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Chapter 1

Introduction

1.1 Superconductivity

1.1.1 The phenomena

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes [1] and physicists

have the same zeal for understanding its manifold properties as they had a century

before. On April 8th, 1911, H. K. Onnes, a staunch believer of the motto “knowl-

edge through measurement” [2], with the help of his assistant Gilles Holst, observed

that below a certain temperature Tc, later understood to be the critical tempera-

ture denoting a phase transition, the resistance of mercury, became identically zero.

This finding was further bolstered by observing persistent currents in superconduct-

ing rings. Thus perfect conductivity is the foremost, and perhaps technologically most

important, property of a superconductor. The next key property of a superconductor

is perfect diamagnetism which causes the expulsion of magnetic field of lines out of

a bulk superconducting material. But superconductivity has some more surprises to

offer: when one cools a superconducting material from normal state to superconduct-

ing state, the magnetic field is automatically expelled from the bulk of the material.
1
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This phenomenon is known as the Meissner effect. This effect is considered to be

the defining character of a superconductor. The presence of such a reversible effect

also demands that superconductivity will be destroyed if the applied magnetic field

reaches a threshold value. This threshold value is known as critical magnetic field

(Hc). The associated normal-superconductor phase transition is of second order at

zero magnetic field, but becomes a first order transition in a finite magnetic field as

the order parameter jumps and a latent heat is needed. In fact, depending on whether

the magnetic field is completely expelled or allowed partially in the form of flux tubes,

superconductors are divided in two major varieties: type-I and type-II. Meissner ef-

fect still remains an active field of research (See, for example, J. E. Hirsch [3]). After

providing this brief introduction to superconductivity phenomena, in the next section

we will discuss the path-breaking contribution of Bardeen, Cooper and Schrieffer in

providing a microscopic theory of superconductivity.

1.1.2 Microscopic theory

The formulation of a microscopic theory of superconductivity remained an enigma for

long and only after 40 years from its discovery, physicists started making progress in

theoretical understanding of superconductivity. But the real breakthrough came with

the theory proposed by Bardeen, Copper and Schreiffer. The fundamental mechanism

responsible for superconductivity, according to their theory (now known as BCS the-

ory), is the formation of Cooper pairs. In 1956 Cooper showed [4] that even an

infinitesimal attractive interaction can form at least one bound pair of electrons in

a Fermi sea. This result is counter-intuitive as in three dimensions, according to

quantum mechanical laws, two bodies can form a pair only if the attraction between

them reaches a minimum threshold value. But in this case Fermi statistics and the

existence of a filled Fermi-sea make it possible for the electrons close to the Fermi
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level to form Cooper pairs for arbitrarily weak interaction strength. Interestingly, at-

tractive interaction between electrons results from the interactions of electrons with

the quanta of lattice vibration, the phonons.

The seminal contribution of the justly famous BCS papers [5, 6] is that they ex-

plained the source of this attractive interaction between electrons in a metal and

extended the two-body problem of Cooper pairs to a many-body problem and con-

structed the non-trivial ground-state wave function for the electrons. The variational

ground-state many-body BCS wavefunction is:

|ψ〉 =
∏
k

(
uk + vkc

†
k↑c
†
−k↓

)
|0〉 (1.1)

where |0〉 is the vacuum state and uk and vk are variational parameters satisfying the

constraint u2
k + v2

k = 1. The operator c†k↑c
†
−k↓ creates a Cooper pair with zero total

momentum. The BCS theory predicted and explained some very important results

like: 1) existence of an energy gap in the single-particle excitation unlike the normal

metal, 2) the decrease of the gap with increasing temperature and becoming zero as T

approaches Tc following the relation ∆ ≈ 1.74∆0

√
1− (T/Tc), ∆0 = 1.76kBTc being

the gap at T = 0, 3) the exponential fall-off of specific heat as T → 0 etc. In the

next section, we will describe a coarse-grained phenomenological model, formulated by

Landau and Ginzburg [7] in 1950, which is an important alternative way to understand

superconductivity and can be derived from the microscopic theory.

1.1.3 Phenomenological Ginzburg-Landau theory

As a theoretical model of superconductors, Landau and Ginzburg [7] formulated a

phenomenological theory (hereafter GL theory) of superconductivity in 1950. They

used Landau’s innovative concept of writing down the free energy of a superconductor
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as a power series expansion of the order parameter near the transition point of a

second order phase transition. In physical terms, the complex order parameter is

related to the density of Cooper pairs as n(x) = |ψ(x)|2. The free energy, proposed by

them, after considering symmetries of the problem, gauge invariance and variational

principle, was:

F = Fn + a|ψ|2 +
b

2
|ψ|4 +

1

2m∗
|(−i~∇− 2eA)ψ|2 +

|B|2

2µ0

. (1.2)

In this expression Fn is the free energy of the normal phase, a and b are phenomeno-

logical parameters. a is a function of temperature. m∗ is some effective mass (it is

the mass of the Cooper pairs, as it turned out later), B and A are magnetic field

and corresponding vector potential, respectively. Though when first proposed GL

theory was not appreciated that much, it got attention when Gor’kov showed [8] that

the GL theory can be derived as a limiting form of BCS theory. The GL theory

actually brings out the microscopic quantum-mechanical properties of the supercon-

ducting state. The GL theory also introduces a typical length scale, now known as

GL coherence length which is defined by

ξ(T ) =
~

|2m∗α(T )|1/2
. (1.3)

The coherence length characterizes the distance over which the superconducting or-

der parameter can vary without any increase in energy. It is related to the Pippard

coherence length at temperatures which are far below of the transition temperature.

A superconductor has another length scale which Meissner effect supplies- the pen-

etration depth(λ). The ratio of these two characteristics length scales defines the

GL parameter κ = λ/ξ. Superconductors with κ < 1/
√

2 and κ > 1/
√

2 are known

as type I and type II superconductors, respectively. In the first part of this thesis

(chapters 2 and 3), we will explore imbalanced superconductors, explained in the

next section, with the use of phenomenological GL free energy functionals and show
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that they indeed explain experimental findings in ultracold atomic systems and two-

dimensional organic superconductors.

1.2 Introduction of imbalance: Unusual states

In the previous two sections we have discussed superconductivity caused by zero

center-of-mass momenta Cooper pairs (depicted in Fig. 1.1a) which are formed in

presence of perfect balance in both number and the chemical potential of opposite

spin electrons. As a natural extension of the BCS theory, physicists started wondering

about superconductivity with imbalance either in population or in chemical potential

of the spin-up and spin-down electrons. The existence of imbalanced superconduc-

tivity is an inherently interesting problem as spin polarization, and the resulting

magnetism, destroys superconductivity. Clogston [9] and Chandrasekhar [10], in two

independent works, first considered imbalanced superconductivity where imbalance

in chemical potential of the spin-up and spin-down electrons comes from Zeeman cou-

pling of the spin to an externally applied magnetic field and the orbital magnetism,

and consequently the Meissner effect, is negligible compared to the Zeeman coupling.

Clogston and Chandrasekhar found that above a certain value of chemical potential

imbalance, or equivalently an applied external magnetic field (known as Clogston-

Chandrasekhar or Pauli limit), the superconducting state becomes normal through a

first-order phase transition. Now, there arises a difficulty in realizing this Pauli limit:

In metals, superconductivity, or the absence of it, is controlled by orbital pair-breaking

effects as the relevant upper critical field is much smaller than the Pauli limit and

in that case, the physics is controlled by type-II superconductivity, not imbalanced

superconductivity (For a detailed discussion on this competition between two limits,

see the review by Matsuda et al [11]). So, Pauli limited superconductors are hard to
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(a) BCS (b) Sarma

(c) FFLO

Figure 1.1 Formation of Cooper pairs in different scenarios. a) In the usual

BCS picture, electrons at the Fermi surface form Cooper pairs with zero

center-of-mass momenta. This changes when the density, equivalently chem-

ical potential, of the spin-up and spin-down electrons becomes different. In

this case: b) Sarma state may form with zero center-of-mass momenta Cooper

pairs and thus opening a gap inside the Fermi sea of the majority electrons,

or c) If Cooper pairs form with electrons from their respective Fermi surface,

they acquire a momenta and FFLO state is formed. FFLO state has spatially-

modulating order parameter, from the perspective of the phenomenological

picture.
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find and, therefore, should be tailor-made for verification of theoretical predictions.

In the next two sections we will discuss two particular realizations of imbalanced su-

perconductivity and contribution of the present thesis in better understanding these

situations.

1.2.1 Sarma state

The theoretical details of a population imbalanced case and the corresponding first-

order transition were first studied by Sarma in 1963 [12]. He showed that depending on

the value of imbalance, an unstable superconducting state may appear in addition to

the energetically stable normal state (see Fig. 1.1b). This intermediate phase is known

as Sarma phase. The Sarma phase has attracted a lot of interest lately after the work

by Liu et al [13]. The special characteristic of the Sarma phase is that it accommodates

both superconducting and gapless phases at the same time. Though it has been shown

to be an unstable phase [14] that conclusion, strictly speaking, holds only in the

weak-coupling limit. When the scattering length becomes infinite, i.e. at unitarity,

Quantum Monte Carlo simulations have demonstrated that the Sarma phase and

the phase-separated BCS-normal state mixture are nearly degenerate in energy [15].

Also Sarma state is shown to be stable in presence of an optical lattice at moderate

coupling [16]. In the chapter 2 of this thesis, we will explore the phase diagram

obtained in a recent experiment by Shin et al [17] by means of phenomenological GL

free energy and will show that an introduction of competing order parameters offers

us a better understanding of the phase diagram than the picture offered by a standard

tricritical theory which is traditionally used to describe a Sarma state.
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1.2.2 FFLO superconductors

Just a year after Sarma’s paper, in 1964 Fulde and Ferrell [18] and Larkin and Ovch-

hinikov [19] made a startling prediction about the possibility of a spatially inho-

mogeneous superconducting state at high magnetic field and low temperatures (See

Fig. 1.1c). The new-proposed FFLO state was unique as it had a spatially-modulated

order parameter, in contrast to the spatially-homogeneous order parameter of a stan-

dard BCS superconducting state. The FFLO state, other than being theoretically

interesting, has major technological importance due to its high superconducting cur-

rent densities and thus remains a very active field in both theoretical and experimental

research till date.

From a theoretical perspective the FFLO state is quite intriguing as it retains

its superconducting property overcoming the orbital and Pauli-paramagnetic pair-

breaking effects, even at very high magnetic fields. Theoretical studies on the FFLO

state are surprisingly wide-ranging as it has been vigorously studied for different

physical systems like: crystalline colour superconductivity in dense quark matter [20],

in Heavy-fermionic superconductors like CeCoIn5 [11, 21], in ultracold imbalanced

Fermi gas [22–24] and in optical lattice systems [25]. Though there is a dearth of

systematic experimental studies, in ultracold atomic systems, in three dimensions,

the generally reasonable agreement between theories and experiments suggests that

the FFLO phase can occupy a small portion of the phase diagram. This is also

true for certain solid state superconductors in the clean limit. In a related study

[26], it was suggested that at low temperature the polaron gas could form p-wave

superfluid, in accordance with Kohn-Luttinger theorem [27]. From 1980s, it is known

[28, 29] that in lower dimensions, the chance of finding FFLO state is much higher

as nesting of Fermi surface occurs. In the last decade, much effort has been given
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to understand the formation of FFLO states in one dimension through bosonization

methods [30,31], Bethe-ansatz calculations of the Yang-Gaudin model [32–34], Monte-

Carlo approaches [35–37], DMRG analyses of the attractive Hubbard model or Yang-

Gaudin model [38–44] and spin-DFT [45]. In the next section we will consider the

present experimental situation.

1.2.3 Experimental findings

As discussed previously, Meissner effect makes difficult the experimental realization

of a Sarma state or a FFLO state in superconductors. For this reason, the search for

these states remains an area of active research by experimentalists. The experimental

realization of imbalanced superconducting state can be achieved in two different kinds

of systems: in ultracold Fermi gases and in solid state superconductors.

The use of ultracold gases as a test bed for realization of manybody quantum theo-

ries started after the methods of laser cooling and trapping of atoms were discovered.

These methods led to the first observations of Bose-Einstein condensates of alkali

vapours in 1995 [46, 47]. Following this development, the JILA group cooled down a

fermionic atomic gas and observed quantum degenerate Fermi gases for the first time

in 1999 [48]. In 2003 fermionic superfluidity was observed in ultracold systems [49–51].

Once balanced fermionic superfluidity was achieved, physicists started searching for

imbalanced superfluids in spin-polarized Fermi systems and research groups from

MIT [52] and Rice university [53] reported its observation in 2006. Though the re-

sults of the two groups were not in perfect agreement, they both agreed that there

exists a superfluid state which is robust against spin imbalance. Many experiments

soon followed after these pioneering experiments. Notably, of late, Liao et al [22] have

studied trapped ultracold fermions in quasi-1D tubes and found some signatures of

FFLO state.
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The other way of experimental realization of the unusual superconducting states

is the solid state superconductors. The prominent candidates among them are heavy-

fermion superconductors like CeCoIn5 and quasi two-dimensional organic supercon-

ductors. Recent advances in the heavy-fermion superconductors are made by Bianchi

et al [54] and Radovan et al [55] who put forward thermodynamic evidences for

the presence of FFLO state in CeCoIn5. Besides this heavy-fermion superconduc-

tors, experiments done in the last decade on the quasi-two-dimensional organic su-

perconductors have shown them to be promising candidates for exhibiting FFLO

state [11, 56–58]. The advantage of these organic superconductors is that one can

hugely suppress the orbital pair-breaking effect by applying magnetic field paral-

lel to the highly conducting quasi-2D layers [58, 59]. The pioneering experiment

was done by Singleton et al [60] for the organic superconducting material κ-(BEDT-

TTF)2Cu(NCS)2 (BEDT-TTF is bisethylenedithio-tetrathiafulvalene) and the pres-

ence of the FFLO phase had been surmised from measurements sensitive to a loss

in vortex stiffness. After that for λ-(BETS)2GaCl4 (BETS is bisethylenedithio-

tetraselenafulvalene) a kink in the thermal conductivity [61] and in λ-(BETS)2FeCl4

a fall in the resistance [62–64] gave a hint about the existence of a FFLO state. But

these results were somewhat inconclusive as they did not provide a rigorous thermo-

dynamic evidence. The first clear thermodynamic evidence was observed by Lortz et

al [65]. They found that a narrow intermediate superconducting state manifests itself

at high magnetic field, applied parallel to the sample, of 21.5 Tesla and a first-order

phase transition takes place. In chapter 3 we will see that a phenomenological GL

free energy, derived from microscopic Hamiltonian, can explain the findings of this

experiment and one can predict some new phenomena by doing a dynamical analysis

of the proposed GL free energy.
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1.2.4 Imbalance in holographic superconductor

The first two problems considered in this thesis essentially deal with imbalanced

superconductors in the weak coupling limit. The theory of strongly coupled super-

conductivity, or for that matter any strongly coupled many-body quantum theory, is

extremely difficult to formulate and understand. The study of strongly interacting

many body systems started with the pioneering work of Bethe [66]. After that a wide

class of solvable many-body systems was found in one dimensional systems. These

systems are solvable, or integrable, in the sense that they have an infinite number of

conservation laws and their wavefunctions can be written down using Bethe ansatz.

However finding experimental realizations for these model systems and extending

them to higher spatial dimensions turned out to be a hard work.

