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Space lling model of a perovskite structure where the atoms are ansidered as spheres
touching each other, showing the relation between (a) the lattice prameter a and ionic
radii rg, rx; (b) the lattice parameter a and ionic radii ra, rx . (c) The ideal cubic
perovskite structure with B-X -B bond angles equal to 189. (d) Lower symmetry
orthorhombic perovskite structure with octahedral tilts showing the deviation of B-X -
B bond angles from 180. The orthorhombic unit cell is shown with the black lines.

(a) A larger atom at the A-site creates excessive internal pressure to break the octahed
connectivity leading to anion de ciency in some of the octahedral urits. (b) To conserve
the ionic coordination the anion de cient octahedra bends and becmes face shared with
the next one. This leads to chains of face shared octahedras alomgparticular direction
separated by theA cations. This is called a 2H perovskite structure. (c) 2H perovskite
unit cell of BaMnO 3 viewed along thec-axis. . . . . . . . . . . . . . .. .. ...

Shape and orientation of the ve d orbitals belonging to (a) g manifold and (b) tog
manifold under octahedral crystal eld. Inset : octahedral crystal eld splitting of the
ve degenerate d orbitals into lower energy tog and higher energy g levels. . . . . . .

() The lling of 5 degenerate d orbitals with four electrons according to Hund's rule
maximizing total spin S and total angular momentum L. (b) Filling with a violation of
Hund's rule showing double occupancy of the orbitals. (c) A high spin sate following
Hund's rule for a small crystal eld e ect. (d) A low spin state for a la rge crystal eld
splitting where Hund's rule is no longervalid. . . . . . . . . . . . . ... .. ...

(a) Splitting of the ve degenerate d orbitals into t o4 and g manifold for a regular BX ¢
octahedral environment shown in the inset. (b) Splitting of the enegy levels within
the tog and g manifold for an elongation of the octahedra along thez-direction. (c)
Splitting of the energy levels within the t,y and g manifold for a compression of the
octahedra along thez-direction. . . . . . . . . . . . . . . . . . ...
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General Intruduction

Structure and electronic properties of any material are stronglgorrelated. Electronic
properties can be tuned by varying the parameters that can indechanges in the structure
of the material [1{5]. For example, considering the well known perekite nickelates
with the general formula RNiG; where R = Lu to La, is a rare earth atom, it has been
observed that changing the rare earth atom can induce changediie electronic structure
of the system. The system can behave as an insulator or metal, wighvariation in the

temperature at which the metal to insulator transition occurs [6{8 This happens as
a result of structural changes that occurs when one changesthare earth atom. This
suggests that we can tune the electronic properties via structr modulations, and to
e ciently do that we need to understand the structure-property correlation in details. For
this, we have to know the electronic structure and crystal struare of the material. Rare
earth nickelates belong to the family of 8 transition metal compounds with a perovskite
structure. In this thesis, we work with systems mainly having a pewskite structure or

perovskite related structure. So, we start by giving a brief degption of the perovskite

structure and the common structural distortions that it can uncergo.

1.1 Perovskite structure and the tolerance factor

Perovskite materials having a simple crystal structure has playednamportant role in
understanding the microscopic interactions leading to interestingetronic properties in
many compounds. Perovskite materials are materials with a crystatructure related to
the mineral Calcium titanate(CaTiO3) with general formula ABX 3, where A and B are
cations andX is an anion. For example, in case of rare earth nickelates(RNJQ a rare
earth atom R sits at the A-site, Ni sits at the B-site and the anion is oxygen.

If we consider the unit cell as a cube(for example in SrTK), then as shown in Figure
1.1(a), the B cation sits at the cube corners, the anions at the edge center pimss
and the A cation at the body center position. TheB cation has an octahedral coordi-
nation surrounded by 6 anions[see Figure 1.1(b)]. Together theyrfio a corner sharing
octahedral network with the A cations sitting at the octahedral voids coordinated by 12
anions[Figure 1.1(c)]. TheBX ¢ octahedra[Figure 1.1(b)] in perovskite materials act as
an important and fundamental functional unit to tune material properties [9]. TheB-X
bond lengths(size and shape of the octahedra) and tlBe X -B bond angles are the basic
structural parameters that can be varied to tune the electroniproperties. For an ideal
cubic perovskite structure(SrTiG;), the B-X -B bond angles are 180as shown in Figure
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Figure 1.1: (a) The unit cell of an ideal cubic perovskite structure where, theB cations sits at the cube
corners, anions at the edge center positions and thA cations at the body center position of the cube. (b)
Octahedral coordination of the B cation surrounded by 6 anions. (c) A perovskite structure visualizd
as a corner shared network oB Og octahedras with the A cation sitting at the octahedral voids.

1.2(c). However, most of the perovskite materials have distortguerovskite structure with
octahedral tilting and rotations, where theB-X -B bond angles deviate from 180eading

to unit cells having lower symmetry.

Figure 1.2: Space lling model of a perovskite structure where the atoms are ansidered as spheres
touching each other, showing the relation between (a) the lattice mrameter a and ionic radii rg, rx;
(b) the lattice parameter a and ionic radii ra, rx . (c) The ideal cubic perovskite structure with B-X -B
bond angles equal to 188 (d) Lower symmetry orthorhombic perovskite structure with octahedral tilts
showing the deviation of B-X -B bond angles from 180. The orthorhombic unit cell is shown with the

black lines.
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These structural distortions have been understood in terms ohampirical factor known
as the Goldschmidt tolerance factor () [10]. Considering the idea of dense ionic packing
where the ions are considered as solid spheres touching each ofsee Figs. 1.2(a) and
(b)], the lattice parameter a of an ideal cubic perovskite is related to the ionic radiiar,
rg and ry by the equations.

a = IOE(rA +ry) (1.1)
= Z(rB + rx) (12)
The ratio,
(ra+rx)
= poa X (1.3)
2(rg + rx)

is called the tolerance factor that gives an estimate of the propetysof octahedral ro-
tations in perovskites. For values of in the range 0.9 - 1.0, one usually nds cubic
perovskites, whereas values of 0.80 - 0.89 due to a smalecation or larger B cation
predominantly leads to distorted perovskites with octahedral tiltigg [11]. This can be un-
derstood qualitatively considering basic electrostatic interactiong-or example, a smaller
size of theA cation reduces the unit cell volume. This makes thB-X distances shorter,
leading to an increased Coulomb repulsion between electronsB®rand those onX . This
increased Coulomb repulsion can be compensated by an octaheditiahg that prevents
further decrease in theB-X bond lengths and results inB-X -B angles to deviate from
180. This in turn makes the A-X distances shorter. Considering the e ective ionic
radii(Shannon model [12]) of S, Ti** and O° to be 1.44, 0.60 and 1.42, for SrTiO4
having an ideal cubic structure, gives a value of = 1.0. But in CaTiO 3, Ca?" having
an e ective ionic radii of 1.12A gives = 0.88. This leads to octahedral tilting with an
orthorhombic unit cell as shown in Figure 1.2(d).

However, whether a reduction in unit cell volume would be accommotga entirely by the
B-X bond compression or octahedral tilting, depends on the relative ropressibilities of
the BX ¢ and AX 1, units. Combined experimental and theoretical study [13] on the Wwe
known perovskite CaSn@, shows that similar compressibilities of the Snpand CaO,,
units would result in a change of the Ca-O and Sn-O bond lengths witmiform pressure,
without any angular distortions. On the other hand almost rigid Sn@ and CaGO;, units
shall lead to angular distortions dominantly. But experimental obgeations suggest that
a \rigid unit" approach is inappropriate, and a higher compressibility & the CaO,, unit
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compared to Sn@ makes the Sn-O-Sn bond angle change drastically with pressurenfro
the very beginning, compared to the Sn-O bond length.

Figure 1.3: (a) A larger atom at the A-site creates excessive internal pressure to break the octahed
connectivity leading to anion de ciency in some of the octahedral urts. (b) To conserve the ionic
coordination the anion de cient octahedra bends and becomes facshared with the next one. This leads
to chains of face shared octahedras along a particular direction parated by the A cations. This is called
a 2H perovskite structure. (c) 2H perovskite unit cell of BaMnOg3 viewed along the c-axis.

On the other hand if > 1 as aresult of large A or a smaB cation, then low dimensional
hexagonal variants of the perovskite structure forms. A largesize of theA cation can
give rise to an excessive internal pressure that can break the wer shared octahedral
network [see Figure 1.3(a)] leading to anion vacancies in some of thetalvedra. Now
to conserve the ionic coordination, octahedra with fewer anions e and become face
shared with the other one as shown in Figure 1.3(b). This leads to el chains of face
shared octahedras separated by th& cation. This structure is called a 2H perovskite
structure. For example BaMnQ is predicted to adopt a 2H perovskite structure [14] with
= 1.06 A [see Figure 1.3(c)].

But we must remember that all transition metal compounds are nopurely ionic, so for
transition metal compounds with a perovskite structure, the toleance factor can only
give a rough estimate. By transition metal compounds we mean ctgfline solids where
the unit cell must contain one or more transition metal atoms and aor more nonmetal
elements from groupV I1A (O, S or Se), also called ligands. Other atoms may also be



1.2. TRANSITION METAL IN A PEROVSKITE STRUCTURE 7

present, for example the rare earth atom(R = Lu to La) in the rareearth nickelates. But
they generally take part in structural stabilization without any direct contributions to
the electronic properties. One of the important properties of trasition metal elements
is their possible multiple valence states. In an isolated atom the atomsghells de ned
by quantum numbern are lled one after another. But starting from n = 3, the lling
scheme changes [15]. After thes3and 3p shells are occupied, gtshell gets lled rst
before 3. After that the energy levels of the inner 8 shell starts to |l producing the 3d
transition metal series, from Sc to Cu and then theplstates are occupied. Quite similar
thing happens for the 4l and 5 series. As 8 and 4s electrons lie close in energy, the
s electrons together with some of the inner shetl electrons can participate in bonding.
This leads to multiple valence of transition metal atoms in compoundg-or example Ti
can have 2+, 3+, 4+ oxidation states. This is why transition metals ca act as good
catalysts in a chemical reaction where it can easily give or take eleatis to the reagent
depending on the nature of the reaction [16]. Multiple valences leads many possible
electron con gurations and as a result the bonding in transition mel compounds ranges
from ionic to covalent along with a wide range of possible crystal sttture. For example
the compound NiO(Nickel(ll) oxide) with Ni?* has a rock salt structure and is strongly
ionic. Whereas rare earth nickelates(RNig) with Ni3* have a perovskite structure and
the bonding is believed to be of mixed character [17]. When we focus amy transition
metal compound where the atom is now in a crystal structure, wesm need to consider
the e ect of the crystal structure on the transition metal atom Now the symmetry of the
atom is determined by the local symmetry of the crystal structue and renormalization
of the isolated atomic energy levels takes place. In this context ndet us consider the
e ects and properties of the perovskite structure with a transibn metal atom.

1.2 Transition metal in a perovskite structure

1.2.1 Octahedral crystal eld splitting

When the transition metal atom is in a crystal, we also need to consid¢he e ect of
the crystal structure on the transition metal atom. An isolated tansition metal atom
has a spherical symmetry and all the ved orbitals are energetically degenerate. Now,
if we consider a negatively charged sphere with uniform charge dibution around a
transition metal atom, the energy of thed orbitals increases due to coulomb repulsion
between the electrons in thed orbitals and negative charge on the surrounding sphere.
But they still remain energetically degenerate as a result of the sphical symmetry. Now
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in a crystal structure, this spherical symmetry is lost and the symetry is determined by
the local symmetry of the crystal structure. For example, as slwn in Figure 1.1(b), for

a perovskite structure the transition metal atom is surrounded Y six negatively charged
anions/ligands(X ) forming an octahedron. Their e ect on the transition metal atomcan

be understood using crystal eld theory, a model to understanthe e ect of the electric

eld produced by the surrounding anions on the transition metal aim. In this model, the

ligands are replaced by negative point charges and the interactiortween the electrons
on the transition metal atom and ligand is considered to be purely ekeostatic.

Figure 1.4: Shape and orientation of the ve d orbitals belonging to (a) &; manifold and (b) t .4 manifold
under octahedral crystal eld. Inset : octahedral crystal eld splitting of the ve degenerate d orbitals
into lower energy t,g and higher energy g levels.

Figure 1.4 shows a schematic representation of the charge densiistribution correspond-
ing to the ve d orbitals of a transition metal atom. Considering an ideal cubic perckite
with lattice constant a, all the orbitals are surrounded by six point charges(shown as red
dots representing the ligands) located at &, 2f, +2f, af, +2kand 2K respectively.
From the schematic it is clear that all thed orbitals will not interact with the point
charges equally. ds,2 ,2(later we used,: to representds,> (> for simplicity) and dy2 2
have lobes along the axis and pointed directly towards the ligands, riee experiencing

strong coulomb repulsion[Figure 1.4(a)]. In contrastly, d,, and dy, have their charge
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densities distributed between the point charges resulting in a weakeoulomb repulsion.
As a result the energy ofd,. and dy2 y» becomes higher compared td,,, dy,, and d,.
This lifts the degeneracy of the ve d orbitals into two groups: Togeher, the two degen-
erated,2 and dy2 2 orbitals with higher energy are calledy and three degeneratel,,, dy,
and d,, orbitals with lower energy are called,q orbitals respectively. Such nomenclature
comes from group theory and the corresponding splitting betwedhem( ) is called
the crystal eld splitting [15][see inset of Figure 1.4]. If we consider eéhcenter of gravity
of these levels to remain unchanged and taken as zero, then thgestates are stabilized by
an energyE,, = % cr and the g4 states are destabilized by an energie, = + % CE .
The splitting of the d levels depends on the coordination of the transition metal atom.
If the coordination deviates from a regular octahedron then thepétting shall change.
For example, in case of tetrahedral coordination, the, states become lower in energy
compared to thet,, states with a lower splitting energy. We are not going to discuss
those in detail here, but the crystal eld splitting makes the atomicdescriptions invalid
in any crystalline system. In the next part, we discuss how crystaéld splitting a ects
the lling of the d orbitals compared to an isolated atom.

1.2.2 Filling of the d orbitals under crystal eld

As aresult of a crystal eld splitting, the order of lling of the d orbitals changes compared
to what we have for an isolated atom. In an isolated atom, lling of theve degenerated
orbitals follow certain rules called the Hund's rule [18]. The most importa of them is the
rst rule which states that, for any number of electrons the Iling shall be in such a way as
to maximize the total spin(S) of the system. For example, if there are four electrons, then
four d orbitals shall be singly occupied with parallel spin as shown Figure 1.3(aVhich
four of the ve d orbitals shall be occupied is speci ed by the second Hund's rule. The
four d orbitals that maximize the total angular momentum() shall be occupied. This
gives a total spinjSj = 2. So, according to rst Hund's rule, double occupancy of the
orbitals cannot start from the beginning as shown in Figure 1.5(b) wh shall givejSj = 0.
The microscopic origin of this rule is the electron-electron coulombpelsion between two
electrons in an atom. Occupying di erent orbitals reduces the oviap between electronic
charge as the spatial extent of their wave functions are di erentThis reduces the Coulomb
repulsion. In addition to this, two electrons on di erent orbitals minimizes screening e ect
leading to stronger attraction between the nucleus and electran#&gain as electrons are
fermions, according to Pauli principle electrons with parallel spins awd each other and
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as a result Coulomb repulsion can be further reduced. This decreaghe total energy of
the spin system and favors parallel spin arrangement of single oped orbitals.

Figure 1.5: (a) The lling of 5 degenerate d orbitals with four electrons according to Hund's rule
maximizing total spin S and total angular momentum L. (b) Filling with a violation of Hund's rule
showing double occupancy of the orbitals. (c) A high spin state followng Hund's rule for a small crystal
eld e ect. (d) A low spin state for a large crystal eld splitting wher e Hund's rule is no longer valid.

A quantum mechanical treatment of the electron-electron inte@ion within the same
shell of a single atom, allow us to write the interaction energy in termsf an e ective spin
Hamiltonian given as [18] :

X 1
Hexcn = J (2S S + 5)+ constant (1.4)

6=

Hexch IS called the exchange Hamiltonian(Please note that this is not the Heisberg
Hamiltonian that represents inter-atomic exchange)S and S indicates the spin of the
electrons in orbitals and respectively which can either be +32 or 1=2. J is
the intra-atomic Hund's exchange interaction energy between twelectrons in orbitals
and . Exchange energy is a quantum mechanical manifestation of the @len-electron
Coulomb repulsion having no classical counterpart(see section 2fZlapter 2 for details).
Within the same atom and same atomic shell, we can treat to be identical for any
pair of orbitals and is denoted asly . The above Hamiltonian simply says that each pair
of d electrons with parallel spins gives a contribution of Jy to the total energy of the
spin system. For example, the spin arrangements shown in Figure (epand (b) gives a
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Hund's energy of 6J4 and 2Jy respectively, making the rst con guration to dominate
over the other. Typical values of]y for transition metals are Jy 0.8 - 0.9 eV for 3,

N 0.6 - 0.7 eV for 4l, andJy 0.5 eV for & elements. This is becauseyJdepends
on higher moments of Coulomb interactions (F+ F4) [19], which decreases because the
orbitals become more delocalized as we go from t® 4d to 5d. However screening e ects
are larger in 4, 5d transition metal compounds and hence their values further redas
when they form compounds.

The rules for lling the isolated atomic levels change when there is cigd eld splitting.
For a transition metal atom in an octahedral environment, the thee lowest energy,,
levels are occupied rst with 3 electrons having parallel spins followingst Hund's rule.
But for the fourth electron, there are two possibilities. It can eitler occupy one of the
degenerategy levels as shown in Figure 1.5(c), or it can occupy one of the preoci@eptyy
level with an opposite spin as shown in Figure 1.5(d). For the rst cagFigure 1.5(c)], the
spin of the g, electron becomes parallel with the spin of the 64 electrons. This gives a
Hund's energy gain of 3Jy, but to occupy the higher energyg, levels there is an energy
cost of cg. Inthe second case[Figure 1.5(d)] the electron is in thg, manifold, so there
is no cost of cf but we lose the Hund's energy gain of 3J. Now if we assume that the
total electron-electron Coulomb repulsion energy between two eteons is independent of
the d orbitals occupied, then there is a competition betweedy and cr. If the crystal
eld splitting is not too large and,

cr < 3J4 (1.5)

then the rst state is favored where the total spin is maximum,jSj = 2. This is called a
high spin state. But if the crystal eld splitting is large enough to saisfy the criterion,

then the fourth electron occupies one of they levels and the second state withSj = 1
is favored. Such spin states are called low spin states.

As we go from & to 4d to 5d, the value of J4 decreases, whereas the crystal eld,
splitting( cg) increases due to larger spread of thed4and 5d orbitals compared to 3l
orbitals. So, in general for 8 transition metal perovskites a high spin state and for d
and 5d compounds a low spin state shall be favored. For exampleg ®n Mn3* (d%) is
usually in the high spin statetggeé) with jSj = 2[Figure 1.5(c)], whereas it's 4 counter-
part Ru®" (d*) is typically in the low spin state(t3,€}) with jSj = 1 [15] [Figure 1.5(d)].
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However, exceptions are there because the crystal eld splittingjrectly depends on the
transition metal-ligand interaction, which is controlled by the cryst4 structure and elec-
tronic structure of the system. For example, Ctf (d°) in perovskite KCuF; is in a low
spin state(tggeg) due to large cF as a result of larger spread of the Ip states.

1.2.3 Octahedral distortion : Jahn-Teller e ect

Till now we have explained the origin of octahedral rotations and e@ of the octahedral
crystal eld on the transition metal atom/ion sitting at the B-site. In the above cases,
we have considered ideal regular octahedra with six equatX bond lengths where the
transition metal atom have a cubic symmetry. However octahedrdistortions reduce the
cubic symmetry further and can act as a perturbation on the,; and e, levels. One of
the most important types of octahedral distortion in perovskitess the Jahn-Teller dis-
tortion. These distortions occur due to the Jahn-Teller e ect, with was rst observed
in nonlinear molecules. The Jahn-Teller theorem [20] essentially statthat, a nonlinear
molecule in an electronically degenerate state must undergo a strw@l distortions to
remove the degeneracy and lower the energy of the system. Angdbzed system with
a degenerate electron con guration lowers energy via such sttural distortions and re-
moves the degeneracy. Presence of a transition metal ion at thenter of the octahedra
with a degenerate electron con guration makes it Jahn-Teller actes and the octahedra
distort to remove the degeneracy. By a degenerate electron aguration, we mean that
there is more than one way to Il thed orbitals. For example, Mr* (d#) in the high spin
state(tggeé) has a single electron in theey levels[Figure 1.5(c)]. This single electron can
occupy either thed,2 or dy2 y2 giving two degenerate energy con gurationsl;%gd;zdg2 y2
andt3,d, .d),. This makes Mr** a Jahn-Teller active ion. Other examples are Ki (d")
in a low spin state¢$,e;), Cu®* (d°) in a low spin state¢5,e]) etc. An elongation[inset of
Figure 1.6(b)] or compression[inset of Figure 1.6(c)] of the regulactahedra along one of
the octahedral axis further lifts the degeneracy within the,, and g; manifold, killing the

possibility of any degenerate energy con guration.

This can be qualitatively understood from the knowledge of the crial eld split-
ting. Considering the octahedral volume to remain constant, an eigation in the z-
direction[inset of Figure 1.6(b)] increases the transition metal-ligahdistance in that di-
rection, whereas the transition metal-ligand distance along theandy-direction decreases.
This lowers the energy of thed,. orbital which has dominant electron distribution along
the z-direction[see Figure 1.4(a)]. On the other hand energy df. - increases as it has
charge density along thex and y-directions. A quite similar thing happens to thety
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Figure 1.6: (a) Splitting of the ve degenerate d orbitals into t 4 and e; manifold for a regular BX ¢
octahedral environment shown in the inset. (b) Splitting of the enagy levels within the tog and g
manifold for an elongation of the octahedra along thez-direction. (c) Splitting of the energy levels within
the toq and g manifold for a compression of the octahedra along the-direction.

states. Asd,, and d,, have a component along the-direction, so they are stabilized in
energy. Whereas energy of thd,, orbital lying entirely in the xy-plane increases. How-
ever, due to the smaller interaction of thet,, orbitals with the ligands, changes in the
t,g manifold is rather small. For an octahedral compression in the-direction the same
arguments follow leading to an energy level splitting shown in Figure 1dj.

As an example, perovskite KCuk contains a Jahn-Teller active ion C&" with two possible
electron distribution t5,d2,d,, . and t3,d%, .d},. Hence the Cuk octahedra undergoes
Jahn-Teller distortion in the form of elongation along one of the pseo cubic directions
[21]. The tetragonal unit cell of KCuF; projected along thec-axis is shown in Figure
1.7(a). It consists two layers of Cuk octahedra along thec-axis, which are all corner
shared in theabplane and out of plane direction. The Jahn-Teller distortion results imn
elongation of the octahedra either along the pseudocubicr y-axis[shown by dotted lines
in Figure 1.7(a)]. Distortion occurs in a cooperative manner such thals. ;2 and dsy2 2
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Figure 1.7: The crystal structure of KCuF 3 viewed along the c-axis([001] direction) with (a) out of
phase rotations of distorted octahedra between layers along the-axis; (b) a [001] layer showing the
cooperative orbital ordering. Pseudocubicx or y-axis are shown by dotted lines in panel (a).

orbitals in the ab-plane are stabilized and occupied in an alternative manner [21][Figure
1.7(b)].

The Jahn-Teller e ect itself is an example of the correlation betweestructural distortion
and electronic state of the transition metal atom. At this point, wemust know that
an orbital degeneracy does not always lead to a Jahn-Teller distam. The occurrence
of such a distortion to remove orbital degeneracy is easy to und&nd considering the
local electrostatic e ects in an isolated octahedra. But in a crysthne environment where
atomic states form bands, the fate of the Jahn-Teller distortion @pends on the electronic
structure of the system. For example, Jahn-Teller distortion is kth temperature and
pressure sensitive, and it is generally suppressed at higher tengtares and pressures.
This happens due to temperature and pressure-induced changethe electronic structure
of the system. Even at low temperatures and normal pressure,Jahn-Teller distortion
does not occur for wide bandwidth systems like the rare earth nideges, where Ni (NF*)
is Jahn-Teller active [22]. So, for a real material, the knowledge ofelelectronic structure
is also needed to understand the origin of any structural distortio In the next section,
we discuss the electronic structure ofd3transition metal compounds.
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1.3 Electronic structure of 3d Transition metal com-
pounds

The electronic structure of 8l transition metal compounds can be described in terms of
three essential parameters [23].

1. The on-site electron-electron Coulomb repulsion enerdy within the transition
metal 3d manifold.

2. The charge transfer energy to transfer an electron from a band like ligand(anionic)
p state to an empty transition metal d orbital.

3. The transition metal 3d  ligand 2p hopping interaction strengtht ,q , which in turn
determines the bandwidthW of the system.

1.3.1 On-site coulomb repulsion energy U and Hubbard model

Origin of the three parameters mentioned above is an e ort to undstand the ground
state electronic structure of some transition metal compoundsh&re band theory fails.
The basic prediction of band theory is that, if there are even numbef electrons per unit
cell then the system could be either metal or insulator. But if therare an odd number of
electrons per unit cell, then it must be a metal [24]. But this predictiorfails in a number
of cases, for example in CoO. CoO has a rock salt structure with o@® and one O atom
in the unit cell. Co with an electronic con guration 3d’4s? and O with 2s?2p* results in
an odd number(15) of electrons per unit cell. So according to banteory, it should be
a metal, but experimentally it has been found to be an insulator [24, P5However the
low temperature ground state structure of CoO is an antiferrongnetic(AFM) insulator.
So, if we take the Co lattice and subdivide it into two magnetic sublatties so that one
is with up-spin and the other one with down-spin, then the magneticupercell is twice
the chemical supercell and now there are even number of elecsd26]. Hence one can
explain the low temperature AFM insulating state. But at su ciently h igh temperatures
above the Neel temperature the AFM ordering vanishes and the j@anagnetic insulating
state again has the chemical unit cell with odd number of electronshere band theory
fails.

According to Mott [27{29], the reason of this failure is that, simple bad theory do
not takes into account the electron-electron Coulomb interactian When we treat the
electron-electron interaction quantum mechanically, the energyals a contribution from
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Figure 1.8: (a) A model for one-dimensional chain of atoms with a lattice constat a. There is a single
orbital per atom that can be occupied by two electrons with opposie spins. No magnetic ordering of
the electron spins are considered. (b) A non-interacting picture vihere electrons can hop from one site to
other with a transition probability t. (c) Due to electron-electron correlation the gain from hopping¢) is
compensated by the correlation energyJ at the doubly occupied sites.

classical Coulomb energy, as well as quantum contributions suchasexchange(see chap-
ter 2 for details). Together it is called electron-electron correlatig denoted byU. This
can localize the electrons leading to an insulating ground state. A duative under-
standing of the importance of electron correlation follows from a sple model of a one-
dimensional(1D) atomic chain, with a single electronic orbital per atomAs shown in
Figure 1.8(a), we consider a single electron per atomic site withoutyaspin correlation
i.e. the spins of the electrons are random. Now if the electrons areminteracting, then
the down-spin electron at the (I-1¥' site can easily hop to the! site having an up-spin
electron with a transition probability t[see Figure 1.8(b)]. Due to such hopping, we have
a single band with bandwidthW = 2zt(where z is the number of nearest neighborsg

= 2 in 1D chain, z = 4 in square lattice, etc.) [30]. The band becomes full when two
electrons, one with spin-up and the other with spin-down, occupyaeh site. But here
single electron per site(unit cell) leads to a metallic state with a half- lld band[Figure
1.9(a)]. This is the non-interacting picture, but if we consider the etgron-electron inter-
action, then the energy gain() due to hopping process as shown in Figure 1.8(b), will be
compensated by on-site Coulomb correlation enerdy at the doubly occupied I" site[see
Figure 1.8(c)]. According to Mott, this would split the single band in twobands. The
lower band is formed from electrons that occupied an empty site(viitenergy ) and the



1.3. ELECTRONIC STRUCTURE OF 3D TRANSITION METAL COMPOUNDS 17

upper one from electrons that occupies a site already taken by dher electron(with en-
ergy + U)[see Figure 1.8(c)]. Now with one electron per site, the lower band wd be
fully occupied, and if there is any gap between the two bands the $gs would be an
insulator.

Hubbard implemented the Mott physics in a simple model known as theudbard model
[31, 32], which is given as,

X X
H= t (dg +HC)+U npng (1.7)
hij i i
Where hij i indicates sum overi and j such that for each value ofi, j is the nearest
neighbor sites of thei™ site. ¢’ ¢ indicates hopping of an electron with spin from
the j site to the nearest neighboi™ site. n;» and n;4 gives the number of up-spin and
down-spin electrons at the™ site respectively.

Figure 1.9: (a) A half lled band with band width W due to single electrons per site of a 1D chain
of atoms. (b) The density of states corresponding to the half lled band. (c) Splitting of the half lled
band into Upper and Lower Hubbard band as a result of electron-eletron correlation.

For U = 0, the model reduces to a simple nearest neighbor tight-binding rdel giving
rise to a single band[Figure 1.9(a) and (b)]. The second term gives th&ctron-electron
correlation between the up and down-spin electron at thé" site. For a critical value of
U, the half- lled band splits into two bands with a gap between them[se€&igure 1.9(c)].
The fully occupied and unoccupied bands are called lower and upper hard bands.
Such a correlation driven insulating state is called a Mott insulator anthe e ective gap
is (U We ) called Mott-Hubbard gap which is controlled by the value olU and
Weis = zt, the e ective d bandwidth.
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1.3.2 Charge transfer energy

The Mott-Hubbard picture of the electronic structure explains tle insulating state of
CuO, NIO as a result of gap opening due to coulomb correlatidd. And the band gap
value is determined by the strength ofJ. As U is an intra-atomic parameter, we expect
that the band gap shall not vary signi cantly in the compounds cordining the same
transition metal atom. But it was observed that band gap stronglydepends on the type
of ligand in the compounds of late transition metals like Co, Ni, Cu [23, 33For example,
band gap decreases from 4.7 to 3.5 to 1.8 eV in N)JCNiBr, and Nil, respectively [33].
This suggests that along with the transition metald states, ligandp states also play an
important role in determining the electronic structure.

Figure 1.10: (a) Mott-Hubbard insulator for U <  where the gap is between twal bands. (b) Charge

transfer insulator for U >  where the gap is between the ligang band and the upper Hubbard band.

(c) Expected band overlap and a metallic state in the -ve region(upper panel) and opening of a gap
due to strongp d hopping(lower panel)

According to Zaanen, Sawatzky, and Allen (ZSA) [34], for such traition metal com-
pounds where strong hybridization e ect of thed orbital and ligand p orbital is present,
we need to consider two other relevant parameters. The chargensfer energy to
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transfer an electron from a band like ligand(anionicp state to an empty transition metal
d orbital and the transition metal 3d  ligand 2p hopping interaction strengtht g, which
is mainly responsible in determining the transition metadd bandwidth. Now if we con-
sider that the ligand p bandwidth is mainly due top p hopping then, in the limit of
U < , ligand p band lies below the lower Hubbard band and the electronic structure
follows Mott-Hubbard picture[Figure 1.10(a)]. But in the limit U > | ligand p band
lies in between the lower and upper Hubbard band[Figure 1.10(b)]. Antithe system is
insulating then, the gap is between the led oxygemp band and empty upper Hubbard
band. Such insulators are called Charge transfer insulators andetlyap is controlled by
the value of . The reason for such nomenclature is that here charge transp@ possible
due to the lowest energy excitation that transfers an @ electron to the transition metal
d orbital.

