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Abstract

ASPECTS OF TWO HIGGS DOUBLET MODELS

by
Ambalika Biswas

Department of Physics, University of Calcutta

Beyond Standard Model physics aims to answer the unanswered questions of the
Standard Model and two Higgs doublet model (2HDM) is one of the simplest example
of it. Since the LHC Higgs data seem to match the Standard Model predictions, its im-
plication on the 2HDM scenario needs to be considered. This indeed puts constraints
on various non-standard couplings. We first dealt with bounds on scalar masses re-
sulting from a criterion of naturalness, in a broad class of two Higgs doublet models.
Specifically, we assumed the cancellation of quadratic divergences in what are called
the type I, type II, lepton-specific, and flipped two Higgs doublet models, with an addi-
tional U(1) symmetry. This resulted in a set of relations among masses of the physical
scalars and coupling constants, a generalization of the Veltman conditions of the Stan-
dard Model. Playing with the values of α and β we arrived at various limits of 2HDMs
namely alignment limit and the reverse alignment limit where the lighter and the heav-
ier CP-even Higgs bosons correspond to the SM Higgs particle respectively and also the
limit in which some of the Yukawa couplings of this particle are of opposite sign with
respect to the vector boson couplings (wrong sign). For these limits the allowed masses
of the remaining physical scalars based on naturalness, stability, perturbative unitarity,
and constraints coming from the ρ parameter were determined. We also calculated the
h→ γγ decay width in the wrong sign limit.

We further investigated the possibility of a Higgs-Higgs bound state in the two Higgs
doublet model. We constructed an effective field theory formalism to examine the effect
of dimension six operators, generated by new physics at a scale of a few TeV, on the
self-couplings of the heavy CP-even scalar field in the model. The magnitudes of the
attractive and repulsive coupling strengths were compared to estimate the possibility of
the formation of theH−H bound state. Another way to check if a bound state is formed
or not is from the formation and decay times of the bound state. The possibilities in
various types of two Higgs doublet models have been discussed elaborately.



An investment in knowledge pays the best interest. - Benjamin Franklin
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Chapter 1

Is Nature hinting at a wider
horizon?

Natural selection is a mechanism for
generating an exceedingly high
degree of improbability.

Ronald Aylmer Fisher

The theories and discoveries of thousands of physicists since the 1930s have resulted
in a remarkable insight into the fundamental structure of matter: everything in the uni-
verse is found to be made from a few basic building blocks called fundamental particles,
governed by four fundamental forces. Our best understanding of how these particles
and three of the forces are related to each other is encapsulated in the Standard Model
of particle physics as shown in figure 1.1. Developed in the early 1970s, it has success-
fully explained almost all experimental results and precisely predicted a wide variety
of phenomena. Over time and through many experiments, the Standard Model has
become established as a well-tested physics theory. Discovery of all the fundamental
particles as proposed by Standard Model was complete except the Higgs Boson. On
4 July 2012, the ATLAS [1] and CMS [2] experiments at CERN’s Large Hadron Col-
lider announced they had each observed a new particle in the mass region around 125
GeV. This particle is consistent with the Higgs boson predicted by the Standard Model.

Being a well celebrated model let us first have a look into the main principles in-
volved in the foundation of the Standard Model. The three gauge groups SU(3) ×
SU(2) × U(1) form the plinth of the Standard Model. Consequently there are three
families of quarks and leptons in the representation 3 × 2, 3 × 1, 1 × 2 and 1 ×
1. Mass is generated through the spontaneous electroweak symmetry breaking. This
was formulated by Brout, Englert and Higgs and named Brout-Englert-Higgs mech-
anism [3–5]. This resulted in three Goldstone bosons and the Higgs boson. In the
process the fermions and the gauge bosons gain their masses. Mixing of flavours occur
with the help of the Cabibbo-Kobayashi-Maskawa (CKM) [6] and the Pontecorvo-Maki-
Nakagava-Sakato (PMNS) [7] matrices and there is CP violation via the phase factors

1
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Figure 1.1: The Standard Model.(Src: Google)

in the flavour mixing matrices. Standard Model obeys the conservation of baryon and
lepton numbers. Quarks and gluons are confined within the hadrons. CPT invariance
accounts for the existence of antimatter.

Based on local quantum field theory the Standard Model is described by a La-
grangian which is built in accordance with the Lorentz invariance and invariance under
three gauge groups. Also it is renormalizable which means that it contains only the
operators of dimensions 2, 3 and 4 [8]. The Lagrangian density is written below.

L = Lgauge + LYukawa + LHiggs, (1.1)

where

Lgauge = − 1

4
GaµνG

µνa − 1

4
AiµνA

µνi − 1

4
BµνB

µν (1.2)

+ iLαγ
µDµLα + iQαγ

µDµQα + ilαγ
µDµlα

+ iUαγ
µDµUα + iDαγ

µDµDα + (DµH)† (DµH) ,

LYukawa = ylαβLαlβH + ydαβQαDβH + yuαβQαUβH̃ + h.c. , (1.3)

and

LHiggs = −V = m2H†H − λ

2

(
H†H

)2
. (1.4)

Here H̃ = iτ2H
†, y’s are the Yukawa coupling constant matrices and λ is the Higgs

coupling constant. Lα, Qα, lβ, Dβ and Uβ are the left-handed lepton, left-handed
quark, right-handed charged lepton, right-handed down-type quark and right-handed
up-type quark matrices respectively. y and λ are both dimensionless and m which is
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the mass of the Higgs boson is the only dimensional mass parameter.

The symmetries of the Standard Model fixes all the interactions of the Standard
Model fermions namely the quarks and the leptons. These interactions are performed
by the exchange of the force carriers. Gluons are the force carriers in the case of strong
interactions, W and Z bosons mediate the weak interactions, photons are exchanged
in case of electromagnetic interactions and Yukawa interactions are mediated by the
Higgs bosons. The only flexibility lies in the choice of the three gauge couplings gi,
the three Yukawa matrices ykαβ, the Higgs coupling λ, and the mass parameter m. All
of them are not predicted by the SM but are measured experimentally. The existence
of the right-handed neutrino leads to two additional terms in the Lagrangian viz, a
kinetic term and the interaction of the neutrino with the Higgs boson. If the neutrino
is a Majorana particle, then the Majorana mass term is added.

Though the Standard Model can precisely predict the masses and the interactions of
the elementary particles but it has some drawbacks which we will discuss next. Landau
pole problem is one of them. The running couplings of the SM tend to infinity at finite
energies (the Landau pole [9]). Landau pole has been observed for the U(1) and the
Higgs couplings as discussed in [9]. Since the Landau pole has a wrong sign residue thus
non-physical ghost fields appear. This leads to the violation of causality since Landau
pole is an intrinsic problem of the theory. It takes place at energies much higher than
the Planck mass where we assume quantum gravity might change everything but a
theory with the Landau pole is not self consistent.

Stability of the electroweak vacuum is disturbed by radiative corrections rendering
it either metastable or even unstable. This also affects the behaviour of the Higgs cou-
pling which crosses zero and then becomes negative at the energies close to 1011 GeV
as discussed in [10]. The accuracy of the measurement of the top quark and the Higgs
boson masses and the order of perturbation theory affects this situation strongly. For
higher orders the instability point moves toward higher energies and possibly might
reach the Planck scale with increasing accuracy [11]. Beyond SM physics might at-
tempt to change this situation.

The mass of the Higgs boson is not protected by any symmetry unlike the quarks,
leptons and the intermediate weak gauge bosons. Thus new physics at the high en-
ergy scale might destroy the electroweak scale of the Standard Model due to radiative
corrections. The radiative corrections to the mass of the Higgs boson being quadrat-
ically dependent on the same, destroy the electroweak scale. Thus there is no clear
explanation of why the mass of the Higgs particle is not as large as the scale of any
new physics, which may be ∼ 1016GeV (GUT scale) or even ∼ 1019GeV (Planck scale).
This is known as the hierarchy problem. It is to be mentioned here that this is not a
problem of the Standard Model itself since the quadratic divergences are absorbed into
the redefinition of the bare mass which is not observable. But this instead leads to a
quadratic dependence of low energy physics on unknown high energy one and that is
not acceptable. The way out of this situation might be a new physics at intermediate
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energies.

Also it is not clear how some mechanisms inside the SM work. In particular, it is
not clear how confinement actually works or how the neutrinos gain mass how small it
might be. CP violation of the universe, the quark-hadron phase transition are among
other mechanisms that need further explanation. In case all experimental data are not
explained by the SM then there is an indication of physics beyond the SM. If a new
scale physics is introduced to solve many of the above stated short comings of the SM,
then we face the problem of protection of the SM from the new scale physics. There are
some more unanswered questions that bother us like : is there another scale except for
the electro-weak and the Planck scale? Is SM a self consistent quantum field theory?
Moreover the dark matter issue questions the compatibility of the SM with Cosmology.

Introduction of a new physics seems inevitable to resolve these issues. Let us first
look at the high energy physics panorama from the point of view of the energy scale.
The electroweak scale lies at ∼ 102 GeV and the Planck scale at ∼ 1019 GeV. The
whole spectra of quark, lepton, intermediate vector boson and the Higgs boson masses
lie in the electroweak scale. Apart from these two scales there is a scale of quantum
chromodynamics at Λ ∼ 200 MeV, the Grand unification scale at ∼ 1016 GeV and the
vacuum stability scale at ∼ 1011 GeV.

Theory can suggest various ways of development but only experiment can show the
right road. So far there has been no experimental evidence that all these high energy
scales and new physics related to them exist. Today high energy physics is still hazy
and the horizon of knowledge is yet to be expanded. But we hope that sooner or later
the persistent efforts of the high energy physicists will clear the fog and the unanswered
questions will be resolved. Below we encapsulate the various ways that can be adopted
to go beyond the Standard Model.

1. Extension of the symmetry group of the Standard Model : If we ex-
pand the symmetry group of the SM then we have theories like Supersymmetry
(SUSY), Grand Unified Theories (GUT), new U(1) factors, etc. This may solve
the problem of the Landau pole, the problem of stability, the hierarchy problem,
and also the dark matter problem.

2. Addition of new particles : Models with extra generations of matter, extra
gauge bosons, extra Higgs bosons, extra neutrinos, etc. have been proposed to
this end. This way one may solve the problem of stability and the dark matter
problem.

3. Introduction of extra dimensions of space : Introducing compact or flat
extra dimensions have also been adopted by many physicists. This approach
opens a whole new world of possibilities and one may solve the problem of stability
and the hierarchy problem and even get a new insight into gravity.
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4. Transition beyond the local Quantum Field Theory : Theories like string
theory, brane world, etc. surfaced to answer questions that Standard Model failed
to answer. The main aim of this approach is the unification of gravity with other
interactions and the construction of quantum gravity.

We are in a paradoxical situation. Generally a new theory emerges to explain the
observables which are not explained by an old existing theory but now we try to con-
struct a new theory and persistently look for experimental data which go beyond the
Standard Model. We have not been able to find substantial amount of data so far.
The existing small deviations from the Standard Model at the level of a few sigma
such as in the forward-backward asymmetries in electron-positron scattering or in the
anomalous magnetic moment of muon might be due to uncertainty of the experiment
or data processing. The Standard Model gets slightly modified to incorporate the neu-
trino masses as indicated by the neutrino oscillation experiments. Heavy Majorana
neutrinos may account for dark matter, though many models which incorporate extra
particles do suggest probable dark matter candidates. Nevertheless, there is a vast
field of new theoretical models which persistently tries to solve the mysteries that SM
has failed to. The question is which of these models will persist and be adequate to
Nature? The driving idea behind the attempts to go beyond the Standard Model is
unification. Maxwell unified electricity and magnetism in his theory, electromagnetic
and weak forces were unified in electroweak theory, the three forces were unified in the
Grand unified theory and subsequent attempts are being made to unify the remaining
force that is the gravitational force.

1.1 Beyond Standard Model Physics

Extending our horizon of knowledge beyond the Standard Model seems inevitable from
the above discussion. The last brick in the Standard Model was cemented with the
discovery of the Higgs boson. The Higgs boson, as proposed within the Standard Model,
is the simplest manifestation of the Brout-Englert-Higgs mechanism. The discovery of
the Higgs boson was celebrated as a huge success since it seemed to complete the
menagerie of fundamental particles in the Standard Model.

But human beings barely know the fact that Nature is enigmatic and unfolds itself
with new myths as mankind solves one. The origin of neutrino mass, dark matter and
baryon asymmetry of the universe are some of the unanswered problems that surfaced
and could not be satisfactorily answered by the SM alone. The gauge boson and fermion
sectors of the Standard Model of the electroweak interactions have been extremely well
probed phenomenologically but its scalar sector could be probed further. Hence the
question: The Higgs or A Higgs? This intrigued the grey cells to think about physics
beyond the standard model (BSM physics). People have proposed many theories with
extended families of fermions and family mixing but these seem to be very complicated
theories. On the other hand if the scalar sector of the standard model is extended things
are much easier to handle. In the standard model the simplest possible scalar structure
is just one SU(2) doublet [3–5, 12, 13]. When an extra SU(2) doublet was added to
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the standard model it was put to the ’ρ - parameter’ test since ρ parameter carries
substantial information about the scalar sector. In the SU(2)×U(1) gauge theory, if
there are n scalar multiplets Φi, with weak isospin Ii, weak hypercharge Yi, and vacuum
expectation value (vev) of the neutral components vi, then the parameter ρ at tree level
is given by [14],

ρ =

∑n
i=1

[
Ii(Ii + 1)− 1

4Y
2
i

]
vi∑n

i=1
1
2Y

2
i vi

. (1.5)

Experimentally ρ is very close to unity [15]. SU(2) doublets with Y = ±1 give ρ = 1
according to Eq. (1.5) since SU(2) doublets have I(I+1) = 3

4Y
2. Thus adding a second

scalar doublet seemed feasible. Since the standard model was extended by adding a
second scalar doublet hence the nomenclature two Higgs doublet model(2HDM) [16,17].

The two Higgs doublet model got its motivation from supersymmetry [18]. In super-
symmetric theories the scalars belong to chiral multiplets and their complex conjugates
belong to multiplets of the opposite chirality. A single Higgs doublet is unable to give
mass simultaneously to the up-type and bottom-type quarks since multiplets of differ-
ent chiralities cannot couple together in the Lagrangian. The cancellation of anomalies
also requires that an additional doublet be added since scalars and chiral spin- 1/2
fields occur together in the chiral multiplets. Thus, addition of a second Higgs doublet
seemed to be justified. Since the Minimal Supersymmetric Standard Model (MSSM)
contains two Higgs doublets, it can be said that 2HDM is contained in MSSM.

Peccei and Quinn showed in their work [19] that if a global U(1) symmetry is im-
posed then a possible CP-violating term in the QCD Lagrangian can be done away
with. Though this CP violating term is phenomenologically known to be very small
but its existence is not desirable. With single Higgs doublet this symmetry cannot be
imposed. Rotation requires minimum two Higgs doublets. This provided yet another
motivation for two Higgs doublet models. Though experiment has ruled out the sim-
plest versions of the Peccei–Quinn model (in which all the New Physics was at the TeV
scale), there are variations with singlets at a higher scale that are acceptable, and the
effective low-energy theory for those models still requires two Higgs doublets [20].

Now since we all know that the SM is unable to generate a baryon asymmetry
of the Universe of sufficient size [21] introduction of beyond standard model physics
seemed necessary as discussed in the previous section. Two-Higgs-doublet models have
a rich parameter space and its CP violating version provides additional sources of CP
violation thereby contributing to baryogenesis [22–29]. New possibilities for explicit or
spontaneous CP violation have allured physicists to work with 2HDMs.

Another motivation, one that is important to us, is their use in models of dark
matter [30–32]. These models are the inert doublet models, so called because one of
the Higgs doublets does not couple to the fermions. Of the 2HDMs we will consider,
the Yukawa couplings of one model (type I) approach the inert doublet model for large
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values of the ratio of the vacuum expectation values (VEVs) of the two Higgs fields.
The other models also have small couplings to one or more types of fermions in that
limit.

1.2 The two Higgs doublet model

Two Higgs doublet model has been used as a benchmark model by both ATLAS and
CMS in its CP-conserving, softly broken Z2 symmetric version to search for new physics
beyond the standard model. First proposed by T. D. Lee [16], 2HDMs have been used
as benchmark models not only for the LHC searches but also theoretically. Theoretical
motivations stem from the rich scalar structure of the model that allow for instance the
introduction of CP violation in the scalar sector, controlled flavour changing neutral
currents or dark matter candidates. Simultaneous breaking of both charge and CP
renders this model a very different vacuum structure than the SM one.

In general, the vacuum structure of 2HDMs is very rich and the most general scalar
potential can have CP-conserving, CP-violating, and charge-violating minima. How-
ever, most phenomenological studies of 2HDMs make several simplifying assumptions.
We have assumed that CP is conserved in the Higgs sector (then the distinction between
scalars and pseudoscalars become clear), that CP is not spontaneously broken, and that
discrete symmetries eliminate from the potential all quartic terms odd in either of the
doublets. We will work with the scalar potential [16, 33]

V = λ1

(
|Φ1|2 −

v2
1

2

)2

+ λ2

(
|Φ2|2 −

v2
2

2

)2

+ λ3

(
|Φ1|2 + |Φ2|2 −

v2
1 + v2

2

2

)2

+ λ4

(
|Φ1|2|Φ2|2 − |Φ†1Φ2|2

)
+ λ5

(
1

2

(
Φ†1Φ2 + Φ†2Φ1 − v1v2

))2

+ λ6

(
1

2i

(
Φ†1Φ2 − Φ†2Φ1

))2

, (1.6)

where the λ’s are real because of the hermiticity of the Lagrangian.
For a region of parameter space, the minimization of this potential gives

〈Φi〉0 =

(
0
vi√

2

)
, i = 1, 2 (1.7)

where the VEVs vi of the neutral components of the two SU(2) scalar doublets may be
taken to be real and positive without any loss of generality. v1 and v2 are related to
the electroweak vacuum expectation value v by

v =
√
v2

1 + v2
2 = 246 GeV . (1.8)
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With two SU(2) scalar doublets there are eight real scalar fields. In the charge eigenstate
these fields are given as

Φi =

 w+
i (x)

vi + hi(x) + izi(x)√
2

 , i = 1, 2. (1.9)

Now we can construct the mass matrices for the charged, CP-odd and CP-even scalars
using the potential given by Eq. (1.6). Since we have assumed that the parameters of
the potential are all real without any loss of generality the bilinear mixing terms like
hkzl will not be present. As a consequence the neutral mass eigenstates will also be the
eigenstates of CP. The mass matrices for the charged, CP-odd and CP-even sectors are
given below,

Vcharged =
(
w+

1 w+
2

)
M2
C

(
w−1
w−2

)
(1.10)

with

M2
C =

λ4

2

(
v2

2 −v1v2

−v1v2 v2
1

)
. (1.11)

VCP−odd =
(
z1 z2

) 1

2
M2
P

(
z1

z2

)
(1.12)

with

M2
P =

λ6

2

(
v2

2 −v1v2

−v1v2 v2
1

)
. (1.13)

VCP−even =
(
h1 h2

) 1

2
M2
S

(
h1

h2

)
(1.14)

with

M2
S =

(
AS BS
BS CS

)
(1.15)

where AS = 2(λ1 + λ3)v2
1 +

λ5

2
v2

2 (1.16)

BS = 2(λ3 +
λ5

4
)v1v2 (1.17)

CS = 2(λ2 + λ3)v2
2 +

λ5

2
v2

1 . (1.18)

Since the mass matrices, M2
C , M2

P and M2
S are not diagonal in the charge basis,

we rotate away to the mass basis where the mass matrices are diagonal and the mass
eigenstates can be identified with the physical scalars. The rotation from the charge
basis to the mass basis is1(

ω±

ξ±

)
=

(
cβ sβ
−sβ cβ

)(
w±1
w±2

)
. (1.19)

1 cα ≡ cosα, sβ ≡ sinβ etc.
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This yields a pair of physical charged Higgs bosons ξ± and a pair of charged Goldstone
bosons ω±. The mass of the charged Higgs pair is found to be

m2
ξ =

λ4

2
v2 (1.20)

and the charged Goldstone bosons get ’eaten away’ by the W± bosons which in turn
obtain their masses. For the pseudoscalar part the rotation angle remains the same
as the charged scalar part and we obtain a physical pseudoscalar (A) and a neutral
Goldstone (ζ), (

ζ
A

)
=

(
cβ sβ
−sβ cβ

)(
z1

z2

)
. (1.21)

The mass of the pseudoscalar is given by,

m2
A =

λ6

2
v2 . (1.22)

ζ gets ’eaten away’ by the neutral gauge boson Z which then gains its mass. For
the CP-even scalar part the rotation angle is different from the other two sections since
it is not protected by the custodial symmetry unlike the other two sectors. Due to
custodial symmetry, the linear combination that gives the charged Goldstone bosons
also gives the neutral Goldstone boson. So the angle of rotation is the same in these
two sectors. For the CP-even sectors the rotation to mass eigenstates yields a heavy
CP-even scalar H and a light CP-even scalar h. The rotation is shown below,(

H
h

)
=

(
cα sα
−sα cα

)(
h1

h2

)
, (1.23)

where the masses

m2
H =

1

2

[
(AS + CS) +

√
(AS − CS)2 +B2

S

]
, (1.24)

m2
h =

1

2

[
(AS + CS)−

√
(AS − CS)2 +B2

S

]
. (1.25)

Two crucial angles have been introduced while rotating from the charge basis to
the mass basis. ∠β is the angle of rotation in the charged and CP-odd sectors and ∠α
is the angle of rotation in the CP-even sector. These are so chosen that,

tanβ =
v2

v1
(1.26)

and

tan 2α =
2BS

(AS − CS)
(1.27)

=
2
(
λ3 + 1

4λ5

)
v1v2

λ1v2
1 − λ2v2

2 +
(
λ3 − 1

4λ5

) (
v2

1 − v2
2

) . (1.28)
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The ranges of β and α are, ∠β ∈
[
0, π2

]
and ∠α ∈

[
−π

2 ,
π
2

]
.

To start with there were eight parameters, viz: v1, v2 and the 6 λ’s. v1 and v2 can
be traded away for v and tanβ using Eq. (1.8) and Eq. (1.26). Except λ5 all other λ’s
can be expressed in terms of the masses of the physical Higgs bosons and the angle α.
Amongst these new eight parameters two are known. One is the standard electroweak
vev, v = 246 GeV and the other is the mass of one of the neutral CP-even physical
Higgs bosons which is taken to be 125 GeV. This can be mh or mH depending on the
limit in which we are working. The remaining parameters need to be constrained both
theoretically and experimentally. The relations among the λ’s and the masses of the
physical Higgs bosons are given below [34],

λ1 =
1

2v2c2
β

[
c2
αm

2
H + s2

αm
2
h −

sαcα
tanβ

(m2
H −m2

h)

]
− λ5

4
(tan2 β − 1) , (1.29)

λ2 =
1

2v2s2
β

[
s2
αm

2
H + c2

αm
2
h − sαcα tanβ(m2

H −m2
h)
]
− λ5

4

(
1

tan2 β
− 1

)
, (1.30)

λ3 =
1

2v2

sαcα
sβcβ

(m2
H −m2

h)− λ5

4
, (1.31)

λ4 =
2

v2
m2
ξ , (1.32)

λ6 =
2

v2
m2
A . (1.33)

We take a note that λ5 appears on the right hand side of the first three of the above
set of equations.

1.2.1 The Higgs basis

Unlike the mass eigenstates since the two doublets Φ1 and Φ2 are not physical fields,
therefore any linear combination of the doublets which preserves the form of the kinetic
terms of the theory is equally acceptable. This freedom of reparameterization implies
that different bases of the doublet fields can be chosen, without changing the physical
predictions of the model and potentially simplifying the theory. It is sometimes useful
to work in the so-called Higgs basis, wherein one performs a U(2) transformation on
Φ1 and Φ2 in such a manner that only the first of the transformed fields H1 and H2,
acquires a vacuum expectation value. We can define the Higgs basis up to an arbitrary
complex phase multiplying the second doublet. Performing a U(2) transformation we
obtain, (

H1

H2

)
= RH

(
Φ1

Φ2

)
≡

(
cβ sβ
−sβ cβ

)(
Φ1

Φ2

)
. (1.34)

Thereby the potential turns out to be [35]
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V (H1, H2) = −1

2

[
Y1H

†
1H1 + Y2H

†
2H2 +

(
Y3H

†
1H2 + h.c.

)]
+

1

2
Z1(H†1H1)2 +

1

2
Z2(H†2H2)2

+ Z3(H†1H1)(H†2H2) + Z4(H†1H2)(H†2H1)

+

[
1

2
Z5(H†1H2)2 +

(
Z6H

†
1H1 + Z7H

†
2H2

)
H†1H2 + h.c.

]
. (1.35)

The minimization of the scalar potential yields

Y1 = Z1v
2 , (1.36)

Y3 = Z6v
2 . (1.37)

Higgs basis is particularly useful in understanding the fine difference between align-
ment limit and decoupling limit which has been discussed in Section 4.1.

1.2.2 CP violation in 2HDM

The most general two Higgs doublet model has three neutral physical Higgs bosons but
these need not be eigenstates of CP. This can be illustrated by going to the Higgs basis
where the two Higgs doublets are parametrized as

Φ1 =

 G+(x)
v + η1(x) + iG0(x)√

2

 , (1.38)

Φ2 =

 H+(x)
η2(x) + iχ2(x)√

2

 . (1.39)

The potential is given by Eq. (1.35). The parameters Y3 together with Z5, Z6 and Z7

can be complex in general. The mass-squared matrix will depend on the parameters
Y2, Z1, Z3, Z4, Z5 and Z6. It takes the form,

M2 =


Z1v

2 ReZ6v
2 −ImZ6v

2

ReZ6v
2 1

2

(
−Y2 + (Z3 + Z4 + ReZ5)v2

)
−1

2
ImZ5v

2

−ImZ6v
2 −1

2
ImZ5v

2 1

2

(
−Y2 + (Z3 + Z4 − ReZ5)v2

)
 .

(1.40)
The mass matrix does not include Z7. Mixing between CP-even and CP-odd fields

can be avoided if Z5 and Z6 can be made simultaneously real by a redefinition of Φ2.
This is the case for instance if Z5 = 0 or Z6 = 0. In particular, for Z6 = 0, Z5 can
be made real by rephasing Φ2 and the mass matrix becomes automatically diagonal.
However, in order to conclude that CP is conserved one must check whether or not
Z7 can also be made real with the same rephasing of Φ2 that makes Z5 and Z6 real,
otherwise there will be CP violation in the trilinear and quartic couplings.
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These conditions will look different in a general (non-Higgs) basis, but the different
possibilities of having CP conservation or violation can be sorted out by exploring the
basis-transformation invariants mentioned above [36–39]. A different approach is to
ask whether a basis exists in which the potential and the vacuum expectation values
are simultaneously real [40].

It is worth mentioning that we have considered that there is no CP violation in the
vacuum expectation values (vevs) of the scalar doublets Φ1,2. This means that v1,2 are
both real and non-negative without any loss of generality.

1.2.3 Flavour conservation

In the SM, things are pretty simple since there is a single SU(2) doublet and thus a
single Yukawa structure in each of the quark sectors - the up and down which is both
responsible for:

1. The generation of mass upon spontaneous breaking of SU(2)L
⊗
U(1)Y into

U(1)EM and

2. The Yukawa couplings of the quarks to the only fundamental scalar leftover,
the Higgs boson, after associating the three would-be Goldstone bosons to the
longitudinal polarizations of the massive Z and W± gauge bosons.

Thus, there are no tree level Flavour Changing Neutral Couplings(FCNC) of the
Higgs to quarks.

But in two Higgs doublet models the situation is dramatically changed since there
are two SU(2) scalar doublets and hence two independent Yukawa structures are avail-
able in each quark sector. Thus flavour changing neutral couplings of Higgs to quarks
arise at tree level. To which extent they appear in the couplings of the different physical
neutral scalars depends on the details of the scalar potential. If the 125 GeV scalar is
a mixture of the true but unphysical Higgs and the additional neutral scalars, FCNC
will “leak” into its couplings through that mixing [41].

