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Chapter 1 Introduction

1.1 Complex systems

What is a complex system? A complex system is characterized by some proper-

ties which add features driving complexity to a however simple looking system.

Among many, few properties stand out [1]. Internal structure and subsystem hi-

erarchy [2], stochastic evolution and dynamical adaptation [3], uncertainty and

emergence of unpredictable features constructs the periphery of any complex dy-

namical system [4,5].

Ecosystem [6] along with evolving social dynamics [7], financial markets [8],

biological developments [9, 10], all are prototypical examples of complex adap-

tive systems. In these above-mentioned systems and many such other systems,

localized interactions and stochastic selection processes develop emerging mul-

tilevel dynamics. The uncertain nature of the behavior of components, stochastic

adaptation and dynamic evolution under different internal and external pertur-

bations give rise to features, almost unpredictable, that become an integral part

of such systems are known as emerging features. The components of the system

follow some prefixed microscopic rules.

Ranging from evolving species to natural phenomena like earthquakes [11,12],

social organization and most of the observed natural structures have complex-

ity built within. Quantifying the probabilistic features and determining how it

propagates through the system is a key aspect of reliable prediction and control

of complex systems. Thus, complex systems are identified by their feature of

displaying emergent organization without a central organizing principle, that is

what we call an emergence. Such systems can’t be analyzed by decomposing the

system into subsystem levels which break the scales that characterize the system.

Here the construction of statistical tools for analyzing complex systems plays a

vital role.

So the question that becomes important to answer is what lay the basis of un-

derstanding complex systems. From completely different interactive microscopic

2



Chapter 1 Introduction

(a) (b)

Figure 1.1: Examples of collective motion: (a) A small flock of birds a (b) a large
flock of Starlings b

dynamics, complex systems give rise to macroscopic features that reflect in spon-

taneous evolution of long-range order, and consequently, universality classes of

phase transitions emerge. The qualitative description of any complex system de-

pends on how long-range order develops, i.e. how correlation among different

quantities develop in systems. Under critical emergent behavior, in what scales

the long-range correlation develops and the universality classes that each system

belongs to, lay the foundation for studying complex natural systems.

In this chapter, we will discuss two of the most fascinating complex systems,

i.e., the collective behavior of self-propelled creatures moving in free space, e.g.,

bird flocks [13, 14] and the dynamical process of naming games, displaying eye-

catching emergent features like self-organization and global consensus, with lo-

cal, spatially limited interactive mechanism. In the light of the most fascinating

behaviors in natural systems, well supported by physical laws, models and uni-

versal constructions these two models will spearhead the analysis of the dynami-

cal evolution of long-range order in dynamical systems and will define the course

of the thesis.

a
Source: https://www.tes.com/lessons/wHOPg5ggmf9pxw/ock-words

b
Source: https://www.theguardian.com/environment/gallery/2014/nov/06/starling-murmurations-in-pictures

3



Chapter 1 Introduction

1.2 Collective behavior

Movements of flocks of birds (Fig. 1.1), schools of fishes, swarms of bees, bacterial

colonies, etc. are common examples of collective motion in nature. These groups

of creatures move together and along the same direction irrespective of their

sizes. The topic of studying the properties and characteristics of such groups

in motion has been popularly known as the ‘Collective motion’ or ‘Collective be-

havior’. Over last several decades, this topic has attracted the attention of the

scientific community, for both experimental as well as theoretical research.

In the language of collective dynamics, the individual creatures are referred

as ‘agent’. In a collection, agents are considered as short-sighted. An individual

agent is influenced by a group of other agents within a well-defined neighbor-

hood around the individual agents, who in turn interact with their own neighbors

etc. Thus a pair of agents feels the influence of each other, even though they are

positioned at a large distance of separation. Eventually, all agents in the entire

flock become correlated, and the whole group acts in unison. In this way, even a

short-range interaction among the agents leads to a unique global behavior of the

entire collection. Such a flock pattern is called ‘cohesive’ when, on the average, a

certain characteristic distance is maintained by each agent from other agents. At

the same time, they are said to be ‘coherent’ since all agents travel along the same

direction in space. Therefore, in this class of collective dynamical systems, the

features of coherence and cohesion had been regarded as the signature of long-

range correlation. These correlations emerge spontaneously from the dynamical

rules of the model systems described by the microscopic interactions.

These collective features emerge spontaneously and are maintained by the sys-

tem collectively, if not exposed to quite high perturbations. Even in the presence

of some external perturbations, e.g. pressure from a nearby predator in the case

of a school of fishes or a flock of birds, the system depicts adaptive mechanism,

and up to a certain threshold of such external perturbation, the emergent struc-

4



Chapter 1 Introduction

tures are resilient. The question posed by T. Vicsek [15] and in the quite broader

sense is often asked by biologists, physicists and chemists, is, ”Are these observed

motion patterns system specific?”. Subsequent studies suggested that these kinds

of qualitative phenomena have been observed in a large class of systems. These

systems follow general and often simpler microscopic laws and similar complex

qualitative features emerge spontaneously. All these class of systems is often said

to belong to systems depicting “collective phenomena/behavior” (CB).

How such collective patterns emerge from local microscopic dynamics, what

kind of models or local interaction rules ensure such global correlations and

order-disorder transitions in the presence of noise defines the outline of the pre-

liminary studies on collective dynamical systems. The simplest model, famously

known as “Vicsek Model” [16] after the name of Tamas Vicsek, described the

basic features of collective phenomena and is qualitatively followed by many in

different variants of the problem.

1.2.1 The Vicsek model

The Vicsek model is a well-known model in collective behavior [16]. In its two-

dimensional version, N agents are released at random locations, (xi , yi) within a

square box of size L × L fitted with the periodic boundary condition. All agents

move with a constant self-propulsion speed v0, and the directions θi of their ve-

locities have been drawn from a uniform distribution between 0 and 2π. The

agents are considered to be massless point particles, and hence hard core colli-

sions do not take place. Each agent is associated with a rangeR (Fig. 1.2(a)), same

for all agents. Each agent interacts with nR(t) agents, including itself, within this

range R. The time t is measured by the number of updates per agent.

At any arbitrary intermediate time t, during the dynamical evolution, the sys-

tem passes through a series of microstates. Each microstate is defined by the

specific positions and the directions of motion of all the N agents. Let us denote

5



Chapter 1 Introduction

the velocity vector of the i-th agent at time t as vi(t) having the orientational an-

gle θi(t). At the next time step (t + 1), the orientational angles θi(t + 1) are then

estimated for all agents in a synchronous manner. The agent i interacts with all

nR(t) (Fig. 1.2(b)) agents within its neighborhood, including itself. The resultant

direction θi(t + 1), of all the velocity vectors within R, is determined and is as-

signed as the direction of the velocity of agent i at time (t + 1). The resultant is

estimated as (Fig. 1.2(c)),

θi(t +1) = tan−1[
∑

j∈R
sinθj(t)/

∑

j∈R
cosθj(t)], (1.1)

where the summation runs over all nR(t) agents withinR. Since individual agents

have distinctly different neighborhoods, even before the application of noise, dif-

ferent agents may have different directions of motion. With their constant self-

propulsion speed v0, all the agents are then displaced along their updated veloc-

ity directions. This update takes place synchronously. The velocities of all the

agents at the next time step (t +1) are then determined using the velocities of all

the agents at time t. Following the dynamics, after a transient phase, the system

relaxes to a completely coherent phase in the noise-free case. The agents then

depict coherent and cohesive structures, and the motion is purely ballistic.

However, with the introduction of scalar noise the Eqn. (1.1) is modified as:

θi(t +1) = tan−1[
∑

j∈R
sinθj(t)/

∑

j∈R
cosθj(t)] + ζ(η). (1.2)

The noise term ζ(η) quantifies the amount of error that is added to the orien-

tational angle of each agent participating in an interaction. Qualitatively, any

other kind of perturbation can be introduced in the microscopic rules governing

the dynamics. Here η measures the strength of the noise and ζ(η) represents a

random angle for each agent drawn from a uniform distribution within [-η/2,

6



Chapter 1 Introduction
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Figure 1.2: In (a) the red dots are the positions of the particles and the corre-
sponding blue arrows are the associated velocity directions of each
particle. The Vicsek interaction radius of a particle (big red dot) has
been shown using a blue circle around the particle. In (b) the same in-
teracting neighborhood of the particle with velocity v̄1 and its neigh-
bors with velocities v̄2, v̄3 and v̄4 have been depicted. The resultant
velocity direction R̄1, of the same particle has been shown in (c).

η/2]. Each agent is then displaced along its direction of motion θi(t + 1). With

the introduction of noise in the system, the completely coherent structures start

to dismantle, and the amount of coherence systematically decays with increasing

noise strength.

To quantify the amount of coherence or alternatively the amount of order, the

instantaneous global order parameter Ω(t,η,L) is defined for the entire system

as the magnitude of the velocity vector of an agent, averaged over all agents and

scaled by the speed v0.

Ω(t,η,L) =
1

Nv0

∣

∣

∣

∣

∣

∑

j∈N
vj(t)

∣

∣

∣

∣

∣

. (1.3)

In the stationary state Ω(t,η,L) is estimated over a long duration of time and is

averaged over time to find Ω(η,L).

With systematically increasing noise strength, the system shows a transition

from an ordered phase with a high value of the order parameter to a disordered

phase with almost zero value of the order parameter. The motions of individual

7



Chapter 1 Introduction

agents in the disordered phase, are diffusive. The transition, in the study of Vic-

sek et. al. is claimed to be of a continuous type, in the thermodynamic limit. The

following set of equations in eqn. 1.4

Ω(η,ρ) ∼



























[ηc(ρ)− η]β

[ρ − ρc(η)]δ
(1.4)

defines the behavior of the order parameter at criticality and are similar to the

behavior of order parameter in case of a standard second order transition [17].

Here β and δ are the critical exponents that characterize the critical behavior of

the model, η is the typical noise strength and ρ is the particle density. ηc(ρ) and

ρc(η) are respectively the critical noise and critical density in the thermodynamic

limit, L→∞. This more or less summarizes the model and its behavior around

criticality.

1.2.2 Long-range order in 2D dynamical XY model

As soon as the Vicsek model was introduced, the observed symmetry breaking

and the existence of a long-range ordered phase at high temperature like regimes

depicted by the model with almost equivalent dynamical rules like 2D X-Ymodel

where the velocity in the Vicsek model plays the similar role as that of spins in

the XY model, draw interest of many in this direction. In the same year, 1995,

J. Toner and Y. Tu [18] explained the behavior following a continuum descrip-

tion of such a model. They explained that what makes the long-range ordered

state stable in this model is the existence of a convection term and is the essential

difference with the equilibrium XY model where no long-range ordered phase

is observed in 2D. The non-equilibrium effects of the nonlinear terms in the dy-

namical equation stabilize the long-range ordered state even in two dimensions.

From Renormalization Group analysis they also claimed that this model is dif-

ferent from its equilibrium counterpart in all spatial dimension, d < 4. In a later

8



Chapter 1 Introduction

study [19] of the same dynamics, they have shown that Galilean invariance is not

present in such a dynamics and presence of more than one non-zero sound speeds

of propagation along the mean direction is possible. Also, anomalous scaling re-

lations has also been predicted and are justified by showing attenuation effect of

sound waves.

1.2.3 Transition: Continuous or Discontinuous

With the subsequent studies [18–20] focusing on the scaling relations of the tran-

sition observed, quite surprisingly, in the 2D Vicsek model, Chaté. et al. [21]

came up with another twist in the tale. In their study, they investigated this

fundamental aspect of collective motion rigorously and questioned the continu-

ous nature of the transition. Quite elaborated numerical results were presented

with the indication that there exists a “crossover” system size, L∗, beyond which,

independent of the magnitude of the self-propulsion speed, the discontinuous

character of the transition appears. It was also claimed that, in the thermody-

namic limit, the discontinuous character of the critical transition in models of

collective systems, is the “true” asymptotic behavior. It was argued in support of

their observations that for the set of density and self-propulsion speed assumed

in the Vicsek’s original paper, the crossover system size is larger compared to the

sizes in which the simulations have been performed. With a very small density

ρ = 1/8 and self-propulsion speed v = 0.50 it was shown [21] that the Vicsek

model shows a discontinuous transition in the thermodynamic limit.

They introduced another kind of noise, the vectorial noise, in contrast to the

angular/scaler noise incorporated in the Vicsek’s model. The argument in favor

of a different kind of noise is as follows: The agents can make an error while

estimating the velocity directions of its neighbors. The noise then adds up as an

error with all individual agents velocity vector. The corresponding L∗ is shown

to be comparatively smaller and hence for high densities comparatively smaller

9



Chapter 1 Introduction

system sizes suffice to show the critical behavior in the thermodynamic limit.

In 2006, however, M. Nagy et. al., in support of the study of Vicsek [16] and the

claim of a continuous transition, placed some critically analyzed arguments [22].

It was categorically shown in this study that, for larger self-propulsion speeds

the boundary effects are predominant and as a result, the critical behavior for

larger self-propulsion speeds are not conclusive. The discontinuous transition is

an artifact of the larger speeds. There exist a smaller speed regime, v0 ≤ 0.10,

where the diffusion is isotropic, the boundary effects are negligible, and hence

the critical behavior is conclusive, and in this regime, the transition is found to

be continuous. However, for the speed regime v0 ≥ 0.30 the strongly anisotropic

diffusion has been observed due to the strong boundary effects. Nagy et. al.

has claimed that in this regime the boundary effects are so strong that the ob-

served discontinuous transitions might not be the actual critical behavior of the

problem. Further it was also stated, “the motion of the particles in such systems

are quasi-continuous, i.e., usually the reaction time of the birds are significantly

faster than the characteristic time that is needed to travel through their inter-

acting neighborhood. This condition imposes the following constraint on the

update time ∆t in the numerical simulations: ∆t≪ R/v” [16], where v is the self-

propulsion speed. This constraint is satisfied in the small velocity regime. The

large velocity regime ∆t≫ 0.30, assumed by Chaté et. al. [21], might be a reason-

able approximation in case of rare flocking processes (e.g., ‘turbulent’ motion of

escaping birds during predator attack), however, due to strong boundary effects

in those situations, any conclusive critical behavior is almost impossible.

Baglietto and Albano [23] also exhibited that for smaller v, even in the limit

when the speed goes to zero (only except when it is exactly equal to zero), the

disorder to order transition is continuous and is independent of the actual value

of the self-propulsion speed v in this regime.
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drodynamic description, reverified the existence of high density band-like struc-

tures. The critical analysis in their study identified three flocking states, namely

the “Fluctuating Flocking state” in the low speed high density regime, the “striped

phase” with properly formed bands in the high density and high speed regime

and an “isotropic stable state” in the low density regime, for any speed. They

claimed that there exist a critical self-propulsion speed vc(ρ) that separates the

polarized moving state with large anomalous fluctuations (below vc(ρ)) from

striped phase moving with high speed (above vc(ρ)). These states are however

separated from the stable isotropic state by a critical density ρc(v). From the sta-

bility analysis, it has been observed that the fluctuating flocking states are the

result of giant number fluctuations around the criticality. Due to the convective

nonlinearities, the stability of the propagating front wave solutions that corre-

spond to the high density band formation, sets in.

1.2.5 Topological interaction

From binary collision model to model with a repulsive term, with acceleration

dependent alignment, many variants of the Vicsek model has been studied aim-

ing to understand the critical behavior of collective phenomena. The consequent

numerical and analytic studies were aimed at identifying the type of the transi-

tion and the microscopic features driving the system to form stable long-range

order in the system. However, with the Starflag group [26] presenting their ex-

perimental results debriefing some astonishing results, propelled the study of

collective behavior in another direction. In their study, they claimed that the

density dependent metric interaction (neighborhood specified by an interaction

radius R) is far from being practical. Observing the angular density distribution

of neighboring birds in flocks of Starlings, it has been found to be anisotropic. It

implies that it is more likely for a Starling to keep its nearest neighbor at its two

sides instead of keeping them on the front and back and that eventually defines

12
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their neighborhood. Fishes [27] have also been found to interact with neighbors

determined by topological rules. The neighborhood forms a Voronoi geometric

structure that is topologically unique and hence the neighborhood is termed as

the “topological neighborhood” which fixes the number of neighbors that the in-

dividual birds can interact with. The order-disorder transition observed in the

models of collective motion with the topological interactions [28–30] and the ob-

served ordered phase at the finite density regime is found to be different from

that of its metric counterpart [31].

1.2.6 Plan of the thesis

As stated in the above discussion, the phenomenon of collective behavior is being

studied with great interest in systems exhibiting non-equilibrium phase transi-

tion under driven noise [15, 18, 20, 32–37]. With tuning the noise parameter to

a vanishingly small value, such a system of co-moving agents, spontaneously ar-

rives at an ordered state while evolving dynamically from any arbitrary initial

state. On the other hand for stronger noise, the order parameter vanishes [16].

In some studied models in the literature, the nature of the associated transition

has been suggested to be ‘continuous’ [16, 26, 38–40] whereas in some other ex-

amples ‘discontinuous’ transitions have been claimed [24, 41] to exist. The in-

teraction of an agent with other agents in its local neighborhood determines the

dynamical behavior of the agent. Here the neighborhood is determined in terms

of Euclidean distance [16] or topological distance [26, 28, 30]. Moreover in the

low noise regime, occurrence of facets like high density traveling bands was re-

vealed in later studies [21, 24] and arguments were put forward in favor of a

discontinuous transition. Further, it has also been argued that by tuning the self-

propulsion speed of agents one can switch over from continuous to discontinuous

transitions [22].

Almost all models studying collective phenomena found in literature has as-
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sumed that the flockmoves in a space having a periodic boundary. Helical, hexag-

onal and other boundaries have also been considered but only in the context of

band formation. A periodic boundary condition is, however, a jargon and quite

non-physical for a system limited to a small regime in infinite space. Also, as

stated previously that the field study by the StarFlag group indicated in support

of the topological distance interactions in co-moving systems rather than met-

ric distance [26], citing the observations on the flocks of Starlings. The birds in

the Starling flock prefer to keep its nearest neighbor at its two sides instead of

keeping them on the front and back, and that eventually defines their neighbor-

hood. Fishes [27] have also been found to interact with neighbors determined by

topological rules.

These studies prompted us to study the collective motion of flocking phenom-

ena in two dimensions using the interactions depending on the topological dis-

tance under open boundary conditions.

In Chapter 2, a detailed numerical analysis of the topological distance depen-

dent model for collective motion under open boundary conditions with and with-

out noise has been described [40]. Few interesting and new features such as cyclic

and other stationary states, observed in our model, would be debriefed. A simple

mapping of our model to a 2D X-Y model has also been discussed, and formation

of vortex-antivortex pairs have been studied on the square lattice as well [40].

The basic features of flocking, i.e. coherence and cohesion, has been extensively

observed via different interactive mechanism among collectively moving agents.

Two such grossly studied interactive mechanisms are the metric distance inter-

action model [16] and the topological distance interaction model [29]. Though

similar in basic features like coherence and cohesion, these models show quite

drastic differences in their critical behavior. As discussed above, in the pres-

ence of noise the system goes from an ordered state to a disordered state with
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increasing noise strength. In the models employing the metric distance interac-

tion, the transition from an ordered state to a disordered one is found to be a

discontinuous one, with all features of typical discontinuous transition e.g nega-

tive dip in fourth order Binder cumulant [42–44], double hump order parameter

distribution, flip flop between the metastable states near the transition point etc.

On the other hand, a continuous transition has been observed for models with

topological distance interactions. The basic differences between two such inter-

actions are up for debate, and many extensive studies have been performed on

such behaviors. As a result, astonishing properties like high density band forma-

tion has been observed and that prompted the researchers to somewhat conclude

that density fluctuation defines the type of transition in such collectively moving

systems.

In Chapter 3, a binary interaction model of flocking has been introduced [45].

In a binary interaction model, agents modify their directions according to the

direction of its nth neighbor following some specific rules. This n is a parameter

of the model. Tuning this parameter and analyzing the system near criticality,

a crossover form a discontinuous transition to a continuous transition has been

observed with increasing the parameter value n. Stability analysis around the

criticality, using hydrodynamic description of the model, for different n values in

this binary interaction model, has also be performed and discussed elaborately

in the light of the density fluctuation driven transitions in collective phenomena

[45].

In chapter 4, a modified version of the Vicsek Model, would be described, with

a quenched range of interactions. Here, in contrast with all other models, the

range of interactions are quenched in space in the form of an underlying lattice

structure, and particles within each interaction zone interact. With this simple

modification, a set of non-trivial band structures has been observed. A formu-

lation of characterizing different band structures has been proposed using three
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numbers associated with each structure, i.e., the number of bands simultaneously

moving, the intersection number of each bandwith the x-axis and the intersection

number with the y-axis. The discontinuous transition, with increasing system

sizes, become more prominent in this version of the model and here we summa-

rize that the non-trivial band structures with increasing length, increasing width,

increasing wrapping numbers or even intersecting independently moving band

structures emerge as a signature of establishment of long-range correlation in

such dynamical systems [46].

1.3 Naming Game

Evolution of human language, from scratch to a well developed communication

scheme has been an astonishing feature of language dynamics. A class of very

simple models that describe such evolving dynamics are known as Language

games from which a subset of dynamical models to describe naming of objects

has been put forth and are known as naming games (NG). Collective dynamics of

agents with memory and feedback dependent interactions, the dynamics evolve

and lead to a self-organized emergence of a communication system. The idea of

memory and feedback is pretty new in this area and is overwhelmingly accepted

by different classes of models dealing with the naming dynamics.

1.3.1 Definition of Naming Game

A. Bronchelli et. al. [47] first introduced Naming game models which aims to

describe how consensus among agents is achieved about the name of a given

object to a community of agents. In such models each individual has a vocab-

ulary, initially empty, where they can keep different names [48–52]. The agents

in such a dynamics can interact among themselves via some interactive mech-

anisms, which are model specific. In each interaction, a pair of distinct agents
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are randomly selected and are allowed to interact. The negotiation takes place

between the two selected agents via a sequence of pre-specified steps as follows:

one of the agents (termed as a speaker) draws attention of the other agent (termed

as the hearer) toward the external meaning of a specific object given to the com-

munity, either by production of new forms or by comparison of available con-

ventional forms. In case of the hearer is able to understand the attempt of the

speaker the interaction is said to be a ‘success’. Both the agents update their

form-meaning repertoire by removing all competing forms corresponding to the

meaning except the ‘winning’ one currently uttered by the speaker. Else, if the

hearer produces a wrong interpretation, the interaction is termed as a ‘failure’,

and the hearer learns the proper form-meaning association from the speaker. Fol-

lowing a sequence of such interactions, the interacting (Fig. 1.4) agents reshape

their internal form-meaning association, and the adjustment of such successive

individual associations collectively lead to the emergence of a global consensus.

