composition (x = 25) have a positive MR as 

expected in polycrystalline metallic antiferromagnetic systems
21

 showing evidence of e-e 

interaction. 
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Fig. 4.10 (a) - (c) Plots of resistivity vs. magnetic fields at 5 K for alloys with x = 15, 20, and 25.  



 

102 

 

There is a distinct difference in the behavior of MR above and below the MCP (x = 25). 

It is positive above and negative below. All the alloys (x = 15, 20, and 25) exhibit a negative 

transverse magnetoresistance (MR) in the temperature range of measurement (5 – 300 K) and 

shown in Fig. 4.10 (a)-(c) at 5 K. The magnitude of the MR decreases with increasing Mn 

concentration, say at 5 K and 80 kOe, it is 3.0 % for Ni85Mn15, 2.3 % for Ni85Mn15, and 1.25 % 

for Ni75Mn25. Figure 4.10(a) shows that there is a sharp low-field negative MR at 5 K for x = 15 

(TC ~ 310 K) till about 5 kOe (~ saturation field of pure Ni) due the ferromagnetic anisotropy of 

resistance (FAR) (from spin-orbit interaction in ferromagnets). The negative MR beyond 5 kOe 

varies almost linearly with H till the highest fields. The physics behind this negative MR is due 

to less electron-magnon scattering at higher fields since some magnons are quenched by the 

Zeeman term in the magnon dispersion relation. At 300 K, the initial drop in TMR at 5 K due to 

FAR almost disappears because 300 K is just below its TC. For x = 20, 300 K is above its TC of 

270 K and the initial drop at 5 K disappears completely. For x = 25 (TC ~ 100 K), the negative 

TMR of 1.25 % at 5 K understandably disappears (< 0.1 %) at 300 K since there are no magnons 

anyway for T >> TC. 

 

4.7 Conclusions 

 
 

The interpretation of the electrical transport and the magnetic phases complement each 

other to a large extent. It is seen from the temperature dependence of resistivity that ρ(T) exhibits 

distinctly different behavior below and above the multi-critical point (MCP) x = 25.  

i) In the SG/AFM regime (x  25) resistivity minima show up due to larger disorder with 

resistivity ~ (145-180) μΩcm. Here ρ(T) is analyzed in terms of electron-electron interaction 
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effects (~ - C√T ) and electron-phonon s-d scattering. The minima are ascribed to electron-

electron interactions. The value of the coefficient C is similar to those found in systems showing 

resistivity minima due to quantum interference effects. 

ii) In the FM/FSG (x  25) phase (T) is dominated by spin-glass contributions at low 

temperatures and large electron-phonon and electron-magnon s-d scattering at higher 

temperatures. The magnetic term B (s-d) ~ 50 µΩcmK
-2 is 3 times as large as that of pure Ni (13-

16) µΩcmK
-2

. This is not surprising since the magnetic contribution in Ni is from s-s electron-

magnon scattering for T < 10 K whereas our range of fit was typically 70-300 K where s-d 

electron-magnon scattering is much more dominant. 

iii)  Finally, the MR of the alloys with x  25 is negative whereas those for x  25 are positive. 

They are governed by different mechanisms.  
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  CHAPTER V 

Probing exotic magnetic phases and critical behavior of Ni-rich 

γ-NiFeCr alloys 

 

5.1   Preamble  

A systematic study has been done to determine the magnetic properties as well as the critical 

exponents of a set of Cr-rich γ-NiFeCr alloys. The Curie temperature and the spontaneous 

magnetization decrease rapidly with increasing Cr and decreasing Fe concentration. The static 

critical exponents and the amplitudes, related to the transition near the Curie temperature, are 

obtained through detailed DC-magnetization and AC-susceptibility measurements. The values 

depart significantly from the 3D-Heisenberg model and those of pure Ni due to competing pair 

interactions in the system. 

5.2.    Motivation  

 

The 3d transition metal alloys like NiFeCr are of great importance due to a variety of 

physical properties and consequent applications. These alloys, which are extremely sensitive to 

the concentration of magnetic components present, show complex magnetic behavior. These are 

very prospective materials for use in nuclear fusion reactors due to high corrosion resistance and 

potentially small radiating swelling. These can also be used as buffer layers in high-density 

magnetic storage devices. The complex magnetic properties can be understood by 

antiferromagnetic exchange interaction between Cr atoms from which a competition arises 
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between ferromagnetic and antiferromagnetic exchange interactions. These competing exchange 

interactions exhibit long-range ferromagnetic/antiferromagnetic order as well as spin-glass-like 

ordering depending on the concentration of magnetic components present in the system. 

Magnetic NiFeCr  ternary alloys having competing exchange interactions  is one of such systems 

which shows diverse magnetic phases within the same crystallographic phase and  is extremely 

sensitive to the concentration of Cr. This can be explained by strong competing ferromagnetic 

[I(Ni-Ni), I(Fe-Ni), I(Ni-Cr), I(Fe-Cr)] and antiferromagnetic [I(Fe-Fe), I(Cr-Cr)] exchange 

interactions. These conflicting pair interactions exhibit different kinds of exotic magnetic phases 

like spin glass, ferromagnetic, antiferromagnetic, etc. and compositional phase transition from 

long-range FM (Ni74Fe6Cr20) to long-range antiferromagnetic one, passing through intermediate 

phases of SG and RSG with decreasing Fe and increasing Cr concentration. This stimulates us to 

develop new experimental and theoretical analysis to investigate this system more accurately. 

However, a large number of work on this system  have been done both experimentally as well as 

theoretically but still not much on  with high concentration of Cr (18-23%). 

 

5.3 Experiment  

               The Ni100-x-yFexCry alloys (x = 1~6, y = 18~23) were prepared by arc melting the 

constituents under    argon atmosphere. The purities of the starting materials were of 99.999% 

obtained from M/s Johnson Matthey Inc., England. Each sample was encapsulated in an 

evacuated quartz ampule, annealed at 1150 
o
C for 100 h. A subsequent fast quench into oil was 

performed as a step to prevent any possible chemical clustering and to preserve their high-

temperature -phase (FCC) and also the random substitutional disorder. After cold rolling, the 
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homogenized alloys in bulk form were cut to various sizes and annealed at 900 
o
C for 24 h in 

argon atmosphere to reduce strains due to cold work and finally they were quenched in brine. 

The typical compositions of the alloys are 73-80 at. % Ni, 1-6 at. %  Fe, and 18-23 at. % Cr.  All 

the samples were characterized through the X-ray diffraction (XRD) method to investigate the 

possible presence of any second phase (say, bcc) apart from fcc -phase. The diffraction patterns 

reveal that all the alloys have single-phase f.c.c structure, with lattice parameter a = (3.54±0.01) 

Å. There is a very small change in lattice constant with concentration. Energy dispersive X-ray 

analysis (EDXA) technique has been used to check the variations in the homogeneity of the 

alloys and found the compositions within 0.5 % in all the three constituents. This is quite 

acceptable. Magnetization measurements were performed using a MPMS Quantum Design 

SQUID magnetometer operating in the RSO mode. The magnetization M was recorded as a 

function of temperature at fixed applied magnetic fields according to the zero filed cooling 

(ZFC) and field cooling (FC) prescriptions. Measurements of M versus H at fixed temperatures 

were also done. In order to minimize the demagnetization effects, the field was always kept 

parallel to the sample. The temperature dependent real and imaginary parts of the AC 

susceptibility were measured from 4 K to 300 K in the frequency range 1-1000 Hz with a 

Quantum Design PPMS. The amplitude of the exciting AC field was kept fixed to 5 Oe. No 

external DC field was applied in these measurements. 
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5.4   Results and Discussions  

5.4.1  Lattice parameter  

The X-ray diffraction of the samples was done using a Philips XRD machine (X'Pert 

PRO Diffractometer) with a Guinier  type camera employing a focusing geometry and a solid-

state detector. The radiation used was Cu K1. The chemical composition of the alloys was 

determined using standard analytical methods like energy-dispersive X-ray analysis (EDAX). 

XRD measurements revealed that all the alloys are of single f.c.c phase. The measured lattice 

constants differ by only ~ 2.5 % from that of pure nickel. A typical lattice constant for 

Ni79Fe1Cr20 alloy is a = (3.54±0.01) Å. A typical XRD pattern for Ni79Fe1Cr20 is shown in Fig. 