1.3.3 The ZSA phase diagram

Considering these three parameters Zaanen, Sawatzky, and Alleresented a phase dia-
gram pointing out di erent metal and insulating regions for stronglycorrelated electron
systems in theU =t pq =t pd Space. This is shown in Figure 1.11(a). *is the e ective
charge transfer energy de ned between the band edges as show Figure 1.10(b).

For, U < we are in the Mott-Hubbard region[Figure 1.10(a)]. NowlJ > W ¢4 ensures
an insulating state which is the Mott-Hubbard insulator. LaVGQ;, LaTiO3, V503, TioO3

etc, are examples of such insulators [23]. But faf < W ¢ , the upper and lower Hubbard
bands overlaps resulting in a metallic ground state. Such metals aralled d band metals.
TiO and VO are compounds belonging to this class [23].

On the other hand forU > |, we are in the charge transfer region[Figure 1.10(b)]. If

is greater than a critical value ¢ such that °is positive then we get an insulating
ground state, which is the charge transfer insulators. CuO is ana@&xple of charge transfer
insulator [23]. But for < °, O p band overlaps with the upper Hubbard band giving
rise to a metallic state calledp-type metal. CuS, NiSe, LaNiQ are examples of such
metals [23].

Later, based on multiband Hubbard model calculations [23, 35, 36],was shown that for
negative values of ° we can still have an insulating state over a region for high values of
U. Such insulating state arises due to strong covalency e ects befen transition metal

d and ligand p states and is termed as a covalent insulator. This is shown in the moed
ZSA phase diagram[Figure 1.11(b)] between thetype metal and charge transfer insulator
regions. For negative values of ° system would be metallic without considering thg d



20 CHAPTER 1. INTRODUCTION

Figure 1.11: (a)The ZSA phase diagram (b) Modi ed ZSA phase diagram showing tfe covalent insu-
lating region.

hybridization(t,q ) as a result of band overlap. This is shown in the upper panel of Figair
1.10(c). But a large value ot ,q mix the d and p states, pushing them energetically apart
to form a nonzero band gap, similar to the case of bonding-antiboingdy splitting formed
in molecular orbital theory [8][see lower panel of Figure 1.10(c)]. Ireasing the formal
valence of a transition metal ion has the primary e ect of lowering and increasingt pq
that favors a covalent insulator state. The rare earth nickelate€RNiO3) are the example
of such compounds.

Now after knowing the details of the perovskite structure and basparameters to describe
the electronic structure of transition metal compounds, let us ldointo some example of
structure-property correlation in rare earth nickelates.

1.4 Properties of Rare earth Nickelates

The rare earth nickelates(RNiQ) shows fascinating electronic and magnetic properties
as a result of their complex electronic structure and exibility of theperovskite structure
to adopt internal and external changes [34,37]. One of the intesttng phenomena that
we are going to discuss is the temperature driven metal to insulatdransition. All
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members of the RNiQ series(except LaNiQ that remains metallic at all temperatures)
shows a sharp metal to insulator transition below a certain tempetare(T,,, ). This can
be observed as a sharp rise in the resistivity beloW,, as shown in Figure 1.12(a) for
SmNIQ; thin Ims grown on LaAlO 3 substrate [1,38]. The high temperature state above
T, is metallic with an orthorhombic space grougfPbnm and belowT, , they become
insulating/semiconducting [1]. The metal to insulator transition tempgerature for all the
rare earth nickelates is shown in Figure 1.12(b). We can see that as @o from Pr to
Lu, T, . gradually increases. At the same time, the evolution of the toleraadactor( ,
along the x-axis) going from Pr to Lu, suggests thafT,,, and structure of the systems
are correlated.

Figure 1.12: (a) Resistivity vs. Temperature plot showing the metal to insulator transition below

400 K in SmNiO3 thin Ims(10 nm)[Figure taken from Ref. [38]] (b) Metal-insulator and magnetic
transitions as a function of the tolerance factor for the rare earth nickelates[Figure taken from Ref. [1]]
(c) Straightening the Ni-O-Ni bond angle (by increasing rare earthradius) increases the orbital overlap
and stabilizes the metallic state.
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The low temperature state of rare earth nickelates has been chaterized as charge trans-
fer insulators [23, 34, 39, 40], with the transition to a metallic state azurring due to the
collapse of the charge transfer gap between the oxygemalence band and Nd conduction
band[see Figure 1.10(b)]. As discussed before, crystal struatof RNiO; systems consist
of corner shared NiQ octahedra with the rare earth atom(R) sitting inside the octahedl
cavity at the A-site. The octahedra are tilted showing a GdFe©Otype distortion with a
deviation of the Ni-O-Ni bond-angle from 182 Now as we go from Pr to Lu the ionic
radii gradually decrease due to an increase in the atomic numbér As a result, the value
of the tolerance factor given by Equation (1.8) decreases [40].

()

2(r, +1.) (18)

Ni
This reduction in the tolerance factor is mainly accommodated by ananeased buckling of
the NiOg octahedral network [1,40]. A larger compressibility of the RQ) unit compared

to the NiOg unit results in a faster shrinking of the R-O distances compared toifD

distances. This results in an octahedral tilting with a decreased untell volume. As
a result of increased buckling, the Ni-O-Ni bond angle deviates moend more from
18C. As shown in Figure 1.12(c), this decreases the orbital overlap keten the Nid

and O p states. As a result, the bandwidth of the conduction band and vatee band
decreases due to decrease in hopping strendtfy. This, in turn, increases the band
gap of the system i.e. favors the insulating state over the metallic en This explains
the increasingT,,, with decreased ionic radii of the R atom. For PrNiQ, the average
Ni-O-Ni bond angle is 158.% with a T,,; 13X . Whereas for LUNiQ;, the average
Ni-O-Ni bond angle reduces to 144.5 increasing theT,,. to 599K. It has been reported
that T,, can be tuned continuously across this entire temperature rangg mixing two

di erent nickelates in the right proportion [1,41]. For example, met&insulator transition

for Ndo.45SMy:55NiO3 takes place at room temperature.

Now along with the metal to insulator transition, the rare earth niclelates also shows a
transition from a paramagnetic insulator to an anti-ferromagnetiansulator state at the
temperatureT,., T,,, - One of the proposed anti-ferromagnetic state is characterized
by an (""## ) order of the Ni moments along the three pseudocubic axis [42,43]s shown
in Figure 1.12(b), for R = Nd and Prthe T, andT,, coincides, but as tolerance factor
reduces further, theT, , and T,,, separates from one another. This, suggests that an
anti-ferromagnetic ordering of the Ni moments cannot be respsible for the insulating
state [26] and can be ignored as a low-temperature phenomenorheTinsulating state is
a result of electron-electron correlation coupled with structuratlistortions [22,44{46]. If

MIT

MIT
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we consider a complete ionic picture d@NiO 3(R3*;Ni3*; 03 ), then Ni®* (d") in the low
spin state(t5,e;) would be Jahn-Teller active due to orbital degeneracy in the; manifold
and metallic due to a half- lled conduction band arising from thegy states. Now the
degeneracy can be removed via a Jahn-Teller distortion and may leta an insulating
state depending on the bandwidth of the system. So, f&®NiO ;3 we expect a Jahn-Teller
distortion in the low temperature insulating state. Though structual analysis suggested
such distortion for nickelates with small rare earth atoms, but surcdistortion was not
observed for NdNiQ and PrNiOz [47] which are wide band width systems. For NdNi©
it was found that the insulating state is accompanied by a breathing ade distortion with
two inequivalent NiOg octahedra having slightly di erent volume [48,49].

1.4.1 E ect of pressure and strain

As described above, we see that there is a strong correlation beem the Ni-O-Ni bond
angle( ) and the metal to insulator transition temperatureT,,, . Hence we can control
the electronic structure and transition temperature by controllig the bond angle , and

this can be done with external pressure or epitaxial strain.

External hydrostatic pressure reduces the unit cell volume andehce the Ni-O and R-O
bond length decrease. In response to external pressure, tloempressibility of the NiGs
unit is much higher than the RO, unit. This results in a faster shrinking of the Ni-
O distances compared to R-O distances [50,51]. A faster shrinkin§tbe Ni-O bond
lengths in-turn results in a straightening of the bond angle reducing the octahedral
distortions and making the system more and more itinerant. This reeesT,,, favoring
a metallic phase [50{53]. For example, it has been reported that forRiO 3, the metal-
insulator transition gets suppressed for pressures above 13«bhr [50,53]. However
the temperature dependence of the resistivity in the high pressimetallic phase shows
non-Fermi liquid behavior [53].

Analogous to external pressure, thin Ims grown under compreise strain are also ex-
pected to reduce octahedral distortions and decrease tfig, . This has been observed
in epitaxial Ims of NdNiO 3 grown under compressive strain [54{56]. Now, a reduction of
T, due to compressive strain simply suggests thdi, . shall increase as a result of ten-
sile strain. However experimental results show the opposite pictyrinstead of increasing,
T also gets decreased under tensile strain. For example NdNi®in Ims grown on
NdGaOs;( 1.3% tensile strain) shows a strong variation in th&@

MIT

W as a function of Im

thickness. As shown in Figure 1.13, with increasing Im thickness thdrain is gradually
relaxed andT,,, approaches the bulk value 200 K [57,58]. But in the ultra-thin limit
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Figure 1.13: Normalized sheet resistance as a function of temperature for NdiDs Ims of di erent
thickness grown epitaxially on NdGaG; single crystal substrates (tensile lattice mismatch of 1.3%). Inset
evolution of T, (here T,, = T, ) as a function of Im thickness. Epitaxial strain stabilizes the
metallic phase and depresses the metal-insulator transition; as thetrain is relaxed, the bulk behaviour
is progressively recovered.[Figure taken from Ref. [1]]

where the e ect of strain is maximum, we see a reducel, , 150 K. Such reduction
of T, can be explained by considering the tensile strain to be analogous tdeimal

pressure. An increase in the size of the rare earth atom can be tght to producing

internal pressure and increasing the R-O distance. This results instraighter Ni-O-Ni

bond angle . Similarly, a tensile strain also reduces octahedral distortions as asult

of increasing R-O distances and hence reducidg,, . So, for the rare earth nickelates,
we must remember that the fundamental Ni@ structural units behave di erently under

internal and external changes.

The metal-insulator transition in the rare earth nickelates is coincidg with a crystal dis-
tortion, where the insulating state is characterized by a two-subtdace symmetry breaking,
with Ni on one sublattice having a decreased mean Ni - O bond lengtmdithe Ni on
the other having an increased mean Ni - O bond length, de ning a bdrdisproportiona-
tion/breathing mode distortion(BD) [44,49,59,60]. This state is smetimes also referred
to as \charge ordered(CO)" state. There is a debate in explaininghe simultaneous oc-
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currence of insulating phase with a bond disproportionation. D.l.Khmoskii et al. [61]
explains the insulating state in terms of charge disproportionationyhere an electron is
transferred from a Ni site to the nearest neighbor(n.n) Ni. This aorms an insulating
state and leads to bond disproportionation as a result of dissimilar ahges on two di erent
Ni sites. On the other hand, there are claims [62,63] that there istally no charge order-
ing on the Ni sites. All Ni atoms are equally occupied and there are les on the oxygen
network. The bond disproportionation is a result of asymmetric cqaling of the oxygen
holes with one of the Ni g electrons forming a singlet state. In the third chapter of this
thesis using density functional theory(DFT) and model Hamiltonianapproach [64], we
show that occurrence of the insulating state with bond dispropadnation in Neodymium
nickelate(NdNiQOz3) is intimately related to a negative value of the e ective charge trasfer
energy(a negative value of 9. BD occurs when the Nid band just enters the oxygen
p band and there are holes on the oxygen. For positive values of’ system becomes
metallic with absence of a BD. We also calculate the e ective chargeatnsfer energy °
for all the rare earth nickelates. For R = Lu to Pr the values of °lie in the range of -0.41
to -0.27 eV indicating a situation where the Nid band just enters the oxygerp band. As
a result the ground state(GS) of the compounds are insulating witBD. For LaNiO3, the
value of Cis -0.62 eV and the GS is metallic without any BD. So, from here conclude
that a negative value of delta is necessary for BD to occur, howewhere is a critical
value beyond which the itinerant limit is reached. There will be larger bal overlap and
system becomes metallic suppressing the MIT. Values of®in the range of -0.41 to -0.27
leads to an insulating GS with a small variation in the band gap values. line insulating
state, main role in controlling the band gap is played by the bandwidti/ ). As we go
from Lu to Pr the ionic radii of the rare earth atom increases and # bandwidth of the
system also increases due to increased hybridization between thed\Nand O p states,
this in turn drives the system more towards the itinerant limit and thee shall be a sys-
tematic decrease in the metal to insulator transition temperatu@ vt ), in agreement
with experimental observations as reported in earlier works [40,8%8]. From here we
move to hybrid perovskites where at théA-site there is an organic molecule, which plays
a complex role in determining the structure and hence electronic grerties. So, in the
next section we now discuss the general structural propertie$ @ hybrid perovskite and
how the ideas of structural distortions gets modi ed compared tohe well known rules
that are applicable in inorganic perovskites.
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1.5 Octahedral tilting in Hybrid perovskites

In the previous section, we discussed the roleBOg octahedra as an important functional
unit to control the electronic properties of perovskite nickelatesThe B-O bond lengths
and the B-O-B bond angles are strongly correlated with the electronic structuref the
system. As discussed before, changes in tBeO-B bond angle occurs due to structural
distortions that have been understood in terms of the Goldschmidblerance factor[see
section 1.1]. The tolerance factor has emerged as an important taghich can be used
to determine whether a system shows a tendency to tilt or not. Shica concept has
existed for isolated atoms occupying thé-site and has been successful in explaining var-
ious experimental trends. But the tolerance factor approach bemes di cult to predict
octahedral distortions when there is a molecule sitting at thé\-site. Material systems
consisting of organic and inorganic parts are called hybrid systentsat o er an important
opportunity to combine useful properties from these two chemitaealms within a single
molecular scale composite [67]. In hybrids, the organic molecules aenerally sheltered
inside the inorganic cage. In case of hybrid perovskites, an organmolecule sits at theA-
site within the octahedral cavity. For example, Figure 1.14(a) shasva Methylammonium
(CH3NH3)* or MA molecule sitting inside the inorganic cage formed by th& cation
and X anions of a perovskite. The inorganic octahedral network is geadly formed by
the Group 14 elements like Ge, Sn, and Pb, sitting at th&-site together with a halo-
gen CI, Br or | as an anion. Hybrid perovskites with interesting chemat and structural
properties [67{71] are becoming popular day by day, mainly for theuise as a solar cell
material.

Figure 1.14: (a) A typical hybrid perovskite structure where a Methylammonium (MA) molecule is
sitting at the A-site, inside the inorganic cage formed byB cation and anions. (b) A schematic repre-
sentation of the structure of Methylammonium(MA)[upper panel] and Ethylammonium(EA)[lower panel]

molecules.
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Other organic molecules that can form hybrid perovskites are Foamidinium or FA,
Ethylammonium or EA etc. The structure and components of the MAand EA molecules
are shown in Figure 1.14(b) for clarity. Hence in contrast to inorgaa perovskites where
one had an isolated atom which could largely be approximated as a sphan the present
case, one has an asymmetric cylindrical object occupying thesite. Moreover, now there
are hydrogen atoms associated with the molecule which can make fygen bonding with
the anions. These additional factors make it di cult to predict the gructural properties
of such systems based on the concepts we have for inorganic p&kites.

Here we give a brief description of how the tolerance factor appiahas been generalized
for hybrid perovskites and the role of hydrogen bonding betweeré molecule and the
anions in determining the structural distortions.

1.5.1 Generalized tolerance factor

The problem in determining the tolerance factor for such systemsvgn by Equation (1.9),
lies in estimating the ionic radiifoy ) of the anisotropic organic molecules(OM). The
problem of estimating e ective ionic radii for the organic molecule halseen addressed in
the past. For example, a set of thermochemical radii for moleculanions was proposed
by Kapustinskii and Yatsimirskii around 1940 [72]. In case of hybrid grovskites, the
organic molecular cation makes hydrogen bonding with the anions leag to varying
bond lengths, that makes it more di cult to de ne an ionic radii.

- (rom + Ix)

2(rg + rx) (1.9)

Recently G. Kieslichet al. have proposed a way [11] which involves calculating e ective
ionic radii of organic cations from the existing crystallographic dataf hybrid perovskites.
Depending on the level of anisotropy, the organic ions were congsld either as a sphere
or cylinder. For the case of organic cations, a sphere model comsidg the rotational
degrees of freedom around the center of mass of the molecule e@ssidered. With such
considerations, the e ective ionic radii were calculated using Equian (1.10).

lpetf = I'mass T lion (1-10)

Wherer a5 IS the distance between the center of mass(CM) of the molecule ahe atom
that have the maximum distance from the center of mass, excludinige hydrogen atoms.
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lon IS the ionic radii of this atom. Using this in place ofrgy in Equation (1.9) allows
one to calculate the tolerance factor for such hybrid systems.

Figure 1.15: (a) Structure of the Guanidinium [C(NH »)3] molecule with the center of mass(CM) at
the C atom. rmass and rion are also mentioned. (b) Schematic of the model considering the anis as
rigid cylinders to calculate the tolerance factors of perovskites cotaining complex molecular anions like
HCOO .

For example, as shown in Figure 1.15(a), in case of the Guanidinium [Gfi)3]" cation
they found armass = r(C-N) = 132 pm and ri,, = r(N?3 ) = 146 pm. Then Equation
(1.10) gives a value of peif = 278 pm. Using this approach they calculated the e ective
radii for a set of organic molecules that can be used to estimate thaerance factors for
the corresponding perovskite systems. The e ective ionic radii faome of the organic
cations are given in Table 1.1.

Table 1.1: E ective ionic radii of molecular cations(taken from Ref. [1]). lonic radii for
the inorganic ions were used from Ref. [12]

Organic cation E ective ionic radii(raeff ) in pm
1 Ammonium [NH,]* 146
2 Hydroxylammonium [H;NOH]* 216
3 Methylammonium [CH;NH;]* 217
4 Hydrazinium [HzN-NH,]* 217
5 Azetidinium [(CH;)sNH,]* 250
6 Formamidinium [NHy(CH)NH]* 253
7 Imidazolium [CGNoHs | 258
8 Dimethylammonium [(CHz),NH>]* 272
9 Ethylammonium [(C,Hs)NH;3]* 274
10 Guanidinium [C(NH,)3]" 278

11 Tetramethylammonium [(CH;)4N]* 292
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For molecular anions such as HCOQ CN , the situation becomes more complicated
due to their high anisotropy. For such a case they treated all molelar anions as rigid
cylinders, with an e ective radiusr s and an e ective heighthaess . These are shown as
green cylinders(leveled as X) in Figure 1.15(b). The radius(s; ) and the height(haess )
of the cylinders were then evaluated using Equation (1.10). Using ébe concepts the
general formula for calculating the tolerance factor of hybrid oanic-inorganic systems is
given by [11]:

r +r
- p (_ Aeff Xeff ) (111)
2(rg + 0:5hyers )

Using this general formula they calculated the tolerance factor fa series of hybrid
perovskites. The value for some of the important systems is given Table 1.2.

Table 1.2: Tolerance factor of some important hybrid perovskite sfems calculated using
the generalized approach [11]). The e ective ionic radii for the inoemic ions were taken
from Ref. [12]

A-site Organic molecule B-site cation Anion(X) Tolerance factor

Methylammonium Pb Cl 0.938
Br 0.927

I 0.912

Sn Cl 0.951

Br 0.939

I 0.922

Formamidinium Pb Cl 1.023
Br 1.008

I 0.987

Sn Cl 1.037

Br 1.021

I 0.998

Ethylammonium Pb Cl 1.072
Br 1.055

I 1.030

Sn Cl 1.087

Br 1.069

| 1.043
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1.5.2 Role of Hydrogen bonding in octahedral tilting

Methylammonium lead iodide (MAPbk, MA = CH 3NH5;) is one of the well known and
most studied members of the hybrid perovskite series. It has begimown both experimen-
tally [73] as well as theoretically [74] that, structure and electroniproperties of hybrid
perovskites are strongly correlated. However the most importastructural parameter to
tune the electronic structure, the octahedral tilts usually occuin the low-temperature
states. For example, MAPb} undergoes a series of temperature dependent structural
phase transition with an increased degree of octahedral tilting asé temperature de-
creases [75]. The high-temperature phase above 330 K is cubic withany octahedral
tilts. As shown in Figure 1.16(a), the inorganic cage containing the MAnolecule is a
perfect cube with the Pb-1-Pb bond angles equal to 180Below 330 K octahedral tilting
occurs leading to a low symmetry tetragonal phase. The octahedltilt pattern can be re-
alized as originating from the high symmetry cubic state, due to roteon of the octahedra
in an out of phase manner along one of the pseudocubic axisiis/c-axis). This results
in the in-plane(ab-plane) Pb-I-Pb bond angles to deviate from 18(see Figure 1.16(b)].
Below 160 K, with further symmetry lowering the system enters anrthorhombic phase
due to octahedral rotations about all the pseudocubic directionand all Pb-I-Pb bond
angles deviating from 18fFigure 1.16(c)].

Figure 1.16: (a) Total orientational disorder of the MA molecule in the cubic phase without any
octahedral tilts. The Pb-I-Pb bond angles along all the three cubicdirections are 180 (b) Below 330
K (MA)PbI 3 enters tetragonal phase with octahedral rotations about thec-direction, leading to the in-
plane(ab-plane) Pb-I-Pb bond angles to deviate from 180 and the molecule is four-fold orientationally
disordered around thec-axis. (c) Deviation of all the Pb-I-Pb bond angles from 18@ in the orthorhombic
phase below 160 K and ordering of the MA molecules.

Along with structural changes the dynamic state of the MA moleculalso undergoes
drastic changes . Missing X-ray di raction pattern for the (CHNH3)™ group in the high
temperature cubic phase already suggested static disorder orndynic reorientation of
the MA molecule. An electric dipole moment associated with the MA molate makes it
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possible to do dielectric measurements that can probe any dynamiotion associated with

the molecule. Dielectric data [76] showed dynamic disorder of the MAatecule where the
C-N axis is free to rotate about any direction. The disordered statof the molecule inside
the inorganic cage is schematically shown in Figure 1.16(a). With deaeng temperature,
the dynamic disorder also decreases. In the tetragonal phase tG-N axis of the molecule
shows four-fold orientational disorder around thes-axis in the ab-plane[Figure 1.16(b)].
And in the orthorhombic phase ordering of the MA molecules takes ma with a preferred
orientation and stacking which again leads to formation of hydrogebhonding between
the hydrogen atoms and the anions(l)[Figure 1.16(c)]. Previously it was shown that the
hydrogen bonding plays an important role in determining the prefeed orientation of the

MA molecule [77]. The orientation of the molecule is such that, hydrogéonding between
the molecule and the anions is maximized. Recently, based al-initio density functional

theory calculations [78], it has been shown that hydrogen bonding itsa responsible for
the octahedral tilts in the low temperature orthorhombic phase.

To show this they consider the low-temperature orthorhombic sticture of MAPbI; and
the inorganic perovskite series APkl where A = K, Rb, Cs, and Fr. The low-temperature
orthorhombic phase for each of the inorganic system shows a tilt tearn similar to
MAPDbDI 3 as shown in Figure 1.17(a). For each system, they did two di erentatcula-
tions and calculated the total energy. In the rst calculation, thestructure was allowed to
fully relax so that the ions can move to their equilibrium positions for a imimum energy
con guration . The fully relaxed ground state(GS) structure forall systems were found
to be distorted with octahedral tilting analogous to the experimeral orthorhombic struc-
ture. In the second calculation they considered a high symmetry&) phase[see Figure
1.17(b)] for each systems where,

1. The unit cell dimension was exactly the same as the fully relaxed gired state(GS)
structure.

2. Pb and | atoms were forcefully xed at their ideal positions so thathe Pblg octa-
hedra become xed and untilted.

3. The A-site cations were allowed to relax for their equilibrium position/con giration.

For the inorganic perovskites, the high symmetry phase considdrim the calculations sim-
ply corresponds to the low temperature orthorhombic phase butithout any octahedral
tilts. For the (MA)PDI 3, it is a kind of hypothetical phase without any octahedral tilts,
where the local coordinates of the MA cation were relaxed but witthe same orientation
and conformation found in the orthorhombic phase. After this, tey quantify the energy
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Figure 1.17: (a) The ground state (GS) and (b) high symmetry (HS) structures of orthorhombic

(MA)PDI 3, composed of Pbg octahedra and MA molecules at the octahedral cavity. (c) The enegy

di erence between the HS and the GS structures(lgs cs) as a function of the tolerance factor for
the APDbI ; inorganic series (green circles) and (MA)Pb} (yellow square). The horizontal error bar in

(MA)PDI 3 represent the di erence in tolerance factor calculated using the ghere and cylinder methods(see
section 1.5.1)[Figures are taken from Ref. [78]].

di erence (Eqs gs), between the fully relaxed ground state(GS) orthorhombic streture,
and the high symmetry(HS) phase for each system. This energy drence gives a measure
of the propensity of octahedral tilting. If Ehs s IS positive then the system would have
a ground state structure with octahedral tilts otherwise it would ot like to tilt.

Along with this, the tolerance factor was also calculated for each tife systems to check
for any mismatch in the ionic size and probable octahedral tilting dueot steric e ects.
For this, a simple approach was followed [73]. They considered the etere ionic radii
for each cation or anion as the radii of the sphere that contains @b of the calculated
electron density. For the MA" cation, both a sphere and a cylinder was considered to
determine two e ective radii that di er from each other by only 0.04 A suggesting that
this approach is reliable.
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Ens s for all the ve systems as a function of the tolerance factor is s in Figure
1.17(c). For the inorganic series APRl as we go from K to Fr, the value of the tolerance
factor increases due to an increase in the size of thesite cation. On the other hand,
the energy di erenceEys s between the non-tilted and tilted state decreases indicating
a reduction in the octahedral tilting. This is in accordance with the geeral properties
of a perovskite structure. The relation betweerkE,s gs and tolerance factor for APbg
suggests that a hypothetical perovskite of the series APplwith a tolerance factor of
0.83(extrapolation of the green curve in Figure 1.17(c) cuts-axis at 0.83) would not
like to tilt due the zero value of Ehs gs. This perovskite of the APbk series contains a
hypothetical A-site cation with e ective ionic radii same as determined for MAPKJ which
also have a tolerance factor 0.83. But for MAPbI; we have a nite value ofEns gs

0.25, with a tilted ground state. Now the only extra mechanism that igresent in
MAPDI ; compared to APbk is the hydrogen bonding due to the presence of hydrogen
atoms associated with the molecule. Based on this result they combéuthat octahedral
tilting in MAPbI ; appears to be induced by hydrogen bonding and not by the size ofth
molecule.

In the fourth and fth chapters of this thesis we study the role ofthe organic molecule in
determining the properties of such materials taking the example o€Hs;NH3)PbBr; [79].

The molecule CHNH; has two parts, the amine part(NH group) and methyl part(CHs

group). To have an idea of how the molecule interacts with the inorg&c network, we

mapped theab-initio band structure onto a tight binding model. This helped us to switch
o the covalent interactions between specic pair of atoms. Consgting the optimized

structure, we switched o the interactions between hydrogen ahBr atoms. We see that
the gain from covalency between methyl part and Br ions is almost arder of magnitude
higher than the covalency gain from amine part. Due to the di ereninature of the two

parts of the molecule it also acts as an electric dipole. Having undesstd the energetics
governing the location of the molecule in the octahedral cavity as Weas its interactions

with the inorganic cage, we proceed to examine if the calculations ¢duhrow some

light on the glassy dynamics that have been seen within the orthorhiic phase where
the dipoles are believed to be frozen and ordered. Our analysis ofadinexcursions of
the molecule about its position in the optimized structure, and allowinghe inorganic

network to accommodate that change, suggest that the energgndscape is complex with
multiple minimums which are close in energy. The di erences in the strtures are small
with the molecule having di erent orientations. The presence of sticclose lying minima
separated by large barriers are evidence for the observed gladgmamics. The system
could be quenched into either of these con gurations which can aitidnally be accessed
by thermal excitations.
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The ordering of such microscopic dipoles in a material may or may naake place lead-
ing to ferroelectric properties. On the other hand there are matels which are at the
brink of a ferroelectric transition, where the dipolar order is beinguppressed by quan-
tum uctuations. Usual examples of ferroelectrics ar@® materials i.e. those which have
an empty d shell. This has been an empirical principle being used to roughly identify
materials which would be ferroelectric. While not ald® materials are ferroelectric, it has
been seen that several of them could be identi ed as incipient feelectrics, where there
is no ferroelectric order down to low temperatures. Ti®is one such example. In such
materials, a small perturbation could drive the system ferroelectr. In the sixth chapter
of this thesis usingab-initio density functional theory calculations [80], we explore doping
a Nb-Cr pair in TiO, as a route to drive it ferroelectric. Nb and Cr go into the 5+ and 3+
valence states and therefore behave like a dipole. Analogous to dduhagnetic semicon-
ductors, where doping small concentrations of magnetic atoms itherwise non-magnetic
materials drives the system magnetic, here, the introduction of éhdipole is shown to
polarize regions in the vicinity of the dopant. Ferroelectricity is theefore found to be
stabilized. While this mechanism is indeed found to work at low Nb-Cr dapg, at higher
doping concentrations a clustering of the dopant atoms is found tdestroy long-range
ferroelectric order. Finally in the seventh chapter we show how sictural di erences can
lead to dissimilar ferroelectric properties considering two well knowlierroelectric materi-
als BaTiOz; and PbTiO3. Tetragonality in the ferroelectric structure of BaTiOs is smaller
than PbTiO3;. Hence the o -center displacement of the Ti atom along the tetrgonal
axis is assisted by short-ranged repulsion forces that pushes fhlaner oxygen atoms in
the opposite direction to that of the Ti atom. Where as due to a largr tetragonality in
PbTiO 3, Ti displacement is dominated by the covalency gain between Ti atoand apical
oxygen. So, in the next section we are going to discuss the geneati@lectric properties
of ferroelectric materials and show how cation displacements withiine octahedral units
can lead to ferroelectric order in the system.

1.6 Ferroelectricity due to cation displacement

We have already discussed the importance of structural distortis like octahedral rota-
tions and deformations in controlling the electronic structure of pevskite materials. In
those cases, we mainly emphasized the roleffsite cation in controlling the octahedral
tilts and distortion of the BX ¢ octahedra as a result of the speci ¢ electronic con gu-
ration of the B cation. In such structural distortions, mainly the anions were didpced
about the heavier cations which were xed at particular lattice sites However, distor-
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tions due to the displacement of the cations can also lead to interggj properties in a
perovskite system. TheA-site cation, in general, does not have any direct contribution
to the electronic properties and mainly results in steric e ects. Buthe B-site cation
could be responsible for magnetic properties of the material. Deiing on the electronic
con guration we could have a permanent magnetic moment of th® cation that can give
rise to magnetic ordering. TheB cation can also result in ferroelectric properties as a
result of its displacement from the center of the octahedra. In th section, we are going to
discuss the general properties of a ferroelectric material andettorigin of ferroelectricity
due to such cation displacements in perovskites.