These FCNCs can cause severe phenomenological difficulties. As for example, the
d̄sh interaction will lead to K–K̄ mixing at tree level. If the coupling is as large as
the b-quark Yukawa coupling, the mass of the exchanged scalar would have to exceed
10 TeV [42, 43]. Thus the different ways to dispense away the FCNC couplings and
the conditions for their appearance or absence, has drawn sustained attention over the
years.

To make things explicit, let us write down the Yukawa part of a 2HDM Lagrangian
as follows:

LY =
∑
i=1,2

[
−l̄LΦiG

i
eeR − Q̄LΦ̃iG

i
uuR − Q̄LΦiG

i
ddR + h.c.

]
(1.41)
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where lL , QL are left-handed 3-vectors of iso-doublets in the space of generations,
eR , uR , dR are right-handed 3-vectors of singlets, Gie, G

i
u and Gid are complex 3 × 3

matrices in generation space containing the Yukawa coupling constants in the up, down
and charged lepton sectors respectively. Here Φ̃i = iτ2Φ∗i , where τ2 is the second Pauli
matrix. Also we have suppressed the flavor indices in Eq. (1.41). We have also assumed
that the neutrinos are massless. From Eq. (1.41) one can write the mass matrix for the
down type quarks, for example, as follows:

Md = G1
d 〈Φ1〉+G2

d 〈Φ2〉 , (1.42)

where 〈Φi〉 = vi/
√

2 denotes the vacuum expectation value (VEV) of Φi. Since G1
d

and G2
d, in general, can be arbitrary, there is no reason for them to be simultaneously

diagonal once Md is diagonalized using a biunitary transformation. Therefore, there
will be Higgs mediated FCNC at the tree level in the most general 2HDMs.

In the mass equation Eq. (1.42) if one of the Yukawa couplings G1
d or G2

d vanishes
then the remaining Yukawa coupling gets simultaneously diagonalized when the mass
matrix Md is diagonalized and tree level FCNC can be avoided in the down sector. The
same method can be applied to remove the tree-level FCNCs from the up quark and the
charged lepton sectors too. Thus if all fermions with the same quantum numbers (which
are thus capable of mixing) couple to the same Higgs multiplet, then FCNC will be
absent. This was formalized by the Glashow-Weinberg-Paschos (GWP) theorem [44,45]
which states that a necessary and sufficient condition for the absence of FCNC at tree
level is that all fermions of a given charge and helicity transform according to the same
irreducible representation of SU(2), correspond to the same eigenvalue of T3 and that a
basis exists in which they receive their contributions in the mass matrix from a single
source. In the Standard Model with left-handed doublets and right-handed singlets,
this theorem implies that all right-handed quarks of a given charge must couple to a
single Higgs multiplet. In the 2HDM, this can only be ensured by the introduction of
a discrete or continuous symmetry which classifies the two Higgs doublet models into
various types as discussed below.

If we first deal with the quark sector of the 2HDM, there are only two possibil-
ities within the purview of the GWP prescription. Let us look into the possibilities
elaborately. In type I 2HDM, all quarks couple to just one of the Higgs doublets (con-
ventionally chosen to be Φ2). In type II 2HDM, the Q = 2/3 right-handed (RH) quarks
couple to one Higgs doublet (conventionally chosen to be Φ2) and the Q = −1/3 RH
quarks couple to the other Higgs doublet (Φ1). The type I 2HDM can be enforced with
a simple Φ1 → −Φ1 discrete Z2 symmetry, whereas the type II 2HDM is enforced with
a Φ1 → −Φ1 , diR → −diR discrete Z2 symmetry. This Z2 symmetry, when extended
to the full Lagrangian, also prevents the corresponding Yukawa couplings from getting
generated via quantum corrections.

Now coming to the leptons, it is conventionally assumed, in discussions of type I
and type II 2HDMs, that the right-handed charged leptons satisfy the same discrete
symmetry as the diR and thus the charged leptons couple to the same Higgs doublet
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as the Q = −1/3 quarks. However, the Glashow–Weinberg-Pascos theorem does not
demand this and thus there are two other possibilities. In the third type of model, the
“lepton-specific” model, the right-handed quarks all couple to Φ2 and the right-handed
charged leptons couple to Φ1. There is yet another model the “flipped” model, where
the Q = 2/3 RH quarks couple to Φ2 and the Q = −1/3 RH quarks coupling to Φ1

, as in the type II 2HDM, but now the RH charged leptons couple to Φ2. The phe-
nomenology of these models is quite different. Names type X and type Y were used
for the lepton-specific and flipped models respectively in [46]. These four types of two
Higgs doublet models subjected to the GWP theorem has been tabulated in table 1.1.

Model uiR diR eiR
Type I Φ2 Φ2 Φ2

Type II Φ2 Φ1 Φ1

Lepton-specific Φ2 Φ2 Φ1

Flipped Φ2 Φ1 Φ2

Table 1.1: Two Higgs doublet models that lead to natural Flavour conservation (NFC).

It has been suggested by Pich and Tuzon [47] that an alternative way to avoid tree-
level FCNC is to make the two Yukawa matrices for fermions of a particular charge
proportional to each other. This technique will also diagonalize the Yukawa matrices
simultaneously as the mass matrix will be diagonalized. These types of 2HDMs are
called aligned 2HDMs (A2HDMs). However, the Yukawa alignment imposed at a cer-
tain energy scale does not ensure, in general, that the alignment will be maintained
at different energy scales too [48, 49]. But it has been shown that the FCNCs gen-
erated due to such misalignments are expected to be small [50] because the Yukawa
aligned 2HDMs belong to a general category of models with minimal flavor violation
(MFV) [51]. The mathematics of simultaneous diagonalisation has been done in Chap-
ter A

At the end of the day, as with many New Physics avenues, the presence of FCNC
is a double edged feature: since the competing SM gauge mediated contributions to
FCNC processes are loop induced, those transitions pose severe constraints while, on
the same grounds, provide immediate opportunities to discover deviations from the SM
picture.

1.2.4 Symmetries and the scalar potential

With the introduction of a second scalar doublet, the parameter space of 2HDMs is
largely increased and the theory becomes less predictive. Ways to constrain the pa-
rameter space is therefore largely welcome. One way of doing so is by the imposition of
symmetries. Also, as we discussed in previous sections, the 2HDM is in general plagued
by flavour-changing neutral currents, which however may be eliminated or strongly sup-
pressed by imposing an internal symmetry on the 2HDM. These symmetries leave the
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kinetic terms unchanged. Symmetries leaving the kinetic terms unchanged may be of
either one of two types:

1. Higgs Family (HF) symmetries
Here one Higgs doublet is related to the other via some unitary transformation
of the form,

Φa → ΦS
a =

2∑
b=1

SabΦb , (1.43)

where S is a unitary matrix. We then require the potential to be invariant un-
der this transformation. As a result of this invariance the quartic couplings are
transformed as,

λab,cd =
2∑

e,f,g,h=1

SaeScfλeg,fhS
∗
bgS
∗
dh . (1.44)

2. General Charge conjugation-Parity symmetry

In this case Φa is related through some unitary transformation of Φ∗b as shown
below:

Φa → ΦGCP
a =

2∑
b=1

XabΦ
∗
b , (1.45)

where X is an arbitrary unitary matrix. We then require the potential to be
invariant under this transformation. As a result of this invariance the quartic
couplings are transformed as,

λab,cd =

2∑
e,f,g,h=1

XaeXcfλ
∗
eg,fhX

∗
bgX

∗
dh . (1.46)

Under a global basis transformation from Φa to Φ′a,

Φ′a =
2∑
b=1

UabΦb , (1.47)

the specific forms of the HF and GCP symmetries get altered respectively into,

S′ = USU † (1.48)

X ′ = UXUT . (1.49)

Thus, if the coefficients of the potential are written using a different basis for the Higgs
doublet, the symmetry relations among the coefficients of the scalar potential will in
general adopt a different form.
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We have imposed a global U(1) symmetry on the scalar potential which is a general-
ization of the most common form of symmetry imposed on 2HDMs viz., the discrete Z2

symmetry. This potential is invariant under the U(1) symmetry which when imposed
on the Higgs doublets transforms them as,

Φ1 → eiθΦ1 ,Φ2 → Φ2 , (1.50)

The symmetry is realized by putting λ5 = λ6 in the scalar 2HDM potential of
Eq. (1.6) which then takes the form,

V = λ1

(
|Φ1|2 −

v2
1

2

)2

+ λ2

(
|Φ2|2 −

v2
2

2

)2

+ λ3

(
|Φ1|2 + |Φ2|2 −

v2
1 + v2

2

2

)2

+ λ4

(
|Φ1|2|Φ2|2 − |Φ†1Φ2|2

)
+ λ5

∣∣∣Φ†1Φ2 −
v1v2

2

∣∣∣2 . (1.51)

The potential contains a term λ5v1v2<(Φ†1Φ2) which softly breaks the U(1) sym-
metry. Additional dimension-4 terms, including one allowed by a softly broken Z2

symmetry [52] are also set to zero by this U(1) symmetry.

The imposition of this global U(1) symmetry changes the last relation Eq. (1.33)
between the quartic coupling and the physical Higgs boson masses.

λ5 = λ6 =
2

v2
m2
A . (1.52)

Thus, now the theory has one parameter less on the imposition of U(1) symmetry.

1.2.5 Some lessons from the previous studies made on various 2HDMs

• Proposed by Barger and others in [53] the flipped two Higgs doublet model is the
least studied model of all the four types of two Higgs doublet models. Even works
that discuss all four models generally focus less on this structure than the others.
The only paper dedicated entirely to the flipped model was that of Logan and
Maclennan [54]. They studied the charged Higgs phenomenology in that model,
including branching ratios and indirect constraints and analyse prospects at the
LHC.

• The lepton-specific model was first discussed in two papers by Barnett et al. [55,
56] in the context of extremely light Higgs scalars. Later Su and Thomas anal-
ysed this model extensively in [57]. They studied theoretical and experimental
constraints on the model and showed that there can be substantial enhancement
of the couplings between the charged leptons and the neutral Higgs scalar. Logan
and Maclennan in their paper [58] considered the constraints on the charged Higgs
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mass, with bounds arising from lepton flavour universality and direct searches and
direct prospects at the LHC. Goh, Hall and Kumar [59] discussed the leptonic
cosmic ray signals seen by PAMELA and ATIC with the help of the lepton spe-
cific model and studied the implications for the LHC. The work of Boucenna and
Profumo [60] may be referred for the analyses of astrophysical results and direct
dark matter detection with the lepton specific model. In another analysis Cao et
al. [61] assumed that the 3σ discrepancy [62] between theory and experiment in
the g− 2 of the muon is primarily due to the lepton-specific model. This require-
ment substantially reduces the available parameter space, forcing the model to
have a very light pseudoscalar and very large values of tanβ, and they analysed
this parameter space. Finally Aoki et al. [63] looked at neutrino masses and dark
matter in the lepton-specific model, but did add singlets.

• The type I 2HDM [64] is the second most studied model1. In the quark sector,
it is identical to the lepton-specific model, thus many results from the studies
of the type I 2HDM apply to the lepton-specific as well. A special limit of the
type I 2HDM is α = π

2 , in which case the fermions all completely decouple from
the lightest Higgs; this limit is referred to as the fermiophobic limit. We note
that even in this limit, the coupling does reappear at the one-loop level, but it
will in any event be very small. Moving away from the fermiophobic limit, there
are many papers looking at the type I 2HDM. A very early discussion of the
fermiophobic, gauge-phobic and fermiophilic limits was given by Pois, Weiler and
Yuan [65], who studied top production below the tt̄ threshold in Higgs decays. In
a series of papers, Akeroyd and collaborators [66–70] considered Higgs decays into
lighter Higgs bosons, charged Higgs decays into a W and a pseudoscalar, double-
Higgs production, Higgs decays to γγ, τ+τ− at the LHC, and the possibility of a
very light Higgs, respectively all in context of the type I 2HDM. Type I 2HDM
have been used to study its contribution to the anomalous magnetic moment of
the muon in [71,72].

• The most popular among all four is the type II 2HDM which is by far the most
studied since it is the structure present in supersymmetric models. A voluminous
Physics Reports review article in 2008 by Djouadi [73] analyses the Higgs bosons
of the Minimal Supersymmetric Standard Model in great detail. Although 2HDM
is embedded in the minimal supersymmetric standard model yet both the mod-
els have evolved with their distinct characteristics. The most crucial difference
between 2HDM and MSSM is that the general type II 2HDM does not have a
strict upper bound on the mass of the lightest Higgs boson, which is an impor-
tant characteristic of the MSSM. In addition the scalar self-couplings are now
arbitrary. Another important difference is that the mixing parameter α, which
in MSSM is given in terms of tanβ and the scalar and pseudoscalar masses, is
now arbitrary. Finally in the MSSM, the charged scalar and the pseudoscalar
masses are so close that the decay of the charged Higgs into a pseudoscalar and a

1Developments in string phenomenology suggest that a type I 2HDM is generic among the vacua of
the heterotic string, providing new motivation for the study of this model.
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real W is kinematically forbidden, while it is generally allowed in type II 2HDM
(refer [74,75] for possible exceptions).

• In addition there is another model which has natural flavour conservation, in
which the quarks and charged leptons all couple to Φ2, but the right-handed
neutrino couples to Φ1. In this model there are Dirac neutrino masses, and the
vacuum expectation value of Φ1 must be zero. The only way to have such a
small vacuum expectation value is through an appropriate symmetry. The model
originally used a Z2 symmetry which was softly [76] or spontaneously [77] broken,
but this allows for right-handed neutrino masses. Extending the symmetry to
U(1) symmetry and breaking it softly (to avoid a Goldstone boson) gives the
model of Davidson and Logan [78].
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Chapter 2

Nature is a strict mother with all
its constraints

A kite needs to be tied down in order
to fly. I learned how important
restrictions can sometimes be in
order to experience freedom.

Damien Rice

Even in a fairy tale if Cinderella gets her time restricted by her fairy God-mother,
then why not two Higgs doublet model by Nature? Nature has imposed many restric-
tions on the two Higgs doublet models from experimental evidences. These experi-
mental evidences in turn put theoretical constraints on the model and its parameter
space gets narrowed down. Until and unless these restrictions are put the unknown
parameter space will be very tough to solve.

The primary restriction came when ATLAS and CMS both observed a peak at
around 125 GeV and it was mandatory that one of the CP even scalars of the two
Higgs doublet model need to have a mass of 125 GeV. Among many other constraints,
the one that is very obvious is that the potential has to be bounded from below. With
the mass of the Higgs boson determined with a good precision, the discussion about
the stability of the SM Higgs potential has gained attention. This involves studying
the evolution of the SM quartic coupling λ with the renormalization group equations
(RGE). Let us first discuss it for the standard model post Higgs discovery. We can
then easily argue the same for the simplest extension of the standard model i.e., the
two Higgs doublet model. Two effects come into play:

1. The quartic coupling itself has a positive contribution to its own RGE evolution,
and therefore tends to increase its value as one goes to higher energy scales;

2. The top quark Yukawa coupling has a negative contribution to the RGE of the
quartic coupling λ, and tends to reduce its value as one goes up in energy scale.
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As a result of these two effects, if the value of the quartic coupling at the weak scale
is too small to start with, the contribution of the top quark Yukawa coupling to the
RGE evolution will be more than the positive contribution of the quartic coupling itself
to its renormalization group equation evolution and cause λ to turn negative at some
point, and therefore the potential becomes unstable. If, however, the starting value
of the quartic coupling is too large, its renormalization group equation evolution will
drive it to even higher values so that the theory eventually ceases to be perturbative
and λ develops a Landau pole. Both these situations are undesirable. These arguments
were used to constrain the mass of the SM Higgs boson [1–10] prior to its discovery.
Now that we know its mass, we can verify whether the potential remains stable, and
the theory perturbative, all the way up to the Planck scale. If that were not the case,
that would most likely be a sign of the existence of new physics, hitherto undiscovered,
which would stabilize the renormalization group equation evolution of the couplings. It
has been shown in [11–13], in fact, that the SM vacuum is metastable if the theory is
to be valid up to the Planck scale. The only way to have a stable electroweak vacuum,
according to these results, would therefore be for new physics to exist at a scale well
below the Planck scale. The stability of the electroweak vacuum can be ensured with
the addition of extra scalar degrees of freedom. With all the parameters of the SM
determined, the addition of a scalar singlet is enough to cure the problem [14–17]. As
shown in [17], the addition of a complex singlet not only provides a vacuum stable up to
the Planck scale but in the broken phase of the model one of the new scalars can have
a mass below 125 GeV. For this particular model only one scalar with a mass above
125 GeV is needed to stabilize the vacuum. It has been shown, however, in the context
of the SM, that the presence of new physics very close to the Planck scale can alter
considerably such conditions of stability of the potential [18–20], and likewise eventual
gravity contributions near the Planck scale can have a sizeable impact [21].

Let us now move on to the two Higgs doublet model where an extra scalar doublet
enlarges the SM scalar sector, but the remaining fields (gauge and fermion) remain the
same, as do the gauge symmetries of the model. A larger scalar sector implies a more
involved scalar potential. And as in the SM, one can ask whether the potential remains
stable and perturbative, as one considers progressively larger energy scales. As such,
the evolution of the renormalization group equations of the quartic couplings of the
2HDM were studied by several authors [22–25] to ascertain the validity of the model
up to higher energy scales and, prior to the Higgs discovery, to attempt to impose
constraints on the unknown scalar masses of the model. After the Higgs boson was
discovered the stability of the several versions of the 2HDM was revisited in a number
of papers [26–34]. In all these works, the lightest CP-even scalar was considered to be
the discovered Higgs boson, and there was a common conclusion that, with all relevant
theoretical and experimental constraints taken into account, there always exists a re-
gion of the parameter space where the 2HDM is valid up to the Planck scale. Notice,
however, that these studies assume a softly broken Z2 symmetry, the most popular
version of the 2HDM, and the region of parameter space found always included the soft
Z2 breaking term. On the other hand, in reference [26] a type II version with an exact
Z2 symmetric model was analysed, concluding that the exact Z2 conserving potential
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cannot be valid beyond 10 TeV without the intervention of new physics, a conclusion
that was then confirmed in later works. However, this conclusion is heavily dependent
on the value of the charged Higgs mass, mξ. Chapter B contains the RGEs depicting
the evolution of the gauge couplings, the Yukawa couplings, the quartic couplings and
the quadratic couplings of the two Higgs doublet potential with energy. In this chapter
we will be discussing the constraints arising from the stability of the two Higgs doublet
model potential, the perturbative unitarity condition and from new physics corrections.

2.1 Stability of the 2HDM potential

The two Higgs doublet model scalar potential can be written in two notations both
of which are invariant under the global U(1) symmetry. The two notations are inter-
convertible. They are:

V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
(
m2

12Φ†1Φ2 + h.c.
)

+
Λ1

2

(
Φ†1Φ1

)2
+

Λ2

2

(
Φ†2Φ2

)2

+Λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ Λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

(
Λ5

2

(
Φ†1Φ2

)2
+ h.c.

)
(2.1)

V (Φ1,Φ2) = λ1

(
|Φ1|2 −

v2
1

2

)2

+ λ2

(
|Φ2|2 −

v2
2

2

)2

+ λ3

(
|Φ1|2 + |Φ2|2 −

v2
1 + v2

2

2

)2

+ λ4

(
|Φ1|2|Φ2|2 − |Φ†1Φ2|2

)
+ λ5

(
Re
(

Φ†1Φ2

)
− v1v2

2

)2

+ λ6

(
Im
(

Φ†1Φ2

))2
(2.2)

All the parameters in the 2HDM potential are considered to be real in order to
make the model CP conserving. As we note that the U(1) symmetry is softly broken
by the terms m2

12 and λ5 in Eq. (2.1) and Eq. (2.2) respectively. Potential in Eq. (2.1)
can be cast into the potential in Eq. (2.2) by minimizing Eq. (2.1) and using the two
minimization conditions to trade m2

11 and m2
22 for v1 and v2. The relations between

the parameters are written below.

m2
11 = −

(
λ1v

2
1 + λ3v

2
)
, m2

22 = −
(
λ2v

2
2 + λ3v

2
)
, m2

12 =
λ5

2
v1v2 , Λ1 = 2 (λ1 + λ3) ,

Λ2 = 2 (λ2 + λ3) , Λ3 = 2λ3 + λ4 , Λ4 =
λ5 + λ6

2
− λ4 , Λ5 =

λ5 − λ6

2
. (2.3)
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The above two notations will be required to discuss this and the successive sections.
For this section it is convenient to use the potential of the first notation in Eq. (2.1).
In order to bound the potential from below it is sufficient to examine the quartic terms
since only the quartic terms will be dominant for larger field values of Φ1 and Φ2. The
stability conditions are constraints on the parameters Λi’s. We introduce a few more
terms like, a = Φ†1Φ1, b = Φ†2Φ2, c = Re Φ†1Φ2 and d = Im Φ†1Φ2 for the sake of
convenience of calculation. We note that,

ab ≥ c2 + d2 . (2.4)

Using these notations we can write the quartic part of the scalar potential which
we denote by VIV as follows [35],

VIV =
1

2

(√
Λ1a−

√
Λ2b
)2

+
(

Λ3 +
√

Λ1Λ2

) (
ab− c2 − d2

)
+ 2

(
Λ3 + Λ4 +

√
Λ1Λ2

)
c2

+
(

Re Λ5 − Λ3 − Λ4 −
√

Λ1Λ2

) (
c2 − d2

)
− 2cd Im Λ5 . (2.5)

In order to guarantee the stability of the potential, we have to ensure that the
quartic part of the potential i.e., VIV never becomes infinitely negative along any of the
field directions that is for any value of the eight field parameters, four for Φ1 and four
for Φ2. Also as we will see, this condition is independent of the CP conserving nature of
the potential, that is to say that the stability conditions are independent of the reality
of the Λi’s. Since Φ1 and Φ2 are two component column matrices it is possible to choose
two arbitrary non-zero values for a and b even when c and d are both zero. But when
either of a and b or both are zero, then it forces c and d to be zero. Keeping these facts
in mind we now consider various possibilities that bound the potential from below.

• When b = 0 and a → ∞ thereby forcing c = d = 0, then VIV = Λ1a2

2 . Thus for
VIV not to be largely negative requires,

Λ1 ≥ 0 . (2.6)

• When a = 0 and b → ∞ thereby forcing c = d = 0, then VIV = Λ2b2

2 . Thus for
VIV not to be largely negative requires,

Λ2 ≥ 0 . (2.7)

• Next if we consider the field direction along which a =
√

Λ2/Λ1b and c = d = 0,
then the first term in Eq. (2.5) vanishes. Now if we go to large field values in
this direction i.e., a, b → ∞ then VIV =

(
Λ3 +

√
Λ1Λ2

)
ab. Since a, b > 0 by

definition, the condition for the potential to be bounded from below turns out to
be,

Λ3 +
√

Λ1Λ2 ≥ 0 . (2.8)
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• Now if we again choose the field direction to be a =
√

Λ2/Λ1b and further impose
ab = c2 + d2 then the quartic potential takes the below form,

VIV = Xc2 + 2Y cd+ Zd2 , (2.9)

where, X = Re Λ5 + β , (2.10)

Y = −Im Λ5 , (2.11)

Z = −Re Λ5 + β , (2.12)

with β = Λ3 + Λ4 +
√

Λ1Λ2 . (2.13)

Still now c and d are arbitrary and thereby choosing d = 0, c → ∞ and c = 0,
d→∞ successively we land up with two conditions,

X = Re Λ5 + β ≥ 0 , (2.14)

Z = −Re Λ5 + β ≥ 0 . (2.15)

This enforces β ≥ 0.

Let us recast Eq. (2.9) as,

VIV = X

(
c+

Y

X
d

)2

+

(
Z − Y 2

X

)
d2 . (2.16)

If we now choose c = − (Y/X) d with d→∞, then we have,

Z − Y 2

X
> 0

⇒ XZ > Y 2 , (2.17)

where we have used the fact that X > 0 from Eq. (2.14). After substituting for X,Y, Z
we get from Eq. (2.17),

β2 − (Re Λ5)2 > (Im Λ5)2

⇒ β2 >| Λ5 |2

⇒ β >| Λ5 | , (2.18)

where we have used the fact of non-negativity of β. Since | Λ5 |> ±Re Λ5, 0 therefore
β >| Λ5 | puts a stronger constraint on β than β > 0. Substituting for β, the above
constraint on β takes the form,

Λ3 + Λ4 +
√

Λ1Λ2 >| Λ5 | . (2.19)

We use Eq. (2.3) to express the above obtained four stability conditions Eq. (2.6), Eq. (2.7),
Eq. (2.8) and Eq. (2.19) in terms of the parameters of Eq. (2.2) i.e., λ’s.
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λ1 + λ3 > 0 ,

λ2 + λ3 > 0 ,

(2λ3 + λ4) + 2
√

(λ1 + λ3) (λ2 + λ3) > 0 ,

2λ3 +
λ5 + λ6

2
− | λ5 − λ6 |

2
+ 2
√

(λ1 + λ3) (λ2 + λ3) > 0 . (2.20)

2.2 Perturbative unitarity constraints

Every scattering amplitude can be expanded in terms of the partial waves,

M (θ) = 16π

∞∑
l=0

(2l + 1) alPl (cos θ) , (2.21)

where M is the scattering amplitude, θ is the angle of scattering, al is the partial
wave amplitude and Pl (x) is the Legendre polynomial of order l. ‘Unitarity condition’
on the partial wave amplitude is,

|al| ≤ 1 (2.22)

and if we hold the hands of perturbative calculations then the above unitarity con-
dition must be satisfied order by order [36, 37]. This means it must hold at tree level
also. The fundamentals used to derive some restrictions on the Higgs masses from this
knowledge of unitarity condition is explained now. The Feynman amplitude of a certain
2 → 2 scattering amplitude was calculated from which the partial wave amplitude al
was obtained by utilizing the property of orthonormality of the Legendre polynomials.
Lee, Quigg and Thacker (LQT) [38] had done pioneering work in the context of stan-
dard model. They had analysed several two body scatterings involving longitudinal
gauge bosons and physical Higgs in the SM. Similar analysis was done for two Higgs
doublet models [39–42] considering similar two body scattering processes where using
the equivalence theorem [43,44] unphysical Higgs masses were used instead of the lon-
gitudinal components of the gauge bosons in the high energy limit. For this analysis
the potential was written in the second notation as in Eq. (2.2). It was shown that all
such scattering amplitudes are proportional to the Higgs quartic couplings in the high
energy limit. The trilinear vertices were suppressed by a factor of E2 coming from the
intermediate propagator therefore their contribution to the scattering amplitudes at
high energies were neglected. Next the l = 0 partial wave amplitude denoted by a0 was
extracted from these amplitudes and a matrix was formed having different two-body
states as rows and columns. This is the well known S-matrix. It was shown that the
largest eigenvalue of the S-matrix is bounded by the unitarity constraint, |a0| ≤ 1.
The largest eigenvalue can be written in terms of the quartic Higgs self couplings and
therefore the quartic Higgs self couplings as well as the non-physical Higgs masses
get restricted to a maximum value. Thus our purpose is to find a0 for every possible
2 → 2 scattering process and then cast them in the form of an S-matrix which is
constructed by taking the different two-body channels as rows and columns. Unitarity
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will restrict the magnitude of each of the eigenvalues of this S-matrix to lie below unity.

If we consider the below parametrization for the fields as given in Eq. (1.9) ,

Φi =

 w+
i (x)

vi + hi(x) + izi(x)√
2

 , i = 1, 2 , (2.23)

the possible two particle states are made of fields w±i , hi and zi. For our pur-
pose we will confine ourselves to the neutral two-particle states and singly charged
two-particle states viz., w+

i w
−
j , hihj , zizj , hizj , w

+
i hj , w

+
i zj etc. Generalizing the re-

sult for n- doublets Φk where k = 1, · · · , n there will be 3n2 + n neutral two-particle
states and 2n2 charged two-particle states. Thus the S-matrix will be of dimension(
3n2 + n

)
×
(
3n2 + n

)
for the neutral 2 → 2 scattering processes and of dimension

2n2 × 2n2 for charged 2 → 2 scattering processes.