(a) (b)

Figure 1.4: The interaction rules for (a) Failure and (b) Successful moves.

The dynamics evolve following such a sequence of bipartite interactions in a

community of N agents. A ‘pseudo’ time t is defined for the convenience of fol-

lowing the dynamics and is equal to the number of bipartite interactions taking

place. At any intermediate time, the vocabulary of each agent i is likely to have

some entries and is denoted by the set {ℓi(t)} of length ℓi(t). Commonly, the nam-

ing dynamics is described in terms of a few quantities. For example, the total

number of names W (t,N ) = Σ
N
i=1ℓi(t) with all agents at time t is a well-known
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quantity to look at. Typically, this number initially grows with time, reaches a

maximum, then gradually decreases and finally converges to N . The maximum

value of W after the configuration averaging grows with N as a power law like

〈Wm(N )〉 ∼Nγ . (1.5)

At the same time, it is also customary to define two different time scales associ-

ated with the evolution dynamics. One is the time tm when W reaches its maxi-

mum value. Again, a configuration averaged value of this quantity grows like

〈tm(N )〉 ∼Nα . (1.6)

Secondly, one defines the convergence time tf when every agent has only one

name in its vocabulary, the same name for all agents and therefore the entire

community has only N names. The averaged value of such a time scale is also

assumed to vary like

〈tf (N )〉 ∼Nβ . (1.7)

The three exponents in the power, namely α, β and γ , characterize the naming

game. In a mean field dynamics [47], where any agent can interact with any other

agent independent of their spatial location, all the characteristic exponents, i.e.

α, β and γ are found out to be ∼ 1.50. This implies that the system needs a total

memory of the order of N1.5 to reach a consensus in a time scale of the order of

∼N1.50.

1.3.2 Naming Game on regular lattices

The same analysis on the 1D and the 2D lattices has also been done [51]. In lat-

tices, however, in contrast with the mean field models, the agents can interact

with any of its randomly selected neighbor and hence the interactions are spa-
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tially localized by construction. The analysis of the exponent α for both 1D and

2D lattices are found to be 1.0 and hence suggesting a faster growth to the state

where the system has a maximum number of names for a single object, compared

to themean fieldmodel. The convergence time exponent, β is obtained to be ≈ 3.0

and ≈ 2.0for d = 1 and d = 2 respectively, where d stands for the dimensionality

of the lattice. In the same study, it has also been concluded that more generally

the exponent β can be given as β(d) ∼ N1+2/d and d = 4 is the upper critical di-

mension of this class of models. To describe the dynamics more concretely, it can

be stated that initially small clusters of names grow locally around its maximum

of N/2 words. Then the interfaces start diffusing. When two interfaces meet,

the cluster situated in between the interfaces disappears, and the two interfaces

coalesce. Such a coarsening leads to the well-known growth of the typical size ξ

of the clusters as t1/2 . The density of interfaces, at which unsuccessful interac-

tions can take place, decays as 1/
√
t. Moreover, starting from a lattice in which

all agents have no words, a time N is needed to reach a size of order 1 so that in

fact ξ grows as
√
t/N , which explains the exponent of the convergence time β ∼ 3

needed to reach consensus, i.e., ξ =N .

1.3.3 Naming Game on random graphs

However for heterogeneous networks, the dynamics are quite different from the

above mentioned homogeneous networks. In networks like Barabasi-Albert (BA)

the dynamical activity pattern of a node depends on its degree. High-degree

nodes have a fundamental role but require larger memory capacity. They govern

the dynamics acting as spreaders of linguistic conventions. The average degree,

the clustering co-efficient of such networks also plays a big role in determining

the time scales of the problem.

The prototype of homogeneous networks is the uncorrelated random graph

model proposed by Erdös and Rényi [53, 54]. The construction consists of draw-
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ing undirected edges between all possible pairs with. These edges are drawn with

a constant probability p between each possible pair out of N given vertices. The

graph, as a result, shows a binomial degree distribution with average 〈k〉 ≃ Np,

converging to a Poissonian distribution for large N. If p is sufficiently small (or-

der 1 / N), the graph is sparse and presents locally tree-like structures. In or-

der to account for degree heterogeneity, other constructions have been proposed

for random graphs with arbitrary degree distributions. The BA networks have

small clustering, in contrast with social networks. It turns out that growing net-

works can as well be constructed with a large clustering. A comparison of the

models on the ER and the BA network for average degree 〈k〉 = 4 has been per-

formed [52]. Because of the finite average connectivity, the memory peak scales

linearly with the system size N, and is reached after a timeO(N ), in contrast with

mean field ∼ O(N1.5) for peak height and maximum time but similarly to the

finite-dimensional case. With respect to the slow coarsening process observed

in finite-dimensional lattices, on the other hand, the small-world properties of

the networks, i.e., the existence of short paths among the nodes, speeds up the

convergence towards the global consensus. Therefore, complex networks exhibit-

ing small-world properties constitute an interesting trade-off betweenmean-field

“temporal efficiency” and regular lattice “storage optimization”. For both ER and

BA networks, the convergence time scales as Nγ with γ ∼ 1.4±0.1. This suggests

that the small-world property allows inhomogeneous and sparse networks to re-

cover the high temporal efficiency observed in the mean-field system.

1.3.4 Degree dependence

The maximal memory used by a node of degree k is proportional to
√

(k). For the

mean-field case, all agents have degree k = (N − 1) and the maximal value of the

total memory Nw scales as N
√
k = N3/2. The knowledge of the average maximal

memory of a node of degree k is not sufficient to understand which degree classes
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play a major role in driving the dynamics towards the consensus. Two compet-

ing effects take part in determining the differences between nodes: high-degree

nodes require more memory than low-degree nodes, but their number is much

smaller. As a result, low-degree classes have, in fact, overall a larger number of

different words. The role of the hubs, then, is that of diffusing words through-

out the network and their property of connecting nodes with originally different

words helps the system to converge. On the other hand, however, playing mostly

as hearers, the hubs are not able to promote actively successful words, and their

convergence follows that of the neighboring low-degree sites. In fact, once the

low-degree nodes have successfully eliminated most of the different words cre-

ated initially, the system globally converges on a faster time scale. We note that

the averagememoryNw(k, t)/Nk converges slightly faster thanNd(k, t) andNd(k, t)

converges faster for larger k.

1.3.5 Master equation approach and other studies

With different studies pointing that the non-equilibrium dynamical behavior of

the model presents very different features depending on the underlying topo-

logical properties of the system, study of microscopic activity patterns [55] via

master equation approach suggested that the negotiation process between agents

is at the origin of a very rich internal activity in terms of variations of the inven-

tory size. The analysis depending on Pn(k | t) that an agent of degree k has an

inventory of size n at time t have been able to explain its behavior in function of

both the global temporal evolution and the underlying topology of the system.

The dynamics have been divided into three phases. Starting with an initial tran-

sient phase, the dynamics of the naming game follows two temporal regions, the

reorganization, and the convergence phases.

Some studies on the analytic description of such models [48] has verified the

exponents obtained in the mean-field version of the models. Apart from that, it
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suggested that the variation of the convergence time scale is not exactly 1.50 but

in the large system size limit, it shows a NlogN behavior. The authors have also

stated that the winning word is chosen by symmetry breaking process. Starting

from an artificial situation of two names A and B distributed (A with nA fraction

and B with nB fraction) among the agents in the community, and removing the

influences of the invention process, they have shown that the process still ends

up in the usual state with a global agreement.

The naming game models, starting from the simplest examples of a frame-

work progressively leading to the establishment of human-like languages and to

understand the role of self-organization in the evolution and change of human

languages [49, 50], then, has acquired a paradigmatic role in the novel field of

semiotic dynamics that primarily investigates how language evolves through the

invention and successive adoption of new words and grammatical constructions.

The basic construction has been, then, profitably used in order to understand

the origin and the evolution of language, and have found an important field of

application in artificial intelligence, where the ultimate goal consists of modeling

the self-organized collective learning processes in populations of artificial agents.

It finds wide applications in various fields ranging from artificial sensor net-

work as a leader election model [56] to the social media as an opinion formation

model [57]. More advanced models [58, 59] attempting to explain further com-

plex processes like categorization and color naming have also been built on top

of the basic naming game framework.

1.3.6 Plan of the thesis

Thus, we have literature, so rich on naming game, with many studies devoted to

the understanding of the dynamics as well as a larger part of the studies devoted

to its direction of applications on artificial intelligence, categorization and color

naming. In the versions of the naming game models, we have observed that the
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values of the set of characteristic exponents depend on the detailed features of

the dynamical rules and on the microscopic features of the underlying networks.

The interaction rules in almost all the models observed in the literature as-

sume that, in an interaction, the speaker utters a randomly selected word among

many present names in its inventory. The hearer looks for the uttered name in

its inventory. In a failure, where the name is not common and is basically the

learning ground of the dynamics, the interaction mechanism gives undue priv-

ilege to the hearer who learns the name uttered by the speaker. However, the

speaker ends up learning nothing after a failure. Also, there might be other

common names present in their inventories, but because those words were not

randomly selected by the speaker, defines the interaction, a potential successful

interaction, a failure. The naming game dynamics is basically a process of learn-

ing where individual agents learn different names from their interacting partners

and reshape their memories. And learning more often than not being a symmet-

ric and bi-directional process, the construction of the basic naming game models

on unidirectional rules are far from being practical.

In chapter 5, we will reconstruct the basic model of naming game by redefin-

ing the interaction rules, in order to address the reciprocity of learning process

by having a model with symmetric rules of interactions [60]. The study will also

keep the room for retaining all successful names in a single successful interaction

and hence no common name present in the inventories of the interacting agents

would be deleted.

On another aspect of the problem, the sizes of the vocabularies of the agents

have been assumed to be infinite in the models studied for the dynamics of nam-

ing games in the literature, [49,58,59]. It has been observed that the memories of

individuals play a vital role in the microscopic dynamics [52]. Realistic studies

suggest that an individual agent has only a finite amount of memory. Both short
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term memory and long term human memory have been found to be quite lim-

ited. Artificial memories, e.g. memory chips, etc. also have their size limitations,

and hence memory allocations to artificially created systems of robots do face the

same problem of memory restriction. Hence, the assumption of infinite memory

is too stringent and in contrast to its practical counterpart. Therefore, it would

be quite appropriate to study the effect of finiteness of the vocabulary sizes in the

dynamics of naming games.

In chapter 6, the naming game problem will be analyzed with the vocabulary

size of every agent, assumed to be finite and restricted to a certain fixed, suitably

tunable, cut-off value [61].

1.4 Preliminaries of critical phenomena

1.4.1 Phase transitions

Dynamical systems with emerging long-range correlation are often character-

ized by transitions [62] from one phase to another via some perturbation. These

phases are often distinguishable from each other due to completely different fea-

tures in each phase and spontaneous symmetry breaking across the transition.

There are a number of substances in different phases around us [17]. A phase

can be defined as the state of matter with uniform macroscopic physical proper-

ties on a macroscopic length scale. The example of ice, liquid water, and water

vapor is quite common where all of these are distinct phases of water as a collec-

tion of macroscopic numbers of H2O molecules.

A phase, often characterized by thermodynamic functions, typically the free

energy F, a thermodynamic function of a few macroscopic parameters e.g. the

temperature and the pressure and is determined by the values of these thermo-

dynamic quantities. With these parameters as axes, if we plot the different phases

specified by the values of the parameters, is commonly termed as the “phase di-
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Figure 1.5: Schematic pictorial depiction of a typical phase diagram of water. The
phases are determined by values of the control parameters i.e. the
temperature T and pressure p. (Tc, pc) and (Tt , pt) denotes the val-
ues of the control parameters at the critical point and the triple point
respectively.

agram”, as shown in Fig. 1.5. Here we can see that a phase diagram has few

specific features.

Phase boundary: A phase boundary is a line in the 2D parameter space which

separates two different phases, uniquely identified by different characteristics.

Crossing the line, from one side to the other, is associated with spontaneous sym-

metry breaking and emergence of long-range order in the system. Across the

phase boundary, any change in parameters like the temperature, results in a sud-

den change in the phase of a substance. The solid phase drastically changes into

a liquid phase at the melting temperature of any liquid. This is known as “phase

transition”.

Critical point: In the phase diagram, phase boundary sometimes disappears at

certain values of the parameters, denoted by a point in the 2D parameter space,

where the two phases become indistinguishable, is known as the “critical point”

(Fig. 1.5).
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Figure 1.6: The variation of the entropy S around the transition point Tc for (a)
First order transition with∆S ≥ 0 and (b) Second order transition with
∆S = 0.

Triple/Tri-critical point: Some substances, for example, say water, often de-

scribes more than one transitions. In case of transitions, one followed by another,

there are certain values of the control parameters, at which the features of the

three phases co-exist. This particular point in the 2D parameter space is denoted

by a point of three connecting lines, is termed as the “Triple point” or the “Tri-

critical point”(Fig. 1.5).

To describe the dynamics of a system via the phase diagram, each phase needs

to be uniquely characterized. The “order parameter” is of great importance,

which measures how ordered or how similar in state the microscopic constituents

(elements) of the phases are and is associated with the breaking of a symmetry of

the system under consideration and measures the degree of asymmetry in each

phase. In the broken symmetry phase i.e. the ordered phase the order parameter

is non-zero implying a higher degree of asymmetry and vanishes in the highly

symmetric disordered phase. Hence, the change from a non-zero to a zero value

of the order parameter characterizes the phase transition.
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Continuous and Discontinuous phase transitions

In a phase transition, associated with many features measurable in terms of ther-

modynamic quantities, a drastic change between thermodynamic phases occurs

with the variation of the thermodynamic control parameters like the tempera-

ture and the pressure. Theoretical description of a familiar example of melting

of ice at 0◦C near 1 atm, shows a drastic change of microscopic properties associ-

ated with emergence of singularities (non-analyticities) in functions representing

physical quantities. In Fig. 1.6, variation of one of the quantity i.e. the entropy

S has been shown across the transition. Other quantities that show similar emer-

gence of singularities are the volume V and the specific heat C. Such singularities

are often observed as a discontinuity (jump), a cusp or a divergence in the param-

eter space. In melting of ice, the entropy jumps (Fig. 1.6(a)) across the transition

when latent heat is supplied to the system. While boiling, the volume changes

discontinuously. The inter-competition between the (internal) energy E and the

entropy S controls the phase of a system. The free energy, defined as, F = E −TS ,

hence, determines the features and consequently the phase transitions are often

described in terms of the free energy itself. While the internal energy (E), favors

order, the entropy privileges disorder. The external parameters like the temper-

ature T , determines which one of the two terms would dominate.

Depending on the occurrence of singularities, the conventional classification

of phase transitions roughly divides transitions into two separate classes. When

the first-order derivative of the free energy F, i.e. the entropy S , shows a discon-

tinuity at the transition point, this is known as the first order or a discontinuous

transition, shown in Fig. 1.6(a). If the first order derivative of the free energy is

continuous across the transition but the second or the higher order derivatives

(e.g. the specific heat C) shows a discontinuity or divergence, the transition is

known as a continuous transition(Fig. 1.6(b)). The nomenclature of transitions

by order of the derivative of the order parameter that first shows a discontinuity
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or divergence is also pretty common. For example, the melting of ice accompa-

nies latent heat and is associated with a jump in entropy (∆S = 0). Such a tran-

sition is known as the first order transition, since the entropy is the first order

derivative of the free energy S = −( ∂F∂T )V .

If the entropy is continuous across the transition but the specific heat C (second

derivative of the free energy) is discontinuous, then the transition is said to be a

“second order” transition. In many second-order transitions, the specific heat

diverges at the transition temperature.

We describe the continuous phase transition and the critical phenomena on the

same line and are often synonymous. The anomaly of co-existing indistinguish-

able phases occurs around such transition. Striking similarities in behavior near

the critical point among systems that are otherwise quite different in nature is

one of the vital reasons of our interest in such systems. The degree of singularity

or divergence of the magnetisation and the corresponding susceptibility can be

described by functions of a dimensionless quantity t = (T − Tc)/Tc, which is the

difference between the control parameter (here the temperature) and its critical

value, normalised properly, as:

m ≈



























tβm if T < Tc

t1/δm if T = Tc

(1.8)

and

χ ≈




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



















t−γχ if T < Tc

t−γ
′
χ if T > Tc

(1.9)

respectively, where the {βm, δm} and the {γχ, γ ′χ} are the critical exponents asso-

ciated with the parameters m and χ.

Other such important quantity, is G(r): the connected two-point correlation

function defined as G(r) = 〈SiSi+r〉 − 〈Si〉〈Si+r〉 with two spins, Si , Si+r , separated
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by a distance r, ξ : the correlation length, can also be described by their respective

critical exponents {τg , ηg } and {ν, ν ′} as:

G(r) ≈



























r−τg e−r/ξ if T , Tc

r2−(d+ηg ) if T = Tc

(1.10)

ξ ≈



























t−νξ if T < Tc

t−ν
′
ξ if T > Tc

(1.11)

Here d is the space dimensionality of the system. Hence, the degree of singular-

ity of physical quantities near the critical point is described by critical exponents.

Experiments show that physical quantities generally have power law singulari-

ties as functions of the difference between the control parameters (such as tem-

perature) and their critical values. Critical exponents are very basic quantities to

characterize critical phenomena, and an important goal of the theory of critical

phenomena is to develop a systematic method to calculate the values of criti-

cal exponents. Most importantly, there are simple relations between exponents

(scaling law), which allow one to determine an exponent given the values of other

exponents (i.e. not all exponents are independent). For example, the Rushbrooke

scaling law is αc +2βm +γχ = 2. Here αc is the exponent of the specific heat.

First order transitions are often associated with a negative dip in the fourth or-

der cumulant of the order parameter, constructed by K. Binder and is coined by

his name as the “Binder Cumulant”. If m is the order parameter of any system in

consideration under thermodynamic transition, the Binder cumulant is defined

as U = 1− < m4 >

3 < m2 >2
, where < .. > denotes the average over configurations.

It’s immediately noticeable that from the viewpoint of statistical mechanics,

the free energy lays the basis of thermodynamics and is determined by the parti-
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tion function Z , defined as:

Z = e−F/κBT = T r[e−H/κBT ]. (1.12)

Here κB is Boltzmann’s constant, and the trace T r[] represents a sum over all the

degrees of freedom entering the Hamiltonian H of the system under study. Be-

cause of the fact that Z is a sum of exponentials of −H/(κBT ), the non-analyticities

of the free energy can only occur in the thermodynamic limit satisfying the con-

dition that V and N , the volume of the system and the number of degrees of

freedom (e.g. spins in magnetic materials) respectively, grow to infinity, such

that its ratio remains constant, i.e. N/V → const.

Depending on conditions a material may depict both first and second order

transitions.

Scaling

The group of scientists, Widom, Domb and Hunter, Kadanoff [63], Patashinskii

and Pokrovskii [64], and Fisher ( [65,66]) had independently developed the scal-

ing hypothesis and discussed the same in diverse directions. The hypothesis can

be divided into two sub-categories [67], i.e., the emergence of a set of scaling-

relations and data collapse. Near the transition, the critical exponents can be

described by some functional forms or laws, known as scaling laws. One of such

is the relation αc, 2βm, and γχ as defined in eqn. (1.8, 1.11) and αc is the similar

exponent of the specific heat can be given by αc + 2βm + γχ = 2. Data collapse,

however, can be explained easily in terms of our simple example of a simple

ferromagnet. The order parameterm can be written as a the function of two vari-

ables, the magnetic field h and the temperature t as m = m(h, t). If we consider

the mvs.t variation for a set of family of h values, the scaling hypothesis suggests

that all the curves will fall on top (“data-collapse”) of each other with a proper
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scaling of the m and the t axes. The scaling relations around transition are found

out to be power laws and the scaling relations looks like m(h, t) → m(h, t)/hαm0

and t→ t/hαt0.

Both these hypothesis has been supported by a wide range of experimental jus-

tifications from diverse systems and also numerical calculations. The exponents

are found out to be exact for a class of systems. Moreover, the general princi-

ples of scale invariance used here have proved useful in interpreting a number

of other phenomena, ranging from elementary-particle physics ( [68]) to galaxy

structure [69].

Universality

Kadanoff, in the year 1970 at the Enrico Fermi Summer School, was the first to

clearly put forward the concept of universality classes of critical behavior based

on earlier works of a list of eminent scientists including Griffiths, Jasnow and

Wortis, Fisher, Stanley, and many others [67]. A large number of diverse systems

can be said to belong to a single universality class if their critical exponents and

the scaling relations are found out to be same. The exponents are then termed as

universal for the set of systems belonging to the class, the ”Universality class”.

In the same line, a small set of universal classes can describe almost all diverse

systems.

From experimental studies, m − h − t data on five diverse magnetic materials

near their respective critical points has been shown in the article of Stanley [67].

The data collapse of five diverse magnetic materials, CrBr3, EuO, Ni, YIG and

Pd3Fe, none of which is an idealized ferromagnet. Where CrBr3 has considerable

lattice anisotropy, and EuO has significant second-neighbor interactions,Ni is an

itinerant-electron ferromagnet, YIG is a ferrimagnet, and Pd3Fe is a ferromag-

netic alloy. The data collapse of these, diverse materials, around the transition

via universal scaling relations and exponents supports the scaling hypothesis.
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Systems with the same values of critical exponents and scaling functions are said

to belong to the same universality class. Hence all these five, however diverse

materials, belongs to the same universality class because of the fact that they fol-

low the same scaling laws and have the same critical exponents. This apparent

universal behavior of critical phenomena near transition provides enough mo-

tivation for the study of critical phenomena to determine the important factors

determining the universality classes.

1.4.2 Long-range order

A number of important events occur at the critical point independent of the char-

acteristics of the substance undergoing the transition. Studying such substance

near the critical point provides enormous insight on criticality. Universality is

one such important property exhibited by substances undergoing phase transi-

tion. Universality implies that materials undergoing phase transition will have

common specific characteristics regardless of any other properties and condi-

tions. While passing from a disordered to an ordered phase, consequently, a ma-

terial exhibits the development of long-range order. In the disordered phase, the

system depicts no correlation between its constituents,i.e., the interacting atoms.