1.6.1 Electric polarization and Dielectric response

Corresponding to the response of a material in the presence of external electric eld
one may divide all materials into broadly two classes, conductors, @rdielectrics. By
response we mean the material getting polarized, i.e. the developief an electric eld
inside the material. Conductors contain a lot of free charges thatafree to roam through
the whole material. If there is an electric eld inside such a material, th free charges
redistribute in such a way to cancel the eld so that the net eld insié¢ the material
is zero. In the case of dielectrics, there are no free charges. Adcgronic charges are
attached to atoms that build the material. Simply we can think that in the presence of
an external electric eld(Eo) the charges are unable to get detached from the atoms, but
they are slightly displaced so that the positive and negative chargemter of each atom
gets separated to form a tiny dipole. And the material gets polaridewhen all the atomic
dipoles point in the same direction. So, when we are speaking of polatian of a material,
we are speaking of a macroscopic polarization [81] which is the avergaplarization over
a large enough region consisting of many thousands of atoms. Besmin the microscopic
or atomic level there may be local polarization or local moments evém conductors due
to charge separation but when we try to nd the macroscopic pol@ation by averaging
over a large enough region, we nd that the moments are randomlyiented resulting in
zero polarization. The Polarization of a dielectric material is measudewith polarization
vector P de ned as,

P = Electric dipole moment per unit volume.

[This unit volume is large enough to accommodate many atoms and malézs.]
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Dielectric materials can have di erent polarization mechanisms thatan respond to an
external electric eld and result in polarization of the material. Theg are discussed below
in brief:

1. Electronic polarization: If we consider any material simply as a collection of
atoms then, with the application of an external electric eld the atons become
polarized forming atomic dipoles. As shown in Figure 1.18(a), the eleah cloud
of each atom surrounding the nucleus become shifted by the eld @the atom act
as a dipole. This gives rise to electronic polarization. Solids formed agesult of
van der Waals force, for example, solid Ar below 83.8 K are a collectiof inert
atoms where the electron cloud is tightly attached to their nuclei. Irsuch case, the
electronic polarization is quite small because the electron hardly disifvith respect
to the nucleus. Whereas electronic polarization in covalent solids dtethe valence
electrons in the covalent bonds is much higher and signi cant. For ariple, in
crystalline silicon, there are electrons shared with neighboring Siaahs in covalent
bonds which are loosely bound to their parent atoms. When an eleictr eld is
applied, the negative charge distribution associated with these valee electrons
becomes easily shifted with respect to the positive charges of thaimSi cores and
results in a large polarization.

2. lonic polarization:  This type of polarization occurs in ionic crystals such as
NaCl, KCl etc. The ionic crystal is formed due to electrostatic integictions between
ions located at well de ned lattice sites. As an example, if we consider one-
dimensional(1D) NaCl crystal then as shown in the upper panel ofigure 1.18(b),
it can be depicted as a chain of alternating Naand Cl ions. Each pair of oppositely
charged ions act as an electric dipolg]. In the absence of an external eld, there
is no net polarization because the dipole moments are lined up head tead and
tail to tail canceling each other. The dipolep. along the +ve x-axis cancels the
dipole p along the -vex-axis. Now if we apply an electric eld along the +ve
x-axis, then as shown in the lower panel of Figure 1.18(b), the Cions are pushed
in the x-direction and the N& ions in the +x-direction about their equilibrium
positions. In such a situation we havg, > p and the net dipole moment is now
no longer zero.

3. Orientational/Dipolar polarization: Some molecules possess a permanent
dipole moments as a result of their ionic components. For example ethinear HCI
molecule has a permanent dipole momemt from the Cl ion to the H* ion[Figure
1.18(c)]. In the liquid or gas phases, and in the absence of an electeld, they are



1.6. FERROELECTRICITY DUE TO CATION DISPLACEMENT 37

Figure 1.18: (a) The charge distribution of the valence electrons around the ioncores in a covalent
solid, in absence and presence of an electric eld. In the presencd an electric eld, they are shifted
with respect to the ion cores and act as a dipole. This gives overall garization of the material. (b) A
1D NaCl chain. Without any external eld, the positions of the ions are such that the dipoles along +ve
and -ve x-direction cancels each other. But in the presence of an externakld, the ions get shifted and
there is a net dipole moment per unit cell. (c) The HCI molecule possess a dipole momentp due to
the H" and Cl ions. In the absence of any eld, the dipoles are random due to themal agitation. An
external electric eld produces a torque on the dipoles and tries toalign them with the eld direction.
(d) A dielectric material between two electrodes with an equal numker of positive ions and negative ions.
The negative ions can move and with the application of an electric eld,they accumulate at the interface
near the positive electrode. There is a charge separation with a ngbolarization

randomly oriented as a result of thermal agitation[upper panel ofi§ure 1.18(c)].
Application of an external electric eld E tries to align the dipoles of each individ-
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ual molecule along the eld direction and the material gets polarizedjfieer panel of
Figure 1.18(c)].

4. Interfacial polarization: Interfacial polarization occurs whenever there is an ac-
cumulation of charge at an interface between two materials or betwn two regions
within a material. The simplest example is interfacial polarization due toéhe accu-
mulation of charges in the dielectric near one of the electrodes, apitted in Figure
1.18(d).

The dielectric response in a simple sense is the dependence of therpaaaon or related
/associated measurable quantities that can be directly measuretbin an experimental
setup, with the electric eld. It is an important tool for material characterization. We
can get a lot of information both macroscopic as well as microscopror this kind of
measurements . The best way to see the dependence is by varyihg electric eld and
see how polarization changes. The ultimate case would be to see tlepehdence with an
ac electric eld.

Dielectrics are used in capacitors, so let us start from here and kmsome general and
basic macroscopic properties of a dielectric material. In a parallel pdacapacitor, the

charge stored on each plate(Q) is related to the potential di erence(V) between the two

plates as,

Q=CV (1.12)

where, C is the capacitance of the capacitor. For a parallel plate macitor,

where, A = surface area of the plates, d = distance between the pés, = permittivity
of the dielectric material between two plates. = o ;, where, ¢ is the permittivity of
free space with a value of 85 10 2 F/m and , is the relative dielectric permittivity or
dielectric constant of the material. Now applying Gauss's law for a pallel plate capacitor
gives,

Ej= — (1.14)
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whereE is the total eld inside the dielectric material. That means the materidis now
polarized and for most of the materials the polarizatior) becomes a linear function of
the electric eld E de ned as [81],

P= E (1.15)

where is called the dielectric susceptibility and the materials that follow the abve
equation are called linear dielectrics. If a dielectric material is placed ian external
electric eld Eq then P cannot be computed from Equation (1.15) directly. So, we have
to deal with a physically measurable quantity,D, the electric displacement eld de ned
as,

D= E= E+ E= (E+P (1.16)

For a parallel plate capacitor,D = Q=A. Now, the above equations are for static electric
eld and with this, we do not get any information about the material poperties. This is
only possible if we observe the behavior ¢f in an ac eld. Equation (1.15) is equally
valid if E oscillates with a frequency (! =2 f ), given as [82],

P()= ()E() (2.127)

One of the source of such oscillating electric eld is the eld in electroagnetic radiations,
E = Eocoq!t ). The detail expression for Equation (1.17) can be derived by cadsring

the polarization mechanism that is present in the material and how #y behave under
the oscillating electric eld.

Complex analysis, by representing the oscillating electric eld and palaation in term of
exponential quantities gives an expression of(! ) which is also complex with a real and
imaginary part as,

)=~M)= ") i) (1.18)

°(1) de nes the real component oP (! ) in the equation, P(! ) = ~(! )Eqexp(ilt ), where

we consider the electric eld at a particular point in space, i.e. in phasevith E(! ) =
Re[Eqexp(i't )] = Eocoq!t). So, (! ) gives a measure of the oscillating polarization.
“(1) is often called the power dissipation factor. This arises due to thergsence of

damping terms in the equation of motion governing the evolution of # polarization
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components under the oscillating eld. In a broad sense, (! ) indicates that the electric
eld has to do some work on the dielectric material to produce a netigole moment
density. Some energy is stored in the process of charge separa#ind is recoverable. Rest
of the energy is used to overcome friction or resistance that opges the development of
dipole moment density or charge movement.

Frequency dependence of (! ) and *(! ) gives important information about the polar-

ization mechanism present in a dielectric material. Let us consider astgm of N hydrogen
atoms. We consider the nucleus to be xed at lattice sites such thahhe only polarization

mechanism present is electronic polarization due to the displacemeaftthe single electron.
If we consider an electric eld applied along a particular direction thenwe can model
each atom as a 1D simple harmonic oscillator of mass, chargeq and force constantk,

which can respond to an applied electric eld with frequency . Solving the equation of
motion for a forced and damped harmonic oscillator for such N oscilas gives a value
for °(")and °(!)as[83],

o NP 12 12
()= (!3(102)2+)2!2 (1.19)
)= NO° ! (1.20)

m (12 122+ 212

where ! o is the natural frequency of oscillation of each of the oscillator and is the
damping constant. A schematic plot of 0(! ) and OO(! ) as a function of the frequency!

in the vicinity of the resonance frequency ¢ is shown in Figure 1.19(a). As we go from left
to right, °(! ) slowly increases with increasing frequency, this is called normal déspion.
As we reach the resonance frequency,(! ) shows a sharp drop which signi es that the
polarization mechanism gets inactive at larger frequencies as it is uoa to follow the
rapid switching of the polarizing eld. This happens due to the dampingnd hence *(! )
shows a peak about the resonance frequenty indicating large energy dissipation as a
result of large amplitude oscillation of the polarization elements. Heréne broadening
of *(!) is due to the damping. More the damping more broad shall be the peaNow
frequency dependence of teads to a similar frequency dependence of the permittivity ~
de ned as,

0

)= o+~()= (1) i) (1.21)
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(@) (b)

Figure 1.1..09: (a) A schematic representation of the frequency dependence othe real( O) and
imaginary( ) part of dielectric susceptibility in the vicinity of the resonance frequency ! ¢ (b) The
temperature and frequency dependence of the relative permittiity, f of SrFey.5Tag.503 ceramics[Figure
taken from Ref. [84]]. The logarithmic scales on each axis shall be nale (c) The frequency dependence of
the real( ?) and imaginary( , ) part of dielectric permittivity in the presence of interfacial, orient ational,
ionic, and electronic polarization mechanisms.[Figure taken from Ref[85]]

The relative permittivity then becomes,

~(!)

)= =1 By 7 (1.22)
which gives,
(y=1+ 'r\'nq: 07 ( !gz)z!j) . (1.23)
and,
)= N | (1.24)

mo (13 127+ 22

In this regard we shall also de ne an important quantity often usedn relation to the
energy dissipation, called the dielectric loss factor or loss tangentdiis de ned as [85],
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00
tan = — (1.25)
r
For material with no loss fo = 0 and hencetan = 0. The dispersion measurements
are done in an isothermal way at a particular temperature. Howekea variation of the
guantities with temperature is also necessary and done, which camos the important
signature of dielectric phase transition. The temperature has a silar e ect on the
polarization elements present in the system. The relative permittiwt f will tend to
increase with temperature as polarizing elements become more mokbihe they can easily
respond to the oscillating eld. The dependence off on temperature and measuring
frequency of the dielectric ceramic material SripgTey.503 [84] is shown in Figure 1.19(b).

In real materials, there are many polarization mechanisms and deykng on their response
to the oscillating eld, the dispersion of f(! ) and fo(! ) can be very complicated. We can
represent the general features of the frequency dependentef(! ) and f°(! ) as shown in
Figure 1.19(c) [85]. Although the gure shows distinctive peaks info(! ) and transition
features in f(! ), in reality, these peaks and various features are broader. Moxer,
the polarization e ects depend on the crystal orientation. In thecase of polycrystalline
materials, various peaks in di erent directions overlap to exhibit a bmadened overall peak
[85]. Another interesting fact to note is the response frequency @i erent mechanisms.
The resonance frequency for electronic polarization mechanism igher than ionic, simply
because in terms of oscillation electrons are much lighter than nucléiere we have an
oscillation of electrons with respect to nuclei in an atom itself. Wheas in case of ionic
polarization, oscillation of two di erent ions with respect to each otler takes place. At
low frequencies the space charge polarization occurs with more dmler peaks because
there can be a number of conduction mechanisms (di erent speciescharge carriers and
di erent carrier mobilities) for the charges to accumulate at interces, each having its
own speed [85]. Orientational polarization, especially in many liquid diekeics at room
temperature, typically takes place at radio to microwave frequeres.

1.6.2 Ferroelectricity and its origin in perovskite BaTiO 3

Ordinary dielectric materials have a polarization in the presence of agxternal electric
eld only and get depolarized when the eld is removed. But there arsome dielectric
materials that have a spontaneous polarizatio®s) i.e. they remain polarized even in
the absence of any external electric eld. The materials that showhis property are
called ferroelectrics. The distinguishing feature of ferroelectrigs that the spontaneous
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polarization can be reversed by an applied electric el@). The polarization(P) becomes
a nonlinear function of the internal electric eldE. It is now dependent not only on the
current electric eld but also on its history, yielding a hysteresis loopFerroelectric e ect
was rst observed in Rochelle salt (Potassium sodium tartrate a ddule salt with molecular
formula KNaC4H;06.4H,0) in 1917 by A.M. Nicolson and J.A. Anderson [86]. A few years
later the physical properties of Rochelle salt were described in déta a series of papers
by J. Valasek around 1921 [87,88]. However discovery of ferro#letty in perovskite
BaTiO3; by Wul and Goldman (1945, 1946) [89] followed by other perovskitesuch as
KNbO3; and KTaOz(Matthias 1949), LiNbO3; and LiTaO3z(Matthias and Remeika, 1949)
and PbTiOz(Shirane, Hoshino and Suzuki, 1950) [90], made it possible to investgéhe
microscopic origin of ferroelectricity in much simpler systems [91]. It &asy to understand
that, in a ferroelectric material there are permanent dipole momés at the atomic level,
which are correlated and points in the same direction even in absengkan external
electric eld. This gives rise to a spontaneous macroscopic polarigat. In a crystalline
material such permanent dipole moments shall develop within the sictural unit or the
unit cell. The correlation mechanism between the dipoles that makekem order is an
important subject to study. But before that we shall understad how a permanent dipole
can be generated in a crystalline material. Here we are going to to diss howB -site
cation displacement in perovskites can give rise to permanent dipoleoment, taking the
well known ferroelectric BaTiQ; as an example.

The fundamental cause of ferroelectricity in oxide perovskites waoriginally attributed
to the idea that a small B-site cation could ‘rattle around' inside the BQ octahedra
and o -center con gurations can lead to stability of the structure [84,92]. Considering
a cubic unit cell for BaTiOs, the Ti atom sits inside the center of a regular octahedron
surrounded by six oxygen atoms[Figure 1.20(a)]. Now if we considdret system to be
purely ionic, BaTiOz ! Ba?* Ti** O3 , then the Ti** ion would like to sit at the center
of the octahedra for a maximum gain from electrostatic interactiah But as Ti** is a o
system, hence there is a signi cant covalent interaction possible taeen Ti and O atoms
as a result of electron hopping. As a result, as shown in Figure 1.2Q)(the Ti atom can
move towards any one of the oxygen atoms to gain from an incredd®pping interaction.
Considering this facts W. P. Mason [92¢t al. proposed a simple model for ferroelectricity
in BaTiO 3 around 1948. In this model the small Ti" ion surrounded by six oxygen ions
is depicted as being in an o -center six fold potential well minimum. Hey, there is six
potential minimum in the direction of the six oxygens which are displadea distance
from the center of the octahedra[see Figure 1.20(b)]. If the titamnm nucleus is taken from
a position such as 1 to position 2 directly across the unit cell, the forf the potential
barrier may be as shown in Figure 1.20(c), in which U represents the height of the
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potential curve at the center with respect to that at the minimum. So under equilibrium
condition the Ti** cations occupies any one of the minima via a displacement from the
center.

Figure 1.20: (a) Regular TiOs octahedra with the Ti atom surrounded by six oxygen atoms. Postble
directions of movement of the Ti atom is shown by the arrows. (b) Location of six potential well minimums
along the six Ti-O bonds at a distance from the center of the octahedra. (c) Shape of the potential
barrier with height U at the center of the octahedra during movement of the Ti ion fromone minima
to the other.

The displacedB -site cation creates an electric dipole within each octahedron. Thérekc-
tion of the dipole, or, equivalently, the position of the cation, could & switched from one
0 -center position to another under the in uence of an externaklectric eld. Above 120
C, BaTiO3 adopts the ideal cubic perovskite structure with lattice parametg a = 3.97
A [84] and behave like a normal paraelectric material. At this tempetare the thermal
energy becomes comparable to the barrier heightU, and without an applied eld the
dipoles are random due to thermal agitation. Below 120C an external electric eld can
make the cations to move towards a preferred direction which shaémain even after the
removal of the eld generating a spontaneous polarization, chasteristic of a ferroelectric
state. Such o -center displacement of the Ti atom 0.16 A was measured with X-ray
methods by Gordon Danielson [93]. However, there is also a cubic tarégonal phase
transition at 120° C which was con rmed by X-Ray measurements for multicrystalline
ceramic [94].

Below 120 C the cubic cell contracts slightly along the a and b axes and expansglghtly
along the c-axis becoming tetragonal in shape[Figure 1.21(a)]. The changerfracubic
to tetragonal is accompanied by an o -center movement of the Ti ions along thec-
axis, and a slight change in octahedron dimensions so that two eqaeal oxygen atoms
move parallel to the +ve c-axis and in the opposite direction [Figure 1.21(b)]. The Ti-O
bond lengths parallel to thec-axis now becomes, 2.2 and 1A respectively, while the
equatorial bond lengths remain at 2A. This results in the formation of a dipole within
each octahedron, with a net dipole moment 26 Ccm ? [84], each pointing along the
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Figure 1.21: Tetragonal BaTiO 3 : (a) The tetragonal unit cell compared to the cubic unit cell (dashed).
Tetragonality is along the c-axis. (b) Displacements of the Ti and O atoms found in tetragonalBaTiO 3 ;
(c) a schematic showing dipole array in tetragonal BaTiQ; ; (d) schematic of a typical domain structure
in a crystal slice. (All distortions are greatly exaggerated)[Figures are taken from Ref. [84]].

c-axis [Figure 1.21(c)]. So, now with a cubic to tetragonal phase traition, we have an
easy axis of polarization(here-axis) such that the ferroelectric distortion occurs in that
direction and the material becomes spontaneously polarized. Hase the o -center Ti**
position and the octahedral deformation can be changed with an etac eld and hence
the tetragonal phase of BaTiqQ is ferroelectric [84] in nature. Now there is no preference
as to which of the original cubic axes becomes the polar direction. dan happen along,

y or z-axis. On cooling a large crystal, any of these displacements is poksiland within
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di erent regions of the crystal di erent orientations occur, leadng to the formation of
domains in which all the dipoles are aligned in a particular direction [Figuré&.21(d)].
The polarization directions in a domain are related to those in neighbiog domains by
the crystallography of the matrix [84].

1.6.3 Displacive phase transition and soft modes

All ferroelectric materials undergo a transition from a ferroelecit state to a paraelectric
state on heating. This suggests that with heating either the micraespic dipole moments
are now randomly oriented with each other to give an average polaaifon of zero or the
microscopic dipole moments no longer exists to give a net polarizatiomhe rst case is
known as an order-disorder phase transition. In the second casee permanent dipole
moments emerges below the transition temperature and becomedeayed to give rise to

a spontaneous polarization. This is called a displacive phase transitiohis type of
phase transition is associated with a structural transition wherehie system undergoes a
symmetry change. BaTiQ shows a displacive phase transition associated with a cubic to
tetragonal distortion of the unit cell.

In the early 60's, the soft-mode concept was proposed to deserithe mechanism of
structural phase transitions related to ferroelectric materials.The predictions made by
Cochran [95] that the phase transition in certain ferroelectrics mig result from dynamical
instability was a beginning. Any dynamic distortion (vibrational state) in a crystalline
solid can be described in terms of its complete set of normal modesibfation or phonons.
When a solid experiences a transition from one crystal structure another, the transition
is often described essentially completely in terms of anomalous beioawof only a single
such mode, characterized by its displacement eigenvector, fregay, and wavelength [96].
By a soft mode, it is meant that a normal vibrational mode (phononpf the crystal which
becomes unstable, so that it's normal frequendys (at some particular wave vectorg in
the brillouin zone) tends to zero as ! T [Figure 1.22(a)].

This softening occurs as a result of anharmonic interactions in theystal that cause a
temperature renormalization of the phonon frequencies. Consitey the anharmonicities
the temperature dependence of the soft mode is then given as [97],

jtél
(T T (1.26)
C

12 =

where,! 3 is the negative harmonic value that we would calculate in the lattice dyamics
calculation. The idea of the soft mode for displacive ferroelectric pke transitions is
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Figure 1.22: Schematic representations of ferroelectric soft mode behaviour(a) behaviour of the
phonon dispersion curves with temperature. (b) Atomic displacemats. [Figures are taken from Ref. [97]]

implicit in the Lyddane-Sachs-Teller relation giving the relation betwee the low and
high-frequency dielectric responses of the dielectric permittivity given as

(=0 !
(! :1)_!%0

The point is that since the static dielectric constant (! = 0), diverges at the ferroelectric
phase transition, then the above relation implies that 2 tends to O at the same time. A
particular phonon frequency going to zero indicates that the cagsponding vibration (or

(1.27)

the atomic positions) become \frozen" at this temperature and ismlonger dynamical and
produce a structure of another symmetry. This is schematically stwn in Figure 1.22(b).
It is to be noted that whereas in a second-order transition, the #emode frequency
actually vanishes at the transition point, in a rst-order transition the change of phase
occurs before the frequency of the mode is able to go to zero [98lscAsoftening occurs
whenever we approach the transition temperaturd, for cooling or heating. This is
expected because if the structural transition during cooling is due the condensation of
a soft-mode that exists abovd. then there must be some modes for the structure below
T,, instability or condensation of which gives rise to the phase transitioas T is reached
during the heating process. And there are as many soft modes helt. as there are above
T [98].

The structure of the new phase is uniquely determined by the eigesotor of the soft
mode and the structure of the old phase. The eigenvector of a ptfum mode is simply the
array of atomic displacements relative to the lattice sites accompging the excitation of
that mode [96]. The vanishing of the normal mode frequency at corresponds to a static
imposition of this array of atomic displacements on the old structuf€igure 1.22(b)]. The
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eigenvector of the soft modej. not only gives the displacement of the atoms within the
unit cell relative to the lattice sites of the old phase to give a new stature, but it also
determines the phase modulation of the displacement amplitude froame unit cell to the
next through the same wave vector, (point to note is that jqj =2 = , where is the
phonon wavelength).

Figure 1.23: A typical structural distortion due to zone center phonon softening. For (a) T > T and
(b)) T <Tg.

In the simplest case, such as the displacive ferroelectric phasensaion, the array of
displacements is identical for all unit cells, i.eq. = 0. The phonon instability then occurs
at the center of the Brillouin zone and there is no change in the numbef atoms per
unit cell in the phase transformation. For example, the non-feredectric cubic perovskite
lattice as shown in Figure 1.23(a), is centrosymmetri€(}). Displacement of the atoms
as shown in Figure 1.23(b), removes the center of symmetrZ4 ) and imparts a dipole
moment to the unit cell. The distortion in Figure 1.23(b), is just that carried by the
lowest frequency transverse optic (infrared active) phonon [96].

Generally, however, the soft-mode eigenvector is more complichtand whenq. 6 O,
both the magnitude and direction ofq. determine the size and shape of the new unit
cell relative to the old. A number of crystals undergo phase trangins which involve
softening of phonon mode at Brillouin zone boundaries. In these easthe soft phonons
can be either acoustic or optic modes[Figure 1.24(a)]. Because of imgxof eigenvectors,
it is often the case that the distinction between them is not straigliorward . One of
the interesting results of a zone boundary soft mode phase traimn is that the unit
cell of the low-temperature phase is doubled in one or more directonln some cases
neighboring unit cells of the high-temperature state develop dipoleaments, but as these
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Figure 1.24: Schematic behaviour of (a) zone boundary acoustic and optic softnodes.(b) Atomic
displacements showing doubling of the unit cell and canceling induced idole moments. [Figures are
taken from Ref. [97]]

are in opposite directions the unit cell at low temperature has no nanoment[Figure
1.24(b)] [97]. The best example of a zone boundary phase transitiathe cubic to
tetragonal transition in the perovskite SrTiO; (transition temperature 110 K).

In this context we shall know that, whereas a ferroelectric phasensition is characterized
by softening of a particular zone center phonon mode, in case ofipient ferroelectrics,
the softening of a phonon mode occurs with a decrease in the temgiare but never
becomes completely soft down to lowest possible temperatures.
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2.1 Introduction

Development of quantum mechanics at the beginning of twentieth wtiry was one of the
great scienti c advancement to understand and predict materigbroperties. Here the state
of a system is described by a state function or a wave functionand all the measurable
properties can be obtained by solving the Schmdinger equation.oiFexample, in case of
Hydrogen atom, the dynamics of the electron and its energy stagence the electronic
structure of Hydrogen atom) are described with great accuragy agreement with exper-
imental observations [1]. Knowing the electronic structure of any aterial system helps
us to understand and predict its properties. Materials are basicallgollection of atoms,
a system of nuclei and electrons, and the basic interaction betwethem is electrostatic.
Nuclei are 1800 times heavier than the electrons and with some approximatioean
be treated as classical particles xed at particular lattice sites. Hgever, the electrons
have to be treated quantum mechanically. Presence of more thaneoelectron and the
repulsive interaction between them make it a many-body problem, dnsolution of the
many particle Schmdinger equation is a di cult task. Many powerfu methods for an im-
proved though approximate solution of the many particle Schrediger equation have been
developed. These can handle around 100 electrons but are congpigihally demanding.
So, the exact many-body wave function (ry;ro; ;rn)(N = number of electrons in the
system) remains inaccessible for most real systems. Hence wedrsgsme approximations
to solve the many particle Schredinger equation. This is generally de by reducing the
many particle Schredinger equation to some e ective single particlequations and solving
them. Density functional theory(DFT), as formulated by Kohn, Hohenberg, and Sham in
the 1960's, is a smart way to solve the many particle Schredinger @afion that reduces
the many-body problem to an e ective single particle problem. This wadone by consid-
ering the electron densityn(r) as a variable and expressing the energy of the system as
a functional of the electron density,E[n(r)]. Determination of the ground state electron
density no(r) gives the ground state energ¥q, as well as the ground state wave function

o and hence the ground state electronic structure of any systerithis is important be-
cause it is kind of solving the many particle Schredinger equation bynding a function
of just 3 variables, the electron density, rather than a complex fiction of 3N variables,
the wave function.

We use DFT as implemented within the Vienna ab-initio simulation packag@/ASP) [2,3]
to calculate the electronic structure and structural propertieof the systems considered
as a part of this thesis. DFT has become a standard tool for explog material properties
and understanding them at the atomic level. It has enhanced ourisati ¢ understanding
of various physical problems from di erent areas of science. It asomes out to be very
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useful in predicting material properties which are challenging to pbe experimentally.
For example, properties of materials at very high pressure would lg cult to explore
experimentally due to instrumental limitations. DFT calculations can pay an useful
role in probing material properties at these extreme conditions, ahown in the work of
Umemoto, Wentzcovitch, and Allen [4]. In this work they have studiedhe high pressure
properties of bulk MgSiQ, a silicate mineral that is important in planet formation.

In this chapter, we give a brief introduction of the density functioal theory and its for-
mulation as a density functional based approach. We also discussn&otechnical details
to use DFT in computational physics. The electronic structure caldation of a periodic
solid allows the description in terms of Bloch states [5]. These are dedbzed/extended
electronic states which are assigned a quantum number for the crystal momentum,
together with a band indexn. A usual expansion involves basis states which are plane
waves. This is widely used in electronic structure calculations but alteative representa-
tions are also available. The Wannier representation [6{8], which is esgially a real-space
picture of localized orbitals, assigns as quantum numbers the lattieector R of the unit
cell where the orbital is localized, together with a band-like index n. ®hnier functions
can be a powerful tool in the study of the electronic and dielectricrpperties of mate-
rials and can provide an insightful picture of the nature of chemicdbonding, otherwise
missing from the band picture of extended orbitals [9]. We use the imface of VASP
to WANNIER90 [10{12] to map the Bloch states onto Wannier functios, localized on
the respective atoms via a unitary transformation. We do this to gea tight binding
representation of the Hamiltonian in the basis of the maximally localizewannier func-
tions and calculate bonding energy of speci c inter-atomic bonds.oSwe also give a brief
introduction of Wannier functions and its properties.

2.2 Formulation of Density functional theory

2.2.1 Many body Schiedinger equation and Born-Oppenheime r
Approximation

In quantum mechanics the state of a system is described by a stdtenction or wave
function , and all the measurable properties can be obtained by solving theh®adinger
equation. The time independent, non-relativistic Schredinger egiion H = E , is
useful to calculate the electronic structure of atoms, molecules@ solids. H is the
Hamiltonian operator and is a set of solutions, or eigenstates, of the Hamiltonian. Each
solution, , , has an associated real eigenvalug,,, satisfying the eigenvalue equation.
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The detailed structure of the Hamiltonian depends on the physicalystem under consid-
eration. For simple systems the Schredinger equation can be salvexactly. For example,
in case of Hydrogen atom, a system of a single electron moving undlee potential of a
single protonv(r), the time independent Schredinger equation becomes:

2
%Oz+ v(r) (r)=" (r) (2.1)
wherem is the mass of the electron and the wave function(r), is a function of a single
electron coordinater. Solving this equation gives the electronic structure of the Hydrem
atom and the dynamics of the electron is de ned by the time depende Schredinger
equationH = i~@@, which is not needed further for electronic structure calculations
For a solid material of our interest, the situation becomes complicadl, where multiple
electrons are interacting with multiple nuclei and among themselve&uch a many patrticle

system is described by the many particle Schredinger equation:

H(ri;R)=E(r;Ry) (2.2)

where the wave function is now a function of N electronic coordinatesi(i=1 to N)
and M nuclear coordinatesR,(I=1 to M). The Hamiltonian of the system is a sum of
ve terms which in atomic unit reads as:

2 X 1 X e 2 X
H= — 52+Z . 5 2+
2m ZMsj jri rjl 2M,

2,2, X z7,¢&

1
2|@JjR| Rjj JIRT 1]

(2.3)

wherei , j refer to electrons and , J refer to nuclei. Parametere and m are the electronic
charge and mass respectivelyz, and M, denote the nuclear charge and mass of thé'
nucleus respectively. This Hamiltonian can be written in a more compiaform as:

H = Te(r)+ Vee(r)+ TN (R)+ VNN (R)+ VeN(r;R) (2-4)

whereR is now indicating a set of nuclear coordinates, andis the set of electronic coor-
dinates. First two terms, T¢(r) and Vee(r) represent the kinetic energy of the electrons and
the electron-electron Coulomb repulsion respectively. The third anfourth terms, Ty (R)
and Vyn (R) represent the kinetic energy of the nuclei and repulsive interaon between
them respectively. The last termVey (r; R) represents the interaction between electrons
and nuclei and couples the electronic and nuclear degrees of fimad This term prevents
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us from separating the total Hamiltonian into nuclear and electroniparts, which would
make the problem a bit simpler and allow us to write the total wave furton of the system
as a product of nuclear and electronic terms, (;R)= ( r) (R). The term Ven(r;R) IS
large and cannot be neglected. However, if we can assume that theclei are xed and
do not move then we can make th&® dependence parametric and can split the problem
into two separate parts. The separation of the nuclei and electns into two separate
mathematical problems is achieved using Born-Oppenheimer appmmation(BOA) [13]
or the Adiabatic approximation. The BOA rests on the fact that atonic nuclei are much
heavier than electrons, each proton or neutron in a nucleus is 1800 times massive than
an electron. This means that electrons respond much more rapidlg thanges in their
surroundings than nuclei can. This allows us to say that the nuclera nearly xed with
respect to electron motion and at any instant of time for a particulanuclear con guration
the electrons are at their possible ground state.