5.1. However, the value of ‘a’ did not differ much for other samples. 

30 40 50 60 70 80 90 100

0

500

1000

1500

2000

2500

R
e

la
ti

v
e

 I
n

te
n

s
it

y
 (

 a
rb

. 
u

n
it

 )

2

(111) (200)

(220)

(311)

 

Fig.5.1 XRD pattern of Ni79Fe1Cr20 alloy. 
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5.4.2. Ternary composition diagram 

Figure 5.2 shows the ternary composition diagram of the Ni100-xFexCry alloys. The 

magnetic phases at 10 K, obtained from the magnetic measurements detailed below from sub-

sections 5.4.3 and beyond, are also indicated in the diagram. We find that at 10K Ni79Fe1Cr20 and 

Ni76Fe2Cr22 are AFM’s, Ni80Fe2Cr18, Ni77Fe5Cr18, and Ni73Fe4Cr23 are FM’s, Ni74Fe6Cr20 is a SG 

and Ni74Fe4Cr20 is a paramagnet. 
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Fig.5.2 Ternary  composition diagram of Ni-rich  γ-NiFeCr alloys. Their magnetic phases at 10 

K are also indicated. 1. Ni80Fe2Cr18, 2. Ni77Fe5Cr18, 3. Ni79Fe1Cr20, 4. Ni76Fe4Cr20, 5. 

Ni74Fe6Cr20,  6. Ni76Fe2Cr22,  7.  Ni73Fe4Cr23. Also shown are the theoretical and experimental s 

~  Hs ~ 0 lines. 

 

In Fig. 5.2, the solid line represents the coefficient of linear magnetostriction (λS) ~ 0 and 

Hall conductivity (γHs) ~ 0 which are theoretically predicted while the line with considerable 

curvature is the experimentally established  γHs ~ 0 line at 10 K and it lies much below from the 
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theory one. We observe that γHs is negative for all the seven samples taken here and its negativity 

increases with increasing Cr concentration (18-23%). The sign of γHs is determined by the 

dominating carriers in different sub-bands and their spins and it should be negative for the 

present ferromagnetic samples
1
. It is to be noted that the total orbital angular momentum and 

hence λS and γHs change sign at the composition where Fermi level crosses the point of 

intersection of the spin-down bands of Ni and Fe. 

 

 

5.4.3 DC- magnetization  

The DC magnetization yields the transition temperatures (TC/Tfg/TN) for all the alloys. 

Figure 5.3(a) shows a representative M versus T measurement for the alloy Ni73Fe4Cr23 

measured at H = 30, 50, 100, and 200 Oe. A clear ZFC-FC splitting occurs at low temperatures 

as expected for a re-entrant system. This splitting is associated with canting temperature Tfg. In 

Fig. 5.3 (b) an H-T phase diagram, derived from our data, is shown. The temperatures Tfg were 

obtained from the points where the ZFC and FC curves split and the Curie temperatures TC(H) 

were estimated from the first derivative of M(T) graphs. This diagram illustrates the peculiarities 

of the different magnetic phases. When the temperature is decreased, a transition occurs from the 

paramagnetic state to a ferromagnetic phase where the order parameter is the spontaneous 

magnetization. Upon further decreasing the temperature, the system enters into a spin-glass-like 

state below Tfg(H) where effects of disorder and frustration play a major role, as revealed by the 

ZFC-FC irreversibility in the magnetic properties. Due to freezing of transverse degrees of 

freedom, the spins become canted at this temperature. It can be clearly noticed from the Fig. 

5.3(a) that the bifurcation temperature shifts towards lower temperatures with increasing applied 

magnetic fields and vanishes at a field of 200 Oe. This is one of the characteristics of spin-glass-

like systems. 
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Fig.5.3 (a) Magnetic moment as a function of temperature for Ni73Fe4Cr23 measured at H = 30, 

50, 100, and 200 Oe according to the zero-field cooling (ZFC) and field cooling (FC) 

prescriptions. (b) H-T diagram for Ni73Fe4Cr23 showing the location of paramagnetic (PM), 

ferromagnetic (FM), and re-entrant spin glass (RSG) regions.  
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 Among all the seven samples, Ni74Fe6Cr20 has the highest TC of 193 K followed by 69, 

20, 12, and 7 K for the others and also the highest Tg (13 K) followed by 8, 4, and 4 K. We have 

noticed that the transition temperatures (TC and Tg) strongly depend on the concentration of Fe as 

well as Cr in the system. Even addition of very small amounts of Fe enhances the transition 

temperatures (TC) a lot while it decreases with increasing Cr concentration. This is mainly due to 

competing exchange interactions between Fe-Fe, Cr-Cr, and Fe-Cr. The first two are 

antiferromagnetic and the last one is a ferromagnetic interaction. We have found TC, TN, and Tfg 

for every alloy and found no systematic variation of TC/Tfg/TN with Ni, Fe, and Cr concentration. 

The values of TC/Tfg/TN of all the seven samples are given in Table 5.1. 

 

Table 5.1: Values of TC, TN, and Tfg 

 

 

Sample 

Designation 

 

TC (K) 

 

Tfg (K) 

 

TN (K) 

Magnetic 

moment at  2 K 

and 1 Tesla 

( emu/g ) 

Magnetic 

moment at  2 K 

and 0.1 Tesla 

( emu/g) 

  Ni80Fe2Cr18 20 8 - 7.1 6.2 

  Ni77Fe5Cr18 69 4 - 9.3 6.6 

  Ni79Fe1Cr20 - - 18 < 0.1 0.02 

  Ni76Fe4Cr20 7 4 - 4.8 2.0 

 Ni74Fe6Cr20 193 13 - 18 17.8 

 Ni76Fe2Cr22 - - 22 1.7 0.5 

  Ni73Fe4Cr23 12 6 - 4.3 2.0 
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From Table 5.1 it can be seen that upon varying the concentration of Ni, Fe, and Cr the 

system passes through different kinds of magnetic phases like ferromagnetic (FM), 

antiferromagnetic (AFM), and ferro-spin-glass (FSG). As shown in Figs. 5.3(a), 5.4(a), and 5.4 

(b) we  find that there is an additional transition in M(T) curve below TC for almost all the 

samples (except the antiferromagnets Ni76Fe2Cr22 and Ni79Fe1Cr20). This is interpreted in terms 

of a re-entrant or ferro-spin-glass phase due to competing ferro- and antiferromagnetic pair 

interactions. The ZFC curves for Ni76Fe4Cr20 show peaks at Tfg (4 K) which remains almost 

constant with increasing applied magnetic field. 
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Fig.5.4 (a) Magnetic moment as a function of temperature for Ni74Fe6Cr20 alloy measured at H = 

30, 50, 100 Oe  (b) Ni76Fe4Cr20 alloy at H = 20, 50, 100, and 200 Oe according to the zero field 

cooling (ZFC) and field cooling (FC) prescriptions. 

 

5.4.4 AC-susceptibility 

The ac-susceptibility (χ) measurements are performed in the temperature range 2-300 K 

and in the frequency range 1–10000 Hz, at an AC field of 5 Oe using QDMPMS. Figures 5.5(a) 

and (b) show respectively the real and imaginary parts of χ versus T at different frequencies (11, 

111, 4111, 7111, and 9997 Hz) for Ni77Fe5Cr18 sample.  
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Fig.5.5 (a) and (b) Real and imaginary parts of χ versus temperature at several frequencies for 

sample Ni77Fe5Cr18.  



 

117 

 

The TC’s  found  from ac measurements are in good agreement with .those found from dc 

measurements. The ac χ shows strong frequency dependence as shown in the real part of χ vs. T 

measurements while the imaginary part gives two peaks, one around TC and another around Tfg. 

However, the imaginary part of the ac susceptibility (Fig. 5.5(b)) gives bifurcated peaks around 

Tg, one at around 7 K and another at 12 K and a clear dip at the temperature where real part of 

this susceptibility gives a sharp peak.  The imaginary part of χac is the Fourier transform of two-

spin correlation function characterizing the dynamics of the magnetic systems. So, an anomalous 

behavior near magnetic phase transition is not unexpected.  The real part of χac gives only one 

peak at low temperatures and it shifts towards slightly higher temperatures as the frequency 

increases. Also, χmax. decreases with increasing frequency. To interpret the frequency dependence 

of   χmax. and Tg, we assume the presence of clusters of different volumes which give rise to a 

distribution of moments in the alloy. The moments of all sizes will be able to follow the 

magnetic field at lower frequencies while at larger frequencies only the small moments will 

respond to the external field and the large clusters/moments can not. This gives rise to the larger 

susceptibility at lower frequencies. The maximum can be explained as a competition between 

two processes. The moments are frozen at the lowest temperature. But as we raise the 

temperature, thermal energy gives them some freedom to align and one has higher magnetization 

with increasing temperature. At a certain temperature all the moments unfreeze and we get a 

maximum χ. Further increase in the thermal energy disrupts all the alignments and so the 

moment starts falling as in a paramagnet. Clusters of smaller size are unlocked at lower 

temperatures compared to those having larger moments. For comparison, the temperature shift in 

terms of   (ΔTg /Tg) x 100 % per decade of ω in canonical spin glasses CuMn, AuMn, and 

AgMn
2 

  is ~ 0.5 %. Figure 5.6 presents the fairly strong frequency dependence of the real part of vs. 
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T which show rounded peaks at Tg, Here this alloy has a much higher value of ~ 5 % per decade. 