A novel approach for solving these strongly coupled systems is offered, surprisingly,

by string theory. One of most notable concepts that emerged from the study of

string theory is the gauge-gravity duality. This is an equivalence between a quantum

field theory in d sapcetime dimensions and a quantum theory of gravity in d + 1

spacetime dimensions. The gravity-free d-dimensional theory is a hologram of the

(d + 1)-dimensional theory in the sense that the number of degrees of freedom of

the d-dimensional theory is equal to that of the (d + 1)-dimensional theory with

gravity. An important feature of this duality is that it also presents a strong-weak

coupling duality: it maps a strongly-coupled theory in d dimensions (boundary) to

a weakly-coupled theory in (d + 1) dimensions (bulk). Precisely for this reason it

has generated a lot of interest in the condensed matter research community intent

to comprehend new classes of strongly interacting field theory and a lot of work has

been done already [67–70].

Of late, this newly found direction, hailed as AdS/CMT (anti-de Sitter - condensed
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matter theory) correspondence, has got tremendous attention from both condensed

matter and string communities. A new outcome of this field is the holographic super-

conductor which was first proposed by Hartnoll et al [71,72]. The basic contention of

them was that a minimal gravitational dual to a superconductor in (2+1)-dimensions

can be obtained by coupling anti-de Sitter gravity to a Maxwell field and charged

scalar field in (3 + 1)-dimensions. Using this formalism they showed that indeed a

condensate forms below a certain critical temperature under some conditions. Calcu-

lation of frequency dependent conductivity also showed that a gap opens up for T<Tc

and addition of a magnetic field to the holographic superconductor demonstrated it

to be a type-II superconductor. After this theoretical proposal of holographic su-

perconductor, it was but natural to extend it to the imbalanced case and that was

done by Erdmenger et al [73] and by Bigazzi et al [74]. In the spirit of studying

unusual imbalanced superconductivity of this thesis, we have studied the behaviour

of holographic entanglement entropy, an useful physical property, of this holographic

imbalanced superconductor in chapter 4 and found some novel results.

1.3 Plan of the thesis

The present thesis is divided in three major chapters which are organized as follows:

In chapter 2, we propose a mean-field, phenomenological Ginzburg-Landau free

energy functional with two competing order parameters to explain the experimentally

observed properties [17] of a two-component, spin-polarized Fermi gas. This free

energy supports a tricritical point which is different from the conventional one. The

specific heat also happens to be different than in standard theory.

In chapter 3, we derive the phase diagram of FFLO superconducting state using

the Ginzburg-Landau free energy. After describing its derivation from the microscopic



1.3 Plan of the thesis 13

Hamiltonian of the system in detail, we notice that it has a very clear Lifshitz tricrit-

ical point. We find the specific heat jumps abruptly near the first-order line in the

emergent phase diagram which is very similar to the recent experimental observation

in layered organic superconductor [65]. We also show that the region of the phase

diagram where the specific heat jumps can be probed by doing a dynamical analysis

of the free energy.

In chapter 4, we study the behaviour of holographic entanglement entropy (HEE)

of imbalanced holographic superconductors. To solve the problem, we employ nu-

merical shooting method and consider the robust case of fully back-reacted gravity

system. The hairy black hole solution, obtained using numerical method, is then used

to compute the HEE for the superconducting case. The cases we study show that in

presence of a mismatch between two chemical potentials, below the critical temper-

ature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-

Nordström black hole phase. It is observed that the effect of chemical imbalance are

different in the contexts of black hole and superconducting phases. For black hole,

HEE increases with increasing imbalance parameter while it behaves oppositely for

the superconducting phase. The implications of these results are discussed.

Finally, in the last chapter we will summarize our findings and state scope for

future research.



Chapter 2

Competing order parameters and an

unusual tricritical point

2.1 Introduction

As alluded to in the introduction, population imbalance between spin-up and spin-

down fermions in a mixture of two Fermi gases leads to unusual superfluid phases.

In past ten years, these exotic superfluid phases have been extensively studied, both

theoretically by [13, 75–78] and experimentally [52, 53, 79–82] in different systems

ranging from ultra-cold atomic gases to quark-gluon plasma which resides in the

core of neutron stars [20, 56]. Similar imbalanced fermionic systems were studied

in electron superconductors in a magnetic field as early as nineteen-sixties [12, 83],

and showed the possibility of tricritical points where the second-order and the first-

order lines meet along with the line separating stable and unstable superconducting

phases. That the tricritical point is fundamental to the understanding of superfluidity

of polarized, two-component Fermi gases was first pointed out by Parish et al [84].

In the next section we will provide a brief introduction to the tricritical point.

14
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2.2 Tricritical point
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Figure 2.1 Standard O(ψ6) theory phase diagram with scaled temper-

ature (a) as x-axis and temperature-independent, polarization-dependent

fourth order coupling constant(b) as y-axis. The shaded region represents

a thermodynamically-unstable, finite-ψ region.

The standard model for studying tricritical point starts with the following Ginzburg-

Landau free energy per unit volume

F =
a

2
ψ2 +

b

4
ψ4 +

c

6
ψ6, (2.1)

where ψ is superfluid order parameter, a is scaled temperature, c is a positive constant,

and b can take both positive and negative values. Near the tricritical temperature(T0),

one usually expands a as a power series of temperature difference as a = a0(T − T0)

where a0 is a constant and T is the temperature, and then searches for extrema in the

free energy landscape. If all the coefficients of the free energy become positive then
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F attains its minimum value at ψ = 0. In other words, the system remains in the

normal state. For b < 0, however, the extrema of the free energy are located at those

ψ-values which are solutions to the equation a+ bψ2 + cψ4 = 0, specifically the non-

zero minima are located at ψ2 = −b/2c±
√
b2 − 4ac/2c. Clearly a non-zero minimum

exists if b2 > 4ac. The minimum will be unstable energetically unless it satisfies

0 = F (ψ = 0) = F (ψ2 = −b/2c +
√
b2 − 4ac/2c), which happens if ac = 3b2/16. So,

in summary, in the free energy parameter space, we have an unstable finite-ψ phase

between a = 3b2/16c and a = b2/4c. The corresponding phase diagram is plotted in

Fig. 2.1.

2.3 Recent experimental findings

Recently, an experiment by Shin et al [17] captured the first-order transition very

clearly by measuring spatial discontinuity in spin polarization . In the experimental

phase diagram reported by Shin et al [see Fig. 2.2], we note that the width of the

unstable, finite-ψ region increases with decreasing temperature. It is, however, appar-

ent that whatever polarization dependence we assign to the temperature-independent

constant b of the standard O(ψ6) theory, the width of the unstable superfluid region

decreases with decreasing temperature.

2.4 Formulation of free energy

Keeping this discussion in mind, we set out to reconstruct1 the free energy of this

imbalanced Fermi system following the work done on antagonistic order parameter

in superconductor-ferromagnet phase transitions, several decades ago by Blount et
1The work reported here is based on the paper “Competing order parameters and a tricritical

point with a difference”, Arghya Dutta and Jayanta K. Bhattacharjee, Physica B, 407, 18, 3722-3726.
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Figure 2.2 Relevant portion of the phase diagram of spin-imbalanced, two-

component Fermi gas, as reported by Shin et al (Nature,2008) [17]. The point

“T” denotes the tricritical point. The most important characteristics, which

we are trying to point out in this work, is that the width of the unstable

region (shaded violet) increases with decreasing temperature, whereas the

width of the unstable region, as obtained from a standard O(ψ6) theory,

decreases with decreasing temperature, as can be seen in Fig. 2.1.
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al [85]. Our phenomenological model free energy is a general Ginzburg-Landau type

free energy with two order parameters, which are actually embedded in the system:

one superconducting(ψ), and another imbalance parameter(m). This free energy

explains the phase diagram properly and offers some valuable physical insights about

imbalanced Fermi systems.

- 2
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Figure 2.3 This figure depicts our model GL free energy(F ) as a function

of ψ and m. It clearly shows the double minima of F with respect to ψ and

one minimum for m.

Our model free energy per unit volume is

F =
a

2
ψ2 +

b

4
ψ4 +

A

2
m2 −mh+

B

2
m2ψ2 (2.2)

in which ψ is superfluid order parameter, a is given by a = a0(T − TC) where a0
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is a constant and TC is the normal-superfluid transition temperature in absence of

any imbalance. The parameter b is a temperature independent constant. As usual in

mean field theory, we have a uniform superfluid state for T < TC with ψ2 = −a/b.

The imbalance parameter(m) is the difference in the number of spin-up and spin-down

fermions. This parameter represents magnetization in the superconducting scenario

and polarization in the ultra-cold atomic gas. Following the standard Ginzburg-

Landau formalism, we include a term proportional to m2 in the free energy (where

the coefficient A is a constant) and the magnetic field (here chemical potential dif-

ference between the fermionic species) gives rise to an additional contribution −mh.

We have neglected O(m4) terms in the free energy as high imbalance destroys super-

fluidity. Finally, the m2ψ2 term, proposed after considering the symmetries of the

system, signifies the interaction of the imbalance parameter with the superfluid order

parameter. One has this freedom of choosing particular form of interaction while one

is trying to explain the phase diagram of an imbalanced, two-species Fermi system at

unitarity, because the particular functional form of the interaction does not matter

in this resonantly-interacting regime. We have plotted the free energy in Fig. 2.3.

Here we need to say something about the underlying microscopic theory to make

the results somewhat quantitative. To this end, we connect the proposed free energy

to the available microscopic calculations of the system [83]. The microscopic calcula-

tion was done for a superconductor with an internal magnetic field generated by dilute

magnetic impurity ions, neglecting the orbital effects, which is a justified assumption

in a two-dimensional superconductor. The magnetic field differentiates between spin-

up and spin-down electrons and thus creates an imbalance. From Maki’s calculation

(See Eq. (23) in Maki et al [83]), we get that the coefficient of the fourth order term(in

ψ) the free energy expansion is given by −[(mp0)/(8π2(2πT )2)]Re
∑∞

n=0(n+ 1
2

+ iρ)−3

where m, p0 are the mass and Fermi momentum of the electron, respectively, and
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ρ = µH/2πT . Near the tricritical point, we can approximate the above quantity to

−0.002mp0 after some algebra. In our theory, an expansion of the free energy in pow-

ers of ψ2 gives the coefficient of the fourth order term to be −(B2/2A3)(bA3/2B2−h2)

which can be approximated as −(bB2/2A3)
1
2 near the tricritical point. So we can put

the following condition on the phenomenological coefficients of our theory
(
bB2

2A3

) 1
2

=

0.002mp0. We want to mention that as Maki’s calculation was based on supercon-

ducting system, so this estimation is valid only in the deep-BCS limit. More recently,

Sheehy [86] had done a similar calculation.

2.5 Phase diagram

To derive results for this model, we first minimise the Ginznurg-Landau free energy.

Minimization results in two conditions on the order parameter

m̄ = h/(A+Bψ2) (2.3)

ψ(a+ bψ2 +Bm̄2) = 0. (2.4)

Now for superfludity to be present in the system, one needs to solve the above equa-

tions simultaneously for non-zero solutions of the superfluid order parameter, and

that is equivalent to solving

(a+ bψ2)(A+Bψ2)2 +Bh2 = 0. (2.5)

This result can also be derived in a different way. We can integrate out the m-

variable from Eq. (2.2), leading to an effective free energy Feff which is different from

the standard O(ψ6) theory. The calculation goes like this:
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e−Feff =

∫
Dme−F [m,ψ]

=

∫
Dme−(a2ψ2+ b

4
ψ4+A

2
m2−mh+B

2
m2ψ2)

= const× e
−
(
a
2
ψ2+ b

4
ψ4− h2

2(A+Bψ2)

)
. (2.6)

So the effective free energy reads

Feff =
a

2
ψ2 +

b

4
ψ4 − h2

2 (A+Bψ2)
. (2.7)

As an interesting aside, we note that we can recover the standard O(ψ6) free energy

from this effective free energy by expanding Feff near transition, where the value of ψ

is small:

Feff = − h
2

2A
+

(
a

2
+
Bh2

2A2

)
ψ2 +

(
b

4
− B2h2

2A3

)
ψ4 +

B3h2ψ6

2A4
+O[ψ8] (2.8)

Now minimisation of the effective free energy with respect to ψ gives:

∂Feff
∂ψ

= 0

⇒ ψ
[
(a+ bψ2)(A+Bψ2)2 +Bh2

]
= 0, (2.9)

which is same as Eq. (2.5) for non-zero ψ. So, we have shown that the non-zero

solutions of superfluid order parameter will be given by the solutions of Eq. (2.5).

This shows that results from conventional tricritical point can differ when ψ2 is not

small and our contention is to show that this is the point of difference from standard

tricritical point.

From Eq. (2.5), we note that the superfluid order parameter vanishes continuously

along the curve A2a + Bh2 = 0. For temperatures greater than the tricritical tem-

perature, a second order phase transition takes place as one crosses this curve to go

from a normal(ψ = 0) to a superfluid phase(ψ 6= 0) or vice versa.
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As our primary aim is to explain the phase diagram found by Shin et al, we

will now check whether there exists a first order normal-superfluid transition in this

system. If there exists a non-zero solution of the superfluid order parameter in the

equation

F (ψ, m̄) = F (ψ = 0, m̄|ψ=0), (2.10)

there will be a first-order phase transition in the system. We insert our particular

free energy in this equation and found the following values for the superfluid order

parameter

ψ2 = −1

3

(
A

B
+

2a

b

)
+

1

3

√(
A

B
+

2a

b

)2

− 6

(
aA

bB
+
h2

bA

)
(2.11)

Using the functional form of ψ2, we get two equations which relate the magnetic

field and critical temperature : h2 = −aA2/B and h2 = A(bA − 2aB)2/8B3, across

which a first-order normal-superfluid transition takes place. One of equations for the

first order line is identical with the second-order line. The other curve is the purple

line shown in Fig. 2.4. The tricritical temperature(T0) can be easily determined

by evaluating the intersection point of the two branches, which works out to be

a0 = A
[(

b
2B
− 1
)
±
√

1− b
B

]
. We designate this point as a tricritical point because

it is the end point of a series of critical points, i.e., the order of the phase transition

changes from second to first at this point.

Now let us figure out if there is any unstable region in the phase diagram within the

scope of our model. This can be found out in this way- as we are treating this model

at a mean field level, the phase of the superfluid order parameter is unimportant.

Hence by demanding the square of the superfluid order parameter to be real, we

find that there exist a unstable state for a range of temperature and magnetic field.

According to the experimental data of Shin et al, in this region phase separation takes

place. But from our free energy, which does not include any gradient term, we can
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Figure 2.4 Spin polarization(m) vs. temperature(t = T/T0) phase diagram

for an imbalanced two-component Fermi gas with resonant interactions. The

area enclosed between the purple and blue line represents an energetically

unstable region. The red dot is the tricritical point. For temperatures greater

than the tricritical temperature superfluid-normal phase transition is second-

order, while below it superfluid-normal phase transition is first-order which

encounters an unstable phase en route. (Plotted using A=1.0, B=0.5 and

b=0.2)

only conclude that this region is unstable.

2.6 Calculation of specific heat

Another interesting feature of this model Ginzburg-Landau free energy is its specific

heat as we get a rather peculiar behaviour of this quantity near tricritical point.
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Generally in O(ψ6) theories, where tricritical point is quite generic, at temperatures

just below tricritical point specific heat diverges as C ∼ a−
1
2 .

To calculate the specific heat of this our system, we differentiate twice the effective

free energy (Feff ) with respect to a, which is nothing but scaled temperature, and

we get

C =
∂2Feff
∂a2

=

(
∂ψ2

∂a

)
+
a

2

(
∂2ψ2

∂a2

)
+
b

2

(
∂ψ2

∂a

)2

+
b

2
ψ2

(
∂2ψ2

∂a2

)
− B2h2

(A+Bψ2)3

(
∂ψ2

∂a

)2

+
Bh2

2 (A+Bψ2)2

(
∂2ψ2

∂a2

)
. (2.12)

So, as we can see from above equation, the nature of the specific heat is actually

determined by the dependence of ψ2 on a which can be extracted from Eq. (2.11).

There are two distinct and interesting cases where the specific heat behaves differently.