In our case where there are two Higgs doublets i.e., n = 2, the neutral channel S-
matrix will be a 14×14 matrix. The rows and columns will be the following two-particle
states:

w+
1 w
−
1 , w

+
2 w
−
2 , w

+
1 w
−
2 , w

+
2 w
−
1 ,

h1h1√
2
,
z1z1√

2
,

h2h2√
2
,
z2z2√

2
, h1z2 , h2z1 , z1z2 , h1h2 , h1z1 , h2z2 .

Bose symmetry gives rise to a factor of 1/
√

2 when identical particle states arise.
Without any symmetry, finding the eigenvalues of a 14 × 14 matrix will be a tedious
task to accomplish. But with the form of the potential in Eq. (2.2), there are some
obvious symmetries involved with the quartic terms. These symmetries make our life a
bit easy since now we can decompose the 14× 14 S-matrix into smaller blocks. It is to
be noted that the quartic part of the potential always contain even number of indices,
1 or 2. Consequently a state x1y1 or x2y2 will always go into x1y1 or x2y2 but not into
x1y2 or x2y1 and vice versa. Furthermore since CP symmetry is conserved there will
be no mixing between the CP-even and the CP-odd states i.e., a neutral state with
combination hihj or zizj will never end up going into hizj . Keeping these facts in mind
we now decompose the S-matrix in the neutral sector into smaller blocks.

MN =


(
M11

N

)
6×6

0 0

0
(
M11

N

)
2×2

0

0 0
(
M12

N

)
6×6

 . (2.24)

The sub-matrices are given below,

(
M11

N

)
6×6

=

( (
A11
N

)
3×3

(
B11
N

)
3×3(

B11
N

)†
3×3

(
C11
N

)
3×3

)
, (2.25)
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where,

(
A11
N

)
3×3

=

w+
1 w
−
1 w+

2 w
−
2

z1z1√
2


w+

1 w
−
1 4 (λ1 + λ3) 2λ3 + λ5+λ6

2

√
2 (λ1 + λ3)

w+
2 w
−
2 2λ3 + λ5+λ6

2 4 (λ2 + λ3)
√

2
(
λ3 + λ4

2

)
z1z1√

2

√
2 (λ1 + λ3)

√
2
(
λ3 + λ4

2

)
3 (λ1 + λ3)

, (2.26)

(
B11
N

)
3×3

=

h1h1√
2

z2z2√
2

h2h2√
2


w+

1 w
−
1

√
2 (λ1 + λ3)

√
2
(
λ3 + λ4

2

) √
2
(
λ3 + λ4

2

)
w+

2 w
−
2

√
2
(
λ3 + λ4

2

) √
2 (λ2 + λ3)

√
2 (λ2 + λ3)

z1z1√
2

(λ1 + λ3)
(
λ3 + λ5

2

) (
λ3 + λ6

2

) , (2.27)

(
C11
N

)
3×3

=

h1h1√
2

z2z2√
2

h2h2√
2


h1h1√

2
3 (λ1 + λ3)

(
λ3 + λ6

2

) (
λ3 + λ5

2

)
z2z2√

2

(
λ3 + λ6

2

)
3 (λ2 + λ3) (λ2 + λ3)

h2h2√
2

(
λ3 + λ5

2

)
(λ2 + λ3) 3 (λ2 + λ3)

. (2.28)

(
M11

N

)
2×2

=

h1z1 h2z2( )
h1z1 2 (λ1 + λ3)

(
λ5−λ6

2

)
h2z2

(
λ5−λ6

2

)
2 (λ2 + λ3)

, (2.29)

(
M12

N

)
6×6

=

( (
A12
N

)
3×3

(
B12
N

)
3×3(

B12
N

)†
3×3

(
C12
N

)
3×3

)
, (2.30)

where,

(
A12
N

)
3×3

=

w+
1 w
−
2 w+

2 w
−
1 h1z2 w+

1 w
−
2 2λ3 + λ5+λ6

2 λ5 − λ6 − i
2 (λ4 − λ6)

w+
2 w
−
1 λ5 − λ6 2λ3 + λ5+λ6

2
i
2 (λ4 − λ6)

h1z2
i
2 (λ4 − λ6) − i

2 (λ4 − λ6) 2λ3 + λ6

, (2.31)

(
B12
N

)
3×3

=

h2z1 z1z2 h1h2 w+
1 w
−
2

i
2 (λ4 − λ6) λ5−λ4

2
λ5−λ4

2

w+
2 w
−
2 − i

2 (λ4 − λ6) λ5−λ4
2

λ5−λ4
2

h1z2
λ5−λ6

2 0 0

, (2.32)
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(
C11
N

)
3×3

=

h2z1 z1z2 h1h2 h2z1 2λ3 + λ6 0 0

z1z2 0 2λ3 + λ5
λ5−λ6

2

h1h2 0 λ5−λ6
2 2λ3 + λ5

. (2.33)

The eigenvalues in the neutral sector are,

•
(
M11

N

)
6×6

: a±1 , a
±
2 , a

±
3

•
(
M11

N

)
2×2

: a±3

•
(
M12

N

)
6×6

: b1 , b2 , b3 , b4 , b5

b5 is two-fold degenerate. The explicit expressions for the eigenvalues will be listed
later on.

When we repeat the same procedure for the singly charged two particle states we
land up to a 8× 8 matrix which can be similarly decomposed into block diagonal form.
In the charged sector the corresponding matrices are written below.

MC =

( (
M11

C

)
4×4

0

0
(
M12

C

)
4×4

)
, (2.34)

where the submatrices are,

(
M11

C

)
4×4

=

h1w
+
1 h2w

+
2 z1w

+
1 z2w

+
2


h1w

+
1 2 (λ1 + λ3) λ5−λ4

2 0 − i
2 (λ4 − λ6)

h2w
+
2

λ5−λ4
2 2 (λ2 + λ3) − i

2 (λ4 − λ6) 0

z1w
+
1 0 i

2 (λ4 − λ6) 2 (λ1 + λ3) λ5−λ4
2

z2w
+
2

i
2 (λ4 − λ6) 0 λ5−λ4

2 2 (λ2 + λ3)

,

(2.35)

(
M12

C

)
4×4

=

h1w
+
2 h2w

+
1 z1w

+
2 z2w

+
1


h1w

+
2 2λ3 + λ4

λ5−λ4
2 0 i

2 (λ4 − λ6)

h2w
+
1

λ5−λ4
2 2λ3 + λ4

i
2 (λ4 − λ6) 0

z1w
+
2 0 − i

2 (λ4 − λ6) 2λ3 + λ4
λ5−λ4

2

z2w
+
1 − i

2 (λ4 − λ6) 0 λ5−λ4
2 2λ3 + λ4

.

(2.36)
The eigenvalues in the charged sector are,

•
(
M11

C

)
4×4

: a±2 , a
±
3

•
(
M12

C

)
4×4

: b2 , b4 , b5 , b6 .
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The explicit expressions for the eigenvalues in the neutral and charged sectors are
listed below.

a±1 = 3 (λ1 + λ2 + 2λ3)±

√
9 (λ1 − λ2)2 +

(
4λ3 + λ4 +

λ5 + λ6

2

)2

, (2.37)

a±2 = (λ1 + λ2 + 2λ3)±
√

(λ1 − λ2)2 +
1

4
(2λ4 − λ5 − λ6)2 , (2.38)

a±3 = (λ1 + λ2 + 2λ3)±
√

(λ1 − λ2)2 +
1

4
(λ5 − λ6)2 , (2.39)

b1 = 2λ3 − λ4 −
1

2
λ5 +

5

2
λ6 , (2.40)

b2 = 2λ3 + λ4 −
1

2
λ5 +

1

2
λ6 , (2.41)

b3 = 2λ3 − λ4 +
5

2
λ5 −

1

2
λ6 , (2.42)

b4 = 2λ3 + λ4 +
1

2
λ5 −

1

2
λ6 , (2.43)

b5 = 2λ3 +
1

2
λ5 +

1

2
λ6 , (2.44)

b6 = 2 (λ3 + λ4)− 1

2
λ5 −

1

2
λ6 . (2.45)

Coming back to the theory explained initially, each of these eigenvalues get an upper
and lower bound from the unitarity constraint as,

|a±i | , |bi| ≤ 16π . (2.46)

Hence the unitarity constraints.

2.3 New Physics corrections

The information about the relative strength between the neutral current and the
charged current interactions in four fermion processes at zero momentum transfer is
carried by the ρ parameter [45]. It is defined as

ρ =
m2
W

m2
Z cos2 θW

, (2.47)

where mW and mZ are the masses of the W± and Z0 gauge bosons respectively
and θW is the weak mixing angle. ρ is unity at the tree level for the Standard model.
At one-loop level, the vacuum polarization effects due to fields that couple either to
the W± or to Z0 produce the vacuum polarization tensors,

Πµν
V V (q) = gµνAV V

(
q2
)

+ qµqνBV V
(
q2
)
, (2.48)
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where V represents either W or Z bosons and qµ is their four momentum. Thus at
one-loop level the deviations from unity arise due to the difference in the self energies
as given below [45,46],

ρ− 1 =
AWW (0)

m2
W

− AZZ (0)

m2
Z

. (2.49)

[47] can be referred for the three loop SM corrections to the above equation upto
leading order terms. The precise measurement of the W± and Z0 self energies at the
LEP [48] are in striking agreement with the SM predictions [49] and thereby strongly
constrains the extended electroweak models. Though as discussed in Section 1.1 the
value of ρ remains close to unity if additional SU(2) scalar doublets are added to the
SM whose hypercharge is ±1/2 still they are constrained by the experimental data.
Thus the parameter space for the non-standard variables of the extended models get
restricted. We explore this to provide some mass bounds to the non-standard Higgs
bosons of the two Higgs doublet models [50,51].

We define ∆ρ as the deviation of the ρ parameter from the SM value. It is defined
as the non-standard part of the difference in self energies Eq. (2.49) and is given as,

∆ρ =

[
AWW (0)

m2
W

− AZZ (0)

m2
Z

]
non−SM

−
[
AWW (0)

m2
W

− AZZ (0)

m2
Z

]
SM

. (2.50)

It is to be noted that the function AV V
(
q2
)

carries more information than ∆ρ.
Since the consistent SM subtraction to the above equation requires only results upto
one loop therefore we can replace m2

Z by m2
W /c

2
θW

where cθW ≡ cos θW and θW is the
well known Weinberg angle. Making this replacement Eq. (2.50) looks like,

∆ρ =

[
AWW (0)− c2

θW
AZZ (0)

m2
W

]
non−SM

−

[
AWW (0)− c2

θW
AZZ (0)

m2
W

]
SM

. (2.51)

When new physics is introduced the contributing Feynman diagrams are mostly
divergent but it is observed through elaborate calculation that the divergent parts can-
cel out among different Feynman diagrams between AWW (0) and c2

θW
AZZ (0). The

leftover divergent contributions get cancelled with the SM subtraction as laid down
in Eq. (2.51). After these cancellations we are left with either quadratic or logarithmic
dependence of ∆ρ on the masses of the new physics particles. ∆ρ is finite if the new
physics is a renormalizable model. If the masses of the non-standard particles are large
then this leaves a pronounced effect on ∆ρ and this is used to probe physics beyond
the Standard Model.

A detailed analysis of the “oblique corrections” for physics whose scale is much
above the electroweak scale lead to the identification of three relevant observables in
this respect. These are the S, T and U parameters as defined in [52] and ε1, ε2 and



2.3. New Physics corrections 35

ε3 as designated in [53]. Without going into the precise definitions of these two set of
observables, we choose to relate the quantities which interest us in our further work.

∆ρ = αT = ε1 , (2.52)

where α = e2/4π = g2s2
θW
/4π is the fine structure constant.

It is not straightforward to obtain a bound on ∆ρ from electroweak precision data.
However to get an idea about the order of magnitude of ∆ρ we quote the number

T = −0.03± 0.09 (+0.09) , (2.53)

which was obtained in [49] by setting U = 0. Higgs boson mass, mh was assumed to
be 117 GeV for the mean value of T and the mean value in parenthesis is for mh = 300
GeV. Eq. (2.53) translates to ∆ρ = −0.0002± 0.0007 (+0.0007).

The expression for ∆ρ for a new physics model containing n− SU (2) scalar Higgs
doublets with hypercharge 1/2, p− number of complex SU (2) singlets with hypercharge
1 and q− number of real SU (2) singlets with hypercharge 0 has been derived elaborately
in [54]. We simplify it for 2HDMs. It is convenient to work in the Higgs basis for this
calculation in which the vacuum expectation value is associated with the first Higgs
doublet only. In this basis

Φ1 =

(
G+(

v +H + iG0
)
/
√

2

)
, Φ2 =

(
S+

2

(R+ iI) /
√

2

)
. (2.54)

Here G+ and G0 are the charged and neutral Goldstone bosons and S+
2 is the

physical charged scalar with mass m2. Thus the matrix which relates the charged
components of Φ1 and Φ2 to the corresponding mass eigenstates is the unit matrix in
the Higgs basis. We denote this unit matrix by U . H, R and I are the real fields which
are related to their corresponding mass eigenstates S0

2,3,4 through an orthogonal matrix
O as shown below,  H

R
I

 = O

 S0
2

S0
3

S0
4

 . (2.55)

We can choose detO = +1 without any loss of generality. We now define a 2× 4
matrix V as,

(
H + iG0

R+ iI

)
= V


G0

S0
2

S0
3

S0
4

 , (2.56)

where V has the form,

V =

(
i O11 O12 O13

0 O21 + iO31 O22 + iO32 O23 + iO33

)
. (2.57)
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Thus,

V †V =


1 −iO11 −iO12 −iO13

iO11 1 iO13 −iO12

iO12 −iO13 1 iO11

iO13 iO12 −iO11 1

 . (2.58)

Grimus and others have derived the value of ∆ρ in their paper [54]. We quote the
expression here,

∆ρ =
g2

64π2m2
W

( 4∑
a=2

(
1−O2

1a−1

)
F
(
m2

2, µ
2
a

)
−O2

13F
(
µ2

2, µ
2
3

)
−O2

12F
(
µ2

2, µ
2
4

)
−O2

11F
(
µ2

3, µ
2
4

)
+3

4∑
a=2

O2
1b−1

[
F
(
m2
Z , µ

2
a

)
− F

(
m2
W , µ

2
a

)
− F

(
m2
Z ,m

2
h

)
+ F

(
m2
W ,m

2
h

)] )
,(2.59)

where µ2,3,4 denote the masses of S0
2,3,4 respectively and mh is the mass of the SM

Higgs boson.
The function F of two non-negative arguments x and y is defined as,

F (x, y) ≡
{ x+y

2 −
xy
x−y lnxy for x 6= y ,

0 for x = y .
(2.60)

F (x, y) is a non-negative function and is symmetrical under the interchange of its
arguments. It vanishes if and only if the two arguments are equal. F (x, y) grows
linearly with the maximum of the two arguments i.e. quadratically with the heaviest
scalar mass when the scalar becomes obese. Only cancellations can prevent the diver-
gence of ∆ρ.

The scalar potential [55, 56] with a U(1) symmetry which forbids flavor-changing
neutral currents (FCNCs) is written below,

V = λ1

(
|Φ1|2 −

v2
1

2

)2

+ λ2

(
|Φ2|2 −

v2
2

2

)2

+λ3

(
|Φ1|2 + |Φ2|2 −

v2
1 + v2

2

2

)2

+λ4

(
|Φ1|2|Φ2|2 − |Φ†1Φ2|2

)
+λ5

∣∣∣Φ†1Φ2 −
v1v2

2

∣∣∣2 , (2.61)

with real λi.
When the scalar doublets are parametrized as in Eq. (1.9)

Φi =

(
w+
i (x)

vi+hi(x)+izi(x)√
2

)
, i = 1, 2 (2.62)
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where the VEVs vi may be taken to be real and positive without any loss of generality.
Three of these fields get “eaten” by the W± and Z0 gauge bosons; the remaining
five are physical scalar fields. There is a pair of charged scalars denoted by ξ±, two
neutral CP-even scalars H and h , and one CP-odd pseudoscalar denoted by A. The
two CP-even scalars have distinct masses, and mh < mH . With

tanβ =
v2

v1
, (2.63)

the scalar fields are given by the combinations(
ω±

ξ±

)
=

(
cβ sβ
−sβ cβ

)(
w±1
w±2

)
, (2.64)

(
ζ
A

)
=

(
cβ sβ
−sβ cβ

)(
z1

z2

)
, (2.65)

(
H
h

)
=

(
cα sα
−sα cα

)(
h1

h2

)
, (2.66)

where cα ≡ cosα , etc. These have already been discussed in Chapter 1 through Eq. (1.19),
Eq. (1.21) and Eq. (1.23). We will assume, without loss of generality, that 0 ≤ β ≤ π

2 ,
and −π

2 ≤ α ≤
π
2 .

With this parametrization, ∆ρ in Eq. (2.59) takes the below form,

∆ρ =
g2

64π2m2
w

(
F (m2

ξ ,m
2
A) + sin2(β − α)F (m2

ξ ,m
2
H) + cos2(β − α)F (m2

ξ ,m
2
h)

− sin2(β − α)F (m2
A,m

2
H)− cos2(β − α)F (m2

A,m
2
h)

+ 3 cos2(β − α)
[
F (m2

Z ,m
2
H)− F (m2

W ,m
2
H)
]

+ 3 sin2(β − α)
[
F (m2

Z ,m
2
h)− F (m2

W ,m
2
h)
]

− 3
[
F (m2

Z ,m
2
hSM

)− F (m2
W ,m

2
hSM

)
] )

, (2.67)

PDG quotes ρ0 = 1.00039 ± 0.00019 for the global fit [57] of precision electro-
weak observables. When the work on finding the mass ranges of the non-standard
Higgs bosons was done the then current experimental bound on the total new physics
contribution to ρ was given by δρ = −0.00011 [58].

Higgs contributions to the oblique electroweak parameters are shown in Chapter C.
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Chapter 3

On Naturalness

But man has still another powerful
resource: natural science with its
strictly objective methods.

Ivan Pavlov

3.1 A brief background

Physics below 300 GeV is termed infrared and physics above 1 TeV is called ultravio-
let. Infrared physics is usually set by the Fermi mass which is the mass given by Fermi
coupling constant of weak interactions, being about 350 GeV. High energy is anything
above 1 TeV that is large with respect to the Fermi mass. The most tantalizing question
in particle physics is - what is the structure, the spectrum and what are the forces at
very high energies? Below the Fermi mass we do have a reasonably satisfactory theory,
the Standard Model. It contains electromagnetic, weak and strong interactions all of
them described by a gauge theory with the U(1), SU(2) and SU(3) symmetries.

On the other end of the scale we have the Planck mass, related to the gravitational
coupling constant and of the order of 1019 GeV. In this mass scale the physics is much
less satisfactory and all we can say is that perhaps supergravity may be a promising
theory.

There lies a great deal of ignorance in between these two extreme ends. SU(5)
Grand Unified Theory (GUT) proposed by Georgi et al. in their paper [1] bears the
idea that there is nothing all the way from the Fermi mass up to the unification point
at 1017 GeV. Many physicists find it hard to accept and the most obvious reason for
this unwillingness is the unnaturalness of the SU(5) scheme.

Unnaturalness of the cosmological constant in relation to spontaneous symmetry
breaking was earlier pointed out in [2]. It seemed reasonable enough to investigate the
possibility that the Higgs be removed i.e. made very heavy [3]. Even the Yale group [4]
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addressed the problem and obtained a classification of the effects arising in this limit.
The Higgs sector in this limit corresponds to the non-linear σ model [5]. This model
is non-renormalizable and cut-off dependent effects can be observed. However at low
energies there is a screening effect and the cut-off dependent terms become unobserv-
able. Whether or not the non-linear σ model is a viable theory in four dimensions is
not known; but it is very well conceivable that at least in some domain (1 to 10 TeV)
the theory behaves effectively like this model.

In the early days of the renormalizable gauge theories ideas that Higgs is a compos-
ite bound state of two fermions surfaced [6]. Strong interactions similar to quantum
chromodynamics were suggested to this end [7]. The crucial remark however was made
by Susskind, reviving an old remark by Wilson [8] who observed that scalar particles,
in particular Higgs, are unnatural. Following up on this argument the Stanford group
and also Eichten and Lane and others have investigated the possibility of composite
Higgs with new strong interactions called technicolor [9].

The problem can be approached from the ultraviolet limit. Ellis et al. [10] have
started from a supersymmetric theory and those parts that would survive in the in-
frared limit were identified. Even though the method was questionable nevertheless it
was interesting since something came out that resembled the known structure. In the
process the discussion on anomalies became important.

A refreshingly new approach that at high energies the world is sort of random but
in the infrared only the renormalizable gauge symmetric theories as observed would
survive was proposed by Foerster, Nielsen and Ninomiya [11], Maiani et al. and Il-
iopoulos et al. [12].

’t Hooft in his paper [13] put forward the idea that neither the infrared nor the
ultraviolet theory should contain anomalies. The compositness of the known fermions
was not compatible with Hooft’s idea. Yet the situation was not really so simple. If we
consider that there are anomalies below 1 TeV (which there are not, as far as we know),
then both top and bottom quarks will be heavier than 1 TeV while τ lepton and its
neutrino will be where they are now. Now the question is would such a theory display
bad effects? One would not think so because the kind of the non-renormalizable effects
associated with anomalies are rather hidden and quite buried in perturbation theory.
The anomalies themselves are not even sensitive to the actual mass values. As a matter
of fact, cut-off dependent effects due to anomalies appear only at the 3-loop level. Yet
it is not possible to let the mass of fermions become large since in this case there is
no decoupling, not even at the one-loop level [14, 15]. However, this problem can be
cured by the introduction of further heavy particles (scalars) and it may be possible
that under certain conditions anomalies are relatively harmless.
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3.2 Reviving the question of naturalness of the standard
model

The standard model of the electroweak interactions has been very successful in describ-
ing the known subatomic world in terms of SU(3)

⊗
SU(2)

⊗
U(1) gauge dynamics. In

the standard model an elementary Higgs field is introduced with a negative mass term
which induces an instability and causes the Higgs field to condense generating a sponta-
neous symmetry breaking. Thus masses of the electroweak gauge bosons and fermions
are generated through the gauge and Yukawa couplings of the Higgs field. The scale
of the negative Higgs mass term determines the scale of this electroweak symmetry
breaking and the magnitude of the resulting gauge boson and fermion masses. This
Higgs mass term can be strongly affected by quantum corrections and thereby the
scale of the electroweak symmetry breaking too gets shifted in the energy scale. If the
standard model were to represent the correct physics up to a high scale, it is usually
assumed that the quantum corrections shift the Higgs mass term by large amount due
to quadratic divergences of the loop amplitudes. The fine-tuning required to keep the
effective Higgs mass term at the electroweak scale and not at the high energy scale
represents a naturalness problem for the standard model [3, 8].

The standard model Higgs Lagrangian is usually written as,

Lh =
(
Dµh̄

)
(Dµh)− Q̄LGUU · h̃− Q̄LGDD · h−m2

hh̄h (3.1)

where the quark Yukawa couplings have been displayed explicitly.

The quantum corrections to the Higgs mass terms from gauge bosons and fermion
loops are usually thought to generate quadratic divergences representing large shifts in
the effective Higgs mass. If Λf (Λb) is the momentum cut-off used for fermions (bosons)
loops and v is the electroweak vacuum expectation value then at one loop order the
Higgs mass counter term may be written as

∆m2
h = −4

∑
f

m2
f

(
Λ2
f/v

2
)

+
(
2m2

W +m2
Z +m2

h

) (
Λ2
b/v

2
)
. (3.2)

If the standard model is to be valid up to a high energy domain then the cut-offs
are at a high scale and the mass shift of Higgs boson as stated in Eq. (3.2) is expected
to be large. This is an alarming situation since the mass of the Higgs boson needs to
be in the electroweak scale and not just blow up as we go high up on the energy scale.
Thus these quantum corrections need to get cancelled. This is a central puzzle of the
standard model which has gained attention over the years.

Let us investigate into the various possibilities that could solve this naturalness
problem. One approach, usually rejected, is that the “bare” Higgs mass term is fine-
tuned in each order in perturbation theory to precisely cancel the large corrections of
Eq. (3.2). Another possibility to cancel the quadratic divergences of the Higgs mass
term is to establish a relationship between the Yukawa couplings and the gauge coupling
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constants [16]. Such a relationship implicitly bears the assumption that the fermion
and bosons have a common cut-off. This common cut-off need not be a property of the
quantum theory. It is also somewhat problematic that a consistent coupling constant
relation could be maintained in higher orders of the perturbation theory or in a precise
non-perturbative formulation of the full theory. The usual statement of the natural-
ness theorem is that the absence of large corrections can only be maintained through
symmetries which protect the Higgs mass term [13,17].

Within the framework of dimensional regularization, Veltman in his paper [16] sug-
gested that a suitable criterion to address the issue of quadratic divergences is the
occurrence of poles in the complex D - dimensional plane for D less than four. In par-
ticular at the n-loop level, a quadratic divergence corresponds to a pole at D = 4−2/n.
Naive quadratic divergences at the one-loop level thus correspond to poles for D = 2.

It was realized by Veltman that poles existed in vector boson and Higgs self energy
diagrams for D = 2 in the SM1. For the Higgs mass they correspond to the shift,
m2
h → m2

h + ∆m2
h as already stated above. If a common cut-off scale is considered, the

divergence in Eq. (3.2) has the form2,

∆m2
h =

Λ2

16π2
CV , CV =

∑
n>1

CVn , (3.3)

where the contribution CVn is associated to n loops. In particular for one-loop the
standard model result is,

CV1 =
3

v2

(
m2
h +m2

Z + 2m2
W − 4m2

t

)
(3.4)

which stems from Eq. (3.2) when Λf = Λb = Λ and only the top quark contribution
is considered while the contribution from other quarks are too small with respect to
the top quark contribution. The condition for the absence of the quadratic divergences
at one loop arising from the cancellation between the fermion and boson masses, i.e.,
CV1 = 0, is known as the Veltman condition at 1-loop [16] and was dubbed ”semi-
natural” by Veltman himself.

A very simple way to understand the Veltman condition in the Standard Model and
generalizations thereof is starting from the one-loop effective potential in the presence of
the (constant) background Higgs field configuration Φ. The one-loop effective potential
is given by,

V (1) (Φ) =
1

64π2

∫
d4k STr

[
log
(
k2 +M2(Φ)

)]
(3.5)

1And also in tadpole diagrams and in connection with the cosmological constant
2NB: A similar structure holds for vector bosons
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where,

STr
[
log
(
k2 +M2(Φ)

)]
=

∑
J=0,

1

2
,1

(−1)2J (2J + 1) Tr
[
log
(
k2 +M2

J(Φ)
)]
. (3.6)

Here M2
J(Φ) is the matrix of the second derivatives of the Lagrangian at zero mo-

mentum k for spin J fields3. The mass matrix is thus obtained fromM2
J(Φ) by inserting

the vacuum expectation value < Φ >= v, where v is the location of the minimum of
the effective potential.

The UV divergences of the one loop effective potential can be displayed by expand-
ing the integrand in powers of large k. Writing

log
(
k2 +M2

J

)
= log k2 +

M2
J

k2
− 1

2

M4
J

k4
+ · · · (3.7)

leads to,

V (1) (Φ) =
1

64π2

[
STr I

∫
d4k

(2π)4
log k2 + STrM2(Φ)

∫
d4k

(2π)4

1

k2
+ · · ·

]
. (3.8)

If a UV cut-off Λ is introduced then the first term is a pure cosmological constant
term with coefficient proportional to STr I = nB−nF which vanishes in theories like su-
persymmetry where there are equal number of bosonic (nB) and fermionic (nF ) degrees
of freedom. The second term is of order Λ2 and determines the presence of quadratic
divergences at one-loop level. Therefore quadratic divergences are absent provided that
STrM2(Φ) = 0. Even STrM2(Φ) = constant is permissible since this would correspond
to a shift of the zero point energy which remains undetermined in the absence of cou-
pling to gravity.