Figure 5.7 shows the variation of Tg with frequency of the applied ac field. The solid lines are 

just guides to the eye. 
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Fig.5.6  Expanded scale plot of real part of ac χ vs. temperature illustrating frequency 

dependence of  Tfg. 
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Fig.5.7  Variation of peak temperature (Tfg) with frequency of the applied ac field. 
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5.4.5 High-field magnetization and hysteresis loops 

 Hysteresis loops were obtained for each sample after cooling in zero fields to 2 K from 

above TC/Tfg/TN and measured in fields up to 50 KOe using QDMPMS. In Fig. 5.8 we have 

plotted magnetization of all the seven samples at 2 K till 10 KOe. The behavior of M (H) 

changes drastically with concentration of constituent elements. For example, in Ni74Fe6Cr20 and 

Ni77Fe5Cr18, Hsat. (~ 1 kOe) is more than sufficient for magnetic saturation. For Ni76Fe4Cr20 and 

Ni80Fe2Cr18, Hsat. ~ 5 kOe. For Ni73Fe4Cr23, the magnetization is still rising till Hsat. ~ 10 kOe. All 

these 5 have Hsat. as well as low-field magnetic hysteresis (seen on expanding Fig. 5.8) proving 

that the long-range ferromagnetic order still persists in the FSG phase at 2 K, i.e., below their 

Tfg’s. For the other two, namely Ni79Fe1Cr20 and Ni76Fe2Cr22, M(H) does not saturate even at the 

highest attainable field (50 kOe, not shown here) confirming their antiferromagnetic state. 

However, in Fig. 5.8 we have plotted the magnetization only up to 10 kOe to show the low field 

features better.  
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Fig.5.8 M-H curves of all the alloys till 10 kOe at 2 K. 
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 5.4.6 Phase transitions and the associated critical exponents  

 

The second order magnetic phase transition near the Curie point is characterized by a set 

of critical exponents
3
, β, γ, and δ.  β is the spontaneous (zero magnetic field) magnetization 

exponent which is defined by the following relation : 

                                     Ms ( T ) = M0 

,      for T < Tc                                         (5.1)  

where ε = (T-Tc)/Tc and M0 is the corresponding critical amplitude. 

The critical exponent γ is considered as the isothermal magnetic susceptibility exponent which is 

related to χ0, the zero-field dc susceptibility as 









     for T > Tc                                                 (5.2)                                         

where  

is the corresponding critical amplitude. 

From the magnetic field (H) dependence of M at TC we get another critical exponent  

given by the relation: 

                                    M = DH
1/δ

,                                                                        (5.3) 

 
where D is the critical amplitude.  

These three exponents follow the static scaling relationship
2
, βδ = β + γ.   

The exponents often show systematic trends or crossover phenomenon as it   approaches TC. This 

is due to various competing couplings and disorder in the magnetic system. To find these 

exponents properly one has to know transition temperatures very accurately. For this purpose M 

(T) has been measured in all the alloys with temperature increment of 1 K, so that the TC can be 

found accurately within ± 0.5 K. 



 

121 

 

Figure 5.9 (a) shows the temperature dependence of the magnetization M(T) of Ni80Fe2Cr18 

sample measured on warming following zero-field cooling (ZFC) under different applied 

magnetic fields (30, 50, 75, and 100 Oe). The curves show a well defined PM to FM transition at 

TC = 70 K. Here, the magnetic transition temperature TC (~ 70 K) is defined as the inflection 

point of M vs. T plot or the minimum of dM/dT vs. T curve (Inset of Fig. 5.9(a)). Inverse dc 

susceptibility 1/χ (T) deduced from ZFC-M(T) at 100 Oe is plotted in Fig. 5.9(b). In the PM 

region, Curie-Weiss law, i.e. χ = C/(T – θw) holds, where C is the material-specific Curie 

constant and θw is the Weiss temperature. In Fig. 5.9 (b) we have fitted the data with Curie-

Weiss equation. It is seen that 1/χdc varies linearly with temperature and this implies that 

Griffiths phase
4
 (the phase which lies between spin-glass and paramagnetic phase) is completely 

absent in this system. θw is the Weiss temperature which is somewhat higher than the actual 

critical temperature.  
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Fig.5.9 (a)  M (T) under different magnetic fields for Ni77Fe5Cr18 alloy. The inset shows dM/dT 

vs. T. (b) 1/χdc vs. T at 100 Oe for the same alloy. 
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Fig.5.10  Magnetization vs. field at several fixed temperatures closely above and below TC for 

the Ni77Fe5Cr18 alloy.  
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Figure 5.10 shows isothermal magnetization curves around 10 % of TC in fields ranging 

from 0 to 23 kOe. The conventional method to determine the critical exponents and critical 

temperatures involves the use of Arrot plot
5
. According to this method, isotherms plotted in the 

form of M
2
 vs. H/M around TC which uses critical exponents following mean-field theory. 

However, in our case they did not give linear isotherms, rather considerable curvature is there 

and this concave downward curvature clearly indicates a second-order phase transition. The 

deviation from linearity at low fields can come from large magnetocrystalline anisotropy
6
. In our 

case, we have deviations even in high magnetic fields indicating deviation of critical exponents 

from the mean-field value. This type of behavior is found in some magnetic glasses and 

crystalline ferromagnets
7
 and is a subject of great interest. 
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                                                                          (b) 

 

Fig.5.11 (a) Standard Arrott plot (M
2
 vs. H/M isotherms) (b) Modified Arrott-Noakes (AN) plot 

of  Ni77Fe5Cr18 alloy. 

 

In order to obtain a rough estimate of TC and the critical exponents β and γ, we analyze the 

isotherms according to the Arrot-Noakes equation of state
8
,                                                                                                                 

                        (H/M)
1/γ

 = at + bM 
1 ∕ β      

,
           

(5.4) 

where t = (T-TC)/TC and a, b are material dependent parameters. Thus, we plot (H/M)
1/γ

 vs. M
1∕/ β   

at fixed temperatures around TC 
 
in such a way that the exponents β and γ could be varied until 

straight lines are obtained. However, for a prior knowledge we had to make an intelligent guess 

initially. We varied 
  
β from 0.2 to 0.5 in steps of 0.01 and γ from 0.9 to 1.5 in the same steps.

 
β 

and γ have been varied until all isothermals are nearly parallel straight lines. The advantages of 

this plot are: (i) TC can be determined accurately since the isotherm at TC will pass through the 

origin, (ii) x-intercept gives 0
-1

, and (iii) y-intercept  gives MS. The critical isotherm at T = 69 K 
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is indeed the line which passes through the origin giving credence to our plot. It is seen that the 

values of both γ (1.22) and β (0.32) are very close to those for the 3D-Ising model and β is much 

lower than the mean-field value of 0.5. The values of spontaneous magnetization and MS (T) and 

0
-1

(T) were obtained from a linear extrapolation of the AN plots to the intercepts with M
1∕ᵝ 

and
 

(H/M)
1/γ

 axes, respectively. 
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            Fig.5.12 MS and χ0
-1

, obtained from modified AN-isotherms, are plotted against ε. 

 

Figure 5.12 plots Ms and χ0
-1 

as a function of reduced temperature ε. Both these curves intersect 

at ε = 0, i.e. at T = TC confirming the critical temperature. By fitting these curves to Eqs. (5.1) 

and (5.2), we get new values of β and γ using which a new AN plot is constructed. In an iterative 

process we get stable values of β, γ, and TC.  

 

       Kouvel-Fisher plot: To determine the critical exponents as well as TC more accurately, we 

have analyzed the MS (T) and χ0
-1 

data using the Kouvel-Fisher plot (KF)
9
.  According to this 
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method, MS (T,0) 

1
)0,(












dT

TdM s vs. T and 0
-1

(T) 

1
1

0 )(


















dT

Td
vs. T yield straight lines with 

slopes  
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


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1
 and 




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





1
, respectively. Here we have used the Ms and χ0-1 values obtained from the 

intercepts of the AN plots. In this method a prior knowledge of TC is not at all needed if the 

results are consistent. 
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Fig.5.13  Kouvel-Fisher plots for the determination of β and γ. 

 

The KF plots are shown in Fig. 5.13. We notice that the values of the critical exponents obtained 

from this method match reasonably well with those of the previous method. This implies that the 

estimated values of the critical exponents are self consistent and unambiguous. Since the critical 

isotherm obeys the relation M = DH
1/δ

, a simple plot of ln (M) as a function of ln (H),  as shown 

in  Fig. 5.15, allows the determination of δ. 
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Fig.5.14   Logarithmic plot of the critical isotherms for Ni77Fe5Cr18 alloy. 