However, while passing through the transition, the system develops high correla-

tion between its constituents. For example, a disordered magnet has spins point-

ing in random directions with vanishingly small magnetization. However with

the temperature falling below the Curie temperature, all the spins get aligned

depicting a finite and non-zero magnetization. The molecules in a liquid crystal

similarly show random orientation in the disordered state, but below the transi-

tion temperature, all spins get aligned. The two-point correlation function that

measures the correlation, diverges at the transition point as in eqn. 1.10.

Long-range correlation specifically refers to the slow decay of the (temporal or

spatial) correlation function of the observableA(x) defined asG(x0) =< Ai(x)Ai(x+
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x0) >i,x. Accordingly, the correlation length ξ , that quantifies the correlation, di-

verges as the deviation, (t = Tc −T ), from the critical point, Tc, tends to vanish as

shown in eqn. (1.11).

1.4.3 Importance of models

With the very idea of universality classes, physicists are often in search of models

that are not only easy to work with but are rich in its understanding of various

systems. With many systems from various fields to aim at, studying a model with

rich behavior of a universality class that describes the behavior of many systems

near criticality, is an asset to the scientific community. Starting from the Ising

model [17,62,70–72], the n-vector model [73–75] to q-state Pott’s model [76,77],

Voter model [78–80] etc. often describes unique universality classes that many

natural, social, financial and physical systems belong to.

1.5 Complex networks

As we know, emergence of magnetism from the collective behavior of millions

of spins, or spectacular phenomena as Bose-Einstein condensation or superflu-

idity from quantum particles are all quite well explained. The idea of complex

networks plays a vital role in many such descriptions. Starting from cellular

networks to chemical networks linked by reactions, the internet web, computers

connected by physical links, etc. and a wide range of many such natural systems

are often described by complex networks. Complex network description not only

has helped in understanding the topological evolution of such networks but also

has given insights into the organizing principles of many evolving networks.

The success of modeling various systems, depends on the unique identification

of the strength of time and space varying particle-particle interactions and are

easily accessible. To deal with such natural systems, in the past few years, devel-
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1

2

3

4

Figure 1.7: A graph with N = 4 nodes and n = 4 edges has been displayed.
P = {1,2,3,4} and E = {(1,2), (1,4), (2,3), (2,4)} are the set of nodes and
edges respectively.

opments of framework has been done on the tools of statistical mechanics in this

direction, and quite unexpectedly, links between major topics, ranging from per-

colation to Bose-Einstein condensation, in condensed-matter physics have been

well established thereafter.

1.5.1 Random connected graphs

The study of graph theory includes the understanding of complex networks. A

network is represented by a graph in mathematical terms. A graph is constructed

of a pair of sets G = {P,E}. Here P and E are respectively a set of N nodes

P1,P2, ...,PN represented by dots and a set of edges E1,E2, .... represented by lines.

Each element of the set E connects a pair of elements of P i.e., any two dots in the

graph are joined by a line if the corresponding nodes are connected.

Graph theory, originating from the work of Leonhard Euler, focusing on small

graphs showing high degree of regularity. With interest on diverse networks,

the study of random graphs with randomly distributed edges became rich field

of study. The theory of random graphs was developed and introduced by Paul

Erdös and Alfréd Rényi [53, 54] after getting fascinated by the fact that prob-

abilistic methods were quite useful and often simpler in tackling problems of

34



Chapter 1 Introduction

graph theory. In a random graph N nodes are connected by n edges, chosen ran-

domly from the N0 = N (N − 1)/2 possible edges ( [53, 54]). In total there are Cn
N0

graphs with N nodes and n edges that form a probability space where every re-

alization is equally probable. The binomial model is an equivalent definition of

random graphs. In this model, among N existing nodes, each pair of node is be-

ing connected with probability p. The total number of present edges in the graph

is a random variable with the expectation value E(n) = pN0. A graph G0 of N

nodes, P1 , P2 ,..,PN and n consequent edges, can be obtained by this process with

a probability P(G0) = pn(1−p)N0−n. For some probability p there will be well con-

nected paths between any two nodes. For this p and beyond the graph is known

as a connected graph.

Random-graph theory is often used to study various complex networks because

of the fact that networks with pretty complex topologies and unknown organiz-

ing principles often appear random.

With this model, our thinking about complex networks has been centered

around this for decades since its introduction. But with the growing interest

in complex systems, researchers had been prompted to look for tools beyond the

study of random graphs to understand more diverse and complex systems whose

topology deviates from random graphs. With the intuition, that complex sys-

tems must display some organizing principles, which should be at some level en-

coded in their topology, the development of tools and measurements to capture

in quantitative terms the underlying organizing principles of diverse networks

kick started.

1.5.2 Small world networks

Small-world describes the fact that in most networks there is almost always a

relatively shorter path between any two nodes despite often being large size net-

works. Here the distances between any two nodes are defined as the number of
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edges along the shortest paths connecting them. The popular manifestation of

small world networks is the “six degrees of separation” concept, uncovered by

the social psychologist Stanley Milgram [81]. He concluded that there is an as-

sociated path between most pairs of people in the United States of typical length

of about six degrees. Starting from the network of actors in Hollywood, having

on an average three co-stars from each other, chemicals in a cell with typically

separated by three reactions, small-world property seems to characterize most of

the complex networks. As indicated by Erdös and Rényi, the typical distance be-

tween any pair of node scales as the logarithm of the number of present nodes, in

random graphs. Hence, random graphs [54] are small worlds as well [82]. Thus,

though the concept of small-world seems quite intriguing, it doesn’t point toward

any particular organizing principle.

With new concepts and measures proposed, consequent in depth investigation

had taken place in the last few decades, motivated by the current developments

and circumstances. However, few concepts occupy a prominent place in con-

temporary thinking about complex networks. Here we define and briefly discuss

them, and the idea of few of these will be used in the thesis and are briefly de-

scribed below.

1.5.3 Degree Distribution

All nodes in a network don’t have the same number of edges (termed as the node

degree) associated with it. Hence there is a spread in the node degree and is char-

acterized by a distribution function P(k). This is equal to the probability that any

randomly selected node will have exactly k edges. Edges are randomly placed in

random graphs which in turn ensures approximately same degree for the major-

ity of the nodes in the graph. This number is close to the average degree < k > of

the random network. The degree distribution of a random graph is a Poisson dis-

tribution having its peak at P( < k > ). However, for most of the large networks,
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the degree distribution deviates, significantly, from a Poisson distribution. Start-

ing from the World Wide Web [83], the Internet [84], metabolic networks [85]

and for many large numbers of networks the degree distribution has a power-law

tail,

P(< k >) ∼ k−γk . (1.13)

Such networks are known as scale-free [86] networks.

With these discoveries, a revival of network modeling has been initiated in the

next few years that resulted in the introduction and study of three main classes

of modeling paradigms. First is the random graphs, which are the variants of the

Erdös-Rényi model, were still widely used in many fields, serving as the bench-

mark for many modeling and empirical studies. Secondly a class of models mo-

tivated by clustering, collectively called small-world models, had also been put

forward. These models interpolate between the random graphs and the highly

clustered regular lattices. Finally, with the discovery of the power-law degree

distribution, various scale-free models had been constructed focusing on the net-

work dynamics, aiming to offer a universal theory of network evolution.

1.5.4 Clustering

Social networks depict a common property of forming cliques, which represents

that within a circle of friends every member knows every other member. This

tendency of clustering, inherent in social networks, is quantified by the clustering

coefficient [87]. This concept has its root in sociology appearing under “fraction

of transitive triples” [88].

Let us consider a selected node i in the network, with ki edges to connect it

with other ki nodes. There would be ki(ki − 1)/2 edges between any two nearest

neighbors of the original node i if they are part of a clique. But if the network

doesn’t form a clique, there might be lesser number of edges, say Ei , between any
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such pair. The ratio of the present edges Ei and the number of possible edges

ki(ki −1)/2, between a pair of neighbor of the original node i, gives the clustering

coefficient of node i,

Ci =
2Ei

ki(ki − 1)
. (1.14)

Thus the local clustering coefficient quantifies how close the neighbors of a par-

ticular node are of being a clique. The average of all individual Ci ’s, is defined

as the clustering coefficient of the whole network. An alternative definition of C

has also been discussed in [89,90].
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2 Cyclic and coherent states in

flocks with topological distance
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2.1 Introduction

Collective behavior, briefly described in Chapter 1, is well known phenomena,

observed in systems like collectively moving bird flocks or swarming bees, are

often modeled by groups of self-propelled mobile agents [16, 18, 91]. They are

‘cohesive’ and ‘coherent,’ i.e. each agent maintains a characteristic distance from

other agents and at the same time they move along a common direction. The

generic feature of collective motion is, agents are short-sighted. Agent’s can in-

teract with a small group of local agents around it. However, the whole group

behaves in unison. In other words, a short-range interaction among the agents

may lead to a unique global behavior of the entire flock signifying the existence

of a long-range correlation among the agents.

Given a random initial configuration of agents with random positions and ve-

locity directions what kind of short-range dynamics can lead to global correla-

tion reflected in cohesion and coherence among the agents was explored in an

assembly of self-propelled particles by T. Vicsek et. al. in their model, known as

the Vicsek model [16]. Here particles (agents) are released at random locations

within a unit square box on the x−y plane with periodic boundary condition and

with random velocities. However, in the deterministic motion the direction of

velocity of each agent i is oriented along the resultant velocity direction θi of all

agents within an interaction zone (IZ) of range R around i as:

θi(t +1) = tan−1
[Σj∈Ri

sinθj(t)

Σj∈Ri
cosθj(t)

]

. (2.1)

The corresponding position update rules are as follows:

xi(t +1) = xi(t) + v0cosθi(t +1) (2.2)

yi(t +1) = yi(t) + v0cosθi(t +1) (2.3)
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In reality, each agent may make an error in judging the resultant direction of

motion, and this has been introduced in the stochastic version of the model where

noise is introduced by topping the angle of orientation, θi , by a random amount

∆θ. Each individual agent is then moved along the updated velocity direction.

A coherent phase is observed in the noise-free case with high agent densities.

Moreover, a continuous phase transition is observed on increasing the strength

of noise where the mean flock speed continuously decreases to zero. Facets like

high density traveling bands occurring at low noise were revealed in later studies

[21, 24] and arguments were put in favor of a discontinuous transition. Further,

it has been argued that by tuning the magnitude of the velocity of agents one can

switch over from continuous to discontinuous transitions [22].

A number of studies have been done where the interacting neighborhood is

determined using the topological distance. In [92] an agent interacts only with

its Voronoi neighbors, thus when the agent density is very low, and the typical

distance between the agents is quite large, an agent interacts with its topological

neighbors. The behavior of such a flock is different from the one defined in terms

of the metric distance. Also, the metric free topology was used in the hydrody-

namic description of self-propelled agents where the neighbors are determined

by the topological distance [30]. Such flocks often travel over long durations cov-

ering distances much larger than the size of the flocks and therefore the flocking

is inherently a zero density problem in infinite space. Here we present a model of

a 2D flock with topological distance interactions under open boundary condition,

based on our work in [40].

In a recent field study by the StarFlag group, it has been argued that the animal

collective behavior depends on topological rather than metric distance [26]. Ob-

serving flocks of Starlings the angular density distribution of neighboring birds

have been found to be anisotropic, e.g., a bird is more likely to keep its nearest

neighbor at its two sides rather than on the front and back. Fishes [27] have also
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Figure 2.1: (a) A flock of N = 16 agents with n = 5 neighbors in the interaction
zone and at any arbitrary time t. The central agent is denoted by the
subscript 0, and the velocity vectors of this agent and its five neigh-
bors in the interaction zone are shown using red arrows. (b) In the
next time step, the velocity of agent 0 is calculated by Eqn. 2.1 which
is along the resultant of all n + 1 velocity vectors and has the magni-
tude v.

been found to interact with neighbors determined by topological rules. Theoret-

ical investigations [28,30] revealed that the behavior of topology based models is

very different from metric based models [31].

The concept of graph theory based topology was, however, used [97] to analyze

the Vicsek model itself from the perspective of control theory. The metric dis-

tance based interactions were modeled using graphs with “switching topology”.

Such studies also derived the conditions for the formation of coherent flocks for

agents with fixed topologies [98]. The relevance of underlying graphs or net-

works on the nature of collective motion has also been studied [41,99].

The observations of the StarFlag group prompted us to study the collective mo-

tion of flocking phenomena in two dimensions using the interactions depending

on the topological distance. Most crucially we have obtained very interesting sta-

tionary states which have not been observed before, mainly the cyclic states. At

the same time, an increasingly large number of states are found to be completely

cohesive and coherent.

This chapter is organized as follows. In section 2 we describe our topological
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Figure 2.2: The undirected RGG with N = 1000 nodes distributed randomly
within a square box with a free boundary condition. Each node is
linked to its n nearest neighbors; n = 1, 2, 3 and 4 increasing from
left to the right. For small n there are many components of the graph
which merge with one another as n increases. The largest component
has sizes 9, 150, 988, 1000.

distance dependent model for collective motion. The connectivity among such

a collection of agents has been studied as the Random Geometric Graph in sec-

tion 3. The stationary states of such flocks have been studied in section 4, the

two most prominent states being the Single Sink State and the Cyclic State. The

effect of the noise on the dynamics and the critical point of transition have been

studied in section 5. In chapter 6, the same model under fastest refreshing of

the neighbourhood has been discussed. A simpler version of the model with its

vortex-antivortex states has been studied on the square lattice in section 7. Fi-

nally, we summarize and discuss in section 8.

2.2 Model

In our model, the interaction zone has been defined in the following way. During

the flight, each agent i interacts with a short list of n other selected agents that

constitute the IZ. It updates it’s velocity direction using the Eqn. 2.1, following a

synchronous dynamics. In general, the agent often refreshes the group of agents

in IZ. For example, at the early stage, when the flock is relaxing to arrive at the

stationary state and also during some stationary states, the inter-agent distances

change with time. Every time the IZ is refreshed, we assume the criterion of se-

43



Chapter 2 Cyclic and coherent states in flocks...

lecting n agents is that they are the first n nearest neighbors of i. We introduce at

this point a “refreshing rate” which controls how frequently an agent updates it’s

IZ. We studied two limiting situations when these rates are slowest and fastest.

In the slowest rate, the agents do not change at all the list of other n agents in

their IZs. The IZ for each agent, constructed at the initial stage, remains the same

ever after, even if n initial neighbors of an agent no longer remain nearest neigh-

bors as time proceeds. The other limiting case is when the refreshing rate is the

fastest, the IZ is refreshed for every agent at each time step. The slowest case

has been discussed in sections 4 and 5. The fastest refreshing rates have been

discussed in section 6. For the spins on the square lattice discussed in section 7,

these two cases actually mean the same since the spins are firmly fixed at their

lattice positions.

The number n of agents in IZ is considered as an integer parameter of the

model. As in Vicsek model [16] the system is updated using a discrete time dy-

namics. While the speeds v of all agents are always maintained to be the same,

the orientational angles θi of their velocities are updated by the direction of the

resultant of velocity vectors of all n agents in the interaction zone and the agent i

itself (Fig. 2.1),

θi(t +1) = tan−1[Σj sinθj(t)/Σj cosθj(t)] (2.4)

where the summation index j runs over all (n+1) agents in IZ. No periodic bound-

ary condition is imposed in our model and the whole flock moves in the infinite

space. Compared to the Vicsek model, use of the free boundary condition makes

our model less restrictive. Following this dynamics, the flock reaches the sta-

tionary state after a certain period of relaxation time. It is observed that the

stationary state depends on the initial positions, initial velocities of the agents, as

well as the neighbor number n. Though a number of different stationary states

have been observed, often the state is a fixed point or a cycle. We have studied the

statistical properties of these fixed points and cycles and observed that cohesion
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Figure 2.3: The fractions g(N,n) of single component connected graphs, in a sam-
ple of 1000 RGGs, are plotted against n. For N agents this fraction
grows as the number of neighbors n is gradually increased. System
sizes N are 256 (black), 512 (red), 1024 (green), 2048 (blue) and 4096
(magenta), increased from left to right. The number of independent
configurations used for each value of n is 1000.

and / or coherence are indeed present in different stationary states.

2.3 Random geometric graphs

At the initial stage,N agents are uniformly distributed at random locations within

a unit square box on the x−y plane without periodic boundary condition. A ran-

dom geometric graph (RGG) [100] is constructed whose vertices are the agents.

At the same time for any arbitrary pair of vertices i and j , j is defined as a neigh-

bor of i if it is among the n vertices nearest to i. Then an edge is assumed to exist

from i to j . This implies that the edges are in general ‘directed’ since if j is the

neighbor of i then i may or may not be the neighbor of j . Therefore the resulting

graph is inherently a directed graph. However one can also define a simplified

version of the graph by ignoring the edge directions and consider the graph as

an undirected graph. In the following, we refer such an undirected graph as the

RGG.

In Fig. 2.2 we exhibit the pictorial representation of an undirected RGG for

N = 1000 as n is increased step by step. For small values of n, the graph has
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many different components. As n is increased the components grow gradually in

size, merge into one another, and finally, the RGG becomes a single component

connected graph covering all vertices for a certain value of n. Here we have shown

four figures for n =1, 2, 3 and 4. The randomly selected positions of all vertices

are exactly the same in these figures. The size of a component is measured by

the number of vertices in that component. In this figure, the RGG becomes fully

connected for n = 4.

The structure and connectivity of RGG depend on the initial positions of N

vertices. Therefore we have first studied how the fraction g(N,n) of connected

graphs grows with n when the flock size N is increased. For a particular RGG,

the connectivity is checked using the ‘Burning Algorithm’ [101] where the fire,

initiated at an arbitrary vertex, propagates along the edges and finally burns all

vertices if and only if the RGG is a single component connected graph.

In Fig. 2.3 we show the plots of g(N,n) against n for different values of N .

To find out if a minimum value of the neighbor number n exists, one can arti-

ficially prepare a linear initial configuration of agents where each agent has it’s

right neighbor as the nearest one. This corresponds to n = 1 but occurrence of

such a configuration by random selection of positions of the agents is extremely

improbable. Numerically we find that for small n the g(N,n) takes vanishingly

small values. However, on increasing n, g(N,n) increases very rapidly and when

n is around 7, g(N,n) ≈ 1 i.e., nearly all configurations become connected. With

increasing flock size N the curves slowly shifts to higher values of the neighbor

number n.

Only those flocks whose RGGs are single component connected graphs are con-

sidered for their dynamical evolution. The initial neighbor list is maintained for

the entire dynamical evolution of the flock and is never updated even if all n

initial neighbors of an agent no longer remain nearest neighbors as time evolves.

This means that the set of agents’ velocities {~vi(t+1)} is fully determined using the
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(a) (b)

Figure 2.4: Flocks of size N = 512 and n = 10, moving with the speed of v =0.03
without noise. (a) Single sink state: The fully cohesive and coher-
ent motion of the flock is exhibited by its position at three different
instants: 10000 (blue), 11000 (green) and 12000 (magenta). Three
straight line trajectories of individual agents are also shown. The
frame size is 90×90 units. (b) Cyclic state: The stationary state pulsat-
ing flock has been shown at different time instants: 173,000 (black),
176000 (red), 180000 (green), 188000 (blue), 192000 (brown), 197000
(violet) and 200000 (magenta). The time period is 28835. Two in-
dividual agents’ circular trajectories with radius ≈ 137.67 are also
shown. The frame size is 600× 600 units.

detailed knowledge of the set {~vi(t)}. The implication of this is, the positions and

velocities are completely decoupled during the time evolution since the actual

positions of agents do not play any role to determine the velocities. Therefore the

topological connectivity of RGG remains invariant and is a constant of motion.

2.4 Stationary states

As the dynamics reach a steady state, the system eventually collapses to some

steady states and remain in there ever after. There are few such states have been

observed, and the list may not be exhaustive.
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2.4.1 Single sink states

Initially, theN agents are randomly distributedwith uniform probabilities within

the unit square box on the x − y plane. If the corresponding RGG is fully con-

nected then, all agents are assigned the same speed v but along different direc-

tions. The angles θi of the velocity vectors with respect to the +x axis are assigned

by drawing them randomly from a uniform probability distribution between 0

and 2π. As time proceeds, the agents soon come out of the initial unit square box

and spread out in the open two-dimensional space. After some initial relaxation

time, the flock arrives at the stationary state. One of the most common stationary

states is the one where the flock is completely coherent and cohesive. The entire

flock moves along the same direction without changing the flock’s spatial cohe-

sive shape, and therefore θi(t) = C for all i and are independent of time. We call

these states as the ‘Single Sink States’ (SSS). Therefore this stationary state is a

fixed point of the dynamical process. A picture of such a flock has been shown in

Fig. 2.4(a).

2.4.2 Cyclic states

In cyclic states, the velocity directions θi of all agents change at a constant rate

in the absence of noise. Therefore the angular velocity θ̇i(t) =D for all agents is a

constant of motion. Each agent moves in a circular orbit of its own depending on

its initial position, but their radii and time periods are the same. Consequently,

the magnitude of the resultant velocity of the whole flock in the CS has also a con-

stant value but its direction changes with the same angular velocity. In addition,

typically the shape of the flock is another circle though with some irregularities

and interestingly its radius changes periodically with the same period of individ-

ual agents. Therefore the whole circular flock pulsates, i.e., periodically expands

and contracts where each agent moves on its own fixed circular trajectory. We

explain this motion in Fig. 2.4(b) by plotting the flock at different instants of
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Figure 2.5: The probability distribution of the radii of the individual agent’s cir-
cular orbits in the cyclic states. The power law has an exponent of
τ = 1.99(2).

time and also show two individual agent trajectories. We call these states as the

‘Cyclic States’ (CS).

For an arbitrary CS, let the probability that the radius of individual agent’s

circular trajectory between R and R + dR be P(R)dR. Given that the uniform

speed of the agents is v and their angular velocities is θ̇, the radius of the circular

trajectory is R = v/θ̇. We have studied a large number of such cyclic states and

measured the radii of the agents’ orbits. In Fig. 2.5 we show the probability

distribution of these radii which follows a power law distribution P(R) ∼ R−τ

with τ = 1.99(2).

Throughout this section we have used only one value of the agent speed, i.e., v0

= 0.03. If the speed is reduced by a certain factor a CS state remains CS but all the

characteristic lengths are reduced by the same factor. The radius of the circular

orbit of every agent and also the size of the flock are reduced by the same factor.