Near transition point of the superfluid phase diagram, ψ2 varies as a, in general,

which can be derived from Eq. (2.11). If we put this a-dependence of ψ2 in Eq. (2.12),

we get C = 1 + b
2

+ ba
2
− B2h2

(A+Ba)3
, which, near the transition point, becomes

C = 1 +
b

2
− B2h2

A3
. (2.13)

So the specific heat have a jump discontinuity at the transition point.We emphasise,

this is different from the standard tricritical behaviour of specific heat, which actually

diverges as we approach the tricritical point from lower temperatures.

Now let us consider the second case. Interestingly, we can expand our free energy

to get a O(ψ6) theory. The coefficient of the ψ4 term will be equal zero, which is

required for a standard tricritical point, if h2
0 = bA3

2B2 (from Eq. (2.8)). Now ψ will be

proportional to a1/4, like in standard tricritical theory, if we set 2|a|
b

= A
B

+ ε, where ε

is a small number and in that case ψ2 reduces to

ψ2 =
ε

3
+

1

3

√
ε2 − 6

(
h2

bA
− A2

2B2
− εA

2B

)
. (2.14)
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Putting the value of h2
0 in the above equation, we obtain ψ2 = ε

3
+ 1

3

√
ε2 + 3A

B
ε. As ε

will tend to zero, ψ2 will diverge as
√
ε: finally we get the ψ ∼ a1/4 dependence. Doing

a standard tricritical analysis we get C ∼
(
a+ Bh2

A2

)−1/2

, as expected. So indeed

there is a point is the phase diagram, whose (a, h) coordinates are
(
−Bh2

A2 ,
√

bA3

2B2

)
,

where we recover the standard tricritical behaviour.

Thus specific heat measurement will thus serve as an interesting check on whether

the tricritical point is of the conventional type(O(ψ6) theory) or the findings over here.

The main point of the last few paragraphs is that our model free energy encompasses

the standard tricritical phenomena and, at the same time, points to some interesting

physics which standard tricritical free energy does not account for. Now we want to

make one final comment about the special case in which we set b = B in our free

energy. In this case, the transition point of our model and the standard tricritical

point becomes one, and one can have C ∼ a−
1
2 , as in standard tricritical case, also

for the transition point of our model.

2.7 Summary and discussion

To conclude, we have analysed the finite-temperature phase diagram of the two-

component, imbalanced Fermi gas, as a function of population imbalance, using a

phenomenological Ginzburg-Landau free energy. The novelty of our approach lies in

using two order parameters, which, we assert, are actually embedded in the system:

one superconducting and another imbalance order parameter. This approach is in-

spired by the Blount and Varma’s Ginzburg-Landau free energy which was proposed

to describe superconducting-ferromagnetic transition. Our analysis reproduces the

phase diagram reported by experiment. We also point out that the specific heat be-

haves anomalously and provide a detailed analysis of the specific heat. We anticipate
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that the proposed free energy, with two competing order parameters, will lead to

improvements in our current understanding about the imbalanced Fermi gases.

Finally we mention one important point regarding the limitation this free energy.

As our proposed free energy does not contain any gradient terms, it will not reproduce

the Fulde-Ferrell-Larkin-Ovchinnikov(FFLO) [18, 19] superconducting state which is

a superconducting state with a modulated order parameter. But one can extend this

model free energy to include the gradient terms and study the FFLO state [87–89].

In the next chapter, we will do that analysis and will study the FFLO state in detail.



Chapter 3

Lifshitz tricritical point and FFLO

superconductor: A study

3.1 Introduction

In 1964, Fulde and Ferrell [18] and Larkin and Ovchhinikov [19] envisaged a new kind

of imbalanced superconductivity which is now known, after their name, as FFLO

superconductor. As outlined in the introduction (see sections 1.2.2 and 1.2.3), the

experimental realization of FFLO superconductor is difficult to achieve and the real

implications of experiments claiming to observe the FFLO state remain a debated

topic. To recapitulate, the experimental realization of FFLO state is difficult due to

the stringent experimental conditions needed for it. The FFLO state only occurs if

the superconductor is in the clean limit, i.e. the mean free path is much larger than

the coherence length and the Maki parameter, a measure of the relative strength

of orbital and Zeeman coupling to the external magnetic field, α =
√

2Horb/HP

is greater than 1.8. The most promising candidates obeying these conditions are

the heavy-fermionic superconductor CeCoIn5 [54, 90–93] and layered, or quasi two-

27
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dimensional(2D), organic superconductors.

The 2D organic superconductors have become the focus of late as they are, in most

cases, clean superconductors and the orbital pair-breaking effect is mostly suppressed

with a magnetic field applied parallel to the conducting layers. In an experiment done

on the 2D organic superconductor κ-tetrathiafulvalene, Lortz et al [65] have provided

a true thermodynamic evidence for an increase of the upper critical field and have

shown the existence of a narrow intermediate superconducting region, which they

have claimed to be a FFLO state. Recent magnetic torque [94] and nuclear magnetic

resonance [95] measurements also support their view. Interestingly, one of the most

prominent features marking the onset of the FFLO state is an anomalous jump in

the specific heat [65,96]. This jump in specific heat marking the onset of FFLO state

seems ubiquitous as it has been observed also in the heavy-fermionic superconductor

CeCoIn5 [54]. Though some very recent papers by Buzdin et al [97, 98] reported a

study on anisotropic effects in 2D superconductors, the specific heat anomaly remains

largely unexplored.

In this chapter1 we present a theoretical study of the FFLO phase diagram with the

help of GL free energy, derived from the microscopic Hamiltonian [56]. We calculate

the specific heat to show that, indeed, the onset of the FFLO phase is accompanied

by a jump in the specific heat across a first-order line. This jump is a direct con-

sequence of the invariable presence of a Lifshitz tricritical point(LTP) in the FFLO

phase diagram. The LTP occurs as a result of keeping the relevant [99] higher-order

gradient terms in the GL free energy. The region in the phase diagram where the dis-

continuity in specific heat occurs can also be experimentally ascertained from a study
1The work reported here is based on the paper “Lifshitz tricritical point and its relation to the

FFLO superconducting state”, Arghya Dutta and Jayanta K. Bhattacharjee, Physics Letters A, 377,

21-22, 1402-1406.
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of the temporal behaviour of dynamical structure factor. We have shown this by sud-

denly quenching the system from the normal to the FFLO state across the LTP and

calculating the structure factor using the time-dependent Ginzburg-Landau(TDGL)

formalism. As a first step, in the next section, we will show the detailed derivation

of the GL free energy for the sake of completeness.

3.2 Derivation of Ginzburg-Landau Free energy for

FFLO superconductors

In this derivation of the free energy, which has been done previously by Buzdin et

al [88] and Combescot et al [89], we will closely follow the notations and method used

by Casalbuoni [56].

Let us start by considering an imbalanced fermionic gas formed by two fermionic

species with different chemical potentials. They can be spin-up and spin-down fermions,

or, in the case of imbalanced quark condensates, two quarks with different flavours.

Let the chemical potential of the fermions are given by µu = µ + δµ, µd = µ − δµ.

This imbalance in the two fermionic species can be described by adding a term to the

system’s Hamiltonian Himb = −δµψ†σ3ψ, where σ3 is the third Pauli matrix. The

full action for this imbalanced system can be written as

S =

∫
dt

dp

(2π)3
ψ†(p) (i∂t − E(p) + µ+ δµσ3)ψ(p)

+
g

2

∫
dt

4∏
k=1

dpk
(2π)3

ψ†(p1)ψ(p4)ψ†(p2)ψ(p3)(2π)3 δ(p1 + p2 − p3 − p4)

(3.1)

ψ = (ψu, ψd)
T is a column matrix containing the annihilation operators of spin-up and

spin-down fermions, respectively, and E(p) is the dispersion relation of the fermions.
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The action can be rewritten, in the mean-field approximation, as

S =

∫
dt

dp

(2π)3
ψ†(p) (i∂t − E(p) + µ+ δµσ3)ψ(p)

−g
4

∫
dt

4∏
k=1

dpk
(2π)3

(
Ξ̃(p3,p4)ψ†(p1)Cψ†(p2)− Ξ̃∗(p1,p2)ψ(p3)Cψ(p4)

)
,

(3.2)

where C = iσ2 (σ2 is the second Pauli matrix) and Ξ̃(p,p′) = 〈ψ(p)Cψ(p′)〉. In

deriving the above, we have neglected the fluctuation terms like (ψ†(p1)Cψ†(p2) +

Ξ̃∗(p1,p2)) and its complex conjugate, as one does in mean-field approximation while

doing the standard BCS calculation. Now, to proceed, we introduce the Nambu-

Gor’kov spinor

χ(p) =
1√
2

 ψ(p)

ψc(−p)

 (3.3)

where ψc is the charge-conjugate field defined by ψc = Cψ†. We also introduce

φ(p,−p′) defined as

φ(p,−p′) =
g

2

∫
dp′′

(2π)3
Ξ̃(p′′,p + p′ − p′′). (3.4)

In terms of the Nambu-Gor’kov spinor the action in Eq. (3.2) can be rewritten as

S =

∫
dt

dp

(2π)3

dp′

(2π)3
χ†(p)S−1

NG(p, p′)χ(p′), (3.5)

where

S−1
NG(p, p′) = (2π)3

(i∂t − ξp + δµσ3)δ(p− p′) −φ(p,p′)

−φ∗(p,p′) (i∂t + ξp + δµσ3)δ(p− p′)

 .(3.6)

In this derivation we use ξp = E(p) − µ ≈ vF .(p− pF ) in which vF is the Fermi

velocity. We can do this approximation because the Cooper Pair forming electrons

come from the vicinity of the Fermi surface. The inverse Nambu-Gor’kov propagator
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can be formally written as an operator as

S−1
NG =

(G+
0 )−1 −φ

−φ∗ −(G−0 )−1

 . (3.7)

with (G+
0 )−1 = E− ξp + δµσ3 + iε sgnE and (G−0 )−1 = −E− ξp− δµσ3− iε sgnE with

ε = 0+. The Nambu-Gor’kov propagator S turns out to be

SNG =

 G −F̃

−F G

 . (3.8)

The solution for this system, obtained from Nambu-Gor’kov equation S−1
NGSNG = 1

is:

F = G−0φ
∗G (3.9)

G = G+
0 −G+

0φF (3.10)

so that F satisfies

F = G−0φ
∗(G+

0 −G+
0φF). (3.11)

This is main equation necessary for deriving the free energy as a power series of the

order parameter. The order parameter at finite temperature (T ) can derived from

the consistency condition

φ∗(r) =
g

2
T

+∞∑
n=−∞

TrF (r, r, E)|E=iωn (3.12)

in which we have used the Matsubara frequencies ωn = (2n + 1)πT . From now on

we will consider a finite temperature superconductor, as it is indispensable to derive

the finite temperature phase diagram and, subsequently, use finite temperature field

theory techniques to derive results. The Ginzburg-Landau series for the propagator

F, from Eq. 3.11, reads

F = +G−0φ
∗G+

0 −G−0φ
∗G+

0φG
−
0φ
∗G+

0 + G−0φ
∗G+

0φG
−
0φ
∗G+

0φG
−
0φ
∗G+

0 . (3.13)
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Let us now invoke the particular form of the gap given by φ(r) =
∑P

m=1 φme
2ikm.r.

The gap is proportional to the condensate wave function and its form is determined

by the fact that there will be pairs with nonzero total momentum in a FFLO super-

conductor. The Ginzburg-Landau free energy can be determined from the interaction

Hamiltonian and it is given by Ω =
∫

dg
g2

∫
dx|φ(x)|2 (for a derivation, see Abrikosov

et al [100], Chapter 7, Section 36). Using this and substituting the form of the FFLO

order parameter from Eq. (3.13), the grand potential, in momentum space, turns out

to be

Ω =
2

g

∑
k,n

[1− Π(kk,kn)]φ∗kφnδkk−kn

− 1

g

∑
k,`,m,n

J(kk,k`,km,kn)φ∗kφ`φ
∗
mφnδkk−k`+km−kn

+
2

3g

∑
k,`,m,j,i,n

K(kk,k`,km,kj,ki,kn)φ∗kφ`φ
∗
mφjφ

∗
iφnδkk−k`+km−kj+ki−kn .

(3.14)

In the above expression, Π, J, and K, which are products of Green’s functions, are

defined as:

Π(k) = −gρT
2

∫
dŵ

4π

∫ +δ

−δ
dξ

+∞∑
n=−∞

1

(iωn − δµ− ξ − 2ŵ · kvF )(iωn − δµ+ ξ)
, (3.15)

J(k1,k2,k3,k4) = −gρT
2

∫
dŵ

4π

∫ +δ

−δ
dξ

+∞∑
n=−∞

2∏
i=1

{ 1

iωn + ξ − δµ+ 2w · qi
1

iωn − ξ − δµ− 2w · `i

}
,

(3.16)
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and

K(k1,k2,k3,k4,k5,k6) = −gρT
2

∫
dŵ

4π

∫ +δ

−δ
dξ

+∞∑
n=−∞

3∏
i=1

{ 1

iωn + ξ − δµ+ 2w · qi
1

iωn − ξ − δµ− 2w · `i

}
.

(3.17)

In writing the above, we have defined

q1 = 0, q2 = k1 − k2, q3 = k1 − k2 + k3 ,

`1 = k1, `2 = k1 − k2 + k3, `3 = k1 − k2 + k3 − k4 + k5 , (3.18)

with the conditions k1 − k2 + k3 − k4 = 0 and k1 − k2 + k3 − k4 + k5 − k6 = 0 for J

and K respectively. ρ is the density of states at the Fermi level and δ is the energy

cut-off.

3.2.1 Evaluation of Π(k)

Expanding the first denominator of Π(k) in Eq. (3.15) in the momentum k we get

Π(k) =
1

2
gρT

+∞∑
n=−∞

∫
dŵ

4π

∫ +∞

−∞
dξ

∞∑
m=0

1

ω̄2
n + ξ2

(2ŵ · kvF )2m

(iω̄n − ξ)2m
. (3.19)

where ω̄n = ωn + iδµ.

Here the order of sum and integration is changed as first done by Buzdin et al [88]

to make the final result more understandable from physical point of view. Now with

the help of the integral∫ +∞

−∞
dξ

1

ω̄2
n + ξ2

1

(iω̄n − ξ)2m
= (−1)m

π

22mω̄2m+1
n

, (3.20)

it is straightforward to derive that

Π(k) =
1

2
gπρT

+∞∑
n=−∞

∞∑
m=0

(−1)m

2m+ 1

k2m

ω̄2m+1
n

. (3.21)
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In the above expression we have absorbed the fermi velocity in k. Finally, we can now

derive the coefficient of the term which is quadratic in order parameter in Eq. (3.14)

2

g
(1− Π(k))

=
2

g
− πρT

+∞∑
n=−∞

1

ω̄n
+
πρT

3
k2

+∞∑
n=−∞

1

ω̄3
n

− πρT

5
k4

+∞∑
n=−∞

1

ω̄5
n

= (α +
2

3
βk2 +

8

15
γk4). (3.22)

We have defined α, β and γ, which will appear frequently, as

α =
2

g
− 2πρTRe

+∞∑
n=0

1

ω̄n

= ρ

[
ln
(

4πT

φ0

)
+ Reψ

(
1

2
+ i

δµ

2πT

)]
(3.23)

β = πρT Re
+∞∑
n=0

1

ω̄3
n

= − ρ

16π2T 2
Re
[
ψ(2)

(
1

2
+ i

δµ

2πT

)]
(3.24)

γ = −3

4
πρT Re

+∞∑
n=0

1

ω̄5
n

=
3

4

ρ

768π4T 4
Re
[
ψ(4)

(
1

2
+ i

δµ

2πT

)]
(3.25)

where ψ(z) and ψn(z) are Euler function and its nth derivative, respectively. Here we

should mention that the determination of first term (α) is a bit tricky, one needs to

introduce an energy cut-off to regulate the divergent sum and then replace the cut-off

by the gap parameter at zero temperature which is denoted here by φ0 (see Buzdin

et al [88]).