  

As shown in Fig. 5.14, we obtain δ = 4.64 The value of δ is quite consistent (4.71) with 

the one calculated from the Widom scaling relationship ( = 1 + / using the previously 

obtained values for β (0.33) and γ (1.225). In Table 5.2 we show the values of TC,  , and  

for all the samples. The critical exponent values suggest that our samples more or less follow 

the 3D-Ising like model and the exponents are very close to those of pure nickel. 
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Table 5.2 Alloy compositions, values of TC and critical exponents, obtained both experimentally 

and from KF analysis along with those for pure Ni and those of earlier reports. Blanks below are 

for antiferromagnetic samples. 

Sample TC 

Expt.      KF 



Expt.         KF 



Expt.        KF 

 

Expt.           (1+/)

Ni80Fe2Cr18 20.0 20.3 0.38 0.39 1.33 1.35 4.41 4.46 

Ni77Fe5Cr18 69.0 69.0 0.33 0.32 1.23 1.22 4.64 4.71 

Ni79Fe1Cr20 - - - - - - - - 

Ni76Fe4Cr20 7.0 7.1 0.35 0.34 1.25 1.24 4.61 4.65 

Ni74Fe6Cr20 193.0 192.0 0.37 0.37 1.31 1.32 4.53 4.54 

Ni76Fe2Cr22 - - - - - - - - 

Ni73Fe4Cr23 12.0 12.1 0.47 0.49 1.51 1.52 4.14 4.10 

Ni
9 

627.4  0.378  1.34  4.58 4.54 

Mean-field 

3D-Ising 

3D-Heisenberg 

  0.50 

0.312 

0.378 

 1.00 

1.25 

1.405 

 3.00 

5.00 

4.76 

 

 

From Table 5.2 one finds that the critical exponent β typically has a value in the range of 0.3-0.4, 

similar to those of 3D-Heisenberg ferromagnets. The value of γ is also close to the theoretical 

value for the 3D-Heisenberg model.  Furthermore, the critical isothermal exponents δ for all the 

alloys are found to be more or less similar to that of 3D- Heisenberg model (4.76).  
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Scaling law: 

  In the critical region, magnetization and internal field should obey the universal scaling 

behavior. Therefore for a complete knowledge of the critical behavior near ferro-para transition 

we have calculated critical amplitudes as well. Figures 5.15-18 show respectively plots of  M/

 

vs. H/|
γ

, ln 


 vs. ln , ln Ms vs. ln H, and  ln Ms vs. ln .
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Fig.5.15   M/|

 vs.  H/|

γ 
 plot.  

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0
2.5

3.0

3.5

4.0

4.5

5.0

5.5

 

ln

ln





 

Fig.5.16   ln 0
-1

 vs. ln plot. 
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Fig.5.17 ln Ms vs. ln H plot. 
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Fig.5.18   lnMs vs.lnplot. 

The magnetization above and below TC satisfies a single scaling equation given by m = f(h)  

where m = ||- M(,H)and h =||
- H, called scaled magnetization and scaled magnetic field. The 

above relation shows that m as a function of h falls on two different universal curves f-(h) for T 

< TC and f+(h) for T > TC. If the values of the critical exponents found here are correct, then all 
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the data will fall on two distinct curves confirming their correct choice. It can be seen from Fig. 

5.16 that the scaling is well obeyed, i.e. all the points fall on two curves: one for T < TC and the 

other for T > TC. This implies that the values of the critical exponents and TC are reliable. Also 

they are in agreement with the scaling hypothesis. The numerical values of the critical 

amplitudes are also important in the sense that the critical exponents in association with the 

corresponding critical amplitudes fully characterize the critical behavior near the FM-PM 

transition at TC. Surprisingly, in our system, the values of all three critical amplitudes increase 

with the increase of TC signifying correlations with magnetic order. However, it is known that the 

structurally disordered (quenched) alloys have significantly higher critical exponents as well as 

amplitudes compared to those of the crystalline ones
10

. 

 Table 5.3 The values of the critical amplitudes of the samples and those of pure Ni are given for 

comparison. 

Sample Γ
-1

 (kOe g/emu) M0 (emu/g) D (emu g
-1

 Oe
-1/δ

) TC (K) 

Ni
9 

Ni74Fe6Cr20 

Ni77Fe5Cr18 

Ni80Fe2Cr18 

Ni73Fe4Cr23 

Ni76Fe4Cr20 

18.9 

21.1 

9.9 

7.2 

5.9 

6.2 

83.3 

15.2 

8.6 

5.5 

3.4 

3.9 

33.1 

11.4 

5.1 

2.1 

1.7 

1.8 

627 

193 

69 

20 

12 

7 
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5.5 Conclusions 

Varying concentrations of Ni, Fe, and Cr we got different magnetic states, e.g. ferromagnetic, 

antiferromagnetic, re-entrant spin glass like state in Cr-rich NiFeCr alloys. Several experimental 

techniques and different methods have been used to analyze their magnetic phases. It has been 

noticed that with increasing Cr concentration and decreasing Fe concentration, the system goes 

towards the antiferromagnetic region. Addition of Fe increases ferromagnetism whereas Cr 

brings in antiferromagnetism. 

We have studied the critical behavior near the paramagnetic-ferromagnetic transition in  these 

disordered re-entrant magnetic alloys. The critical exponents β, γ, and δ have been found for all 

the samples for making a complete study at the PM-FM phase transition temperature. The PM-

FM phase transition is identified as second order in nature. The critical exponents estimated from 

various techniques also match reasonably well.  
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CHAPTER VI 

Magneto-transport studies in Ni-rich -NiFeCr alloys 

6.1 Preamble 

After magnetic phase studies we have made a detailed investigation of the magneto-

transport properties of the same set of disordered Ni–rich NiFeCr alloy in the temperature range 

of   2 to 300 K and in magnetic fields up to 50 kOe.  The resistivity data of all the alloys exhibit 

distinct minima lying between 10 and 24 K, unaffected by external magnetic fields. Below the 

minima, the resistivity is well described by the electron-electron (e-e) interaction effects (ρ ∞ 

√T), independent of the magnetic state of the alloys. In the temperature limit, Tmin/2 ≤ T ≤ 2Tmin, 

besides the e-e interaction effects, the magnetic contribution (∞ T
2
) has been clearly isolated. At 

higher temperatures, a linear electron-phonon term along with the magnetic term is observed and 

far above ferromagnetic Curie temperature (TC) only the linear term persists. The values of the 

coefficients of the magnetic term (∞ T
2
) come out to be of the same order as the theoretical one 

(10
-5

 μΩcmK
-2

) implying that the magnetic contribution to the electrical resistivity arises from s-

s interband scattering.  Magnetoresistance (MR) measurements have shown the signature of a 

spin-glass phase below certain temperatures with ferromagnetic short-range order. 

Antiferromagnetic phases also have been identified through these transport measurements. 

Transverse magnetoresistance has been measured in the re-entrant, ferromagnetic, and 

antiferromagnetic states of the alloys mainly concentrating on the antiferromagnetic-

ferromagnetic and ferromagnetic-spin-glass-like transitions. Here in this disordered system the 

MR over the range 2-300 K rapidly changes sign as the magnetic state changes. Below the spin-

glass transition (Tfg), the magnetoresistance [ΔR(H) = R(H)-R(0)] shows  unexpected hysteresis 

loops. Thus we could re-establish the magnetic phase diagram (previous obtained from magnetic 

data) through the present transport measurements.  
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6.2 Complication of the problem   

Though in the last few years, electrical resistivity of disordered magnetic alloys have 

attracted a lot of attention yet it lacks a complete understanding of the complex nature of the 

system. As a result, interpretations of transport properties become quite difficult and often 

controversial, especially when the alloys have high concentrations of 3d metals. In simple 

metals, the electron-phonon interaction is well described by Bloch-Grȕneissen formula, which 

considers single-band s-s electron-phonon scattering. But in transition metals and their alloys, 

scattering involving s-d transitions, in addition to the above s-s term, becomes important because 

of large density of states of the 3-d states.  Besides these, scattering of conduction electrons by 

localised as well as itinerant magnetic electrons (often called spin-disorder resistivity) has an 

important role in the resistivity of transition metal alloys. The resistivity minima, at low 

temperatures, in these alloys have been interpreted as the Kondo effect
1
. Later studies on 

amorphous metallic alloys have shown resistivity minima at low as well as relatively high 

temperatures. Here the minima have been interpreted as due to electron-electron interaction 

effects in the presence of weak localisation. Quantum interference effect is important at low 

temperatures and as a consequence many body effects and electron localization give quantum 

corrections to the conductivity of highly resistive alloys
2
. On the other hand, at very high 

temperature, deviation from linearity (DFL) of the resistivity violates the simple Mathiessen’s 

rule as well as Bloch-Grȕneissen theory. This happens in the case of mainly highly resistive 

materials
3
  as well as in d-band alloys. In case of 3d-transition metal alloys, like NiFeCr, which 

are highly disordered magnetic materials, the mechanism is much more complicated due to 

additional scattering of magnetic spins. In this work, temperature dependence of electrical 

resistivity and magnetoresistance in a broad temperature range is analysed in the framework of 