Now, for the SM potential,

V (Φ) = −m
2

2
Φ2 +

λ

4
Φ4 (3.9)

STrM2(Φ) will be a function of the renormalization scale µ ∼ 〈Φ〉 and will be given
by,

STrM2(Φ) = H (µ) + 3G (µ) + 6W (µ) + 3Z (µ)− 12T (µ) . (3.10)

The numerical coefficients in Eq. (3.10) come from the number of degrees of freedom
of the physical Higgs boson H (one), the Goldstone bosons G (three), the massive gauge
bosons Z (three) and W (six) and the top, a Dirac fermion T (twelve). The terms in
Eq. (3.10) can be explicitly written as,

3For spin 1/2 fields one should replace M2
1/2(Φ)→M†1/2(Φ)M1/2(Φ)
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H (µ) = −m2 (µ) + 3λ (µ) Φ2

G (µ) = −m2 (µ) + λ (µ) Φ2

W (µ) =
1

4
g2 (µ) Φ2

Z (µ) =
1

4

(
g2 (µ) + g′2 (µ)

)
Φ2

T (µ) =
1

2
y2
t (µ) Φ2 , (3.11)

where yt is the top Yukawa coupling and g, g′ are the electroweak gauge couplings.
When 〈Φ〉 = v = 246 GeV, the functions H, W, Z, T become the physical masses
m2
h, m2

W , m2
Z and m2

t while G=0 since Goldstones are massless. Terms linear in Φ are
absent in Eq. (3.10) because the SM does not have a cubic scalar invariant term in the
Lagrangian. Clearly in the SM it is not possible to have STrM2 = 0 for general Φ,
since the mass squared terms in Eq. (3.10) do not cancel. The vanishing of STrM2 will
happen only at some specific value of Φ. Since in the RGE we are identifying Φ with
the renormalization scale µ, therefore for large field values the terms proportional to Φ2

in Eq. (3.10) will neatly dominate; in other words the absence of quadratic divergences
is provided by the condition [18],

∂STrM2(Φ)

∂Φ2
= 6λ (µ) +

9

4
g2 (µ) +

3

4
g′2 (µ)− 6y2

t (µ) = 0 , (3.12)

which is precisely the Veltman condition at one-loop since the right hand side of
Eq. (3.4) can be written in terms of the running couplings as,

CV1 =
3

v2

(
m2
h +m2

Z + 2m2
W − 4m2

t

)
= 6λ (µ) +

9

4
g2 (µ) +

3

4
g′2 (µ)− 6y2

t (µ) . (3.13)

If we include two-loop (or higher-loop) corrections then the Veltman condition for
one loop will get modified by a loop suppressing factor O

(
1/(4π)2

)
which will translate

into a tiny modification of the one-loop Veltman scale µV1 [19, 20].

3.3 Veltman conditions in the framework of 2HDMs

In two Higgs doublet models the two Higgs doublets Φ1 and Φ2 couple to fermions and
to each other in any way consistent with the SU(2)×U(1) gauge symmetry. Initially we
work with the most general 2HDM Lagrangian density where no additional symmetries
are imposed. In particular the special case that one doublet gives mass only to the up
quark while the other doublet gives mass only to the down quarks, as in supersymmetry,
is not insisted here. Later on we will impose a global U(1) symmetry to avoid FCNCs
which will further simplify our equations. The Yukawa potential for the most general
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2HDM is given as follows:

LY = −
[ (

Ψ̄lLΦ1

)
G1
eΨeR + Ψ̄eRG

1†
e

(
Φ†1ΨlL

) ]
−
[ (

Ψ̄lLΦ2

)
G2
eΨeR + Ψ̄eRG

2†
e

(
Φ†2ΨlL

) ]
−

[ (
Ψ̄qLΦ̃1

)
G1
uΨuR + Ψ̄uRG

1†
u

(
Φ̃†1ΨqL

) ]
−
[ (

Ψ̄qLΦ̃2

)
G2
uΨuR + Ψ̄uRG

2†
u

(
Φ̃†2ΨqL

)
]

−
[ (

Ψ̄qLΦ1

)
G1
dΨdR + Ψ̄dRG

1†
d

(
Φ†1ΨqL

) ]
−

[ (
Ψ̄qLΦ2

)
G2
dΨdR + Ψ̄dRG

2†
d

(
Φ†2ΨqL

) ]
. (3.14)

Here ΨeR, ΨuR and ΨdR are three SU(2)× U(1) right handed singlets for charged
leptons, up-type quarks and down-type quarks respectively in the space of generations
and are given below.

ΨeR =

 e′R
µ′R
τ ′R

 , ΨuR =

 u′R
c′R
t′R

 and ΨdR =

 d′R
s′R
b′R

 . (3.15)

ΨlL and ΨqL are three vectors of doublets as given below:

ΨlL =



(
ν ′eL
e′L

)
(
ν ′µL
µ′L

)
(
ν ′τL
τ ′L

)

 ; ΨqL =



(
u′L
d′L

)
(
c′L
s′L

)
(
t′L
b′L

)

 . (3.16)

The notation Φ̃i is defined by Φ̃i = iτ2Φ∗i . The complex 3× 3 matrices G1
e , G2

e , G1
u ,

G2
u , G1

d and G2
d contain the Yukawa coupling constants. The primed fields are not the

physical fields since in the primed basis the mass matrices are not diagonal.

Let us start our discussion for this section with the most general two Higgs doublet
model. But before we do that let me make a general comment on models with N Higgs
doublets. In the N -Higgs doublet models, there are N real coupling constants µi asso-
ciated with the quadratic terms and 1

2N
2(N2 +1) real coupling constants λj associated

with the quartic terms in the Higgs potential. Thus for a two Higgs doublet model
there will be two quadratic coupling constants and ten quartic coupling constants.

We will work with the scalar potential [21, 22] where the quadratic couplings are
embedded within the quartic terms and since the potential obeys a U(1) symmetry
therefore few of the quartic terms have been set to zero by this symmetry as discussed
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in Section 1.2.4.

V = λ1

(
|Φ1|2 −

v2
1

2

)2

+ λ2

(
|Φ2|2 −

v2
2

2

)2

+ λ3

(
|Φ1|2 + |Φ2|2 −

v2
1 + v2

2

2

)2

+ λ4

(
|Φ1|2|Φ2|2 − |Φ†1Φ2|2

)
+ λ5

∣∣∣Φ†1Φ2 −
v1v2

2

∣∣∣2 , (3.17)

with real λi. This potential is invariant under the symmetry Φ1 → eiθΦ1 ,Φ2 → Φ2 ,
except for a soft breaking term λ5v1v2<(Φ†1Φ2) . Additional dimension-4 terms, includ-
ing one allowed by a softly broken Z2 symmetry [23] are also set to zero by this U(1)
symmetry.

Cancelling of the quadratic divergences of the 2HDM gives rise to the below men-
tioned four mass relations also known as the Veltman conditions.

2 TrG1
eG

1†
e + 6 TrG1†

u G1
u + 6 TrG1

dG
1†
d =

9

4
g2 +

3

4
g′2 + 6λ1 + 10λ3 + λ4 + λ5 ,(3.18)

2 TrG2
eG

2†
e + 6 TrG2†

u G2
u + 6 TrG2

dG
2†
d =

9

4
g2 +

3

4
g′2 + 6λ2 + 10λ3 + λ4 + λ5 ,(3.19)

2 TrG1
eG

2†
e + 6 TrG1†

u G2
u + 6 TrG1

dG
2†
d = 0 (3.20)

2 TrG2
eG

1†
e + 6 TrG2†

u G1
u + 6 TrG2

dG
1†
d = 0 (3.21)

It is noted that the first two of the above equations are real equations, while the
last two equations are complex conjugates of each other. If the quadratic divergences
of the Higgs self-energy are calculated in terms of the physical Higgs fields then the
same mass relations are obtained but the algebra is much more lengthy.

The vacuum expectation values of Φi, i = 1 , 2 are,

〈Φ1〉0 =

(
0
v1√

2

)
, 〈Φ2〉0 =

(
0
v2√

2

)
. (3.22)

To exhibit the decoupling of the physical Higgs fields from the unphysical Goldstone
bosons and to simplify the equations that follow, it is convenient to define new fields
φ1 and φ2 according to(

φ1

φ2

)
=

(
cosβ sinβ
− sinβ cosβ

)(
Φ1

Φ2

)
, (3.23)

where β is a crucial parameter of the theory and bears a direct relation with the
vacuum expectation values of the doublets through the relation tanβ = v2

v1
.
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The immediate advantage of working with the fields φ1 and φ2 rather than Φ1 and
Φ2 is that the Goldstone bosons G+ , G− and G0 decouple from the five physical Higgs
fields H+ , H− , H1 , H2 and H3:

φ1 =

(
G+

1√
2
(v + a+ iG0)

)
, φ2 =

(
H+

1√
2
(b+ ic)

)
. (3.24)

In the above equations v is
√
v2

1 + v2
2 and carries the value of the electroweak vacuum

expectation value of 246 GeV. The fields a, b and c are related to the three neutral
Higgs fields H1 , H2 and H3 by an orthogonal transformation R which diagonalizes the
mass matrix:  a

b
c

 =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 H1

H2

H3

 ; RTR = I . (3.25)

The physical fermion fields are obtained by diagonalizing the fermion mass matrix.
The physical leptons e, µ and τ are defined by a pair of unitary transformations Ue and
Ve that act independently on the left-handed and right-handed fields as shown below, e′L

µ′L
τ ′L

 = Ue

 eL
µL
τL

 ;

 e′R
µ′R
τ ′R

 = Ve

 eR
µR
τR

 . (3.26)

Ue and Ve are so chosen that they diagonalise the lepton mass matrix.

U †e (G1
e cosβ +G2

e sinβ)Ve =

√
2

v
Me , (3.27)

where Me is diagonal:

Me =

 me 0 0
0 mµ 0
0 0 mτ

 . (3.28)

Eq. (3.27) gives the coupling of φ1 to the physical lepton fields. The coupling of φ2

to the physical lepton fields is given by,

U †e
(
−G1

e sinβ +G2
e cosβ

)
Ve =

√
2

v

(
−F 1

e tanβ + F 2
e cotβ

)
, (3.29)

where F 1
e and F 2

e are 3× 3 complex matrices satisfying F 1
e + F 2

e = Me.

The physical quarks are obtained by an essentially identical procedure. The u, c and t
quarks are obtained by a pair of unitary transformations as shown below, u′L

c′L
t′L

 = Uu

 uL
cL
tL

 ;

 u′R
c′R
t′R

 = Vu

 uR
cR
tR

 , (3.30)
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where Uu and Vu are the unitary matrices acting on the left handed and right handed
up type quarks respectively. They satisfy the below written equality which is nothing
but the coupling of the physical u, c and t quark fields to φ̃1 = iτ2φ

∗
1.

U †u
(
G1
u cosβ +G2

u sinβ
)
Vu =

√
2

v
Mu , (3.31)

where Mu is diagonal:

Mu =

 mu 0 0
0 mc 0
0 0 mt

 . (3.32)

Similarly the coupling of φ̃2 = iτ2φ
∗
2 to the physical u, c and t quarks are given by:

U †u
(
−G1

u sinβ +G2
u cosβ

)
Vu =

√
2

v

(
−F 1

u tanβ + F 2
u cotβ

)
, (3.33)

where F 1
u and F 2

u are 3× 3 complex matrices satisfying F 1
u + F 2

u = Mu.

Moving forward with similar equations for the down type quarks we obtain, d′L
s′L
b′L

 = Ud

 dL
sL
bL

 ;

 d′R
s′R
b′R

 = Vd

 dR
sR
bR

 , (3.34)

which are chosen so that

U †d
(
G1
d cosβ +G2

d sinβ
)
Vd =

√
2

v
Md . (3.35)

The diagonal mass matrix Md is given by,

Md =

 md 0 0
0 ms 0
0 0 mb

 . (3.36)

The coupling of φ1 to the d, s and b quarks is given by Eq. (3.35). The coupling of
φ2 to the down type quarks is as follows:

U †d
(
−G1

d sinβ +G2
d cosβ

)
Vd =

√
2

v

(
−F 1

d tanβ + F 2
d cotβ

)
, (3.37)

where again F 1
d and F 2

d are 3× 3 complex matrices satisfying F 1
d + F 2

d = Md.

We now write down a few general results using Eq. (3.27), Eq. (3.31) and Eq. (3.35),
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Tr
[
G†1eG1e

]
=

( √
2

v cosβ

)2 [
m2
e +m2

µ +m2
τ

]
, (3.38)

Tr
[
G†2eG2e

]
=

( √
2

v sinβ

)2 [
m2
e +m2

µ +m2
τ

]
, (3.39)

Tr
[
G†1uG1u

]
=

( √
2

v cosβ

)2 [
m2
u +m2

c +m2
t

]
, (3.40)

Tr
[
G†2uG2u

]
=

( √
2

v sinβ

)2 [
m2
u +m2

c +m2
t

]
, (3.41)

Tr
[
G†1dG1d

]
=

( √
2

v cosβ

)2 [
m2
d +m2

s +m2
b

]
, (3.42)

Tr
[
G†2dG2d

]
=

( √
2

v sinβ

)2 [
m2
d +m2

s +m2
b

]
. (3.43)

Natural Flavour conservation restricts the couplings of Φ1 and Φ2 to the fermions
for the four types of two Higgs doublet models by the imposition of a symmetry.
Thus Eq. (3.38) to Eq. (3.43) have different values for different 2HDMs and hence
the Veltman conditions are different for the various types of two Higgs doublet models.
We now work to find out the Veltman conditions for the four types of two Higgs doublet
models.

• Type-I 2HDM

Φ2 couples to up-type quarks, down-type quarks and charged leptons whereas Φ1

couples to none. So,
G1e = 0 , G1d = 0 , G1u = 0 . (3.44)

Thus Eq. (3.20) and Eq. (3.21) are invariably satisfied for type I 2HDM when the
Yukawa couplings have the values as in Eq. (3.44).

If we look at Eq. (3.18) keeping Eq. (3.44) in mind we obtain,

−2 TrG1†
e G

1
e − 6 TrG1†

u G
1
u − 6 TrG1†

d G
1
d +

9

4
g2 +

3

4
g′2 + 6λ1 + 10λ3 + λ4 + λ5 = 0

⇒ 9

4
g2 +

3

4
g′2 + 6λ1 + 10λ3 + λ4 + λ5 = 0

⇒ 6
M2
W

v2
+ 3

M2
Z

v2
+ 6λ1 + 10λ3 + λ4 + λ5 = 0

Multiplying both sides of the above equation by v2

4 we get ;
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6

4
M2
W +

3

4
M2
Z +

(v
2

)2
(6λ1 + 10λ3 + λ4 + λ5) = 0

⇒ 3

2
M2
W +

3

4
M2
Z +

v2

4
(6λ1 + 10λ3 + λ4 + λ5) = 0 . (3.45)

Similarly using Eq. (3.39), Eq. (3.41) and Eq. (3.43) in Eq. (3.19) for type I we get,

−2 TrG2†
e G

2
e − 6 TrG2†

u G
2
u − 6 TrG2†

d G
2
d +

9

4
g2 +

3

4
g′2 + 6λ2 + 10λ3 + λ4 + λ5 = 0

⇒ 6
M2
W

v2
+ 3

M2
Z

v2
+ 6λ2 + 10λ3 + λ4 + λ5 = 2

(√
2

v

)2 [
m2
e +m2

µ +m2
τ

]
csc2 β

+6

(√
2

v

)2 [
m2
u +m2

c +m2
t

]
csc2 β + 6

(√
2

v

)2 [
m2
d +m2

s +m2
b

]
csc2 β

⇒ 6
M2
W

v2
+ 3

M2
Z

v2
+ 6λ2 + 10λ3 + λ4 + λ5 =

4

v2

[
m2
e +m2

µ +m2
τ

]
csc2 β

+
12

v2

[
m2
u +m2

c +m2
t

]
csc2 β +

12

v2

[
m2
d +m2

s +m2
b

]
csc2 β

Multiplying both sides of the above equation by v2

4 we get ;

3

2
M2
W +

3

4
M2
Z +

v2

4
(6λ2 + 10λ3 + λ4 + λ5) =

[ (
m2
e +m2

µ +m2
τ

)
+ 3

(
m2
u +m2

c +m2
t

)
+3
(
m2
d +m2

s +m2
b

) ]
csc2 β . (3.46)

In getting the above two equations we have used

MW =
vg

2
, MZ =

v

2

√
g2 + g′2 (3.47)

Thus,

g =
2MW

v
(3.48)

and

g′2 =
4M2

Z

v2
− g2

⇒ g′2 =
4M2

Z

v2
−

4M2
W

v2
(3.49)

∴
9

4
g2 +

3

4
g′2

=
9

4

(
2MW

v

)2

+
3

4

(
4M2

Z

v2
−

4M2
W

v2

)
= 6

M2
W

v2
+ 3

M2
Z

v2
(3.50)
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• Type-II 2HDM

Here Φ2 couples to up-type quarks and Φ1 couples to down-type quarks and charged
leptons. Thus ;

G2e = 0 , G2d = 0 , G1u = 0 . (3.51)

Here again Eq. (3.20) and Eq. (3.21) are invariably satisfied for type II 2HDM when
the Yukawa couplings have the values as in Eq. (3.51).

Now using Eq. (3.38) to Eq. (3.43) and Eq. (3.51) in Eq. (3.18) we get,

−2 TrG1†
e G

1
e − 6 TrG1†

u G
1
u − 6 TrG1†

d G
1
d +

9

4
g2 +

3

4
g′2 + 6λ1 + 10λ3 + λ4 + λ5 = 0

⇒ −2 TrG1†
e G

1
e − 6 TrG1†

d G
1
d +

9

4
g2 +

3

4
g′2 + 6λ1 + 10λ3 + λ4 + λ5 = 0

⇒ 6
M2

w

v2
+ 3

M2
z

v2
+ 6λ1 + 10λ3 + λ4 + λ5 −

4

v2

[
m2
e +m2

µ +m2
τ

]
sec2 β − 12

v2

[
m2
d +m2

s +m2
b

]
sec2 β = 0

Multiplying both sides of the above equation by v2

4 we get ;

3

2
M2
W+

3

4
M2
Z+

v2

4
(6λ1 + 10λ3 + λ4 + λ5) =

[ (
m2
e +m2

µ +m2
τ

)
+3
(
m2
d +m2

s +m2
b

) ]
sec2 β .

(3.52)
Similarly for Eq. (3.19),

−2 TrG2†
e G

2
e − 6 TrG2†

u G
2
u − 6 TrG2†

d G
2
d +

9

4
g2 +

3

4
g′2 + 6λ2 + 10λ3 + λ4 + λ5 = 0

⇒ −6 TrG2†
u G

2
u +

9

4
g2 +

3

4
g′2 + 6λ2 + 10λ3 + λ4 + λ5 = 0

⇒ 6
M2

w

v2
+ 3

M2
z

v2
+ 6λ2 + 10λ3 + λ4 + λ5 −

12

v2

[
m2
u +m2

c +m2
t

]
csc2 β = 0

Multiplying both sides of the above equation by v2

4 we get ;

3

2
M2
W +

3

4
M2
Z +

v2

4
(6λ2 + 10λ3 + λ4 + λ5) = 3

(
m2
u +m2

c +m2
t

)
csc2 β . (3.53)

• Lepton Specific 2HDM

In this type of 2HDM, Φ2 couples to up-type and down-type quarks, Φ1 couples to
charged leptons. Thus ;

G2e = 0 , G1d = 0 , G1u = 0 . (3.54)

Eq. (3.20) and Eq. (3.21) are invariably satisfied for lepton specific models when
the Yukawa couplings have the values as in Eq. (3.54).

Simplifying Eq. (3.18) we have,
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−2 TrG1†
e G

1
e − 6 TrG1†

u G
1
u − 6 TrG1†

d G
1
d +

9

4
g2 +

3

4
g′2 + 6λ1 + 10λ3 + λ4 + λ5 = 0

⇒ −2 TrG1†
e G

1
e +

9

4
g2 +

3

4
g′2 + 6λ1 + 10λ3 + λ4 + λ5 = 0

⇒ 6
M2

w

v2
+ 3

M2
z

v2
+ 6λ1 + 10λ3 + λ4 + λ5 −

4

v2
[m2

e +m2
µ +m2

τ ] sec2 β = 0

Multiplying both sides of the above equation by v2

4 we get ;

3

2
M2
W +

3

4
M2
Z +

v2

4
(6λ1 + 10λ3 + λ4 + λ5) =

(
m2
e +m2

µ +m2
τ

)
sec2 β . (3.55)

For Eq. (3.19) in lepton specific models,

−2 TrG2†
e G

2
e − 6 TrG2†

u G
2
u − 6 TrG2†

d G
2
d +

9

4
g2 +

3

4
g′2 + 6λ2 + 10λ3 + λ4 + λ5 = 0

⇒ −6 TrG2†
u G

2
u − 6 TrG2†

d G
2
d +

9

4
g2 +

3

4
g′2 + 6λ2 + 10λ3 + λ4 + λ5 = 0

⇒ 6
M2

w

v2
+ 3

M2
z

v2
+ 6λ2 + 10λ3 + λ4 + λ5 −

12

v2

[
(m2

u +m2
c +m2

t ) + (m2
d +m2

s +m2
b)
]

csc2 β = 0

Multiplying both sides of the above equation by v2

4 we get ;

3

2
M2
W+

3

4
M2
Z+

v2

4
(6λ2 + 10λ3 + λ4 + λ5) = 3

[ (
m2
u +m2

c +m2
t

)
+
(
m2
d +m2

s +m2
b

) ]
csc2 β

(3.56)

• Flipped 2HDM

Here Φ2 couples to up-type quarks and charged leptons, Φ1 couples to down-type
quarks. Thus ;

G1e = 0 , G2d = 0 , G1u = 0 . (3.57)

Even here the last two of the Veltman conditions is invariably satisfied.

For flipped two Higgs doublet models Eq. (3.18) is simplified as,

−2 TrG1†
e G

1
e − 6 TrG1†

u G
1
u − 6 TrG1†

d G
1
d +

9

4
g2 +

3

4
g′2 + 6λ1 + 10λ3 + λ4 + λ5 = 0

⇒ −6 TrG1†
d G

1
d +

9

4
g2 +

3

4
g′2 + 6λ1 + 10λ3 + λ4 + λ5 = 0

⇒ 6
M2

w

v2
+ 3

M2
z

v2
+ 6λ1 + 10λ3 + λ4 + λ5 −

12

v2

[
m2
d +m2

s +m2
b

]
sec2 β = 0
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Multiplying both sides of the above equation by v2

4 we get ;

3

2
M2
W +

3

4
M2
Z +

v2

4
(6λ1 + 10λ3 + λ4 + λ5) = 3

(
m2
d +m2

s +m2
b

)
sec2 β . (3.58)

Similarly for Eq. (3.19) we solve as:

−2 TrG2†
e G

2
e − 6 TrG2†

u G
2
u − 6 TrG2†

d G
2
d +

9

4
g2 +

3

4
g′2 + 6λ2 + 10λ3 + λ4 + λ5 = 0

⇒ −2 TrG2†
e G

2
e − 6 TrG2†

u G
2
u +

9

4
g2 +

3

4
g′2 + 6λ2 + 10λ3 + λ4 + λ5 = 0

⇒ 6
M2

w

v2
+ 3

M2
z

v2
+ 6λ2 + 10λ3 + λ4 + λ5 −

4

v2

[
m2
e +m2

µ +m2
τ

]
csc2 β − 12

v2

[
m2
u +m2

c +m2
t

]
csc2 β = 0

Multiplying both sides of the above equation by v2

4 we get ;

3

2
M2
W+

3

4
M2
Z+

v2

4
(6λ2 + 10λ3 + λ4 + λ5) =

[ (
m2
e +m2

µ +m2
τ

)
+3
(
m2
u +m2

c +m2
t

) ]
csc2 β .

(3.59)

Thus we see that Eq. (3.20) and Eq. (3.21) are not physically relevant as they are
identically satisfied for each type. We therefore deal with the first two of the Veltman
conditions which have been expressed for the four types of two Higgs doublet models
obeying a U(1) symmetry. Henceforth we will identify Eq. (3.18) as Veltman Condition
1 (or VC1) and Eq. (3.19) as Veltman Condition 2 (or VC2). For the sake of convenience
we enlist below VC1 and VC2.

• Type - I 2HDM

1. Veltman Condition 1

3

2
M2

w +
3

4
M2

z +
v2

4
(6λ1 + 10λ3 + λ4 + λ5) = 0 . (3.60)

2. Veltman Condition 2

3

2
M2
w +

3

4
M2
z +

v2

4
(6λ2 + 10λ3 + λ4 + λ5) =

[ (
m2
e +m2

µ +m2
τ

)
+ 3

(
m2
u +m2

c +m2
t

)
+3
(
m2
d +m2

s +m2
b

) ]
csc2 β . (3.61)

• Type - II 2HDM

1. Veltman Condition 1

3

2
M2

w +
3

4
M2

z +
v2

4
(6λ1 + 10λ3 + λ4 + λ5) =

[ (
m2
e +m2

µ +m2
τ

)
(3.62)

+3
(
m2
d +m2

s +m2
b

) ]
sec2 β .
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2. Veltman Condition 2

3

2
M2

w +
3

4
M2

z +
v2

4
(6λ2 + 10λ3 + λ4 + λ5) = 3

(
m2
u +m2

c +m2
t

)
csc2 β .

(3.63)

• Lepton Specific 2HDM

1. Veltman Condition 1

3

2
M2

w+
3

4
M2

z +
v2

4
(6λ1 + 10λ3 + λ4 + λ5) =

(
m2
e +m2

µ +m2
τ

)
sec2 β . (3.64)

2. Veltman Condition 2

3

2
M2
w +

3

4
M2
z +

v2

4
(6λ2 + 10λ3 + λ4 + λ5) = 3

[ (
m2
u +m2

c +m2
t

)
(3.65)

+
(
m2
d +m2

s +m2
b

) ]
csc2 β .

• Flipped 2HDM

1. Veltman Condition 1

3

2
M2

w +
3

4
M2

z +
v2

4
(6λ1 + 10λ3 + λ4 + λ5) = 3

(
m2
d +m2

s +m2
b

)
sec2 β .

(3.66)

2. Veltman Condition 2

3

2
M2
w +

3

4
M2

z +
v2

4
(6λ2 + 10λ3 + λ4 + λ5) =

[ (
m2
e +m2

µ +m2
τ

)
(3.67)

+3
(
m2
u +m2

c +m2
t

) ]
csc2 β .

We have written the Veltman conditions 1 and 2 such that the left hand side of the
Veltman condition 1 and Veltman condition 2 are the same for all the four types of two
Higgs doublet models. The right hand sides are model dependent. Moreover the left
hand side contains the various quartic couplings apart from the masses of the gauge
bosons. In order to customize the Veltman conditions in terms of the masses of the
physical Higgs bosons to get valuable information from them we need to express the
quartic couplings in terms of the physical Higgs boson masses. With reference to the
2HDM scalar potential given in Eq. (3.17), we’ve v1, v2 and the five λ parameters as
the independent parameters. They are related to the four physical Higgs boson masses
in the alignment limit

(
β − α ∼ π

2

)
(to be discussed in detail in Section 4.1) under the

U(1) symmetry by the following relations [24] as discussed in Section 1.2.
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λ1 =
1

2v2c2
β

m2
H −

λ5

4
(tan2 β − 1) , (3.68)

λ2 =
1

2v2s2
β

m2
H −

λ5

4

(
1

tan2 β
− 1

)
, (3.69)

λ3 = − 1

2v2
(m2

H −m2
h)− λ5

4
, (3.70)

λ4 =
2

v2
m2
ξ , λ5 = λ6 =

2

v2
m2
A . (3.71)

Again using here the short-hand notation for the trigonometric functions i.e., cα ≡
cosα and sα ≡ sinα, and likewise for β. Thus, an alternative way of counting the
independent parameters is through the four masses, the two angles α and β, the elec-
troweak vev, v and the parameter λ5, which appears on the rhs of the above equations.
In this set of eight parameters, v is

√
v2

1 + v2
2 = 246GeV and so is the lightest CP-even

Higgs mass mh as 125 GeV.