3.2.2 Evaluation of J and K

To evaluate J we need to introduce the Feynman variables xj, yj (j = 1, 2 for J and

j = 1, 2, 3 for K) and form vectors q =
∑

i xiqi and ` =
∑

i yi`i. After introducing
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them, J in Eq. (3.16) becomes

J(k1,k2,k3,k4) = −gρT
2

∫
dŵ

4π

∫ +δ

−δ
dξ

+∞∑
n=−∞

∫ 2∏
m=1

dxmdym
δ(1−

∑
xm)δ(1−

∑
ym)

(iωn + ξ − δµ+ 2w · q)2

1

(iωn − ξ − δµ− 2w · `)2

(3.26)

The energy integral is done by the method of residues and we expand the resultant

integral in powers of momentum. The result is

J = −πρgT
2

[
Re

+∞∑
n=0

1

ω̄3
n

− 2Re
+∞∑
n=0

1

ω̄5
n

∫
dxmdymδ(1−

∑
xm)δ(1−

∑
ym)v2

F |q− `|2
]

after some simplification which becomes

= −g
2

(
β +

4γ

9

(
k2

1 + k2
2 + k2

3 + k2
4 + k1 · k3 + k2 · k4

))
, (3.27)

where we have used the definition of β and γ from Eq. (3.24) and Eq. (3.25) respec-

tively and kept terms upto second order in momentum so that only gradient-square

terms of the order parameter remain.

In exactly similar way K can be determined. The steps are as follows:

K = −gρT
2

∫
dŵ

4π

∫ +δ

−δ
dξ

+∞∑
n=−∞

3∏
i=1

{ 1

iωn + ξ − δµ+ 2w · qi
1

iωn − ξ − δµ− 2w · `i

}
= −gρT

∫
dŵ

4π

∫ +δ

−δ
dξ

+∞∑
n=−∞

∫ 3∏
m=1

dxmdym

δ(1−
∑
xm)δ(1−

∑
ym)

(iωn + ξ − δµ+ 2w · q)3(iωn − ξ − δµ− 2w · `)3
(3.28)

which after simplification, exactly similar to the above, becomes

K = −g
2

(
3

4
πρT Re

∞∑
n=0

1

ω̄5
n

)
=

γg

2
. (3.29)
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Note that we have kept only the constant term in K and not considered any momen-

tum dependent terms to avoid higher order, irrelevant (in the RG sense) terms.

Finally, putting Π, J and K in Eq. (3.14), the GL free energy of a FFLO super-

conductor turns out to be

Ω =
∑
k

(
α +

2β

3
k2 +

8γ

15
k4

)
|φk|2 +

1

2

∑
ki

(
β +

4γ

9

(
k2

1 + k2
2 + k2

3 + k2
4

+ k1 · k3 + k2 · k4

))
φk1φ

∗
k2
φk3φ

∗
k4
δk1−k2+k3−k4 +

γ

3

∑
ki

φk1φ
∗
k2
φk3φ

∗
k4

φk5φ
∗
k6
δk1−k2+k3−k4+k5−k6 , (3.30)

This GL free energy of FFLO state can be rewritten in position space, after Fourier

transformation, as

Ω =

∫
ddx

[
αφ2 +

2β

3
(∇φ)2 +

8γ

15
(∇2φ)2 +

β

2
(φ2)2 − 8γ

9
φ2φ · (∇2φ)

− 4γ

9
φ2(∇φ)2 +

γ

3
(φ2)3

]
. (3.31)

To analyse the GL free energy thus obtained, in the next section we will discuss

the physics of relevant multicritical points and relate them to it.

3.3 Lifshitz and Lifshitz-tricritical point

First of all, let us introduce the Lifshitz-tricritical class. From previous literature we

find that, in a general study of tricritical and Lifshitz kind of behaviour, Aharony et

al [99] started with the free energy in d-dimensions

Ω =
1

2

∫
ddx

[
rφ2 + µ(∇αφ)2 + (∇2

αφ)2 + (∇βφ)2 + uφ4

+ λ1φ
2φ.(∇2

αφ) + λ2φ
2(∇αφ)2 + wφ6

]
, (3.32)

where α denotes an m-dimensional space with m ≤ d and subsequently ∇α =∑m
i=1 î∇i, β denotes (d−m) dimensional space with ∇β =

∑d−m
i=1 î∇i. φ(x) is an n-
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Figure 3.1 Schematic phase diagrams depicting a)tricritical and b)Lifshitz

points.

component order parameter with O(n) symmetry. Interestingly, comparing Eq. (3.32)

and Eq. (3.31) we find that the FFLO state belong to the (d−d), or isotropic, Lifshitz-

tricritical class. In the previous FFLO literatures, this multicritical point had always

been refereed as tricritical point [88,89], but we find it to be a Lifshitz tricritical point

(LTP). We note that in Eq. (3.31) there is a fourth-order gradient term (quartic in

momentum) which is quadratic in order parameter. This term is essential for the

occurrence of a Lifshitz point. What is vital is that the coefficient of the gradient-

square, quadratic φ term and quartic φ term in Eq. (3.31) changes sign at the same

point, namely at β = 0. This is the LTP which we will take as the hallmark of the

GL free energy of Eq. (3.31).

To better understand the LTP, let us now discuss it a bit. The system, described

Eq. (3.32), can have several multicritical points. If we assume, in the spirit of mean-

field theories, that the homogeneous state is the relevant one, then the derivatives

in Eq. (3.32) are zero. For the usual second-order transition (critical point) the

parameter r is temperature dependent and changes sign at the critical temperature.
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If there is a second physical variable (e.g. He3 concentration in theHe3−He4 mixtures

or the chemical potential imbalance as over here), the coefficient u of the quartic term

is a function of that variable and a line of critical points can be generated. This line

ends when it meets a line of first-order transitions which can occur for negative values

of u. This end point is the tricritical point where a line of first-order and second-order

transitions meet (see Fig. 3.1a). This simple picture of a homogeneous state is changed

if the sign of the derivative squared term in the free energy is allowed to change. Then

the homogeneous state is no longer the lowest energy one if this term is negative. To

prevent instability, one needs a second derivative squared term of positive sign and

thus a spatially modulated state is formed that minimizes the relevant part of the

free energy. Hence depending on whether the derivative squared term is positive or

negative, the thermodynamic state is spatially uniform or modulated. We have two

transition lines once again - a line across which a disordered state becomes ordered and

spatially uniform and another line across which a disordered state becomes ordered

but spatially modulated. These two lines meet at the Lifshitz point (Fig. 3.1b). If

it so happens that magically the tricritical and Lifshitz points occur simultaneously

where r and u change sign at the same point, then one has a Lifshitz tricritical point.

3.4 Phase diagram

We now analyse Eq. (3.31) in two-dimensions to explore the mean-field phase diagram

of FFLO state. For β > 0, the free energy minimum occurs at a spatially-constant φ,

which we call φC . Then Eq. (3.31) reduces to Ω = V [αφ2
C+βφ4

C/2+γφ6
C/3]. The term

proportional to φ6
C is redundant (i.e. it is now a φ4 model), and, for α < 0 the system

goes from the normal state (φC = 0) to the homogeneous BCS superconducting state

with zero center-of-mass momenta Cooper pairs.
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Figure 3.2 Phase diagram of a FFLO superconductor, at mean-field level,

plotted as a function of α/γ and β/γ. Graphs I and II represents the

metastable and first-order line, respectively. On curve III, the coefficient

of the quadratic term in order parameter vanishes. On curve IV, the FFLO

state goes to the BCS state as the wave number of the order parameter goes

to 0.

For β < 0 BCS state no longer remains the minimum of GL free energy and we

envisage a periodic variation of φ like φ(x) = φ0e
ik·x. With this φ(x), the GL free

energy in Eq. (3.31) reduces to

Ω

V
=

(
α− 2|β|

3
k2 +

8γ

15
k4

)
φ2

0 +

(
− |β|

2
+

4γ

9
k2

)
φ4

0 +
γ

3
φ6

0 (3.33)

, where V is system’s volume. Minimising this free energy with respect to k and

substituting k’s minimum value in above equation we obtain an effective φ6 free
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energy
Ω

V
=

(
α− 5β2

24γ

)
φ2

0 −
2|β|φ4

0

9
+

13γφ6
0

54
. (3.34)

Since β < 0 in Eq. (3.34), the minimisation of Eq. (3.34) with respect to φ0 gives a

local minimum of Ω at a finite φ0 when α = α1 = (259β2)/(936γ), shown as graph

I in Fig. 3.2. This signals the onset of a metastable state as the normal state with

φ0 = 0 remains the global minima. When the system cooled further keeping β and

γ fixed, a first-order transition occurs where the free energy at φ0 6= 0 becomes

the global minimum. This occurs at α = α2 = (27β2)/(104γ), shown as graph II

in Fig. 3.2. The FFLO state thus produced has a wave number which is given by

k2
C = 5β/8γ − 5φ2/12, which clearly depends on the temperature and the magnetic

field. At an even lower temperature of α = α3 = (5β2)/(24γ), the coefficient of the

quadratic φ0-term in Eq. (3.34) vanishes (shown as graph III in Fig. 3.2). A further

lowering of the temperature causes the wave number of the FFLO order parameter

to decrease and at the boundary IV this wave number goes to 0 signalling the end

of the FFLO phase. The system thereafter makes a transition to the standard BCS

phase. Thus in our scheme of things, FFLO state exists between boundaries II and

IV and these are the two places where a specific heat anomaly will be seen. This is

what is seen in the experiment of Lortz et al [65].

3.5 Calculation of specific heat

With this phase diagram available, we are now ready to find the behaviour of specific

heat near the first-order transition. Above the first-order transition temperature(α2),

the mean-field specific heat is identically zero. To calculate its value above the first-

order line, we consider Gaussian fluctuations around the mean-field value and calcu-
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late the partition function

Z =

∫
Dφexp[−Ωg/kBTC ] (3.35)

in which

Ωg =
∑
k

(
α− 2|β|

3
k2 +

8γ

15
k4
)
|φk|2 (3.36)

is the Gaussian free energy. We have considered β < 0 as we are below the metastable

line. We minimise this free energy with respect to k and write k = kC + l where k2
C =

5|β|/8γ. The thermodynamic free energy per unit volume is given by F = −kBTC lnZ.

The Gaussian specific heat per unit volume, the second derivative of F with respect

to α, comes out to be

Cg =
3
√

3kB
128π

|β|−3/2(α− 5β2/24γ)−1/2. (3.37)

The Gaussian specific heat, evaluated at the first-order temperature, is plotted as

curve (1) in Fig. 3.3a. Here we point out that Konschelle et al [101] got an anomalous

exponent for Cg as they considered fluctuations around kC in the radial direction

alone. We further observe that inclusion of the higher order φ terms will lead to a

substantial increase in the rate of divergence of Cg as shown by Aharony et al [99]

who evaluated the first-order correction to the specific heat using renormalization

group analysis. However, for temperatures above the first-order temperature, which

is greater than the temperature at which Cg diverges, the Gaussian specific heat

accurately represents the fluctuation specific heat. To find the specific heat of the

system below the first-order temperature, we evaluate the mean-field specific heat.

This can be calculated by taking the double derivative of the mean-field GL free

energy of Eq. (3.34) with respect to α, the temperature parameter. The mean-field

specific heat per unit volume is given by

Cmf = 18kB(259β2 − 936αγ)−1/2. (3.38)
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We have plotted Cmf at the first-order temperature as curve (2) in Fig. 3.3a.
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Figure 3.3 Plot of the specific heat as a function of the scaled temperature.

As the system is cooled from the normal state, it exhibits Gaussian specific

heat, plotted as curve (1) in Fig. a. At the first-order transition temperature,

the specific heat jumps from point A to B and starts following the mean-field

specific heat, plotted as curve (2). Fig. b focusses only on the jump in

specific heat . The experimental plot of specific heat of the layered organic

superconductor, as obtained by Lortz et al [65], showing the anomalous jump

of the specific heat is shown in Fig. c.
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3.6 Explanation of experimental findings

Let us now discuss how this model can describe the findings by Lortz et al [65]. When

one cools the imbalanced fermionic system from the normal state, one measures the

Gaussian specific heat. As the system cools to the first-order transition temperature,

the specific heat jumps to its mean-field value and FFLO state appears. If one cools

the system further, then at a sufficiently low temperature the system goes to the BCS

state as the wave number of the FFLO state becomes 0 and subsequently the specific

heat jumps to the BCS mean-field value signalling this transition. We have shown a

schematic experimental path in Fig. 3.2, which, we argue, is the path taken in the

experiment of Lortz et al showing two jumps in the specific heat. Considering the

experimental data for specific heat jump at a magnetic field, applied parallel to the

superconducting layers, of 22 T, we find (αβ)1/2 = 0.008. The jump of the specific

heat is plotted in Fig. 3.3b and we have also shown the experimental specific heat

diagram from Lortz et al in Fig. 3.3c. To provide a more quantitative relation between

our theory and Lortz’s experiment we have done a study on the relation between the

size of the specific heat’s jump and the magnetic field. In experiment, it was found

that the jump size increased as the magnetic field was increased. In our theoretical

model, we have checked and found that the size of specific heat jump increases with

increase in the chemical potential imbalance which, being directly proportional to

the applied magnetic field, is equivalent to the applied magnetic field. The reader is

referred to Fig. 3.4 for the theoretical and experimental plots. Thus we have shown

that the static analysis of the GL free energy provides the reason for the jump in

specific heat.
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Figure 3.4 Fig. a shows that the size of jump in specific heat, as the system

enters into FFLO state, increases with the increase in applied magnetic field.

In Fig. b, we have shown that our theory also predicts a similar increase

in the specific heat as the applied magnetic field and thus the imbalance in

chemical potential increase. The fits are provided as guides to the eyes.

3.7 Dynamical study of the free energy

Now to find a way for pinpointing the region in the phase diagram where one will

find the jump in specific heat in an experiment, we have studied the dynamics of



3.7 Dynamical study of the free energy 45

this system near LTP using TDGL formalism. This study has also been encouraged

by a very recent study by Sodemann et al [102] who showed that finite-momentum

superfluid state occupies a large area in the phase diagram of an imbalanced fermionic

system just following a quench from the normal to the superconducting state than

in the equilibrium phase diagram of the same system. In our study, we look for

the growth of FFLO phase following a quench. The TDGL for this system can be

written as ∂φk/∂t = −Γ(δΩ/δφ−k), in Fourier space where Ω is the GL free energy

in Eq. (3.30). The quantity of experimental relevance is the dynamical correlation

function or the structure factor S(k, t) = 〈φk(t)φ−k(t)〉. To begin with, the dynamics

of φk is governed by

∂φk

∂t
= −Γ

∂Ω

∂φ−k

= −2Γ

(
α +

2β

3
k2 +

8γ

15
k4

)
φk − 2βΓ

∑
k1,k2

φk1φk2φk−k1−k2

− 8γΓ

9

∑
k1,k2

(2k2 + k2
1 + 2k2

2 + k1 · k2 − k · k1 − 3k · k2)φk1φk2φk−k1−k2

− 2γΓ
∑

k1,k2,k3,k4

φk1φk2φk3φk4φk−k1−k2−k3−k4 (3.39)

The structure factor, subsequently, evolves according to

∂Sk

∂t
= −4Γ

(
α +

2β

3
k2 +

8γ

15
k4

)
Sk − 4βΓ

〈 ∑
k1,k2

φk1φk2φk−k1−k2φ−k

〉

−4γΓ

〈 ∑
k1,k2,k3,k4

φk1φk2φk3φk4φk−k1−k2−k3−k4φ−k

〉

−16γΓ

9

〈 ∑
k1,k2

(2k2 + k2
1 + 2k2

2 + k1 · k2 − k · k1 − 3k · k2)φk1φk2φk−k1−k2φ−k

〉
.