Boltzmann and localization models. The low temperature variation of electrical resistivity 

reveals strong quantum interference effects. 
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6.3 Theory behind the work 

In 3d transition metals and alloys scattering of conduction electrons by phonons and their 

interactions with magnetic spin system are the main sources of the temperature dependence of 

the electrical resistivity. Generally, in both these cases the scattering may take place within a 

single band (s-s) or may involve s-d transitions. One of the earliest proposals to account for the 

resistivity variation with temperature of transition metals and their alloys due to electron-phonon 

s-d scattering was made by Wilson
4
. This is given by 

                    (6.1) 

   In strongly disordered alloys electron localization is important in determining the sign of 

the temperature coefficient of resistivity. The mutual interference between counter propagating 

partial waves elastically scattered from nearby ions leads to phase coherence between them. As a 

consequence, the probability for an electron to return to its origin is enhanced which implies a 

tendency of localization. Inelastic scattering and magnetic fields, however, can destroy the phase 

coherence and reduce additional resistivity. Besides the above, scattering of conduction s 

electrons by phonons and their interactions with magnetic spin systems are the two other sources 

of the temperature dependence of resistivity. In addition, the effect of cluster-glass type of 

magnetic order in the present alloy system will have sufficient magnetic contribution to the 

resistivity. Assuming Matthiessen’s rule, the resistivity of the magnetic system can be given by 

ρ(T) = ρ0 + ρinteraction (T) + ρphonon(T) + ρmagnetic (T)                                  (6.2) 

        = ρ0 + mρ
’
√T +AT

3
+ BT

2
,  

where ρ0 is the residual resistivity and phonon contribution ~ T
3
 is certainly expected in the 

present alloy system where all the constituents are 3d metals. Electron-electron interaction 

effects in the weak localization limit is responsible for the resistivity minima where ρinteraction (T) 

∞ -√T. For ferromagnetic metals, spin-wave treatment of s-d electron-magnon interaction leading 

to s-s transition gives rise to a T
2
-dependence of the spin-disorder resistivity

5
 given by

 

                    (6.3) 
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where , g, j, EF, , , and were all introduced in Chapter IV, below Eq. (4.5).  

 The resistance of an electrical conductor has been found to either increase (positive 

magnetoresistance (MR)) or decrease (negative MR) in the presence of magnetic fields.  

Theoretical models of the positive and negative MR relevant to the present work are briefly 

described below. 

Normal MR: The normal positive MR is inherent in all systems having free electrons. Theories 

based on the free-electron model lead to a zero MR. A two-band model
6
 consisting of two 

overlapping bands of s and d electrons was therefore proposed. In this model the transverse MR, 

in small magnetic fields H, is given by,  

                                                                                   (6.4) 

where 
n








 




 is called  the “normal magnetoresistance,” ρ, n, and e have their usual meaning. 

The above expression is in fairly good agreement with experimental results. 

 

Negative MR: In a metal with magnetic spins, additional quantum mechanical effects like the 

weak localization or suppression of the spin-flip scattering can give rise to a negative MR.  

Conduction electrons scatter by exchanging spins with magnetic moments. An external magnetic 

field increases the energy needed to flip a spin and thus decreases the amplitude of spin-flip 

scattering which causes resistivity to decrease. Béal-Monod and Weiner
7
  calculated the negative 

MR of dilute alloys containing transition-metal impurities and exhibiting Kondo resistance 

anomaly. The calculation of the conduction-electron scattering amplitude, in the zero-field limit, 

yielded the famous Kondo logarithmic temperature dependence. The theory of Bẻal-Monod and 

Weiner is restricted to alloy systems in which the spins are isolated and hence the spin 

correlations of the magnetic impurities were ignored. 
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6.4   Experimental Details  

The Ni-rich -NiFeCr alloy preparation was described earlier in details in Chapter V, 

Section 5.3 and lattice parameter determination in Section 5.3.1. The transport measurements 

were carried out using the standard four-probe AC method in the temperature range 2-300 K 

using Quantum Design’s Physical Property Measurement System (PPMS-6500) with an 8 T 

superconducting magnet. The electrical contacts were spot welded to the sample, avoiding the 

formation of any insulating oxide at high temperatures, thereby providing a better electrical 

contact. The sample current was ~ 100 mA at a frequency of 133 Hz. Data were taken at 1 K 

interval or less in the whole temperature region and at fixed fields till 5 T. The accuracy in 

resistance measurements is better than 1 part in 10
5
. The stability of the temperature during the 

measurements was within ±10 mK. The absolute values of the resistivity are accurate only within 

± 5% due to uncertainties in the measurements of the dimensions of the samples. 

 

6.5   Results and Discussions  

6.5.1   Electrical Resistivity   

 

High-resolution electrical resistivity data of Ni-rich γ-Ni100-xFexCry alloys with x (1-6) 

and y (18-23) are presented here in the temperature range 2 < T < 300 K. All the alloys show 

resistivity minima at Tmin lying between 10 and 24 K. In Fig. 6.1, plots of the resistivity 

normalized to their values at 300 K are shown for all the seven samples. To get a better view of 

resistivity minima, low-temperature resistivity data normalized to their values at Tmin, have been 

plotted till 40 K in Fig. 6.2. Tmin is found to lie between 10 and 24 K and the depth of minima 

(DOM) ([ρ(5K)- ρ(Tmin)]/ρ(5K)) between 0.005 and 0.18%. The values of resistivity at 5 K (ρ5K), 

Tmin, DOM, total change in resistivity, and Δρ/ρ300K (Δρ = ρ300K – ρmin where ρmin is the resistivity 

at Tmin) are given in Table 6.1. 
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Table 6.1: Sample designation, alloy composition, magnetic transition temperatures (Tc/Tfg/TN), 

values of resistivity at 5 K (ρ5K), Tmin, depth of minima (DOM), and Δρ/ρ300K. 

 

Sample 

designation 

Alloy 

composition 

Tc 

(K) 

Tfg 

(K) 

 

TN 

(K) 

ρ5K 

(μΩcm) 

Tmin 

(K) 

DOM 

(%) 

Δρ/ρ300K 

(%) 

S1 Ni80Fe2Cr18 20 8 - 158.4 24 0.18 3.2 

S2 Ni77Fe5Cr18 69 4 - 178.5 10 0.08 4.7 

S3 Ni79Fe1Cr20 - - 18 174.0 11 0.15 4.5 

S4 Ni76Fe4Cr20 7 4 - 186.8 10 0.04 4.8 

S5 Ni74Fe6Cr20 193 13 - 174.9 18 0.17 4.1 

S6 Ni76Fe2Cr22 - - 22 169.9 14 0.16 4.4 

S7 Ni73Fe4Cr23 12 6 - 182.7 10 0.003 5.3 

 

The high values of the electrical resistivity at 5 K imply strong disorder in these alloys. It is very 

difficult to get any systematic dependence of Tmin or DOM on composition since all the 

constituents vary. This may be due to the fact that the variation in the resistivity in the present 

system is found to be very small, about 10 μΩcm, compared to that for the concentrated CuMn
8
 

alloy where it is about 100 μΩcm. 
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Fig.6.1 Temperature dependence of the resistivity normalized to its value at 300 K. 
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Fig.6.2 Plot of resistivity normalized to its value at Tmin vs. temperature. 
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 Fig .6.3 Dependence of (a) DOM and (b) Tmin on Δρ/ρ300K of all the 7 alloys. 

In Fig. 6.3, we have plotted DOM and Tmin with Δρ/ρ300K to find a correlation between the 

three parameters. We observe that Tmin almost remains constant for higher values (≥ 4.5%) of 

Δρ/ρ300K. For low values of Δρ/ρ300K, both DOM and Tmin decrease with Δρ/ρ300K. This implies 

that the resistivity minima become increasingly weaker as the phonon contribution (Δρ = ρ300K – 

ρmin) to the resistivity gets relatively larger. 
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Fig.6.4 Plot of first derivative of ρ vs. temperature for alloys S2 (Ni77Fe5Cr18) and S5 

(Ni74Fe6Cr20) in the Inset. 
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The temperature derivative of resistivity helps to get an overall view of the resistivity. In all the 

alloys, except S5, dρ/dT versus T shows a continuous, almost linear rise with temperature till a 

certain temperature, and then it remains constant as shown in Fig. 6.4 while in the case of S5 we 

found a sharp increase at low temperatures, followed by a constant portion up to 190 K and then 

a decrease (Inset of Fig. 6.4). The increase in resistivity at low temperatures is due to the 

magnetic contribution which varies faster than T whereas the phonon term, linear in T, gives rise 

to the constant dρ/dT at high temperatures. However, S5 exhibits a decrease with temperature 

after remaining constant up to 190 K which indicates a slower than linear ρ(T) and hence a 

tendency towards resistivity saturation. In Fig. 6.4, we also find a change in curvature of dρ/dT 

around their magnetic transition temperatures (TC) of 69 and 194 K, respectively. 