Therefore it appears that even in the continuous limit of v0→ 0, the characteristic

features of the flocks reported here remain same.

Starting from the initial state, when the random positions and velocities are as-

signed to all agents, the fractions of stationary states that exhibit the SSS and CS

are estimated and are denoted by gSSS (N,n) and gCS (N,n) respectively. In Fig. 2.6

49



Chapter 2 Cyclic and coherent states in flocks...

5 6 7 8 9 10n

0.0

0.2

0.4

0.6

0.8

1.0

g
S

S
S
(
N

,n
)

(a)

5 6 7 8 9 10n

0.0

0.2

0.4

0.6

0.8

1.0

g
C

S
(N

,n
)

(b)

5 6 7 8 9 10n

0.85

0.90

0.95

1.00

g
S

S
S
(
N

,n
)
+

g
C

S
(
N

,n
)

(c)

Figure 2.6: The occurrence of two most prominent stationary states when the
neighbor number n has been varied over a range from 5 to 10 and
for for different flock sizes N = 64 (black), 256 (red), 512 (green) and
1024 (blue). (a) The fraction gSSS (N,n) of SSS has been plotted against
n. (b) The fraction gCS (N,n) of CS has been plotted against n. (c) The
sum of gSSS (N,n) + gCS (N,n) has been plotted and it is seen that be-
yond n ≈ 8 the sum is approximately unity.

these two quantities are plotted against the neighbor number n for different flock

sizes N . For a certain N , gSSS (N,n) gradually increases with increasing n (Fig.

2.6(a)). For a given flock size N , however large, if the neighbor number n is in-

creased toN−1, then on using the dynamics mentioned in Eqn. 2.4 the stationary

state flock must be both cohesive and perfectly coherent i.e., gSSS (N,N − 1) = 1.

No stationary state other than SSS can exist in this limiting situation. On the

other hand when n < N − 1 but n is increased, then gSSS (N,n) also gradually in-

creases and approaches the value of unity for any arbitrary value of N . At the

same time, gCS (N,n) decreases with n for a fixed N but increases with N for a

fixed n (Fig. 2.6(b)). Finally in Fig. 2.6(c) we plot the sum gSSS (N,n) + gCS (N,n)

50



Chapter 2 Cyclic and coherent states in flocks...

which is less than unity for small n, but on increasing n, this sum gradually in-

creases and reached ≈ 1 for n = 8 for all N . It is therefore concluded that if the

neighbor number is increased all other states gradually disappear and only SSS

and CS states mostly dominate but ultimately for even larger value of n it is the

SSS state that only survives.

2.4.3 Other states

In addition there are a number of other stationary states, few of them are de-

scribed below, but the list may not be exhaustive.

(a) (b) (c)

Figure 2.7: Flocks of size N = 512 and n = 5, moving with the speed of v =0.03
without noise. The positions of the agents are marked by black dots
and three individual agent’s trajectories are shown in each case by
red, blue and magenta colors. (a) Distributed sink state: Every agent
moves along a fixed direction θi = Ci of its own which is different
in general from the directions of motion of other agents. (b) Cycloid
state: In the stationary state the trajectory of each agent is a cycloid.
(c) Space-filling state: The trajectory of an agent never repeats itself
but gradually fills up the space between two concentric circles. The
frame sizes are 40000, 15000 and 350 units respectively.

(i) Each agent has a constant velocity, but their directions are different for dif-

ferent agents. For example the i-th agent has its direction of velocity θi = Ci .

In this case, the agents, after some relaxation time, move outward radially. The

shape of the flock is approximately circular, again with some irregularities, and
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the radius of the flock increases at a uniform rate. We call these states as the ‘Dis-

tributed Sink States’(DSS). In Fig. 2.7(a) an example of the DSS has been shown.

The position of the flock is shown at t = 500000, and three agents’ trajectories

have been shown using different colors.

(ii) In another type of stationary state, the trajectories of the individual agents

are very similar to cycloids. Each agent moves radially outward in a nearly cy-

cloidal motion (Fig. 2.7(b)). A considerable number of agents form a flock of a

circular shape, but others are scattered around this circular flock. We call these

as ‘Cycloid States’.

(iii) Thirdly there can be rosette type stationary states. The trajectory of each

agent is like a rosette which never closes and lies between two concentric cir-

cles. Consequently, in the long time limit, the trajectories fill the space between

the two circles. This means that the mean separation between consecutive in-

tersections of the agent trajectory with a radial section gradually vanishes as the

trajectory evolves for a longer time. We call these as ‘Space-Filling States’. Three

such rosette trajectories and the position of the flock have been shown in Fig.

2.7(c).

Few points may be mentioned here about the characteristics of the different

stationary states. For example, a possible anisotropic effect on the stationary

states may exist due to the choice of the unit square box for releasing the agents.

Initially, the positions of the agents are selected randomly within a unit square

box on the two-dimensional plane. We have compared that if the agents’ locations

are selected randomly within a circle of radius 1/2, no appreciable change has

been observed in the fractions of different stationary states.

The center of mass of the entire flock has different kinds of trajectories in dif-

ferent stationary states. In SSS, the center of mass moves in a straight line exactly

similar to all other agents. In CS, the trajectory of the center of mass is also a

circle, but it’s radius is not the same as the radius of the orbit of the individual
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agents, but it is some what larger. In DSS the dynamics of the center of mass is

similar to that of the agents. Although the shape of the flock is approximately

circular, the fact that, at any instant, the positioning of the agents on the circum-

ference is not uniform, makes the center of mass move radially outwards in a

straight line. Motion is indeed unbounded. In cycloid states, the trajectory of the

center of mass is also a cycloid and radially outwards. The motion here is also

unbounded. In space filling states, the trajectory of the center of mass is rosette

type. In this case, the trajectory is bounded.

How sensitive are the final stationary states on the choice of the random initial

values of {xi , yi} and {θi} for the N agents? To study this point, we tried with a

flock that evolves from a certain initial configuration that evolves to a CS. Now

we again evolve the same flock, but this time we slightly change the initial con-

figuration randomly by xi = xi+a.10
−4.r and yi = yi+a.10

−4.r, where r is a random

number. The directions {θi} of the velocity vectors are maintained the same. We

then tune a and found that with 0 < a < 1.70 the stationary state is still a CS,

but with different values of the orbit radius. When a ≥ 1.75, the stationary state

becomes SSS. We conclude that with some amount of perturbation the charac-

ter of the stationary state remains same, but with even stronger perturbation the

stationary state changes.

A preliminary calculation with our model in three dimensions shows the fol-

lowing features. In general, to obtain connected graphs, the value of n needs to

be large compared to what is required in two dimensions. Almost always the dy-

namics lead to an SSS in the steady state. We did not find any other state starting

from random initial conditions.
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2.5 Dynamics in presence of noise

Studying the role of noise on the dynamics of the flock is very crucial. It is as-

sumed that every agent makes a certain amount of error in judging the angle of its

velocity vector at each time step. More precisely given the angles θ(t) of velocity

vectors of all n + 1 agents within the interaction zone at time t, it first calculates

the resultant of these vectors using the Eqn. 2.4. It then tops up this angle by a
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Figure 2.8: Effect of noise is exhibited on a single flock (N = 512 agents, each
having n = 10 neighbors) which goes to a single sink state without
any noise. Variation of the maximal radius Rm (blue) and the average
radius Ra (red) have been shown with different strengths of the noise
parameter: (a) η = 0, (b) 0.2, (c) 0.5 and (d) 1. The initial positions
and velocities are same in all four cases.

random amount ζ(η) which is uniformly distributed within {−η/2,η/2}. There-

fore the modified Eqn. 2.4 reads as:

θi(t +1) = tan−1[Σj sinθj(t)/Σj cosθj(t)] + ζ(η). (2.5)
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The role of the noise is to randomize the deterministic dynamics and quite ex-

pectedly the stationary state structures of the flocks exhibited in the SSS and CS

patterns are gradually lost. We have studied the effect of noise on both these

states by gradually increasing the strength of the noise η. In both cases we use a

flock ofN = 512 agents, each of them interacts with n = 10 nearest neighbors and

travel with speed v = 0.03. Initially all of them are released within the square box

of size unity. We first run the dynamics without any noise, i.e., η = 0 and ensure
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Figure 2.9: Effect of noise is exhibited on a single flock (N = 512 agents, each hav-
ing n = 10 neighbors) which goes to a cyclic state without any noise.
Variation of the maximal radius Rm (blue) and the average radius Ra
(red) have been shownwith different strengths of the noise parameter:
(a) η = 0, (b) 0.2, (c) 0.5 and (d) 1. The initial positions and velocities
are same in all four cases.

that the stationary state pattern is indeed a single sink state. As the dynamics

proceeds we calculate the maximal distance Rm(t) and the average distance Ra(t)

of an agent from the center of mass (xc(t), yc(t)) of the flock. In Fig. 2.8(a) we plot
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these two quantities against time, and they are exactly horizontal curves which

are the signatures of the SSS state. These simulations are then repeated for η > 0

and the variations of Rm(t) and Ra(t) have been shown in Figs. 2.8(b), 2.8(c) and

2.8(d) for η = 0.2,0.5 and 1 respectively. In all four cases, the flock starts with

the same positions and velocities of the agents. It is seen that on increasing the

strength of noise the stochasticity gradually sets in and the variations of Rm(t)

and Ra(t) gradually become random.

A similar plot has been exhibited in Fig. 2.9 for the CS but for only a single

flock. The Fig. 2.9(a) shows the zero noise case, and the curves are periodic.

However, when the noise level is increased (Figs. 2.9(b)-(c)), it distorts the pe-

riodicity. With small values of η the variations are slightly distorted from the

periodic variations, however, with a larger strength of noise, the distortion is

much more. Finally for η = 1 the fluctuations look random and similar to those

in the SSS (Fig. 2.9(d)).
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Figure 2.10: The mean square displacement 〈r2(t,η)〉 of an agent from the origin
has been plotted against time for different values of the noise param-
eter η = 0.2 (black), 0.5 (red), 1.0 (green), 2.0 (blue), 3.0 (magenta)
and 4.0 (brown). The flock size N = 512 and the neighbor num-
ber n = 10. Two short straight lines are the guides to the eye whose
slopes are κ = 1/2 and 1.

Next we calculated the mean square displacement 〈r2(t,η)〉 from the origin as

time passes. The averaging has been done for a single agent within a flock and

over many such independent flock samples. The noise strength has been varied
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over a wide range of values. In Fig. 2.10 we have displayed the variation of

〈r2(t,η)〉 against the time t using a log− log scale for six different values of η.

Here again we consider flocks with fully connected RGGs. On the other hand

with zero noise these configurations may lead to any of the possible stationary

states. Simulating up to a maximal time of T = 108 we observed a cross-over

behavior in the mean square displacement. When η is very small 〈r2(t,η)〉 ∼ t2κ

with κ ≈ 1 which implies that the flock maintains a ballistic motion at the early

stage, i.e., the coherence is still maintained during this period. On the other hand

after a long time one gets κ = 1/2 which indicates the diffusive behavior. This

implies that even if a little noise is applied for a long time, the effect of the noise

becomes so strong that the flock can no longer maintain a cohesive and coherent

structure any more and agents diffuse away in space. Therefore for any value

of η there is a cross-over from the ballistic to diffusive behavior. Consequently

a cross-over time tc(η) can be defined such that for short times t << tc(η) the

dynamics is ballistic with κ = 1 and for t >> tc(η) the dynamics is diffusive with

κ = 1/2. In Fig. 2.10 we show this behavior and observe that the crossover time

depends explicitly on the value of η and diverges as η → 0. The value of tc(η)

has been estimated by the time coordinate of the point of intersection of fitted

straight lines in the two regimes of Fig. 2.10: for t << tc(η) and for t >> tc(η). The

value of tc(η) so estimated diverges as tc(η) ∼ η−2.52.

This transition is more explicitly demonstrated using a plot of the Order Pa-

rameter (OP) M(η) against η (Fig. 2.11). The OP is defined as the time averaged

magnitude of the resultant of all agents’ velocity vectors, scaled by its maximum

value

M(η) = 〈|ΣN
j=1vj |〉/(Nv) (2.6)

where 〈...〉 denotes the time average over a long period of time in the stationary

state. In Fig. 2.11 (a) we have plotted M(η) against η at an interval of ∆η = 0.1

for different system sizes from N = 64 to 1024. In these simulations, the initial
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Figure 2.11: (a) The stationary state order parameterM(η) and (b) the Binder cu-
mulant G(η) have been plotted for the system sizes N = 64 (black),
128 (red), 256 (green), 512 (blue) and 1024 (magenta) where all
agents start with their initial velocities in the same direction. System
size increases from right to left. (c) Extrapolation of ηc(N ) values de-
termined from (a) and (b). We obtained ηc(N ) = 1.70 +N−1/2.86 and
ηc(N ) = 1.82+N−1/3.50 respectively.

conditions are chosen to be completely coherent so that the velocity vectors of all

agents are in the same direction. In the absence of noise, this situation is main-

tained and M(0) = 1 at all times for all system sizes. However for η > 0 noise sets

in, but in the stationary state one still gets a non-zero OP. On further increasing

η the OP decreases monotonically and ultimately vanishes. Therefore there ex-

ists a critical value ηc(N ) of the noise parameter where the transition from the

ordered state to disordered state takes place. It is observed in Fig. 2.11(a) that as

the system size N is enlarged the transition becomes more and more sharper and

shifts to the regime of small η. Further we have calculated the Binder cumulant

G(η) = 1 − 〈M4(η)〉/3〈M2(η)〉2 and plotted against η in Fig. 2.11(b) for the same
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Figure 2.12: The position of a flock (N = 512, n = 10) in CS by blue dots and links
by red lines. The frame size is 150 units.

system sizes [22]. The value of G(η) drops from a constant value of around 2/3 at

the small η regime to about 1/3 for large values of η.

The transition point ηc can be estimated in the following way. For each curve

in Fig. 2.11(a) we calculate the value of η1/2(N ) for which M(η) = 1/2. We define

η1/2(N ) is the characteristic noise level where the transition takes place. By in-

terpolation of the plots in Fig. 2.11(a) of the points around M(η) = 1/2 we have

estimated η1/2(N ). These estimates are then extrapolated in Fig. 2.11(c) as:

η1/2(N ) = η1/2(∞) +AN−1/ν . (2.7)

On tuning the trial values of ν very slowly, we found that for ν ≈ 2.86 the er-

ror in the least square fit of the above finite-size correction formula is minimum.

Therefore the extrapolated η1/2(∞) ≈ 1.70 is the critical noise strength ηc accord-

ing to our estimate. A similar calculation has also been done using the Binder

cumulant. From this calculation we estimated ηc = 1.82 and ν = 3.50. The differ-

ence between the two estimates is considered as the error in the measured values

which are 0.12 and 0.64 for ηc and ν respectively.

Since the agents are uniformly distributed initially, the edges of RGG also are

homogeneously distributed as shown in Fig. 2.2(d). However with time evolu-

tion, these edges change their positions, but their connectivity does not change,
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i.e., the end nodes of every edge are always fixed since the neighbor list does not

change. How they look in the stationary state has been exhibited in Fig. 2.12.

This is the picture of the circle shaped flock in the cyclic state. The blue dots

represent the agents, and the red lines represent the edges. What is interesting

to note is that the system self-organizes itself so that not only agents but also

the edges are constrained to be within a very limited region of the space. Very

few edges criss-cross the flock from one side to the opposite side. Initially, each

agent had it’s n neighbors at its closest distances. After passing through the re-

laxation stage and arriving at the stationary state, when the shape of the flock

is completely different from its initial shape, most of the agents maintain their

connections with other agents in their local neighborhood only.

2.6 The fastest refreshing rate of the interaction

zone

Here we consider the case corresponding to the fastest refreshing rate of the in-

teraction zone, i.e., when every agent updates its n nearest neighbors at every

time step. Consequently, the RGG is no longer a constant of motion in this case

and is updated at each time step. While performing simulations of this version,

we first notice that in the long time stationary state the entire flock becomes frag-

mented with probability one into different clusters. For a flock of N agents with

neighbor number n, the minimum number of agents in a cluster is n+1. An agent

of a particular cluster has all n neighbors who are members of that cluster only.

In the stationary state, all agents of a cluster have exactly the same direction of

velocity, and the entire cluster moves along this direction with uniform speed v.

Therefore, the velocity direction θ of a particular cluster can be looked upon as

the identification label of that cluster. The shape of the flock is approximately

circular since each cluster travels outward with the same speed (Fig. 2.13(a)).
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Figure 2.13: (a) Positions of a flock of N = 512 agents with n = 5 neighbors in the
interaction zone and at four different time instants: 100 (black), 200
(red), 300 (green) and 400 (magenta). The RGG has been updated
at every time step. Three individual agents’ straight line trajectories
have also been shown. There is a total of 29 clusters. (b) The sub-
graph of the RGG corresponding to a specific cluster of 16 agents
have been shown. An arrow has been drawn from the agent i to the
agent j if j is one of the n neighbors of i. There is a total of 16× 5 =
80 distinct links, and each link is directed in both directions. It may
also be noted that whole set of links are restricted to the nodes of the
cluster only.

Moreover, within a cluster, if the agent i is a neighbor of the agent j then j is also

a neighbor of i. Therefore the sub-graph of the entire RGG specific to a cluster

is completely undirected, and the corresponding part of the adjacency matrix is

symmetric (Fig. 2.13(b)). This immediately implies that the N ×N adjacency ma-

trix of the entire flock can be written in a block-diagonal form by assigning suit-

able identification labels of different agents. A natural question would be how

the probability distribution D(s) of different cluster sizes depends on the cluster

size s. To answer this question a large number of independent flocks have been

simulated and each of them was evolved to its stationary state. In the stationary

state the sizes of the individual clusters are measured using the burning method.

In Fig.2.14(a) a plot of D(s) vs. s for s > n has been shown on a semi-log scale for

N = 512 and n = 5, the data being collected using a sample size of 20000 inde-

pendent flocks. Apart from some noise at the tail end and amaximum around the
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smallest value of s the plot fits well to a straight line, implying an exponentially

decaying form of the probability distribution. We conclude D(s) ∼ exp(−s/sc)

where sc ≈ 7.2(1).
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Figure 2.14: (a) The probability distributionD(s) of the cluster sizes s seems likely
to have an exponentially decaying form exp(−s/sc) where sc ≈ 7.2.
(b) The inset shows the plot of the average cluster size 〈s(N,n)〉 for
N = 512 and n = 5 with neighbor number n on a log− log scale: N =
128 (blue), 256 (green) and 512 (red). In the main plot the vertical
axis has been scaled by N1.1 which leads to a data collapse.

Next, the average number of clusters 〈ns(N,n)〉 has been calculated and plotted

in the inset of Fig. 2.14(b) for N = 128, 256 and 512 and n = 5 on a log− log scale.

Again, apart from the tail end, the plots fit very nicely to parallel straight lines,

the slopes of which are estimated to be 1.168(5). In the main part of Fig. 2.14(b)

a scaling has been shown which exhibits a nice data collapse, corresponding to

the following form

〈ns(N,n)〉N−1.1 ∼ n−1.168. (2.8)

This implies that as the neighbor number n increases, there would be fewer clus-

ters in the stationary state. On the other hand, for a specific valued of n, the

average cluster number grows with the flock size as N1.1. Assuming that the

above scaling relation holds good for the entire range of n, for a given N one

can define a cut-off value of n = nc such that 〈ns(N,nc)〉 = 1 which leads to
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nc(N ) ∼ N1.1/1.168 = N0.94. However, our simulations suggest that due to the

presence of an upward bending at the tail end, the above scaling relation does

not work at this end and nc(N ) is actually of the order of N .

2.7 Vortices on the square lattice

In this section we studied a simpler version of our model where every agent is a

spin vector. They are no more mobile, their positions are completely quenched

at the sites of a regular lattice, but the directions θi(t) of the spins are the only

dynamical variables that evolve with time following Eqn. 2.4. More specifically,

spins are placed on a square lattice with different choices for the first n neighbors

and we study the spatio-temporal patterns that emerge during the time evolution

of the angular variables {θi(t)}. The arrangement of the spins allows to draw a

parallel with the dynamics of planar spins in the two dimensionalXY model. The

connections between the Vicsek model [16] and the 2d XY model [102] have been

explored since long [18, 32, 41]. It is well known that in the limit of speed v→ 0

the dynamics of the Vicsek model would exactly map on to the finite temperature

Monte Carlo dynamics of the 2d XY model. However, in the latter model, any

long-range ordered phase is absent. Instead, a quasi-long-range ordered phase

appears at the low temperatures, and the transition to the disordered phase is

associated with the simultaneous unbinding and increase of vortex-antivortex

(VAV) pairs. In the low temperature phase, VAV pairs are to be found in tightly

bound states. We find that our model defined on the square lattice also gives rise

to VAV pairs and we determine the density of such pairs, as a function of the

noise amplitude η.

We define the IZ of an agent with respect to its n nearest neighbors on the

square lattice of size L × L with the periodic boundary condition. For n = 2, the

IZ includes the top and the right nearest neighbors. For n = 3, the left nearest
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Figure 2.15: (a) Vortex-antivortex pairs of the spin systems in the stationary state
in a square lattice with size L = 64 and n = 2 with zero noise. The
orientations of the spins change with time in such a way so that the
entire spin pattern with vortices and the antivortices move with a
uniform speed from the top-right corner to the bottom-left corner.
Vortices and antivortices are marked by filled red and blue circles.
(b) The number V (0,L) of vortex-antivortex pairs at zero noise for
different values of n in lattices of three different sizes: L = 32 (cir-
cles), 64 (squares) and 128 (triangles). The bars indicate the standard
deviation in the values obtained from around 100 configurations in
each case. In the inset, the percentage of configurations which lead
to steady states with vortex pairs is plotted against n.

neighbor is also included, and in the case of n = 4, all the four nearest neighbors

are included. We notice that for the n = 4 case, the Vicsek model with spins

similarly placed on the square lattice and interact with a range R = 1 and our

model are same. As before we study the dynamics of the spin system with and

without noise.