(3.40)

To make any progress, we require to deal with the quartic and sextic correlations.

As a first approximation this is done in the Hartree approximation, in which the
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correlation functions factor. Implementing this we get

∑
k1,k2

〈
φk1φk2φk−k1−k2φ−k

〉
= 3

∑
p

Sp(t)Sk(t) (3.41)

and 〈 ∑
k1,k2,k3,k4

φk1φk2φk3φk4φk−k1−k2−k3−k4φ−k

〉
= 15

(∑
p

Sp(t)

)2

Sk(t) (3.42)

Implementing this on Eq. (3.40), we arrive at

∂Sk

∂t
= −4Γ

[
α +

2β

3
k2 +

8γ

15
k4 + 3β

∑
p

Sp +
8γ

9
k2
∑
p

Sp

+
8γ

9

∑
p

p2Sp + 15γ
(∑

p

Sp

)2
]
Sk. (3.43)

At very short times, when Sk is small, we can write the solution to the above equation

in the region β < 0 as

Sk(t) = Sk(0)e−4Γ(α+ 2β
3
k2+ 8γ

15
k4)t. (3.44)

This results in an interesting consequence: if α > 5β2/24γ and we quench in the region

between line II and III in the phase diagram (Fig. 3.2) all modes of the order parameter

decay quickly. However if α < 5β2/24γ, there exist a band of wave numbers around a

critical wave number (kC =
√

(5|β|/8γ)) for which the structure factor grows. Thus

the decay or growth of the structure factor in short time limit actually indicates the

existence of the line III in the phase diagram (Fig. 3.2), which static analysis cannot

probe.

We now claim that the wave number k = kC can be found experimentally if one

quenches the system beyond the first order line, i.e. beyond the line point where the

specific heat had a sudden change and look for the long-time dynamics. To look for

the long-time dynamics we work, as before, for β < 0 and expand the wave number
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around kC , i.e. write k = kC + l. Restricting to terms quadratic in ‘l’ we can rewrite

Eq. (3.43) as
∂Sk

∂t
= −16Γβl2

3
Sk − f(t)Sk (3.45)

where

f(t) = −4Γ

[
α− 5β2

24γ
+

(
3β +

8γ

9
k2

)∑
p

Sp +
8γ

9

∑
p

p2Sp + 15γ
(∑

p

Sp

)2
]
.(3.46)

This allows us to write the solution of Eq. (3.45) as

Sk(t) = ∆exp
[
− 16Γβl2

3
t− g(t)

]
(3.47)

where g(t) =
∫ t

0
dt′f(t′). If one now demand, as one does in this kind of self-consistent

calculation [103, 104], that
∑

p Sp goes to some constant value as t → ∞, thus ob-

taining the ordered state; then for t → ∞ one can neglect the sub-leading
∑

p p
2Sp

term, and, the final result for the structure factor comes out to be

Sk(t) = ∆t3/2exp
[
− 8γ

15
(k2 − k2

C)t
]

(3.48)

This result shows that at long time after the quench Sk(t)→ 0 for all wave numbers

expect k = kC . So determination of the parameter k2
C actually fixes the ratio β/γ of

the phenomenological model of Eq. (3.30).

3.8 Summary and discussion

In conclusion our analysis explains the specific heat data, the first-order transition

and the exact realization of the phase diagram of the FFLO state in 2D organic

superconductors. In particular, we have studied the FFLO phase diagram using the

phenomenological GL free energy and found that the phase diagram contains a LTP.

We have calculated the specific heat and found that it jumps near the first-order line
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in the phase diagram as we lower the temperature, as also found in an experiment by

Lortz et al [65]. By doing a dynamical analysis of the GL free energy, we suggest a

way to explore the portion of the phase diagram where one should look for the jump.

In passing, we note that for a complete explanation of the FFLO state some more

material-dependent inputs like the exact shape of the Fermi surface, the mean free

path and other parameters are needed, in addition to our phenomenological model.

A possible extension of our work can be performing the dynamical analysis beyond

the Hartree approximation and exploring the elusive FFLO state further.



Chapter 4

Holographic entanglement entropy

and imbalanced superconductors

4.1 Introduction

Holography is a remarkable concept that plays vital role to understand many fea-

tures in modern physics– starting from black holes and cosmology to AdS/CFT cor-

respondence. Historically it was first realized through the expression of black hole

entropy [105,106]

SBH =
Area(ΣH)

4GN

(4.1)

which was found surprisingly proportional to the horizon area and not the volume. It

motivates one to think that the bulk degrees of freedom somehow “holographically"

mapped to the surface/horizon degrees of freedom which results this non-extensive

behaviour in entropy. Later on this enabled ’t Hooft, Susskind and others [107–110]

to explain our Universe using the concept of holography. Most recent additions to

this list are AdS/CFT correspondence and entanglement entropy.

49
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4.1.1 AdS/CFT correspondence

AdS/CFT correspondence, first conjectured by Maldacena [111], is a realization of

much discussed proposition of ’t Hooft [112] on the large N limit of strong interac-

tions. AdS/CFT correspondence states that a supergravity theory in AdS5 × S5 is

a “dual" description of strongly coupled N = 4, SU(N) SYM theory “residing" in

its boundary in the limit of N → ∞. Here S5 is compactified to a radius L >> ls

(ls= string length) which is also the radius of curvature of AdS spacetime. Therefore

effectively a five dimensional gravity theory is “holographically" reduced to a four

dimensional conformal field theory. This “duality" in two theories was quantified by

Witten [113], by identifying the bulk field with boundary operator and n point cor-

relation functions in terms of derivatives of the gravitational partition function with

respect to the boundary value of that field. In support of this yet unproven AdS-CFT

correspondence, there exists many direct and indirect evidences, for example–(i) the

isometry group SO(4, 2) of AdS5 is isomorphic to the conformal group of the SYM

theory, (ii) matching of correlation functions calculated separately from CFT and

that using AdS/CFT tool and many others (for more see reviews [114]- [115]), which

make it robust. It is true that the exact reason/s why such two apparently different

theories should behave so cohesively is/are not known, but the role of holography is

undeniable, and therefore it needs further attention. The major applications of this

correspondence can be broadly classified in two parts: one which are in the context

of QCD (for a review see [116]) and the other in the context of condensed matter

physics [67,71].



4.1 Introduction 51

4.1.2 Holographic entanglement entropy (HEE)

The role of holography in the much focussed issue of entanglement entropy has been

recently highlighted by Ryu and Takayanagi [117, 118]. If a system, described by

certain quantum field theory or some quantum many body theory, is divided into

two parts, say A and B, then entanglement entropy SA of the subsystem A is a

non-local quantity which measures how the above systems are correlated, quantum

mechanically, with each other. In defining SA one traces out the degrees of freedom

of the space-like submanifold B which is not accessible to an observer in A. Anyone

familiar with the concept of black hole entropy would find this definition very much

analogous to the case where an observer outside the black hole event horizon has no

access to the information inside. Indeed this is one of the motivation for the authors

of [117,118] to heuristically propose an “holographic" formula of entanglement entropy,

given by

SA =
Area(γA)

4GN

(4.2)

where γA is the d dimensional surface whose d−1 dimensional boundary ∂γA matches

with the boundary ∂A of the field theory subsystem A (see Fig. 4.1). Of course the

choice for such a surface is not unique. In this context it is suggested that this

surface, among various choices, should be the minimal. This minimal surface is found

by extremizing the area functional and finding out the solution (in case there are

more than one) whose area takes the minimum value.

At the present status the HEE formula (4.2) is not conclusively proven1. Nev-

ertheless there is a list of evidences which bolsters the robustness of this formula.

One direct evidence comes from the AdS3/CFT2 context where the CFT result of

the entanglement entropy SA = c
3

log l
a
, matches with the holographic calculation, in

1Refer to [119] for an attempt and others [120,121] for more details.
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Figure 4.1 Schematic diagram of the computational scheme of holographic

entanglement entropy via AdS/CFT. The field theory system “resides” on

the planar portion, whereas, the minimal (entangled) surface γA is extended

inside the bulk (z axis) towards the horizon (not shown in the figure).

which l is the width of the subsystem A and c = 3R
2GN

relates the central charge c

with the radius of curvature R of the AdS3 spacetime. Although this evidence has

not been explicitly seen in higher dimensional cases (AdSd+1/CFTd with d > 2),

there are more compelling arguments which put confidence on (4.2) ( for details see

reviews [122, 123] and references therein). The major usefulness of the HEE is the

same as the basic principle of AdS/ CFT: overcoming the computational difficulties

of complex many body field theoretic calculations in terms of much more simpler

classical gravity calculations.
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4.1.3 HEE for holographic superconductors

Our work, described in this chapter2, is motivated by a recent study by Albash and

Johnson [124,125], where it is argued that HEE might be an useful physical quantity

for characterizing holographic superconductors. They found that the finite part of

the HEE (Sf ) of superconducting and non-superconducting phases follow a pattern

which enables one to identify the phase of a system. For a given system size and

for all temperatures below the critical value Tc, Sf takes a lower value for the super-

conducting phase compared to its value for the corresponding non-superconducting

(black hole) phase. Whereas for temperature higher than Tc, where no superconduct-

ing state appears, Sf only exist for the latter phase. The reason behind the smaller

value of HEE for the superconducting state is explained in terms of number of the

degrees of freedom that the system possesses. This number is higher in the black hole

phase but as the superconductor forms some of them are condensed and results into a

lower HEE. Further works in this direction are also reported in [126]- [127]. It should

also be mentioned that apart from the finite value of HEE given by Sf there is also a

diverging part. However, such a divergence is not the characteristic of the holographic

calculation only, it also appears in the continuum limit of the conformal field theory

calculations. One can avoid such diverging terms by introducing a UV cut off through

the introduction of a lattice spacing in the expression of entanglement entropy. In

the holographic calculation, the divergences can be avoided if the boundary of the

minimal surface is chosen slightly away from the asymptotic infinity by choosing the

appropriate limit of the radial coordinate.
2The work reported here is based on the paper “Holographic entanglement entropy in imbalanced

superconductors”, Arghya Dutta and Sujoy K. Modak, JHEP, 01, (2014), 136.
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4.1.4 Our work: HEE for imbalanced holographic supercon-

ductor

In this chapter we explore the behaviour of HEE in an imbalanced mixture of two

fermionic systems with a mismatch in their chemical potentials [74]. One motivation

of choosing the imbalanced system is that these are quite interesting in the condensed

matter framework. This is discussed in more detail in the introduction (See section

1.2.4). Our aim is to compute the HEE for two phases (black hole and superconduct-

ing phases) and compare their numerical values as a function of the strip size. The

gravitational system is considered to have the backreaction term. We use numeri-

cal shooting method to find the hairy black hole solution for two different values of

chemical mismatch 0.01 and 0.02 and compare the results for HEE with the black hole

phase with same chemical potential and temperature. For both cases we find that

HEE for the superconducting phase stay below the black hole phase. On the other

hand the effect of the imbalance on HEE is exactly opposite for the superconducting

phase than the black hole phase. While HEE increases with the increase in imbalance

parameter for black holes it decreases when superconducting state forms. This de-

mands a more careful interpretation whether HEE can always be used for identifying

the preferable state or not. The reason being one expects that for increasing chemical

imbalance the superconducting state is hard to achieve and at a certain larger value

this state disappears. But from our study it appears that the gap of HEE between

the black hole and superconductor only increases. Superconducting state is more and

more stable with the increase in chemical imbalance if one solely relies on HEE. And

in that way one never gets rid of the superconducting state. This contradicts the

usual expectations.
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4.2 Holography and imbalanced superconductor

Recently there has been a lot of effort [73,74,128–131] to understand the imbalanced

superconducting systems using holography and AdS/CMT. Generally, the bulk grav-

itational Lagrangian which holographically describe an imbalanced superconductor is

given by

L =

√
−g

2k2
4

(
R +

6

L2
− 1

4
FabF

ab −−1

4
YabY

ab − V (|φ|)− |∂φ− iqAφ|2
)

(4.3)

which is comprised of the AdS gravity with Λ = − 6
L2 , two U(1) gauge fields with field

strengths

F = dA, Y = dB, (4.4)

and one scalar field (φ) with potential

V (|φ|) = m2φ†φ (4.5)

which is charged under UA(1) but uncharged with respect to the other.

As known from the AdS/CFT correspondence mass of the above bulk scalar field

dictates the conformal dimension (∆) of the dual field in the following manner

∆(∆− 3) = m2L2. (4.6)

This relation is particularly helpful to capture the physics of an field theory operator

with a conformal dimension of interest. For example to describe a Cooper pair type

condensate which has ∆ = 2, one fixes the mass of the bulk scalar field to be m2 =

− 2
L2 . Note that this choice does not violate the Brietelhoner-Freedman bound which

for this case is m2 ≥ − 9
4L2 . Since our interest lies in this theoretical aspect, in this

work, we will fix the above mass value for the bulk scalar field in all our computations.

For completeness it should be mentioned that other than mass, the scalar field also
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has a charge q, and different values of charge lead to different physical properties in

the dual field theory.

The above description of the gravitational system has the minimal ingredients

needed to describe the superconductivity in the imbalanced systems. Starting from

the equations of motion which include Einstein equations, Maxwell equations and

a scalar field equation, one looks for the cases where the scalar field is zero and

non-zero. The vanishing of the scalar field gives a normal Reissner-Nordström black

hole phase. On the other hand, if one finds a non-zero scalar field it is understood

that a condensate has been formed in the dual field theory. Of course this situation

has a serious contradiction with the black hole no-hair theorem that supports the

vanishing scalar field, but the fact of getting non-zero scalar field in the context of

holographic superconductors hints that one needs to re-examine the no-hair theorem

itself [132,133]. The above statement is true for any holographic superconductor. For

the imbalanced case, with two U(1) gauge fields with unequal chemical potential, we

have the following additional advantage.

In imbalanced superconducting systems Cooper pair forms between two fermionic

species with unequal chemical potentials (say µ1 and µ2). Now to capture this be-

haviour in the dual gravitational theory, one needs two U(1) bulk fields (say UA(1) and

UB(1)) with field strengths Aa which accounts total chemical potential 2µ = µ1 + µ2

and Ba which accounts the mismatch 2δµ(= βµ) = µ1−µ2 of those fermionic species

in boundary theory.

With these preliminaries we now move to the next sections to deal with the equa-

tions of motion and to compute the HEE separately for black hole and superconduct-

ing phases.
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4.3 Equations of motion

Extemizing the Lagrangian (4.3) with respect to various fields one has the following

set of equations:

Einstein equation,

Gab +
1

2
Λgab = −1

2
Tab (4.7)

where the energy-momentum tensor of the matter field is defined as Tab = 2√
−g

δLmatter
δgab

.

Maxwell equations for Aa and Ba fields reads

1√
−g

∂a(
√
−ggabgcdFbc) = iqgdc[φ†(∂cφ− iqAcφ)− φ(∂cφ

† + iqAcφ
†)] (4.8)

1√
−g

∂a(
√
−ggabgcdYbc) = 0 (4.9)

where the scalar/gauge coupling takes place only in UA(1) sector.