Using relations Eq. (3.68)- Eq. (3.71) we can express the left hand side of the Velt-
man conditions 1 and 2 in terms of the masses of the physical Higgs bosons, β, v and λ5.

LHS of first Veltman Condition:

3

2
M2
W +

3

4
M2
Z +

5

4
m2
h +

1

2
m2
ξ +

1

4
m2
H

(
3 tan2 β − 2

)
− 3v2

8
λ5 tan2 β , (3.72)

LHS of second Veltman Condition:

3

2
M2
W +

3

4
M2
Z +

5

4
m2
h +

1

2
m2
ξ +

1

4
m2
H

(
3 cot2 β − 2

)
− 3v2

8
λ5 cot2 β . (3.73)

The Veltman conditions for the four types of 2HDMs have been tabulated in ta-
ble 3.1. The Yukawa matrices which vanish in each model are listed in the second
column. We note here that although naturalness conditions in specific 2HDMs have
been studied earlier on a few occasions [25, 26], they were not done in the SM-like
scenario, nor expressed in terms of the physical masses for the different types as in
here.
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Model zero Yukawa VC1 VC2

6M2
W + 3M2

Z + 5m2
h 6M2

W + 3M2
Z + 5m2

h

+ 2m2
ξ +m2

H(3 tan2 β − 2) + 2m2
ξ +m2

H

(
3 cot2 β − 2

)
−3v2

2 λ5 tan2 β = −3v2

2 λ5 cot2 β =

Type I G1e , G1d , G1u 0 4
[∑

m2
e + 3

∑
m2
u + 3

∑
m2
d

]
csc2 β

Type II G2e , G2d , G1u 4
[∑

m2
e + 3

∑
m2
d

]
sec2 β 12

∑
m2
u csc2 β

LS G2e , G1d , G1u 4
∑
m2
e sec2 β 12

[∑
m2
u +

∑
m2
d

]
csc2 β

Flipped G1e , G2d , G1u 12
∑
m2
d sec2 β 4

[∑
m2
e + 3

∑
m2
u

]
csc2 β

Table 3.1: Veltman conditions for the different 2HDMs
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Chapter 4

How obese are the non-standard
Higgs bosons?

It is the weight not number of
experiments that is to be regarded.

Sir Isaac Newton

In this chapter we aim to find the mass ranges of the non-standard physical Higgs
bosons of the 2HDMs. In order to proceed to that we will be first discussing the various
limits of the 2HDMs. Playing with the angles α and β lands us upon various limits of
the two Higgs doublet models. The limits that we have worked with are the alignment
limit, the reverse alignment limit and the wrong sign limit.

4.1 Alignment limit

The standard model Higgs is CP even, neutral and with a mass of around 125 GeV.
In two Higgs doublet models there are two physical Higgs bosons that are CP even
and neutral with masses either to be determined or assigned. We will identify one
of these Higgs bosons as the SM Higgs that is to say that it has the same couplings
with the SM particles as the SM Higgs boson. To this end we start with the trilinear
gauge-Higgs couplings which arise from the kinetic part of the Lagrangian density. In
2HDM, trilinear gauge-Higgs coupling is,

Lscalar
kinetic = | DµΦ1 |2 + | DµΦ2 |2 ⊃

g2

2
W+
µ W

−
µ (v1h1 + v2h2) . (4.1)

If we take the combination,

H0 =
1

v
(v1h1 + v2h2) (4.2)

and insert it in Eq. (4.1) we get back the exact SM trilinear gauge-Higgs coupling,

Lscalar
kinetic = | DµΦ |2 ⊃ vg2

2
W+
µ W

−
µ H

0 . (4.3)
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Thus H0 carries the exact SM-like gauge couplings. Whereas its orthogonal com-
bination,

R =
1

v
(v2h1 − v1h2) (4.4)

will not have any trilinear couplings with the gauge bosons.

Generalizing to the n-Higgs doublet models, the SM-like Higgs bosons is given as,

H0 =
1

v
(v1h1 + v2h2 + · · ·+ vnhn) (4.5)

and
v =

(
v2

1 + v2
2 + · · ·+ v2

n

)1/2
. (4.6)

For two Higgs doublet models this combination of H0 can be obtained in an alternative
way. As we have seen before from Eq. (1.19), Eq. (1.21) and Eq. (1.23), the angle of
rotation in the CP-even sector is different from that in the charged and pseudoscalar
sectors. If we rotate the CP-even sector by the same angle β, we obtain two different
scalar combinations H0 and R as shown below,(

H0

R

)
=

(
cβ sβ
−sβ cβ

)(
h1

h2

)
. (4.7)

It is found that H0 has exactly the standard model Higgs couplings with the fermions
and gauge bosons [1, 2]. By using Eq. (1.23) and Eq. (4.7) we can find the relation
between the physical scalars h and H with H0 and R. The relevant equations are

h = sin(β − α)H0 + cos(β − α)R (4.8)

H = cos(β − α)H0 − sin(β − α)R . (4.9)

Thus in order for h, the lightest CP-even state to be the Higgs boson of the standard
model, we require

sin(β − α) ≈ 1 , (4.10)

which has been called the SM-like or alignment limit [3]. It is to be noted that the SM-
like state, H0, is not guaranteed to be a mass eigenstate in general. H0 must also carry
the SM-like Yukawa couplings. For this let us have a look into the Yukawa Lagrangian
density for two Higgs doublet model,

LY =

2∑
i=1

[
−Q̄LΦ̃iG

i
upR − Q̄LΦiG

i
dnR + h.c.

]
, (4.11)

where QL is the left-handed 3-vectors of isodoublets in the space of generations,
QL = (pL nL)T where pL and nL are left-handed up-type quarks and down-type quarks
respectively in the gauge basis. pR and nR are right-handed 3-vectors of singlets, Giu
and Gid etc. are complex 3 × 3 matrices in generation space containing the Yukawa
coupling constants in the up-type and down-type sectors respectively. In writing the
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above Yukawa Lagrangian we have suppressed the flavour indices. After spontaneous
symmetry breaking,

Φi =

 w+
i (x)

vi + hi(x) + izi(x)√
2

 , (4.12)

Φ̃i = iτ2Φ∗i =

 vi + hi(x)− izi(x)√
2

−w−i (x)

 (4.13)

where τ2 is the second Pauli matrix and i takes values 1 and 2 for the 2HDM.

Therefore the mass matrices take the following form in the gauge basis,

Mn =
1√
2

2∑
i=1

viG
i
d , (4.14)

Mp =
1√
2

2∑
i=1

viG
i
u . (4.15)

If we perform a biunitary transformation then the above mass matrices become diagonal
as shown below.

Dd = U †L ·Mn · UR = diag (md, ms, mb) ,

Du = V †L ·Mp · VR = diag (mu, mc, mt) . (4.16)

The matrices U and V relate the quark fields in the gauge basis to those in the
mass basis as follows,

nL = ULdL, nR = URdR ,

pL = VLuL, pR = VRuR . (4.17)

The CP even Yukawa Lagrangian stemming from Eq. (4.11) becomes,

LCP−even
Y = − 1√

2
p̄L

(
2∑
i=1

Giuhi

)
pR −

1√
2
n̄L

(
2∑
i=1

Gidhi

)
nR + h.c. . (4.18)

Now {h1, h2} basis is rotated via an orthogonal transformation to a new basis
containing the states {H0, R} which was earlier defined in Eq. (4.2) and Eq. (4.4).

Thus using Eq. (4.2) and Eq. (4.4) we can write down the Yukawa couplings of the
new state H0 as follows,

LH0

Y = − H0

v
√

2
p̄L

(∑2
i=1G

i
uvi

)
pR −

H0

v
√

2
n̄L

(∑2
i=1G

i
dvi

)
nR + h.c.

= −H
0

v
[p̄LMppR + n̄LMnnR] + h.c. . (4.19)
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Using Eq. (4.16) and Eq. (4.17) we can rewrite the Yukawa Lagrangian of Eq. (4.19)
in the mass basis as,

LH0

Y = −H
0

v

[
ūLDuuR + d̄LDddR

]
+ h.c.

≡ −H
0

v

[
ūDuu+ d̄Ddd

]
, (4.20)

where the last step follows from the fact that Du,d are diagonal. Eq. (4.20) shows that
H0 by construction possesses SM-like Yukawa couplings with the SM fermions.

There is yet another limit the decoupling limit, the first cousin of the alignment
limit. We need to be able to distinguish between these two limits. We take the help
of the potential in the Higgs-basis given by Eq. (1.35) to clearly distinguish between
these two limits. It allows us to write expressions that facilitate in some cases the
discussion of alignment and decoupling limits in the two Higgs doublet models [4]. Let
us try to clarify what we mean by alignment limit and decoupling limit. The LHC
has shown beyond all doubt that the 125 GeV scalar which has been discovered has
SM-like behaviour which means it seems to couple to gauge bosons and fermions very
much like the SM Higgs boson would do. Within models with two doublets, this implies
that the scalar state with 125 GeV mass needs to be almost aligned with the vacuum
expectation value. The question is how does one obtain such aligned regimes in the
two Higgs doublet models? For this let us take a look at the CP even mass matrix in
the Higgs-basis,

MCP−even =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
. (4.21)

Having an aligned scalar means that there won’t be much mixing between the two
CP-even states, and this can be achieved in two ways:

• One of the diagonal elements in Eq. (4.21) is much bigger than the other one.
Since Z1 is a quartic coupling and therefore expected not to be large so that
the theory remains perturbative at high scales, this forces the (2,2) entry in the
matrix to be quite large, and it is simple to show that all extra scalars will be
heavy. In this regime, alignment is achieved in the decoupling limit.

• The off-diagonal elements in Eq. (4.21) are much smaller than the diagonal ones.
In this regime, the masses of the extra scalars are not necessarily large, and the
SM-like behaviour of the 125 GeV state is said to be caused by the alignment
limit.

The relevant coupling equations of h or H to gauge bosons are [5, 6]

| sβ−αcβ−α |=
| Z6 | v2

m2
H −m2

h

, (4.22)

and
Z1v

2 = m2
hs

2
β−α +m2

Hc
2
β−α . (4.23)
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Assuming that the lightest state is the one that is aligned with the vacuum expectation
value, and that it has a mass of 125 GeV, its tree-level couplings are very close to that
of the standard model Higgs boson. This limit is attained by setting cβ−α → 0. For
this it is sufficient to have Z6 � 1 to be in the alignment limit as seen from Eq. (4.22).
In this regime, although the couplings of the 125 GeV Higgs are all SM-like, the other
Higgs bosons can in principle be light and therefore be within the reach of the LHC.

To have alignment in the decoupling limit the masses of the non-125 Higgs bosons
must not be much larger than 125 GeV. Defining a common mass scale mheavy with
Φheavy = H,A and H± we can write [7],

m2
heavy = M2 + f(λi)v

2 +O(
v4

M2
) , (4.24)

where f(λi) denotes a linear combination of λ1 · · ·λ5. In the case when sβ−α → 0
there is again alignment but now with the heavy CP-even Higgs H, meaning this would
correspond to the heavy Higgs scenario. The condition for this regime to occur is still
Z6 � 1, but now decoupling is not possible, as the non-SM-like Higgs boson masses
are not all much larger than 125 GeV, in particular not mh.

4.1.1 Mass bounds in Alignment limit

We first rewrite the relations between the quartic couplings that appear in the potential
in Eq. (1.6) and the masses of the Higgs bosons in the alignment limit. Imposition of
the U (1) symmetry forces λ5 = λ6. Keeping this in mind and using sin (β − α) ∼ 1
the set of equations Eq. (1.29) - Eq. (1.33) can be rewritten as [8],

λ1 =
1

2v2c2
β

m2
H −

λ5

4
(tan2 β − 1) , (4.25)

λ2 =
1

2v2s2
β

m2
H −

λ5

4

(
1

tan2 β
− 1

)
, (4.26)

λ3 = − 1

2v2
(m2

H −m2
h)− λ5

4
, (4.27)

λ4 =
2

v2
m2
ξ , λ5 = λ6 =

2

v2
m2
A . (4.28)

The Veltman conditions as obtained for the four types of 2HDMs in the alignment
limit under U (1) symmetry has been tabulated in Table 3.1. Our main result in this
chapter deals with the bounds we have obtained for the masses of the heavy and charged
Higgs particles. The lighter CP-even h particle is assumed to be the one that has been
observed at the LHC, so that mh = 125 GeV, and v = 246 GeV. To explain the
procedure let us consider the example of the type II model. Same procedure can be
adopted for the other types of 2HDMs.

Since we want the bounds on mH and mξ , let us rewrite VC1 and VC2 for the type
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II model in a convenient form,

m2
H

(
3 tan2 β − 2

)
+ 2m2

ξ =4
[∑

m2
e + 3

∑
m2
d

]
sec2 β − 6M2

W − 3M2
Z − 5m2

h + λ5
3v2

2
tan2 β ,

(4.29)

m2
H

(
3 cot2 β − 2

)
+ 2m2

ξ =12
∑

m2
u csc2 β − 6M2

W − 3M2
Z − 5m2

h + λ5
3v2

2
cot2 β .

(4.30)

As we can see all but the last term on the right hand side of either equation are ex-
perimentally known. However there is an estimate of the magnitude of the last term.
The U(1) symmetry implies that λ5 > 0 , since λ5 = λ6 = 2

v2m
2
A and we impose the

restriction of |λi| ≤ 4π based on the validity of perturbativity. Comparing with the sec-
ond equation in Eq. (4.28), we see that this in turn puts a restriction on mA . 617GeV.

We further restrict the mass ranges by imposing constraints coming from stability,
perturbative unitarity, and the oblique electroweak T -parameter. These have been dis-
cussed elaborately in Chapter 2. For the sake of recapitulation we note that conditions
for stability, i.e. for the scalar potential being bounded from below, were examined
in [4, 9, 10], and found to provide lower bounds on certain combinations of the quartic
couplings λi . On the other hand, the requirement of perturbative unitarity translates
into upper limits on combinations of the λi , which for two-Higgs models have been
derived by many authors [8,11–13]. One condition coming from perturbative unitarity
is ∣∣∣3(λ1 + λ2 + 2λ3)±

√
9(λ1 − λ2)2 + (4λ3 + λ4 + λ5)2

∣∣∣ ≤ 16π (4.31)

Stability provides the inequalities

λ1 + λ3 > 0 , λ2 + λ3 > 0 , (4.32)

so that we can write Eq. (4.31) as |A±B| ≤ 16π , with A ,B ≥ 0 . It then follows that

0 ≤ λ1 + λ2 + 2λ3 ≤
16π

3
. (4.33)

In terms of the scalar masses, this reads

0 < (m2
H −m2

A)(tan2 β + cot2 β) + 2m2
h <

32πv2

3
. (4.34)

For tanβ � 1, this inequality implies that mH and mA are almost degenerate,
a result also found in [14]. In figure 4.1 we have shown this degeneracy by plotting
mA against mH for different values of tanβ . It is easy to see from the plots that the
degeneracy is more pronounced at higher values of mA for any value of tanβ . For these
plots we have used the perturbativity condition |λi| ≤ 4π , which restricts mA . 617
GeV.

For our purpose we will need another inequality which follows from the condition

|2λ3 + λ4| ≤ 16π (4.35)
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Figure 4.1: Degeneracy of mH −mA (in GeV) for progressively increasing tanβ . The
condition |λi| ≤ 4π restricts mA . 617 GeV.
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required for perturbative unitarity. Substituting the mass relations of Eq. (4.27)
and Eq. (4.28) into this, we get∣∣2m2

ξ −m2
H −m2

A +m2
h

∣∣ ≤ 16πv2 . (4.36)

Next we take into account the oblique parameter T for the 2HDMs, which has the
expression [15,16]

T =
1

16π sin2 θWM2
W

[
F (m2

ξ ,m
2
H) + F (m2

ξ ,m
2
A)− F (m2

H ,m
2
A)
]
, (4.37)

with

F (x, y) =

{ x+y
2 −

xy
x−y ln x

y , x 6= y

0 x = y
(4.38)

The T parameter is constrained by the global fit to precision electroweak data to be [17]

T = 0.05± 0.12. (4.39)

We have the tools ready. For tanβ = 5 , we have plotted the two Veltman conditions
for several values of λ5 and the constraints arising from stability, perturbative unitarity
and the T parameter in the mH vs mξ plane for each type of 2HDM. The resulting
plot is shown in figure 4.2. VC1 produces ellipses, and VC2 gives a narrow band of
hyperbolae. Their crossings which fall inside the band representing the bound from the
inequalities from Eq. (4.34) and Eq. (4.36) are the allowed masses. From the plot we
can estimate the individual bounds: for all four models, we find approximately 550 GeV
. mξ . 700 GeV, and about 450 GeV . mH . 620 GeV, with a higher mH implying
a higher mξ . As mentioned earlier, mA is close to mH as a result of Eq. (4.34). We
also note that direct searches have put a rough lower bound of mξ > 100 GeV [18].

4.2 Reverse Alignment limit

This limit is the counter part of the alignment limit when the heavier CP-even Higgs
boson is considered to be the SM-like Higgs with mass mH = 125 GeV. This is formu-
lated by rearranging the equations obtained in the previous section. Now H is obtained
in terms of H0 and R using Eq. (4.40) and Eq. (4.41).(

H0

R

)
=

(
cβ sβ
−sβ cβ

)(
h1

h2

)
, (4.40)

(
H
h

)
=

(
cα sα
−sα cα

)(
h1

h2

)
. (4.41)

We obtain,
H = H0 cos(β − α)−R sin(β − α) , (4.42)

where if H has to be the SM-like Higgs boson, it will have to resemble the properties of
H0 and for that β would have to approximately equal α or π + α. The results for the
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100 200 300 400 500 600 700
mH

100

200

300

400

500

600

700

mΞ

(a) Type I
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(b) Type II
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(c) Lepton specific

Allowed region for

Flipped model, tanΒ=5.0
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(d) Flipped

Figure 4.2: Allowed mass range in GeV for the charged Higgs and the heavy CP even
Higgs in Alignment limit for (a) type I, (b) type II, (c) lepton specific and (d) flipped
2HDM. The shaded band is the region allowed by stability, perturbative unitarity and
the T parameter constraints. The ellipses and the narrow band of hyperbolae are the
two Veltman conditions for different values of λ5 with 0 < λ5 < 4π and tanβ = 5.
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mass ranges of the non-standard Higgs bosons with β ≈ α and β ≈ π+α are identical,
so in what follows we will work with β ≈ α and call it the Reverse Alignment Limit.

In the reverse alignment limit under U(1) symmetry, Eq. (1.29) - Eq. (1.33) become,

λ1 =
m2
h

2v2
(tan2 β + 1)− λ5

4
(tan2 β − 1) , (4.43)

λ2 =
m2
h

2v2
(cot2 β + 1)− λ5

4
(cot2 β − 1) , (4.44)

λ3 =
1

2v2
(m2

H −m2
h)− λ5

4
, (4.45)

λ4 =
2

v2
m2
ξ , (4.46)

λ5 = λ6 =
2

v2
m2
A . (4.47)

Setting up the tools for this limit next we need to rewrite the Veltman condi-
tions in the reverse alignment limit. For demonstration we rewrite the Veltman condi-
tions Eq. (4.48) and Eq. (4.49) for type II 2HDM,

2 TrG1
eG

1†
e + 6 TrG1†

u G
1
u + 6 TrG1

dG
1†
d =

9

4
g2 +

3

4
g′2 + 6λ1 + 10λ3 + λ4 + λ5 , (4.48)

2 TrG2
eG

2†
e + 6 TrG2†

u G
2
u + 6 TrG2

dG
2†
d =

9

4
g2 +

3

4
g′2 + 6λ2 + 10λ3 + λ4 + λ5 . (4.49)

Thus for type II the two Veltman conditions in the reverse alignment limit read,

m2
h

(
3 tan2 β − 2

)
+ 2m2

ξ = 4
[∑

m2
e + 3

∑
m2
d

]
sec2 β − 6M2

W − 3M2
Z − 5m2

H

+λ5
3v2

2
tan2 β , (4.50)

m2
h

(
3 cot2 β − 2

)
+ 2m2

ξ = 12
∑

m2
u csc2 β − 6M2

W − 3M2
Z − 5m2

H

+λ5
3v2

2
cot2 β . (4.51)

We have plotted the above equalities on the mh − mξ plane for several values of
λ5 and for a fixed value of tanβ. We have fixed mH = 125 GeV, with mh ≤ mH .
On the same graph, we have also plotted the region allowed by stability, perturbative
unitarity, and constraints from δρ . Among the various conditions arising due to stability
and perturbative unitarity as discussed in Section 2.1 and Section 2.2, the following
two inequalities in the reverse alignment limit are relevant to this plot:

0 ≤
(
m2
h −m2

A

) (
tan2 β + cot2 β

)
+ 2m2

H ≤
32πv2

3
, (4.52)∣∣2m2

ξ −m2
h −m2

A +m2
H

∣∣ ≤ 16πv2 . (4.53)

These are analogous to similar inequalities found in the alignment limit.
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For tanβ = 5 , the plots for all four types of 2HDM are shown in figure 4.3. The
gray region covers the points which satisfy the inequalities Eq. (4.52) and Eq. (4.53)
in addition to the constraints from δρ, the first Veltman condition provides the curves
(ellipses) which cross this region, and the second Veltman condition provides the nearly
flat hyperbolas above the gray region.

As we can see from the plots in figure 4.3, there is no region on the mh −mξ plane
where all the constraints are obeyed. In other words, if we insist on naturalness, as
embodied by the Veltman conditions, the reverse alignment limit is not a valid limit
for any of the 2HDMs, i.e. the observed Higgs particle cannot be the heavier CP-even
neutral scalar in any of the 2HDMs.

It should be mentioned here that allowed mass ranges of scalars in both the align-
ment limit and the reverse alignment limit were studied in [19]. However, that paper
considered an unbroken Z2 symmetry, not a softly broken symmetry as we have con-
sidered. As a result the mass ranges of scalars, as well as the allowed range of tanβ
found in that paper, are different from the ones we have found.

4.3 Wrong sign limit

Wrong sign limit discusses the interesting possibility of a sign change in one of the
Higgs Yukawa couplings, hD̄D for down-type fermions or hŪU for up-type fermions,
relative to the Higgs coupling to V V where V = W± or Z. In the SM scenario just
by measuring the properties of the observed Higgs-like boson the current LHC results
cannot differentiate between scenarios where a sign change occurs in the hD̄D Yukawa
couplings [20–22]. For example, the coupling of the Higgs to top quarks must have the
conventional positive sign relative to the Higgs coupling to the gauge bosons while the
absolute value of the couplings of down-type quarks and leptons relative to their SM
values are constrained to values, 1.0 ± 0.2, where the sign ambiguity arises from the
weak dependence of the gg and γγ loops on the Higgs couplings to bottom-quark pairs.
This observation was put forward in a recent work [22]. This sign degeneracy in the
determination of hD̄D at the LHC has also been emphasized in [23]. With the intro-
duction of new particles beyond the SM ones, one can attempt to distinguish between
the same sign and the wrong sign scenarios through the Higgs-diphoton decay width
which is affected due to this sign reversal since the sign of hD̄D impacts both the ggh
and γγh couplings. We intend to study this in the current section.

The wrong-sign Yukawa coupling regime [3,24,25] is defined as the region of 2HDM
parameter space in which at least one of the couplings of the SM-like Higgs to up-type
and down-type quarks is opposite in sign to the corresponding coupling of SM-like
Higgs to vectors bosons. This is to be distinguished from the Standard Model, where
the couplings of hSM to f̄f and vector bosons are of the same sign. The wrong sign
limit needs to be considered in conjunction with either the alignment limit or the re-
verse alignment limit. We will now calculate the regions of parameter space when each
of these two limits are combined with the wrong sign limit.
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(a) Type I (b) Type II

(c) Lepton specific (d) Flipped

Figure 4.3: Mass range (in GeV) plot for the charged Higgs and the light CP even
Higgs in Reverse alignment limit for (a) type I, (b) type II, (c) lepton specific and (d)
flipped 2HDM for |λ5| ≤ 4π and tanβ = 5 .
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The CP-even neutral scalars couple to the up-type and down-type quarks in the
various 2HDMs as shown in table 4.1, with the SM couplings of the quarks to the SM
Higgs field normalized to unity.

2HDMs hŪU
(
ξUh
)

hD̄D
(
ξDh
)

HŪU
(
ξUH
)

HD̄D
(
ξDH
)

Type I cosα
sinβ

cosα
sinβ

sinα
sinβ

sinα
sinβ

Type II cosα
sinβ − sinα

cosβ
sinα
sinβ

cosα
cosβ

Lepton Specific cosα
sinβ

cosα
sinβ

sinα
sinβ

sinα
sinβ

Flipped cosα
sinβ − sinα

cosβ
sinα
sinβ

cosα
cosβ

Table 4.1: Yukawa couplings for the different 2HDMs

4.3.1 Wrong sign in the Alignment limit

Let us first look at what happens if some Yukawa couplings are of the wrong sign, in
the alignment limit. In this case h is the SM Higgs, and its coupling to the vector
bosons is sin(β − α) times the corresponding SM value. Then in the convention where
sin(β − α) ≥ 0, the hV V couplings in the 2HDM are always non-negative. In order to
analyse the wrong sign regime we write the type-II and Flipped Higgs-fermion Yukawa
couplings, normalized with respect to the Standard Model couplings, in the following
form:

hD̄D : − sinα

cosβ
= − sin(β + α) + cos(β + α) tanβ , (4.54)

hŪU :
cosα

sinβ
= sin(β + α) + cos(β + α) cotβ . (4.55)

In the case when sin(β+α) = 1, the hD̄D coupling normalized to its SM value is equal
to −1 , while the normalized hŪU coupling is +1 . We note that in this limiting case,
sin(β − α) = − cos 2β, which implies that the wrong-sign hD̄D Yukawa coupling can
only be achieved for values of tanβ > 1.

Likewise, in the case of sin(β + α) = −1, the hŪU coupling normalized to its SM
value is equal to −1 , whereas the normalized hD̄D coupling is +1 . Then sin(β−α) =
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cos 2β, which implies that the wrong-sign hŪU couplings can occur only if tanβ < 1.
In the type-I and lepton specific 2HDM, both the hD̄D and hŪU couplings are given
by Eq. (4.55). Thus for sin(β+α) = −1, both the normalized hD̄D and hŪU couplings
are equal to −1, which is only possible if tanβ < 1. Thus realistically only the hD̄D
coupling of the type-II and flipped 2HDM can be of the wrong sign, since tanβ > 1.
We have arrived at the lower bound of tanβ from the experimental findings as well.
Although there is no consensus on the value of tanβ except that it should be larger
than unity. This is based on constraints coming from Z → bb̄, BqB̄q mixing [26], muon
g − 2 in lepton specific 2HDM [27] or using b→ sγ in type I and flipped models [28].

Let us therefore consider a type II model with a wrong sign hD̄D coupling. The
wrong sign limit approaches the alignment limit for tanβ ≈ 17 as was displayed
in [24,25] for the allowed parameter space of the type II CP-conserving 2HDM, based on
the 8 TeV run of the LHC. For this model, we will plot the values of the pair (mH ,mξ)
allowed by the naturalness conditions as well as the constraints imposed by pertur-
bativity, stability, tree-level unitarity, and the ρ parameter. We will do this for four
different values of tanβ around the ‘critical’ value of 17. By choosing a small enough
α we can ensure that for all these choices, both sin(β − α) ≈ 1 and sin(β + α) ≈ 1 , as
needed for the alignment limit and the wrong sign coupling.