In the absence of noise, beginning from arbitrary initial conditions for θi ’s, the

dynamics results in the formation of VAV pairs. For n = 2 and 3, the interac-

tions are anisotropic. Consequently the entire spin pattern in the stationary state

as well as all VAV pairs are mobile and in general all the spin orientations θi ’s

change with time. In comparison, for n = 4, all the θi ’s remain frozen in time

which also implies that all the VAV pairs are anchored. We find that the choice

of the IZ, in addition to the periodic boundary condition, fixes the direction of
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motion of the VAV pairs. In the Fig. 2.15(a) an instantaneous configuration of the

spins is plotted for a lattice with L = 64 and n = 2. In general for the n = 2 case

the entire spin pattern moves on the average along the diagonal direction from

top-right to bottom-left. For the case, n = 3, the vortices travel from the bottom

to the top.
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Figure 2.16: (a) The x-component of a typical spin vector is plotted against time
for lattice with L = 64 and n = 2 at zero noise. (b) The correspond-
ing power spectrum indicates the presence of three basic frequencies
f0 = 1/(4096L), f1 = 1/(3L) and f2 = 2/(3L). The higher frequencies
can be expressed as combinations of the f1 and f2 and essentially
become harmonics of f1 since f2 = 2f1.

Let the V (η,L) be the number of VAV pairs observed at noise η in a lattice of

size L. The number of VAV pairs observed at zero noise, V (0,L) is plotted against

the value of n in the Fig. 2.15(b) for different lattice sizes. We observed during the

time evolution of a given initial condition that the number of VAV pairs initially

decays and then becomes stationary. However, different initial conditions lead

to different values at the stationary states. The bars indicate the dispersion that

is observed for different initial conditions which lead to a non-zero number of

VAV pairs. For the lattice size L = 128 we wait for 105 steps before calculating

the number of VAV pairs. The inset to the Fig. 2.15(b) shows the percentage of

initial conditions that lead to a non-zero number of VAV pairs. We find as lattice

size increases, arbitrary initial conditions, almost always, lead to states with VAV
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pairs.

The nature of the time variation of the spin angle θi ’s for the cases n = 2 and

n = 3 are found to be quite complex. In the Fig. 2.16(a) we plot the time series

corresponding to the oscillation of the x-component of a typical spin vector for

L = 64 and n = 2. The corresponding power spectrum apparently reveals the

presence of three basic frequencies f0, f1 and f2 all of which are rational multiples

of 1/L (Fig. 2.16(b)). The time evolution can be explained as a periodic oscillation

with f1 and f2 (since f2 = 2f1) riding on a very slow mode. These features carry

over to L = 128 as well. We find that in the case of n = 3, the spectrum is similar,

but the frequencies are not simple multiples of 1/L.

It is known that metastable vortices are produced at low temperatures in the

2d XY model when equilibrium is achieved beginning from arbitrary initial con-

ditions. However, these vortices are not responsible for the VAV unbinding tran-

sition [103]. Therefore, we study the effect of noise by “cooling down” [104] the

system to zero noise level starting from a high value of noise. At each noise level

(a) (b) (c)

Figure 2.17: The figure shows proliferation of vortices as noise is increased in a
square lattice of length L = 64 with n = 4. (a) For η = 0.15 there are
no vortices, (b) for η = 0.35 vortices begin to appear, there are only
two vortex-antivortex pairs and (c) for η = 0.40 twenty one vortex-
antivortex pairs can be seen. Filled circles of two different colors,
red for vortices and blue for antivortices, have been drawn around
the vortex centers.

the system initially passes through 105 time steps; after this relaxation it passes
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through an additional 104 time steps and then moves to the next lower level of

noise. We begin around the value of noise given by η = 3.7 and decrease η by

an amount 0.07 in each step. This method suppresses the generation of the VAV

pairs at low noise. At zero noise the vortices are absent in contrast to the statis-

tics discussed in the previous paragraphs where the cooling down method was

not employed.

At zero noise we find the spin system reaches the globally ordered state where

all the spin vectors are oriented in the same direction. We believe that this is due

to the finite size effect of the lattice. The spin configuration at the low noise of

η = 0.15 has been shown in the Fig. 2.17(a) for L = 64 and n = 4 where not only

vortices are absent but the long-range order is also not present. At the higher

noise levels, VAV pairs start appearing, and there is a rapid increase in the num-

ber of pairs with further increase in noise. All the VAV pairs appearing initially

are tightly bound, i.e., lattice spacing is small between the members in a pair as

in Fig. 2.17(b)) but at higher noise members in a pair are seen to unbound (Fig.

2.17(c)).

The order parameterM(η) tends to unity as η→ 0 as shown in the Fig. 2.18(a).

In Fig.2.18(b) we plot the vortex-pair density, defined as ρ = V /L2. The natural

collapse of the plots belonging to different system sizes indicates a functional

dependence of ρ on n and η independent of L. To understand this behavior we

obtain the collapse of the logarithm of 1/ρ in Fig.2.18(c) for different values of L

and n. The plot reveals that in the region where VAV pairs start proliferating ρ ∼

exp(−Anβ0ηα0
), where A, β0 and α0 are constants. We estimate α0 by averaging slope

of individual curves which yields α0 = 2.68 ± 0.13. This gives β0 = γ0α0 = 0.75.

This result is in contrast to the relation ρ ∼ exp(− a
T ), where a is VAV pair energy

and T is the temperature for the 2d XY model [104].
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Figure 2.18: The behavior of different quantities against noise for lattice sizes L
= 32 (black), 64 (red) and 128 (green) with values of n = 2 (circle),
3 (square) and 4 (triangle). (a) The variation of the order parameter
M(η,L) against noise η are shown for L = 128 and for n = 2, 3 and
4. (b) The vortex-pair density ρ(η,L) against η. (c) Scaling collapse
of ln(1/ρ(η,L)) against nγ0/η. For the collapse we use γ0 = 0.28. The
dashed straight line, having slope α0 = 2.68, is a guide for the eye
and indicates the power-law nature in the low noise regime.

2.8 Summary

To summarize, we have studied a model of the collective behavior of N interact-

ing mobile agents which travel in the open free space. Each agent interacts with a

group of n selected agents around it. The selection criterion is to choose the first

n neighbors. We studied two limiting situations, i.e., when the refreshing rates

are fastest and the slowest. We first studied when the refreshing rate is slowest,

i.e., when the IZ for each agent is determined at the beginning and is never up-

dated. All the agents follow the interaction rule in Vicsek model. It has been

observed that in the absence of noise, starting from a small localized region of

space the agents gradually spread as time passes, so that after some relaxation

time the flock arrives at a stationary state. The most prominent stationary states

are the single sink state and the cyclic state. Using numerical methods, we claim

that the frequencies of occurrence of other stationary states like the distributed

sink states, cycloid states, and the space-filling states go to zero as the neighbor
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number increases to about 8. Beyond n = 8 only the SSS and CS states dominate.

Finally as n approaches the flock size N , only the SSS states dominate. Further,

on the application of noise, a crossover takes place from the ballistic motion to

the diffusive motion and the crossover time depends on the strength of the noise

η, which diverges as η→ 0. Further, the calculation of the Order ParameterM(η)

and the Binder cumulant G(η) lead us to estimate the critical noise ηc required

for the continuous transition from the ordered to the disordered phase. Secondly,

when the refreshing rate is fastest, each agent freshly determines its neighbors in

the interaction zone at every time step. In the stationary state, the flock gets

fragmented into a number of smaller clusters of different sizes. The agents in a

cluster move completely coherently, and different cluster has different direction

of motion.

A simpler version of the model has also been studied in the limit of the speed

v0→ 0 when the positions of spins are completely frozen at the sites of a square

lattice, but their orientational angles θi(t) evolve with time again by the Vicsek

interaction. Here for n = 4 the spin configuration is completely static. On the

other hand for n = 2 and 3, the entire spin configurationmoves along the diagonal

and parallel to the asymmetry axis respectively. Further, we have observed that

the density of vortex-antivortex pairs increases with the increasing strength of

the noise and fits to a nice finite-size scaling behavior.

Overall, our findings suggest that complex spatio-temporal patternsmay emerge

in the interplay between an underlying network structure and collective motion.

We believe that our study would also be relevant in the general problem of con-

sensus development in networked agents [105] and as such issues like undesired

synchronization observed in real-world networks [106]. We observed that mul-

tiple frequencies develop during oscillations of different dynamical variables.

Whether there is a possibility that a cascade of frequencies develops eventually

leading to chaotic behavior remains an open question.
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3.1 Introduction

The study of Collective Behavior (CB) in systems exhibiting non-equilibrium

phase transition under driven noise [15–20,32–37,107] is of great interest to the

scientific community. Such systems, evolving dynamically from any arbitrary

initial state, spontaneously arrives at an ordered state, when the noise param-

eter is tuned to a vanishingly small value. On the other hand, the order pa-

rameter vanishes [16] for stronger noises. In many models studied in the liter-

ature, the nature of the associated transition has been suggested to be ‘contin-

uous’ [16, 26, 31, 38–40] whereas in other examples ‘discontinuous’ transitions

have been claimed [24, 41, 108]. The dynamical behavior of an agent is deter-

mined by its interaction with other agents in its local neighborhood, where the

neighborhood is determined in terms of Euclidean distance [16] or topological

distance [26,40].

With the essential idea of collective motion, being discussed in the previous

chapters elaborately, in this chapter we present the dynamics of a binary flocks

with angular noise, where an agent interacts only with its n-th topological neigh-

bor, based on our work in [45]. Our extensive numerical study indicates that for

n = 1 and 2, the order to disorder transition is discontinuous, but it is continuous

for n ≥ 3. We describe our binary flocking model in section 2. Subsequently, the

simulation results for five different cases, namely from n = 1 to 5, are described

in section 3. In section 4 we have discussed the phenomenon of persistence as

well as the information spreading processes associated in this model and the

subsequent time scales. Describes the theoretical analysis using hydrodynamic

equations of motion for our binary flock in section 5, we summarize in section 6.
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Figure 3.1: For n = 1, L =512 and ρ0 = 1/8. Plot of the order parameter V (t,η,L)
against time t. The switching times and their corresponding noise
strengths are tc = 1047100 (η = 0.1184), 3650100 (0.1188), 12484400
(0.1190) and 8964900 (0.1196) and for η = 0.1200 the system never
switched over to the ordered state.

3.2 Model

In our binary flock, the direction of the velocity of any arbitrary agent i depends

on the direction of the velocity of its n-th nearest neighbor j and its own velocity.

Let us assume that with respect to any arbitrary reference direction, the velocity

directions in time t of the i-th and j-th agents are θi(t) and θj(t) respectively.

Then, in the next time step t +1, the updated velocity direction will be,

θi(t +1) = tan−1
[

sin(θi(t)) + sin(θj(t))

cos(θi(t)) + cos(θj(t))

]

+∆θ (3.1)

where∆θ is a random top-up angle, that represents the noise variable. Its value is

drawn freshly from the uniform distribution within the range {−η/2,η/2}, η being
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Figure 3.2: For n =1, L =512 and ρ0 = 1/8. (a) Plot of the order parameter
〈V (η,L)〉 against noise parameter η exhibits a discontinuous jump
at η = 0.1197. (b) The probability density of the order parameter
P[V (η,L)] plotted against V (η,L); for the ordered state: η = 0.1184
(black) and 0.1196 (red) and for the disordered state η = 0.1198
(green) and 0.1250 (blue) in the sequence from right to left. (c)
Binder cumulant U(η,L) plotted against η jumps discontinuously
from ≈ 0.663 to ≈ 0.332 at ηc = 0.1197.

the continuously tunable strength of the noise parameter. The agents’ velocities

are updated synchronously. Therefore the entire set of the velocity angles θi(t+1)

are determined simultaneously using the complete set of θi(t) for all i. The order

parameter is determined by the magnitude of the resultant velocity vector, scaled

by the speed v0 and averaged over all N agents,

V (t) =
1

Nv0
| Σivi(t) | . (3.2)

In the following, we have considered five different cases for five different values

of n, namely 1 to 5. Within our numerical accuracy we present evidence to claim
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that the system undergoes an order to disorder phase transition with respect to

the noise parameter η, the system has discontinuous transitions for n = 1 and 2;

where as for n ≥ 3 the nature of transition is continuous.

Numerical simulations have been performed on a L×L planar area. The density

and the speed of agents are kept fixed at ρ0 = 1/8 agents per unit area and v0 = 1/2

in all calculations. In all simulations, we have kept the density constant but

varied the system size L.

3.3 The results

3.3.1 The n = 1 case

For n = 1, every agent’s velocity is determined by its own velocity and that of its

first nearest neighbor. In general, if the j-th agent is the first nearest neighbor

of the i-th agent, that does not necessarily imply that i is also the first nearest

neighbor of j . However, with a small probability, this may actually happen, when

both the i-th and the j-th agents are mutually dependent on each other for a

while. Typically this happens when they are spatially close to each other but at

the same time far away from all other agents. In this situation, they would form

a very strongly bound pair. For example, for η = 0, both of them are completely

synchronized and move along the same direction in parallel straight lines with

exactly the same velocity, until they come in the close proximity to a third agent

so that i and j cease to be mutually nearest neighbors any longer. On the other

hand, for small values of η > 0, though their motion is random, yet they perform

a nearly synchronized motion.

We start exhibiting the variation of the order parameter V (t,η,L) against time

at different noise levels η in Fig. 3.1. The time evolution of the system starts from

the same initial configuration of the agents at time t = 0, that is, the same spatial

locations as well as their random velocities, are used for all values of η. For small
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Figure 3.3: For n = 2, L = 512 and ρ0 = 1/8, order parameter V (t,η,L) against
time t for η = 0.138, 0.139, 0.140, 0.141 and 0.142 exhibited from
top to bottom. The top and bottom ones are almost completely in the
ordered and the disordered phases respectively. Three intermediate
plots show existence of metastable stationary states.

values of η, the system is in the ordered phase with a relatively large value of the

V (t,η,L) that fluctuates around a steady mean value in the stationary state. On

the other hand, as η is gradually increased, the system moves into the disordered

phase, the mean value 〈V (t,η,L)〉 of the order parameter gradually decreases. The

order to disorder transition takes place in between these two regimes. It has been

observed that typically the system starts in a disordered state but after some time,

say tc, it switches over to the ordered state when η is comparatively small. It is

also noticed that the switching time becomes increasingly larger as η is gradually

tuned to larger values.

In usual discontinuous transition and close to the critical point, the system

is expected to be in multiple metastable states. Therefore, while in the station-
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Figure 3.4: For n = 2, L = 512 and ρ0 = 1/8. (a) The average value of the order pa-
rameter 〈V (η,L)〉 plotted against the noise parameter η. The plot ex-
hibits a sharp, yet continuous variation at η = 0.1400. (b) The proba-
bility density of the order parameter P[V (η,L)] for η = 0.1380 (black),
0.1390 (red), 0.1400 (green) and 0.1410 (blue) and 0.1420 (magenta),
in the sequence from right to left. (c) Binder cumulant U(η,L) plotted
against η. At ηc = 0.1400 its value drops from ≈ 0.66 to ≈ −0.7.

ary state, the system often switches back and forth between different metastable

states [109]. In contrast, here the behavior of the system is very much different

from this picture. Here the system resides in one of the two possible states, i.e.,

either in the ordered state or in the disordered state. Our finite but large time

simulation indicates that once one of these two states are selected, the system

remains in that state ever after. Therefore, the averaged value of the order pa-

rameter 〈V (η,L)〉 has been measured after the switching time tc. Consequently, a

plot of 〈V (η,L)〉 against η in Fig. 3.2(a) exhibits a clear discontinuous jump at the

value of ηc = 0.1197(1) exhibiting that it is indeed a discontinuous transition.

The probability distribution of the order parameter P[V (η,L)] against V (η,L)
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Figure 3.5: The spatial network of interaction links for L = 512, ρ0 = 1/8 and
η = ηc(L). Every agent is connected to its n-th neighbor. Snapshots
have been shown for n = 1 to 5 (from left to right).

has been studied next (Fig. 3.2(b)). The distribution is observed to be a single

peaked curve. The position of the peak is large for the ordered state and small

for the disordered state. The probability distribution abruptly shifts to the small

values of V as the noise parameter η is gradually increased. In two such plots

for η = 0.1184 and 0.1196, the system is in the ordered state. However, when

η is increased by the smallest amount of 0.0002 to the value 0.1198, the system

makes a transition to the disordered state and the distribution discontinuously

shifts a large amount to the small regime of V .

The fourth order Binder cumulant U(η,L) is defined as

U(η,L) = 1− 〈V
4(η,L)〉

3〈V 2(η,L)〉 . (3.3)

Fig. 3.2(c) shows the variation of U(η,L) against η. It is very much consistent

with the limiting values, that is, U(η,L) ≈ 2/3 for η < ηc and U(η,L) ≈ 1/3 for

η > ηc. The specific value of η where the jump in U takes place is ηc = 0.1197 and

this is recognized as the critical value ηc of the noise parameter.

3.3.2 The n = 2 case

Here, the velocity of an agent i is determined by the velocity of its second nearest

neighbor j and its own velocity. Therefore, the presence of a third agent, say the

k-th agent, is necessary. For both i-th and j-th agents, the k-th agent may act as
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their first neighbor. In turn, for the k-th agent, the j-th agent may be the first

neighbor and the i-th neighbor may be the second neighbor. This is one special

combination in which all three agents mutually depend on one another and form

a stable cluster. However, at every time step, the noise feeds in fresh randomness.

When a fourth agent comes close to this cluster, the cluster may not be stable any

longer.

It is first observed that unlike the n = 1 case, very close to the critical point

ηc, the order parameter V (t,η,L) fluctuates between its values in the ordered and

the disordered states (Fig. 3.3). The time averaged value of the order parameter

〈V (η,L)〉 in the stationary state varies continuously with the noise parameter η as

shown in Fig. 3.4(a). It assumes high values for small η and gradually decreases

as η increases. Around ηc = 0.140, its value decreases continuously at the fastest

rate. For η > ηc, 〈V (η,L)〉 gradually vanishes. This is also demonstrated in Fig.

3.4(b) where the probability density of V (η,L) has been plotted for five different

values of η, namely, 0.138, 0.139, 0.140, 0.141 and 0.142. While for η = 0.138 and

0.142, the distributions have single maxima, for the intermediate values double

maxima appears. For example, for η = 0.139 the height of the right peak is larger

than that of the left peak, for η = 0.140 both peaks are of nearly same heights

whereas for η = 0.141 the left peak is taller than the right peak. This implies

that while η = 0.139 and 0.141 are in the subcritical and supercritical regimes

respectively, η = 0.140 is nearly the value of the critical noise.

The Binder cumulant U(η,L) has been displayed in Fig. 3.4(c). Because of the

existence of the multiple metastable states, a sharp dip in the Binder cumulant

exists. This is the typical signature of a discontinuous transition as observed

previously in the metric distance dependent Vicsek model [16] occurring at η ≈

0.140 for n = 2.

To see the spatial structure of the flock one can construct the contact network.

It is straight forward to define a Euclidean directed network with the binary flock.

78



Chapter 3 Topological distance dependent transitions...

Here the agents are the nodes, and a directed link is introduced from agent i to

agent j if j is the topological neighbor of i. In Fig. 3.5 the stationary state spatial

patterns of such networks have been shown for the critical noise ηc and for n =

1 to 5, and for L = 512 and ρ0 = 1/8. The spatial distribution of agents is most

uniform for n =1. Then as the value of n increases, the agent distribution become

more and more heterogeneous.

3.3.3 The n ≥ 3 cases

The situation is completely different in the n ≥ 3 cases when we consider the

variation of the order parameter V (t,η,L) against time t. Neither we see any

switching over from the disordered to the ordered state as in n = 1 case, nor we

observed incessant flip flop between the metastable states of the ordered and dis-

ordered states as in n = 2 case. In contrast, it is observed for the cases of n = 3,

4 and 5, that the width of fluctuation of V (t,η,L) becomes increasingly larger as

the critical noise strength ηc(L) is approached continuously either from the or-

dered or from the disordered side. At η = ηc(L), the fluctuation is maximum (not

shown). Very similar are the situation for the cases of n = 4 and 5. No discontin-

uous change in the average value of the order parameter has been detected. In

Fig. 3.6(a) we exhibit the variation of 〈V (η,L)〉 against η for n = 3, 4 and 5. Its

variation near the critical point is the sharpest for n = 3, less sharp for n = 4 and

most flat for n = 5. The critical noise strengths ηc has been estimated to be 0.151,

0.162 and 0.180 respectively for L = 512. In Fig. 3.6(b), the probability distribu-

tion of the order parameter are shown again for n = 3, 4 and 5. Each curve has a

single maximum, and the peak continuously shifts from high to low value with

increasing noise strength. In the ordered state, because of the non-zero value of

the order parameter, the locations of the three curves are at the right side of the

figure. Similarly, the three peaks on the left side correspond to strong noise so

that order parameters are nearly zero. Thus the transition from ordered state to
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Figure 3.6: For L = 512, ρ0 = 1/8 data for n = 3 (black), n = 4 (blue) and n = 5 (ma-
genta) are shown. (a) The order parameter 〈V (η,L)〉 plotted against η,
the plots exhibit sharp but continuous decrease around the critical
noise strength ηc(L). (b) The probability density of the order parame-
ter P[V (η,L)] has been plotted against V (η,L). The three peaks on the
right correspond to the noise levels of the ordered state, three peaks
on the left correspond to the disordered phase, whereas the three
curves at the intermediate region have been simulated with η ≈ ηc(L).
(c) On increasing η, the Binder cumulant U(η,L) decreases continu-
ously from ≈ 0.66 and attains its disordered phase value ≈ 0.33 for
η > ηc(L).

a disordered state exhibits the typical signatures of continuous transition.

The fourth order Binder cumulants U(η,L) have been exhibited in Fig. 3.6(c).

They show a continuous transition from its ordered phase value 2/3 to its dis-

ordered phase value 1/3 without any sharp discontinuous jump or any dip to a

negative value at any intermediate noise strength η. The decrease was most sharp

for n = 3, less sharp for n = 4 and even less sharper for n = 5.
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Figure 3.7: For n = 1, L = 128 and ρ0 = 1/8. (a) The persistence time distribution
P(τ,η) plotted against τ for η = 0.0001 (black), 0.001 (red) and 0.01
(blue) using log− log scale. (b) The coordinate axes have been rescaled
using ηζ1 and η−ζ2 with the best estimates of ζ1 = 1.0 and ζ2 = 1.475.
This gives the persistence time distribution exponent γp = ζ2/ζ1 ≈
1.48(2).

3.4 Studying different characteristic times

During flights of such a collectively moving agents a few time scales becomes

relevant to understand the dynamics properly. Two such time scales have been

analyzed in this section. The first one is the persistence time which somewhat de-

fines and give some idea about the temporal correlation of two moving particles.