In addition there is also a scalar field equation given by

1√
−g

∂a[
√
−ggab(∂bφ− iqAbφ)] + iqgabAb(∂aφ− iqAaφ) +

φ

2|φ|
V ′(|φ|) = 0 (4.10)

In order to proceed further we consider the following background metric

ds2 = −g(r)e−χ(r)dt2 +
r2

L2
(dx2 + dy2) +

dr2

g(r)
(4.11)

where χ(r) accounts for the backreaction due to matter fields. For a case where

backreaction is negligible one sets χ = 0. For all matter fields, the ansatz is assumed

to be homogeneous

φ = φ(r), Aadx
a = ψ(r)dt, Badx

a = v(r)dt (4.12)

Now one finally unwinds all field equations by substituting the ansatz. The final

set of equations now has two independent Einstein equations

1

2
φ′2 +

eχ(ψ′2 + v′2)

4g
+
g′

gr
+

1

r2
− 3

gL2
+
V (φ)

2g
+
eχq2φ2ψ2

2g2
= 0 (4.13)

χ′ + r(φ′2 +
eχq2φ2ψ2

g2
) = 0 (4.14)
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two Maxwell equations for ψ and v fields

ψ′′ + ψ′(
2

r
+
χ′

2
)− 2q2φ2

g
ψ = 0 (4.15)

v′′ + v′(
2

r
+
χ′

2
) = 0 (4.16)

and a scalar field equation

φ′′ + φ′(
g′

g
+

2

r
− χ′

2
)− V ′(φ)

2g
+
eχq2φ2ψ2

2g2
= 0. (4.17)

In the remaining part of our work we will look for the simultaneous solution of the

above set of equations to compute the HEE. From now on we set 2k2
4 = 1, L = 1.

4.4 HEE for the normal (black hole) phase with vary-

ing β

At high temperature (above Tc), when no superconductivity appears, one has a van-

ishing bulk scalar field. For such a case the right hand side of the Maxwell equation

(Eq. (4.8)) vanishes and the resulting solution of the set of field equations is a doubly

charged Reissner-Nordström black hole given by the metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2), (4.18)

f(r) = r2(1− r3
H

r3
) +

µ2r2
H

4r2
(1− r

rH
)(1 + β2) (4.19)

β =
δµ

µ
(4.20)

where the gauge fields are

ψ(r) = µ(1− rH
r

) = µ− ρ

r
, (4.21)

v(r) = δµ(1− rH
r

) = δµ− δρ

r
. (4.22)
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Hawking temperature of this RN-AdS spacetime is given by

Tbh =
rH
16π

[12− µ̃2(1 + β2)], (4.23)

µ̃ =
µ

rH
. (4.24)

To compute HEE we change the radial coordinate from r to z = rH
r
. This redefi-

nition has some computational convenience. In the t, z, x, y system the metric looks

like

ds2 = −r2
He
−χg(z)dt2 +

dz2

z4g(z)
+
r2
H

z2
(dx2 + dy2), (4.25)

g(z) =
1

z2
− [1 +

µ̃2

4
(1 + β2)]z + z2 µ̃

2

4
(1 + β2). (4.26)

(4.27)

The HEE expression (4.2) now simplifies to

SE =
1

4

∫ Ly

0

∫ l/2

−l/2

√
h dxdy (4.28)

=
LyrH

4

∫ l/2

−l/2

1

z2

(
r2
H +

z′2

z2g(z)

)1/2

dx (4.29)

where ‘h’ is the determinant of the induced metric of the codimension 2 hypersurface

and in the second equality prime denotes derivative with respect to x. Eq. (4.29)

also tells us that the system is equivalent to one defined by the Lagrangian L =

1
rHz2

(
r2
H + z′2

z2f(z)

)1/2

. In order to takes into account that the surface is minimal,

we extremize the Lagrangian. This extremization problem has a constant of motion

which is nothing but the canonical Hamiltonian. In this way we obtain a measure

of how the entangling surface is extended within the bulk (towards the horizon) and

gives an infrared cut-off (z0) on the integrating variable, which is given by

1

z2
0

=
rH
z2

1√
r2
H + z′2

z2g(z)

(4.30)
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Then converting the integrating variable from x to z the final expression of HEE reads

as

SE =
Lyr

2
H

2

∫ z0

ε

z2
0

z3

1√
(z4

0 − z4)g(z)
(4.31)

= Sf + Sdiv, (4.32)

where Sf and Sdiv parts denote the finite and diverging part of the entanglement

entropy as discussed earlier.

On the other hand the width of the subsystem ‘A’ is expressed as

l

2
=

∫ l/2

0

dx (4.33)

=
1

rH

∫ z0

ε

zdz√
g(z)(z4

0 − z4)
(4.34)

So finally to explore the behaviour of the HEE, one now needs to evaluate the expres-

sions (4.31) and (4.34). For this we need to find the metric function g(z) for different

cases - namely for the AdS-RN black hole and the imbalanced superconductor, set

the UV cut-off ε to a small value and consider z0 near to the horizon. We note that

by changing z0 it is possible to study the behaviour of Sf as a function of the strip

width l.

Doing this is easy for the black hole phase since we know the black hole metric

explicitly. In Fig. 4.2 we show the variation of HEE with respect to the strip width

for a fixed temperature Tbh = 0.13 and for different values of the imbalance parameter

β. The larger l corresponds to the infra-red limit [124]. In addition to conforming

the earlier results [124], from this set of plots we find that if one keeps the system-

size as well as temperature constant, HEE for RN-AdS phase increases with the

increase in chemical potential imbalance β. This has the following important physical

consequence: if one considers HEE as a measure of the number of degrees of freedom

of a system, the plots in Fig. 4.2 tell us, that, for a system of given width and

temperature, larger β corresponds more degrees of freedom.
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Now we move to the next section where we examine the superconducting case.

We shall approach the problem in a complete numerical set up.
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Figure 4.2 Plot of holographic entanglement entropy as a function of the

system’s strip width l for the AdS-RN black hole with different values of

the imbalanced parameter β. Here we have also set µ = 1 and temperature

Tbh = 0.13. Since µ and β are fixed we adjust the horizon radius rH to keep

the temperature constant.

4.5 HEE for the superconducting phase with varying

β

We now intend to calculate the HEE when the black hole has developed a scalar hair,

in other sense, a superconducting state has been formed in the boundary field theory.

It is not possible to compute the hairy black hole metric by staying within analytical
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limit. Therefore we approach this problem with the help of numerics.

4.5.1 Field equations and the bulk/boundary expansions

We rewrite the equations of motion (Eq. (4.13) to Eq. (4.17)) by expressing g(z) =

r2H
z2

+ h(z) which is helpful for further computations [74]. In terms of h(z) these look

like:

φ
′2

2
+
φφ′

z
+

φ2

2z2
+
eχ(ψ

′2 + v
′2)

4(r2
H + z2h)

− h′

z(r2
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+
m2r2

Hφ
2

2z2(r2
H + z2h)

+
1

z4
− r2

H

z4(r2
H + z2h)

+
eχr2

Hq
2ψ2φ2

2(r2
H + z2h)2

= 0 (4.35)

χ′ − zφ2 − z3eχr2
Hq

2ψ2φ2

(r2
H + z2h)2

− 2z2φφ′ − z3φ
′2 = 0 (4.36)

ψ′′

r2
H
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ψ′χ′

2r2
H

− 2q2ψφ2

r2
H + z2h

= 0 (4.37)

v′′

r2
H

+
v′χ′

2r2
H

= 0 (4.38)

φ′′ +

(
2

z
− 2r2

H

z(r2
H + z2h)

− χ′

2
+

h′z2

r2
H + z2h

)
φ′ − r2

Hm
2φ

2z2(r2
H + z2h)

+

(
− 2r2

H

z2(r2
H + z2h)

+
q2eχr2

Hψ
2

(r2
H + z2h)2

− χ′

2z
+

h′z

r2
H + z2h

)
φ = 0. (4.39)

In order to set the stage one needs to translate the problem of finding the hairy black

hole into a boundary value problem by using Taylor series expansion of various fields.

Near the horizon zH = 1 they are expanded as

hH(z) = −r2
H + hH1(1− z) + hH2(1− z)2 + · · · (4.40)

χH(z) = χH0 + χH1(1− z) + χH2(1− z)2 + · · · (4.41)

ψH(z) = ψH1(1− z) + ψH2(1− z)2 + · · · (4.42)

vH(z) = vH1(1− z) + vH2(1− z)2 + · · · (4.43)

φH(z) = φH0 + φH1(1− z) + φH2(1− z)2 + · · · (4.44)
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Note that in the Taylor expansion of hH(z), we set the first term as −r2
H to fulfil

the requirement that the metric coefficient g(z) vanishes at the horizon. Also, in

order to prevent the gauge fields from acquiring infinite norm at the horizon one

needs ψH(z = 1) = 0 = vH(z = 1). Therefore, upto a second-order expansion, one

has twelve unknown coefficients in the Taylor expansions. However not all of them

are independent, they are related by five equations (Eq. (4.35) to Eq. (4.39)) and one

needs to substitute the field expansions in these equations. This gives a set of algebraic

equations which relate various Taylor coefficients in different orders of expansion.

Finally one is left with six independent coefficients and all others are expressible in

terms of them. We choose these coefficients to be φH0, χH0, ψH1, vH1, q, rH . The next

step is to find the expressions of dependent Taylor coefficients appearing in the near

horizon expansions in terms of these independent parameters. Some of them with

relatively simpler expressions are:

hH1 = −1

4
eχH0(v2

H1 + ψ2
H1) + r2

H(1 + φ2
H0) (4.45)

χH1 = − 16r2
H(r2

H + eχH0q2ψ2
H1)φ2

H0

(eχH0(v2
H1 + ψ2

H1)− 4r2
H(3 + φ2

H0))2
(4.46)

φH1 = φH0 +
4r2

HφH0

eχH0(v2
H1 + ψ2

H1)− 4r2
H(3 + φ2

H0)
(4.47)

ψH2 =
4r2

HψH1φ
2
H0 (−eχH0q2v2

H1 + r2
H (1 + 4q2 (3 + φ2

H0)))

(eχH0 (v2
H1 + ψ2

H1)− 4r2
H (3 + φ2

H0))
2 (4.48)

vH2 =
4r2

HvH1 (eχH0q2ψ2
H1 + r2

H)φ2
H0

(12r2
H − eχH0v2

H1 − eχH0ψ2
H1 + 4r2

Hφ
2
H0)

2 . (4.49)

The others are more complicated and are given in the appendix.

Now let us write down the ultraviolet (UV) asymptotic (boundary) behaviour of
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all fields near the AdS boundary z = 0:

hb(z) = − ε

2rH
z + · · · (4.50)

χb(z) = log(1 + a) = 0 (4.51)

ψb(z) = µ− ρ z

rH
+ · · · (4.52)

vb(z) = δµ− δρ z

rH
+ · · · (4.53)

φb(z) =
C1

rH
+
C2

r2
H

z + · · · (4.54)

where ε is the mass of RN-AdS black hole defined at the spatial asymptote. As usual,

both C1 and C2 cannot be nonzero at the same time. Here our aim is to solve the

boundary value problem with C1 = 0 but C2 6= 0. The reason behind this is that

C2 has conformal mass dimension 2 which corresponds to ∆ = 2 of the Fermionic

operator representing the condensate.

4.5.2 Numerical scheme for finding the hairy black hole

Here we look for the solution of the above set of equations in order to compute the

hairy black hole metric. Our focus thus is on getting the solution for h(z). We use

the shooting method for this purpose. Here the basic idea for solving the boundary

value problem is to first express various boundary parameters in terms of near horizon
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fields and their derivatives. For that one inverts the above set of equations to write

µ = ψb(z)− zψ′b(z), (4.55)

ρ = −rHψ′b(z), (4.56)

C1 = φb(z)rH − φ′b(z)rHz, (4.57)

C2 = φ′b(z)r2
H , (4.58)

a = e−χb(z) − 1, (4.59)

ε = −2rHh
′
b(z), (4.60)

δρ = −rHv′b(z), (4.61)

δµ = vb(z)− zv′b(z). (4.62)

The temperature of this superconducting state is also given in terms of near horizon

expressions, given by [74]

Tsc =
rH
16π

(
(12 + 4φ2

H0)e−
χH0
2 − 1

r2
H

e
χH0
2 (ψ2

H1 + v2
H1)

)
. (4.63)

The critical temperature corresponds to the smallest possible value of φH0 such that

the hair is just developed.

In the numerical scheme we set a very small value for φH0 and all other parameters

are fixed by hand and they are provided as the input seed to solve the set of coupled

differential equations. Then in the following step we make a very small increment

for the seed of φH0 and that will determine other near horizon parameters which,

together, will set the input values for the second step. Moreover, at every step, one

finds the values of various UV parameters (Eq. (4.55) to Eq. ( 4.62)) as a part of the

output. In this way one generates a set of data of solutions by implementing this

iteration for a number of times. For each iteration one has numerical values for–(i)

near-horizon parameters and (ii) boundary parameters as a function of that. It is

then trivial to reproduce h(z) as well as the metric g(z). Furthermore at each step



4.5 HEE for the superconducting phase with varying β 66

we get a temperature given by Eq. (4.63). As we mentioned earlier that our aim is to

find the hairy black hole solution so that we can use that for the further computation

of the HEE.

In Fig. 4.3 we plot the family of hairy black hole metrics g(z) for two cases with

β = 0.01 and β = 0.02. For a fixed imbalanced parameter, different plots correspond

to distinct temperatures which in our case are very close to each other. Subsequently

we shall choose one of these metrics with a particular temperature and compute the

HEE to compare with the black hole phase.

Before going further some words about our code are in order. As usual, while

solving the boundary value problem the issues with divergences are tackled by prop-

agating the near horizon solutions from εH = 0.00001 away from the horizon (z = 1)

to εb = 0.000001 near the boundary (z = 0). As the boundary conditions we have set

C1 = 0, a = 0, µ = 1 and δµ = 0.01 for one case while δµ = 0.02 for the other. In all

cases we have set q = 2.

Now we move to the final part where we calculate the HEE for the superconducting

phase and compare with the black hole phase.

4.5.3 HEE for the superconducting phase and comparison with

the black hole phase

Having found the metric functions g(z) and corresponding temperatures we are free

to choose one entry of this set and use Eq. (4.31) and Eq. (4.34) with varying z0

to obtain the list required for plotting Sf as a function of l. In order to compare

with the AdS-RN black hole phase we fix the black hole temperature Tbh (Eq. (4.23))

to be equal to the preassigned temperature for the superconducting phase (given by

Eq. (4.63)) by suitably adjusting its horizon radius (since µ and δµ are already fixed).
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Figure 4.3 Plot of the hairy black hole metric function with respect to the

radial coordinate z as obtained from numerical computations. As expected

g(z) vanishes at the horizon and diverges at asymptotic infinity. Different

curves in this plot correspond to different characteristic temperature.

With this new horizon radius then we use the black hole metric to calculate the list

for the required plot.

In Fig. 4.4 we compare the relative values of the HEE between the black hole and

superconducting states for fixed (i) chemical potential µ = 1, (ii) imbalance parameter

β = 0.01, 0.02 respectively and (iii) identical values of temperatures Tbh = Tsc for each

β. From both of these plots we note that the superconducting state has a lower HEE

than the normal (RN-AdS) state. This, as explained by Albash et al [124], represents

the fact that the degrees of freedom have condensed from the RN-AdS case to the

superconducting state and may serve the purpose of signaling the preferable state.
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Figure 4.4 Plot of holographic entanglement entropy of AdS-RN black hole

(solid lines) and imbalanced superconductors (dashed lines) at Tbh = Tsc =

0.13 for β = 0.01 and β = 0.02. The results remain similar if we choose any

other temperature and g(z) from Fig. 4.3. For other details refer to text.

4.5.4 Variation of HEE with β for the holographic supercon-

ductor

Finally we are in a position to compare the change in HEE for the superconducting

phase for different imbalances while all other parameters are kept fixed. For this we do
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not need to perform anymore computations, rather, we compare the superconducting

phase plots from Fig. 4.4. This is depicted in Fig. 4.5 which shows that with the

increase in chemical imbalance HEE decreases. Notably this behaviour is exactly

opposite to the RN-AdS phase as shown in Fig. 4.2.