In figure 4.4 we have plotted the Veltman conditions on the mH − mξ plane for
Type II 2HDM for the four choices of tanβ , for different values of mA constrained by
|λ5| ≤ 4π . These plots are further constrained by conditions coming from stability of
the potential, perturbative unitarity, and experimental bounds on δρ . We have also
taken mh = 125 GeV. One can estimate from the plots that for tanβ = 17 that the
range of mH is approximately (250, 330) GeV, and that of mξ is approximately (260,
310) GeV. At higher values of tanβ , both ranges become narrower and move down on
the mass scale.

4.3.2 Wrong Sign and Reverse alignment limit

Let us now consider the case of wrong sign Yukawa couplings in the reverse alignment
limit. The heavier CP-even neutral scalar H corresponds to the SM Higgs in the
reverse alignment limit, with a coupling to vector bosons which is cos(β−α) times the
corresponding SM value. In the convention where cos(β − α) ≥ 0, the HV V couplings
in the 2HDM are always non-negative. To analyse the wrong-sign coupling regime, we
write the Yukawa couplings in the type-II and Flipped 2HDMs in the following form:

HD̄D :
cosα

cosβ
= cos(β + α) + sin(β + α) tanβ , (4.56)

HŪU :
sinα

sinβ
= − cos(β + α) + sin(β + α) cotβ . (4.57)

In the case when cos(β + α) = −1, the HD̄D coupling normalized to its SM value
is equal to −1 , whereas the normalized HŪU coupling is +1 . Thus in this case, when
the reverse alignment limit is taken in conjunction with the wrong sign limit, we have
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(a) tanβ = 10 (b) tanβ = 17

(c) tanβ = 20 (d) tanβ = 30

Figure 4.4: Allowed mass range in GeV for the charged Higgs and the heavy CP
even Higgs when approaching wrong sign and alignment limits simultaneously for (a)
tanβ = 10 (b) tanβ = 17 (c) tanβ = 20 and (d) tanβ = 30 for |λ5| ≤ 4π and Type II
2HDM.
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α ≈ β ≈ π
2 . It turns out there is no point on the mh − mξ plane which satisfies

the Veltman conditions as well as the bounds coming from unitarity, stability and the
ρ-parameter. In figure 4.5 only the first Veltman condition has been plotted, and it

Figure 4.5: Veltman conditions are not satisfied for any (mh,mξ) satisfying unitarity
and other bounds, in the reverse alignment limit with wrong sign Yukawa couplings.

does not cross the grey region corresponding to the bounds. The other Veltman con-
dition does not show up in this picture at all, it is not satisfied for any point in this plot.

On the other hand, in the case when cos(β+α) = 1, the HŪU coupling normalized
to its SM value is equal to −1, while the normalized HD̄D coupling is +1. In this
limiting case, cos(β − α) = cos 2β, which implies that the wrong-sign HŪU couplings
can only be achieved for tanβ < 1 for the type II and Flipped 2HDMs.

In the type-I and lepton specific 2HDMs, both the HD̄D and HŪU couplings are
given by Eq. (4.57). Thus, for cos(β + α) = 1, both the normalized HD̄D and HŪU
couplings are equal to −1, which is only possible if tanβ < 1.

Since tanβ > 1 , we see that the wrong-sign Yukawa coupling is incompatible with
the reverse alignment limit in all of the four types of 2HDMs.

4.4 Higgs decay

Higgs decays have been of vital importance and here we will consider its decay into
a pair of photons. They have been studied to find possible signatures of physics be-
yond the SM. Since the diphoton decay channel provides a clean final-state topology
thus the mass of the decaying object can be reconstructed with high precision. The
diphoton decay is mediated by loop diagrams containing charged particles. The decay
amplitude gets its highest contribution from the top quark loop and the W boson loop
diagrams. They contribute with opposite sign. Figure 4.6 shows the Feynman dia-
grams for h→ γγ and h→ Zγ decays in the SM. Gluon-gluon fusion (ggh) [29] is the
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primary production mechanism of the Higgs boson at the LHC with additional smaller
contributions from vector boson fusion (VBF) [30] and production in association with
a W or Z boson (V h) [31] or a tt̄ pair (tth) [32,33].

Figure 4.6: Feynman diagram for h → γγ and h → Zγ decays in the Standard model
where the loop particles are the W± gauge bosons and the top quark.

The LHC is sensitive to the Higgs-diphoton decay states, for masses in the range
114 - 130 GeV. Both LHC and Tevatron experiments observed an excess of events in
this channel, consistent with the production of a Higgs boson with a mass of about
125 GeV, with a local significance which is close to 3σ [34–36]. An excess in the hZZ
decay channel was observed at the ATLAS experiment in this mass range [37]. Even
the CMS provides a similar but less significant result in this line [38]. These two search
channels are highly efficient in probing the presence of a Higgs boson in the narrow
mass range around 125 GeV. The results of both these experiments give a central value
of the rate of production of ZZ similar to the SM one, while the central value of the
diphoton production rate appears to be enhanced by 1.5 to 2 times the SM one. The
ATLAS result [39] at

√
s= 7 TeV and

√
s= 8 TeV and the CMS data [40] collected at√

s= 13 TeV in the recent past add to the conclusion that the diphoton decay width
shows an excess as compared to the SM prediction. This excess observed has triggered
us to study the Higgs-diphoton decay in the light of 2HDMs where there are extra
contributions in the loop. It may also turn out that the excess results are just the
product of a statistical fluctuation.

Since the diphoton rate is enhanced we can account for this enhancement as an
increase in the partial diphoton decay width of the Higgs, but without significantly
varying the total width or production cross sections with respect to their SM values.
Since the Higgs coupling to photons is induced at the loop-level, such an enhancement
of the diphoton decay width may be reasoned with the presence of colorless charged
particles with significant couplings to the Higgs boson that will add to the dominant
SM contribution from the W± boson loop. On the other hand, SM fermions which re-
ceive their mass via a Yukawa coupling to the Higgs, give sub-leading corrections which
suppress the diphoton partial width. Therefore, a modified diphoton rate is suggestive
of the presence of new charged particles and probes physics beyond the SM.

The literature of Higgs decay suggests that a large number of people have studied
the effects of new particles in the diphoton decay widths of the Higgs as well as in the
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gluon fusion production channel [41–75].

4.4.1 Study of Higgs-diphoton decay width in 2HDMs

As already mentioned the decay width can be enhanced or reduced in the 2HDMs due
to loop effects. In the alignment limit, the couplings of h with the fermions and gauge
bosons will be exactly like in the Standard Model. The production cross-section of h
will therefore be as expected in the Standard Model. All the tree level decay widths of
h will also have the SM values for the same reason. Loop induced decays like h→ γγ
and h→ Zγ will however have additional contributions from the extra charged scalars
(ξ±) present in the model. Thus the decay widths will be different from the SM in
general.

On the other hand, if h has wrong sign Yukawa couplings to the down-type quarks
then the bottom quarks will contribute with a relative negative sign in the loops, and
the h → γγ decay width will be different from the SM, as well as from 2HDMs in the
usual alignment limit.

The Higgs-diphoton decay width is calculated using the formula [76]

Γ(h→ γγ) =
Gµα

2m3
h

128
√

2π3

∣∣∣∣∣∣
∑

f

NcQ
2
fghffA

h
1/2(τf ) + ghV VA

h
1(τW ) +

m2
Wλhξ+ξ−

2c2
WM

2
ξ±

Ah0(τξ±)

∣∣∣∣∣∣
2

.

(4.58)
The trilinear λhξ+ξ− couplings to charged Higgs bosons is given by

λhξ+ξ− = cos 2β sin(β + α) + 2c2
W sin(β − α) (4.59)

= λhAA + 2c2
W ghV V , (4.60)

where cW = cos θW , with θW being the Weinberg angle.
The reduced couplings ghff and ghV V of the Higgs boson to fermions and W bosons

are ghtt =
cosα

sinβ
, ghbb = − sinα

cosβ
and ghWW = sin(β − α) . It is to be noted that the

decay rate is independent of the type of the 2HDM.
In the case of the CP even Higgs boson h, the amplitudes Ai at lowest order for the

spin 1, spin 1
2 and spin 0 particle contributions are given by [77]

Ah
1/2 = −2τ [1 + (1− τ)f(τ)] (4.61)

Ah
1 = 2 + 3τ + 3τ(2− τ)f(τ) (4.62)

Ah
0 = −τ [1− τf(τ)] . (4.63)

Here
τx = 4m2

x/m
2
h (4.64)

and

f(τ) =


arcsin2

√
1/τ , τ ≥ 1

−1

4

[
log

1 +
√

1− τ
1−
√

1− τ
− iπ

]2

, τ < 1
(4.65)
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The decay width formula given in Eq. Eq. (4.58) takes a much simplified expression
with the use of the above equations,

Γ(h→ γγ) =
Gµα

2m3
h

128
√

2π3

∣∣∣∣AhW +
4

3
Aht ±

1

3
Ahb + κAhξ

∣∣∣∣2 , (4.66)

where the ‘+’ sign before Ahb is for when the hb̄b Yukawa coupling has the same sign as
the hV V coupling and the ‘−’ sign is for the wrong sign of the Yukawa coupling, and
κ is defined as

κ =
1

m2
ξ

(m2
A −m2

ξ −
1

2
m2
h) . (4.67)

Due to the imposition of U(1) symmetry λ5 is related to mA by λ5 = 2
v2m

2
A and

thus appears in the definition of κ in Eq. (4.67). For a more general potential the
expression for κ involves λ5.

The relative diphoton decay width is given as,

µγγ =
σ (pp→ h)

σSM (pp→ h)
.
BR (h→ γγ)

BRSM (h→ γγ)
. (4.68)

which takes the following form in the alignment limit where the production cross-
section is just like the SM one,

µγγ =
Γ (h→ γγ)

ΓSM (h→ γγ)
=

∣∣FW + 4
3Ft ±

1
3Fb + κFξ

∣∣2∣∣FW + 4
3Ft ±

1
3Fb
∣∣2 . (4.69)
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Figure 4.7: Diphoton decay width of the SM-like Higgs particle (normalized to SM) as
a function of the charged Higgs mass in GeV at tanβ = 17 , for (a) same sign and (b)
wrong sign, of down-type Yukawa couplings.

In figure 4.7 we have plotted the h → γγ decay width in 2HDMs in the alignment
limit, normalized with respect to the SM value, against the mass of the charged Higgs
particle, and for different values of the mass of the CP-odd scalar. Figure 4.7a shows
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the decay width for the case where the hq̄q Yukawa coupling has the same sign as the
hV V coupling, whereas figure 4.7b is for the decay width corresponding to the case
where the Yukawa coupling of h to the down-type quarks is of the opposite sign to the
hV V coupling. The first case i.e. the diphoton decay width in the alignment limit has
been plotted, although for smaller values of tanβ and without the use of the Veltman
conditions (and thus for a much larger range of mξ), in [14].

As we have seen in Section 4.3.1, tanβ takes a higher value when we simultaneously
choose the alignment limit and the wrong sign limit. The critical value tanβ = 17 , and
a small but non-zero value of α , namely α ' 0.035 , were chosen for both the plots. The
plots are not noticeably different for other high values of tanβ or other similar values
of α . The decay width does not depend on the type of 2HDM once the masses of the
charged Higgs particle and the CP-odd Higgs particle are fixed. However, the range
of allowed masses depends on the type of 2HDM being considered. We have chosen
the ranges 225 GeV≤ mξ ≤290 GeV and 200 GeV≤ mA ≤ 300 GeV which cover the
allowed ranges for all four types for tanβ = 17 . Although it is clear from the plot it is
perhaps worth pointing out that when mA is small, for example mA ' 200 GeV, the
diphoton decay width deviates from the SM value by 5-7% for all values of mξ . The
deviation is noticeable for many other values of mA also, as can be easily seen from the
plots. On the other hand, for specific choices of (mA ,mξ ) the h→ γγ decay width is
the same as for the SM, so the non-observation of a deviation does not rule out 2HDMs.

The two plots are similar, but not identical. The decay width when the hD̄D
Yukawa coupling is of the ‘wrong sign’ is smaller than the decay width for the case
when it is of the same sign (as hV V couplings) by about 1.5%, as can be seen from the
ratio of the decay widths, displayed in figure 4.8. In Chapter D we have jotted down
the formulae for the decay width of the h→ ZZ process for the sake of completeness.

Figure 4.8: hγγ decay width for ‘wrong sign’ hD̄D coupling relative to the case with
‘same sign’ Yukawa couplings.
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Chapter 5

Is Higgsium a possibility?

Probable impossibilities are to be
preferred to improbable possibilities.

Aristotle

For long physicists have been bothered with the hierarchy problem [1–7]. Unlike
the quarks, leptons and the intermediate weak gauge bosons any symmetry does not
protect the mass of the Higgs boson from radiative corrections. The radiative correc-
tions to the mass of the Higgs boson are proportional to the mass squared and the new
physics scale might destroy the electroweak scale of the Standard model. The existing
mass hierarchy MW /MGUT ∼ 10−14 thus breaks leading to the hierarchy problem. A
lot of work has been done on this hierarchy problem where physicists have explored
the physics at higher dimensions and have gone beyond the Standard Model to find
an explanation for the hierarchy problem. Hierarchy problem involves the quadratic
dependence of the low energy physics on the unknown high energy physics. A new
physics at an intermediate scale might be a solution to this problem.

Triviality problem [1, 4, 8–10] is yet another problem that the SM faces. It is sup-
ported by strong evidence that a field theory involving only a scalar Higgs boson is
trivial in four space-time dimensions. But the situation for realistic models includ-
ing other particles in addition to the Higgs boson is not known in general. Since the
Higgs boson plays a central role in the Standard Model, the question of triviality in
Higgs models is of great importance. Keeping these two problems in mind we have
gone beyond the standard model and introduced a second Higgs doublet and also have
introduced a new physics at a higher scale (M∼1 TeV).

We have considered 2HDMs with a softly broken global U(1) symmetry [11–17], with
the parameters so chosen as to make the 2HDM “SM-like.” An approximate custodial
SU(2)C symmetry [18–20] has also been imposed on the total Lagrangian density. The
new higher dimensional operators are made to respect this SU(2)C symmetry up to
hypercharge and Yukawa coupling violations. There will be operators that break the
custodial symmetry but their coefficients are taken to be naturally small.
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2HDM and the new physics scale modify the relation MW = MZ cos θW , which

is parametrized by the ρ parameter. ρ parameter is defined as ρ =
M2
W

M2
Z cos2 θW

. The

PDG quotes ρ0 = 1.00039 ± 0.00019 for the global fit [21] of precision electro-weak
observables. Thus new physics must be integrated out to naturally preserve ρ0 ≈ 1 . In
order to integrate out the quanta of the new physics the scale of the masses of the new
quanta,M, is chosen to be sufficiently higher than the scale of electro-weak symmetry
breaking (v ∼ 246 GeV). Thus for phenomenological reasons, we set the new physics
scale atM∼ 1TeV. In the low energy regime, the unknown new physics at high energy
manifests itself as non-renormalizable local operators, of dimension D > 4 in addition
to the 2HDM operators. These local operators are constructed of 2HDM fields invariant
under the gauge symmetry of the 2HDM. Though this approach is model independent
but it is messy in the sense that the new physics is parametrized in terms of several
arbitrary parameters, the coefficients of higher dimension operators, and nothing is
known a priori about these coefficients.

A gross approximate ofM can be obtained from low energy experiments. K0− K̄0

experiment puts flavor changing neutral current bounds on M and sets it to be ≥ 104

TeV. The Minimal Flavour Violation hypothesis [22–31] relaxes the bound onM. Thus
M can be set to a few TeV while naturally avoiding flavor changing neutral currents if
Minimal Flavour Violation hypothesis is adopted.

Bound states of particles have drawn the attention of many physicists. Formation
of bound states of Higgs bosons has been discussed in the literature for quite some time.
Much before the discovery of the Higgs boson at the LHC, the formation of two Higgs
bound state in the Higgs model, or equivalently in the Higgs sector of the minimal
Standard Model, has been investigated using different methods. The results obtained
were interesting, but failed to be consistent with the Standard Model Higgs boson when
it was actually discovered. We thus attempt to study the bound state formation of the
heavier CP even neutral Higgs boson present in the model. The repulsive interaction
of the quartic coupling and the attractive interaction determined by the cubic coupling
compete to form the bound state. For large enough coupling the exchange interaction
is strong enough to produce binding. Another approach to determine if a bound state
is formed or not is from the study of the formation and decay times of the bound state.

We have looked for a necessary condition on the coupling for which a non-relativistic
(NR) bound state may form and for this we have followed the method of [32] which
proposes to study the formation of the bound state in a non-relativistic effective the-
ory for Higgs-Higgs interactions. We have referred to the Higgs-Higgs bound state as
‘Higgsium’, a name that has been borrowed from the same paper [32].

Previously various physicists have adopted different methods to look for bound
states of the Higgs particle of the SM. In the N/D method [33, 34] which was used to
calculate the bound state of the Higgs boson in the Standard Model, the elastic scat-
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tering amplitude is written as N(s)/D(s) where N(s) has only left hand cuts and D(s)
has only right hand singularities. N(s) is approximated by the Born amplitude which
is the appropriate s-wave projection of the sum of the four point scattering amplitudes
of the particle in picture which forms the bound state. Bound states for s-wave occur
when D(s) = s , for 0 < s < 4m2

H . The N/D method had been studied to account for
the bound state of two particles (not necessarily the Higgs particle) in [35, 36]. It was
found that for the Standard Model Higgs particle, bound states occur only if mH > 1.3
TeV. Since this is an order of magnitude higher than the observed mass of the Higgs
particle, we have to conclude that the Higgs does not form a bound state with itself.
Furthermore, even for such heavy Higgs bosons the binding was weak. For example at
mH = 2 TeV, the binding energy was found to be 150 GeV.

The study of relativistic two-particle bound states in SM involves another method,
the variational method within the Hamiltonian formalism of quantum field theory [37–
39]. This method can be extended to accommodate three-particle systems [40–42]. In
principle, the variational method does not depend on the coupling strength, which is in
contrast with the perturbation theory. The perturbation theory becomes increasingly
doubtful as the coupling becomes stronger. This fact is relevant and the perturbation
theory becomes questionable since the Higgs self-coupling approaches a strong regime
as the Higgs boson mass becomes large.

When the Higgs boson mass is approximately 700 GeV [1, 43] the theory behaves
like a strongly coupled one and the perturation theory ceases to act. Gunion and others
treated the possibility of heavier Higgs to be discovered at the LHC and hence applied
the variational method rather than the perturbative method.

Leo and Darewych in their work [37–39] found that two-Higgs bound states which
they called “Higgsonium” would appear only for rather obese minimal Standard Model
Higgs particles with mass mH > 894 GeV. This was quite similar to the 810 GeV
estimate [44] which was obtained by using a phenomenological Yukawa potential to
describe the Higgs-Higgs interaction.

Bethe and Salpeter approached the bound state problem in a different way. We
briefly mention it here for the sake of completeness. The original paper of Bethe and
Salpeter [45] dealt with the bound-state problem for two interacting Fermi-Dirac par-
ticles where they applied the relativistic S-matrix formalism of Feynman. The bound
state was described by a wave function depending on separate times for each of the
two particles forming the bound state. Integral equations for this wave function were
derived with kernels in the form of an expansion in powers of g2, the dimensionless cou-
pling constant for the interaction. Each term in these expansions gave Lorentz-invariant
equations. The validity and physical significance of these equations were discussed. In
extreme non-relativistic approximation and to lowest order in g2 they reduced to the
appropriate Schrödinger equation.

Grienstein [32] too attempted to find conditions for the bound state of the SM Higgs
particle and found that this state was not likely to form for the light Higgs particle.
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5.1 Formalising 2HDM with the new physics scale

The Lagrangian density of the two Higgs doublet model containing two Higgs doublets
φ1 and φ2 of hypercharge 1

2 is given by

L4
φ1,2

= (Dµφ1)†(Dµφ1) + (Dµφ2)†(Dµφ2)− V (φ1,2) + h.c. , (5.1)

where the covariant derivative is

Dµ = ∂µ − ig1Bµ − ig2
σI

2
W I
µ . (5.2)

σI are the Pauli matrices and W I
µ and Bµ are SU(2) and U(1) gauge bosons operators.

The scalar potential [1, 46] as introduced in Eq. (1.6) under U(1) symmetry is,

V (φ1,2) = λ1

(
|φ1|2 −

v2
1

2

)2

+ λ2

(
|φ2|2 −

v2
2

2

)2

+λ3

(
|φ1|2 + |φ2|2 −

v2
1 + v2

2

2

)2

+λ4

(
|φ1|2|φ2|2 − |φ†1φ2|2

)
+λ5

∣∣∣φ†1φ2 −
v1v2

2

∣∣∣2 , (5.3)

where the λi are considered to be real parameters. As already mentioned except for a
soft breaking term λ5v1v2<(φ†1φ2) this potential is invariant under the U(1) symmetry
to avoid flavor-changing neutral currents (FCNCs) [47, 48]. Additional dimension four
terms, including one allowed by a softly broken Z2 symmetry [49] are also set to zero

by this U(1) symmetry. One such term was λ6( 1
2i(φ

†
1φ2 − φ†2φ1))2 .

We work with the assumption that there is new physics at 1 TeV, imposed on
the 2HDM, which together may provide a solution to the problems of hierarchy and
triviality. The new physics demonstrates itself as non-renormalizable local operators of
dimension D > 4 added to the 2HDM lagrangian density in the resulting low energy
effective theory. These D > 4 operators are constructed out of 2HDM fields invariant
under the SU(3)×SU(2)×U(1) gauge symmetry. The effective Lagrangian density of
this extended 2HDM can be written as

Lφ1,2 = L4
φ1,2

+
L6
φ1,2

M2
+O

(
v4

1

M4

)
+O

(
v4

2

M4

)
, (5.4)

where the dimension six operators that preserve the symmetries of the 2HDM (here
U(1) symmetry) and custodial SU(2)C [50] in the Higgs sector are given by

L6
φ1,2

→ L6
C = C1

φ1
∂µ(φ†1φ1)∂µ(φ†1φ1) + C2

φ1
(φ†1φ1)(Dµφ1)†(Dµφ1)− λ7

3!
(φ†1φ1)3

+C3
φ2
∂µ(φ†2φ2)∂µ(φ†2φ2) + C4

φ2
(φ†2φ2)(Dµφ2)†(Dµφ2)− λ8

3!
(φ†2φ2)3

+C5
φ1,2

∂µ(φ†1φ2)†∂µ(φ†1φ2)− 1

2
φ†1φ2φ

†
2φ1(λ9φ

†
1φ1 + λ′9φ

†
2φ2) . (5.5)
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In Chapter E we discuss how the fields transform under custodial symmetry.
The scalar fields are now expanded about their vacuum expectation values v1 and

v2 ,

φ1(x) =
U1(x)√

2

(
0

v1 + h(x)

)
, (5.6)

φ2(x) =
U2(x)√

2

(
0

v2 +H(x)

)
. (5.7)

Here h and H are the CP-even Higgs fields, with 〈h(x)〉 = 0 and 〈H(x)〉 = 0 , and
Ui(x) = eiξ

a
i (x)σa/vi , i = 1, 2 . The six fields ξai include the three Goldstone bosons

which get eaten by the W± and Z bosons to make them massive, while the other three
combine to become the charged Higgs bosons and the CP-odd Higgs boson. The vevs
v1 and v2 , and therefore v =

√
v2

1 + v2
2 , will be taken to be small compared toM , the

scale of new physics. In the unitarity gauge, the gauge transformation has been used
to remove the Goldstone bosons from the Lagrangian. This simplifies our task. The
charged scalars and the CP-odd scalar will still remain in the Lagrangian, but we can
neglect their contribution for the bound state calculations.

In order to normalize the kinetic term to have a coefficient of 1
2 , we redefine the

fields as

h→ h′

(1 + 2CKh )1/2
(5.8)

H → H ′

(1 + 2CKH )1/2
, (5.9)

where

CKh = (v2
1/M2)(C1

φ1
+

1

4
C2
φ1

) , (5.10)

CKH = (v2
2/M2)(C3

φ2
+

1

4
C4
φ2

) . (5.11)

The potential is written in terms of the rescaled fields where the self couplings of
the CP neutral Higgs fields are clearly focussed. We call this potential Veff . Though
we will be discussing the possibility of bound state formation of the heavy CP-even
Higgs field, but still for the sake of completeness we will write the self couplings of the
light CP-even Higgs field too. In terms of the rescaled fields, the terms in the effective
potential which are of interest to us can be written as

Veff (h′, H ′) ⊃ 1

2
m2
hh
′2 +

1

2
m2
HH

′2 + v1
λeff

10

3!
h′3 +

λeff
11

4!
h′4 + +v2

λeff
12

3!
H ′3 +

λeff
13

4!
H ′4

+
λeff

14

2!
v2h
′h′H ′ +

λeff
15

2!
v1H

′H ′h′ +
λeff

16

2!2!
h′h′H ′H ′ . (5.12)

The mass terms and the coupling constants are related to the original λi. Since we
are interested in the bound state formation of H therefore we write down the cubic and
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quartic self couplings and also the mass of H in terms of the original λi and evaluate
their relative strengths.

m2
H = (1− 2CKH )(2v2

2(λ2 + λ3) +
λ5

2
v2

1) +
5λ8

8

v4
2

M2
+
λ9

8

v4
1

M2
+

3λ′9
4

v2
1v

2
2

M2

+O(
v4

M4
) (5.13)

λeff
12 = 6(λ2 + λ3)(1− 3CKH ) +

5λ8

2

v2
2

M2
+

3λ′9
2

v2
1

M2
+O(

v4

M4
) (5.14)

λeff
13 = 6(λ2 + λ3)(1− 4CKH ) +

15λ8

2

v2
2

M2
+

3λ′9
2

v2
1

M2
+O(

v4

M4
) (5.15)

λeff
14 = (2λ3 + λ5)(1− 2CKh )(1− CKH ) +

3λ9

2

v2
1

M2
+
λ′9
2

v2
2

M2
+O(

v4

M4
) (5.16)

λeff
15 = (2λ3 + λ5)(1− 2CKH )(1− CKh ) +

λ9

2

v2
1

M2
+

3λ′9
2

v2
2

M2
+O(

v4

M4
) (5.17)

λeff
16 = (2λ3 + λ5)(1− 2CKh )(1− 2CKH ) +

3λ9

2

v2
1

M2
+

3λ′9
2

v2
2

M2
+O(

v4

M4
) (5.18)

In passing we comment that the h−H bound state formation involves much com-
plicated calculations and so we leave that for another occasion.

We should mention here that for a single Higgs particle, the effective field theory
may also be written as a nonlinear realization analogous to the σ and π fields of QCD
as described by a chiral Lagrangian [32]. It is not obvious to us how to write a non-
linear realization involving neutral and charged Higgs fields along with the necessary
Goldstone bosons, nor is it clear whether that will help in looking for bound states. So
we will stick to the linear realization.

5.2 Effective couplings

In order to discuss the low energy effective 2HDM theory the momentum modes heavier
than the Higgs needs to be integrated out. As the top Yukawa coupling is fairly large
due to reasonably large top mass, we need to estimate the effects of the top quark
on the possibility of a bound state of H. When the top quark mass is much heavier
than the Higgs mass, it is integrated out which in turn modifies coupling constants and
masses of the Higgs particles.

We will use this approximation even when the Higgs is slightly heavier than the
top. As mentioned in [32], for the case of a single Higgs field, the approximation is
known to work better than one would expect when mh < 2mt. This is because there is
no non-analytic dependence on the mass, the Higgs being the pseudo-goldstone boson
of spontaneously broken scale invariance [51–53].