Initially, Ty (R) can be neglected sinc&y is much smaller thanT, due to larger nuclear
mass, and then for a xed nuclear con gurationf R ,g we have:

HSISA = Te(r) + Vee(r) + Van (R) + Ven(r;Ra) (2.5)

as the electronic Hamiltonian after BOA such that,

HEEs ( 1;Ra) = E®( 1;RY) (2.6)

gives the electronic wave function (r;R,) and energyE®¢(R,) , which now depends on
R parametrically. GenerallyVyy (R) is neglected in Equation (2.5), since in this case
is just a parameter so thatVyy (R) is just a constant and shifts the eigenvalues only by
some constant amount. In that case we can writel §¢, as,

HESA = Te(r) + Vee(r) + Ven(r;Ra) 2.7)

So, for any solid system the rst step would be to solve Equation (2),7that describes the
electrons for xed positions of the atomic nuclei. For a given set ofextrons moving in the
eld of a set of nuclei, we get the lowest energy state or the groursdate of the electrons.
If we haveM nuclei at positions R1,R,;  ;Ryu) then we can express the ground-state
electronic energyE &', as a function of the positions of these nucleE§®(R1,R2;  ;Rm).
This function is known as the adiabatic potential energy surface ofie atoms. Once we
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are able to calculate this potential energy surface we can know hal@es the energy of
the material change as we move the atoms around [14].

But even after BOA the simplest possible electronic Hamiltonian[Equain (2.7)] for a
xed nuclear con guration fR,g, is not easy to solve. The term in the Hamiltonian
de ning the electron-electron interactionsVee(r), is the most critical one from the point
of view of directly solving the equation. If this term was not there, hat means for a
non-interacting many electron system the equation reduces to &tsof N independent
single particle equations of the form,

h' (r)=" (=12 :N] (2.8)

whereN is the number of electrons in the system anl; describes the kinetic and poten-
tial energies of thei™ electron. Solution of each such single particle equation gives the
same set of single electron wave functions, (r) with energies",. Then the ground state
of the N electron system is simply expressed in terms of some simple or comglexduct
of the N lowest energy wave functions 1(r1), ' 2(ro), ..... ., n(rn) associated with the
1st, 2nd .. N™ electron respectively. In band theory for periodic solid systemd)eé same
approach is followed and the single electron states are called Blochtes [5]. But due to
the presence of the electron-electron interaction term, individbi@lectron wave function,
' i(ri), associated with thei electron, could not be found without simultaneously know-
ing the wave functions associated with all the other electrons in theystem. This means,
the Schredinger equation is a many-body problem and we have to keasome additional
approximations to reduce it to an e ective single particle problem. \Vaous approaches
were taken in this regard. Hartree-Fock (HF) and Density Functinal theory (DFT) are
two successful theories in which the two body interaction term is péaced by an e ective
single body potential. Next we are going to discuss the basic assumps taken within
these two approach to solve the electronic Hamiltonian after BOA[Etion (2.7)].

2.2.2 Hartree-Fock(HF) Theory : A wave function based ap-
proach

Hartree-Fock approach is an approximate way to solve the simplefstrm of the electronic
Hamiltonian for an N electron system after BOA[Equation (2.7)]. We can write Equation
(2.7) as a sum of two terms gives as:
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~2 X 1 X &2 X 7, e
ele — _ 2 - |
Heoa = om Si+ 5 . o R T (2.9)
i
X 2 X zie 1X @
= 52 Nl , 2.10
i 2m | IRy 1y 2i6j jrioorjl ( )
X
= (Ti+\/ion(ri))+} . ¢ . (2.11)
i 2 " jrioorjl
X
= hi + Vee(r) (2.12)

Here the main objective is to calculate the full electron wave functiocorresponding to
the ground state of the above Hamiltonian. Now, as the electrongeafermions, the
N electron wave function must satisfy the Pauli exclusion principle thaprohibits two

electrons with the same spin at the same spatial position. Mathemeally, the many
electron wave function must be anti-symmetric with respect to pasn/spin exchange
between two electrons.

Now if we consider a system dfl non-interacting electrons, we can exclude the electron-
electron interaction term Vee(r) and the problem reduces to solvingN single particle
equations of the form:

h (x)=" (X) (2.13)

Where, h = T + Vi, (r), is the Hamiltonian for a single electron under the potential of
ion coresVio, (r). The eigenfunctions , de ned by this equation are called spin orbitals
and x is the space-spin coordinatex = fr, g de nes the position as well as spin state(up
or down) of any single electron. Solution of each such single particlguation gives the
same set of single electron wave functions,(x)(n =1;2; ;N). The spin orbitals are
ordered in a way so that the orbital withn = 1 has the lowest energy, the orbital with
n = 2 has the next lowest possible energy, and so on. Then the grousthte of the
N electron system may be expressed as a simple product of thelowest energy wave
functions 1(X1), 2(X2), ..... , n(Xn) associated with the #, 24 ... N" electron
respectively. This approximation is called a Hartree product [15] anthe energy of the
ground state is the sum of the considered spin orbital energiesEq= "1+ ">+ +"N.
Along with its simplicity, the Hartree product has a serious drawbacklIt does not satisfy
the antisymmetry principle. Fock in 1930 introduced a better appramation to the wave
function by using a Slater determinant [16]. This is called Hartree-F&capproximation
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[17]. In the Hartree-Fock approximation, theN -electron wave function is formed by
expressing the overall wave function as the determinant of a matrof single-electron
wave functions so that it satis es the antisymmetry principle.

1(X1) 1(X2) 1(Xn)
hE (X3 X2;  Xn) = p% 2(:X1) 2(:X2) ’ 2(?(“) (2.14)
N (X1) o~ (X2) N (Xn)

This has a lot of advantages over the simple Hartree product. It véshes if two electrons
have the same coordinates or if two of the one-electron wave ftinoas are the same. It
changes sign on coordinate exchange. This means that the Slatetedminant satis es
Pauli exclusion principle. Also, it does not distinguish between electme and we cannot
say which electron is in which single particle state. This is consistent witthe strange
results of quantum mechanics for identical particles.

Now let us see how the electron-electron interaction teriee(r) is approximated using
Slater determinant states to reduce the many-body problem to amective single particle
problem. We start with the fact that Hartree-Fock wave functiors will have the form of
a Slater determinant which are normalized, and the electronic engrgvill be given by:

X
ESE = h weHESA] wri=h wej( )i nei+ h wejVee(r)i wrl

| X (x X ) (2.15)

After some rigorous mathematical steps which are not presentdtere, we can get the
expressions for each of the terms in the above equatidh.is given as:

Z
"i=hijhy i = i (X)

2
m 52+Vin(r) i(x)dx (2.16)
representing the energy of a non-interacting electron with spinloital ;. C; andJ; are

called Coulomb integral and exchange integral respectively and ageven by:

Z Z

- (x) j(x()ﬁ i(x) j (x9dxdx® (2.17)
Z Z

N R, N R,

(x) j(x()ﬁ i(x) i(x9dxdx® (2.18)
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The exchange term given by Equation (2.18) is non zero only for likeigp i.e. for = ©

Now for symmetric energy expressions, we can apply the variatidrtaeorem, which states
that for any arbitrary Slater determinant state , the energy is always an upper bound
to the true ground state energy of the system. Hence, we cantaim better approximate
wave functions , by varying their parameters(spin orbitals ) with the condition that
the energy gets minimized. The electronic enerdge , is now a functional of the spin
orbitals, EZe [f ;g], and we can vary the spin orbitals for the lowest energy within a given
functional space. The corresponding Slater determinant would like closest to the true
ground state wave function of the system. Hence, Hartree-Homethod determines the
set of spin orbitals giving the lowest energy and gives us the best pitde ground state
Slater determinant state. We want to minimize the Hartree-Fock eergy E&¢ [f ;g], with
respect to changes in the spin orbitals; ! ;+ ;, such that the procedure leaves them
orthonormal. This can be done by Lagrange's method of undeterngid multipliers [18],
where we introduce a functional given as:

X Z
L[f igl= EGEIF id] " T 00i%dx (2.19)

where"j, are the undetermined Lagrange multipliers. Setting the rst variion L =0,
and after some mathematical simpli cation, we obtain the Hartred=ock equations de ning
the orbitals:

~2 5 X z . .2 e
%5 +Vion(r) i(X)+ o J J'(XO)J jr rq
Z

j j(X%% ((x9ax® p(x) =" i(x)

dx® (x)
(2.20)

i6]

where"; is the energy eigenvalue associated with spin orbita]. The second term in the
Equation (2.20) gives the Coulomb interaction between an electronitiv spin orbital ;,

and the average charge distribution of the other electrons. This malled the Coulomb
term. We can de ne a corresponding Coulomb operatd®; as:

Z

0= 001

dx® (2.21)

giving the average local potential at pointr due to the charge distribution of the electron
in spin orbital ;. The third term in Equation (2.20) comes from the antisymmetry
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requirement of the wave function and does not have a simple classiemalogue. This
is called the exchange term and we can de ne a corresponding exuoje operatorj} in
terms of its action on an arbitrary spin orbital ; as:

Z
e
‘-bj (x) i(x) = j (X()m
And in terms of these Coulomb and exchange operators, we have tHartree-Fock single
particle equations as:

i(x9dx®  (x) (2.22)

" ~2 X X #
58 V(N + € R ()= ix) (2.23)
i6i i6i

We de ne,

X X
Vu(¥) = &) 8() (2.24)
i6i i6i
as the Hartree potential, which is the average e ective potentiabgperienced by an electron
due to the presence of remainingN| 1) electrons making Hartree-Fock approximation
a mean eld approach.

Now we have to solve these single particle Hartree-Fock equationmgdaobtain the N spin
orbitals with lowest energies and then construct the ground staigave function as a Stater
determinant of thoseN spin orbitals. And the total energy corresponding to the ground
state would be the sum of the considered spin-orbital energies. Jolve the single electron
equations in a practical calculation, we need to expand the spin orbls in a basis set. If
the set of K number of functions 1(x); 2(X); ; k (X) de nes the basis set, then we
can approximate the spin orbitals as:

X
i(X) = i (%) (2.25)

j=1
Hence we only need to nd the expansion coe cients, j , fori = 1; N andj =
1, ;K to fully de ne all the spin orbitals that are used in the HF method. Chasing a

large basis set and functions that are initially similar to the real spin daitals, improves
the accuracy but with an increased computational cost. Now, tond the spin orbitals
one needs to solve the single electron equations[Equation (2.23)] Which we need to
know the Hartree potential V4. But to de ne the Hartree potential(V4 ), we must know



70 CHAPTER 2. THEORETICAL CONCEPTS

in turn, the individual spin orbitals associated with all the electrons.To break this loop, a
Hartree-Fock calculation becomes an iterative procedure with theain steps as described
below [14]:

Step 1 : Make an initial estimate of the spin orbitals [Equation (2.25)] by spéfying the
expansion coe cients, j .

Step 2 : From the current estimate of the spin orbitals, de ne the Hartre potential V.

Step 3 : Using this Hartree potential Vy from step 2, solve the single electron Hartree-
Fock equations for the spin orbitals.

Step 4 : If the spin orbitals found in step 3 are consistent with the orbitals sed in step 2
satisfying some convergence criteria, then these are the nallstions to the Hartree-Fock
problem. If not, then a new estimate or update for the spin orbitalsnust be made and
we then return to step 2.

We are not going to discuss here the details of how to make an initial ggs for spin
orbitals, what shall be the convergence criteria and procedure tppdate the spin orbitals.
But some basic problems associated with such wave function basgg@ach needs to be
discussed. One of the main problem is associated with the dimensiontlué wave func-
tion. Excluding the spin degrees of freedom, for a system Nf electrons the total wave
function is 3N dimensional. For example, the wave function for a nanocluster of @t
atoms shall require more than 23,000 dimensions [14]. Accuracy oé ttalculation is an-
other issue which depends on two main factors. (1) How accuratelye electron-electron
interaction is treated and (2) how accurately we represent the mg electron Schredinger
wave function. Hartee-Fock method with Slater determinants inclles exchange interac-
tion, but this is not the only kind of electron correlation that we needto consider for
good accuracy. Electrons repel each other according to Couldmltaw. Hartree-Fock
replaces this instantaneous electron-electron repulsion with aneaxage term where each
electron feels the e ect of an average electron charge cloud. Thigroduces an error
in the wave function and the energy. Similarly, to accurately represt the true many
electron Schredinger wave function, we need in nitely large numiyeof Slater determi-
nants as basis set. But in Hartree-Fock theory we use a single Skatieterminant state to
represent the ground state, which is not a good approximation. Enhypothetical energy
of N electrons from a HF calculations using an in nitely large basis set, is bwn as the
Hartree-Fock limit. This energy is not the same as the true groundae energy of the
system and their di erence is de ned as the electron correlation engy. Hartree-Fock
theory fails for systems where electron correlation is important. df example, Van der
Waals systems where dispersion forces results from instantang@lectron-electron inter-
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actions. Improvements can be made by considering Slater determms that represents
excited state along with the HF ground state. For example, con gation interaction (ClI),
coupled cluster (CC), M ller-Plesset perturbation theory (MP), quadratic con guration
interaction (QCI) approach are among them.

2.2.3 Density Functional Theory : From wave function to elec -
tron density

The N electron wave function (ry; ;ryn), is an abstract quantity that cannot be directly
observed. The quantity that can be physically measured is the prability density

An equivalent quantity that can be physically measured in X-ray di rection experiments
is the electron densityn(r). The spin independent density of arN electron system is
de ned as,

Z
n(ri)= N (re; 5riy srn) (reo ri; o srn)dradry  drg gdrey  dry (2.26)

The electron density is a function of just 3 spatial variables and ctains a large amount
of information that is actually physically observable from the full wae function solution
to the Schredinger equation, which is a function of B coordinates. Like (rq; 1IN,
n(r) also vanishes at in nity and integrates out to the total number ofparticles, N in
the system. If we are able to express the total enerdy, of the electron system as a
functional of the electron densityn(r), E[n(r)], and apply variational method to determine
the ground state electron densityng(r), corresponding to a minimum inE[n(r)], then we
can in-turn get all necessary information of the system including ghground state wave
function (. This is important because we can get the ground state solution fahe
electronic Hamiltonian[Equation (2.9)] by varying a function of 3 spaal variables for any
electron system. A theory for electronic structure calculation ksed on the electron density
n(r), that was there since 1920 was the Thomas-Fermi(TF) theory [120]. Thomas-Fermi
theory gives a rough approximation to the exact solution of the marelectron Schredinger
equation. This was quite useful for describing some qualitative trds like total energies
of atoms, but in case of chemistry and materials science, which invelvalence electrons,
it was of almost no use. For example it did not lead to any chemical bindin[21]. As
stated by Walter Kohn in his Noble Lecture [21], it was the suggestiorf the hypothesis,
that a knowledge of the ground-state density oh(r), for any electronic system (with
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or without interactions) uniquely determines the system, becamehé starting point of
modern density functional theory(DFT) as formulated by Kohn, Hbhenberg, and Sham.

The entire eld of density functional theory rests on two fundamatal mathematical the-
orems proved by Hohenberg and Kohn [22] and the derivation of at s&# equations by
Kohn and Sham [23] in the mid 1960's.

Hohenberg Kohn Theorem 1 : The basic statement of the theorem is that, The
ground state densityng(r) of a bound system of interacting electrons in some external
potential Ve (r) determines this potential uniquely [21,22].

Proof : Let n(r), be the ground state density ofN electrons in the external potential
Vext (1), corresponding to the ground state wave function , and the eergy E, of the

Hamiltonian, H = T¢+ Vee + Vext. Te and Ve are the kinetic and electron-electron inter-
action energy operators respectively[see Equations (2.3) and (Xdr detail expression of
Te and Vee]. Let us consider \;, a di erent external potential, which also corresponds
to the same ground state densityi(r). This will result in a di erent Hamiltonian H°and

corresponding ground state wave functions®. Now,

E = hjHj i Z (2.27)

= h jTe+ Ve i+  N(r)Vex(r)dr (2.28)

and

E® = h GHY 9 - (2.29)
= h §Te+ Vo 3+  n(r)VI(ndr (2.30)
Since Cis not the corresponding ground state ofl
E = h jHj i (2.31)
< h %5 9=h 4HG S+h 9§H HY 9 (2.32)
< E%  n(r)[Vex(r) V2.(N]dr (2.33)

Similarly,
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Z
EC < E+ n(n)[Vo(r) Vex(r)dr (2.34)

Adding both the above Equations (2.33) and (2.34) we get,

(E+ E9 < (E°+ E) (2.35)

This contradictory result proves the rst theorem. Now asVe(r) determinesH, so
another way to restate this result is that the ground state enesgEg[n(r)] and wave
function o[n(r)] from Schredinger's equation are unique functional of the elewin density
n(r). And the ground state electron densityng(r) in an external potential uniquely
determines all properties, including the energy and wave functioof the ground state.

Hohenberg Kohn Theorem 2 : The second theorem states that, the ground state
energy can be obtained variationally: The exact ground state erggr corresponding to the
full solution of the Schredinger equation is the global minimum value fahe functional
E[n(r)]. And the electron density that minimizes the energy of the overafunctional is
the true ground state electron density. So, ihg(r) is the ground state electron density,
then this implies that, for any density n{r), other than ground state density,

E[NYr)]  Elno(r)] (2.36)

Kohn-Sham Formulation :

For the Hamiltonian, H = Te + Ve + Vexx Of N interacting electrons in the external
potential Ve, the total energy functional can be written as,

Z
E[N(r)] = F[n()]+  n(r)Veg(r)d®r (2.37)

whereF [n(r)] = T[n(r)]+ Eeeg[n(r)], is an unknown, but otherwise universal functional of
the electron densityn(r) only. F[n(r)] in the above equation represents the sum of kinetic
energy and the electron-electron interaction energy and is calledet Hohenberg-Kohn
functional. The ground state energy can be obtained by minimizing H;leraéargy functional,
subject to the constraint that the number of electronsN is conserved( n(r)dr = N),
which leads to :
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Z Z

ey T Ve ()dr n(n)d N =0 (2.38)

with the Euler equation :

F [n(r)]
n(r)

+ Vext(r) (2-39)

where, | is the Lagrange multiplier associated with the constraint of constarN. The

main problem is that, Hohenberg-Kohn theorems does not provideaactual form of the

energy functional. Practically, this is being done with approximate fons. An approach
to solve this problem was proposed by Kohn and Sham [23] and the ideas to replace the
interacting N -electrons system by a hypothetical system df non-interacting electrons
whose ground state density coincides with that of the interactingystem. The approach
was to write the energy functional described in the Hohenberg-Kao theorems in terms
of the single electron wave functions,(r). Then the electron densityn(r) of N electron

system can be written as,

b\
nn=2" ) (r) (2.40)

i=1

The factor of 2 comes because we are treating the problem withagin degrees of freedom
and each orbital , can be occupied by two electrons with opposite spins. The total ve
function s, for this type of system is exactly given by a Slater determinant ofirggle
particle orbitals ;(ri). Then the functional F[n(r)] can be expressed as a sum of three
terms as:

FIn(r)] = To[n(r)]+ Ex[n(r)] + Exc [n(r)] (2.41)

where,

Tl =~ hij O i (2.42)
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1
jror9

.1 .
hi JJWJ i jl (244)

n(r) n(r9d®rd3r° (2.43)

En [n(r)]

To[n(r)] is the kinetic energy of a non-interacting electron gas of densitg(r) and
En [n(r)] is the classical electron-electron interaction energy(Hartreenergy) of the elec-
trons. Exc [n(r)] is the exchange-correlation energy, which contains the di eree between
the exact and non-interacting kinetic energies and also the non-sfacal contributions of
the electron-electron interactions such as exchange energy.igis expressed as:

Exc[n(N]= TIn(r)]  To[n(r)]+ Eeeln(r)] En[n(r)] (2.45)

Minimization of the total energy functional from the Kohn-Sham fomulation, by applying
variational principle[Equation (2.38)] leads to the self consistent Kmm-Sham equations
given as:

2
[ %02 + Vet () + Vu(r) + Vxc (n)] i(r)= i i(r) (2.46)
For the electrons under the potential of nucleiVey (r) corresponds to theVig, (r) like in
the Hartree-Fock single particle equations [Equation (2.23)My (r) is the classical part of
the Hartree potential given as,

_ Enin)]
Vu(r) = f(r) (2.47)
n(r9
T rqd3r° (2.48)

This potential describes the Coulomb repulsion between the eleatran any one of the
Kohn-Sham orbital and the total electron density de ned by all eletrons in the system.
So, a part of V; involves a coulomb interaction between the electron and itself. Thel&
interaction is not physical, and the correction for this is also consided in the unknown
exchange-correlation potentiaMxc given as,
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E xc [n(r)]

Vxc (r) = n(n)

(2.49)

One crucial point to remember is that, the ground state density dhined by solving
the Kohn-Sham equations for an alternative non-interacting Kohwsham system, is the
same as the exact ground state density. But the single particle wafunctions ; are
solely mathematical functions with no physical meaning associated them. To get the
single particle wave functions j, we need to solve the Kohn-Sham equations[Equation
(2.46)]. Now to solve the Kohn-Sham equations(forgetting for nottat the function V¢

is unknown) we need to know the Hartree potential. And to de ne te Hartree potential
we need to know the electron density which in-turn requires all thamgle electron wave
functions ;. So, again to break this loop, and calculate the ground state densithe
problem is usually treated in an iterative way with the following steps [14

Step 1 : De ne an initial, trial electron density, n(r).

Step 2 : Solve the Kohn-Sham equations de ned using the trial electron dsity to nd
the single-particle wave functions, ;.

Step 3 : Calculate the electron density de ned by the Kohn-Sham single-ptcle wave
functions from Step 2,nks(r) =2, 7(r) (r).

Step 4 : Compare the calculated electron densityngs (r) , with the electron density
used in solving the Kohn-Sham equationg)(r). If the two densities are consistent and
satisfy some convergence criteria, then this is the ground stat&eetron density and we
get the ground state energy. If the two densities are di erentn(r) must be updated in
some way. Once this is done, the process begins again from step 2.

In the above discussion of solving the Kohn-Sham equations, we igem one important
fact that the form of the function V¢ was not known. To de ne the mathematical
problem(Kohn-Sham equations) properly, we need to know the for of the exchange-
correlation potential V¢ (r). For this, approximate forms ofVxc (r) are used. In the next
section we give a brief overview of some of the form Bfc [n(r)] most widely used in
DFT calculations that leads to Vxc (r).
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2.2.4 Approximations for the exchange - correlation Energy
Exc [n(r)]

Here we try to give a brief and general picture of how these appimations are done.
For details we refer to the main articles that has been mentioned in ¢htext. If is
the ground state wave function of the electronic Hamiltonian[Equa&in (2.9)] for the N
electron system, then the expectation value for the electron-eteon interaction Vee IS
given as,

Z Z
€ P(r;r9 3,.43,.0

h jVed i =
Where, P(r;r9 is the pair-density giving the probability of simultaneously nding an
electron at the point r within volume elementd®, and another electron atr®in volume
elementd®r® For non-interacting electrons there is no correlation and the pbability of
nding a pair of electrons at the pointsr and r%is simply the product of the densities at
the respective points as,

Pclaccical(r;r()) — n(r)n(r() (2.51)

leading to the classical Hartree energ¥y [Equation (2.43)]. But quantum mechanical
e ect of exchange and correlation interactions reduce the clasaicvalue of the electron
density at r due to the presence of the second electron et Therefore each electron
creates a depletion, or hole, of electron density around itself as aett consequence of
exchange-correlation e ects. Taking account of the hole, the padensity can be written
as,

PM(r;r) = n(r)n(rY+ n(r)n, (r;r9 (2.52)

n. (r;r9is called the exchange-correlation hole density, taking into accauthe quantum
mechanical e ects. The exchange-correlation energy functidn& xc [n(r)], can be de ned
as [24],
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Z
Exc[n(r)l= n(r)",. (r)dr (2.53)
where,
Z
. €7 n,(r;r9
e (== SR dr® (2.54)

is the exchange-correlation energy per particle. The exchangeelation potential(Vxc ),
then follows from Equation (2.49). The functionals can be characaieed by the way in
which the density surrounding each electron is sampled in order toreiruct ", . (r).

Local Density Approximation(LDA) :

Local density approximation(LDA) can be called the mother of all aproximations pro-
posed by Hohenberg and Kohn in their original DFT paper [22]. The LDApproximates
the true exchange-correlation energy of a system at each pointspace, by the exchange-
correlation energy of a homogeneous electron gas(HEG) of thensadensity observed at
that point. The homogeneous electron gas is the only system for i the form of the
exchange-correlation energy is known precisely. LDA only uses tloeal density, and the
exchange-correlation energy functional is written as,

Z
EXX [n(N]=  n(r)".. (r)d (2.55)

Where":EG (r), is the exchange-correlation energy density corresponding tthamogeneous
electron gas of density(r). :EG (r) can be separated into exchange and correlation parts
as,

HEG

o) =)+ () (2.56)

This exchange part":EG (r) was derived analytically by Dirac and is known for a ho-
. . EG .

mogeneous electron gas [25]. However, the analytic expressmns"io in case of the

homogeneous electron gas is only known in two limits of high [26,27] dod/ [28] electron

densities.

Generalized Gradient Approximation (GGA) :

LDA is the simplest approximation that is not appropriate for real sgtems where the
electron density is not uniform due to formation of spatially directedonds. So, the next
approximation is the generalized gradient approximation (GGA). To @nsider the spatial
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variation in the electron density, the exchange-correlation engrglensity is expressed in
terms of both the local electron density as well as the gradient ohé electron density.
To represent this fact, we can express the exchange-correlatitunctional under GGA

approximation as,

Z
ESSAInMI= n(r)". [n(r);jr n(r)jldr (2.57)

Most important work in developing GGA functional was initiated by Pedew and co-
workers [29]. Now the information of the gradient of the electron dsity can be included
in various ways leading to large number distinct GGA functionals. Somef the most
popular forms are Perdew and Wang (PW91) [30], Becke-Lee-YaRg+ (B-LYP) [31] and
Perdew, Burke and Enzerhof (PBE) [32] functionals.

Meta-Generalized Gradient Approximation(MGGA) :

The next type of approximations that follows after GGA is the metageneralized gradient
approximation(MGGA). MGGA functionals include information from n(r), r n(r) and
O?n(r). The kinetic energy density corresponding to the Kohn-Sham oithls,

1 X

=3

i=1

iroini® (2.58)

is equivalent to the Laplacian of the electron density, and thus mayebused in meta-GGA
functionals instead ofO?n(r). The Tao-Perdew-Staroverov-Scuseria (TPSS) functional
[33] is an example of meta-GGA functional.

Hybrid Functionals :

Hybrid functionals include contributions from the exact exchangeé{artree-Fock) energy
with a GGA functional having a general form,

Exe™ = (EXF  EZ)+ ESS! (2.59)
whereE{" is the Hartree-Fock exchange energy expression as given in Edo.18 with
Kohn-Sham orbitals used in place of spin orbitals. One of the featud this quantity
is that it is non-local. To evaluate it at a particular point of the con guration space
the value of ; must be known at all points. The coe cient, , determines the amount
of exact-exchange mixing which is tted semi-empirically. HSE functiwals [34] named
after J. Heyd, G. E. Scuseria, and M. Ernzerhof is one such exal@p These functionals
are expected to be more accurate while studying the strongly cetated electron systems
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due to their large self-interaction correction but are computatioally expensive due to the
non-local nature.

2.3 Numerical Approximations for DFT Calculations

Using DFT we are trying to calculate the electronic structure of a diection of atoms.

DFT basically de nes a mathematical problem for any such physicalystem with an

approximate form of the exchange-correlation functional. The ntlaematical problem is
to solve a set of mathematical equations(Kohn-Sham equations) an iterative manner

to get the ground state electron density. The problem cannot belved analytically but

numerically with a series of numerical approximations. For example iegrations are done
considering a nite number of grid points, in nite sums are truncatel to nite ones. Due

to such approximations errors may enter. In this regard, a well agerged solution is the
one which is very close to the exact solution of the mathematical gryem de ned by

DFT. Here we make a brief discussion on such numerical approximats

2.3.1 Plane Wave Basis and Energy cuto

To numerically solve the Kohn-Sham equations we rst need a propéasis set to expand
the single particle orbitals and represent them with the expansion ecients. Here we are
interested in the electronic structure of crystalline materials with priodic arrangements
of atoms. The entire crystal can be generated from a periodic rgfition of a basic unit
called the unit cell de ned by three unit vectors,a;, a,, as. The single particle electronic
states for the non-interacting electrons in periodic system areltsd Bloch states [5] with
the form :

k(r) = &< "uk(r) (2.60)

where, uy (r) is periodic in space with periodicity of the crystal, i.e.u,(r + nya; + n,a, +
nsaz) = ux(r) for any integer values ofny, n,, n3. So, Bloch states are basically plane
waves modi ed by a periodic functionu (r). Periodicity of uy(r) allows it to be expanded
in terms of plane waves as,
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X .
u(r) = Cs€C"' (2.61)

where,G = m;ib;+ m,b,+ msbs, is a reciprocal lattice vector de ned in terms of reciprocal
space unit vectorsby, b,, bz(which can be expressed in terms of real space unit vectors
a;, ap, az using the standard de nition) for any integer values ofm;, m,, mz. So, now
the Bloch states are given as,

X |
«(r)= Cgs€@C*9" (2.62)

Figure 2.1: Total energy per atom of fcc Cu using a 10 10 10 k-points grid as a function of the cuto
energy Ecut

This is an in nite sum of plane waves with kinetic energiet = %jk + Gj% For a
periodic system, such states are reasonable to choose as thelsietgctron orbitals ;,
in the Kohn-Sham equations and we can use plane waves as the basig® expand the
Kohn-Sham orbitals. This is why such DFT calculations are sometime®ferred to as
plane wave calculations. The problem is that Equation (2.62) involves summation over
an in nite number of possible values of5. For practical calculations we need to truncate
this in nite sum to a nite one. For this we consider a cuto energy dened as,

Ecut = —G?

=Gl (2.63)
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so that, the plane waves with kinetic energy lower than the cuto eergy are included
in the basis. The error introduced in this approximation can be minimizeby increasing
E.ut till the total energy of the system converges showing no signi cavariation with
any further change inE.

Figure 2.1 shows the convergence of the total energy per atonsfng DFT as implemented

in VASP) of fcc Cu as a function ofE.;. GGA was considered for the exchange-correlation
functional. A 10 10 10 Monkhorst-Pack k-mesh was used for performing the k-space
integrations(This is discussed in details in the next section). We caee from Figure 2.1
that, changing value of E,; from 300 to 320 eV, the total energy change per atom is less
than 1 meV. Hence we can use. = 300eV for the above calculation for a well converged
result.

2.3.2 Performing K -Space Integrations :

In any practical DFT calculation, a large amount of time is spent in evaating k-space
integrals in the Brillouin zone with the form [14],

Z
VceII

2)° &z

g= g(k)dk (2.64)
Where Vg, is the volume of the unit cell of the crystal. Numerically integrals areval-
uated by evaluating the value of the functiong(k), at some nite set of k-points within
the Brillouin zone and summing them with proper weight. Such methodige more and
more accurate results as we increase the number of k-points ar thumerical method
may converge to the exact result of the integral.

The question is how to choose the k-points to evaluate such intetgee ciently. The
most widely used method of considering equally spaced points in theilBwuin zone was
developed by Monkhorst and Pack [35]. For example, for a cubic or adst cubic unit
cell the reciprocal unit cell is also cubic and we can consider same fen of k-points
along each k-space unit vectob;. If N number of k-points are considered along each
direction then the calculation is leveled alNl N N k-points calculation. To test the
convergence, the way is to increase the value Nf till there is no signi cant variation in
the total energy with any further change inN. Figure 2.2 shows the convergence of the
total energy( using DFT as implemented in VASP) of fcc Cu as a funn of N. GGA
was considered for exchange-correlation functional with a comged E; value of 300 eV.
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Figure 2.2: Total energy per atom for fcc Cu as a function ofN implyinga N N N k-points
calculation

Changing the value ofN from 7 to 8, the total energy change per atom is less than 1
meV. Hence we canuse 77 7 or8 8 8 k-points grid in the above calculation for a
well converged result.