The second one is the information spreading time scale that gives an approximate

idea of the average time scale needed for any information to propagate through

the whole flock during the flight.

3.4.1 Persistence times

In this section, we study the persistence time distribution for the agents. Persis-

tence time τ for an agent i is a certain interval of time through which any other

agent interacts with i. At each time instant, every agent i has another agent j to

interact. The interaction partner of i changes from one agent to another agent,

and then to another agent, etc., and therefore the agent i passes through a series of

persistence times τ1, τ2, τ3, ... etc. In the stationary state, we have collected data
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of these persistence times for each individual agent and have drawn the proba-

bility distribution P(τ,η). We have observed that for a fixed density ρ0 of agents,

this distribution does not depend significantly on the system size L, in contrast,

it does depend very strongly on the noise parameter η. It is intuitively apparent

that as η decreases, there is less fluctuation in the paths of the agents and there-

fore the typical persistence time gets longer. Consequently, the persistence time

distribution gets elongated over a larger period.

In Fig. 3.7(a) we have shown the plots of persistence time distributions P(τ,η)

against τ. On the other hand, three plots for three different values of the noise

parameter η differ quite a lot. On a double logarithmic scale, the intermediate

region of each curve is quite straight, and the extent of this regime gets elongated

as η → 0. This indicates that the persistence time distribution is likely to follow

a simple power law distribution in the limit of η→ 0

P(τ) ∼ τ−γp . (3.4)

where γp is an exponent, and its value has been estimated by the finite-size scal-

ing analysis. As η increases the value of the typical persistence time become

shorter, and therefore the extent of the region of validity of the power law also

shortens. However, it has been observed that a nice finite-size scaling analysis

can be performed on this data. In Fig. 3.7(b) we have re-plotted the same data

after scaling the coordinate axes with ηζ1 and η−ζ2 where ζ1 = 1.0 and ζ2 = 1.475.

Therefore the scaling form is,

P(τ,η)η−ζ2 ∼ G[τηζ1]. (3.5)

This gives the persistence time distribution exponent γp = ζ2/ζ1 ≈ 1.48(2).
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3.4.2 Information spreading times

During the dynamical evolution of the binary flock, every agent comes in contact

with a large number of other agents. Let us assume that at a certain time instant

when the system has settled in its stationary state, a particular agent has some

specific information. This information is shared with the topological neighbor

with probability one. Generally, at any intermediate time, any agent i that has

this piece of information, shares with any other agent j which comes in contact.
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Figure 3.8: For n = 1, L = 256 and ρ0 = 1/8. The average spreading time 〈tI (η)〉
has been plotted against η on a double logarithmic scale. The slope of
the straight line is the value of the spreading exponent κ defined in
Eqn. 3.6 and has the value ≈ 0.94.

Therefore, after a certain time tI (η,L), the entire collection of agents will have this

information. We would like to study how the averaged value 〈tI (η,L)〉 of informa-

tion spreading depends on the noise strength η. It is intuitively clear that less the

amount of noise, longer is the contact time between the two agents. Therefore we

expect that as η → 0, the average contact time would gradually increase. In fact,

in the limiting situation of η → 0, all agents will be completely coherent in the

stationary state. In this situation, if there are more that one cluster, these clusters

would maintain the separate identities and would never merge. In this case the

spreading time is infinity, otherwise it is finite. When η > 0, the spreading time

decreases on the average, and we find that it decreases as a power law. In Fig. 3.8
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we exhibit the estimates of 〈tI (η,L)〉 against η on a double logarithmic case. The

plot appears to fit a nice straight line, and the linearity ends at η = ηc where it

becomes horizontal. Beyond ηc the flock is randomized, the order parameter has

the vanishingly small value. Therefore the average spreading time remains same,

and the curve becomes horizontal.

Therefore, within the range η < ηc, the average spreading time follows a power

law decay:

〈tI (η,L)〉 ∼ η−κ, (3.6)

where κ ≈ 0.94(2) has been estimated.

3.5 Theoretical analysis

3.5.1 Hydrodynamic equations of motion for binary flocks

We can also estimate the critical noise strengths as we increase the topological

neighbor number n to higher values, using the coarse-grained hydrodynamic

equations of motion derived from microscopic rule for particle moving along

its heading direction with speed v0 and orientation update for binary flocks as

defined in Eqn. 3.1. In our topology dependent binary interaction model crit-

ical point depends on the strength of interaction between the two binary pairs.

Strength of interaction can be calculated using angular correlation of two inter-

acting agents. We find the dependence of critical noise strength on interacting

binary angular correlation α(n) = 〈mimin〉, where mi = (cos(θi),sin(θi)) and min

is the direction of i-th and its n-th interacting agent, 〈...〉 is average over all possi-

ble interacting pairs in the system. We feed the value of α(n) for n = 1 to 5 from

the microscopic simulation and estimate the critical noise strengths for different

n values and compare them with numerical estimates ηc(n).

Using the update rule for the position Ri and orientation θi of the i-th agent
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Figure 3.9: Plot of critical v2c vs. ηc for various n values. The value of ηc is esti-
mated from numerical simulation for corresponding n value and the
critical vc is calculated from Eqn. 3.22 for fixed density ρ0 = 0.125.

we can write the coarse-grained hydrodynamic equations of motion for density

and polarization order parameter defined as

ρ(r, t) =
∑

i

δ(r−Ri(t)) (3.7)

P(r, t)ρ(r, t) =
∑

i

miδ(r−Ri(t)) (3.8)

coarse-grained equation for density is same as previously derived in [110] for

metric distance model

∂ρ

∂t
= −v0∇ · (Pρ) +Dρ∇2ρ (3.9)

but order parameter equation will be different with no explicit density depen-

dence of alignment term

∂Pρ

∂t
= [

(1− 2η2)2
√

2(1+α)
− 1]Pρ −α2(P ·P)Pρ +−

v0
2ρ
∇ρ +DP∇2P (3.10)

where v0 is the self-propulsion speed of the particle; Dρ and DP are the diffusion

constants in density and order parameter equations and α2 is in general a func-

tion of microscopic parameters of the model but we treat α2 as constant. Because

of Galilean invariance [32] Eqn. 3.10 in general have convective nonlinearities
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Figure 3.10: Plot of mean field estimate of the critical noise strength ηc(n) vs.
angle-angle correlation α(n) averaged over all possible interacting
pairs. The upper curve (filled squares, solid line) represents the nu-
merical data, whereas, the lower curve (opaque circles, dashed line)
represents the analytical result (Eqn. 3.11 in the text).

∝ P∇P, but close to order-disorder transition this effect is negligible, hence it has

been ignored. The mean field value of critical noise strength ηc is obtained where

the coefficient [
(1−2η2)2√
2(1+α)

− 1] vanishes,

ηc =
1√
2
[1− 1√

2

√

(1 +α)]1/2 (3.11)

The critical value of noise at which the transition takes place depends very much

on the angle-angle correlation α(n) between the agent and its binary pair. More

they are correlated, the value of the critical noise strength ηc(n) shifts towards

the smaller values. In Fig. 3.10 we plot and compare the values of ηc(n) obtained

analytically as well as numerically for n = 1 to 5.

3.5.2 Linear stability of homogeneous polarized state close to

order-disorder transition

Steady state solution of homogeneous Eqns. 3.9 and 3.10 are ρ = ρ0 and P = P0ẑ.

We add small perturbations ρ = ρ0+δρ and P = (P0+δPz)ẑ+δPxx̂ and we can write
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the linearized equations of motion for small perturbations, δρ, δPx and δPz

∂tδρ = −vP0(∂zδρ +∂xδρ)− vρ0(∂zδPz +∂xδPx) +Dρ∇2δρ (3.12)

∂tδPz = 2P2
0 α(η)δPz −

v

2ρ0
δzδρ +DP∇2δPz (3.13)

∂tδPx = −
v

2ρ0
δxδρ +DP∇2δPx (3.14)

using Fourier transformation

δY (k,S) =

∫

drexp(ik · r)exp(St)dt (3.15)

we get linear equation in Fourier space.

∂t
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where matrixM is given by coefficient of different terms in Eqs. 3.12, 3.13 and

3.14. We can solve above coupled equation for mode S . If the real part of S ,

Re[S] > 0 homogeneous polarized state is unstable and if Re[S] < 0, homogeneous

polarized state is stable to small perturbation. We can solve for modes analyti-

cally for two different directions θ = 0 and π
2 , where θ is the angle between wave

vector q and ordering direction. For θ = π
2 , S is determined by

(S + vP0iq +Dρq
2)(S +DPq

2)− v2

2
q2 = 0 (3.16)

and both modes are always stable. For θ = 0

(S + vP0iq +Dρq
2)(S +2α1(η) +DPq

2) +
v2

2
q2 = 0 (3.17)
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Hence

2S = −α1(η)− D̄q2 ±
1
2v

2q2(38ρ
2
0 +1)

2α1(η) + D̄q2
(3.18)

where, D̄ =Dρ +DP , one of the mode can become unstable if

1

2
v2q2(

3

8
ρ20 +1) > (α1(η) + D̄q2)(2α1(η) + D̄q2) (3.19)

as we approach the critical point from the subcritical regime. Very close to critical

point, we can write η = ηc + η − ηc = ηc +∆η, where ηc is the critical value of η at

which α1(η) changes sign and ∆η = η − ηc and since we are approaching critical

point from below ∆η < 0. Close to critical point we can expand α1(η) about the

critical ηc,

α1(η) = α1(ηc) +α′1(ηc)∆η +O(∆η)2

= α1(ηc)−α′1(ηc)|∆η |+O(∆η)2 (3.20)

where α′1(ηc) =
∂α1
∂η |ηc . Since α1(η) = η2

c (1 −
η2

η2c
), hence α′1(ηc) = −2ηc and we can

write, up to linear order in ∆η as η→ ηc, as

α1(η) = α1(ηc) + 2ηc |∆η |+O(∆η)2

= |∆η |((ηc + η) + 2ηc) +O(∆η)2

= 4|∆η |ηc +O(∆η)2 (3.21)

However, the state is unstable if Re[S] > 0 and stable if Re[S] < 0. Hence, the

condition for instability to leading order in ∆η and for small q limit is,

v2(
3

8
ρ20 +1) > 24|∆η |ηcD̄ (3.22)

As we approach critical point instability is more pronounced and smaller the
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Figure 3.11: Plot of critical wave vector qc vs. ηc belowwhich instability occur Eq.
3.23 for speed v = 0.5 and density ρ0 = 0.125. Critical wave vector
decreases with decreasing ηc and hence decreasing n.

value of ηc instability occur at small v value. As shown in Fig. 3.10 and Eqn. 3.11,

ηc decreases as we decrease n. Hence for small n instability appears at smaller

v as shown in Fig. 3.9. We can also estimate critical wave vector at the onset of

instability close to the critical point.

D̄2q2c =
1

2
v2(

3

8
ρ20 +1)− 12ηc |∆η |D̄ (3.23)

Hence in the subcritical regime, as we approach closer and closer to the critical

point α1(η) is small and instability will occur at larger wave vector or smaller

length. Also, instability occurs at large qc for small ηc (Fig. 3.11) and this is

in agreement with our numerical simulation where we find formation of bands

occurring at larger system size L as we go from the first (n = 1) neighbor to the

second (n = 2) neighbor.

3.6 Summary

We have studied the collective behavior of a binary flock using Vicsek dynam-

ics. In this flock, the velocity of an agent depends on the velocities of its n-th

topological neighbor and its own. The velocity field of all agents is updated
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synchronously maintaining the periodic boundary condition on a collection of

agents confined within a two-dimensional square space. Extensive numerical

simulations reveal that for all values of n, an order to disorder phase transition

takes place at certain critical threshold ηc of the noise parameter. In particular,

for n = 1, it is a different kind of discontinuous transition: The long time sta-

tionary state of the system is either in the ordered phase or in the disordered

phase. At a certain ηc for n = 1 it switches over from one phase to the other. The

case of n = 2 exhibits ordinary discontinuous transition where, around the crit-

ical point, the system flip flops between the two metastable states correspond-

ing to the ordered and disordered phases. The probability distribution of the

order parameter has been observed to be characterized by double humped func-

tion, whereas the fourth order Binder cumulant exhibits a negative dip at the

critical noise strength. For n ≥ 3 the system exhibits continuous transitions, sig-

natures of which are evident in the continuous variation of their order parame-

ters against noise strengths, continuous variation of their Binder cumulants and

singly peaked distributions of their order parameters.

Persistence time is the duration of the time interval through which an agent has

a specific topological neighbor. The probability distribution of persistence times

has been found to follow nice power law decaying functions and independent of

the value of the topological neighbor n. Further, we have studied the information

spreading dynamics in the binary flocks. How long it takes on the average to

spread an information localized at a certain agent to spread to all agents of the

system? It has been seen that the mean value of this time decays like a power law

as the noise level increases from zero.

Finally, this system of binary flocks has been studied again using the hydro-

dynamic equations of motion. Linear stability analysis of the homogeneous po-

larized state close to the order-disorder transition has been done. The average

correlation between a pair of agents, who are the topological neighbors, has been
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calculated. Using the value of this quantity, the critical noise strength has been

estimated, and the correspondence has been found to be good.
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4.1 Introduction

As described in the earlier chapters, among many systems that exhibits non-

equilibrium phase transitions under driven noise, the phenomenon of Collec-

tive Behavior is a familiar example [15, 16, 18–22]. With many prototypical ex-

amples of collective motion in nature, such as bacterial colonies [111], insect

swarms [112], bird flocks [113], fish schools [114], etc., it has been observed that

even a simplified description provides a good starting point for an overall under-

standing of the collective motion.

With a good portion of studies following the seminal work by Vicsek et. al.

[16] and a number of experimental, theoretical and numerical studies been done

[32–38, 115], the common prescription in all these models is, agents move with

their individual interaction zones. More specifically, an interaction zone is the

area within a circle of radius R drawn around each individual agent which is

refreshed at each instant of time. An agent interacts with all neighbors within

this zone including itself.

In contrast, here in this chapter [46], we present a modified version of the Vic-

sek model where the zones of interaction are quenched in space. An underlying

fixed two-dimensional L×L lattice, which divides the entire space into L2 square

boxes, constitutes the interaction zones for the study. A moving agent passes

through a series of interaction zones.

At a certain instant, an agent interacts with all agents within the interaction

zone it is presently residing, and similarly, all agents within this zone interact

among themselves. A common direction of motion is determined by these mu-

tual interactions and is assigned to all agents of this zone. At this point, the noise

appears into the picture and plays its role. The direction of motion of each indi-

vidual agent is then updated independently by applying the random scalar noise.

The detailed algorithm is as follows.
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4.2 Model

A collection of N agents are released within a square box of size L × L on the

x − y plane at the positions (xi , yi), i = 1, ...,N . The value of each coordinate is an

independent and identically distributed random number between 0 and L. The

density ρ = N/L2 of agents has been maintained to be unity in all calculations in

this paper. All agents have the same speed v0 = 1/2 always and the orientation

angles θi of their velocity vectors have been assigned random values between 0

and 2π drawing them from a uniform probability distribution. A configuration

of agents prepared in this way, constitute the initial state. The dynamical state

of the flock of agents is then evolved using a discrete time synchronous updating

rule under periodic boundary condition, the time t being the number of updates

per agent.

At any arbitrary time t an agent i interacts with all nR(t) agents (including

itself) within a neighborhood R around it. Unlike the Vicsek model here the

neighborhoods are quenched, i.e., they are fixed in space. We define these neigh-

borhoods as the primitive cells of an underlying imaginary square lattice of size

L×L. More specifically, a typical neighborhoodR is the primitive cell whose ver-

tices are located at the coordinates (x,y), (x+1, y), (x+1, y+1), and (x,y+1) where

both x and y are the integer numbers. All nR(t) agents within a particular cell

belong to the same neighborhood and are neighbors of one another.

Under the time evolution the system passes through a series of microstates de-

fined by the specific positions and the directions of motion of the N agents. Let

vi(t) denote the velocity vector of the i-th agent at time t which has the orienta-

tional angle θi(t). The orientational angles θi(t +1) at the next time step are then

estimated for all neighborhoods {R} in a synchronous manner. All agents nR(t)

within a neighborhood mutually interact among themselves. The resultant of the

velocity vectors of these agents is determined and its orientational angle θi(t +1)
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Figure 4.1: A snapshot of the collection of agents at an arbitrary instant of time
has been shown, marking them by the red dots, in a two-dimensional
system of size L = 24 using the periodic boundary condition. The
underlying space has been discretized into small neighborhoods by
the primitive cells of an L×L square lattice. For each cell, the direction
of the resultant of the velocity vectors of all agents has been shown by
a blue arrow.

is assigned to the directions of velocities of all agents (Fig. 4.1) as,

θi(t +1) = tan−1[
∑

j∈R
sinθj(t)/

∑

j∈R
cosθj(t)], (4.1)

where the summation runs over all nR(t) agents within R. Therefore, before the

noise is switched on, all agents of a neighborhood R have the same velocity di-

rection which is different in different neighborhoods. This should be compared

with the original version of the Vicsek model where even before the application

of noise, different agents may have different directions of motion since individ-

ual agents have distinctly different neighborhoods in general. This is the main

difference between our quenched neighborhood version of the Vicsek model and

its original version. This modification has the numerical advantage since before

the application of noise, the common direction of motion of all agents within R

is determined only once, which results in the faster execution of the code.

However, on the introduction of scalar noise, the orientational angles become
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disordered. Along with the noise the Eqn. 4.1. is modified as:

θi(t +1) = tan−1[
∑

j∈R
sinθj(t)/

∑

j∈R
cosθj(t)] + ζ(η). (4.2)

The noise term ζ(η) quantifies the amount of error that is added to the orienta-

tional angle of each agent participating in an interaction. Here η measures the

strength of the noise and ζ(η) represents a random angle for each agent drawn

from a uniform distribution within [-η/2, η/2]. Each agent is then displaced

along its direction of motion θi(t + 1). In general, at every time instant, some

agents leave a particular neighborhood R and move to their adjacent neighbor-

hoods. Similarly, another set of agents moves into R from its adjacent neighbor-

hoods.

The instantaneous global order parameter Ω(t,η,L) is defined for the entire

system as the magnitude of the velocity vector of an agent, averaged over all

agents and scaled by the speed v0.

Ω(t,η,L) =
1

Nv0

∣

∣

∣

∣

∣

∑

j∈N
vj(t)

∣

∣

∣

∣

∣

. (4.3)

In the stationary state Ω(t,η,L) is estimated over a long duration of time and is

averaged to find Ω(η,L).

4.3 Description of the dynamical evolution

A computer code for the animation of the dynamical evolution of this system

starting from the random initial state has been written and is run over long dura-

tions for different values of noise strengths. Let us analyze the time evolution of

the system for η < ηc. In particular, let us first consider the updating process of

the directions of motion of the agents in two adjacent cells at locations (x,y) and

(x+1, y). Let the angles θi(t+1) for these cells before the application of the noise is
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approximately equal to π/2. Then after the application of noise and after moving

one step, these two cells would exchange some agents. Since their directions are

nearly the same, most of the agents of two adjacent cells would move to two new

cells at (x,y+1) and (x+1, y+1) which are also adjacent cells. Thus we refer agents

in two adjacent cells of nearly parallel directions of motion tend to stick together

maintaining their adjacency as the ‘cohesiveness property’ of similarly moving

agents in adjacent cells. This cohesiveness is inbuilt in the dynamical rules of the

collective motion. Because of this cohesiveness, large clusters of agents gradually

form as time passes. They move as a whole and are extended spatially across the

direction of motion. Evidently, the most stable conformation of such a cluster

appears when two wings of it join together after wrapping the system because of

the periodic boundary condition, which then is called the ‘band’.

In the absence of noise, the agents move in the stationary state completely

coherently in a ballistic fashion and Ω(0,L) = 1. When the noise is switched on,

and its strength η is tuned to a small value, the motion of the individual agents

in the stationary state is predominantly directed leading to a high value of the

order parameter. In other words, it means that on the average the entire system

ofN agents moves along a globally fixed direction, but the instantaneous velocity

directions of individual agents do fluctuate randomly with a small spread about

this global direction. On the other hand, when η is tuned for the large values,

individual agent’s motion is grossly diffusive, and this leads to nearly vanishing

values of the order parameter. The minimum value of noise parameter η = ηc

where the order parameter vanishes for infinitely large system sizes, is called the

critical point of the order-disorder phase transition that takes place in this system

of collective motion under the application of noise.

How the system becomes increasingly ordered as the strength of the applied

noise is systematically reduced? To understand it we need to follow the formation

of bands. When η is tuned to ηc(L), a band of agents of high density appears in the
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system for the first time. Within a band, the motions of the agents are directed.

Such a band has the shape of a thin and straight strip which moves as a whole

along a specific direction perpendicular to the length of the band. Because of the

imposed periodic boundary condition, the band takes the shape of a closed ring.

Consequently, the magnitude of the order parameter jumps discontinuously to

a non-zero value when a band appears in the system. In general, for η < ηc the

bands can be oriented along different directions, e.g., parallel to the sides, along

the diagonal directions, or even along some other directions. The shapes of the

bands become increasingly non-trivial as the system size becomes larger. For

such large system sizes, multiple bands can also be simultaneously present.

A band consists of a set of directionally biased agents moving along almost

(apart from noise) in the same direction. The entire band moves in a sea of ran-

domly diffusing agents. Thus, the whole L × L area is divided into two zones:

the band, comprised of the directed agents and the diffusive zone, comprising

of the rest of the diffusive agents. At every instant the band does two activities

simultaneously: (i) It absorbs fresh agents into it at its front edge picking them

from the diffusive zone, which executes a directed motion inside the band, and

(ii) simultaneously it pushes the directed agents at the back edge of the band into

the diffusive zone. The rates of these two processes are equal, and in that way,

the width and shape of the band are maintained in the stationary state. The front

edge of the band is sharp where as the back edge is hazy. Therefore, when there

is only one band present in the system, an arbitrarily tagged agent has two types

of motion: for a certain amount of time it executes a diffusive motion, and then

it is swallowed by the band at the front edge. It then moves with the band for a

little while as a directed agent, and then again dropped out in the diffusive re-

gion from the back edge. In the stationary state, this type of motion is repeated

ad infinitum for all agents.