However, when the mass of the Higgs particle is more than 2mt, we cannot inte-
grate out the top quark. We will work in the Alignment limit and thus we must set
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mh = 125 GeV. The remaining heavier CP-even Higgs can have any mass above 125
GeV restricted by constraints coming from perturbative unitarity and stability. We
have further restricted its mass by the use of Naturalness conditions, and the bounds
were found to be 450 GeV ≤ mH ≤ 620 GeV for tanβ =5. It is worth mentioning here
that though these limits on mH are for type - II 2HDM but the other types of 2HDMs
also exhibit the mass ranges for H in the close vicinity of these limits. Moreover when
these mass ranges were evaluated the then recent value of ρ - parameter was used [54].
We will usually work with these limits, but also consider the possibility that the heav-
ier Higgs has a mass smaller than 2mt. We will not consider the situation where the
heavier CP-even Higgs is identified with the Standard Model Higgs (Reverse Alignment
limit), for reasons discussed in Section 4.2.

Parameter choice has been crucial in any calculation and we are not exempt from
that. We choose our parameters accordingly. tanβ being a crucial parameter in 2HDMs
is set to a reasonable value of 5 since it has to be larger than unity as evident from
constraints coming from Z → bb̄, BqB̄q mixing [55], muon g − 2 in lepton specific
2HDM [56] or using b → sγ in type I and flipped models [57]. We further choose
v = 246 GeV, mt = 174 GeV and the new physics scale M to be 1TeV. We broadly
categorize the heavier Higgs boson mass as mH < 2mt and mH > 2mt. For mH < 2mt

the top quark is integrated out while for mH > 2mt, the effect of top quark is retained
in the theory.

Integrating out the top quark: mH . 2mt

The top mass term and couplings to the Higgs bosons are given by

LY = −mt

v
ξtHttH . (5.19)

where ξ stands for the Yukawa coupling of H with the fermion indicated in the super-
script. The values of ξ for up-type and down-type quarks are displayed in table 4.1.

Feynman graphs that contribute to modifications of the Higgs self-couplings are
shown in figure 5.1. The solid line denotes a top quark, the external dashed lines
denote the heavy CP-even neutral Higgs boson.

Figure 5.1: t-quark loop corrections to Higgs self couplings.
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Calculations are performed up to the lowest order in p2/m2
t . These corrections

further modify the effective potential of the Higgs scalar field H. Let us take for
example, the 1-loop correction to the four point function of H which requires the four
point amplitude with the top quark circulating in the loop. This four point amplitude
has the form,

iA4(s, t, u) = −6Nc

(mt

v
ξtH

)4
∫

ddk

(2π)d
Tr

[
(/k +mt)(/k + /a+mt)(/k + /b +mt)(/k + /c +mt)

(k2 −m2
t )((k + a)2 −m2

t )((k + b)2 −m2
t )((k + c)2 −m2

t )

]
,

(5.20)
where a, b and c are the invariants of the external momenta and k is the internal
momentum.

For leading order in p2/m2
t → 0, the amplitude is given by

iA0
4(s, t, u) = −24Nc

(mt

v
ξtH

)4
∫

ddk

(2π)d
(m4

t + 6k2m2
t + k4)

(k2 −m2
t )

4

= − iNc

16π2

(mt

v
ξtH

)4
(

24

ε
− 64 + 24 log

(
µ2

m2
t

))
. (5.21)

The leading order term gives a factor of −4Nc

π2

(mt

v
ξtH

)4
. Similar calculations have

been done for the other effective couplings and mass terms. Thus the expressions for
the effective couplings and mass terms given by Eq. (5.13) - Eq. (5.18) get modified as
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λeff
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+
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λeff
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where Nc stands for the three colors of the top quark. Contributions of other quarks
as the loop particle have been ignored here because of the very large difference in the
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masses of the top quark and the other quarks. These are the effective low energy
couplings which have been obtained by integrating out the heavier momentum modes.

5.3 Will bound states be formed?

Will H-H bound states be formed at all? This answer to this vital question is what we
have tried to look for. We adopt two approaches. One from the consideration of the
relative strengths of the cubic and quartic couplings of the Higgs boson and other from
the production and decay times.

5.3.1 Relative strengths of couplings

In lieu of this we consider the non-relativistic Schrödinger equation,

[−52
r +V (r)− E]ψ(r) = 0 . (5.28)

The above potential has contributions from a Yukawa exchange and a contact interac-
tion,

V (r) = − g
2

4π

e−mr

r
+ κδ3(r) , (5.29)

where, g denotes the Yukawa exchange coupling constant and κ denotes the contact
interaction coupling constant for the two CP even neutral Higgs bosons. As a non-
relativistic approximation of the Higgs bosons self interactions g ∼ 3 point coupling
and κ ∼ 4 point coupling. Thus from the potential in Eq. (5.29) we can conclude that
the attractive contact interaction and the repulsive contact interaction are governed by
the cubic and quartic couplings respectively. If the attractive interaction overpowers
the repulsive interaction, the formation of a bound state becomes feasible. Let us treat
the possibility of bound state formation by evaluating the relative strengths of the cubic
and quartic self couplings.

Due to the D = 6 operators the three and four point contact interactions and the
Higgs massmH gain corrections in the effective potential. Eliminating the self-couplings
λ1 , λ2 and λ3 in favour of the Higgs mass mH , we can write for the effective cubic and
quartic Higgs-self couplings,
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. (5.31)

When the cancellation of quadratic divergences is used as a criterion of restriction,
mH turns out to be heavier than 2mt as seen in Chapter 4. However, the idea of
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a H − H bound state is not restricted by the consideration of naturalness, so it is
worthwhile to check on the possibility of bound state formation even when mh ≤ mH ≤
2mt . Consequently the top quark is integrated out. Using Eq. (5.11) in Eq. (5.30)
and Eq. (5.31) we calculate the cubic and quartic couplings of the H field as,
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λeff
13 =

3m2
H

v2 tan2 β
(1 + tan2 β)−

6m2
H

M2

(
C3
φ2

+
1

4
C4
φ2

)
− 3λ5

2 tan2 β
+

45λ8

8

v2 tan2 β

M2(1 + tan2 β)

− 3λ9

8M2

v2

(1 + tan2 β) tan2 β
− 3λ′9

4

v2

M2(1 + tan2 β)
− 19Nc

4π2

(
m4
t

v4

)
cot4 β . (5.33)

We have put ξtH ≈ − cotβ , which is its value for all types of 2HDMs in the alignment
limit. Letting (C3

φ2
+ 1

4C
4
φ2

) ∼ 1, for v = 246 GeV, mt = 174 GeV, tanβ = 5 and keeping
the λ’s well within the perturbative bounds by choosing λi ∼ 1 , we have evaluated the
strengths of the cubic and quartic couplings from Eq. (5.32) and Eq. (5.33) for mH =

300 GeV (chosen arbitrarily within the range). It was found that |λeff
12 |−|λ

eff
13 | = −0.02 ,

i.e. |λeff
12 | ≈ |λ

eff
13 | at the level of accuracy we are considering. We conclude that in this

case of a not too heavy H , an H − H bound state may form, but it is also likely to
have a very short lifetime.

Naturalness arguments coupled with unitarity, perturbativity and constraints from
the T-parameter lead to a heavy H with a mass between 450 GeV and 620 GeV. In
this case we cannot integrate out the top quark. For the cubic and quartic couplings
we find
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Letting (C3
φ2

+ 1
4C

4
φ2

) ∼ 1, for v = 246 GeV, mt = 174 GeV, tanβ = 5 and keeping
the λ’s well within the perturbative bounds by choosing λi ∼ 1 the strengths of the
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cubic and quartic couplings are evaluated from Eq. (5.34) and Eq. (5.35) for mH = 450
GeV, 500 GeV and 620 GeV. 450 GeV and 620 GeV are the lower and upper limits for
mH as found in Section 4.1.1 and 500 GeV is an intermediate value. It is found that
|λeff

12 | − |λ
eff
13 | = 0.317 , 0.459 and 0.87 respectively for mH = 450 GeV, 500 GeV and

620 GeV. Thus formation of H −H bound state is likely for obese Higgs bosons and
the likelihood increases as the Higgs becomes massive.

5.3.2 HIGGSIUM: Production and Decay

When two H bosons approach each other with a relative velocity uH to form a H −H
bound state with characteristic radius RH0 , then the formation time of the H−H bound

state can be approximated by τHf ∼
4RH0
uH

. This is roughly the period of oscillation for
s-wave states [58].

For a non-relativistic bound state we can approximate the relative momenta of H
by pH ∼ mHuH so that

τHf ∼
4RH0
uH

∼ 4

mHu2
H

. (5.36)

The predominant decay channel/s for mh ≤ mH ≤ 2mt is H → bb and for mH >
2mt is H → bb and H → tt . We take these decays as dictating the decay rate of
Higgsium. Below we calculate the decay width neglecting the effects of new physics
operators.

Case I: mh < mH < 2mt

Neglecting the effect of the new physics operators, decay width and decay time for
H → bb are,

ΓHb =
mH(ξbH)2

8π
(1− 4

m2
b

m2
H

)3/2 ≈
mH(ξbH)2

8π
, (5.37)

and

τHb =
1

ΓHb
=

8π

mH(ξbH)2
. (5.38)

Since m2
b � m2

H we have neglected 4
m2
b

m2
H

in comparison to 1. Let us find an estimate of

τHb for the given range of mH . For a reasonable choice of tanβ = 5, τHb for mH = 130
and 350 GeV (chosen arbitrarily within the range) for various types of 2HDMs in the
alignment limit have been tabulated below in table 5.1. We have used the conversion
1 GeV−1 = 6.58× 10−25 sec to find the decay time in seconds.
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2HDMs ξbH τHb τHb (mH = 130 GeV) τHb (mH = 350 GeV)
in secs in secs

Type I − cotβ 8π
mH cot2 β

3.18 ×10−24 1.18 ×10−24

Type II tanβ 8π
mH tan2 β

5.09 ×10−27 1.89 ×10−27

Lepton Specific − cotβ 8π
mH cot2 β

3.18 ×10−24 1.18 ×10−24

Flipped tanβ 8π
mH tan2 β

5.09 ×10−27 1.89 ×10−27

Table 5.1: Decay time (in seconds) of H when mh < mH < 2mt for the different 2HDMs.

For the H −H bound state to be formed, the formation time of the H −H bound
state must be smaller than the decay time of H. In other words,

τHf < τHb

⇒ 4

mHu2
H

<
8π

mH(ξbH)2

⇒ uH >
ξbH√
2π

. (5.39)

Now we proceed in two ways. First we fix a value of tanβ consistent with observa-
tions [55–57] and find the range of uH for which a bound state may form. Next we fix
a non-relativistic value of uH and find the range for tanβ.

Let us fix tanβ = 5 and use Eq. (5.39) for various types of two Higgs doublet models
in the alignment limit to find the range of uH . Next we fix uH = 0.01c and find the
range of tanβ. The results are displayed in table 5.2.

2HDMs ξbH Limit of uH Limit of tanβ

for tanβ = 5 for uH =0.01c

Type I − cotβ uH > 0.08c tanβ >39.89

Type II tanβ uH > 1.99c tanβ < 0.025

Lepton Specific − cotβ uH > 0.08c tanβ >39.89

Flipped tanβ uH > 1.99c tanβ < 0.025

Table 5.2: Limits for relative velocity for tanβ = 5 and tanβ for uH = 0.01c when
mh < mH < 2mt.
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When tanβ = 5 , uH for the type II and flipped 2HDMs is not sensible. Similarly,
when we set uH = 0.01c , the bound on tanβ is far too low. Thus we conclude that
these two types of 2HDMs do not seem to allow the formation of H −H bound states.
In the other two types of 2HDMs the formation of H −H bound state is not very easy.
The bounds on tanβ and uH seem to bear values in the vicinity of their limits.

Case II: mH > 2mt

In the case of a heavy H particle with mH > 2mt , the predominant decay channels are
H → bb and H → tt . Neglecting the effects of new physics operators the decay width
of H into tt pair is,

ΓHt =
mH(ξtH)2

8π
(1− 4

m2
t

m2
H

)3/2 . (5.40)

The total decay width is then approximately ΓH = ΓHb + ΓHt where the expression for
ΓHb is given in Eq. (5.37), and the decay time is the inverse of the total decay width,
τH = (ΓH)−1 .

We now estimate τH for the two extreme values of mH (450 and 620 GeVs) found
in the alignment limit when Naturalness was taken into account for tanβ = 5 . We also
display the lower limits of the relative velocity using the logic that the formation time of
the bound state must be shorter than the decay time of the parent particle if the bound
state is to form. For all types of 2HDMs in alignment limit the relative Htt̄ coupling is
ξtH = − cotβ and as we have seen in the first case ξbH is type dependent. Thus overall
the decay time is type dependent. The results are displayed in the table 5.3.

2HDMs τH in secs uH > 2√
mHτH

τH in secs uH > 2√
mHτH

(mH=450 GeV) (mH=620 GeV)

Type I 7.25×10−25 uH >0.09c 4.24×10−25 uH >0.1c

Type II 1.47×10−27 uH >1.99c 1.06×10−27 uH >1.99c

Lepton Specific 7.25×10−25 uH >0.09c 4.24×10−25 uH >0.1c

Flipped 1.47×10−27 uH >1.99c 1.06×10−27 uH >1.99c

Table 5.3: Decay time (in seconds) and relative velocity for mH = 450 GeV and 620
GeV and tanβ = 5 for the different 2HDMs.

It is clear that H−H bound state will not form in the Type II and flipped 2HDMs,
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but may form in Type I and lepton specific models. But even that conclusion is not a
strong one, as the range of parameters for bound state formation are at the edge of the
allowed values.

5.4 Outlook

As already discussed the peak at 125 GeV indicates that it is due to the Higgs pre-
dicted by the Standard model. In two Higgs doublet model, the alignment limit assigns
the lighter CP even Higgs boson as the SM Higgs. We have thus studied the bound
state formation of the heavier CP even non-standard Higgs boson whose mass spectra
is flexible. We have imposed Naturalness conditions and have restricted the mass of H
within bounds. If the Naturalness criteria is withdrawn and the potential is only sub-
jected to stability and perturbative unitarity constraints then mH is much more flexible
and the entire spectrum can be studied for the possibility of the bound state formation.

The possibility of formation of h-H bound state is an interesting topic to study in
the future. We would like to study the variation of effective cubic (attractive) and
quartic (repulsive) coupling strengths with λ′is maintaining the perturbative unitar-
ity condition. Here we have studied the bound state formation in the non-relativistic
regime. The bound state equation in the more general, fully relativistic case can also
be attempted to solve for in the future.

The mass of the bound state and its life time have not been addressed to in this
study. Another important point is the detectability of the bound state. In future works
we could attempt to address these questions.
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Chapter 6

Yet another model - the HTM

Innovation is taking two things that
already exist and putting them
together in a new way.

Tom Freston

The SM predicted neutrinos to be massless but various experiments have proven
that neutrinos have mass how small it may be. The problem of neutrino mass genera-
tion has been addressed by yet another model, the Higgs Triplet Model abbreviated as
HTM [1–5] with a non-minimal Higgs sector. In Higgs triplet models an SU(2)L triplet
of scalar particles with hypercharge Y = 2 denoted by ∆ is present in addition to the
SM particles. The experimental findings about the masses of the neutrinos indirectly
put some bounds on the parameter of the model that gives rise to the neutrino masses.
The vacuum expectation value (vev) of a neutral Higgs boson in an isospin triplet rep-
resentation is the source for the mass of the neutrinos and thus it has to be small and
is assumed to be less than 1 GeV. The non-conservation of lepton number which is ex-
plicitly broken in the scalar potential of the Higgs triplet model by a trilinear coupling
µ is protected by symmetry and is naturally small which also assures the smallness of
neutrino masses.

Higgs triplet model is a new physics beyond the SM. Thus its scalar sector is much
richer than that of the SM. The model predicts a doubly charged Higgs boson (H±±)
and a singly charged Higgs boson (H±), for which direct searches are being carried out
at the LHC [6, 7]. Apart from these there is a CP odd neutral scalar, A0 and two CP
even neutral scalars, H and h like the two Higgs doublet model. The vector bosons
absorb the rest of the degrees of freedom. In a large part of the parameter space of the
HTM the lightest CP-even scalar, h, has essentially the same couplings to the fermions
and vector bosons as the Higgs boson of the SM [8–10].

The charged scalars of the model, H±± and H± contribute to the loop induced
h → γγ decay width in addition to the contribution from the top quarks and the W
bosons. Thus this additional contribution may result in a decay width which matches
the LHC decay width results [11,12]. λ1 which is a quartic coupling in the potential of

106



6.1. Higgs Triplet model - Modelling 107

the Higgs triplet model to be discussed in the upcoming section, controls the contribu-
tion of H±± to the Higgs diphoton decay width. The case of λ1 > 0 leads to destructive
interference between the combined SM contribution (from W and fermion loops) and
the contribution from H±± as was studied in [13]. Later on the case for λ1 < 0 was
studied in [14] which leads to constructive interference.

Production channels for H±± were extensively studied in [15–21]. Some of the
most discussed production channels are qq → γ∗, Z∗ → H++H−− and q

′
q → W ∗ →

H±±H∓. Quartic terms in the scalar potential induce a mass splitting between H±±

and H±, which can be of either sign. If mH±± > mH± then a new decay channel
becomes available for H±±, namely H±± → H±W ∗. Another scenario is the case of
mH± > mH±± , which would give rise to a new decay channel for the singly charged
scalar, namely H± → H±±W ∗. This decay of singly charged Higgs would give rise
to an alternative way to produce H±± in pairs, namely by the production mechanism
q
′
q →W ∗ → H±±H∓ followed by H∓ → H±±W ∗. The effect of this additional sources

of production of the contributing non-standard charged particles to the loop induced
Higgs decays has been discussed in this chapter.

Higgs triplet model can also be considered in the light of the Wrong sign limit. This
limit was discussed in Section 4.3for 2HDMs where some of the Yukawa couplings of
the SM like Higgs boson are of the opposite sign to that of the vector boson couplings
(wrong sign). The scalar spectrum of the model gets constrained by unitarity and the
stability of the potential. The oblique T-parameter and Higgs decay branching ratios,
in particular h → γγ largely depend on the scalar spectrum of the model and thus
constraints coming from their experimental values also restrict the scalar spectrum.

6.1 Higgs Triplet model - Modelling

As mentioned earlier in a Higgs triplet model a Y = 2 complex SU(2)L isospin triplet of
scalar fields, T =(T1, T2, T3), is added to the SM Lagrangian. Without the introduction
of SU(2)R singlet neutrinos, Majorana masses can be obtained by the observed neu-
trinos in Higgs triplet model. The gauge invariant Yukawa interaction written below
accomplishes the task.

L = hll′L
T
l Ciτ2∆Ll′ + h.c. , (6.1)

where hll′
(
l, l
′

= e, µ, τ
)

is a complex and symmetric coupling, C is the Dirac

charge conjugation operator, τ2 is the second Pauli matrix, Ll = (νlL, lL)T is a left-
handed lepton doublet, and ∆ is a 2×2 representation of the Y = 2 complex triplet
fields.

∆ = T.τ = T1τ1 + T2τ2 + T3τ3 =

(
∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
, (6.2)
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where T1 =
(
∆++ + ∆0

)
/2, T2 = i

(
∆++ −∆0

)
/2, and T3 = ∆+/

√
2. Now 〈∆0〉 =

v∆√
2

results in the following neutrino mass matrix:

mll′ = 2hll′ 〈∆
0〉 =

√
2hll′v∆ . (6.3)

When Φ =
(
φ+, φ0

)T
defines the usual SM Higgs doublet, the Higgs Triplet scalar

potential as defined in [22,23] is

V (Φ,∆) = −m2
ΦΦ†Φ +

λ

4

(
Φ†Φ

)2
+M2

∆ Tr ∆†∆ +
(
µΦT iτ2∆†Φ + h.c.

)
+ λ1

(
Φ†Φ

)
Tr ∆†∆ + λ2

(
Tr ∆†∆

)2
+ λ3 Tr

(
∆†∆

)2
+ λ4Φ†∆∆†Φ .

(6.4)

In this expression −m2
Φ is negative to ensure non-zero vev of the neutral component

of the scalar doublet while M2
∆ is positive. Here, 〈φ0〉 = v/

√
2 which spontaneously

breaks the SU(2)L ⊗ U(1)Y to U(1)Q. v∆ is obtained from the minimisation of V and
for small v∆/v the expression for the triplet vev is,

v∆ '
µv2

√
2
(
M2

∆ + v2 (λ1 + λ4) /2
) . (6.5)

When the triplet scalars are heavy i.e., M∆ � v then v∆ can be approximated as
v∆ ' µv2/(

√
2M2

∆). Even if µ is of the order of the electroweak scale, v∆ will be natu-
rally small and this is sometimes called the “Type II seesaw mechanism”. Such heavy
triplet scalars would be beyond the search limits of LHC and thus much interest has
been drawn towards light triplet scalars (M∆ ≈ v) which are within the discovery reach
of LHC. This would lead to v∆ being approximately equal to µ. It is to be noted that
v∆ has to be small basically for two reasons. First with reference to Eq. (6.3) where the
neutrino mass matrix is directly proportional to v∆ and thus to preserve the smallness
of neutrino masses v∆ has to be naturally small. Secondly the case of v∆ < 0.1 MeV
is assumed in the ongoing searches at the LHC, for which the branching ratios of the
triplet scalars to leptonic final states (e.g. H±± → l±l±) would be ∼ 100%. Since
v∆ ∼ µ for light triplet scalars then µ must also be small (compared to the electroweak
scale) for the scenario of v∆ < 0.1 MeV.

The ρ parameter (ρ = M2
W /M

2
Z cos2 θW ) puts an upper bound on v∆ as we will just

discuss. In the SM ρ = 1 at tree-level and all the new physics models must respect this
value to a fraction of a percentage. In the Higgs triplet model

ρ ≡ 1 + δρ =
1 + 2x2

1 + 4x2
, (6.6)

where x = v∆/v and carries the extra contribution due to new physics. The mea-
surement ρ ≈ 1 leads to the bound v∆/v . 0.03, or v∆ . 8GeV when v is essentially
equal to the vev of the Higgs boson of the SM (i.e. v ≈ 246 GeV).
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Coming to the physical mass eigenstates, mostly ∆±± comprises the doubly charged
scalar of the model, H±±. However the remaining eigenstates are in general mixtures
of the doublet and triplet fields. But since such mixing is proportional to the triplet
vev therefore it is small even if v∆ assumes its largest value of a few GeV. The lighter
CP-even Higgs h is predominantly composed of the doublet field and plays the role of
the SM Higgs boson. While the heavier CP-even Higgs H, the singly charged Higgs H±

and the CP-odd Higgs A0 all have predominant contribution from the triplet fields. In
obtaining the mass eigenstates from the charge eigenstates we come across two angles,
α
′

and β
′
. α

′
is the mixing angle in the CP-even sector and β

′
is the mixing angle in

the charged Higgs sector. Their expressions follow below.

sinα
′ ∼ 2v∆/v , tanβ

′
=
√

2v∆/v . (6.7)

Neglecting the small off-diagonal elements in the CP-even mass matrix, the approx-
imate expressions for the squared masses of h and H are as follows:

m2
h =

λ

2
v2 , (6.8)

which is the same as in the SM and

m2
H = M2

∆ + (
λ1

2
+
λ4

2
)v2 + 3(λ2 + λ3)v2

∆ . (6.9)

The squared masses of the doubly charged scalar H±±, singly charged scalar H±

and CP-odd scalar A0 are,

m2
H±± = M2

∆ +
λ1

2
v2 + λ2v

2
∆ , (6.10)

m2
H± = M2

∆ + (
λ1

2
+
λ4

4
)v2 + (λ2 +

√
2λ3)v2

∆ , (6.11)

and

m2
A0 = M2

∆ + (
λ1

2
+
λ4

2
)v2 + (λ2 + λ3)v2

∆ . (6.12)

As we can figure out from the above equations there is a common term in the
expressions for the masses of H, H±±, H± and A0 which is M2

∆ + λ1
2 v

2. Thus when
terms proportional to the small parameter v∆ is neglected then mA0 = mH . In this
situation there are only two possible mass hierarchies for the non-standard scalars. As
can be seen the magnitude of the mass splitting is controlled by λ4 and the two possible
mass hierarchies are,

mH±± > mH± > mA0 ,mH for λ4 < 0 , (6.13)

mH±± < mH± < mA0 ,mH for λ4 > 0 .
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6.2 Constraints on the scalar potential

Analogous to the SM and the 2HDM, the Higgs triplet model too is restricted by
stability and unitarity bounds. The condition for the scalar potential in Eq. (6.4) to
be bounded from below are [24] :

λ ≥ 0, λ2 + λ3 ≥ 0, λ2 +
λ3

2
≥ 0, λ1 +

√
λ (λ2 + λ3) ≥ 0, λ1 + λ4 +

√
λ (λ2 + λ3) ≥ 0

(6.14)

and

[
|λ4|
√
λ2 + λ3 − λ3

√
λ ≥ 0, or, 2λ1 + λ4 +

√(
2λλ3 − λ2

4

)(2λ2

λ3
+ 1

)
≥ 0

]
.

Hence the conditions from vacuum stability.

The scattering matrix, S-matrix having 2-particle states as rows and columns has
the scattering amplitudes involving longitudinal gauge bosons and Higgs bosons as its
elements. The eigenvalues of this matrix are restricted by |a0| < 1, where a0 is the l = 0
partial wave amplitude. These conditions translate into upper limits on combinations
of Higgs quartic couplings, which for multi-Higgs models have been derived by different
authors. For Higgs triplet model these have been derived in [10] and are enlisted below:

| (λ+ 4λ2 + 8λ3)±
√

(λ− 4λ2 − 8λ3)2 + 16λ2
4| ≤ 64π, (6.15)

| (3λ+ 16λ2 + 12λ3)±
√

(3λ− 16λ2 − 12λ3)2 + 24 (2λ1 + λ4)2| ≤ 64π, (6.16)

|λ| ≤ 32π, (6.17)

|2λ1 + 3λ4| ≤ 32π, (6.18)

|2λ1 − λ4| ≤ 32π, (6.19)

|λ1| ≤ 16π, (6.20)

|λ1 + λ4| ≤ 16π, (6.21)

|2λ2 − λ3| ≤ 16π, (6.22)

|λ2| ≤ 8π, (6.23)

|λ2 + λ3| ≤ 8π. (6.24)

Perturbativity constrains the quartic couplings to be within [−4π, 4π].

New Physics contribution to the electroweak T-parameter is given by [25,26],

∆T =
1

4π sin2 θWm2
W

[
F (m2

H± ,m
2
A) + F (m2

H±± ,m
2
H±)

]
, (6.25)

where, θW is the Weinberg angle and mW is the W-boson mass.
The function F (x, y) is defined as,

F (x, y) =
x+ y

2
− xy

x− y
ln(

x

y
) . (6.26)
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Experimentally the new Physics contribution to the T-parameter is given in [11]
and this translates into mass bounds on the non-standard scalar masses in HTM.

The combined constraints from vacuum stability, unitarity, perturbativity and the
electroweak T-parameter confine the parameter space for the masses of the non-standard
scalars of the Higgs Triplet model. Since the masses of the non-standard Higgs bosons
are correlated thus mass bound on one of these automatically puts a bound on other
masses too. These have been discussed recently in [27].

6.3 Diphoton decay in the Higgs Triplet model

BSM Physics literature has shown the impact of singly charged scalars on the decay
h → γγ as for e.g. in the context of the minimal supersymmetric SM (MSSM) [28],
two-Higgs Doublet Model [29–31] and next-to-MSSM [32]. The contribution of dou-
bly charged scalars to this decay has received comparatively little attention. This was
dealt in the Little Higgs Model [33], but due to the structure of the scalar potential
the magnitude of the contribution from H±± was shown to be much smaller than H±.
The contribution from H±± was studied in the HTM in [13,34], and was shown to give
a sizeable contribution to h→ γγ.