2.3.3 Frozen core approximation and Pseudopotential :

In any real material the electrons of the atoms that are chemicallymportant are the
valence electrons because they take part in bonding. The core #lecs that are tightly

attached to the nucleus remain more or less inert. Also the kinetic ergy of the core
electrons are much higher than the valence electrons and their veafunction are highly
oscillating on short length scale. As a result we need large energy @walue for a plane
wave basis set to represent them. So, if we are able to approximdte properties of the
core electrons then we can reduce the computation cost by rethg the number of plane
waves in the basis set.

The popular approach to treat the core electrons is to use pseymdentials. A pseu-
dopotential replaces the electron density from the core electr®mvith a smoothed density
chosen to match various important physical and mathematical pperties of the true ion
core. This is the frozen core approximation. In this approximationf j ¢ andj “i rep-
resent the quantum states for core electrons and the valenceattens respectively then
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one can construct smooth valence statgs"i orthogonal toj ¢ as [36],

X
i=j Vi+ ¢ () (2.65)
C
where . can be determined from the orthogonality condition . = h ¢ Vi. The pseudo
wave functions satis es the modi ed Schredinger equation:

H + (V9 Sih o= Y (2.66)

Figure 2.3: Schematic diagram of the PseudopotentialvVPS(r) and pseudo-wavefunction (r). The
left gure shows valence wave function (r) and Coulomb potential V<o (r). In the right gure, r¢
represents the cuto radius beyond which the wave function and he potential are not a ected.(Taken
from, Atomic and Electronic Structure of Solids, E. Kaxiras, Cambridge University Press [37])

So, we can construct a Pseudo-Hamiltonian,
mn #

X
HP" = H+ (Y 9 %ih 9 (2.67)

with the same eigenvalues as the original Hamiltoniakl, but with a smoother wave
function. The corresponding potential,
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X
VPP = v+ (V9 %h ¢ (2.68)

is called pseudo-potential, wher&/ is the nuclear potential inH. The second term is a
correction term and repulsive in nature as¥ > ¢, indicating that the valence electrons
experience a net repulsive force due to the core electrons. Fig@r8 schematically illus-
trates the pseudo-potential approach. Beyond the core regiom. above a cuto radius,
re, pseudo-wavefunctions and pseudopotentials are identical toetfall electron wave func-
tions and potential respectively, while in the core region (withirr.), a weaker potential
will be experienced by this new set of valence states.

In DFT calculations any pseudopotential for an atom de ne a minimumcuto energy
that should be used. Pseudopotentials requiring high cuto energieare said to be hard,
while pseudopotentials with low cuto energies are called soft, whichr@ computationally
e cient. There are also ultrasoft pseudopotential(USPP) [38] tharequire very low cuto
energy.

2.3.4 Projector Augmented Wave(PAW) method :

One disadvantage of using USPPs is that the construction of the gusdopotential for
each atom requires a number of empirical parameters to be sped.eCurrent DFT codes
typically only include USPPs that have been carefully developed andsed, but they do in
some cases include multiple USPPs with varying degrees of softnessbme elements [14].
Another frozen core approach that avoids some of the disadvages of USPPs is the
projector augmented-wave(PAW) method originally introduced byBlechl [39] and later
adapted for plane-wave calculations by Kresse and Joubert [40]. $nch approximation,
an all electron wave function is constructed, with which all integralgre calculated as
a combination of smooth functions extending throughout space dncontribution from
the localized mu n tin orbitals [41,42]. Hence the total wave functionin this case is a
combination of valence state wave functionsy(r) and a linear transformation function
relating the all-electron valence functions /(r) to 7(r) which is given as,

X
(0= 3O+ G §EmgT (2.69)
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In the above equation, indexi is for the atomic siteR, jp;i are the projector functions
for localized pseudo partial wave which satisfy the orthogonality odition, hgij Ji = ;.
Within this formalism, the all electron charge density can be deriveddm Equation (2.69)
as,

n(r) =a(r)+ ni(r) rY(r); (2.70)
where,
X
rR(r) = fij 5(r)j? (2.71)
X X
n'(r) = | fi h7jpri j(r) «(r)hexj i (2.72)
X X
RH(r) = fi h7jpi () Tk(r)hey T (2.73)

i jik

In the above expressiond,;'s represent the occupancies of the eigenstatés r(r) is the
pseudo-charge density and is evaluated from the pseudo-waveftions with plane wave
basis. ni(r) and r'(r) are the on-site charge densities localized within the augmented
sphere around each atom. Total energy of the system when cd&ted from these charge
densities can also be divided into three parts.

2.4 Introduction to Wannier Functions

After electronic structure calculation for a periodic solid, the sta of the system is de-
scribed in terms of band states/Bloch states [5]. These are delocatiZzextended electronic
states which are assigned a quantum numbérfor the crystal momentum, together with
a band indexn. This is widely used in electronic structure calculations but alternate
representations are also available. The Wannier representation §{ which is essentially
a real-space picture of localized orbitals, assigns as quantum numshethe lattice vec-
tor R of the unit cell where the orbital is localized, together with a band-l& index n.
Wannier functions can be a powerful tool in the study of the eleainic and dielectric
properties of materials and can provide an insightful picture of th@ature of chemical
bonding, otherwise missing from the band picture of extended orkbit [9].
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We start with the fact that, single electronic states for the non-iteracting electrons in
periodic system are called Bloch states [5] with the form :

nk(r) = eikrunk(r) (274)

n is the band index,u,(r) is periodic in space with periodicity of the crystal, i.eunx(r +
R) = un(r) for any lattice vector R = nja; + n,a,+ nzas. Here we do not know the exact
form of x(r) due to the unknown functionu,, (r). Now in a Tight binding approximation
the crystal is described as collection of weakly interacting atoms Huat there is negligible
overlap of the valence electrons. Hence the atomic description i spompletely irrelevant.
Then we can express ,(r) in terms of the atomic wave functions ,(r), which are
solutions of the atomic HamiltonianH,; ,(r) = ", n(r)] as linear combination of atomic
orbitals located at the lattice pointsR :

X
()= &R (r R) (2.75)

R

A(r R)is the n" atomic orbital at lattice point R. Such expansion satisfy the Bloch
condition.

w(r+R) = d¥R” (r+R R9Y (2.76)
RO
X
= R KRR (r (R® R) (2.77)
= @R () (2.78)

The energy bands that we get in this way show almost no dispersion wik due to the
crude way of approximating the atomic orbitals as basis. The solutiois to introduce
functions (r) that are not necessarily atomic orbitals but can be derived from a lear
combination of atomic orbitals as,

n(r) = B m(r) (2.79)
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Where di erent type of combinations give rise to di erent type of sich functions. In terms
of these functions the Bloch states are represented as,

X
()= €¥R L (r R) (2.80)

R

This functions are called Wannier functions, which are the Fourier eocients of the
inversion formula and are expressed in terms of the Bloch stateg,x as,

Z n #
\4 X k ik R
n(r R)= BE Urn mk(r) e dk; (2.81)
BZ

m

Such Wannier functions can be de ned for any band. Unlike atomic fictions ,(r), the
Wannier functions ,(r R) at dierent lattice site and with di erent band index are
orthogonal. The Wannier functions ,(r R) for all n andR form a complete orthogonal
set to describe the Bloch states. They o er an alternative localizetasis set for exact
description of the independent electron levels.

In the Equation (2.81), V is volume of the unit cell and integration is ogr the whole Bril-
louin zone. U¥ is the unitary matrix which is used to mix the Bloch states at eaclk point
in the Brillouin zone of the crystal and is not a unique one. The varyingpatial extensions
of the Wannier functions depend upon the choice dJ¥ in the above expression. This
non-uniqueness obJ¥ arise from the fact that orbitals represented by Bloch states baig
to a set of bands that are separated by energy gaps from eachet but have degeneracies
within themselves and thus at eactk point there will be many unitary transformations
possible within themselves. This makes uses of Wannier functions uitable in the case
of real problems. A procedure to eliminate this arbitrariness was @posed by Marzari
and Vanderbilt [11]. In this method, iteratively rede ned transformations would lead to
uniquely de ned set of maximally-localized Wannier functions (MLWFs) This approach
can be applied to a variety of problems starting from an isolated sysh to a periodic solid.
For the entanglement band problem, this approach was extendeg Bouzaet al. [12].
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3.1 Introduction

Although the 3d transition metal oxides have been studied since the 1950's, imprdve
growth and characterization techniques as well as new theoretiGgproaches have con-
tinued to yield new insights [1{5]. The rare earth perovskite nickelateare of particular
current interest. These materials exhibit metal-insulator transitios for all members of
the family RENiO3 (where RE denotes a rare earth ion), with the exception of RE =
La [6,7]. The metal-insulator transition is coincident with a crystal ditortion in which
the mean Ni-O bond length alternates between two inequivalent Ni g, de ning a bond
disproportionation [8{11]. This state is sometimes also referred tesacharge ordered".
The presence of the rare earth atom in the perovskite lattice hasnays been understood
as controlling the structural distortions. An atom with a smaller ionicradius leads to a
smaller volume of the unit cell. However, this would also imply shorter NB bond lengths.
This shortening of the bond lengths has the e ect of increasing th€oulomb repulsion
between electrons on Ni and those on oxygen. The Nj@ctahedra rotate leading to
longer Ni-O bond lengths. This results in Ni-O-Ni angles which deviatedm 18C, with
the smaller RE ion resulting in larger deviations of the Ni-O-Ni angle. Té bandwidth
of the Ni d states is controlled by the e ective hopping interaction strengthwhich de-
pends on the Ni-O-Ni angle. Initially, the metal-insulator transition inthe nickelates was
understood as being driven by the modi ed bandwidth arising from té rotation of the
NiOg octahedra [12]. However, later analysis of the structure revealedbreathing mode
distortion associated with the NiQ octahedra. One Ni atom had an expanded NiJoc-
tahedron associated with it, while the other had a contracted Nigoctahedron associated
with it [8]. While there was no signi cant charge di erence between théwo Ni sites, the
associated Ni-O bond lengths led to one of the Ni atoms with longer i-bond lengths
(2 A) being labeled Nf*, while the other with shorter Ni-O bond lengths ( 1.9 A)
was labeled Ni*. A similar nding has emerged in the context of other charge ordede
nickelates [8{11].

While the rare earth perovskite nickelates exhibit bond disproportimation, the rare earth
perovskite cobaltates formed with the neighboring transition metaatom Co in the same
oxidation state exhibit no such ordering. An important parameter hat controls the
electronic structure for the late transition metal oxides is the chge transfer energy(),
given by the energy required to transfer an electron from the oggn p levels to the
transition metal d levels. The charge transfer energy decreases as one goes sacthas
3d transition metal series from Ti to Cu [13] and it is natural to associa the change in
charge transfer energy with the propensity to bond disproporti@ation.
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Formal valence considerations assign thd con guration to the Ni in the RENIO ; per-
ovskites. However, if the charge transfer energy is strongly regiye, the electronic con-
guration is more appropriately represented asi®L (with the L denoting a hole on the
ligand). The importance of an e ectively negative charge transfeenergy in this family
of compounds was rst pointed out by Barmanret al. [14] while discussing the insulating
ground state of NdNiG; in contrast to the metallic one of LaNiQ. Mizokawa et al. [15]
carried out model Hamiltonian calculations for a multiband Hubbard mdel and could
capture the bond disproportionation at a negative value of the chge transfer energy
when they included a breathing mode distortion of the Ni@ octahedra. This suggests
that the combination of lattice distortions and a negative charge ansfer energy drove
the charge ordering. Mazin and coworkers [16] argued that the aifge ordering was an
alternative to Jahn-Teller distortions, and part of the energy loweng associated with the
disproportionation came from the energy gain from Hund's intra-@mic exchange inter-
actions, which favor a high-spind® state. Building on the Mizokawa picture, Park, Millis
and Marianetti [17] presented density functional plus dynamical ean eld calculations
that explained the disproportionation in terms of a site-selective Mobtransition occurring
in a situation in which the charge transfer energy was very negativand Johnson and
collaborators later considered the same physics in a model systeergpective [18]. On
the other hand, Peil and Georges [19] argued that an approprialew energy description
of the physics was in terms of a Hubbard model with a vanishing or natyve U; in this
e ective low energy picture, the bond-disproportionated state isndeed characterized by
charge order.

In this paper, we take a new approach to this issue by examining in neodetail the
connection between bond disproportionation and the charge trafer energy. Introducing
a potential on the Nid states, we are able to vary the charge transfer energy and exam
the ensuing changes in the structure as well as the electronic stture within an ab-initio

framework in contrast to all model Hamiltonian approaches in the . We nd that the

onset of charge ordering is characterized by the point at which tHéi d band enters the
oxygenp band, de ning the e ective negative charge transfer energy(ess ) [20,21]. This
destabilizes the RE-oxygen network which is otherwise ionic, drivingné charge ordering.

3.2 Methodology

The electronic structure of NdNiQ was calculated within a projected augmented wave [22]
implementation of density functional theory within the Vienna ab-iniio simulation pack-
age (VASP) [23,24] code. The experimental lattice parameters ngetaken [25]. The
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magnetic structure (both T-AFM [26, 27], non-collinear EAFM [28] and FM) was im-
posed and the electronic structure was calculated within the Dudav implementation [29]
of GGA+U with a U of 4 eV on the Ni sites. The generalized gradient appxima-
tion(GGA) [30] was used for the exchange correlation functional. Monkhorst-Pack [31]
k-points grid of 4 6 2 was used for calculating the electronic structure of the magnetic
supercell. While the lattice parameters were kept xed at the expéenental values, the
internal positions were optimized to nd the minimum energy con guation so that the
forces were less than 18 eV/ A. The general features of the structure are similar when we
assume ferromagnetic order. Consequently, the rest of the dyss in terms of microscopic
model has been carried out for the ferromagnetic unit cell which isngsller. A k-point
mesh of 6 4 6 and an energy cuto of 500 eV was used for the plane waves coesetl
in the basis. Spheres of radii A are constructed around each atom for the calculation
of the density of states and magnetic moment and within the spheseentered on the Ni
ions ad-symmetry potential of constant radial part is introduced. The sucture is then
optimized to nd the structural and magnetic parameters in the pesence of the poten-
tial and the charge transfer energy is quanti ed by using maximally lcalized Wannier
function methods [32{34] to map theab-initio band structure onto a tight binding model
using the VASP to Wannier90 interface [35]. The Bloch states are mpgd onto Wannier
functions, localized on the respective atoms via a unitary transforation. The angular
parts are given by the relevant spherical harmonics. Once the traformation matrices
are determined, one has a tight binding representation of the Hanlhian in the basis of
the maximally localized Wannier functions. The results are used to csinuct a schematic
diagram of the electronic structure.

For the thin Im calculations, we consider putting layers of NdNiQ on the NdGaG; sub-
strate along thec-direction. The supercells used in the calculation were further cadered
to be symmetric about the middle NdO layer to cancel any net polarizan in the system.
There were ve NdO and six GaQ layers in the NdGaQ substrate. However, in NdGaQ
Nd and Ga are in 3+ oxidation state and O is in 2- oxidation state. So, # NdO layer in
the substrate has a net +ve charge whereas the Gaayer has a net -ve charge, making
the system inevitably doped. To cancel this intrinsic doping we took aew approach
and replaced NdGaQ@ with SrTiO 3 where both SrO and TiQ layers are neutral, keeping
the lattice parameters and position of the atoms same as NdGaOA 14 A vacuum was
considered to take care of any inter-layer interactions. A k-mesyrid of 2 4 1 was
used to perform the k space integrations along with an energy cutof 400 eV. Internal
coordinates were relaxed for a minimum energy con guration till théorces on the atoms
were less than 10° eV/A.



CHAPTER 3. THE DRIVING FORCE FOR CHARGE ORDERING IN RARE
98 EARTH NICKELATES

3.3 Results and Discussion

There are two candidate orderings which have been proposed foetmagnetic structure
of the magnetic nickelates. The rst corresponds to an up-up-eén-down ordering of the
spins on the Ni along the three pseudo cubic directions and has beeferred to as T-AFM
type magnetic structure [26,27]. There are variants that di er sligtly in the stacking of
these chains and di er slightly in the total energy [27]. The other sticture corresponds to
a non-collinear one in which the neighboring spins have equal magnitubut are rotated
by 9(° [28]. We have used both of these structures to initialize our calculatis; we nd
that both cases relax to the same magnetic con guration. The fullyelaxed structure
contains NiQs; octahedra of short mean bond length ( 1.90 A) and NiOg octahedra
of longer mean bond length ( 2.0 A). The Ni sites with short-bond octahedra have a
zero magnetic moment, while the Ni sites with long-bond octahedraate a magnetic
moment of 1.50 g (Ni?*). A similar di erence of moment was found experimentally
and was initially interpreted as a Ni charge disproportionation [8]. Hogwer, examining
the density of states associated with each of the Ni sites (Figurel} we nd that the
t,, states on both Ni sites are completely lled, while the mean occupanf the g,
states on both sites is 2. On the long-bond Ni site(N#*), the majority spin g5 channel
is found deep inside the valence band and is fully occupied, while the mity spin e,
channel is empty, with a very small admixture of Op implying a Ni d® con guration.
On the short-bond Ni sites(Nf*) the high-lying e, states are found at 1-2 eV in the
conduction band and have signi cant Op admixture; these are antibonding states; the
corresponding bonding states are located deep inside the valenemdh The signi cant
O p admixture suggests that one should associate an electronic counrgtion of d®L? as
previously suggested [15,17,18]. As discussed by Patlal. [17] the spin splitting of these
states is very small (zero in the present calculation).

The almost ubiquitous charge ordering among the rare-earth nidles suggests that it
should be associated with some aspect of the electronic structurdmong the undoped
transition metal oxides with the same chemical formula and same ostion state, it is
only the nickelates which exhibit charge ordering. As the transition etal d levels get
increasingly stabilized with respect to the oxygerp levels as one move across thel 3
transition metal series [13], we went on to examine if it was the chargeansfer energy
which was responsible for this unusual behaviour. Having establishéhat the DFT+U
calculations correctly reproduce the basic physics of NdNiOwe analyze the consequences
of varying the charge transfer energy. We introduced a constapotential on the Ni
d states and varied the charge transfer energy in steps. Structral optimization of
the atomic positions was carried out to examine the implications of thenodi cations
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Figure 3.1: The spin resolved (upper and lower panel) Nigg and O p contributions to the density of
states for (a) Ni**, (b) Ni** sites in NdNiO3 considering the T-type antiferromagnetic structure and U
=4 eV on Ni.

of on the structure. For convenience in the analysis and interpr&ation, we consider a
ferromagnetic ground state (which can also be stabilized in the DFT4 method, although
it is not the true ground state). In the ferromagnetic state the iequivalent Ni sites have
respectively a large and a small moment, but in contrast to the T-fye antiferromagnetic
state the smaller moment, while much less than the larger one, is narp. In order to
guantify the changes in the charge transfer energy that was imtduced, we carried out a
mapping of the electronic structure onto a tight binding model whichncludes Nid and
O p states in the basis(see the methodology section for the methodylaximally localized
Wannier functions are used for the radial part of the wavefunctim As the presence of
magnetic order can move the Nd levels with respect to their positions in the absence
of it, leading to a double counting of the e ects of the exchange intactions, we use the
nonmagnetic calculation to de ne the value of for each calculation vinere the potential
at the Ni site has been varied. The on-site energies of the Niand O p levels extracted
from the mapping were used to calculate the value of for each casas the energy
di erence between the Op levels and Nigy levels. In order to show the quality of the
t, we show a comparison of theab-initio band structure and the tted band structure in
Figure 3.2 for one of the values, = 0.81 eV. We vary the potential acting on the Ni,
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and for each value of the potential determine the magnetic momexntat each Ni site, the
amplitude of the bond disproportionation, and the charge transfeenergy as de ned
from the Wannier mapping.

Figure 3.2: A comparison of the ab-initio band structure and the tight binding t for nonmagnetic
NdNiOz ata =0.81 eV

Figure 3.3: Variation in the (a) Ni-O bond lengths and (b) Magnetic moments on the Ni sites with
for ferromagnetic NdNiO3z with U = 4 eV.
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Figure 3.4: Variation in the (a) Ni-O bond lengths and (b) Magnetic moments on the Ni sites with
off for ferromagnetic NdNiO3 with U = 4 eV.

Because the charge transfer energy is a monotonic function oktlon-site potential, we
plot the magnetic moments and mean octahedral bond lengths agsircharge transfer
energy in Figure 3.3. As s increased from the value 0.65 eV, Figure 3.3(a) shows
that the mean bond length of the short-bond octahedra increas@rom a value of 1.88
A), while the mean bond length of the long-bond octahedra changesly slightly. For
charge transfer energies greater than about 2 eV the di erend®etween the two mean
octahedral bond lengths becomes negligible and they are order dd®A for both the
Ni sites when = 2.3 eV. In contrast to the result for the T-type antiferromagnetic
con guration where the Ni** sites had a zero magnetic moment associated with them, in
the ferromagnetic con guration we nd that the Ni%* sites have a nite magnetic moment
associated with them. Figure 3.3(b) shows a similar increase in the nmegic moment of
the short-bond site(from 0.52 g) as the charge transfer energy is increased, with the
di erence in moments between sites becoming negligible for& 2.30 eV. In this region,
the values for both the Ni atoms are 1.20 §.

Having established that the charge transfer energy controls tlisproportionation physics,
we now consider in more detail the mechanism. In order to undersié the point at which
we had the onset of charge ordering, we calculated the bandwidthtbe oxygenp band.
This was done by switching o the p-d interactions and calculating the width of the
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Figure 3.5: Schematic indicating the de nitions and ¢ used in the text. While a positive ¢ has
uniform NiO g octahedra, a negative s leads to transfer of holes to the oxygerp bands and occurrence
of a breathing distortion of the NiOg octahedra.

oxygenp band. The depth of the oxygerp levels inside the oxygerp band(W,), is used
to determine an e ective charge transfer energy, ¢ given as W,(The de nition of
and ¢4 In a comparative manner is shown schematically in Figure 3.5). The mean

octahedral bond lengths and magnetic moments of i and Ni** against the e ective
charge transfer energy ¢+ are plotted in Figure 3.4. For the value of o 0.3 eV we
see no bond disproportionation with both the Ni atoms having equahean Ni-O bond
lengths and the system becomes metallic. There is a small di erence time magnetic
moments associated with the two Ni atoms, and this could be an e eof the LDA+U
method we use that try to localize the electrons. Below the value ofeV, we see the
occurrence of bond disproportionation with two di erent Ni atomshaving di erent Ni-O
bond lengths and magnetic moments. Also, the system becomes latng as a result
of the charge ordering(CO) which is shown in Figure 3.4. Hence the smt of charge
ordering seems to be associated with the point at which the holes lrego occupy the
oxygen p band, factoring in a nite width of the transition metal d band. This is the
reason we nd a narrow sliver of charge-ordered insulating stateen for o > 0, before
becoming metallic. For larger nite o the system is a charge transfer(CT) insulator
as indicated in Figure 3.4. At a qualitative level this can be understoods follows. In
contrast to the transition metal-oxygen network which is very casent, the rare earth-
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oxygen network is very ionic. With the holes moving onto the oxygenthis ionic network

is destabilized. Beyond a critical number of holes, one nds that thetructure distorts,

driving the charge ordering instability. We nd that the disproportionation disappears
when the charge transfer energy becomes large enough that fhband becomes lled, as
shown schematically in the upper panel of Figure 3.5. This supportbd view [17] that
the disproportionation arises from a preferential hybridization othe ligand holes with
one of the Ni states.

Figure 3.6: & calculated for all the rare earth nickelates with U = 2 eV on Ni sites.

We then examine the implications of the phase diagram in the context all the rare
earth nickelates. For this, we have calculated the e ective chargeansfer energy s
for all the rare earth nickelates[Figure 3.6]. A U of 2 eV was found toivg the correct
antiferromagnetic state as the ground state for NdNiQ We therefore performed the
calculation for all the nickelates using a U of 2 eV on the Ni site. For RE Ho to
Pr, the values lie in the range of -0.41 to -0.27 eV indicating a situation here the
Ni d band enters the oxygerp band and there are holes on the oxygens. As a result,
the ground state(GS) of the compounds are insulating with bond dgisoportionation.
For LaNiOg3, the value of ¢4 is -0.62 eV and the GS is metallic without any bond
disproportionation. So, from here we can conclude that a negativalue of delta is
necessary for bond disproportionation to occur, however, treeis a critical value beyond
which the itinerant limit is reached. There will be larger band overlap ahsystem becomes
metallic suppressing the MIT. Values of «; in the range of -0.41 to -0.27 eV leads to an
insulating GS with a small variation in the band gap values. In the insulatg state, the
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main role in controlling the band gap is played by the bandwidth(W). As w go from Lu
to Pr the ionic radii of the rare earth atom increases and the banddth of the system
also increases due to increased hybridization between thed\Nand O p states, this in turn
drives the system more towards the itinerant limit and there shall ba systematic decrease
in the metal to insulator transition temperature(Ty,t ), in agreement with experimental
observations as reported in earlier works [12, 36, 37].

Is there a critical length scale for charge ordering? :

D. Meyerset al. [38] have found that charge ordering seems to vanish in the limit of 15
unit cells for Ims of NdNiO ;3 grown on NdGaQ. In order to examine this aspect, we have
calculated the electronic structure of the Ims at the bulk as well ashe few monolayers
limit.

Figure 3.7: (a) The E° type non-collinear antiferromagnetic ordering of the Ni moments. (b) Ni-O

bond lengths and Ni-O-Ni bond angles of Ni* and Ni** along the three pseudo cubic directions for
non-strained NdNiOs. (c) E ective collinear type antiferromagnetic ordering of the Ni2* moments in

the optimized structures of both strained and non-strained NdNiOs. (d) Ni-O bond lengths and Ni-O-Ni

bond angles of Nf* and Ni** along the three pseudo cubic directions for strained NdNiQ.

We rst looked at the bulk limit which was appropriately strained to mimic the NdGaOs;
substrate. For this we have used the in-planeab-plane) lattice parameters of NdGa@(a
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= 5.43 and b = 5.50A) and experimentally reportedc value of 7.6@\. This is equivalent
to applying a tensile strain of 1.4%. A Etype non-collinear antiferromagnetic ordering
was imposed on the Ni sites[Figure 3.7(a)]. The converged solutionogls a breathing
mode distortion of the NiQ; octahedra with two inequivalent Ni atoms[Figure 3.7(d)]
having large and short Ni-O bond lengths. The Ni atom with larger Ni-Cbonds(N#*)
has a magnetic moment 1.52 g, whereas the magnetic moment associated with the Ni
atom having shorter Ni-O bonds(Ni*) was found to be zero. This results in an e ective
collinear type antiferromagnetic ordering of the Ni moments as shw in Figure 3.7(c).
However, due to the e ect of strain, we do not see a pure breatlgmmode distortion in the
system that we observe in the non-strained case[Figure 3.7(b)]. rreach NiQG; octahedra
the in-plane bond lengths become larger compared to the out of pabond lengths. The
in-plane Ni-O-Ni bond angles are found to be 18%vhereas the out of plane bond angle
is 152. This is also in contrast to the non-strained case where the Ni-O-NMiond angles
are equal to 156 along all the three pseudo cubic directions. So, application of strain
1.4% is not enough to destabilize the charge ordered insulating graustate.

Next, to examine if there is any thickness dependence of the chargrdering, we con-
sider thin Ims of NdNIO 3 grown on SrTiO; substrate but with the lattice parameters of
NdGaOs(see the methodology section for details). For the thin Im calculatio, we again
consider the Etype non-collinear magnetic ordering on the Ni atoms as well as femag-
netic ordering for a comparison purpose. For thin Im calculations,he antiferromagnetic
state comes out to be the ground state and is insulating in nature. HIs is in contrast
to the bulk calculations where we get ferromagnetic as the groundate. Hence only
the antiferromagnetic solutions were considered for the furthemnalysis of structural and
magnetic properties which are described below as a function of ineseng layer thickness.

2 monolayer case: The 2 monolayer case is equivalent to depositing one formula unit
of NdNiO3 on the substrate. This consists of a single NdO layer and a NiQayer[Figure
3.8(a)]. This makes the thin Im to be NiO, terminated. Due to this, the Ni atoms in the
single NiG, layer do not have a complete octahedral coordination. A non-colliaetype
antiferromagnetic ordering was considered on the Ni atoms as shoin Figure 3.8(d).
The structural analysis of the optimized structure shows all the Natoms to be identical
having an equivalent environment. The Ni-O bonds of all Ni@ polyhedra are found to
be identical with a Ni moment 1.2 g[Figure 3.8(b)]. Hence there is no charge ordering
in the system. The two in-plane Ni-O-Ni bond angles are found to be 164 and 172.
These are larger and close to 18@ompared to the bulk values as a result of incomplete
coordination of the Ni atoms.
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Figure 3.8: 2 monolayer case : (a) Schematic showing the two monolayers of Nd®; on NdGaOs
substrate. (b) Ni-O bond lengths and (c) the in-plane(@b-plane) Ni-O-Ni bond angles after structural
optimization. The magnetic moments associated with each of the Ni toms are also mentioned. (d)
Non-collinear type antiferromagnetic ordering of the Ni moments inthe single NiO, layer.

Figure 3.9: 3 monolayer case : (a) Schematic showing the three monolayers ofdNiO3 on NdGaOs
substrate. (b) Ni-O bond lengths and (c) the in-plane(@b-plane) Ni-O-Ni bond angles after structural
optimization. The magnetic moments associated with each of the Ni soms are also mentioned. (d)
Non-collinear type antiferromagnetic ordering of the Ni moments inthe single NiO, layer.
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3 monolayer case: As shown in Figure 3.9(a), the 3 monolayer NdNi@thin Ims are
produced by adding another NdO layer on top of the Ni@layer. This NdO termination
makes the coordination of the Ni atoms in the Ni@ layer complete and now they have
octahedral coordination. The same magnetic ordering identical titne 2 monolayer case
was considered on the Ni sites[Figure 3.9(d)]. The Ni-O bond lengths ihe optimized
structure are shown in Figure 3.9(b). Again we see that the Ni-O bahnlengths of all the
NiOg octahedra are identical with an associated magnetic moment of 1.66. There is
no signature of charge ordering. However now, due to full octadral coordination, the
Ni moment values are close to the bulk values(1.5 ). Also, the Ni-O-Ni bond angles
are 150, close to the bulk values.

Figure 3.10: 4 monolayer case : (a) Schematic showing the four monolayers of N#O3 on NdGaOs
substrate. (b) Ni-O bond lengths and (c) the in-plane(@b-plane) Ni-O-Ni bond angles in the two NiO,
layers after structural optimization. The magnetic moments assaiated with each of the Ni atoms are
also mentioned. (d) Non-collinear type antiferromagnetic orderingof the Ni moments in the two NiO»,
layers.

4 monolayer case:  Now we have two layers of NdO and two layers of NiFigure
3.10(a)]. This again makes the thin Im to be NiQ terminated with the top NiO, layer
having an incomplete coordination of oxygen atoms. The non-collineantiferromagnetic
ordering imposed on the two Ni layers is shown in Figure 3.10(d). Aftestructural op-
timization, all the Ni atoms in the rst NiO , layer having full octahedral coordination
shows identical Ni-O bonds and a magnetic moment 0.98 g. The Ni atoms on the
topmost layer shows small variation in the Ni-O bonds as well as Ni mants between
two Ni sites[Figure 3.10(b)]. However the variations are too small dnwe again have a
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non-charge ordered solution. The in-plane Ni-O-Ni bond angles inghrst NiO , layer
are found to be 152 and 154 close to the bulk values, whereas the values for the top-
most NiO, layer are found to be 163 and 172, again due to an incomplete octahedral
coordination. The out of plane bond angle is 159.