In the following, we report the results of our numerical study on three different
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Figure 4.2: L = 128: Variation of the instantaneous order parameter Ω(t,η,L) has
been shown against time t for the values of the noise strength η =
2.262, 2.266 and 2.270 (from top to bottom). These η values are very
close to ηc = 2.266. Here the system is seen to flip-flop between the
ordered and disordered states corresponding to non-zero and almost
zero values of Ω. These states are characterized by the presence and
absence of high density correlated bands.

system sizes, namely L = 128, 256 and 512. We have observed how the discontin-

uous transition becomes more vivid and the band structure become increasingly

rich as the system size is systematically enlarged.

4.4 Results

4.4.1 System size L = 128

Wefirst exhibit the variation of the instantaneous order parameterΩ(t,η,L) against

time t in Fig. 4.2. Three figures corresponding to three closely separated values

of the noise parameter η = 2.262, 2.266 and 2.270 have been shown in the top,

middle and bottom panels. The same random initial state has been used in all
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Figure 4.3: L = 128: Probability distribution P(Ω,η,L) of the instantaneous or-
der parameter in the stationary state against the order parameter Ω.
The three curves (from the right to the left) correspond to η = 2.2610
(black), 2.2645 (red), and 2.2680 (blue). Each curve has two peaks,
one at a large Ω (ordered state) and the other at a small value of Ω
(disordered state).

three cases. In each case, the data has been plotted at the interval of every 1000

time steps and the time series has been shown for 30 million time steps. It is

apparent from the plot that the system evolves through two possible metastable

states, an ordered state with a high value of Ω and a disordered state with a very

small value of Ω. The system flip-flops between these two states. It can also

be observed that the system spends more time in the ordered state with smaller

noise at η = 2.262. On the other hand, the typical residence time in the disor-

dered state is longer with a larger value of η = 2.270. However, in between at η =

2.266, the system resides in both states almost equally frequently. Therefore, we

approximately estimate ηc = 2.266 as the critical noise parameter of the system

for L = 128.

To quantify the metastable states, we have estimated the probability distribu-

tion of the order parameter P(Ω,η,L) (Fig. 4.3). It has been found that for all

three noise levels, the probability distribution has double peaks at two distinct

values of Ω. These humps correspond to the ordered and disordered states. For

small η = 2.2610, the peak in the ordered state is taller than its peak in the dis-

ordered state. On the other hand, for large η = 2.2680, it is the opposite, i.e., the
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peak in the disordered state is taller than its peak in the ordered state. For the

third plot with η = 2.2645 both peaks are of same heights approximately.

In Fig. 4.4 snapshots of fifteen agent configurations have been shown, and the

characterization of each figure has been done in Table 1. The presence of bands

has been searched for in the stationary states of the system. We started from a

high value of η and the reduced its value systematically in small intervals. The

first high density stable band is observed for η = 2.262. The flip-flop dynamics

of the system exhibited in Fig. 4.2 implies the appearance and disappearance

of such bands with time. The orientation of the band is measured by the angle

φ between the direction of motion of the band and the positive x direction. All

bands always move along the normal to the front edge of the band. Therefore,

for the first few snapshots of Fig. 4.4, the angle φ has the values π, 5π/4, 3π/2,

3π/2, 7π/4, ... etc. The first diagonal band appeared at η = 2.140. The first

parallel double bands appeared at η = 1.850. The next non-trivial band appeared

at η = 1.600 with φ = 3π/2− arctan(1/2).

The bands are stable and with the periodic boundary condition imposed, they

wrap the system different number of times in different snapshots. For example, if

the orientation of the band is neither horizontal nor vertical, it must be oriented

at an angle φ such that it wraps the system. We characterize such a wrapped

band by an integer pair W (m,n) such that the numbers of its intersection are m

and n with the x and y axes respectively and φ differs from arctan(m/n) either by

±π/2 or by ±π. For example, W (1,0) and W (0,1) are the vertical and horizontal

bands respectively. A single diagonal band is denoted by W (1,1).
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A set of k parallel W (m,n) bands are denoted by kW (m,n).

Therefore, it is apparent that as η decreases the agents become more strongly

correlated. Such stronger correlation appears in longer lengths as well as wider

widths of the bands. Long band lengths are accommodated by increasing the

number of bands, selecting the non-trivial orientation of the bands, or by increas-

ing the wrapping numbers. When η is tuned down to ≈ 1.250, the distinct struc-

ture of bands start vanishing, i.e., the dismantling process of the bands starts.

Evidently, no distinct band was observed when η was set to even smaller values.

1.4 1.6 1.8 2.0 2.2 2.4

η

0.0
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Figure 4.5: L = 128: The average value of the order parameter Ω(η,L) in the sta-
tionary state has been plotted against the noise strength η using black
opaque circles. At the critical noise ηc(L) = 2.2645 there is a sharp rise
in the order parameter. In the sub-critical regime three distinct data
sets are identified which correspond to three different shaped bands
and are plotted with circles filled with different colors: W (1,0) and
W (0,1) (blue); 2W (1,0) and 2W (0,1) (red); W (1,1) (green). In each
set the Ω(η,L) increases almost linearly on decreasing η.

The variation of the order parameter Ω(η,L) for L = 128 against the noise

strength η has been shown in Fig. 4.5. For η < ηc(L) the order parameter Ω(η,L)

increases almost linearly on reducing η. It is clear that the entire plot is the com-

bination of a different subset of points corresponding to different shaped bands.

In Fig. 4.5 we have marked three sets of colored circles that represent the data for

three types of bands. For η > ηc(L) the Ω(η,L) assumes a nearly constant value

close to zero on increasing η.
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Figure 4.6: L = 256: Plot of the instantaneous order parameter Ω(t,η,L) against
time as in Fig. 4.2 for η = 2.346, 2.348 and 2.350 (from top to bottom).
Here the system is not seen to flip-flop between two metastable states.
Since the system evolves from a randomly selected state, initially the
system is in a disordered state without any band having a nearly van-
ishing value of Ω, but then it suddenly jumps to an ordered state on
the appearance of a correlated band.

4.4.2 System size L = 256

Here also the dynamics start from the same completely random initial state for all

values of the noise strength parameter η, and therefore the motion of the agents

are predominantly diffusive at the early stage. As time is elapsed, the system gets

time to organize itself. Typically, after a substantial amount of relaxation time,

bands are formed here as well. In contrast to the situation in L = 128 system, here

the system does not flip-flop between two metastable states. Consequently, the

magnitude of the order parameter jumps up only for once from a nearly vanish-

ing value to a finite magnitude. Three such jumps have been shown in Fig. 4.6

where the time series for the order parameter has been plotted against time for

the 20 million time steps. For the noise level of η = 2.346, 2.348, and 2.350 the
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transitions take place at times ≈ 18, 9 and 5 million respectively.

Similar to the case of L = 128, fifteen snapshots of the agent configurations

have been shown in Fig. 4.7. These snapshots are taken at long times after the

jumps to the ordered states have taken place. Here a number of bands of differ-

ent orientations and wrappings have been observed. Compared to L = 128 we

find here a new type of stationary state where two different sets of bands cross

one another. For example, in case of η = 1.800, we have exhibited a snapshot

where a single horizontal band W (0,1) with φ = π/2 crosses a single diagonal

band W (1,1) with φ = π/4. Both bands are stable and move along two differ-

ent directions, separated by π/4. In general, for such crossed bands, the order

parameter takes slightly smaller values.
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In Fig. 4.8 the time averaged value of the order parameter Ω(η,L) has been

plotted against η. The sharp fall in the order parameter takes place at ηc(L) ≈

2.350. Beyond this value of η > ηc(L), order parameter is nearly zero. For η <

ηc(L) four sets of data points are plotted which correspond to four different band

structures as explained in the figure caption.
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Figure 4.8: L = 256: The average value of the order parameter Ω(η,L) in the sta-
tionary state has been plotted against the noise strength η using black
opaque circles. At the critical noise ηc(L) = 2.350 there is a sharp rise
in the order parameter similar to a discontinuous transition. In the
subcritical regime four different data sets are identified with four dis-
tinctly different shaped bands and are represented by filled circles of
different colors: W (1,1) (red); 2W (1,1) (blue); 4W (1,0) and 4W (0,1)
(magenta) and W (1,2) and W (2,1) (green). In each set the Ω(η,L) in-
creases almost linearly on decreasing η.

4.4.3 System size L = 512

The bands become most clearly visible for the system size L = 512. Because of

the choice of random orientation angles of the velocity vectors, the initial state

is disordered with a vanishingly small value of the order parameter. Beyond

the critical noise value, ηc = 2.368 the order parameter in the stationary state

assumes a very small value. However, when the noise is reduced, Ω(ηc,L) jumps

discontinuously at ηc to a finite value. In Fig. 4.9 the instantaneous value of the

order parameter Ω(t,η,L) has been plotted against time for long durations. For
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Figure 4.9: L = 512: Variation of the instantaneous order parameter Ω(t,η,L) has
been shown against time t and for η = 2.350, 2.360, and 2.370 (from
top to bottom). As η approaches ηc, increasingly longer time is re-
quired for switching over from the disordered to the ordered state.

η = 2.350 and 2.360 discontinuous jumps to the ordered state are observed after

approximately 9 and 21 million time steps. In the bottom curve, η = 2.370 has

been used, and no such jump has been observed within the entire duration of

observation of 35 million time steps.

Therefore in general, the long time stationary states of all states for η < ηc(L) =

2.368 have been observed to be characterized by the presence of bands of high

density directed agents. As the value of the noise strength η is systematically

decreased different types of bands appear in the stationary states. In Fig. 4.10 we

have exhibited twenty snapshots of agent locations in these stationary states of L

= 512. We have observed single andmultiple bands, diagonal and non-diagonally

oriented bands, crossed bands meeting perpendicular to one another or at an

angle, and also bands which wrap the system multiple times. For 0 < η < 1 the

clearly visible band structure has been missing till our time of observation of 50
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million time steps. In Table III we describe the band structures of these twenty

stationary states. The value of η has been mentioned below every plot.

In Fig. 4.11 we have plotted Ω(η,L) against η. Here also, in the ordered state

the points for different types of bands form different groups. Within one group

the band pattern is the same for all values of η but the value of Ω(η,L) increases

linearly with decreasing η. Six such group of points have been shown in Fig. 4.11

and the corresponding wrapping numbers have been mentioned in the caption.
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Chapter 4 Band structure in collective motion...

4.5 Summary

To summarize, we have studied the Vicsek model [16] of collective motion with

quenched range of interaction. For studying the two-dimensional version of

the model with scalar noise, the underlying plane has been divided into non-

overlapping square shaped neighborhoods. All agents residing within a certain

square cell at a certain time are mutual neighbors of one another. The direction

of the resultant of their velocity vectors is assigned to all agents which are then

topped up by applying random noise. In a microscopic description of the model

it has been argued that the agents in two adjacent cells, having similar velocity

directions, feel certain cohesiveness and therefore continue their motion in the

adjacent cells. This cohesiveness property of moving together in the same di-

rection is the original cause for the formation of band structures in the models

of collective motion in the framework of the Vicsek model. Within a band, the

agents are correlated. As the noise decreases the sub-critical regime, the corre-

lation becomes stronger. Consequently, the system becomes more ordered which

is reflected in the non-trivial shaped bands of longer lengths, larger widths, dif-

ferent orientations and wrapping numbers. We have formulated a detailed pre-

scription for the characterization of such bands. Starting from the completely

disordered regime, as the strength of the noise is tuned down systematically, the

most simple band parallel to the edges pops up abruptly, indicating a discontin-

uous transition similar to the Vicsek model.

By introducing the quenched range of interaction we have reduced, the indi-

vidual freedom of the agents. In a way, this can be looked upon as feeding more

correlation among the agents. It seems likely, that because of this extra correla-

tion many different shaped bands show up in our model, even for the system size

L = 512. The appearance of similar bands may be plausible even in the original

Vicsek model for the larger system sizes and with smaller noise.
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Figure 4.11: L = 512: The stationary state order parameter Ω(η,L) has been plot-
ted against the noise strength η. The critical value ηc(L) of transition
has been found to 2.368. In the sub-critical regime six distinct sub-
sets of data points have been identified for six differently shaped
bands. They are grouped together and labeled by their wrapping
numbers: W (1,1) (red); 2W (1,1) (brown); 3W (1,1) (blue); 4W (1,1)
(magenta); W (4,3),W (3,4) (green) and W (1,1),W (1,1) bands are
presented by maroon color.
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5.1 Introduction

As we grow up, we learn that objects we observe around us, have their own names

by which we identify these objects successfully and are often known locally by

the same name. There are many names of any object with each name belonging to

a specific group of the community. Socio cultural diversity and lack of commu-

nicative origins have often been the reason behind many such nomenclatures of

objects present all around. However with time, i.e. with increasing communica-

tion and interaction, out of many locally famous names, few becomemore known

among people around the world. There might be many social, economic, politi-

cal, educational reasons behind, but the development of such a consensus among

people of a large community, with each agent often locally interacting with very

few other agents, has been a matter of interest to researchers. There have been

many models, describing the phenomena of consensus reaching among locally

interacting agents in a community, often described as the ’Naming Game’.

One of the simplest framework as described in the previous chapter as the

NamingGame (NG) [47,48], progressively leading to the establishment of human-

like languages, is a simple multi-agent model in a community of agents employ-

ing mutual bipartite interactions within themselves, leading to the emergence of

a shared communication scheme.

Formulated by a group of researchers to understand the role of self-organization

in evolution of language [49, 50], studies in many directions including semiotic

dynamics [51, 52, 55, 116], artificial sensor network as a leader election model

[56], social media as an opinion formation model [57] and also more advanced

models [58, 59] in attempt to explain various complex processes like categoriza-

tion, color naming have also been built on top of the basic naming game frame-

work.

Following the basic idea of the naming game, our argument is that learning is

reciprocal [117,118] and is not properly incorporated into the dynamical rules of
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Chapter 5 Information sharing and sorting...

the Naming Game models available in the literature.

In each game a randomly selected pair of agents interact to negotiate conven-

tions, i.e., associations between forms (names) and meanings (e.g. objects in the

environment, linguistic categories etc.) and the negotiation of conventions takes

place when one of the agents (termed as a speaker) tries to draw attention of the

other agent (termed as the hearer) toward the meaning by producing a conven-

tional form.

If the hearer is capable of expressing the actual meaning of the conventional

form uttered by the speaker, the pair of interacting agents are assumed to have

a mutual consensus, and the interaction is called a “success”. Consequently, the

speaker-hearer pair updates their form-meaning repository by removing all com-

peting forms corresponding to the meaning except the “winning” one currently

uttered by the speaker. On the other hand, if the hearer produces a wrong in-

terpretation, he takes a lesson from the interaction by learning this new form-

meaning association, and in this case, the interaction is termed as a “failure”.

Thus, depending on the success and failure moves of the hearer in producing

meaning of the name of any object, both the interacting agents reshape their inter-

nal form-meaning association. Through successive interactions, the adjustment

of such individual associations collectively leads or should lead to the emergence

of a global consensus.

In this chapter, we revisit the basic construction of the model of the naming

game and redefine the interaction rules, accordingly in order to address the reci-

procity of learning process by having a model with symmetric interactions, based

on our work in [60]. It has been argued that it is too stringent in removing all the

entries except the winning one from the agent repertoire after a successful in-

teraction between the speaker-hearer pair. Further, note that learning is rarely

unidirectional as assumed in the case of a failure move in the original naming

game models; in contrast, we believe that learning activity most of the times is
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Chapter 5 Information sharing and sorting...

reciprocal.

Therefore, here we redefine the interaction rules in order to address the above

limitations by having a symmetric model where on a success both the agents sort

out all the common information that they have while on a failure enhance each

of their knowledge by learning all the form-meaning associations that the other

partner only knew so far. One can intuitively posit that this process should lead

to the emergence of a faster consensus than the original naming game owing to

the fact that (a) the agents learn more and (b) the agreement criteria is relaxed,

thereby, increasing manifolds the probability of successful communication. We

perform rigorous numerical simulations to obtain the scaling relations for this

revised model and explicitly show that for a population of N agents the time to

reach global consensus indeed scales as N1.13 as opposed to N1.5 for the original

naming game.

5.2 Model

The dynamics of naming game is defined in terms of a sequence of bipartite in-

teractions in a community of N agents, with each agent i(i = 1, ...,N ) having an

inventory of words whose length l may be arbitrarily long, initially with empty

inventories, i.e., ℓi = 0 for all i. Following the long sequence of mutual bipartite

information sharings, the system finally reaches a stable state where all agents

have the same set of common words. A ‘pseudo’ time t is defined for the con-

venience of following the dynamics, equal to the number of interactions. In an

interaction, a pair of distinct agents i and j of inventory lengths ℓi and ℓj , respec-

tively, are selected randomly with uniform probability from all the agents. One

of them, say the ith agent, is randomly selected and is termed as the “speaker”

whereas the j th agent is called the “hearer”. The interaction between them can
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Chapter 5 Information sharing and sorting...

take place in the following three possible ways: A. Invention: In this case the in-

ventory list of the speaker is empty. The speaker picks up a new word and keeps

it at the bottom of his inventory. Since this is a new word, it cannot be present in

the inventory of the j-th agent. Therefore this new word is simply added at the

top of the inventory of the j-th agent.

B. Success: In this case the inventory length of the speaker is non-zero. The

speaker and the hearer share information about their contents, sort out the com-

mon contents and only the common words are retained. That means the invento-

ries of lengths ℓi and ℓj of the speaker and the hearer respectively are compared,

and the number n of common words are sorted out. In case n > 0 then this possi-

bility is called a success. The inventories of both the speaker and the hearer are

then shrunk to n entries where only the common words are kept.

C. Failure: If the inventories have non-zero lengths yet there is no common

word between them, then the lists are merged together, and both the agents have

the same combined list.

It is to be noted that in this model the success and failure rules are symmetric

with respect to the speaker and the hearer.

At any arbitrary intermediate time t the total number of words in the commu-

nity is denoted by Nw(t) and the total number of distinct words is denoted by

Nd(t). The dynamics starts with the inventory lengths ℓi = 0 for all i. At very

early times almost all interactions are of type A. During this period both Nw(t)

and Nd(t) grow very fast, i.e., linearly with time. As time proceeds more and

more agents have non-zero inventory lengths and therefore the chances of suc-

cess and failure moves become increasingly likely. Consequently Nw(t) reaches a

maximum at a specific time tm and then it decreases with time (Fig. 5.1(a)). On

the other hand the number of distinct wordsNd(t) nearly saturates around a fixed

mean value. EventuallyNd(t) also decreases gradually and the community finally

converges at the time tf to a stable state which is a fixed point (Fig. 5.1(b)). In
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Figure 5.1: Time Variations of the average (a) number of words 〈W (t,N )〉, (b) number of
distinct words 〈D(t,N )〉 and (c) success rate 〈S(t,N )〉with time for a commu-
nity size N = 1024.

this stable state Nw(tf ) takes a value of gN with every inventory having the same

set of g common words, g being a small positive integer. Therefore in contrast to

the naming game model where g =1 [47], there could be multiple globally com-

mon words present in our model i.e., g > 1. Consequently Nd(t) finally reaches

the value g . In addition a third quantity S(t) is also calculated which measures

the success rate of an interaction at time t. In other words S(t) is the fraction of

a large number of independent runs having successful moves at time t and the

variation of this quantity with time is shown in Fig. 5.1(c).

5.3 Algorithm

The algorithm used for the simulation can be described as follows. Positive inte-

ger numbers starting from unity are used for representing different words. There-
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fore at any arbitrary intermediate stage, if Nd distinct words have already been

used, to choose a new word one simply selects the number Nd + 1. It turned

out that defining an array b(k) is very useful, b(k) keeps track of the number of

times the word k has occurred with all agents. In case A, b(k) is increased by 2:

b(k)→ b(k) + 2. However to check if an interaction is a case of success or failure,

one first compares the inventories of the i-th and the j-th agents. Therefore every

word of the list ℓi has to be checked in the list ℓj and vice versa. This is easily

done by using another array a(k) and for every word k in ℓi and ℓj one makes

a(k)→ a(k) + 1. After that, the number of locations with a(k) = 2 are the number

of common words between ℓi and ℓj . Let this number be n, and only these com-

mon words are kept in another array a1. At the same time we also count that out

of n such common words howmany have b values greater than 2, i.e., these words

have not only occurred in ℓi and ℓj but also in the inventories of other agents. Let

this number be n′. If n > 0, it is a success but on the other hand if n = 0, its is a

case of failure.

In the case of successful moves, we first update the array b. For each entry k

in ℓi and ℓj , we make b(k)→ b(k) − 1. Therefore during the updating procedure

whenever b(k) becomes zero we reduce Nd by unity: Nd → Nd − 1. If there are m

distinct entries present in the inventories of the agent i and agent j where b(k)

becomes zero, then the n common words in the array a1, are copied to ℓi and

ℓj . Nw is updated like: Nw → Nw − ℓi − ℓj + 2n and Nd is updated like: Nd →

Nd −m+n−n′. This completes a successful interaction.

In case of a failure move, the combined list of ℓi and ℓj are copied to the inven-

tory lists of i and j . For each such word the b value is increased by unity. The

total number of wordsNw is increased asNw→Nw+ℓi+ℓj , the number of distinct

words Nd remains same. This completes an unsuccessful interaction (see Table

I).
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Figure 5.2: The fraction 1 − fN (1) of configurations having more than 1 distinct
word per agent in the stable state has been plotted against the com-
munity size N . A power law is observed like 1 − fN (1) ∼ N−τ with
τ ≈ 1.13(2).