In order to understand this difference physically one should consider the fact

that thermodynamics of AdS black holes may differ substantially from a physical

system like superconductors. For example if we, keeping the horizon radius constant,

increase β then temperature of the RN-AdS black hole as given by Eq. (4.23) becomes

smaller. On the other hand one can check that HEE increases with the increase β

for constant horizon radius. Since HEE in certain cases resembles with the black

hole entropy [123] one can roughly interpret this behaviour in terms of the negative

specific heat of black holes. It is known that in certain cases AdS black holes do have

negative specific heat [134]. On the other hand one expects a superconducting system

to have a positive heat capacity and therefore the difference with the black hole phase

is natural.

On the other hand this behaviour might challenge the HEE to correctly identify the

preferable state. The fact that HEE for black hole phase increases while it decreases

for the superconducting state implies that for larger chemical potential imbalance

superconducting state will be more probable. Of course this goes against the fact

that with arbitrarily large imbalance one cannot achieve superconductivity. Therefore

one should be careful in interpreting physics of holographic superconductors only by

looking at the HEE.
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Figure 4.5 Plot of holographic entanglement entropy of the superconduct-

ing phase for two different chemical imbalances. In these plots µ = 1 and

Tsc = 0.13 for both cases. The results remain similar if we choose any other

temperature and g(z) from Fig. 4.3. Details are given in text.

4.6 Summary and Discussion

In this work presented in this chapter, we computed Holographic entanglement en-

tropy (HEE) starting from a fully back-reacted gravitational theory which describes

imbalanced superconductivity below the critical temperature and doubly-charged RN-

AdS black hole at temperature higher than the critical temperature. We chose the

strip geometry for the entangled surface and compute the HEE as a function of

strip size. The hairy black hole metric was found by using the numerical shooting

method. Results showed that HEE for the superconducting state is lower than the

black hole/normal phase for the values of the imbalance parameter (β) considered

in this work. It was also shown that the effect of the imbalance is exactly opposite



4.6 Summary and Discussion 71

for black hole and superconducting phases. For the AdS-RN black hole phase HEE

increases with the increase in the imbalance in two chemical potentials. Whereas

for holographic superconductor HEE decreases. The fact that HEE for imbalanced

holographic superconductor (also for other cases reported earlier [124]- [127]) is less

than the black hole might insist one to consider this as a good physical parameter to

identify the preferable state below Tc.

The present study also raises a question whether or not HEE alone can always

correctly identify the preferable state for physical systems like imbalanced mixtures.

The fact that HEE increases for the black hole phase and decreases for superconduct-

ing phase with respect to increasing imbalance imply that superconducting state will

be more and more preferable as imbalance increases. But, as known from physical

considerations, this is not the case with imbalanced systems. So clearly HEE fails to

serve this purpose in this context. Usually for a condensed matter system one uses

free energy in order to say anything about the preferable state. With the concern we

mentioned it is unlikely that HEE alone could serve the purpose of free energy for

holographic superconductors.
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4.7 Appendix

For the sake of completeness and future reference, in this appendix we provide the ex-

pressions of hH2, χH2 and φH2 in terms of the independent parameters φH0, χH0, ψH1, vH1, q, rH .
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Chapter 5

Epilogue

In this last chapter we will summarize this thesis by focussing on the main results

and by discussing about the future prospects of our work.

Our aim in this thesis is to study different aspects of unusual imbalanced supercon-

ductivity. To that end, in chapter 1 after presenting, in some short sections, the basic

properties of superconductivity, we have detailed a general overview of imbalanced

superconductors in terms of both theoretical and experimental findings. We have also

incorporated a short motivation for studying holographic imbalanced superconduc-

tors in this thesis. In chapter 2, we studied a two-component, spin-polarized Fermi

gas using a novel mean-field, phenomenological Ginzburg-Landau free energy func-

tional with two competing order parameters. Our findings capture the basic features

of the experiment done by Shin et al [17]. This free energy is also shown to support

a tricritical point which is different from the conventional one. The specific heat is

different from the standard theory. In continuation to this chapter, in chapter 3, we

derive the phase diagram of FFLO superconducting state using Ginzburg-Landau free

energy. After outlining its derivation from the microscopic Hamiltonian of the system

in detail, we find that it has a very clear Lifshitz tricritical point. We find the specific
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heat jumps abruptly near the first-order line in the emergent phase diagram which is

very similar to the recent experimental observation in layered organic superconductor

by Lortz et al [65]. We also show that the region of the phase diagram where the

specific heat jumps can be probed by doing a dynamical analysis of the free energy.

After studying imbalanced superconductivity in the weak coupling limit in the

previous two chapters, in chapter 4 we study the behaviour of holographic entangle-

ment entropy (HEE) for imbalanced holographic superconductors which is a strongly-

coupled superconductor by construction. To calculate the HEE, we employ numerical

shooting method and consider the robust case of fully back-reacted gravity system.

The hairy black hole solution, calculated using numerical method, is then used to

compute the HEE for the superconducting case. The cases we study show that in

presence of a mismatch between two chemical potentials, below the critical temper-

ature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-

Nordström black hole phase. It is observed that the effect of chemical imbalance are

different in the contexts of black hole and superconducting phases. For black hole,

HEE increases with increasing imbalance parameter while it behaves oppositely for

the superconducting phase. The implications of these results are discussed.

Let us conclude this thesis by outlining some interesting prospects of future re-

search which our thesis opens up:

• Inclusion of higher order gradient terms in the free energy proposed in chapter 2

may lead to a new phase diagram. Logically it seems that it will be similar to

the phase diagram presented in chapter 3, but it needs to be confirmed as it

may reveal a connection between Sarma and FFLO states.

• A time-dependent Ginzburg-Landau analysis of the aforesaid free energy will be

another worthwhile problem. The connection of this study with the dynamical
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studies performed in microscopic Hubbard-like models may provide some new

insights.

• To extend the dynamical study of the GL free energy in chapter 3 beyond

Hartree approximation and see what it results in.

• To study covariant holographic entanglement entropy of imbalanced holographic

superconductor.

The study of unusual imbalanced superconductivity is an interesting and inter-

disciplinary problem and there are many unknown avenues left for exploration. We

hope that the studies presented in the present thesis provide a better understanding

of the present scenario and will lead to fruitful future research.

The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,

And I must follow, if I can,
Pursuing it with eager feet,

Until it joins some larger way,
Where many paths and errands meet.

And whither then? I cannot say.

The Fellowship of the Ring
J. R. R. Tolkien (1892–1973)



Bibliography

[1] H. K. Onnes., Leiden Comm. 120b, 122b, 124c (1911).

[2] Nobel Lectures, Physics 1901-1921 (Elsevier Publishing Company, Amsterdam,

1967).

[3] J. Hirsch, “The Lorentz force and superconductivity,” Physics Letters A 315,

474 – 479 (2003).

[4] L. N. Cooper, “Bound Electron Pairs in a Degenerate Fermi Gas,” Phys. Rev.

104, 1189–1190 (1956).

[5] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic Theory of Super-

conductivity,” Phys. Rev. 106, 162–164 (1957).

[6] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of Superconductivity,”

Phys. Rev. 108, 1175–1204 (1957).

[7] L. D. Landau and V. L. Ginzburg, “On the theory of superconductivity,” Journal

of Experimental and Theoretical Physics (USSR) 20, 1064 (1950).

[8] L. P. Gorkov, “Microscopic derivation of the Ginzburg-Landau equations in the

theory of superconductivity,” Sov. Phys. JETP 9, 1364–1367 (1959).

79



BIBLIOGRAPHY 80

[9] A. M. Clogston, “Upper Limit for the Critical Field in Hard Superconductors,”

Phys. Rev. Lett. 9, 266–267 (1962).

[10] B. S. Chandrasekhar, “A NOTE ON THE MAXIMUM CRITICAL FIELD OF

HIGH-FIELD SUPERCONDUCTORS,” Applied Physics Letters 1, 7–8 (1962).

[11] Y. Matsuda and H. Shimahara, “Fulde–Ferrell–Larkin–Ovchinnikov State in

Heavy Fermion Superconductors,” Journal of the Physical Society of Japan 76,

051005 (2007).

[12] G. Sarma, “On the influence of a uniform exchange field acting on the spins of the

conduction electrons in a superconductor,” Journal of Physics and Chemistry

of Solids 24, 1029 – 1032 (1963).

[13] W. V. Liu and F. Wilczek, “Interior Gap Superfluidity,” Phys. Rev. Lett. 90,

047002 (2003).

[14] S.-T. Wu and S. Yip, “Superfluidity in the interior-gap states,” Phys. Rev. A

67, 053603 (2003).

[15] J. Carlson and S. Reddy, “Asymmetric Two-Component Fermion Systems in

Strong Coupling,” Phys. Rev. Lett. 95, 060401 (2005).

[16] T.-L. Dao, M. Ferrero, A. Georges, M. Capone, and O. Parcollet, “Polarized

Superfluidity in the Attractive Hubbard Model with Population Imbalance,”

Phys. Rev. Lett. 101, 236405 (2008).

[17] Y.-i. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, “Phase diagram of

a two-component Fermi gas with resonant interactions,” Nature 451, 689–693

(2008).



BIBLIOGRAPHY 81

[18] P. Fulde and R. A. Ferrell, “Superconductivity in a Strong Spin-Exchange Field,”

Phys. Rev. 135, A550–A563 (1964).

[19] A. I. Larkin and Y. N. Ovchinnikov, “Inhomogeneous state of superconduc-

tivity,” Zh. Eksp. Teor. Fiz. 47, 1136–1146 (1964), [Sov. Phys. JETP 20, 762

(1965)].

[20] M. Alford, J. A. Bowers, and K. Rajagopal, “Crystalline color superconductiv-

ity,” Phys. Rev. D 63, 074016 (2001).

[21] D. F. Agterberg, M. Sigrist, and H. Tsunetsugu, “Order Parameter and Vortices

in the Superconducting Q Phase of CeCoIn5,” Phys. Rev. Lett. 102, 207004

(2009).

[22] Y.-a. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet,

S. K. Baur, and E. J. Mueller, “Spin-imbalance in a one-dimensional Fermi gas,”

Nature 467, 567–569 (2010).

[23] L. Radzihovsky, “Fluctuations and phase transitions in Larkin-Ovchinnikov

liquid-crystal states of a population-imbalanced resonant Fermi gas,” Phys. Rev.

A 84, 023611 (2011).

[24] J. Kajala, F. Massel, and P. Törmä, “Expansion dynamics of the Fulde-Ferrell-

Larkin-Ovchinnikov state,” Phys. Rev. A 84, 041601 (2011).

[25] Z. Cai, Y. Wang, and C. Wu, “Stable Fulde-Ferrell-Larkin-Ovchinnikov pairing

states in two-dimensional and three-dimensional optical lattices,” Phys. Rev. A

83, 063621 (2011).

[26] A. Bulgac, M. M. Forbes, and A. Schwenk, “Induced P-Wave Superfluidity in

Asymmetric Fermi Gases,” Phys. Rev. Lett. 97, 020402 (2006).



BIBLIOGRAPHY 82

[27] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and

Correlation Effects,” Phys. Rev. 140, A1133–A1138 (1965).

[28] K. Machida and H. Nakanishi, “Superconductivity under a ferromagnetic molec-

ular field,” Phys. Rev. B 30, 122–133 (1984).

[29] A. Buzdin and S. Polonskii, “Nonuniform state in quasi-1D superconductors,”

Sov. Phys. JETP 66, 422 (1987).

[30] K. Yang, “Inhomogeneous superconducting state in quasi-one-dimensional sys-

tems,” Phys. Rev. B 63, 140511 (2001).

[31] E. Zhao and W. V. Liu, “Theory of quasi-one-dimensional imbalanced Fermi

gases,” Phys. Rev. A 78, 063605 (2008).

[32] G. Orso, “Attractive Fermi Gases with Unequal Spin Populations in Highly

Elongated Traps,” Phys. Rev. Lett. 98, 070402 (2007).

[33] H. Hu, X.-J. Liu, and P. D. Drummond, “Phase Diagram of a Strongly Inter-

acting Polarized Fermi Gas in One Dimension,” Phys. Rev. Lett. 98, 070403

(2007).

[34] P. Kakashvili and C. J. Bolech, “Paired states in spin-imbalanced atomic Fermi

gases in one dimension,” Phys. Rev. A 79, 041603 (2009).

[35] G. G. Batrouni, M. H. Huntley, V. G. Rousseau, and R. T. Scalettar, “Exact

Numerical Study of Pair Formation with Imbalanced Fermion Populations,”

Phys. Rev. Lett. 100, 116405 (2008).

[36] M. Casula, D. M. Ceperley, and E. J. Mueller, “Quantum Monte Carlo study of

one-dimensional trapped fermions with attractive contact interactions,” Phys.

Rev. A 78, 033607 (2008).



BIBLIOGRAPHY 83

[37] T. Roscilde, M. RodrÃŋguez, K. Eckert, O. Romero-Isart, M. Lewenstein, E.

Polzik, and A. Sanpera, “Quantum polarization spectroscopy of correlations in

attractive fermionic gases,” New Journal of Physics 11, 055041 (2009).

[38] A. E. Feiguin and F. Heidrich-Meisner, “Pairing states of a polarized Fermi gas

trapped in a one-dimensional optical lattice,” Phys. Rev. B 76, 220508 (2007).

[39] M. Tezuka and M. Ueda, “Density-Matrix Renormalization Group Study of

Trapped Imbalanced Fermi Condensates,” Phys. Rev. Lett. 100, 110403 (2008).

[40] M. Machida, S. Yamada, M. Okumura, Y. Ohashi, and H. Matsumoto, “Cor-

relation effects on atom-density profiles of one- and two-dimensional polarized

atomic Fermi gases loaded on an optical lattice,” Phys. Rev. A 77, 053614

(2008).

[41] M. Rizzi, M. Polini, M. A. Cazalilla, M. R. Bakhtiari, M. P. Tosi, and R. Fazio,

“Fulde-Ferrell-Larkin-Ovchinnikov pairing in one-dimensional optical lattices,”

Phys. Rev. B 77, 245105 (2008).

[42] A. Lüscher, R. M. Noack, and A. M. Läuchli, “Fulde-Ferrell-Larkin-Ovchinnikov

state in the one-dimensional attractive Hubbard model and its fingerprint in

spatial noise correlations,” Phys. Rev. A 78, 013637 (2008).

[43] F. Heidrich-Meisner, G. Orso, and A. E. Feiguin, “Phase separation of trapped

spin-imbalanced Fermi gases in one-dimensional optical lattices,” Phys. Rev. A

81, 053602 (2010).

[44] M. Tezuka and M. Ueda, “Ground states and dynamics of population-

imbalanced Fermi condensates in one dimension,” New Journal of Physics 12,

055029 (2010).



BIBLIOGRAPHY 84

[45] G. Xianlong and R. Asgari, “Spin-density-functional theory for imbalanced in-

teracting Fermi gases in highly elongated harmonic traps,” Phys. Rev. A 77,

033604 (2008).

[46] E. A. Cornell and C. E. Wieman, “Nobel Lecture: Bose-Einstein condensation

in a dilute gas, the first 70 years and some recent experiments,” Rev. Mod.

Phys. 74, 875–893 (2002).

[47] W. Ketterle, “Nobel lecture: When atoms behave as waves: Bose-Einstein con-

densation and the atom laser,” Rev. Mod. Phys. 74, 1131–1151 (2002).

[48] B. DeMarco and D. S. Jin, “Onset of Fermi Degeneracy in a Trapped Atomic

Gas,” Science 285, 1703–1706 (1999).

[49] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J.

Hecker Denschlag, and R. Grimm, “Bose-Einstein Condensation of Molecules,”

Science 302, 2101–2103 (2003).

[50] M. Greiner, C. A. Regal, and D. S. Jin, “Emergence of a molecular Bose–Einstein

condensate from a Fermi gas,” Nature 426, 537–540 (2003).