Figure 3.11: 5 monolayer case : (a) Schematic showing the ve monolayers of Nd®3 on NdGaOs
substrate. (b) Ni-O bond lengths and (c) the in-plane(@b-plane) Ni-O-Ni bond angles in the two NiO;
layers after structural optimization. The magnetic moments assaiated with each of the Ni atoms are
also mentioned.

5 monolayer case: The ordering of the NdO and NiQ layers for the 5 monolayer case is
shown in Fig. 3.11(a). Again with NdO termination, now we have two Ni@layers where
the Ni atoms have a complete octahedral environment. The magieordering imposed
on the Ni atoms is similar to what has been shown in Figure 3.10(d). Nowe can see a
breathing mode type distortion in the system with two distinct Ni atans having di erent
in-plane Ni-O bond lengths[Figure 3.11(b)]. The Ni atoms having a sher in-plane Ni-O
bond length 1.9 A shows a smaller magnetic moment 1.0 g, whereas the Ni atoms
having an in-plane bond lengths 2.0 A have an magnetic moment value of 1.60 g.
However, the observed bond disproportionation is not equivalenbtthe bulk case and the
charge ordering is incomplete. The in-plane Ni-O-Ni bond angles in hothe NiO, layers
are now close to the bulk values showing some small asymmetries[Feg@.11(c)]. The
out of plane bond angle is 154.

6 monolayer case: The layer con guration for the 6 monolayer case is shown in
Figure 3.12(a). Now again the Im is NiQ, terminated which have incomplete octahedral
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Figure 3.12: 6 monolayer case : (a) Schematic showing the six monolayers of NdNiOon NdGaOs;
substrate. (b) Ni-O bond lengths in the three NiO, layers after structural optimization. The magnetic
moments associated with each of the Ni atoms are also mentioned.

coordination. The imposed magnetic ordering on the Ni atoms are w@wyalent to the
magnetic moments of the rst three Ni layers as shown in Figure 3.@. As shown
in Figure 3.12(b), now the Ni atoms in the rst and the third layer shavs incomplete
charge ordering similar to the 5 monolayer case, whereas the Ni @® in the middle
layer, sandwiched between the other two Ni©layers shows a charge ordering similar
to the bulk case with two Ni atoms having zero magnetic moment. Hawver, we do not
observe any breathing mode distortion comparable to the bulk callations and the charge
ordering is still incomplete. The Ni-O-Ni bond angles in the middle Ni@layer is 150
and 152, whereas for the top most NiQ layer with incomplete octahedral coordination
they are 163 and 172P respectively. The out of plane bond angles alternate between
152 and 157 respectively.

3.4 Conclusion

The origin of charge ordering in the rare earth nickelates has beexaenined within rst
principle electronic structure calculations for the case of NANKD The charge transfer
energy between the oxygemp and the transition metal d states has been systematically
varied. The onset of charge ordering is found to be associated withe point when
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holes are located on the oxygep band and is shown to take place beyond a critical
concentration. Although among the bulk rare earth nickelates theharge ordering seems
almost ubiquitous, as the size is reduced, one nds that there is atital length scale below
which one has incomplete charge order/ no charge order consistesith the experimental
result.
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4.1 Introduction

There is a strong correlation between the structure and the prepty of a material [1{5].
Tunability in the property of such materials has been achieved by vging parameters
which induce changes in the structure. Considering the well studigqaerovskite oxides
given by the formulaAB O3 where theA-site is usually occupied by a rare earth atom or
an alkali metal atom and theB-site is a transition metal atom, one nds that a change
in the size of the atom occupying thé\-site results in changes in the electronic structure.
The system could be either insulating or metallic, with changes being inded in the tem-
perature at which the metal to insulator transition happens [6{8]. The changes emerge
from structural changes [1{8] which involve a rotation of theB Og octahedra leading to
deviations of theB-O-B angle from 180 expected in an ideal cubic perovskite. Assuming
an almost rigid B Og octahedron, the size of the\ cation controls the volume of the unit
cell. A smaller size of theA cation results in a reduction of the cell volume. This results
in shorter B-O distances, which would then lead to an increase in the Coulomb rdgion
between electrons oB and those on O. To compensate for this increased Coulomb re-
pulsion, the BOg octahedra tilt resulting in longer B-O bonds as well aB8-0O-B angles
that deviate from 180. Largely steric e ects have been believed to be responsible for
the octahedral tilts in inorganic perovskites. Most of the perovstes are not good light
absorbers due to their band gap value deviating from the requiredmge. Mitziet al. used
perovskites with halides, ammonium cations and $h in optoelectronic devices, which
formed the basis for the development of perovskites for solar cgls 10].

Recently a new class of hybrid organic-inorganic perovskite baseelrsconductors are
drawing signi cant attention, specially for their use as solar cell marial. Low cost and
fast preparation techniques in laboratory environment [11], high enge carrier mobilities
and large di usion lengths [11{15] makes them an e cient and promisig solar cell mate-
rial, showing conversion e ciency over 20% [16]. In the hybrid perok#es, the A-site is

occupied by an organic molecule. Hence in contrast to earlier whenmeechad a spherical
atom, in the present case one has a cylindrical object occupyingeti-site. This would

then imply that only speci ¢ orientations would be favored by the moleule. Moreover
now there are hydrogen atoms associated with the molecule whicteanvolved in bond-
ing with the anions. Considering the most extensively studied memberf these series,
CH3NH3PbIz(MAPDI 3), it was shown that replacing MA with an ion which had the same
ionic radii led to the octahedral tilts vanishing [17]. This led them to theconclusion that
it was the hydrogen bonding with the anions that led to the octahea tilts found in

the experimental structure. So, here the interaction betweerhé molecule and the inor-
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ganic cage also plays an important role in determining the overall sictural and hence
electronic properties of the system.

While the role of the cation at the A-site have been long recognized as playing an im-
portant role in the structure of the hybrid perovskites, recent xperiments on MAPbI;
have brought forth another unusual aspect. Temperature depdent studies of the rel-
ative permittivity have found a strong frequency dependence aven the orthorhombic
phase [18]. This is surprising as the molecular dipoles are believed to béeoed in the
orthorhombic phase of the hybrid perovskites [19, 20]. This rules any relaxation due
to free rotation of the dipoles which may be found in the high tempetare tetragonal and
cubic phases. Further, symmetry analysis allow for a three-fold tadion of the molecule
about its molecular axis in the orthorhombic phase. However, the béers associated
with these rotations have been found to be greater than 70 meV wh the inorganic net-
work was kept rigid [21]. Hence the origin of the observed dipolar rel@ons which are
suggestive of glassy dynamics in the low temperature orthorhomhphase are puzzling.
There have been suggestions of the presence of static disor@esociated with a partial
reorientation of the C-N axis in analogy to plastic crystals that havdbeen o ered [22].
Older experiments on MAPbBg [23] and MASNnBg; [24] also suggest similar behavior.

In this chapter, we examine the total energy landscape of MAPbBsing rst principle
electronic structure calculations. Earlier studies have shown thahe interaction between
the molecule and the inorganic cage is via hydrogen bonding. A dominaontribution to
the energy lowering during the structural optimization has the hytbgen atoms attached
to the nitrogen end of the molecule (IJ) coming closer to some of the Br atoms of the in-
organic cage. The Br atoms respond by coming closer to the hydesgatoms. This results
in the octahedral distortions that one encounters, which unlike in wrganic perovskites
result in larger distortions of some angles over others. The decseaf H, -Br bond lengths
are suggestive of strong covalent interactions between the,Hand Br atoms. However,
a microscopic analysis carried out in terms of mapping onto a tight-bilng Hamiltonian
reveals that a signi cant component of the interaction emergesdm electrostatic interac-
tions. Further analysis reveals that one has a complex energy lacdpe with deep valleys
and large barriers emerging from competing interactions. There ionmplicit relation
suggesting that shorter K -Br bond lengths would determine the favored orientation of
the molecule. This leads to the presence of two minima whose energyerdby just 5
meV, but correspond to di erent orientations of the molecule in theac-plane as well as
di erent tilt angles. This barrier was found while rotating the molecula C-N axis in steps
in the ac-plane and then relaxing the whole system. The barrier height betee the two
minima is of the order of 30 meV per formula unit which is lower than thatequired for
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the twisting motions about the C-N axis in the orthorhombic phase wit rigid inorganic
network reported in a previous DFT study [21]. The presence of deealleys with similar
energies, suggests that the system could be quenched in eithetheflse con gurations, in
addition to the con gurations being accessible by thermal excitatios.

The ordering of the molecular dipoles in thac-plane has neighboring dipoles at an angle
of 130 degrees with respect to each other. This results in a net dipolement within the
plane. These dipoles could be stacked in a ferroelectric arrangetn@nan antiferroelectric
arrangement in theb-direction. We explore both these con gurations and nd that they
are energetically degenerate. So, this comprises another sourE@rientational disorder
in the structure. Both these can explain the glassy dynamics thatdve been seen in the
orthorhombic phase.

4.2 Methodology

The electronic structure of the systems were calculated using aogpected augmented
wave (PAW) [25] implementation of density functional theory within Menna ab-initio
simulation package (VASP) [26,27]. The generalized gradient appimation(GGA) [28]
was used for the exchange-correlation functional. Inclusion ofémon-local, weak van der
Waals(vdW) interactions are necessary to correctly predict thetrsictural properties. A
GGA+vdW density functional theory calculation has been found to tye a good estimation
of the lattice parameters and structural properties [29, 30]. Digpsive interactions are
responsible for a signi cant contraction of the unit cell, correctinghe overestimation
in general done by GGA. It also gives a band gap close to the experinted values for
Pb based compounds which is striking compared to normal semicomtiors for which
we need to consider hybrid functionals. This happens due to cancélba of errors [31].
However, it cannot accurately describe the band dispersions. lasion of the spin-orbit
coupling(SOC) slightly changes the PbX (where X is halide atom) bond lengths but
strongly underestimates the band gap and SOC-GW is needed forcatate description
of the electronic structure [30,31]. Still DFT calculations are useffdior determination of
structural properties and su cient for comparison of electronicproperties of homologous
systems [32]. DFT-D2 method of Grimme [33] was considered to intnack dispersive
interactions within the system. A gamma centered Monkhorst-P&ck-mesh of 8 6 8
was used to perform the k-space integrations. In addition to thisan energy cuto of
400 eV was used for the kinetic energy of the plane waves included hetbasis. The
orthorhombic unit cell [34] was used though both the lattice paranters and the internal
positions were optimized till the forces on the atoms were less thad £ eV/A to nd
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the minimum energy structure. This structure has a space grougymmetry P nma and

is non-polar. This phase is an intermediate phase that was referréd as phase IV,
di erent from the phase that was reported previously by Poglitsctand Weber [20] having
a space group Pna2which is polar in nature. Also dielectric measurements [23] show
a peak in the dielectric constant while entering this orthorhombic pree and have been
interpreted as suggestive of a ferroelectric nature. The optimiddattice parameters were
found to be 7.87, 11.69, 8.48 1% smaller on average than the experimental values.
The average Pb-Br bond lengths are reduced by 0.7% and averadeBr-Pb bond angles
are reduced by 2.5% in the optimized structure compared to the eepmental structure.

In the rest of the text we refer to this structure as the optimizedstructure. All results
described in the text are with the optimized lattice parameters unlasspeci ed otherwise.
Ab-initio band structure was mapped on to a tight binding model using an intéace of
VASP to WANNIER90 [35{37]. A basis consisting of Pbs and p, Br p, Cpand Hs
states were used. The Bloch states are mapped onto Wannier ftioos, localized on
the respective atoms via a unitary transformation. The angular pé&s are given by the
relevant spherical harmonics. Once the transformation matriceme determined, one has
a tight binding representation of the Hamiltonian in the basis of the mamally localized
Wannier functions.

4.3 Results and Discussion

As pointed out in the Introduction, there is a strong coupling betwen the structure and
the properties in these perovskites. While the molecule at th&-site does not contribute
to any of the states several eV on either side of the Fermi enerdlirough modi cations
in the structure, it determines the electronic structure. We thegfore examine all these
aspects.

4.3.1 How does the molecule sit inside the inorganic cage?

In an inorganic perovskite, the atom at theA-site can be treated as a spherical entity and
so there is no preferred orientation. There could however be a despement of the atom
from the center of the cage. However, here, the molecule at tAesite can be regarded as
a cylindrical object. We need to explore di erent orientations and dtermine the favored
orientation. This analysis would help us understand the microscopimergetics involved
in determining the structure.
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The orientation of the molecule

In order to understand the microscopic considerations that dataine the favored orienta-
tion of the molecule, we start by considering the idealized orthorhdsrc cell without any
octahedral tilts. This is shown in Figure 4.1(a). As seen along theaxis, the octahedral
cavity in which the molecule sits is a rectangle. If the C-N axis of the nlexcule is kept in
the ac-plane, the two con gurations/orientations along which the molecle has maximum
freedom are the diagonals of the rectangle. In other con guratis the distance between
the molecule and the inorganic cage as well as the space for the make@re less. This
leads to Coulomb repulsions between the electrons on di erent atendictating the ener-
getics, resulting in con gurations higher in energy by almost 30 meVep formula unit(fu)
as the molecule is rotated in theac-plane. The optimized structure has the octahedral
tilts which are in Glazer's notation [38] given by ab*a . This results in the rectangular
cavity being transformed into a rhombus-shaped cavity[see Figufel(b)]. One now has
two inequivalent diagonals along which the molecule can lie. Steric e echgain deter-
mine the favored orientation to be along the long diagonal, as the NkBond lengths are
signi cantly reduced to 3 A as against 3.38A when the molecule was forcefully oriented
along the short diagonal. The latter con guration is lower in energy ¥ 540 meV per
formula unit [39].

Figure 4.1: Bird's eye view in the ac-plane of (a)orthorhombic unit cell of MAPbBr 3 without any
octahedral tilts, (b) experimental orthorhombic cell. (c) Top: An alternate orientation of the molecule
along a body diagonal of the cavity shown by the dotted line was coridered, its projection on the ac-plane
is shown by solid line. Bottom: Orientation in the optimized structure.
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If steric e ect were the dominant energetics dictating the orientaon of the molecule in
the cage, an alternate con guration which should be favored is ome which the molecule
lies along the body diagonal of the cavity as there would be space the molecule to
spread out. This is shown in the top panel of Figure 4.1(c). For compson the loca-
tion/orientation of the molecule inside the cavity for the optimized stucture is shown in
the lower panel of Figure 4.1(c).

Placing the molecule in theac-plane as in the optimized structure, one nds results in an
in-phase rotation of the octahedra in thd>-direction so that no atoms of the cage come too
close to the molecule. This is the reason for the B a tilt pattern that one has in this
case. Changing the orientation of the molecule to that shown in thgpper panel of Figure
4.1(c) allows for a tilt pattern in which the rotations in the b-direction are out of phase i.e.
a b a [See section 1 of Appendix A]. This is also higher in energy by 160 meViber
the optimized structure which has the molecule in thec-plane. These results suggests
that the orientation of the molecule controls the octahedral tilts t there are other
considerations apart from steric e ects which determine the ori¢ation of the molecule in
the octahedral cavity. A detailed description to determine the fawed orientation of the
molecule is given in section 2 of Appendix A and can work as a guiding s$ep determine
the GS structure for any other system with a di erent organic moleule.

Does the molecule sit at the center of the inorganic cage?

The organic molecule comprises of two di erent atoms with di erent kectronegativities
which are connected to hydrogens. This sets up a dipole in each dwdral unit of
the cell. Placing the molecule in the undistorted orthorhombic structre as shown in
Figure 4.1(a), one nds that the molecule does not sit with its centercoinciding with
the geometric center of the cell. It however moves to one part ohé cage with the
consideration being that shorter bonds are made between the mgden atoms attached
to the nitrogen atom(Hy ) and the Br atoms[Figure 4.2(b)]. The question that follows is
how do these dipoles order. This has been a controversial topic irethterature [40]. In
the ac-plane the nearest-neighbor dipoles makes an angle ofl3( in the ground state
structure(See section 3 of Appendix A for a schematic view). Thisrangement is a result
of the correlation between the favored orientation of the moleculend octahedral tilts.
The next question we asked was how do the dipole moments along tlrevity in the b-
direction orient themselves. We could have a ferroelectric arramgent, where the dipole
moments align or an antiferroelectric arrangement of the dipole mants(See section 3 of
Appendix A for a schematic view). The former arrangement has th@ethyl/ammonium
groups of the molecule vertically stacked. Consequently, the seaon between groups
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of the same type is the least in this arrangement. In a simpli ed pictw we can think
of the CH; group as a cation i.e. (CH)" while the NH; group is thought of as an
anion (NHs) . In this simplied picture, the separation between fragments with he
same charge is the least in the ferroelectric type of stacking. Thibauild increase the
Coulomb interactions. Considering the ferroelectric and the antifeoelectric orientations
of the dipole, one found that the antiferroelectric con guration vas lower in energy by
120 meV/fu. In these calculations we allowed only the molecule to relaklowever, when
we allowed the inorganic cage to relax with the ferroelectric stackingne arrived at a
structure with lower symmetry (monoclinic) which was energetically eigenerate with the
antiferroelectric one (the optimized structure).

Figure 4.2: (a)Position of the molecule at the center of the ideal cavity(upperpanel) and corresponding
H-Br bonds(lower panel). (b) Movement of the molecule from the ceater of the cage shown by dotted
line(upper panel) and increased hydrogen bonding after the moveent(lower panel) compared to the ideal
case shown in Figure 2(a). (c) Distorted cavity due to octahedraltilts(upper panel) and corresponding
hydrogen bondings(lower panel). The hydrogen atoms in the NH and CHs; group are indicated by
light(green) and dark(black) circles respectively. Distance betwen H atoms of NH; and Br atoms less
than 3.0 A are shown by solid green lines. The numbers denote the correspdimg distances in Angstroms.

4.3.2 How does the molecule interact with the inorganic cage ?

The movement of the NH end of the molecule away from the center suggests that the
molecule interacts with the inorganic cage through the hydrogensAlthough hydrogen
is known to form multicenter bonds [41], it is not clear what is the natwe of the bond
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here. In order to examine this aspect and understand the micraguc considerations
that led to the shorter Hy-Br bonds, we mapped theab-initio band structure onto a
tight binding model(see the methodology section for the method). &kimally localized
Wannier functions are used for the radial part of the wave functm As we have the
complete Hamiltonian here, we can switch o interactions associatedith parts. This
analysis was done for three situations shown in Figs. 4.2(a)-4.2(chish we now call
casel, case2, case3 respectively. In casel, we have consideredthorhombic unit cell
with no octahedral tilts. The molecule is at the center on the octalizal cavity. In case2,
again there are no octahedral tilts but the molecule was allowed tolag. It was found
to move towards one part of the cage making shorter\HBr bonds. In case3, the whole
system was relaxed and we arrive at the optimized crystal struates which is found to
have octahedral tilts as well as displacement of the molecule. Thepsuposition of the
ab-initio and tight binding bands for case3 is shown in Figure 4.3(a)(otherseagiven in
section 4 of Appendix A).

Figure 4.3: (a) The tight-binding(circles) and ab-initio (solid line) band structure of optimized

MAPDBr 3 for case3. (b) Schematic showing how the molecule interacts with th inorganic cage. There is
stronger covalent interaction between the methyl group and Br doms whereas it is largely electrostatic
in nature between amine group and Br atoms. (c) As a result of this aymmetric interaction the molecule
move towards one direction and Br atoms may also be displaced towds the molecule, giving rise to
octahedral tilts.

In each case we have a good description of thé-initio band structure in terms of the
tight-binding model. This allows us to discuss the role of the electrongtructure on the

observed structural changes. Since we have the tight binding Hétonian in each case,
this allows us to switch o a particular set of hopping interactions to @termine the energy
gain via covalency from the considered hopping channel. The mostsitising result that

we nd (Table 4.1) is that the gain from covalency between H-Br is almost an order
of magnitude higher than the energy gain from covalency between HBr. This result is

similar for all the three cases tabulated in Table 4.1. This suggestsahthe driving force
for Hy moving towards Br is not increased covalent interactions but is mogirobably
electrostatic in nature. This is shown schematically in Figure 4.3(b).
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Table 4.1: Quantitative analysis of the covalent interaction betweeimydrogen and Br
atoms

Energy per fu in meV

Interactions casel case2 case3
H-Br ALL 0.0 0.0 0.0

Hy -Br OFF 63.0 98.0 108.0

Hc-Br OFF 518.0 525.0 495.0

As N is more electronegative than C, one nds that electrons fromhe hydrogen atoms
attached to it are transferred to the nitrogen atom. This leaveshie hydrogen atoms with
a net positive charge. They in turn get attracted to the negativelycharged Br atoms
and hence the K -Br bond lengths become shorter. This explains the very small cdeat
component of the H, -Br interactions, despite the fact that the structural optimization
results in shorterHy -Br bond lengths. The lowering of energy of the system by forming
shorter Hy -Br bonds has the amine end of the molecule moving towards the inargc
cage as a result of an attractive Coulomb interaction. The Br atomsf the cage are also
displaced from their edge centered positions in the idealized peroiskattice shown in
Figure 4.3(c) towards H, atoms. As a result the Pb-Br-Pb angles deviate from 180This
is the reason why hydrogen bonding is responsible for driving the abedral tilts.

Examining the spatial distributions of the wave functions, we nd that the basis functions
associated with the NH part of the molecule turn out to bes p hybrids as shown in
Figure 4.4(a). The spread of the wave function is small and is given inable 4.2. A
similar analysis of the basis functions associated with the hydrogeattached to the CH;
end of the molecule reveal that the basis functions ase p hybrids with weight on two
of the hydrogen atoms as well as on C. This is shown in Figure 4.4(b)n tomparison
with the basis functions associated with the hydrogens attachea the NH; end of the
molecule, here, we nd that the spreads are at least double for twaff the basis functions.
However the spread for one of the basis functions of the hydragatom[shown in Figure
4.4(c)] is found to be anomalously high, almost four times larger comued to the other
two.

Table 4.2: Spread of the wannier functions of the hydrogens attzed to N and C atoms
in the optimized structure

Hydrogens attached to Spread inA?
Hn 0.58 0.60 0.62
Hc 4.08 1.28 1.29

A clue for the larger spreads can be found when one examines theeraction strengths.
These are speci ed in Figure 4.4 for the cases where the matrix elense(MES) are sig-
ni cant . The interaction strengths of the basis functions localize@n the NH; end of the
molecule are found to be smaller than those which are localized on thel{end, indicat-
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Figure 4.4: (a) The spatial distribution of the Wannier functions(WFs) of the h ydrogens attached to
the N atom (b) The spatial distribution of the two hydrogen WFs att ached to the C atom with smaller
spread and (c) having the largest spread with the Wannier centerghown by black dot) moving away from
the C-H bond. The matrix elements(MESs) corresponding to the interactions of these basis functions with
Br are also speci ed. An isosurface value equal to half the maximum &lue was used to make these plots.

ing larger covalency in the later case. The most surprising result isrfthe interactions of
the basis function shown in Figure 4.4(c). Here one nds that the lss function has its
center shifted away from the C-H bond. This shift allows it to interatstrongly with two
of the Br atoms. This suggests the formation of a multicenter bondy hydrogen with C
as well as the two Br atoms which have been shown.

4.3.3 Implications on physical properties

Having understood the energetics governing the location of the taoule in the octahedral
cavity as well as its interactions with the inorganic cage, we proceed examine if the
calculations could throw some light on the glassy dynamics that haveebn seen within
the orthorhombic phase.

The molecular dipoles are believed to be frozen in their position in the lotem-

perature structure [19, 20] with earlier works suggesting that & barriers for rota-
tion(rotation/tumbling motion) of the molecule are large. Theoreti@al calculations shows
that for twisting motions about the C-N axis, the barriers are 100 meV [21] when the
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Figure 4.5: (a) The change in the energy as a function of the rotation(inac-plane) angle of the molecule.
The angle is shown in the inset. The optimized structure for the two minimum enegy con gurations
where C-N axis makes an angle (b) 12° (con guration A) and (c) 28 (con guration B) with the
(101) direction

inorganic network was kept rigid. Our analysis of small excursions tife molecule about
its position in the optimized structure suggest that the energy largtape is complex. One
cannot consider the rotations of the molecule alone, keeping the fganic cage rigid. The
cage has to be allowed to relax during the rotations of the molecule.ekhtce allowing for
small rotations of the molecule in theac-plane we nd there is another minimum whose
energy is just 9 meV/fu higher. This energy di erence is very sensie to the volume of
the unit cell. Using the experimental lattice parameters, the di erace is found to be 5
meV/fu as shown in Figure 4.5(a). The optimized structures for coguration A(ground
state structure) and con guration B(the second minimum) are sbwn in Figs. 4.5(b) and
4.5(c). The di erences in these two structures are small with the B2Br-Pb angles chang-
ing from 15P and 154 to 158 and 152 accompanied by deviations in the K-Br bond
lengths from 2.37, 2.51, 2.61A to 2.60, 2.34, 2.50A. The presence of such close lying



CHAPTER 4. ROLE OF THE A-SITE CATION IN DETERMINING THE
128 PROPERTIES OF HYBRID PEROVSKITE CH 3NH3;PBBRj;

minima separated by large barriers are evidence for the observddsyy dynamics. The
system could be quenched into either of these con gurations whidan additionally be
accessed by thermal excitations.

An additional source of orientational disorder emerges from thedt that the dipoles
stacked in theb-direction have the same energy for a ferroelectric arrangemeag well as
an antiferroelectric arrangement. One should point out here thaine allowed the inorganic
cage to relax when we considered these two orientations of the dgg Con gurations
with a ferroelectric stacking of the dipoles alonf-direction, without allowing the inorganic
cage to relax, are found to be higher in energy than the antiferrl@etric con guration
by about 120 meV/fu, which was mentioned previously. The energy fdscapes with
deep valleys separated by high barriers is reminiscent of what oneualy nds in glassy
systems and could explain the glassy dynamics that have been seemxperiments.

4.4 Conclusions

The origin of the glassy dynamics that have been seen in the ortharbic phase of
hybrid perovskites has been studied considering (MA)PbBras an example. A complex
energy landscape is found with deep valleys and high barriers for nmi&ar rotations

within the ac-plane. Additionally the stacking of dipoles in theb-direction is found to

be energetically degenerate for a ferroelectric as well as an amtidelectric arrangement
again with higher energies for intermediate orientations. These tds could explain the

observed glassy dynamics found in the low temperature structumehere the dipoles are
expected to be frozen in certain orientations.
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5.1 Introduction

The thrust for moving away from a dependence of energy on fodsiéls has led to growing
attention on other sources, solar energy being one of the optiomsn important element
of any process harnessing solar energy and converting it to an #leccurrent involves
using the incident photons to create electron-hole pairs across antal gap. These charge
carriers then have to be physically separated before they recomd [1]. In this process a
current is generated. An obvious route to increase this current te have more electron-
hole pairs. As the solar spectrum shows a maximum intensity(i.e. mopfotons) within
the visible region between 1.7 and 3.2 eV, tuning the band gap of thelaocell material
within this energy window is desired for maximum absorption of the sal@nergy. Though
a number of semiconductors have their band gaps within this energgnge, not all of them
can be used in solar cells due to some constraints, the primary ondnigethe presence
of defects. Along with a desired band gap and the possibility of bandag tuning, we
need large di usion lengths and lifetime for the charge carriers, sbdt they can be easily
separated before the recombination takes place. The presendealefects hampers this.
High mobility of the charge carriers are also desired for swift trangpt and minimal loss.

Recently a new class of perovskite materials have been found to b&axtive for use
in solar cells. These are called hybrid perovskites where tiesite is occupied by an
organic molecule. Due to high charge carrier mobilities, large di usiongths and carrier
lifetime [2{6] , low cost and fast preparation techniques in laboratgrenvironment [2], and
a conversion e ciency of over 20% [7], they have become the sulijed intense research
activity. An advantage of this type of perovskite materials that emerges is the multiple
number of ways that one can control the band gap. Theoreticahfculations show that
the electronic structure of inorganic/hybrid lead halide perovskite [[A/OM)Pb X3, A =
inorganic atom, OM = organic molecule X = halide atom] have contributions from the
S, p states of Pb andp states of the anionX. The valence band maximum is found to
emerge from the interactions between the Pb and X p states and has dominantlyX p
character. The conduction band minimum has Plp character. This immediately suggests
that by tuning the strength of the Pb s - X p interaction, one can change the band gap
of these materials. A route to achieve this is by structural modi caons. Though the
atom/molecule at the A-site has no electronic states several eV about the Fermi energy
it can still control the structural properties and hence have an idirect e ect on the
electronic structure and therefore the band gap. It has been iv&known that the size
of the atom/molecule at the A-site of the perovskite lattice plays an important role in
determining the size of the unit cell that results in a change of the PK bond lengths and
Pb-X -Pb bond angles. These two have di erent e ects on the band gagd the system. A
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smaller size of theA-site cation results in a reduction of the cell volume. This results in
shorter Pb-X distances, which would then lead to an increase in the Coulomb repulsio
between electrons on Pb and those oK. To compensate for this increased Coulomb
repulsion, the PbX octahedra tilt resulting in Pb-X -Pb angles that deviate from 180as
well as small elongations of the Px bond lengths. A shorter PbX bond length increases
the splitting between the bonding and anti-bonding states. The vahee band is pushed
up in energy and this decreases the separation between the vakeband maximum(VBM)
and conduction band minimum(CBM), resulting in a reduction of the bad gap. On the
other hand deviation of the PbX-Pb angle from 180 decreases the bandwidth of the
valence band as a result of reduced connectivity of the Rl3g units. This increases the
separation between VBM and CBM resulting in an increased band gaprhese results
suggest opposite tendencies of the modi cations in the electronitriecture when the
cation at the A-site is replaced by a smaller atom. The natural question that follows
is, which e ect dominates. Our calculations with the inorganic perowkste CsPbBr; in
the orthorhombic phase shows that the changes in the Pb-Br boridngths dictate the
changes in the band gap of the system. One nds a systematic inase in the band
gap with increase in the volume of the unit cell. The band gap tuning is aspossible
by other means. For example, the band gap and optical propertied (A/OM)Pb X3
can be easily tuned in the entire visible region of the electromagnetipestrum by anion
exchange [8,9]. Replacing Pb with Sn in the general composition (MA)3b, «) X3 has
also been reported to control the band gap [10,11]. These are simtlaband gap changes
seen in binary semiconductors by changing the cation or the anion.