5.4 Results

It is noticed that on increasing the community size N the probability that an

arbitrary configuration has the same set of g distinct words per agent in the fi-

nal stable state decreases for g > 1 and it increases to unity for g = 1. We have

measured the fraction fN (g) of a large sample of uncorrelated configurations that

have g words in the final stable configurations. The variation of fN (1) has been

shown in Fig. 5.2. A plot of 1−fN (1) vs. N on a log− log scale gives a nice straight

line for the intermediate range of N . This indicates that the growth of fN (1) to

unity as N increases follows a power law like 1− fN (1) = AN−τ and our measured

value of τ is 1.13(2). The mean maximal time 〈tm(N )〉 and the mean convergence

time 〈tf (N )〉 have been measured for different values ofN and are plotted using a

log− log scale in Fig. 5.3. The community sizes which have been simulated varied

Rule A: Nw→Nw +2; Nd →Nd +1
Rule B: Nw→Nw − ℓi − ℓj +2n; Nd →Nd −m+n−n′
Rule C: Nw→Nw + ℓi + ℓj ; Nd →Nd

Table 5.1: Summary of the rules A, B and C for the changes in the total number
of words Nw(t) and the number of distinct words Nd(t) at any arbitrary
time t.
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Figure 5.3: The variations of the average maximum time 〈tm(N )〉 (blue) and the average
convergence time 〈tf (N )〉 (red) against the community size N . The expo-

nents are α = 1.12 and β = 1.14 respectively.

from N = 24,25, ....,216, increased by a factor of 2 in successive steps. These data

fit very well to straight lines. Therefore assuming power law variations like

〈tm(N )〉 ∼Nα and 〈tf (N )〉 ∼Nβ (5.1)

we obtained α = 1.12 and β = 1.14. This observation leads us to conclude that

Figure 5.4: (a) Plot of the average maximal number of words 〈Wm(N )〉 against the com-
munity size N on a log− log scale. (b) The slopes γ(N ) between pairs of
successive points in (a) gradually increases with increasing N and has been
plotted against N−0.44 to obtain the asymptotic value of γ = 1.539.

both α and β are approximately the same and has a value 1.13(1). It may be noted

that these exponents are much smaller than the original naming game (both α

and β equal to 1.5) [47]. This faster consensus is possibly a consequence of the
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fact that the interaction rule here is symmetric thus increasing the possibility

of alignment between the agents through fewer interactions as compared to the

original naming game. Further, here the stable state criteria are also relaxed, so

the agents are assumed to reach consensus even if they do not agree with only a

single word.

Next in Fig 5.4(a). we plotted the average maximal number of words 〈Nwm(N )〉

against N on a log− log scale for the same community sizes. Here again we as-

sumed a power law variation like

〈Nwm(N )〉 ∼Nγ (5.2)

and the average slope is measured using a least square fitmethod. We obtained an

average value of γ = 1.49. Further, this analysis has been done inmore detail. The

intermediate slopes γ(N ) between successive pairs of points have been measured

and extrapolated againstN−0.44. The extrapolation fits very well to a straight line

and in the limit of N →∞ the value of γ = γ(∞) = 1.539 has been obtained. This

value of γ is comparable with 1.5 in the original naming game model [47].

5.5 The largest cluster

At an intermediate time t there areNd(t) distinct words, and in general each word

is shared by a number of agents. Similar to the percolation phenomena [119] we

define the cluster size si associated with the i-th word as the number of distinct

agents which have the word i in their inventories. In the algorithm described

in the previous section, we have stored the cluster sizes in the array b(i). As

time evolves cluster sizes of some words gradually vanish, but at the same time

the cluster sizes of the other words grow. Finally, only g distinct words survive

whose cluster sizes are exactly N , and at this point of time, the dynamics reach

the fixed point. It may be noted that the size of a particular cluster increases in
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Figure 5.5: For a single run the variations of the scaled sizes of the largest clus-
ter sm(t)/N and the second largest cluster s2m(t)/N for a community
with N = 16384 agents. It is seen that while the size of the largest
cluster grows almost (but not exactly) monotonically, the size s2m(t)
of the second largest cluster reaches a maximum at time tc and then
gradually decreases to zero. The time axes has been scaled by the
characteristic time tc.

the failure rule and decreases in the success rule only by one agent at a time. We

keep track of the variation of the size of the largest cluster sm(t,N ) and observe

how it almost monotonically increases and assumes the size N at the fixed point

(Fig. 5.5). At an intermediate stage, there may be a number of distinct clusters

whose sizes are equal to the largest cluster size sm(t,N ). We define the fractional

size of the largest cluster at time t averaged over many independent runs as:

C(t,N ) = 〈sm(t,N )〉/N. (5.3)

In addition, we define the size s2m of the second largest cluster as well. In con-

trast to sm, the value of s2m gradually increases to a maximum value and then

systematically decreases to zero at the fixed point (Fig. 5.5). We define another

characteristic time tc at which the second largest cluster assumes its maximum

value. This is the transition time when the second largest cluster starts disman-

tling, and the largest cluster grows at its fastest rate which signifies the onset of

correlation in the community.
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Figure 5.6: (a) The average value of the characteristic time 〈tc(N )〉 where the size
of the second largest cluster is maximum has been plotted with the
community size N on a log− log scale for N = 26, ...,215. The variation
seems to be a power law: 〈tc(N )〉 ∼ Nδ. (b) Slopes between successive
points has N dependence and we plot δ(N ) vs. N−0.42 which fits best
to a straight line. The extrapolated value δ = 1.12.

In Fig. 5.6(a) the characteristic time 〈tc(N )〉 averaged over many indepen-

dent runs has been plotted on a log− log scale against the community sizes N =

26,27, ...,215. While the points seem to fit a nice straight line on the average, a

closer look reveals that here again the local slopes between successive pairs of

points have a systematic variation. Assuming that the functional form would

indeed be a power law in the limit of N →∞ as

〈tc(N )〉 ∼Nδ (5.4)

we have extrapolated the local slopes δ(N ) with a negative power of N . The best

value of this correction exponent is 0.42 and in Fig. 5.6(b) a plot of δ(N ) against

N−0.42 gives a nice straight line for large N values. Extrapolating to N →∞ we

obtained δ = 1.12.

Finally in Fig. 5.7 the average value of the largest cluster size C(t,N ) has been

plotted for three different community sizes N = 212,214 and 216. We first scale

the time axis t/N1.13 so that the scaled time could be treated similar to the site /

bond occupation probability in percolation theory. The scaled axis is then shifted
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Figure 5.7: (a) Variation of the fractional size of the largest cluster C(t,N ) =
〈sm(t,N )〉/N with time t/106. (b) Finite size scaling of the data in (a),
plot of C(t,N ) vs. [t/N1.13 − 2.98]N0.13 exhibits a data collapse.

by 2.98 and then again scaled by N0.13 to obtain a data collapse.

5.6 Summary

To summarize we devised a new model for information sharing and sorting in

a community of agents. Three types of mutual bipartite interactions take place

among the randomly selected pairs of agents. Here the interactions are more

symmetric and less restricted compared to the ordinary naming game. By In-

vention new words are created, by Failure inventories are shared, and by Success,

only the common words are sorted out. The dynamics of the system is dominated

initially by Invention, followed by rapid growth of different words dominated by

Failure and finally, the system gradually gets rid of uncommon words dominated

by Success moves. The system finally reaches the stable state where each agent

has the same set of g words in his inventory. Using extensive numerical studies,

we find that the exponents describing the characteristic time scales and the max-

imum number of words of this model assume a completely distinct set of values

compared to the ordinary naming game.
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6.1 Introduction

As described in the previous chapters, the aim of the model of the naming game

is to study the evolution of consensus opinion in the context of naming a sin-

gle object in a large community of agents [47, 48]. Different agents refer to the

object using different names when the object is introduced initially. Agents in-

teract among themselves and share the names that have been already introduced

according to a set of specific rules. At the early stage, the number of distinct

names for the object increases as the agents introduces new names for the object.

However, as the game progresses, a consensus name gradually emerges, and dis-

tinct names disappear. The dynamical evolution of the game terminates when

all agents agree upon a single name through mutual interactions and following

the rules of the game. At an arbitrary intermediate stage, an agent has a number

of names of the same object in his vocabulary suggested by different groups of

agents. An agent, under the sharing dynamics, not only learns new names for the

object but also shares names from his own vocabulary with other agents.

The dynamics have been studied in various aspects. Starting from the analy-

sis of real world data in [120] to verify the power law exponents of the model,

faster convergence in the presence of overhearers [57] and also more general ad-

vanced studies of categorization of names and color naming have been performed

as well [58,59,121] in the same light. However, in all the models studied for the

dynamics of naming games in the literature and in other apparent directions, the

sizes of the vocabularies of the agents have been assumed to be infinite [49,50,60].

In reality, an individual agent has only a finite amount of memory. Therefore, it

would be quite appropriate to study the effect of the finiteness of the vocabulary

sizes in the dynamics of naming games. In this chapter, based on our work [61],

the vocabulary size of every agent is assumed to be finite and has been restricted

to a certain fixed cut-off value, which has been suitably tuned.

We have studied the effect of restrictions on both the symmetric [60] and asym-
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metric naming games [47,48]. With the restriction, the asymmetric and the sym-

metric naming game exhibit very similar type of behavior. However, the power

law exponents which characterize the naming games, namely α, β and γ as dis-

cussed in chapter 1, of both the games are found to be distinctly different.

6.2 Restricted vocabulary

The naming game is defined in terms of a community of N agents and a new

object to name [47]. An agent, either invents a new name for the object, or he

learns a name from another agent by the bipartite sharing dynamics. Finally,

all the agents come to an agreement and refer the object by a single name. This

spontaneous evolution of a consensus name is the objective of the naming game.

During the time evolution, pairs of randomly selected distinct agents execute a

sequence of interactions to share their stock of the names of the object. In the
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Figure 6.1: (Color online) (a) The time variation of the averaged total number
of names 〈W (t, s,N )〉 for community size N = 1024 with the re-
stricted vocabulary sizes s = 2(black), 5(red), 10(green), 20(blue) and
∞(magenta). (b) The time variation of the averaged total number of
distinct names 〈D(t, s,N )〉 for community sizeN = 1024 with the same
set of s values

literature, two models of the naming game have been studied. In the original

‘asymmetric’ naming game, one of the two agents selected for sharing, say the ‘i’-

th agent, is called the ‘speaker’, where as the ‘j’-th agent is termed as the ‘hearer’
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[47]. The speaker first randomly selects a name from his vocabulary and checks

if the hearer also has the same name. If the hearer has this name, it is called a

successful sharing, and then the vocabulary sizes of both the agents are reduced

to unity, both having only the selected name. On the other hand, in the case of a

failure, the selected name of the speaker is added to the vocabulary of the hearer.

In comparison, in the ‘symmetric’ naming game [60], there is no distinction

between the speaker and the hearer. Here, for a successful move, the entire subset

of names that are common in the vocabularies of the agents i and j are retained,

and the remaining un-common names are deleted from the vocabularies of both

the agents. On the other hand, in the case of a failure, there is no common name,

and both the agents get the combined list of both agents’ vocabularies.

6.2.1 The model

We have studied the effect of restrictions on both the symmetric and asymmetric

naming games [61]. We describe the game and present the plots of the data for

the symmetric naming game only. The plots of the asymmetric naming game

exhibit very similar type of behavior. However, the power law exponents of both

the games are found to be distinctly different, and we have enlisted them in Table

6.1.

In the symmetric game, we first abolish the step for the invention of names. In-

stead, we assign every agent a distinct name at the initial stage. Therefore, ℓi(t)=1

for all i at time t = 0 and the dynamics starts with N such distinct names. Fur-

ther, we apply a restriction to the vocabulary size of every agent. The vocabulary

size is assigned a maximal cut-off value s, same for all agents at all times, and

no agent can accommodate any additional name. We follow the rules of symmet-

ric naming game [60] to describe the dynamics. At every time step two distinct

agents i and j are randomly selected and are allowed to interact between them-

selves. The interaction can be of two types according to which both the agents
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Figure 6.2: (a) The configuration averaged value of the maximum number
〈Wm(s,N )〉 of names against community size N for different values
of the vocabulary sizes: s = 2 (black), 5 (red), 10 (blue), 20 (green)
etc. and ∞ (magenta) (from bottom to top). (b) Scaling collapse of
the same data as 〈Wm(s,N )〉s−ηW and Ns−ζW with scaling parameters
ηW = 3.0 and ζW = 2.0.

update their vocabularies.

A. Failure: In this case, none of the names in the vocabulary of the i-th agent

is common to the vocabulary of the j-th agent. Therefore, the agents share their

vocabularies entirely. Each agent gets the combined list of names of both the

agents. In mathematical form:

If {ℓi(t − 1)} ∩ {ℓj(t − 1)} = ∅, then

{ℓi(t)} = {ℓj(t)} = {ℓi(t − 1)} ∪ {ℓj(t − 1)}, where ∅ is the empty set.

However, if ℓi(t −1)+ ℓj(t −1) > s, only first s names are retained in the vocabu-

laries of both the agents.

B. Success: In this case, at least one of the names in the vocabulary of the agent

i is common to the vocabulary of the agent j . Then, after sharing both the agents

retain only their common names.

If {ℓi(t − 1)} ∩ {ℓj(t − 1)} , ∅, then

{ℓi(t)} = {ℓj(t)} = {ℓi(t − 1)} ∩ {ℓj(t − 1)}

Here, the finite size s of the vocabularies does not affect this sharing step.
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6.2.2 Results

Here again the variation of the W (t, s,N ) and D(t, s,N ) are quite similar with the

unrestricted asymmetric naming game. But, Due to the abolition of the invention

step the W (t, s,N ) and D(t, s,N ) starts from N instead of zero at t = 0. However,

this has no effect on the three characteristic exponents.

For smaller vocabulary sizes s = 2, 5, 10 etc., 〈W (t, s,N )〉 quickly reaches its

maximum value sN , as individual agent’s vocabulary gets filled up (Fig. 6.1(a))

and is then maintained for some time, showing a plateau over the same period.

Smaller the value of s longer is the length of the plateau. At a certain initial time

tin, W (t, s,N ) attains the value sN , remains equal, or very close to it for a long

time and then at a latter time tout , W (t, s,N ) decreases from sN . Both tin and tout

fluctuate over a wide range. We have therefore defined the maximal time tm for

attaining the maximum number of names in the community as mean of these two

reference times, i.e., tm(s,N ) = (tin + tout)/2.

Figure 6.3: (a) The configuration averaged value of the number 〈Wf (s,N )〉 of
names in the converged state against the cut-off vocabulary size s
for community sizes N = 512 (black), 1024 (red), and 2048 (blue).
(b) Data collapse for the finite-size scaling of 〈Wf (s,N )〉/N against

[s − s0(N )]N−0.5;s0(N ) is found to grow as N0.64.

For fixed N , but for relatively larger values of s = 80 or 160, the plateau gradu-

ally shrinks as the number of names with an agent hardly reaches its cut-off value

s. Instead, a single peak of value 〈Wm(s,N )〉 starts showing up at 〈tm(s,N )〉 as s
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increases even further. The unrestricted case of s→∞ is the original symmetric

naming game (Fig. 6.2). From the averaged slopes of these lines, our estimate for

the exponent γ 1.54 (asymptotic), very close to γ = 1.539 of the symmetric nam-

ing game [60]. On the other hand, when s is very small the exponent is found

to be ∼ 1.00(1). The corresponding γ exponents of the asymmetric naming game

are 1.50 and 1.00 respectively.

We observe (Fig. 6.1(b)) that for all values of s, 〈D(t, s,N )〉 starts fromN at time

t = 0 and then monotonically decreases and at t = tf , converges to either only one

or two names. Larger the value of s, sharper is the fall.

Figure 6.4: (a) The averaged value of the maximal time 〈tm(s,N )〉 against N using
the same set of vocabulary sizes and colors used in Fig. 4. (b) Scaling
of the axes leads to a data collapse with the scaling exponents ηm = 3.0
and ζm = 2.53.

The corresponding exponent of the averaged number 〈Wf (s,N )〉/N of names

per agent in the converged state, systematically increases from 1.0 to 2.0 and the

entire curve shifts to the larger regimes of s values with increasingN (Fig. 6.3(a)).

The value of s for which 〈Wf (s,N )〉/N = 3/2, s0(N ) scales withN asN0.64. Further,

we have shown a scaling of 〈Wf (s,N )〉/N against [s−s0(N )]N−0.5 exhibiting an ex-

cellent data collapse (Fig. 6.3(b)). In the 〈tm(s,N )〉 vs N plot (Fig. 6.4(a),), for the

same values of s, it is observed that for s =∞ and for very small values of s, e.g.,

s = 2 the curves fit to straight lines with α, approximately 1.12(1) and 1.34(1) re-

spectively and the system crosses over from the original symmetric naming game
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behavior to the behavior of restricted symmetric naming game. Using scaling

analysis (Fig. 6.4(b)) we obtained the dependence of the crossover community

size on s as: Nc(s) ∼ sζm with ηm = 3.0 and ζm = 2.53. For the asymmetric naming

Figure 6.5: (a) The averaged final convergence time 〈tf (s,N )〉 plotted, against N
using the same set of vocabulary sizes and colors as in Fig. 2. For a
specific value of the vocabulary size s, the curve is a straight line with
slope ∼ 1.14 for N << Nc and ∼ 1.60 N >> Nc. (b) Scaling of the axes
leads to a data collapse with scaling exponents ηf = 3.0 and ζf = 2.0
respectively.

game, the corresponding α exponents are 1.54 and 1.87 respectively.

Finally, from the plot of 〈tf (s,N )〉 against N (Fig. 6.5(a)), we estimated the

exponent β ∼ 1.60(1) for the smallest vocabulary size (s=2), where as for s = ∞

we get back the exponent of the original symmetric naming game β = 1.14(1).

A crossover between the two behaviors is present as well. For the asymmetric

naming game the corresponding β exponents are 2.18 and 1.48 respectively.

6.3 Symmetric naming game with limited number of

distinct names

6.3.1 Model and results

In this modification of the symmetric naming game, initially, each agent starts

with a single name, selected randomly from a set of n < N distinct names, in his
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Figure 6.6: (a) The configuration averaged value of the maximum number
〈Wm(n,N )〉 of names has been plotted with the community size N for
different constant values of distinct names: n = 2(black), 3(green),
4(magenta), 5(blue). All of them fit to nearly parallel straight lines
and have average slope γ = 0.99(1). (b) Similar plot for the maximum
time 〈tm(n,N )〉 against N for same values of n using same colors. The
average value of the slopes gives α = 1.09(1). (c) Similar plot for the
convergence time 〈tf (n,N )〉 againstN for same values of n using same

colors. The average value of the slopes gives β = 1.10(1).

vocabulary. The set of names, in the vocabularies of agents, evolve by mutual

pairwise interactions. At any intermediate time, an agent’s vocabulary can only

be filled up to n names. The game evolves following the dynamical rules of the

symmetric naming game, mentioned above.

In the N >> n scenario, the average number of names an agent can have is

also ≈ n, implying 〈Wm(n,N )〉 ∼ N . Therefore, for a fixed value of n, the growth

exponent γ from Eqn. (1) must be equal to unity. This is verified numerically in

Fig. 6.6(a).

On the other hand, the case of n = N implies that initially all N agents have
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been given N distinct names so that all agents have different initial names. This

is the same as the symmetric naming game without the invention step. The vo-

cabulary size can be at most N , but in practice, it is much smaller.

In Fig. 6.6(a) we have plotted the 〈Wm(n,N )〉 againstN for four different values

of n = 2,3,4, and 5, and for six different community sizes N . On a log− log scale

the curves fit nicely with straight lines. The averaged overall slope gives a value

for γ = 0.99(1). Similar plots of 〈tm(n,N )〉 and 〈tf (n,N )〉 in Fig. 6.6(b) and Fig.

6.6(c) gives α = 1.09(1) and β = 1.10(1) respectively.

Naturally one can ask, what happens if the number n of distinct names grows

non-trivially with the number of agents N , e.g., n = Nδ? Here δ = 0 corresponds

to the case when n has a fixed value, independent of N . On the other hand, δ = 1

implies the case when n = N . For other intermediate values of δ in the range

0 < δ < 1, simulations have been performed.

Figure 6.7: (a) The 〈Wm(δ,N )〉 against the community size N for different values
of the tuning parameter: δ = 0.1, 0.2, ... 1.0 (from bottom to top).
Slopes of these lines are the values of the power law exponent γ and
are different for different values of δ. (b) Plot of the exponent γ(δ)
against δ. Except the two end points, the intermediate region fits well
with the form in Eqn. (6).

Fig. 6.7(a) exhibits 〈Wm(δ,N )〉 against N for δ = 0.1, 0.2, ... 1.0. For each value

of δ we get one straight line and the slopes of these lines vary with δ between

1.0 and 1.54. A plot of a total of ten different values of the parameter δ yields

different values of γ(δ) and in Fig. 6.7(b) we plot γ(δ) against δ. Apart from the
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two limiting points at δ = 0 and 1 the plot fits nicely to the following relation

γ(δ) = 1+ δ/2. (6.1)

In a similar way we have obtained the variation of the α(δ) and β(δ) against δ

Figure 6.8: (a) Variation of the power law exponent α(δ) against δ. (b) Variation
of the power law exponent β(δ) against δ.

from the 〈tm(δ,N )〉 against N and 〈tf (δ,N )〉 against N plots for the same set of

δ values. α(δ) and β(δ) vary systematically within a short-range. The variation

of α(δ) starts from a value ≈ 1.09 for δ = 0.0, then gradually goes through a

maximum at δ ≈ 0.7, and then decreases to its value ≈ 1.14 at δ = 1 (Fig. 6.8(a)).

β(δ) also shows a similar kind of behavior (Fig. 6.8 (b)) showing a mild variation

with δ, with the maximum occurring around δ = 0.7.

6.4 Summary

To summarize, here we have studied twomodified version of the symmetric nam-

ing game for vocabulary sorting and achieving consensus, with one version ex-

haustively studied for the asymmetric naming game as well. First, we have in-

troduced a cut-off in the capacity of vocabulary associated with the agents in the

community, resulting in a crossover from strong restriction behavior to the weak

restriction one. This has been reflected in the characteristic exponents of the
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Naming Game α β γ
Asymmetric game [47] 1.5 1.5 1.5
Symmetric game [60] 1.12 1.14 1.539
Rest. vocabulary (Symm) 1.34(1) 1.60(1) 1.00(1)
Rest. vocabulary (Asymm) 1.87(1) 2.18(1) 1.50(1)
Rest. names 1.09(1) 1.10(1) 0.99(1)

Table 6.1: Comparison of the values of different exponents obtained in the re-
stricted asymmetric and symmetric naming games with similar expo-
nents of the original naming games.

game. We observed that the three exponents characterizing the dynamical evolu-

tion of the game in the strong restriction case are a different set of values not yet

observed in the literature of naming games.

Effect of a second restriction, imposing a limiting value on the number of dis-

tinct names to be assigned to the agents, has been studied. In this case, a con-

stant number n (independent of N ) of distinct names has been initially given to

the agents. This version of the game is much simpler, yet the three characteristic

exponents yielded non-trivial values for constant values of n. Further, when we

varied n as Nδ, the exponents depend nontrivially on the tuning exponent δ.

Numerical study of the restricted versions of both the symmetric and asym-

metric naming games exhibited non-trivial changes in the asymptotic behaviors

of the game. Values of the characterizing exponents have been compared in Tab.

6.1 with the asymmetric and the symmetric naming games.
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