 

   a)  Analysis of ρ(T) data in the temperature range 2Tmin ≤ T ≤ 300 K 

In this temperature range, the resistivity data show two distinct regions of dependence. In 

the comparatively high temperature range (200-300 K), the linear temperature dependence is 

ascribed to the high-temperature electron-phonon interaction (~ T) and in the low-temperature 

range the electron-magnon scattering (~T
2
) has to be introduced. The fit functions, values of the 

fitting parameters, ranges of temperature, and the values of χ
2
, which give the goodness of fit, for 

all the seven alloys are listed in Table 6.2 from which the following observations can be made. 

(i) For the alloys S3 and S6 having single PM-AFM transitions at 18 and 22 K, respectively, the 

data fit very well with the function a + bT
2
 in the low temperature range, beyond which the fit 

becomes poor and only the electron-phonon interaction term dominates. χ
2 

≈ 10
-8

 is consistent 

with the experimental resolution. Fig. 6.5 is a plot of ρ versus T
2
 for the alloy S3 and the best 

fitted graph. The figure shows a clear linear dependence in this temperature range. The inset of 
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Fig. 6.5 shows the percentage deviation of the experimental data from the best fitted curve as a 

function of T
2
. (ii) For the rest of the alloys which are in the mixed phase with TC and Tfg, an 

additional term cT (due to electron-phonon scattering) is added in the low temperature region 

and the data fit the resulting function a + bT
2
+cT very well. 

Table 6.2: Fitting parameters for the ρ(T) data to different fit functions, temperature ranges, and 

the values of χ
2
 for Ni100-xFexCry alloys. 

Sample Fit function Fit range 

(K) 

a 

(μΩcm) 

b 

 

(10
-6

μΩcmK
-2

) 

c 

(10
-6

μΩcmK
-1

) 

χ
2
 

(10
-8

) 

S1 a+bT
2
+cT 

a+cT 

50-80 

80-300 

158.5 

159.1 

4.6 

- 

3.4 

3.9 

1.7 

4.5 

S2 a+bT
2
+cT 

a+cT 

20-100 

100-300 

178.6 

180.6 

5.7 

- 

5.2 

4.9 

1.4 

6.3 

S3 a+bT
2
 

a+cT 

22-50 

200-300 

174.1 

174.6 

1.4 

- 

- 

8.1 

2.1 

1.8 

S4 a+bT
2
+cT 

a+cT 

20-40 

40-300 

186.8 

187.0 

2.2 

- 

2.1 

2.0 

4.7 

3.1 

S5 a+bT
2
+cT 

a+cT 

36-250 

250-300 

174.7 

181.4 

9.9 

- 

1.6 

2.0 

2.2 

1.3 

S6 a+bT
2
 

a+cT 

28-50 

200-300 

169.9 

170.0 

1.6 

- 

- 

8.0 

4.3 

7.3 

S7 a+bT
2
+cT 

a+cT 

20-50 

50-300 

182.8 

183.3 

3.1 

- 

4.3 

6.2 

1.8 

1.9 
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Table 6.2 shows that the coefficient b has very large values for samples S2 and S5 which have 

comparatively high TC. For two antiferromagnetic samples S3 and S6, though the coefficients of 

T
2
 term are very small, still both the curves fit very well to a + bT

2
 up to 50 K and to a + cT 

beyond. This proves that though the samples are antiferromagnets with TN of 18 and 22 K 

respectively, yet till 50 K they have magnetic contributions to the resistivity  ~ T
2
 as predicted by 

Masharov for antiferromagnets
9
. Those samples having lower values of TC (S1, S4, and S7) also 

fits well with magnetic  term but in a very narrow temperature region (given in Table 6.2)  and  

beyond this they have  only the electron-phonon  interaction  term as they are paramagnetic in 

this region. All these findings are quite compatible with our magnetic data. 

 

Fig.6.5 Resistivity vs. T
2
 plot of the antiferromagnetic sample S3 in the temperature range 20-50 

K. The solid line is the best fitted curve. The inset plots the percentage deviation of the fit from 

the experimental data. 
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b) Analysis of ρ(T) data in the temperature range Tmin/2 ≤ T ≤ 2Tmin 

In this temperature range, special attention has been paid to get a better picture of the 

different competing physical phenomena responsible for resistivity minima. In this range, all the 

alloys are ferromagnetic or antiferromagnetic or spin-glass-like. Hence magnetic contribution 

which we already observed at higher temperatures should be present here as well. Besides these, 

the usual electron-phonon scattering will have their usual contribution to the resistivity. 

According to Wilson
10

, considering s-d scattering in addition to the s-s electron-phonon 

scattering, ρ(T)  ~ T
3
. This is certainly expected in the present alloys where all the constituents 

are 3d metals. Detailed analysis on the resistivity below Tmin has proved that the e-e interaction 

effects in the weak localization limit is responsible for the minima as (ρint ∞ -√T).Thus the 

resistivity in this region can be written as  

                                        ρ(T) = ρ0 + mρ
’
√T+BT

2
+AT

3
.                         (6.5) 

In an earlier work
8
, the phonon contribution was found to be negligible compared to those from 

magnetic and interaction effects and so Eq. (6.5) reduces to  

                                         ρ(T) = ρ0 + mρ
’
√T+BT

2
.                               (6.6) 

We have fitted the data to both Eqs. (6.5) and (6.6) for all the alloys. Fitting to Eq. (6.5) gives an 

unphysical sign of A, but a fit to Eq. (6.6) is satisfactory for all the alloys. The coefficients of the 

magnetic contribution (B) are found to be an order of magnitude higher than those (b) obtained at 

higher temperatures (2Tmin ≤ T ≤ 300 K). Earlier resistivity measurements by White and Woods
11

 

gave the coefficient of magnetic contribution (T
2
) of the order of 10

-5
μΩcmK

-2
 at very low 

temperatures (≤ 10 K). Here, we find an order of magnitude higher value of B which is likely due 

to the s-d transition gradually becoming dominant at higher temperatures (typically 30 K here). 
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Fig. 6.6 shows resistivity vs. temperature data in the range 12-40 K fitted to ρ(T) =  ρ0 + 

mρ
’
√T+BT

2
 along with the best fitted curve for sample S1. 

The high resolution data makes the depth of the minimum (only ~ 0.2 %) so prominent. All the 

fitting parameters and the temperature ranges of all the samples are given in Table 6.3. They 

show excellent fits with normalized χ
2
 of the order of 10

-8
 which is again consistent with our 

experimental resolution. It is found that the coefficient of the interaction term (~√T) is of the 

order of 10
-2 

μΩcmK
-1/2

 except for the alloys S3 and S6 where it is an order of magnitude higher. 

Interestingly, the magnetic coefficient terms of those alloys are of an order of magnitude lower 

implying that the electron-electron interaction effects in these alloys dominate over the magnetic 

contributions compared to those of the other samples. Finally, the present range of temperature 

hardly includes the spin-glass-like transition temperature (Tfg) to have a dominant spin-glass 

contribution except marginally for S5.  
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Fig.6.6 Resistivity vs. temperature data in the range 12-40 K fitted to Eq. (6.6) along with the 

best-fitted curve for sample S1. 
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Table 6.3: Sample designation, range of fit, values of the fitted parameters, and the normalized χ
2
 

for fits to Eq. (6.6). 