The situation becomes more complex in the case of hybrid perovskiteln contrast to
inorganic perovskites where thé\-site is occupied by an spherical atom, in the present
case one has an organic molecule which is asymmetric in shape. In dddito this, now
there are hydrogen atoms associated with the molecule that are aived in hydrogen
bonding with the halide ions. Ab-initio calculations with CH;NH3;Pbl3(MAPDI 3) shows
that replacing MA with an ion which had the same ionic radii led to the oahedral tilts
of the Pb-1 network vanishing [12]. This led them to the conclusion that was hydrogen
bonding with the anions that led to the octahedral tilts found in the lev temperature
experimental structure. So here, hydrogen bonding along with esic e ect plays an
important role in the structural distortions. Also due to the asymnetry of the molecule,
certain orientations are preferred over others. A change in origtion of the molecule leads
to a change in structural distortions giving rise to a complex poterdl energy landscape
[13,14]. Hence changing the organic molecule in the hybrid perovskitean be an e ective
way to tune the band gap of the system. But compared to inorganisystems, here a
systematic study of the e ect of changing the organic molecule is nhetraight forward.
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Several factors have to be considered while replacing the organioletule. The molecule
within the octahedral cavity does not stay at the center of the in@anic cage but moves
towards one end to maximize hydrogen bonding. Such movementstloé molecule along
with its asymmetry lead to anisotropic changes in the structural ditsrtions. The ground
state(GS) orientation and conformation of the molecule also neetts be determined to
obtain the GS structure of the system. Otherwise the optimized sicture may lead
to dierent tilt systems for di erent molecular orientations than what is observed in
experiment. Due to these factors, no systematic trends in the bd gap have been found
as a function of the organic molecule [15]. Unless one isolates the deer factors, the
conclusions are also clouded, leading to an ambiguity in the role of theganic molecule
at the A-site. The paper by Amanet al. [16] suggests that larger cations are expected
to have reduced band gaps due to decreased octahedral tiltinga d¢ontrast, Safdariet
al. [17], nd an increase in the band gap as th&-site cation is changed from MA to EA
to PA.

Our calculations with MAPDbBr; in the orthorhombic phase shows that changes in the
volume lead to change in the movement as well as rotation of the malée. The structural
changes are such that the steric e ects result in larger variatiornsf the out of plane bond
lengths compared to the in-plane bond lengths, but negligible chargé some of the
Pb-Br-Pb bond angles, with a decrease in the volume of the unit cell.his leads to very
small band gap changes arising from variations in bond angles. Hoeewan expansion
of the unit cell volume results in band gap changes arising from variahs in both the
bond lengths as well as the bond angles. Armed with this understaind, we replaced MA
by EA(CH3CH,;NH3) within the octahedral cavity. Taking into consideration the prope
orientation, conformation of the molecule and optimizing the unit celvolume, we found
that the band gap increased with a dominant e ect emerging from amcreased Pb-Br
bond lengths.

5.2 Methodology

The electronic structure of the systems were calculated using aogpected augmented
wave (PAW) [18] implementation of density functional theory within Menna ab-initio
simulation package (VASP) [19,20]. The generalized gradient appimation(GGA) [21]
was used for the exchange-correlation functional. Inclusion ofélmon-local, weak van der
Waals(vdW) interactions are necessary to correctly predict thetrsictural properties. A
GGA+vdW density functional theory calculation has been found to tye a good estimation
of the lattice parameters and structural properties [22,23]. Digpsive interactions are
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responsible for a signi cant contraction of the unit cell, correctingthe overestimation
in general done by GGA. It also gives a band gap close to the experintad values for
Pb based compounds which is striking compared to normal semicomtiors for which
we need to consider hybrid functionals. This happens due to cancéla of errors [24].
However, it cannot accurately describe the band dispersions. lasion of the spin orbit
coupling(SOC) slightly changes the PBx bond lengths but strongly underestimates the
band gap and SOC-GW is needed for accurate description of the @tenic structure
[23,24]. Still DFT calculations are useful for determination of struaral properties and
su cient for comparison of electronic properties of homologous stems [25]. DFT-D2
method of Grimme [26] was considered to introduce dispersive intet@ns within the
system. Gamma centered Monkhorst-Pack k-mesh of 8 8 was used to perform the
k-space integrations. In addition to this, an energy cuto of 600\ was used for the
kinetic energy of the plane waves included in the basis. The orthonmbic unit cell [27]
was used for all the calculations and the internal positions were optized till the forces
on the atoms were less than 13 eV/A to nd the minimum energy structure. This
structure has a space group symmetry nma and is non-polar. For a band gap comparison
between MAPDbBr; and EAPDBr; the lattice parameters were optimized. For MAPbB;4,
the optimized lattice parameters are found to be 7.97, 11.83, and 84, very close to the
experimental values of 7.98, 11.84, and 8.26respectively. For EAPbBr3, the optimized
lattice parameters are found to be 8.11, 12.04, and 8.Al Here we considered the long
C-N bond (2.44A) as the axis of the molecule. In order to nd the positions of the
atoms, the orientation and stacking of the EA molecule were chosesn as to maximize
hydrogen bonding and minimize steric e ects. The long C-N bond of ¢hEA molecule was
chosen to lie along the (101) directior@c-plane), similar to what one had for the MA case.
The stacking of the molecules in thd>-direction was chosen with the C end of the lower
molecule sitting below the N end of the upper molecule. The structusgas then relaxed
in several steps to optimize the volume of the unit cell. The stackingf the molecules
and orientation in the optimized structure is shown in the inset of Figre 5.5(c). Several
other con gurations were considered for the EA molecule. Theseere found to be local
minima with higher energies. An orthorhombic unit cell [28] of CsPbBrwas used for the
calculations.

5.3 Results and Discussion

We rst consider the e ect of changes in the volume of the unit cell o the band gap
of the system. To examine this we have considered the experimdniaw temperature
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structure for CH3NH3PbBr3(MAPDBr 3) which is orthorhombic. The internal positions
were relaxed so that the ions took their minimum energy con guratioin the lattice. The
two in-plane(ac-plane) Pb-Br-Pb bond angles were found to be 153 while the out of
plane Pb-Br-Pb angle was found to be larger and equal to 167 in the optimized unit
cell. In order to vary the volume, we carried out a uniform expansioand compression of
the unit cell in steps up to a variation of 6% about its experimental lame. All angular
distortions were kept constant, and the change in the band gap adunction of the volume
was calculated.

This is shown in Figure 5.1(a) where the band gap variations are showwith respect to
the value for the 0% case. The variations in the band gap are found be monotonic,
with the band gap increasing with an increase in volume.

In order to understand the reason for this trend in the band gapsathe volume is varied,
it is useful to examine the expected changes in the electronic sttue. This is shown
schematically in panel (c) of Figure 5.1. The PIs states which are deep inside the valence
band interact with the anion p states forming bonding and antibonding states. The
antibonding states determine the position and character of the ience band maximum.
The Pb p states make up the conduction band minimum. A change in the volumesults
in an elongation of the Pb-Br bond length. As the hopping interactios strengths for
an electron from Pbs to Br p levels scale with distance as=t? [29], the elongation is
expected to decrease the hopping strengths. This results in a vetion in the bonding-
antibonding separation, resulting in the valence band maximum gettgnpushed deeper
into the valence band. This leads to the observed increase in the loagap with volume.

In the calculations examining the volume increase, the angular distmns of the PbBrg
octahedra were kept xed and their e ect on the band gap increaswas not examined.
We have therefore considered the orthorhombic unit cell at the pgrimental volume and
placed the Pb and Br atoms at their ideal positions in this unit cell. This lads to a
high symmetry orthorhombic cell without any octahedral tilts. All three Pb-Br-Pb bond
angles along the three pseudo cubic axis are 28@Ve then introduce angular distortions
in this high symmetry structure in steps in a controlled manner. We tate the PbXg
octahedras about the pseudo cubic (101) direction in a cooperatiway such that they
are out of phase along the pseudo cubic axes in tlae-plane and in phase along the
pseudo cubich-direction. This introduces a,a b"a tilt pattern [30] consistent with the
dominant GdFeQ; distortions found for MAPDbBr3. In four steps we increase the angular
distortions while the volume of the unit cell is kept xed. In each caseve calculate the
band gap. The change in the band gap as a function of the Pb-Br-Rimgle is shown
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Figure 5.1: (a) Band gap variation as a function of uniform volume change aboutthe experimental
volume and with a xed angular distortion of the optimized structure . (b) Variation in the band gap as
function of angular distortion with xed unit cell volume. (c) Increa sed band gap due to an decreased
bonding-antibonding splitting as a result of increased PbX bond length. (d) Decreased band gap due
to an increased bandwidth as a result of decreased angular distaan.

in Figure 5.1(b). We nd that as the PbBrg octahedra rotate and the Pb-Br-Pb angle
deviates from 180, the band gap of the system is found to increase.

Again we used the schematic representation of the electronic stture shown in Figure
5.1(d) to understand the expected changes with the angular distens. the deviation of
the Pb-Br-Pb angle from 180 results in reduced connectivity of the octahedral networks.
This leads to a reduced bandwidth associated with both the bondinghd antibonding
states as the angle deviates from 180 This leads to an increase in the band gap and
explains the trends seen in Figure 5.1(b).

The calculations presented in Figure 5.1 had some constraints agated with them. In
reality, however, when one replaces an atom at the-site with an atom with a larger ionic
radius, one has an increase in the volume of the unit cell. As a resultette is an increase
in the Pb-Br bond length, as well as a decrease in angular distortiond the Pb-Br-Pb
network. As one saw earlier, the former e ect would result in an inelase in the band gap
while the latter e ect would result in a decrease. This immediately raisethe question of
which e ect is expected to dominate and dictate the changes onepects when an atom
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of smaller ionic radius at theA-site is replaced by an atom with a larger ionic radius. In
order to examine this aspect, we considered the inorganic perowskCsPbBrs.

The experimental low temperature orthorhombic unit cell was coidered. This was then
subject to uniform expansion and compression of 4% with resped the experimental
volume. The atomic positions were relaxed at each volume and we shawepresentative
PbBrg octahedra in each of the three cases in Figure 5.2.

Figure 5.2: Pb-Br bond lengths and Pb-Br-Pb bond angles along the three psedocubic directions in
the optimized structures of CsPbBr; for (a) 4% volume compression (b) experimental volume and (c) 4%
volume expansion.

The octahedron for the 4% compressed case is shown in Figure 5.2@ne nds that the
in-plane(@b-plane) Pb-Br-Pb angles are found to be 143%vhile the out of plane angles are
found to be larger and equal to 154 These angles have to be compared with those for
the optimized experimental unit cell shown in Figure 5.2(b) where thm-plane angles are
15C while the out of plane angles are 1386 There are also changes in the Pb-Br bond
lengths in the compressed structure. They are found to be redadt with respect to the
experimental unit cell. Consequent to these structural changese also nds a decrease
in the band gap. These results suggest that it is the bond length chges which dominate
and determine the change in the band gap.

Examining the case of expansion of the unit cell volume, the geomewf one octahedron
for the 4% expansion case is shown in Figure 5.2(c). Here one nds iagrease in the
in-plane bond angles with respect to the experimental unit cell of 15from 15C as well
as an increase of the out of plane bond angles from 256 157°. The bond length increase
is much larger and this is what determines the band gap change that® nds of 0.09
eVv.

The ideas of how the octahedra responds when a perovskite of fobem ABX 3 is subject
to a volume change have conventionally been described in terms o€ tbompressibility
of the AX 15 units versus theBX g units [31]. These ideas translate into whether the
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volume changes re ect in larger changes in the bond lengths or in thend angles. Hence
depending on the relative compressibilities, one could have either thand gap increasing
or decreasing. This brought us to the question, what happens whene has a molecule
at the A-site. Would one of the two e ects dominate and therefore provida universal

trend in the case of the hybrid perovskites.

Figure 5.3: Band gap variation in MAPbBr 5. Circle : Band gap variation as a function of uniform
volume change about the experimental volume and with a xed angula distortion of the optimized
structure. Square: Band gap variation as a function of uniform volume change about thke experimental
volume and with an allowed structural optimization. Triangle : Di erence plot.

In order to understand the role ofA-site compressibility versusB -site compressibility, we
consider the case of MAPDbBy. A theoretical scheme allows us to disentangle the con-
tributions from each of these parts by considering limiting cases. Weok the optimized
ground state experimental structure and considered uniform pansion and contraction
of the unit cell volume about the experimental volume keeping the gular distortion
xed. For each case we calculate the band gap of the systems. Tinas been plotted
with respect to the value determined for the experimental volumen(= 0O)[see Figure
5.3(circles)]. Next at each volume we have optimized the internal gbens of the ions
to their minimum energy position(Full relax structures), This induce additional angular
distortions compared to the structures where angular distortiwere kept xed. The
band gap was calculated for each case and has been plotted withpexs to the value
determined for the experimental volume (n = 0)[see Figure 5.3(sques)]. The band gap
at each volume without any change in the angular distortion, is indeefdund to be larger.
This is expected because, as we have discussed earlier, change gulan distortion op-
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poses the change in bond lengths. However the enhancementsfaumd to be quite small
where volume changes are 1-2 % of the experimental volume. Thiggests that in this
regime one can clearly say that bond length changes dictate the lohgap change.

Figure 5.4: Pb-Br bond lengths and Pb-Br-Pb bond angles along the three psedocubic directions in
the optimized structures of MAPbBr 3 for (a) 4% volume compression (b) experimental volume and (c)
4% volume expansion.

To quantify this further, we examine the PbBg octahedra in a few cases. These are shown
in Figure 5.4 and correspond to the optimized structures at 4% comgssion, experimental
volume as well as the 4% expanded case. The Pb-Br bond lengths al as the Pb-Br-Pb
angles have been indicated in each case. Considering the unit cellresponding to the
uniformly compressed PbBg octahedra, one nds changes in both the in-plane and out of
plane bond lengths. Changes in the out of plane bond lengths are largompared to the
in-plane ones. The in-plane bond angles are also found to changenas\etrically, with no
variation seen in one of the in-plane Pb-Br-Pb bond angle. The out pfane bond angles
also don't show any variation. Due to volume compression, the e edaf the molecular
asymmetry becomes signi cant resulting a change in only one of thetd angles. This
accounts for the small changes in band gap found for the comped structures arising
from variations in the Pb-Br-Pb angles. One can therefore infer #t steric e ects associ-
ated with the interactions of the molecule with the inorganic cage diate the bond angles
and bond lengths, leading to smaller variations in the bond angles fohé compressed
unit cells. Hence for compressed systems, bond length changesidantly determine the
observed band gap variations.

The results of the expanded unit cell are however di erent. Theres larger freedom for
the molecule to move around. Variations of the bond lengths are similéor in-plane as
well as out of plane ones. The in-plane bond angles are also found barmge modestly
and symmetrically. However, similar to the compressed systems,réealso the out of
plane bond angles hardly change. Hence all bond lengths and mostteg bond angles
contribute to the band gap variations found for the expanded cas
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Figure 5.5: (a) Position of the MA molecule inside the octahedral cavity and its translational, orien-

tational degrees of freedom in theac-plane. Pb-Br bond lengths and Pb-Br-Pb bond angles along the
three pseudocubic directions in the optimized structures with optimized volume of (a) MAPbBr3; and (b)

EAPDBr 3. Insets: Conformation of the MA and EA molecules.

One interesting result that is common, both in case of volume expaos and contraction,

is that the out of plane Pb-Br-Pb bond angles remains invariant. Thisan be understood
by considering the position of the molecule inside the octahedral ¢gv As shown in

Figure 5.5(a), the MA molecule inside the octahedral cavity lies in thac-plane and
has translational degrees of freedom within the plane and small ariational degrees of
freedom about its axis [14]. The Br atoms that are part of the out oplane Pb-Br-Pb

angles lie in the same plane of the molecule and strongly interact with i¥ith a change
in the unit cell volume, the molecule readjust its position and orientadn in the ac-plane
in such a manner that the positions of the apical Br atoms remain uhanged resulting
in no variation of the out of plane Pb-Br-Pb angles. The Br atoms thiatake part in the

in-plane bond angles do not lie in the same plane of the molecule and aparits position
with volume change leading to deviation of the bond angles as expette

Having understood the microscopic considerations that go into damining the band
gap, we wanted to check the e ect of putting a larger molecule at thA-site. For this
we replaced MA by EA = CH;CH,NH3. EA is a larger molecule than MA and is more
asymmetric having a triangular shape with two Carbon atoms(See ¢hinset of Figure
5.5(c), the molecule is in the octahedral cavity). For EAPbBy no experimental data
exists for the three dimensional compound in the perovskite struze. So, we use our
understandings of the microscopic interactions leading to the grod state structure from
MAPDBTr 3, and predict the favored structure for EAPbBg(See the methodology section
for a detail description). For the purpose of comparison, the vale of MAPbBr; was
also optimized. The structure, volume and band gap of volume optined MAPbBr; and
EAPDBr 3 are shown in Figs. 5.5(b) and 5.5(c) respectively. Stacking of the teoules are
shown the insets. There is a 5.5% increase in volume going from MA to Eas a result the
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Pb-Br bond lengths are found to increase. Here also the EA molecuias translational
degree of freedom in thec-plane. As a result of this the out of plane Pb-Br-Pb bond
angles along thdx>-direction remain almost unchanged. The in-plane bond angles incsea
from 153 to 155 as result of the larger size of the EA molecule and this has an opposite
e ect on the band gap change. The band gap increases by 160 medMng from MA to
EA and the dominant contribution is from the Pb-Br bond length chamges.

5.4 Conclusions

In any perovskite systemABX 3) the change in the unit cell volume due to a change in
the size of theA-site cation results in a change in th&-X bond lengths as well a8 -X -B
bond angles. These are the main structural parameters that doty control the electronic
structure of the system. For instance replacing the cation at thA-site with a larger atom
results in an increase in théB-X bond length as well aB-X -B bond angles. An increase
in the bond length is found to decrease the band gap while an increaseghe bond angle
results in an decreased band gap. Whether the change in bond ldmgbr the bond angles
control band gap changes depends entirely on the relative comgs#ilities of theBX s and
AX 1, polyhedra. Our calculations suggests that, for hybrid lead halide pmvskites the
changes in the Pb X bond lengths plays the dominant role in determining the changes
in the electronic structure, especially when one is compressing theitucell. In this limit
standard concepts of structural changes discussed in the cexit of inorganic perovskites
are no longer valid. Steric e ects of the molecule with the inorganic gea dictate the
structural changes leading to bond angles changes being small. e texpanded unit cell
limit, however both e ects contribute.
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6.1 Introduction

The well known ferroelectric materials BaTiQ, PbTiO 3 with an empty d shell, belong to
the perovskite family and exhibit ferroelectric properties below a dain temperature due
to a displacive phase transition [1]. Such a phase transition leads to splacement of the
atoms which results in the development of a net dipole moment in the iircell. These
displacements have been understood in terms of the softening oparticular phonon
mode with temperature. The frequency of that mode decreases the temperature de-
creases, becoming soft at the transition temperature resulting & change in the crystal
structure. The eigenvector corresponding to the soft-mode @emines the structure be-
low the transition temperature. Some members of the perovskitarhily, for example
SrTiO3, KTaO3 have a soft polar mode that shows a decrease in the frequency waki-
creasing temperature but never becomes completely soft eventhé lowest attainable
temperature. These materials are called quantum paraelectrics iocipient ferroelectrics.
Suppression of the ferroelectric phase transition has been exptnby the presence of
guantum uctuations [2, 3], which play an important role as there areseveral competing
structures with very small energy di erences at low temperature [3]. Associated with
the polar mode, the temperature(T) dependence of the dielectranstant(") also shows
anomalous behavior. Compared to ferroelectric materials there i® peak feature in the
"(T) vs T plot. " slowly increases with a decreasing temperature and as$ TO K, it
remains constant with a large value of 100 [2,4,5]. This is also in contrast with normal
dielectrics like oxides, alkali halides having a smaller value tfbetween 5 and 10, and
which decreases with a decreasing temperature [5]. Incipient feglectrics are in a critical
state in between the ferroelectric and paraelectric state and aneteresting from both a
physics and an applications point of view.

Small external perturbations have been found to be able to desyr this state and drive
the system ferroelectric [6]. For example a small amount of strain drTiO3 can drive
the system ferroelectric at low temperatures [7,8]. There is also eport of room tem-
perature ferroelectricity in SrTiOz by applying strain [9]. Another way to stabilize the
ferroelectric phase is to introduce impurities in the systemA-site, B-site and simulta-
neousA-site and B-site substitution in SrTiO3 has been studied. Small amount of Ca
doping at the Sr site drives the system ferroelectric [10, 11]B-site substitution have
smaller e ects, but substitution of two ions with di erent valency at the B -site, such as in
SrTig x)(Mg1=3Nb,-3)x O3 show a relaxor behaviour [12] where we observe a broad peak in
the dielectric permittivity( "% as a function of temperature. The peak temperature(¥)
shifts towards higher values with an increase in the measuring fregpcy leading to a
frequency dispersion. However no ferroelectric hysteresis wdserved at low tempera-
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tures below T, characterizing it as a glass like relaxor phase. For simultaneo#sand
B -site substitution, such as in [SrTi} x)[PbMg;-3Nb,-3]xO3 [12,13], a relaxor behaviour
with ferroelectric properties at low temperatures can be observalepending on the dop-
ing concentrations. Li doping at the K-site in KTaQ; also shows relaxor behaviour [14].
Relaxor behaviour in doped incipient ferroelectrics is associated withe presence of po-
lar/ferroelectric nanodomains in the system [15,16]. Formation ofish polar nanodomains
are due to the presence of dipolar defects that polarizes the saunding region depending
on the correlation length of the host material. The dipolar interactios here can lead to
long-range ferroelectric order or to a glass-like relaxor state dapding on several factors,
such as concentration of the defects, polarizability of the host ate, temperature etc.

Another example of an incipient ferroelectric apart from the perakites, is TiO, in the
rutile phase. The unit cell is tetragonal with ac=aratio of 0.64. Ti and O atoms form
chains of edge sharing TiQoctahedra running parallel to thec-direction. These chains are
corner shared with each other in theb-plane. Phonon dispersions show softening of the
polar Ay, mode with decreasing temperature, but never becomes completebft [17,18].
Associated with the soft-mode, the dielectric constant measuremts also shows the sig-
nature of an incipient ferroelectric [19]. There are recent reporfsom rst principle elec-
tronic structure calculations, showing ferroelectricity in strainedliO, [20{22]. Previously
co-doping of Nb(as donor) and In, Al, Ga(as acceptor) was regded to give rise to high
dielectric permittivity with minimal loss as a result of localization of the @ped charge
carriers within the defect cluster [23]. Dielectric measurements difi¢ (Nb+In) co-doped
samples showed both high temperature and low temperature dielectrelaxation with
a frequency dispersion in the dielectric permittivity as a function oféamperature. The
high temperature dielectric relaxation above 450 K was attributeda Maxwell-Wagner
interfacial polarization, whereas the low temperature dielectric l@xation below 50 K was
attributed to the freezing of the pinned electrons within the defdcclusters. This low
temperature dielectric relaxation can also be the signature of a relar state with the
formation of polar nanodomains as a result of co-doping. Howeverch a possibility was
not explored here.

In this chapter, we reportab-initio density functional theory based calculations to explore
the e ect of co-doping Nb(as donor) and Cr(as acceptor) in rutileTiO,. Structural
analysis shows polar distortions in the Ti@ octahedra in the vicinity of the dopants.
Nb going in to the system as NB" carries an e ective positive charge, whereas Cr going
as CP* has an e ective negative charge. Doping such an charged complexetuivalent
to doping an electric dipole. It is found that, here the dipolar electriceld associated
with the doped pair is the perturbation to drive the polar distortions Doping a donor-
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acceptor pair is di erent from doping individual atoms or co-doping autral pairs. We have
examined individual dopants, co-dopants which cannot act as a dileoand hence no polar
distortion in the the TiO g octahedra was found. Also correlation in the direction of the
polar distortions in each TiQ; octahedra, suggests formation of polar regions around the
doped dipoles. This mechanism also works when we dope Nb-In indicgtthat, co-doping
charged pairs can develop polar regions surrounding them in TiO Now, the doping
concentration and the degree of ordering of the doped dipoles wecif the system would be
ferroelectric or glass-like. Our calculations considers a perfectigdered distribution of the
doped dipoles leading to a ferroelectric state with high value of polaaizon. Experimental
results however shows a ferroelectric behaviour for lower dopingncentrations 5% with
a maximum value of 300 C/m? for 1% doping [24]. No ferroelectric properties was
found for a 10% doped sample. Our calculations shows a polarizaticalue of 3400
C/m? for 2.5% doping which increases to 8400 C/m? for a doping concentration
of 5%. The calculated values are of the order of magnitude higherngpared to the
experimentally reported values due to the initial condition of perfécordering of the
doped dipoles. This suggests an increase in the polarization value wittisreasing doping.
However with increasing doping, the probability of clustering of the abed dipoles also
increases. We found within our calculation that clustering favors f@a doing concentration
of 10% and has the e ect of decreasing the polarization of the sgst to 500 C/m 2 which
would otherwise be negligible in real systems.

6.2 Methodology

The electronic structure of the systems were calculated using aogpected augmented
wave (PAW) [25] implementation of density functional theory within Menna ab-initio
simulation package (VASP) [26] [27]. The generalized gradient apprmation(GGA) [28]
was used for the exchange-correlation functional. Depending dmetunit cell dimensions
a Monkhorst-Pack k-mesh [29] of 44 4,4 4 2 and 2 2 4 were used for the 72, 120
and 216 atom systems respectively. The supercells were genatdtem the experimental
tetragonal unit cell of rutile TiO, [30]. The lattice constants were kept xed at the
experimental values, but the internal coordinates were relaxearf a minimum energy
con guration. The internal positions were optimized till the forceson the atoms were
less than 102 eV/A. In addition to this, an energy cuto of 400 eV was used for the
kinetic energy of the plane waves included in the basis. Polarization hfe systems were
calculated using the Berry Phase Technique [31, 32] within VASP.
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6.3 Results and Discussion

We started with the experimental rutile structure of TiO, with the experimental lattice
parameters a = b = 4.5A and ¢ = 2.96A. The volume of the unit cell was kept xed
and the ionic positions were relaxed to get the minimum energy con gation. As shown
in Figure 6.1(a), the relaxed structure do not show any ferroeleot(FE) distortions,
where the Ti atoms are sitting at the center of the TiQ octahedra. Now there was no
ferroelectric distortions in the experimental structure also anda check if we are stuck
into some local minima during the structural optimization process, &introduced a small
ferroelectric distortion in the experimental unit cell. The Ti atom atthe center of the
unit cell was displaced towards one of the six O atoms surrounding iNow the relaxed
structure showed ferroelectric distortions in the unit cell, with o centering of the Ti
atoms along one of the Ti-O bond as shown in Figure 6.1(b). Intera@sgly both the
paraelectric and ferroelectric structure as shown in Figure 6.1(and 6.1(b) respectively,
were found to be energetically degenerate. This is in agreement witle fact that, rutile
TiO, is an incipient ferroelectric, where quantum uctuations prevent he ferroelectric
distortions to occur at low temperatures [3].

Figure 6.1: Upper panel : Tetragonal unit cell of TiO,. (a) No ferroelectric distortion or o -centering

of the Ti atom in the relaxed experimental unit cell. (b) O -centerin g of the Ti atom in the relaxed
unit cell with an initial ferroelectric distortion. Lower panel : Two po ssible doping con guration among
many others where Nb, Cr replaces (c) two nearest neighbor Ti aims in the rst case, and (d) two next
nearest neighbor Ti atoms in the second case.

Next we proceed to see if co-doping Nb-Cr can remove this degewsr between the two
competing structures. For this we rst considered a 120 atom sepcell of TiO, with 40
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Ti atoms and replaced two of them with one Cr and one Nb atom. Thisocresponds to
a doping concentration of 5%. We considered various possible waysloping the Nb-Cr

pair in the supercell. The most favored con guration was found to é& the one where the
separation between the doped pairs was minimum with a value of 286As shown in

Figure 6.1(c), this involves replacing two Ti atoms along the-direction which are nearest
neighbors. This con guration was energetically favored by 40 meWer the next suitable

con guration, where the Nb and Cr was separated by 3.3V replacing two next nearest
neighbor Ti atoms shown in Figure 6.1(d).

Figure 6.2: The calculated up (solid line) and down (dashed line) spin projected (2 Ti d, (b) Cr d,
and (c) Nb d partial density of states at 5% of doping. The Ti atom which is just above the Cr atom is
the one for which the density of states is shown. The transition meal(TM)-oxygen bond lengths of the
(TM)O ¢ octahedra are shown in the insets.

Analysis of the electronic structure helps us to understand the igin of such energy
lowering for a nearest neighbor doping con guration. Atom projaed partial density of
states shows that, Ti with ad® electron con guration is in a 4+ oxidation state[Figure
6.2(a)]. Cr has ad®(Cr3*) electron con guration[Figure 6.2(b)]. An associated magnetic
moment of 2.90 g also suggests the 3+ oxidation state of Cr. Nb with al electron
con guration[Figure 6.2(c)] is in Nb>* state. So in contrast to isovalent substitution,
here Nb carries an e ective positive charge whereas Cr has an eige negative charge.
The atoms in such a charged complex attract each other via coulonibteraction and
can gain in energy when comes closer. This is the reason why a sefpamaof 2.96A is
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energetically favorable than 3.5&. Also the doped atoms do not contribute any states at
the Fermi level and leaves the system insulating. Structural anadis shows o -centering
of the Ti atoms in the TiOg octahedra in the vicinity of the doped atoms[inset of Figure
6.2(a)]. O -centering of the Cr and Nb atoms in thec-direction was also observed[insets
of Figs. 6.2(b)-6.2(c)]. Total energy of this structure is lower by 10 meV per formula
unit over the structure where no o -centering of the transition netal(TM) atoms were
allowed, suggesting that such co-doping stabilizes the ferroelectstructure tilting the
energy balance in these incipient ferroelectrics.

The question that followed immediately was whether co-doping wassesitial or we could
dope either Cr or Nb in the system and the e ect would be similar. This igmportant
because there are possibilities for both Cr and Nb to induce polar distions in the
system individually. Cr with a d® electron con guration is a band insulator and not J-T
active. But it may distort and gain in energy by second order Jahndller e ects [33]
which could lead to polar distortions being stabilized. This in-turn may rigger polar
distortions in the TiOg octahedra. To address this we took the same supercell of BiO
and replaced one Ti with a Mn atom which corresponds to a doping coentration of
2.50%. Mrf* with a d® electron con guration is a stable valence state for Mn and we
expect an isovalent substitution with charge neutrality maintained.Analysis of the partial
density of states[Figure 6.3(a)] along with a magnetic moment of 3.0% shows that Mn
has ad® electron con guration and leads to an insulating state as expectedhough the
system comes out to be insulating, no o -centering of the Ti atomas well as Mn atom
was observed in the relaxed structure[inset of Figure 6.3(a)]. Calations were also done
for 5% doping in a similar manner by replacing two nearest neighbor Ti@ns with Mn
along the c-direction. This also gives similar result as described above withoutyapolar
distortions in the system. Not every band insulator distorts leadingo an o -centering of
transition metal atoms, and these observations are consistenitivthat. So doping Mn
alone doesn't stabilize the ferroelectric state.

Now the other doped atom Nb has a large ionic radii compared to Ti. Saoping Nb
is analogous to applying internal strain in the system which may agairrijger polar
distortions of Ti in TiO ¢ octahedra. To check this we do a similar analysis by doping
a large Zr at the Ti-site. Zr is chosen as we have no associated cleacpping for Z¢+.
Atom projected partial density of state [Figure 6.3(b)] along with &ero magnetic moment
shows an isovalent substitution of the Zr atom with al® electron con guration. Zr** also
has a large ionic radii and induces internal strain. Though the systecomes out to be
an insulator, the structural analysis shows no o -centring in the TOg as well as ZrQ
octahedra [inset of Figure 6.3(b)]. Increasing the doping conceation from 2.5 to 5%
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Figure 6.3: The calculated up (solid line) and down (dashed line) spin projected (3 Mn d and (b) Zr
d partial density of states at 2.5% of doping. The transition metal-oxygen bond lengths of the (TM)Oeg
octahedra are shown in the insets.

was also not able to induce any polar distortions. So doping only an atowith large ionic
radii and applying internal strain is not enough to induce ferroeledcity in TiO ».

There is something more that happens when we dope two di erent @ins(Nb-Cr pair)
compared to doping the same type of atoms in the system. For Nb-Co-doping the
Ti-Cr bond length along the c-direction is 2.9, whereas Ti-Nb bond length is 3.0A.