[51] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, S. Gupta, Z.

Hadzibabic, and W. Ketterle, “Observation of Bose-Einstein Condensation of

Molecules,” Phys. Rev. Lett. 91, 250401 (2003).

[52] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, “Fermionic

Superfluidity with Imbalanced Spin Populations,” Science 311, 492–496 (2006).

[53] G. B. Partridge, W. Li, R. I. Kamar, Y.-a. Liao, and R. G. Hulet, “Pairing and

Phase Separation in a Polarized Fermi Gas,” Science 311, 503–505 (2006).



BIBLIOGRAPHY 85

[54] A. Bianchi, R. Movshovich, C. Capan, P. G. Pagliuso, and J. L. Sarrao, “Possi-

ble Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in CeCoIn5,” Phys.

Rev. Lett. 91, 187004 (2003).

[55] H. Radovan, N. Fortune, T. Murphy, S. Hannahs, E. Palm, S. Tozer, and D.

Hall, “Magnetic enhancement of superconductivity from electron spin domains,”

Nature 425, 51–55 (2003).

[56] R. Casalbuoni and G. Nardulli, “Inhomogeneous superconductivity in condensed

matter and QCD,” Rev. Mod. Phys. 76, 263–320 (2004).

[57] H. Shimahara, “Fulde-Ferrell state in quasi-two-dimensional superconductors,”

Phys. Rev. B 50, 12760–12765 (1994).

[58] H. Shimahara, “Fulde-Ferrell-Larkin-Ovchinnikov State in a Quasi-Two-

Dimensional Organic Superconductor,” Journal of the Physical Society of Japan

66, 541–544 (1997).

[59] H. Burkhardt and D. Rainer, “Fulde-Ferrell-Larkin-Ovchinnikov state in layered

superconductors,” Annalen der Physik 506, 181–194 (1994).

[60] J. Singleton, J. A. Symington, M.-S. Nam, A. Ardavan, M. Kurmoo, and P.

Day, “Observation of the Fulde-Ferrell-Larkin-Ovchinnikov state in the quasi-

two-dimensional organic superconductor κ− (BEDT-TTF)2Cu(NCS)2 (BEDT-

TTF=bis(ethylene-dithio)tetrathiafulvalene),” Journal of Physics: Condensed

Matter 12, L641 (2000).

[61] M. A. Tanatar, T. Ishiguro, H. Tanaka, and H. Kobayashi, “Magnetic field-

temperature phase diagram of the quasi-two-dimensional organic superconduc-

tor λ − (BETS)2GaCl4 studied via thermal conductivity,” Phys. Rev. B 66,

134503 (2002).



BIBLIOGRAPHY 86

[62] S. Uji et al., “Vortex Dynamics and the Fulde-Ferrell-Larkin-Ovchinnikov State

in a Magnetic-Field-Induced Organic Superconductor,” Phys. Rev. Lett. 97,

157001 (2006).

[63] L. Balicas, J. S. Brooks, K. Storr, S. Uji, M. Tokumoto, H. Tanaka, H.

Kobayashi, A. Kobayashi, V. Barzykin, and L. P. Gor’kov, “Superconductiv-

ity in an Organic Insulator at Very High Magnetic Fields,” Phys. Rev. Lett. 87,

067002 (2001).

[64] M. Houzet, A. Buzdin, L. Bulaevskii, and M. Maley, “New Superconducting

Phases in Field-Induced Organic Superconductor λ − (BETS)2FeCl4,” Phys.

Rev. Lett. 88, 227001 (2002).

[65] R. Lortz, Y. Wang, A. Demuer, P. H. M. Böttger, B. Bergk, G. Zwicknagl, Y.

Nakazawa, and J. Wosnitza, “Calorimetric Evidence for a Fulde-Ferrell-Larkin-

Ovchinnikov Superconducting State in the Layered Organic Superconductor

κ− (BEDT-TTF)2Cu(NCS)2,” Phys. Rev. Lett. 99, 187002 (2007).

[66] H. Bethe, “Zur Theorie der Metalle,” Zeitschrift für Physik 71, 205–226 (1931).

[67] S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,”

Class. Quant. Grav. 26, 224002 (2009).

[68] S. Sachdev, “What Can Gauge-Gravity Duality Teach Us About Condensed

Matter Physics?,” Annual Review of Condensed Matter Physics 3, 9–33 (2012).

[69] A. Green, “An introduction to gauge-gravity duality and its application in con-

densed matter,” Contemporary Physics 54, 33–48 (2013).

[70] J. McGreevy, “Holographic duality with a view toward many-body physics,”

Adv.High Energy Phys. 2010, 723105 (2010).



BIBLIOGRAPHY 87

[71] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building a Holographic

Superconductor,” Phys. Rev. Lett. 101, 031601 (2008).

[72] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Holographic Superconduc-

tors,” JHEP 0812, 015 (2008).

[73] J. Erdmenger, V. Grass, P. Kerner, and T. H. Ngo, “Holographic Superfluidity

in Imbalanced Mixtures,” JHEP 1108, 037 (2011).

[74] F. Bigazzi, A. L. Cotrone, D. Musso, N. P. Fokeeva, and D. Seminara, “Unbal-

anced Holographic Superconductors and Spintronics,” JHEP 1202, 078 (2012).

[75] M. M. Forbes, E. Gubankova, W. V. Liu, and F. Wilczek, “Stability Criteria

for Breached-Pair Superfluidity,” Phys. Rev. Lett. 94, 017001 (2005).

[76] K. Machida, T. Mizushima, and M. Ichioka, “Generic Phase Diagram of Fermion

Superfluids with Population Imbalance,” Phys. Rev. Lett. 97, 120407 (2006).

[77] H. Hu and X.-J. Liu, “Mean-field phase diagrams of imbalanced Fermi gases

near a Feshbach resonance,” Phys. Rev. A 73, 051603 (2006).

[78] S. Pilati and S. Giorgini, “Phase Separation in a Polarized Fermi Gas at Zero

Temperature,” Phys. Rev. Lett. 100, 030401 (2008).

[79] M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle, “Direct obser-

vation of the superfluid phase transition in ultracold Fermi gases,” nature 442,

54–58 (2006).

[80] Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle,

“Observation of Phase Separation in a Strongly Interacting Imbalanced Fermi

Gas,” Phys. Rev. Lett. 97, 030401 (2006).



BIBLIOGRAPHY 88

[81] C. H. Schunck, Y. Shin, A. Schirotzek, M. W. Zwierlein, and W. Ketterle,

“Pairing Without Superfluidity: The Ground State of an Imbalanced Fermi

Mixture,” Science 316, 867–870 (2007).

[82] G. B. Partridge, W. Li, Y. A. Liao, R. G. Hulet, M. Haque, and H. T. C. Stoof,

“Deformation of a Trapped Fermi Gas with Unequal Spin Populations,” Phys.

Rev. Lett. 97, 190407 (2006).

[83] K. Maki and T. Tsuneto, “Pauli Paramagnetism and Superconducting State,”

Progress of Theoretical Physics 31, 945–956 (1964).

[84] M. M. Parish, F. Marchetti, A. Lamacraft, and B. Simons, “Finite-temperature

phase diagram of a polarized Fermi condensate,” Nature Physics 3, 124–128

(2007).

[85] E. I. Blount and C. M. Varma, “Electromagnetic Effects near the

Superconductor-to-Ferromagnet Transition,” Phys. Rev. Lett. 42, 1079–1082

(1979).

[86] D. E. Sheehy, “Polarized superfluids near their tricritical point,” Phys. Rev. A

79, 033606 (2009).

[87] D. Agterberg and K. Yang, “The effect of impurities on Fulde-Ferrell-Larkin-

Ovchinnikov superconductors,” Journal of Physics: Condensed Matter 13, 9259

(2001).

[88] A. Buzdin and H. Kachkachi, “Generalized Ginzburg-Landau theory for nonuni-

form FFLO superconductors,” Physics Letters A 225, 341 – 348 (1997).



BIBLIOGRAPHY 89

[89] R. Combescot and C. Mora, “Transition to Fulde-Ferrel-Larkin-Ovchinnikov

phases near the tricritical point: an analytical study,” The European Physical

Journal B - Condensed Matter and Complex Systems 28, 397–406 (2002).

[90] B.-L. Young, R. R. Urbano, N. J. Curro, J. D. Thompson, J. L. Sarrao, A. B.

Vorontsov, and M. J. Graf, “Microscopic Evidence for Field-Induced Magnetism

in CeCoIn5,” Phys. Rev. Lett. 98, 036402 (2007).

[91] M. Kenzelmann et al., “Coupled Superconducting and Magnetic Order in Ce-

CoIn5,” Science 321, 1652–1654 (2008).

[92] G. Koutroulakis, M. D. Stewart, V. F. Mitrović, M. Horvatić, C. Berthier, G.

Lapertot, and J. Flouquet, “Field Evolution of Coexisting Superconducting and

Magnetic Orders in CeCoIn5,” Phys. Rev. Lett. 104, 087001 (2010).

[93] K. Kumagai, H. Shishido, T. Shibauchi, and Y. Matsuda, “Evolution of Param-

agnetic Quasiparticle Excitations Emerged in the High-Field Superconducting

Phase of CeCoIn5,” Phys. Rev. Lett. 106, 137004 (2011).

[94] B. Bergk, A. Demuer, I. Sheikin, Y. Wang, J. Wosnitza, Y. Nakazawa, and R.

Lortz, “Magnetic torque evidence for the Fulde-Ferrell-Larkin-Ovchinnikov state

in the layered organic superconductor κ−(BEDT-TTF)2Cu(NCS)2,” Phys. Rev.

B 83, 064506 (2011).

[95] J. A. Wright, E. Green, P. Kuhns, A. Reyes, J. Brooks, J. Schlueter, R. Kato, H.

Yamamoto, M. Kobayashi, and S. E. Brown, “Zeeman-Driven Phase Transition

within the Superconducting State of κ− (BEDT-TTF)2Cu(NCS)2,” Phys. Rev.

Lett. 107, 087002 (2011).



BIBLIOGRAPHY 90

[96] R. Beyer, B. Bergk, S. Yasin, J. A. Schlueter, and J. Wosnitza, “Angle-

Dependent Evolution of the Fulde-Ferrell-Larkin-Ovchinnikov State in an Or-

ganic Superconductor,” Phys. Rev. Lett. 109, 027003 (2012).

[97] M. D. Croitoru and A. I. Buzdin, “Resonance in-plane magnetic field effect as

a means to reveal the Fulde-Ferrell-Larkin-Ovchinnikov state in layered super-

conductors,” Phys. Rev. B 86, 064507 (2012).

[98] M. D. Croitoru, M. Houzet, and A. I. Buzdin, “In-Plane Magnetic Field

Anisotropy of the Fulde-Ferrell-Larkin-Ovchinnikov State in Layered Super-

conductors,” Phys. Rev. Lett. 108, 207005 (2012).

[99] A. Aharony, E. Domany, and R. M. Hornreich, “Renormalization-group analysis

of Lifshitz tricritical behavior,” Phys. Rev. B 36, 2006–2014 (1987).

[100] A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski, Methods of Quantum

Field Theory in Statistical Physics, revised ed. (Dover Publications, 1975).

[101] F. Konschelle, J. Cayssol, and A. I. Buzdin, “Anomalous fluctuation regimes at

FFLO transition,” Europhysics Letters 79, 67001 (2007).

[102] I. Sodemann, D. A. Pesin, and A. H. MacDonald, “Density, spin, and pairing

instabilities in polarized ultracold Fermi gases,” Phys. Rev. A 85, 033628 (2012).

[103] A. Bray, “Theory of phase-ordering kinetics,” Advances in Physics 43, 357–459

(1994).

[104] A. Basu and J. K. Bhattacharjee, “Scaling in a temperature quench in systems

with a Lifshitz point: nonconserved and conserved order parameters,” Journal

of Physics A: Mathematical and General 37, 1111 (2004).

[105] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333–2346 (1973).



BIBLIOGRAPHY 91

[106] S. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43,

199–220 (1975).

[107] G. ’t Hooft, “Dimensional reduction in quantum gravity,” arXiv gr-qc/9310026

(1993).

[108] L. Susskind, “The World as a hologram,” J. Math. Phys. 36, 6377–6396 (1995).

[109] W. Fischler and L. Susskind, “Holography and cosmology,” arXiv hep-

th/9806039 (1998).

[110] D. Bigatti and L. Susskind, “TASI lectures on the holographic principle,” arXiv

hep-th/0002044 pp. 883–933 (1999).

[111] J. M. Maldacena, “The Large N limit of superconformal field theories and su-

pergravity,” Adv. Theor. Math. Phys. 2, 231–252 (1998).

[112] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys.

B 72, 461 (1974).

[113] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2,

253–291 (1998).

[114] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N

field theories, string theory and gravity,” Phys. Rept. 323, 183–386 (2000).

[115] E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS

/ CFT correspondence,” arXiv hep-th/0201253 pp. 3–158 (2002).

[116] J. Erdmenger, N. Evans, I. Kirsch, and E. Threlfall, “Mesons in Gauge/Gravity

Duals - A Review,” Eur. Phys. J. A 35, 81–133 (2008).



BIBLIOGRAPHY 92

[117] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy

from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006).

[118] S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,”

JHEP 0608, 045 (2006).

[119] D. V. Fursaev, “Proof of the holographic formula for entanglement entropy,”

JHEP 0609, 018 (2006).

[120] M. Headrick, “Entanglement Renyi entropies in holographic theories,” Phys.

Rev. D 82, 126010 (2010).

[121] H. Casini and M. Huerta, “Positivity, entanglement entropy, and minimal sur-

faces,” JHEP 1211, 087 (2012).

[122] T. Nishioka, S. Ryu, and T. Takayanagi, “Holographic Entanglement Entropy:

An Overview,” J. Phys. A 42, 504008 (2009).

[123] T. Takayanagi, “Entanglement Entropy from a Holographic Viewpoint,” Class.

Quant. Grav. 29, 153001 (2012).

[124] T. Albash and C. V. Johnson, “Holographic Studies of Entanglement Entropy

in Superconductors,” JHEP 1205, 079 (2012).

[125] T. Albash and C. V. Johnson, “Evolution of Holographic Entanglement Entropy

after Thermal and Electromagnetic Quenches,” New J. Phys. 13, 045017 (2011).

[126] R.-G. Cai, S. He, L. Li, and Y.-L. Zhang, “Holographic Entanglement Entropy

on P-wave Superconductor Phase Transition,” JHEP 1207, 027 (2012).

[127] R.-G. Cai, L. Li, L.-F. Li, and R.-K. Su, “Entanglement Entropy in Holographic

P-Wave Superconductor/Insulator Model,” JHEP 1306, 063 (2013).



BIBLIOGRAPHY 93

[128] N. P. Fokeeva, Master’s thesis, Universitá degli studi di Firenze, Florence, Italy,

2011.

[129] J. Alsup, E. Papantonopoulos, and G. Siopsis, “A Novel Mechanism to Generate

FFLO States in Holographic Superconductors,” Phys. Lett. B 720, 379–384

(2013).

[130] J. Alsup, E. Papantonopoulos, and G. Siopsis, “FFLO States in Holographic

Superconductors,” arXiv 1208.4582 (2012).

[131] J. Alsup, E. Papantonopoulos, G. Siopsis, and K. Yeter, “Spontaneously Gen-

erated Inhomogeneous Phases via Holography,” arXiv 1305.2507 (2013).

[132] T. Hertog, “Towards a Novel no-hair Theorem for Black Holes,” Phys. Rev. D

74, 084008 (2006).

[133] S. S. Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,”

Phys. Rev. D 78, 065034 (2008).

[134] R. Banerjee, S. K. Modak, and D. Roychowdhury, “A unified picture of phase

transition: from liquid-vapour systems to AdS black holes,” JHEP 1210, 125

(2012).