 

Sample 

Designation 

Range of fit 

(K) 

ρ0 

(μΩcm) 

mρ
’  

(μΩcmK
-1/2

) 

(10
-2

)
 

B(μΩcmK
-2

) 

(10
-5

) 

χ
2
 (10

-8
) 

S1 12-40 158.3 -8.1 11.3 4.5 

S2 5-20 178.5 -3.0 23.7 1.9 

S3 6-22 174.0 -13.9 2.9 7.7 

S4 5-20 186.8 -2.2 27.9 3.4 

S5 9-36 174.7 -6.1 34.2 2.7 

S6 7-28 169.8 -15.5 2.5 8.5 

S7 5-20 182.7 -7.0 14.8 5.9 

 

 

c) Analysis of ρ(T) data in the temperature range ρ(T) ≤ Tmin/2 

Resistivity well below the minima for highly disordered systems follows √T dependence 

and has been interpreted in terms of the electron-electron (e-e) interaction effects in the presence 

of weak localization. This theory considers the phase coherence of two electrons both getting 

localized through elastic impurity scattering. The electrical conductivity
12

, σ, due to this e-e 

interaction effect goes as  

                                      σ(T) = σ0+mσ√T,                                                         (6.7) 

where                            mσ = 1.3e
2
/4√2π

2
ħ [4/3 – 3/2 Fσ][kB/ħD]

1/2
.                (6.8) 
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Here Fσ is the screening constant for Coulomb interactions and D is the diffusion constant. 

Earlier measurements
13

 on concentrated crystalline alloys had shown the value of mσ as 6 

(ΩcmK
1/2

)
-1

. But the present alloys are very much disordered and so the increase in resistivity 

below Tmin may very well be attributed to the e-e interaction effects. The contributions from 

magnetic and phonon scattering are found to be negligible in this range. For convenience, in the 

present analysis, Eq. (6.7) has been modified from conductivity to resistivity as  

                                                ρ(T) = ρ0+mρ√T,                            (6.9) 

where                                         mρ = - mσρ0
2
,                              (6.10) 

assuming mσρ0√T << 1 and so all the higher order terms of √T are negligible . 

In dilute crystalline alloys, according to Kondo effect
14

, the decrease in resistivity below minima 

follows  

                                       ρ(T) = ρ0 - m lnT,                                  (6.11). 

In this range, our data have been fitted to both the Eqs. (6.9) and (6.11) and it is found that values 

of the normalized χ
2
 for the √T fit is an order of magnitude smaller than that of the lnT fit.  

Moreover, the plots (not shown) of the deviation between the raw and fitted data (ρraw – ρfitted ) 

vs. temperature for the lnT fit show systematic trends whereas those for the √T it is found to be 

random for all these alloys. This random nature of deviations is considered as a good criterion 

for the goodness of the fit. Hence, a √T dependence of the resistivity in the temperature range 

below minima, interpreted as coming from e-e interaction effects, is well justified here in these 

concentrated γ-NiFeCr  ternary alloys. The details of the fitting parameters with the values of χ
2
 

are given in Table 6.4. The coefficient of the √T term, i.e., mρ, in these alloys lies in the range 

(0.16-0.22) μΩcm/K
1/2

. The calculated values of mσ [using Eq. (6.10)] are in very good 

agreement with the near-universal value of 6 (μΩcmK
1/2

)
-1

. 
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Table 6.4: Sample designation, values of the fitted parameters along with values of χ
2
 for fits to 

Eq. ρ(T) = ρ0+mρ√T and the corresponding calculated values of m and mσ.  

 

Sample 

designation 

ρ0 

(μΩcm) 

mρ (μΩcmK
-1/2

) 

10
-2 

χ
2
 

(10
-8

) 

mσ (ΩcmK
1/2

)
-1 

S1 158.4 - 0.16 1.1 6.2 

S2 178.6 - 0.18 3.1 5.5 

S3 174.1 - 0.22 2.2 7.1 

S4 188.8 - 0.18 1.7 5.2 

S5 175.0 - 0.20 4.3 6.4 

S6 170.1 - 0.21 1.2 7.2 

S7 183.0 - 0.20 3.1 6.1 

 

 

6.5.2 Magnetoresistance  

  Here we report measurements of transverse magnetoresistance (MR) covering 

paramagnetic (PM), ferromagnetic (FM), antiferromagnetic (AFM), and ferro-spin-glass (FSG) 

mixed phases as found from the magnetic data. In the previous chapter we have seen that only 

Ni79Fe1Cr20 (S3) and Ni76Fe2Cr22 (S6) are antiferromagnets at 2 K while the rest of the samples 

are ferromagnets with a low temperature coexisting re-entrant ferro-spin-glass (FSG) phase. All 

these phases are better understood from our MR measurements. In this temperature range, the 

MR exhibits three distinct features: (i) low-field  hysteresis effects in the so-called FSG state 
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which disappears in high fields (> 2 kOe), (ii) negative MR as we generally find for 

ferromagnets, and (iii) MR changes sign form negative to positive at higher fields for the 

antiferromagnetic samples. The magnetic field enhances (or suppresses) the spin fluctuations in 

the magnetic sub-lattice parallel (or antiparallel) to the field. The positive
15

  MR results from a 

competition between suppression and enhancement of the spin fluctuations. 

 

(i) Low-filed hysteresis effect:  
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Fig.6.7  Low-field MR curves at 2 K for the samples having re-entrant FSG phase. 
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 Figure 5.2 of Chapter V shows the ternary composition diagram of Ni-rich γ-NiFeCr 

alloys. Their magnetic phases at 2 K are also indicated. Figure 6.7 here shows the hysteresis 

effect in MR at 2 K of Ni73Fe4Cr23 (S7, Tfg ~ 6 K), Ni80Fe2Cr18 (S1, Tfg ~ 8 K), Ni76Fe4Cr20 (S4, 

Tfg ~ 4 K), Ni74Fe6Cr20 (S5, Tfg ~ 13 K), and Ni77Fe5Cr18 (S2, Tfg ~ 4 K). The outstanding feature 

of these MR curves is the low-field hysteresis effects and the reversible behaviour at higher 

fields. It should be noted that the MR is positive here in the low-field region for 3 alloys and 

negative for Ni76Fe4Cr20 (S4) and Ni74Fe6Cr20 (S5). In view of this unexpected result we have 

examined this behaviour in Fig. 6.8 for sample Ni73Fe4Cr23 (S7) at several temperatures which 

covers the whole FSG region and find that the loop area decreases as we approach Tfg (~ 6 K). 
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Fig.6.8  Low-field MR hysteresis curves at 2, 3, 4, 5, and 6 K of sample Ni73Fe4Cr23 (S7, Tfg ~ 6 

K). The inset shows the loop width in Oe as a function of temperature. 

It is to be noted that at higher temperatures (T > Tfg) MR is almost reversible (no hysteresis) 

while at lower temperatures it is irreversible which is a signature for the existence of a SG 
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component in the FSG
16

 phase, FSG-FM transition at Tfg separating the two regimes. The 

hysteretic effect (loop width in the inset of Fig. 6.8) undergoes a rapid fall as we enter the FM 

region from the FSG state. The size of magnetic domain changes as the samples enter the FSG
17

 

state from the FM one. The alloys undergo PM→FM→FSG transitions as we lower the 

temperature from room temperature. Thus the MR measurements presented here strongly support 

the magnetic phase diagram.   

 

(ii) Negative MR:  
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                        Fig.6.9 MR curve for Ni77Fe5Cr18 (S2) at 50 K till 50 kOe. 

 

Figure 6.9 is a plot of MR vs. H till 50 kOe for Ni77Fe5Cr18 (S2) at 50 K. According to our 

magnetization data at 50 K the sample is in a FM state (TC = 69 K). This negative transverse MR 

is a signature of ferromagnetism and is present in all the 5 FSG alloys below their respective 

TC’s. It shows a sharp low-field negative transverse MR of ~ 0.5 % at 5 kOe. The physics behind 
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this negative MR is that there is less electron-magnon scattering at higher fields since some 

magnons are quenched by the Zeeman term in the magnon dispersion relation. In alloys 

containing small magnetic clusters, a relatively large field is necessary to overcome the 

anisotropy energy. So it is difficult to accomplish ferromagnetic alignment of all the moments. 

Hence the large magnetoresistance cannot be easily saturated. 

 

(iii) MR changes from negative to positive:  
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Fig.6.10 The MR curves of samples Ni79Fe1Cr20 (S3) and Ni76Fe2Cr22 (S6) at 2 K till 50 kOe.  

 

Obviously, the negative MR is that of a typical ferromagnet like Ni77Fe5Cr18 (S2) of Fig. 6.9. At 

lower applied fields the MR is negative since the effective field acting on the localized spins 

suppresses the spin fluctuations. A positive magnetoresistance (MR) is observed at higher 

applied magnetic fields (> 20 kOe). This can be interpreted as follows: The fluctuation of the 

spins of one sublattice may be suppressed but that of the other may be enhanced with increasing 
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magnetic fields. From Fig. 6.10 we see that the MR changes sign from negative to positive for 

both the samples Ni79Fe1Cr20 and Ni76Fe2Cr22 (S3 and S6 which are AFM) at 2 K.  