As shown in Figure 6.4(a), there is a deliberate breaking of inversiogmmetry in the

c-direction for Nb-Cr doping, which is not possible when we dope thersa type of atoms
(Mn or Zr) in the system. To check the role of the symmetry breakiy, we doped Zr-Mn
pair in the system similar to Nb-Cr doping.

As shown in Figure 6.4(a), the Ti-Mn bond length along thec-direction is found to be
2.9QA and Ti-Zr bond length is 3.04A. Though doping of the Zr-Mn pair broke inversion
symmetry in the c-direction, the relaxed structure showed no o -centering of eigr Ti,
Mn or Zr atoms[Figure 6.4(b)]. So, inversion symmetry breaking mayeban essential but
not the su cient condition to induce polar distortions in the system. Nb-Cr co-doping is
di erent from Zr-Mn doping where both Zr and Mn goes as Z¥* and Mn**. Nb going
as NP* and Cr going as C?* ensures an e ective positive/negative charge for Nb and
Cr respectively. Such a charged complex has an electric dipole assed with it[Figure
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Figure 6.4: (a) Ti-dopant distances for di erent doping cases. For Nb-Cr co-doping there is a deliberate
breaking of inversion symmetry with di erent Cr-Ti and Nb-Ti dista nces alongc-axis. Whereas when
we dope only Mn or Zr in the system, there is no inversion symmetry beaking. However for Zr-Mn co-
doping there is similar inversion symmetry breaking like Nb-Cr co-dopirg. (b) For 5% Zr-Mn co-doping,
instead of inversion symmetry breaking no o -centering of the metl atoms in the (TM)O ¢ octahedra
was observed. Zr-O, Mn-O and Ti-O bond lengths are shown. (c) Sematic representation of the doped
Nb-Cr pair acting as a dipole and the polarization in the nearby TiOg octahedra.

6.4(c)]. Structural analysis shows that, the dipolar eld associatewith the Nb-Cr pair
polarizes the neighboring TiQ octahedra. The o -centering in the surrounding TiQ
octahedras has a dominant component in the same direction as theped dipole. As
shown in Figure 6.4(c), this indicates formation of small polar regionsurrounding the
charged complex. Formation of such polar regions in incipient ferreetrics are reported
to give rise to relaxor behaviour in the dielectric measurement dataj116]. Compared to
a normal ferroelectric that shows a sharp peak at the ferroeleict transition temperature,
a relaxor shows a broad peak in the dielectric permittivity(9) as a function of tempera-
ture. The peak temperature(T,) also shifts towards higher values with an increase in the
measuring frequency leading to a frequency dispersion. The low feenature state below
T of a relaxor can be either ferroelectric or glass like depending of tHeping concen-
tration and degree of dipolar ordering. Low temperature pyrocuoent measurements of
the Nb-Cr co-doped TiQ, con rm the ferroelectric nature of the samples for a low doping
concentrations [24]. Spontaneous polarization measurementswad a maximum value of
300 C/m? for 1% doping and was observed for doping concentrations5%. A doping
concentration of 10% showed no ferroelectric behaviour at anymeerature.

To address this we calculated the polarization of the co-doped salep using berry phase
method. A doping concentration of 2.77% gives a polarization value of 3400 C/m?2.
This increases to 8400 C/m? for a concentration of 5%. The calculated polarization
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Figure 6.5: Doping of two Nb-Cr pair for 10% doping with two situations. (a) Clust ering and (b)
non-clustering of the two doped dipoles. For the non-clustering cse, the two doped dipoles are separated
by a distance of 6.50A.

values are an order of magnitude higher compared to the experingnvalues due to per-
fect ordering of the doped dipoles considered in our calculations. i$hn-turn suggests an
enhanced polarization value with increasing doping concentration.uBwith an increasing
doping concentration, the probability of clustering also increasesor a 10% doping con-
centration we introduce a pair of (Nb-Cr) units in the supercell cosidering both clustered
and non-clustered geometries of the doped pairs. A typical situah of clustering and
non-clustering of the doped atoms are shown in Figs. 6.5(a) and (lgspectively. The
clustered state was found to be the ground state over the notustered state(by an energy
of 62 meV) where the two doped (Nb-Cr) units were far apart[seeidgure 6.5(b)]. The
calculated polarization for the clustering case was found to havedugced signi cantly to
500 C/m?, although one expects a negligible polarization value in the real maiai:

6.4 Conclusions

In summary, quantum paraelectricity is a manifestation of the comgtition of quantum
uctuations with the long-range dipolar ordering. External pertubations such as strain
or pressure have been shown to induce long-range dipolar order inese systems. Con-
sidering the example of TiQ which is known to be a quantum paraelectric, rst principle
electronic structure calculations suggest that doping by either Nbr Cr has no e ect on
the quantum paraelectric state. However co-doping with a don@eceptor pair as shown
in this case (Nb-Cr pair) stabilizes the ferroelectric state. The NI&r defect pair polarizes
the environment, pushing the subtle energy balance towards therfoelectric state. The
phenomenon is reminiscent to dilute magnetic semiconductor whereping of a magnetic
atom polarizes the charge carriers. This method of dipole doping incked ferroelectricity
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can be advantageous in designing new ferroelectrics and multifeco It is however re-
stricted to the low doping regime as at higher concentrations one ds clustering and the
loss of polarization.
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7.1 Introduction

Ferroelectricity is a property of certain materials in which they posss a spontaneous
electric polarization that can be reversed by the application of an &nal electric eld.
Ferroelectricity was discovered around 1920 in Rochelle salt by Vadks[1,2]. However
the discovery of ferroelectricity in BaTiQ; by Wul and Goldman (1945, 1946) shifted
the attention of the researchers to investigate the origin of fewelectricity in a much
simpler structure, the perovskite structure. Instead of the stctural simplicity, a complete
understanding of the microscopic origin of ferroelectricity in the pevskite oxides is still
missing. Considering a fully ionic model it was shown that the origin of fi@electricity
in BaTiO3 is a result of the competition between short-range and long-rangaoulomb
forces [3{5]. The short-ranged Coulomb interactions favor the bic paraelectric phase
whereas long-range electrostatic forces favor the ferroelécfpolar) state. Later usingab-
initio calculations it was shown that the covalent interactions between éhTi d and O p
states were essential for the ferroelectric distortions to occf#,6]. Recently it was shown
that ferroelectricity survives in BaTiO3 even in the presence of oxygen vacancies(charge
carriers) [7]. Ferroelectric distortions were found to survive up ta critical concentration
of 0.1 electrons per unit cell [8]. This further raised the question abbthe role of the
long-range interactions in stabilizing ferroelectricity and it has beeshown that only
the short-range portion of the screened Coulomb interactions pla role in ferroelectric
distortions, with an interaction range of the order of the lattice costant in the case of
BaTiOs.

The combined role of covalency and short-range repulsive forcessulting in the polar
distortions in BaTiO3 has been examined in details [9]. Considering structural distortions
found in the experimental unit cell of BaTiG;, it was shown within ab-initio calculations,
that the dominant distortion in tetragonal BaTiO 3 is aided by short-range repulsive forces.
The displacement of the Ti atom towards one of the apical oxygemgves an energy gain
from the increased hopping between Ti and oxygen. However, this expected to be
destabilized by the increased repulsion between the electrons onalid oxygen. Total
energy as a function of Ti displacement towards one of the apicatygens in the ideal
perovskite structure shows no minimum. However movement of th@anar oxygens in
the direction opposite to the Ti atoms decreases the repulsion eten the electrons on
the planar oxygens and Ti, as well as that with the apical oxygensheéreby aiding the
observed ferroelectric distortions.

Like BaTiO3, PbTiO3 is also a classic example of a ferroelectric material with a per-
ovskite structure. The oxides BaTiQ and PbTiO3; have similar cohesive properties and
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unit cell volume [4] but show very di erent ferroelectric behavior. Bth are paraelectric
(non-polar) at high temperatures and have a simple cubic perovseitstructure. BaTiOs;
undergoes three ferroelectric phase transitions, cubic to teganal (at 393 K), tetrago-
nal to orthorhombic (at 278 K) and orthorhombic to rhombohedré(at 183 K), whereas
PbTiO3 has only one, cubic to tetragonal at 766 K. The ferroelectric distbons involve
small displacements of the cations relative to the anions, leading ton&t dipole moment
per unit volume. The displacements in the tetragonal ferroelectriphase of both the
compounds are di erent in nature and are also larger in PbTi©[10]. Moreover, in the
tetragonal ferroelectric phase PbTiQ has a large tetragonat=astrain (6%) than BaTiO;
(1%). Interestingly the ferroelectric distortions in the tetragoml phase of PbTiQ are dif-
ferent from that of BaTiO3. The apical oxygen atoms move in the same direction of the
Ti atom displacement. This further raises the question about theote of the short-range
forces in PbTiO;. Our calculations show that due to structural di erence and addibnal
tetragonality the energy gain due to increased covalency is su ciérto drive a polar
distortion in the unit cell.

7.2 Methodology

The electronic structure of the systems were calculated using aogpected augmented
wave (PAW) [11] implementation of density functional theory within Menna ab-initio
simulation package (VASP) [12] [13]. The generalized gradient appimation(GGA) [14]
was used for the exchange-correlation functional. Experiment&tragonal unit cell of
BaTiO3 [15] with lattice parameters a = 3.99, ¢ = 4.04A and PbTiO3 [16] with lattice
parameters a = 3.9@, ¢ = 4.13A was used. The lattice constants were kept xed at
the experimental values, but the internal coordinates were relag for a minimum energy
con guration where required. The internal positions were optimiztill the forces on the
atoms were less than 10 eV/A. A Monkhorst-Pack k-mesh of 8 8 8 was used to
perform the k space integrations. In addition to this, an energy ¢a of 600 eV was used
for the kinetic energy of the plane waves included in the basis.

7.3 Results and Discussion

We start by giving a brief review of the results we previously have fdaTiO3 [9]. At
the high temperature, barium titanate (BaTiOs) has a cubic non-polar structure. Ba
atoms are at the corner positions of the cube, Ti atoms are at lm€enter and O atoms
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are at face-centered positions. These are the ideal positions fahich the positive and
negative charge centers coincide and we do not have any dipole matagper unit cell.

The low temperature structure [15] considered for BaTigis the tetragonal structure with

ferroelectric distortions. The atoms are shifted from their ideal @sitions in such a way
that now there is a net dipole moment developed in the unit cell, as a rdsof positive

and negative charge center separation. The ferroelectric dispdégeents of the atoms from
their ideal position are shown in Figure 7.1(a).

Figure 7.1: Experimental tetragonal unit cell of BaTiO 3: (a) Displacement of atoms from their ideal
positions (b) unequal Ti-O bond lengths due to ferroelectric distotions.

Analysis of the experimental structure shows three possible misapic interactions that
can control the energetics.

1. Energy gain from hopping due to a shorter Ti-O bond length(1.83 as shown in
Figure 7.1(b).

2. Energy gain from long-range Coulomb interactions arising due tbé non-vanishing
dipole moments in the unit cell as a result of displacement of the atonfiiom their
ideal positions[Figure 7.1(a)].

3. Energy loss from short-range Coulomb repulsion as some of themas are coming
closer to each other.

Considering the dipolar interaction to be weak, the rst question tlat comes is whether
the gain in band energy(increased hopping) from a shorter Ti-O bdmalong the c-axis,
[Figure 7.1(b)] stabilizes the ferroelectric state. To verify this a natel calculation was
performed. The ideal paraelectric structure was taken where ¢hatoms sit at their ideal
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positions in the tetragonal unit cell. Ba atoms at the corner of the nit cell, Ti atoms are
at base center and O atoms are at face-centered positions. Thée Ti atom was moved
in steps of 0.008 from the center of the unit cell towards one of the apical oxygewhile
all other atoms were sitting at their ideal positions [inset of Figure 7(&)]. Similarly, one
of the apical oxygen was moved towards the Ti atom while the positicof all the other
atoms was kept xed[inset of Figure 7.2(b)]. In each case, the tdtanergy of the system
was calculated and has been plotted as a function of displacementsaswn in Figure 7.2.

Figure 7.2: Total energy variation with (a) Ti displacement and (b) Apical-O disp lacement from their
ideal position in the ideal perovskite structure. Figures plotted with the data taken from Ref. [9]

With a displacement of the atoms from their ideal positions, we expea gain in energy
due to an increased covalency between the Ti and apical oxygenths distance between
them is decreasing. But as shown in Figure 7.2, no such energy lowgrimas observed.
There is also no minimum in the energy vs. displacement data in eithersea This
suggested that the band energy gain alone was not enough to stale the ferroelectric
structure. Some additional interactions have to be considered.h& only aspect that was
missing in the above study is the role of the planar oxygens. Displacent of the planar
oxygens in a direction opposite to that of the Ti displacement[Figur&.1(a)] was not
entirely clear.

In order to examine that, the Hartree energy of the system waseasured as a function of
the displacement of the Ti and apical oxygen, similar to the total egrgy calculation. This
is shown in Figs. 7.3(a) and (b) respectively. In both cases, we sesharp increase in the
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Figure 7.3: Hartree energy variation with (a) Ti displacement and (b) apical oxygen displacement from
their ideal positions in the ideal perovskite structure. (c) Displacement of planar oxygens from their ideal
face-centered positions in the experimental structure of BaTiQ. The displacements are along thec-axis
and away from the Ti atom. Figures plotted with the data taken from Ref. [9]

Hartree energy from the very beginning as the atoms are moveaiin their ideal positions.
This increase in Hartree energy is expected because, as the at@mse closer, repulsion
between the electrons on Ti and O increases as a result of chartpaid overlapping. Next,
the role of the planer oxygens was examined. In this case, all theoats were considered
at their experimental positions except the planar oxygens, whichere kept at the ideal
positions(face-center position of the unit cell). In this case, it wasund that as the planar
oxygens moved away from the Ti atom[inset of Figure 7.3(c)], the lHaee contribution to
the total energy decreased[Figure 7.3(c)]. The larger change inftfae energy associated
with oxygen displacements is due to the fact that, oxygemp orbitals are much more
extended in space. One of the interesting observation in the abowalculations is that,
the change in energy associated with the Ti displacement of 0.88owards apical oxygens
is 0.41 eV, while that for apical oxygen is 1.57 eV for the same displaaamtjFigs. 7.3(a)
and (b)]. This indicates that a substantial portion of the Coulomb reulsion is between
the electrons on the apical oxygens and the planar oxygens, aseault of their extended
wave functions. So the conclusion was that the movement of the pkr oxygens opposite
to the Ti provides a part of the energy reduction required to allowte Ti atom and
the apical oxygen to move towards each other. So this is how sheognged Coulomb
interactions can be said to stabilize ferroelectricity.
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After this, in this work, we started examining the role of covalencyrad Coulomb repulsions
in driving the ferroelectric distortions in PbTiOs. In case of PbTiQ; the only chemical
di erence that we have with respect to BaTiQ is that Pb in the 2+ oxidation state

has a lone pair 8 electron associated with it, PB* | [Xe]4f 1*5d'%6s2. This also needs
an investigation to see if the lone pair has any role for the di erence ithe properties
of BaTiO3; and PbTiO3. At high temperatures lead titanate (PbTiOs) also has a cubic
non-polar structure with the atoms sitting in their ideal positions. B atoms are at the
corner positions of the cube, Ti atoms are at base center positomnd O atoms are
at face-centered positions. The low-temperature structure #bTiO; is tetragonal and
ferroelectric. The atoms are not in their ideal positions. So there &net dipole moment
in the unit cell. The experimental tetragonal structure and the feroelectric displacement
of the atoms are shown in Figure 7.4(a).

Figure 7.4: Experimental tetragonal unit cell of PbTiO 3: (a) Displacement of atoms from their ideal
positions (b) unequal Ti-O bond lengths due to ferroelectric distotions.

In Contrast to BaTiO 3, here all the atoms have shifted from their ideal position in the
same direction(+ve c-direction) and are also larger. Here also we start by asking the
same question. If the band energy gain (increased covalency) doethe shorter Ti-O
bond[Figure 7.4(b)] is able to stabilize the ferroelectric state. To imstigate that we
considered the ideal para-electric structure and similarly moved éhTi atom towards one
of the apical oxygen [inset of Figure 7.5(a)], and one of the apicalygen towards the Ti
atom [inset of Figure 7.5(b)]. During such displacements, all other @ins stayed at their
ideal positions. The variation in the total energy as a function of téa displacement of the
atoms is shown in Figs. 7.5(a) and (b) respectively.

Now in contrast to BaTiO3, we see a prominent energy minimum associated with the
Ti atom displacement at 0.14A from the center of the unit cell[Figure 7.5(a)]. This
suggests a favored o -center position of the Ti atom as a resulf increased covalency
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Figure 7.5: Total energy variation with (a) Ti displacement and (b) Apical-O disp lacement from their
ideal position in the ideal perovskite structure.

which was missing in case of BaTi® The apical oxygen displacement, however, shows
no energy gain probably due to its repulsive interactions with the plaar oxygens similar
to the case of BaTiQ. To check this further the Hartree energy was also measured as a
function of the displacement of the atoms and has been shown in Figu7.6.

Figure 7.6: Hartree energy variation with (a) Ti displacement and (b) apical oxygen displacement from
their ideal positions in the ideal perovskite structure.

Hartree energy increases as expected as a result of increasedocgb repulsion between
the electron clouds. Here also we see a larger increase in the Hartemergy associated
with apical oxygen displacement compared to Ti atom, indicating theepulsive interaction
between the apical and planer oxygens. This is the reason that we Kot see any minimum
in the total energy plot when the apical oxygen was displaced towds the Ti atom. The
energy loss due to increased Coulomb repulsion dominates over tlangrom covalency.

So, the main di erence between BaTi@ and PbTiO; is that in case of PbTiO; total
energy as a function of Ti displacement from its ideal position shoves energy minimum
which was absent in case of BaTi® Considering the chemical and structural di erences,
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Figure 7.7: Unit cell dimension and tetragonality of the (a) BaTiO 3 and (b) PbTiO 3 unit cell with
the atoms sitting in their ideal positions. (c) Total energy variation with Ti displacement towards apical
oxygen in BaTiO3 with the experimental lattice parameters of PbTiO 3.

there can be two possible reasons for the energy minimum. (1) Theustural di erence:
Tetragonal distortion is large in PbTiO; than BaTiO3[Figs. 7.7(a) and (b)]. Thec=a
ratio in PbTiO 3 is 1.06, larger compared to BaTi@where it is an order of 1.01. (2) The
lone pair e ect of the Pb 6 states which was mentioned at the beginning. To examine
these aspects, we took the ideal paraelectric structure of PbTiGand replace Pb with
Ba. This is equivalent to considering BaTiQ with the same tetragonality of the PbTiOs
unit cell. Then we calculated the total energy as a function of Ti didpcement from its
ideal position towards one of the apical oxygen. The result is showmFigure 7.7(c). We
see exactly the same description as was seen for the case of PRTi®/e get an energy
minimum of  0.14A. So we see that the additional tetragonal distortion rather tha the
lone pair e ect is responsible for the ferroelectric behavior in PbTi® In PbTiO 3 there
is more spacing along the-direction compared to BaTiG;. As shown in Figs. 7.7(a) and
(b), the distance between the Ti atom and apical oxygen in the idéparaelectric structure
of PbTiO3zis 2.07A, larger compared to BaTiG;, where itis 2.01A. As a result, the
energy gain due to increased hopping is greater than energy losg doi Coulomb repulsion
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between the Ti and apical oxygen in PbTiQ. However, we need further investigation to
see if the lone pair plays any crucial role for this large tetragonality iRbTiO 3.

7.4 Conclusions

Cation displacements in perovskite titanates give rise to long-randerroelectric order.
In case of the well-known ferroelectrics, BaTi©@and PbTiO3 the cation displacements
are similar in nature but are aided by di erent microscopic interactios due to their
structural di erences. In case of BaTiQ the short-range and long-range Coulomb forces
play a crucial role to stabilize the ferroelectric state. The displacesnt of the Ti atom
towards one of the apical oxygens is aided by movement of the plaraygens in the
direction opposite to the Ti atom that decreases the repulsion bseen the electrons on
the planar oxygens and Ti, as well as that with the apical oxygensn lcontrast PbTiO3
has a large tetragonal c/a strain (6%) than BaTiQ(1%), and our calculations show that
the band energy gain from cation displacement is enough to stabilizbet ferroelectric
distortion. However, the lone pair 8 electrons associated with Pb may play a crucial role
for a larger tetragonality of PbTiO3; that needs further investigation.
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There is a strong correlation between the structure and the prepty of a material. Tun-
ability in the property has been achieved by varying parameters whidnduce changes in
the structure. Considering the well studied perovskite oxides gindoy the formula AB O3
where the A-site is usually occupied by a rare earth atom or an alkali metal atomnd
the B-site is a transition metal atom, one nds that a change in the size ahe atom
occupying theA-site results in changes in the electronic structure. The systemudd be
either insulating or metallic, with changes being induced in the tempetae at which the
metal to insulator transition happens. As pointed out earlier, the ltanges emerge from
structural changes induced by a number of parameters.

In the third chapter of this thesis, we have studied the structurgroperty relations in in-
organic perovskites taking the example of the rare earth nickelaeand show how the size
of the rare earth atom control the electronic properties via modation in the structure.
The rare earth nickelates exhibit metal-insulator transitions(MIT) for all members of the
family RNiO3; (where R denotes a rare earth ion), with the exception of R = La. Té
metal-insulator transition is coincident with a crystal distortion, where the insulating state
is characterized by a two-sublattice symmetry breaking, with Ni one sublattice having
a decreased mean Ni-O bond length and the Ni on the other having arcreased mean
Ni-O bond length, de ning a bond disproportionation/breathing moce distortion(BD).
This state is sometimes also referred to as \charge-ordered(CQ}ate. According to Za-
anen, Sawatzky, Allen(ZSA), the electronic structure of @transition metal compounds
are described by three parameters. The coulomb correlation stiggh within the transi-
tion metal 3d manifold(U), transition metal d bandwidth(W) and , given by the en ergy
required to transfer an electron from the oxygemp levels to the transition metald levels.
plays an important role in the late transition metal oxides. In this work using density
functional theory(DFT) and model Hamiltonian approach, we showthat occurrence of
the insulating state with bond disproportionation in Neodymium nickelge(NdNiO3) is
intimately related to a negative value of the e ective charge transir energy(a negative
value of ). The breathing mode distortion occurs when the Nd band enters the
oxygen p band and there are holes on the oxygen. For positive values ofy system
becomes metallic with the absence of a breathing mode distortion. Alp with this, we
calculate the 4 for all the rare earth nickelates. For R = Lu to Pr the values lie in
the range of -0.41 to -0.27 eV indicating a situation where the Nl band just enters
the oxygenp band. As a result, the ground state(GS) of the compounds are uiating
with bond disproportionation. For LaNiOg3, the value of 4 is -0.62 eV and the GS
is metallic without any bond disproportionation. So, from here we canonclude that a
negative value of delta is necessary for bond disproportionation tcur, however, there
is a critical value beyond which the itinerant limit is reached. There will b larger band
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overlap and system becomes metallic suppressing the MIT. We als@wtthat, although
among the bulk rare earth nickelates the charge ordering seems afnubiquitous, as
the size is reduced, one nds that there is a critical length scale balowhich one has
incomplete charge order/ no charge order consistent with the egpgmental result.

In the fourth chapter, we investigate the properties of hybrid p@vskites where at theA-
site there is an organic molecule, which plays a complex role in determigithe structure
and hence electronic properties. In contrast to earlier where oh@d a spherical atom,
in the present case, one has a cylindrical object occupying tlResite. The presence of
a molecule at theA-site of a hybrid perovskite leads to unusual behavior compared to
its inorganic counterpart. Considering the case of (C{#H3)PbBrs;, we nd that it is
both the size of the molecule as well as its orientation in the cage foech by the Pb
and Br atoms which determine the favored structure. At the micrscopic level, the basic
energetics which comes into play are steric e ects as well as hydeogbonding. While
the molecule is asymmetrically placed in the cuboctahedral cavity, aapping of the
ab initio band structure to a tight-binding model reveals that the movemednof the
amine end(NH) of the molecule towards the Br atoms is driven primarily by electrostic
considerations. While the hydrogen bonding is responsible for drivirige octahedral tilts,
the energy lowering considerations do not follow a simple prescriptiof minimizing H-Br
bond lengths. The presence of several competing energeticaultesin a complex low-
energy landscape with deep valleys and high barriers between therhieth could explain
the glassy dynamics seen even at low temperatures in the orthorhloic structure where
the dipoles are believed to be frozen.

In the fth chapter, we investigate the e ect of replacing the org@nic molecule at theA-site
of a hybrid perovskite system. In any perovskite systetABX 3) the change in the unit
cell volume due to a change in the size of th&-site cation results in a change in thé® -X
bond lengths as well a8-X -B bond angles. These are the main structural parameters
that directly control the electronic structure of the system. Fo instance, replacing the
cation at the A-site with a larger atom results in an increase in th&-X bond length as
well asB-X -B bond angles. An increase in the bond length is found to decrease Hand
gap while an increase in the bond angle results in a decreased band.g#fhether the
change in bond lengths or the bond angles control band gap chasgkepends entirely on
the relative compressibilities of theBX g and AX 1, polyhedra. Our calculations suggest
that for hybrid lead halide perovskites the changes in the PK- bond lengths plays the
dominant role in determining the changes in the electronic structureespecially when
one is compressing the unit cell. In this limit standard concepts of sictural changes
discussed in the context of inorganic perovskites are no longer valiteric e ects of the
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molecule with the inorganic cage dictate the structural changes ldiag to bond angles
changes being small. In the expanded unit cell limit, however, both ects contribute.

In the sixth chapter, we have studied the e ect of doping a dipole it an incipient
ferroelectric material. In a ferroelectric material, microscopic dige moments are formed
due to cation displacements from their ideal positions in the paraeleic structure. The
ordering of such microscopic dipoles in a material may or may not takagace leading to
ferroelectric properties. On the other hand, there are materialwhich are on the brink
of a ferroelectric transition, where the dipolar order is being suppssed by quantum
uctuations. Usual examples of ferroelectrics ar@® materials i.e. those which have
an empty d shell. This has been an empirical principle being used to roughly identify
materials which would be ferroelectric. While not alt® materials are ferroelectric, it has
been seen that several of them could be identi ed as incipient feelectrics, where there
is no ferroelectric order down to low temperatures. Ti@is one such example. In such
materials, a small perturbation could drive the system ferroelectr. In this work using
ab-initio density functional theory calculations, we explore doping &lb-Cr pair in TiO ,
as a route to drive it ferroelectric. Nb and Cr go into the 5+ and 3+ véence states
and therefore behave like a dipole. Analogous to dilute magnetic seonductors, where
doping small concentrations of magnetic atoms in otherwise non-greetic materials drives
the system magnetic, here, the introduction of the dipole is show tpolarize regions in
the vicinity of the dopant. Ferroelectricity is therefore found to & stabilized. While
this mechanism is indeed found to work at low concentration Nb-Cr ghing, at higher
doping concentrations a clustering of the dopant atoms is found tdestroy long-range
ferroelectric order.

Finally, in chapter seven we show how structural di erences can ldao dissimilar ferro-
electric properties considering two well known ferroelectric matets BaTiOz and PbTiOs.
Tetragonality in the ferroelectric structure of BaTiOs is smaller than PbTiOs;. Hence the
o -center displacement of the Ti atom along the tetragonal axis iassisted by short ranged
repulsion forces that push the planer oxygen atoms in the opposie&ection to that of the
Ti atom. Whereas due to a larger tetragonality in PbTiQ, Ti displacement is dominated
by the covalency gain between Ti atom and apical oxygen.
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Appendix A

A.1 a b c octahedral tilt pattern

Figure A.1: a b c octahedral tilt pattern viewed along the b-axis when the system was relaxed with
a molecular orientation along the body diagonal of the cavity as show in the upper panel of Figure 4.1(c)
of chapter 4.

A.2 Finding the favored orientation of the molecule
inside the cavity

Apart from steric e ects, hydrogen bonding between the molecuknd the Br ions also play
an important role in determining the ground state orientation inside lhe ideal octahedral
cavity. In order to probe how important hydrogen bonding was fothe orientation that the
molecule adopted, we again consider the two con gurations/orieations of the molecule
shown in Figure 4.1(c) of chapter 4. The rst direction of orientatia is perpendicular
to one of the four faces of the cavity parallel to thd>-axis shown by the shaded area in
Figure A.2(a). The second direction is along one of the large body d@tgls of the cavity,
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and the corresponding anion plane is shown by a dotted area in Figufe2(a). Indeed
maximizing hydrogen bonding would involve short bonds made betweédiydrogen and
the Br atoms. The molecule was oriented along both these directiontime ideal structure
and only the molecule was allowed to relax and gain energy from hydesgbonding.

Figure A.2: (a) Two anionic planes corresponding to the two possible orientatios of the molecule and
the relevant Hy -Br distances after the molecule was relaxed are shown for orient@n of the molecule
towards (b) plane 1 and (c) plane 2. The hydrogen bonds less than8are shown with solid green lines.

Figure A.3: (a) Distance between the amine part(nitrogen atom) of the molecle and the corresponding
anion plane after the molecule was relaxed with an orientation toward (a) plane 1 and (b) plane 2.

In both the cases the amine part of the molecule was found to movewards the Br
planes. Shorter K -Br distances were found in the rst case[Figure A.2(b)] where the
molecule was able to move closer to the anion plane[Figure A.3(a)]. Fdret second
case, the close proximity of the Pb atoms prevented the moleculetome too close to the
anion plane[Figure A.3(b)] resulting in a weaker hydrogen bonding witthe anions[Figure
A.2(c)]. Hence the former orientation that has shorter H-Br distace was found to be
favored by 32 meV per formula unit over the other. These resultselp us conclude
that while the orientation of the molecule controls the octahedralatations, the favored
orientation is determined by other additional factors such as ster e ects, interaction
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between the molecule and the inorganic cage as was mentioned in theamtext of chapter
4. For performing a DFT calculation with a new molecule at thé\-site and see the changes
that it can induce in the electronic structure, the rst task would be to get the ground
state structure of the system. But the problem is that we canngput the molecule inside
the cavity in any arbitrary orientation. Due to the complex potentid energy landscape
the calculation may get stuck in some local minima. To reach the grodrstate structure
the ground state orientation of the molecule needs to be determoheWe can perform the
following steps to determine that:

1. Take the inorganic network where we want to put the molecule anslvitch o the
octahedral tilts.

2. Take the molecule and orient it in such a way that the amine part fas the anionic
planes.

3. Select the anionic plane/orientation in the undistorted cavity tha gives the max-
imum H-bonding when only the molecule is relaxed. Relaxing the whole sy®
from this con guration gives the ground state structure.

A.3 Conformation of the molecule

There is a dipole moment associated with the molecule due to di erenkeetronegativities
of the C and N atoms. The two possible stacking of the dipoles alongeth-axis is shown
in Figure A.4(a) and the arrangement in theac-plane is shown in Figure A.4(b).

Figure A.4: (a) Ferroelectric and antiferroelectric stacking of the molecular dpoles along the b-axis.
(b) Orthogonal arrangement of the dipoles in the ac-plane
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A.4 Fitting of Tight binding and Ab-initio band
structure

The superposition of theab-initio and tight binding bands for casel and case2(refer to
section 3 of chapter 4) are shown in Figure A.5(a) and A.5(b)respaely.

Figure A.5: The tting of tight-binding and ab-initio band structure for (a) cas el, where the molecule
is at the center of the cavity without any octahedral tilts. (b) case2, where the molecule is allowed to
move for maximum hydrogen bonding.