 

6.6 Conclusions   

In conclusion, important correlations between Δρ/ρ300K with DOM and Tmin are obtained 

from the resistivity data in γ-Ni100-xFexCry ternary alloys. In addition, both the resistivity and 

magnetoresistance measurements reveal the different magnetic phases of the seven alloys. For 

example, in the FM and AFM alloys, the resistivity varies like ~ T
2
 above minima and the value 

of the coefficient of the T
2
 term decreases as we approach higher temperatures and finally the 

resistivity varies as T. However, in the low temperature limit, e.g, below Tmin, though most of the 

samples are in spin-glass-like state, yet we hardly get any evidence of its contribution; rather we 

find the dominance e-e interaction effects. 

Through the MR measurements, we have further strengthened the magnetic phase 

diagram of the re-entrant NiFeCr alloys. The above studies have thrown new light and insight 

into the magnetic structure by virtue of the sensitivity of the MR, not only to the magnetization, 

but also to the type of coupling which exists between the moments in the PM, FM, AFM, or 

FSG-like states. We have also been able to detect low-field hysteresis effects in the MR which 

we associate with a long-range ferromagnetism of the longitudinal (Z) moments coexisting with 

re-entrant (X-Y) spin-glass phase. We also propose that some moments are sufficiently free to 

move with the application of magnetic fields leading to an increase of MR in the AFM state.  
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CHAPTER VII 

Summary and future directions  

In this chapter, we shall summarize this thesis by highlighting our important findings followed 

by some future plans. 

7.1   Summary 

This work is based on studying magnetic and transport properties of nickel based disordered 

binary and ternary alloys (Ni-Mn and NiFeCr) which is important both for understanding of 

magnetic phases of alloys and also from the point of view of applications. These Ni-Mn and 

NiFeCr alloys are used extensively in applications where heat resistance and/or corrosion 

resistance is required at low cost as well as in magnetic storage devices. The important findings 

of the present study are briefly summarized below: 

i) Determination of concentration dependence of magnetic moments and transition 

temperatures for fcc Ni-Mn alloys experimentally and comparison with theory. Our experimental 

measurements and theoretical calculations for   Ni100-xMnx (15≤ x ≤37) alloys establish the 

interesting magnetic phase diagram with different magnetic states including spin glass and re-

entrant spin-glass-like phases. Magnetic phase studies have been done in disordered Ni100-xMnx 

system over a wide concentration range (15 ≤ x ≤ 37) encompassing the critical concentration (x 

~ 25). This magnetic phase diagram, derived from dc magnetization and ac susceptibility data, 

serves as an essential reference for the changes with composition of various measured properties 

and of the corresponding parameters of a variety of phases including ferro-spin-glass.  The 

detailed magnetic study of this system confirms the multicritical point (MCP). This study also 

reveals the existence of re-entrant magnetic phase below the MCP and long range 

antiferromagnetic states above this. The equilibrium field-cooled behaviour of alloys with x ≤ 25 

reveals a spontaneous ferromagnetic moment below Tfg indicating a spin-glass like “re-entrant” 

mixed phase. It was also interesting to establish the antiferromagnetic phases in these solid 

solutions and specifically to confirm whether ferromagnetism exists in disordered alloys 
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containing less than 50 at. % of Mn. We notice the decrease of the Curie temperature with Mn-

content which is due to dominating negative Mn-Mn exchange interactions. In conclusion, we 

have proved that long range ferromagnetic order can indeed coexist with spin-glass ordering.  

ii) The resistivity ρ and magnetoresistance (MR) data show qualitatively different 

behaviours for x ≥ 25 and x ≤ 25 where x = 25 is the MCP obtained from the magnetic data. A 

distinct -√T dependence of resistivity below minima has been found in concentrated Ni100-x Mnx 

alloys with x  = 30, 35, and 37 in the range 5 K ≤ T ≤ Tmin/2 where Tmin is around 35 K for all the 

three samples.  Here ρ(T) is analyzed using Mathiessen’s rule. The Debye temperature (θD) is 

also found to be ~ 391, 304, and 340 K, respectively for x = 30, 35, and 37 and the value of A ~ 

(14-29) μΩcm. However, we did not find any minimum for x = 15, 20, and 25 samples though 

we got distinct kinks/point of inflection around their ferro-spin glass transition (Tfg). The 

variation is more or less linear beyond Tfg. The Debye temperature (θD) is found to be 485, 346, 

and 226 K respectively for x =15, 20, and 25 (375 K for pure Ni) and the value of A ~ (40-83) 

μΩcm is much larger than that of Ni ~ 20 μΩcm. This significant enhancement of the magnetic 

scattering in these Ni-Mn alloys from that of pure Ni is very likely to come from disorder in the 

system. Besides these resistivity measurements, the MR measurements also have distinct 

different behavior below and above the MCP. The MR of the alloys with x ≤ 25 is negative 

whereas those for x ≥ 25 are positive and are governed by different mechanisms. 

iii) The second system of alloys that we have studied is Ni-rich γ-Ni100-x-yFexCry (1 ≤ x ≤ 

6, 18 ≤y ≤ 23) ternary alloys around the permalloy composition The present compositions of 

alloys belong to the category where Ni-Ni interaction is ferromagnetic whereas Fe-Fe and Cr-Cr 

interactions are both antiferromagnetic.We have studied the critical phenomenon and the 

magnetic phase transitions in Ni-rich NiFeCr ternary alloys by using ac susceptibility and dc 

magnetization measurements near TC. We have made a comprehensive study on the critical 

phenomenon at the PM-FM phase transition. This transition is identified to be second order in 

nature. We have also studied ac-susceptibility as functions of applied magnetic fields and 

frequency. The measurement of both real and imaginary part of χac was helpful in identifying 

distinct magnetic phases. We have determined the values of TC, β, γ, and δ from various 

techniques and they match reasonably well. The values are in between those theoretically 
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predicted by 3D Heisenberg and mean-field models but closer to the 3D Heisenberg values. It is 

significant that with these critical exponents, magnetization, field, and temperature (M-H-T) data 

follow the scaling equation.  This result is quite   surprising because the substitution of Cr is 

expected to destroy long-range FM order and induce  formation of FM clusters, making the 

system more  3D Heisenberg-like. Moreover, the inhomogeneous magnetic state both below and 

above TC may have serious consequences on critical behaviour. This study points toward the fact 

that critical phenomenon in disordered ferromagnets could not be tackled with the common 

universality classes, indicating perhaps they represent separate class. This should prompt further 

experimental studies followed by rigorous theoretical works. 

 

iv) Detailed electrical resistivity and magnetoresistance measurements in γ-Ni100-x-yFexCry 

(1 ≤ x ≤ 6, 18 ≤ y ≤ 23) alloys have been made in the temperature range of 2 ≤ T ≤ 300 K. The 

resistivity data of all the alloys exhibit distinct minima lying between 10 and 24 K, nearly 

unaffected by external magnetic fields. Below the minima, the resistivity is well described by the 

electron-electron (e-e) interaction effects (ρ ∞ - √T), independent of the magnetic states of the 

alloys. Besides the e-e interaction effects, magnetic (ρ ∞ T
2
) and phonon (ρ ∞ T

3
) contributions 

have been distinctly isolated. The values of the coefficient of the magnetic term come out to be 

of the same order as the theoretical one (10
-5

μΩ cm K
-2

). This clearly shows that the magnetic 

contribution to the electrical resistivity arises due to the s-d and s-s scattering. Further, the nature 

of magnetoresistance (MR)   at different temperature range (or at different magnetic states) is 

found to be different. In the spin-glass regime, the system exhibits a strong hysteresis/memory 

effects at low magnetic fields (up to ~ 1000 Oe) while we found negative MR at ferromagnetic 

states and it changes sign to  positive as soon as the samples enter  antiferromagnetic states. An 

attempt should be made to calculate this resistivity behavior by theoretical approaches and 

compare them with our experimental results. 

 

7.2   Future Directions  

Like any other studies the present one also has left us with a few problems for future 

investigations. The future aim of our work is to study different disordered magnetic alloys 
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irrespective of the form (bulk or thin film) and to look for exotic magnetic and transport 

behavior.  In future, we want to prepare by pulse laser deposition technique (PLD) thin films of 

Ni100-xMnx and Ni100-x-yFexCry alloys for better understanding of the physics of metallic alloys 

and their possible applications as nano-devices. A deviation of magnetic properties from bulk 

values is what is expected. The samples will be characterized with more sensitive and 

sophisticated instruments. The magnetization study of these thin films will be carried out as 

functions of applied magnetic fields as well as temperatures. The applied temperature may be 

high according to the requirements.  The field and frequency dependence of the ac-susceptibility 

will also be studied for finding the magnetic phases. The magneto resistance measurement will 

be carried out as we expect Giant Magneto Resistance (GMR) in the temperature range 2-300K. 

The motivation behind this investigation will be to understand the spin-dependent scattering and 

the relative orientation of magnetizations in neighboring layer as well as interlayer exchange 

coupling.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 