The loop induced diphoton decay width has contribution from the fermions, the W
bosons and the charged Higgs of the model. The decay width is [35]

Γ (h→ γγ) =
GFα

2m3
h

128
√

2π3
|
∑
f

NcQ
2
fghffA

h
1/2 (τf ) + ghWWA

h
1 (τW )

+ g̃hH±H∓A
h
0 (τH±) + 4g̃hH±±H∓∓A

h
0 (τH±±) |2 . (6.27)

In the above equation, α is the fine structure constant, Nc is the color quantum
number which is 3 for quarks, Qf is the electric charge of the fermion in the loop and

τi =
4m2

i

m2
h

, i = f,W,H±, H±± . (6.28)

The loop functions A1/2 (for fermions), A1 (for W-bosons) and A0 (for the charged
scalars) are defined below:

A1/2 (τx) = −2τx {1 + (1− τx)F (τx)} , (6.29)

A1 (τx) = 2 + 3τx + 3τx (2− τx)F (τx) , (6.30)

A0 (τx) = −τx {1− τxF (τx)} , (6.31)

with, F (τx) =


[
sin−1(

√
1
τx

)
]2

for τx ≥ 1,

−1
4

[
ln
(

1+
√

1−τx
1−
√

1−τx

)
− iπ

]2
for τx < 1.

(6.32)
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The relative decay width is

µγγ =
σ (pp→ h)HTM × Γ (h→ γγ)HTM

σ (pp→ h)SM × Γ (h→ γγ)SM
. (6.33)

At the time when this work was done, the then recent bounds on the relative decay
width was µγγ = 1.16+0.20

−0.18 [12]. Since the lighter CP even Higgs boson h of the Higgs
Triplet model is considered to be the SM like Higgs boson so, its production cross-
section from gluon-gluon fusion is the same for HTM and SM. For the contribution
from the fermion loops we will only keep the term with the top and bottom quarks,
which are dominant. There is an enhancement factor of four for H±± relative to H±.
This is due to the electric charge. The couplings of h to the vector bosons and fermions
relative to the values in the SM are as follows:

ghtt = cosα
′
/ cosβ

′
, (6.34)

ghbb = cosα
′
/ cosβ

′
, (6.35)

ghWW = cosα
′
+ 2 sinα

′
v∆/v , (6.36)

ghZZ = cosα
′
+ 4 sinα

′
v∆/v . (6.37)

From Eq. (6.7), it follows that cosα
′

=
√(

1− 4v2
∆/v

2
)
∼ 1 and cosβ

′
=
√(

1− 2v2
∆/v

2
)
∼

1 and thus the above couplings of h are essentially the same as that of the SM Higgs
boson because v∆ � v.

The scalar trilinear couplings parametrized by ghH++H−− and ghH+H− are written
below explicitly in terms of the parameters of the scalar potential ( Eq. (6.4)) [10]:

ghH++H−− = −
{

2λ2v∆sα′ + λ1vcα′
}
, (6.38)

ghH+H− = −1

2

{[
4v∆ (λ2 + λ3) c2

β
′ + 2v∆λ1s

2
β′
−
√

2λ4vcβ′sβ′
]
sα′

+
[
λvs2

β′
+ (2λ1 + λ4) vc2

β′
+
(

4µ−
√

2λ4v∆

)
cβ′sβ′

]
cα′
}
, (6.39)

where sα′ = sinα
′

and so on. The scalar trilinear couplings are rescaled for the ease
of calculation as follows:

g̃hH++H−− = − mW

gm2
H±±

ghH++H−− , (6.40)

g̃hH+H− = − mW

gm2
H±

ghH+H− . (6.41)

As argued earlier v∆ is taken to be small and when the terms associated with it are
neglected in Eq. (6.38) and Eq. (6.39) then these trilinear couplings take the form [10,
36]:
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ghH++H−− ≈ −λ1v , (6.42)

ghH+H− ≈ −
(
λ1 +

λ4

2

)
v . (6.43)

The contribution from the H±± loop interferes constructively with that of the W
boson loop for λ1 < 0, while for λ1 > 0 the interference is destructive. For λ1 ∼ 10 the
contribution from the doubly charged Higgs and the W boson loop nearly cancel each
other. The H± loop is usually sub-dominant.

The coupling λ1 determines the value of ghH++H−− and ghH+H− . The main con-
straint on λ1 comes from the requirement of the stability of the scalar potential Eq. (6.14).
One of those constraints is λ1 +

√
λ(λ2 + λ3) ≥ 0. If λ2 and λ3 are taken to be zero, the

combined constraints on λ1 from perturbative unitarity in scalar-scalar scattering and
from stability of the potential require λ1 >0. However, if λ2 and λ3 are chosen to be
positive then negative values of λ1 are allowed. Now the question is whether positive
values of λ2 and λ3 will affect the trilinear couplings and the masses of the triplet scalars
or not? The answer is no. This is easily verifiable from Eq. (6.9) - Eq. (6.12) where
λ2 and λ3 are associated with the sufficiently small parameter v∆. One of the simplest
choice that can be made is by letting λ2 = λ3. Then using λ1 +

√
λ(λ2 + λ3) ≥ 0, λ2

can be determined as a function of λ1 and λ. Eq. (6.8) fixes λ at 0.516 when mh = 125
GeV and v = 246 GeV. As for example for λ1 = −1, λ2 ≥ 0.97 and for λ1 = −2,
λ2 ≥ 3.9.

6.4 What happens when mH± > mH±± ?

As we have discussed in the last part of the Section 6.1 for λ4 > 0, mH± > mH±± . So,
H± may decay to H±±. The decay rate for H± → H±±W ∗ after summing over all
fermion states for W ∗ → f

′
f , excluding the top quark is given below:

Γ
(
H± → H±±W ∗ → H±±f

′
f
)
'

9G2
Fm

4
WmH±

4π3

1−κH±±∫
0

dx2

1−
κ
H±±
1−x2∫

1−x2−κH±±

dx1FH±±W (x1, x2) ,

(6.44)
where κH±± ≡ mH±±/mH± . The analytical expression for Fij (x1, x2) is given by [37,
38],

Fij (x1, x2) =
(1− x1) (1− x2)− κi

(1− x1 − x2 − κi + κj)
2 + κjγj

, (6.45)

with γj = Γ2
j/m

2
H± .

This decay mode is independent of v∆. As long as the mass splitting between mH±

and mH±± is above the mass of the charmed hadrons (∼ 2 GeV), f and f
′

can be taken
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to be massless to a good approximation.

The other possible decays for H± are H± → l±νl′ , H
± → W±Z, H± → W±h,

H± → tb and to other lighter quarks. The branching ratio BR(H± → H±±W ∗) will
be maximised with respect to v∆ if Γ(H± → l±νl′ ) = Γ(H± → W±Z) + Γ(H± →
W±h) + Γ(H± → tb) which is realized for v∆ ' 0.1 MeV.

From the production mechanism q
′
q → W ∗ → H±±H∓, the decay mode H± →

H±±W ∗ would give rise to pair production of H±±, with a cross section which can
be comparable to that of the standard pair-production mechanism qq → γ∗, Z∗ →
H++H−−. Thus the detection prospects of H±± in the four-lepton channel could
increase significantly. In addition to the above, the decays H → H±W ∗ and A0 →
H±W ∗ would also provide an additional source of H±, which can subsequently decay
to H±±.

6.5 Numerical analysis

As has been discussed in the previous section that H±± has additional production
channels above the standard one, thus this must affect the loop induced Higgs dipho-
ton decay width. Now one may be inquisitive that since the additional production of
H±± results from the decay of H± and thus the diphoton decay width may or may not
experience an overall increment. But due to a factor of four in case of the contribution
from H±± as compared to the contribution from H± in Eq. (6.27) an overall increment
in the decay rate is expected.

The choice of parameters made along with the justification of the choices are enlisted
below.

• λ4 > 0, for obtaining the mass hierarchy, mH±± < mH± < mA0 ,mH which
is in turn needed for the decay of H± to H±±.

• λ1 < 0 for constructive interference between the combined SM contribution (from
W boson and fermion loops) and contribution from H±±.

• We choose mH± = 250 GeV and mH±± = 200 GeV since it has already been
mentioned in [27] that lower masses of H± and H±± give an enhancement to
diphoton decay width with respect to the SM as compared to heavier charged
scalars. Moreover at lower masses, the non-standard scalars are not degenerate.
Degeneracy encroaches at higher masses of the scalar particles which is undesir-
able for the present numerical analysis.

• v∆ = 0.1 MeV and thus the vev of the doublet v ∼ 246 GeV as constrained from
the ρ parameter.

With reference to Eq. (6.34) - Eq. (6.36), ghtt, ghbb and ghWW are ∼ 1 for v∆ = 0.1
MeV and v ∼ 246 GeV as discussed.
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Now, from Eq. (6.28),

τW =

(
2mW

mh

)2

= 1.65 > 1 , for mW = 80.385 GeV (6.46)

τt =

(
2mt

mh

)2

= 7.66 > 1 , for mt = 173.0 GeV (6.47)

τb =

(
2mb

mh

)2

= 0.00447 < 1 , for mb = 4.18 GeV (6.48)

τH± =

(
2mH±

mh

)2

= 16 > 1 , for mH± = 250.0 GeV (6.49)

τH±± =

(
2mH±±

mh

)2

= 10.24 > 1 , for mH±± = 200.0 GeV . (6.50)

Using mW
g = v

2 and Eq. (6.40) - Eq. (6.43) we can rephrase the hH++H−− and

hH+H− coupling as,

g̃hH++H−− = − mW

gm2
H±±

ghH++H−− (6.51)

= − mW

gm2
H±±

× (−λ1v)

=
v

2m2
H±±

× (λ1v)

=
λ1

2m2
H±±

v2 .

g̃hH+H− = − mW

gm2
H±

ghH+H− (6.52)

= − mW

gm2
H±
×
(
−
(
λ1 +

λ4

2

)
v

)
=

v

2m2
H±
×
(
λ1 +

λ4

2

)
v

=

(
λ1 + λ4

2

)
2m2

H±
v2 .

Now, that the platter is ready we rewrite the diphoton decay width as mentioned
in Eq. (6.33) under the fact that h is the SM like Higgs.

µγγ =
σ (pp→ h)HTM × Γ (h→ γγ)HTM

σ (pp→ h)SM × Γ (h→ γγ)SM
(6.53)

≈ Γ (h→ γγ)HTM

Γ (h→ γγ)SM
since σ (pp→ h)HTM ∼ σ (pp→ h)SM .
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From eq.(Eq. (6.27)) we have,

Γ (h→ γγ)HTM =
GFα

2m3
h

128
√

2π3

∣∣∑
f

NcQ
2
fghffA

h
1/2 (τf ) + ghWWA

h
1 (τW )

+ g̃hH±H∓A
h
0 (τH±) + 4g̃hH±±H∓∓A

h
0 (τH±±)

∣∣2 (6.54)

=
GFα

2m3
h

128
√

2π3

∣∣3× (2

3

)2

× 1×Ah1/2 (τt) + 3×
(
−1

3

)2

× 1×Ah1/2 (τb)

+ 1×Ah1 (τW ) +

(
λ1 + λ4

2

)
2m2

H±
v2Ah0 (τH±) + 4× λ1

2m2
H±±

v2Ah0 (τH±±)
∣∣2

=
GFα

2m3
h

128
√

2π3

∣∣4
3
Ah1/2 (τt) +
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(6.56)
Next we consider the Higgs triplet model in the Wrong Sign Limit(WSL) where

either of the fermionic couplings to up-type or down-type quarks of the SM like Higgs
bears a relative negative sign as compared to the gauge couplings [31,39–41]. The Higgs
diphoton decay width is written below along with the relative decay width in this limit.
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(6.59)

6.6 Results and Conclusion

In figure 6.1 µγγ vs λ4 and µWSL
γγ vs λ4 have been plotted for various values of λ1. The

quartic couplings λ4 and λ1 are responsible for H± to H±± decay and constructive
contribution from H±± loop respectively and we wanted to study the variation of the
relative diphoton decay width with these two quartic couplings. As we can see for any
particular value of λ1, µγγ and µWSL

γγ increases as λ4 increases. This indicates that as

the mass difference between H± and H±± increases (m2
H± −m

2
H±± = λ4

4 v
2), relative

diphoton decay width increases since the tendency for H± to decay to H±± increases.
More the number of H±± produced more the increment since there is an enhancement
factor of 4 which comes from the electric charge in case of H±±’s contribution to h→ γγ
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Figure 6.1: Diphoton decay width of the SM-like Higgs particle (normalized to SM) as a
function of λ4 for mH± = 250GeV, mH±± = 200GeV and various negative values of λ1 , for (a)
same sign and (b) wrong sign, of down-type Yukawa couplings in Higgs Triplet model.

as compared to that of H±. Since the mass of the bottom quark is significantly smaller
than the top quark mass therefore the the coupling of the bottom quark is also much
smaller in magnitude compared to the top quark coupling with h. Thus the plots for
the same sign and wrong sign of the Yukawa couplings are more or less same. As seen
from the plots for both the same sign and the wrong sign of the Yukawa couplings there
is an enhancement of ∼ 20% for λ1 = 0 and λ4 = 10 where both the quartic couplings
are well within the perturbative bounds.

The ratio of the diphoton decay width when the down type Yukawa coupling have
wrong sign relative to the case with the same sign Yukawa coupling has been plotted
in figure 6.2. We can easily point out that this ratio varies within a very narrow range
and converges for higher values of λ4.

In passing, we comment that although we have assumed v∆ = 0.1 MeV, the above
conclusions do not crucially depend on the numerical value of v∆ as long as it remains
small.

Thus if tighter bounds are imposed on the discovery of H±± and H± via the four
lepton(4l) and three lepton(3l) channels and their mass ranges be confined, then these
non-standard scalars may account for the excess in the loop induced Higgs to diphoton
decay. In that case the decay of H± to H±± must also be taken into account for the
enhancement. This will in turn signal that the Higgs discovered at the LHC is a part
of a richer scalar sector and not merely the Standard Model.
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Figure 6.2: hγγ decay width for ‘wrong sign’ hD̄D coupling relative to the case with
‘same sign’ Yukawa couplings
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Chapter 7

Cessation

It is scientific only to say what’s
more likely or less likely and not to
be proving all the time what’s
possible or impossible.

Richard Feynman

Science has always been an interplay between theory and experiment. Building a
theory and experimentally verifying it leads to unravelling the Nature. Only experi-
ment can prove the validation of a theory. To this end scientists have been devising
sophisticated experiments and manning its accuracy to higher levels in order to validate
the theory precisely. In this process the success of a theory is never guaranteed. In
science negative results particularly pave the way for a correct theory. Thus sometimes
before the correct theory is formulated many theories have to bear the failed stigma.
Nature is resting peacefully with all its phenomenon and man is devising new theories
to be verified by experiments which could precisely explain the observables.

July, 2012 witnessed a remarkable discovery of the last building block of the cel-
ebrated Standard Model, the Higgs boson. This discovery seemed to complete the
standard model but the precise measurements of its couplings with the other standard
model particles are necessary to validate the standardness of the model. Thus aim of
the future experiments were also set along with the discovery of this boson. As the
experiments were run deviations from the SM prediction surfaced. As for instance pre-
liminary data from ATLAS and CMS showed 2σ excess over the SM prediction for the
Higgs diphoton decay rate. Thus as sophisticated experiments were devised, so were
many new theories to explain the obtained set of data. Though the discovered Higgs
turns out to be the SM Higgs particle still there are many unanswered questions that
motivated us to embark on beyond SM physics. The major shortcomings of the SM
are,

1. Neutrino mass: Neutrinos as predicted by the SM were massless. But neutrino
oscillation experiments have predicted non-zero masses for them. Moreover neu-
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trino mixing are very different from quark mixing and thus not explained by the
SM.

2. Baryon asymmetry: The universe is supposed to contain equal quantities of mat-
ter and antimatter. But this isn’t the case. There is way more matter than
antimatter around us today. Where did all the antimatter go? Physicists are
trying to find answer to this question believing that the universe was created
with equal quantities of matter and antimatter however the laws of nature that
subsequently came into effect were and are biased against antimatter for some
reason. This problem did not find an appropriate answer within the framework
of the standard model.

3. Dark matter: The existence of dark matter has been confirmed by many cosmo-
logical and astrophysical experiments but we cannot see it. This suggests that
dark matter doesn’t have any strong and electromagnetic interactions. Whereas
nearly 27% of dark matter in the universe is suggestive of the fact that dark
matter must have some other kind of interaction that is not predicted by the SM.
We thus have to look beyond it to find an explanation for this unknown matter.

Speaking of BSM scenarios we have extended the horizon beyond the SM by adding
one extra Higgs doublet to the SM theory. The resulting theory was consequently
named as the two Higgs doublet model and have been discussed elaborately in Chapter
1. Different basis can be chosen to parametrize the Higgs doublets and one such basis
is the Higgs-basis which potentially simplifies our calculations. The first chapter intro-
duces this basis. Though we have worked with a CP-conserving model but we need to
study the general 2HDM potential which allows possible sources of CP violation. If the
vacuum expectation values and the parameters of the theory are so chosen that there
is no mixing between the CP-odd and the CP-even states then CP violation can be
avoided. In SM things are pretty simple since it has only one Higgs doublet. Flavour
changing neutral currents are easily avoided. But with two Higgs doublets the scenario
is a bit difficult since there are two independent Yukawa structures in each quark sector.
But Glashow-Weinberg- Paschos (GWP) theorem came to the rescue by restricting the
sources for the mass matrices of the fermions. Fermions with same charge and helicity
couple to one of the doublets only. Thus as FCNCs were done away with we landed
up classifying 2HDMs into four types. Nature advocates of many symmetries which
make our lives easier. Following this trend 2HDM has also been imposed with many
symmetries. Many authors impose the discrete Z2 symmetry but we have built the
model with the continuous U(1) symmetry. Chapter 1 lastly recapitulates the previous
work done in the framework of the 2HDMs.

A theory cannot flow on its own. It needs to be restricted by physical phenomenon
and observations. Similarly the 2HDM scalar potential needs to be bounded from be-
low. Moreover for a theory to be perturbative upto higher orders there are some upper
bounds on the combinations of the quartic couplings of the 2HDM potential. New
physics corrections impose further restrictions on the allowed parameter space.
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Veltman had long ago gave a solution to ameliorate the fine tuning problem by set-
ting the quadratically divergent Higgs self-energy terms to zero by some symmetry of
the model. This naturally keeps the Higgs mass at the electroweak scale and is denoted
as Naturalness criteria. Thus naturalness further restricts the choice of the parameter
space. These restrictions have been discussed elaborately in Chapter 2 and Chapter 3.
All these constraints combined were imposed on the 2HDMs in various limits of it to
restrict the mass ranges for the non-standard Higgs bosons. Among the various limits
are the well known alignment limit and the reverse alignment limit where the heavier
CP even Higgs is considered to be the SM-like Higgs unlike the alignment limit where
the lighter one is considered to play the role of the Higgs discovered at the LHC. Apart
from the regular signs of the Yukawa couplings there is yet another scenario where one
of the up-type or down-type Yukawa couplings is of opposite sign. 2HDMs were con-
sidered under this reversed sign of the Yukawa couplings in both the alignment and the
reverse alignment limits. The obtained mass ranges were elaborately calculated and
plotted in Chapter 4. In the process it was found that the reverse alignment limit was
not compatible with Naturalness criteria. It is to be mentioned here that the quadratic
divergences were calculated upto one loop and for higher loops there will be corrections
to Veltman conditions though small. Thus the mass ranges predicted for one loop can
be commented on as they are within certain percentage of tolerance.

The excess in the diphoton decay width can be tried to reason out for by considering
the effect of the charged Higgs particle of the model in the loop induced decay. Theory
advocates of a ∼ 6% excess above the SM prediction.

The possibility of the formation of the H−H bound state was studied in Chapter 5.
A non-relativistic version of Higgs effective field theory was formulated and the relative
strengths of the attractive and repulsive contact interactions were compared to see if a
bound state was possible or not. It was found that for values of mH on the higher end
of the mass scale the attractive coupling was stronger than the repulsive coupling thus
indicating a bound state. Again from the consideration of the formation and decay
times of the bound state it was found that H − H bound state will not form in the
Type II and flipped 2HDMs, but may form in Type I and lepton specific models. But
even that conclusion is not a strong one, as the range of parameters for bound state
formation are at the edge of the allowed values.

Lastly another model the Higgs triplet model was discussed in the last chapter Chap-
ter 6. In this model an SU(2) triplet of scalars is present in addition to the SM par-
ticles. Thus there is a doubly charged Higgs particle in addition to the singly charged
one that can also contribute to the loop induced diphoton decay width. Moreover the
singly charged particle may decay to the doubly charged one when mH+ > mH++ which
occurs when λ1 < 0 and λ4 > 0, λ’s being the quartic coupling constants of the theory.
The variation of the relative diphoton decay width with λ1 and λ4 was studied in the
same sign and wrong sign of the Yukawa couplings. For certain allowed range of the
quartic couplings there was a substantial increase in the relative diphoton decay width
in both cases.
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Thus models are constructed beyond the SM with a motivation to suffice for the
shortcomings of the SM. But still now not a single model has been formulated which
has been able to provide a complete theory consistent with the observables. The models
explain some of the experimental data obtained but fail to explain others. Sometimes
it may appear that a particular model has explained all the experimental data but with
the devising of higher and higher energy accelerators the pitfalls of these models surface.
But does that mean that we theoreticians should discard our models in despair? The
answer is no. In fact these innumerable failed or incomplete attempts are the stepping
stones for formulating a universal theory of the Universe.



Science is not only a disciple of reason but also one of romance and passion.

- Stephen Hawking



Appendix A

Simultaneous diagonalisation

The necessary and sufficient conditions for the simultaneous diagonalisation of a set of
matrices P1, · · · , Pn were first discussed in [1–4].

Theorem 1 For a set of P1, · · · , Pn complex m×m matrices, unitary matrices L and
R such that L†PiR is diagonal for all i = 1, · · · , n exist if and only if both sets

{PiP †j }i,j=1,··· ,n and {P †i Pj}i,j=1,··· ,n (A.1)

are abelian, that is[
PiP

†
j , PkP

†
l

]
= 0 and

[
P †i Pj , P

†
kPl

]
= 0, i, j, k, l = 1, · · · , n . (A.2)

It is now shown that a weaker requirement on the sets {PiP †j }i,j=1,··· ,n and {P †i Pj}i,j=1,··· ,n
is already necessary and sufficient.
Consider instead the sets,

{P1P
†
1 , · · · , PnP

†
n}, {P

†
1P1, · · · , P †nPn} , (A.3)

which is the subset of Eq. (A.1) with i = j. Each set in Eq. (A.3) has n hermitian
elements rather than the n2 elements in Eq. (A.1). If both sets in Eq. (A.3) are abelian
then complete sets of orthonormal eigenvectors {−→u j}, {−→v j}, j = 1, · · · ,m exist [5].
This is mathematically shown below,

PiP
†
i
−→u j = λ(i)j

−→u j , P †i Pi
−→v j = λ(i)j

−→v j
where, λ(i)j ∈ R, λ(i)j ≥ 0, −→u i · −→u j = −→v i · −→v j = δij . (A.4)

The matrices in Eq. (A.3) are simultaneously diagonalised for i = 1, · · · , n as follows.

U †PiP
†
i U = diag

(
λ(i)1, · · · , λ(i)m

)
(A.5)

where, U =

 ↑ · ↑
−→u 1 · −→u m
↓ · ↓

 ,

1



2

V †P †i PiV = diag
(
λ(i)1, · · · , λ(i)m

)
(A.6)

where, V =

 ↑ · ↑
−→v 1 · −→v m
↓ · ↓

 ,

and

U †PiV = diag
(√

λ(i)1, · · · ,
√
λ(i)m

)
. (A.7)

With Eq. (A.7), it follows trivially that Eq. (A.2) is fulfilled. Thus the requirement
that the sets in Eq. (A.3) are abelian implies that the larger sets in Eq. (A.1) are
abelian too and is sufficient for the simultaneous bi-diagonalisability of P1, · · · , Pn.
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Appendix B

RGEs for 2HDMs

The two Higgs doublet model scalar potential is,

V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
(
m2

12Φ†1Φ2 + h.c.
)

+
1

2
λ1

(
Φ†1Φ1

)2
+

1

2
λ2

(
Φ†2Φ2

)2

+λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

1

2
λ5

[(
Φ†1Φ2

)2
+ h.c.

]
. (B.1)

Haber and Hempfling in their paper [1] had calculated the one loop renormalization
group equations for the quadratic parameters m2

ij and Branco et al. in their review
of the two Higgs doublet models [2] had calculated the one loop RGEs for the gauge
couplings, the Yukawa couplings and the quartic couplings, λi’s. We define the beta
function as,

βx = 16π2 ∂x

∂ lnµ
. (B.2)

The one loop RGEs for the various couplings are written below.

The beta functions for the U(1)Y , SU(2)L and SU(3) gauge couplings g, g′ and gs
are,

βg = −3g3 , (B.3)

βg′ = 7g′3 , (B.4)

βgs = −7g3
s . (B.5)

The starting values of the gauge couplings are,

g =
2mW

v
, (B.6)

g′ = 2

√
m2

Z −m2
W

v
, (B.7)

gs =
√

4παs , (B.8)
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where, αs = g2
s/ (4π) is the strong coupling constant and v is the vacuum expectation

value. The value for the strong coupling is αs = 0.119 [3–6].

With

Yu =

√
2

v2

 mu 0 0
0 mc 0
0 0 mt

 , (B.9)

Yd =

√
2

vd
VCKM

 md 0 0
0 ms 0
0 0 mb

V †CKM , (B.10)

Ye =

√
2

ve

 me 0 0
0 mµ 0
0 0 mτ

 , (B.11)

VCKM = 13×3 , (B.12)

as the starting values of the Yukawa matrices we write below their beta functions for
type I and type II 2HDMs.

For type I 2HDM,

βYu = auYu + T22Yu −
3

2

(
YdY

†
d − YuY

†
u

)
Yu , (B.13)

βYd = adYd + T22Yd +
3

2

(
YdY

†
d − YuY

†
u

)
Yd , (B.14)

βYe = aeYe + T22Ye +
3

2
YeY

†
e Ye . (B.15)

For type II 2HDM,

βYu = auYu + T22Yu +
1

2

(
YdY

†
d + 3YuY

†
u

)
Yu , (B.16)

βYd = adYd + T11Yd +
1

2

(
YuY

†
u + 3YdY

†
d

)
Yd , (B.17)

βYe = aeYe + T11Ye +
3

2
YeY

†
e Ye , (B.18)

with,

ad = −8g2
s −

9

4
g2 − 5

12
g′2 , (B.19)

au = −8g2
s −

9

4
g2 − 17

12
g′2 , (B.20)

ae = −9

4
g2 − 15

4
g′2 . (B.21)



6

Now we define T11 and T22 for type I and type II 2HDMs.
For type I,

T11 = 0 , (B.22)

T22 = 3Y †uYu + 3Y †d Yd + Y †e Ye , (B.23)

and for type II,

T11 = 3Y †d Yd + Y †e Ye , (B.24)

T22 = 3Y †uYu . (B.25)

For type I,

ve = v2 , (B.26)

vd = v2 , (B.27)

and for type II,

ve = v1 , (B.28)

vd = v1 . (B.29)

Now we proceed towards the RGEs for the quartic couplings of the 2HDM potential.

For type I 2HDM,

βλ1 = 12λ2
1 + 4λ2

3 + 4λ3λ4 + 2λ2
4 + 2λ2

5 +
9

4
g4 +

3

2
g2g′2 +

3

4
g′4 − 4γ1λ1 ,(B.30)

βλ2 = 12λ2
2 + 4λ2

3 + 4λ3λ4 + 2λ2
4 + 2λ2

5 +
9

4
g4 +

3

2
g2g′2 +

3

4
g′4 − 4γ2λ2

−12 Tr
[
Y †d YdY

†
d Yd + Y †uYuY

†
uYu

]
− 4 Tr

[
Y †e YeY

†
e Ye

]
, (B.31)

βλ3 = (λ1 + λ2) (6λ3 + 2λ4) + 4λ2
3 + 2λ2

4 + 2λ2
5 +

9

4
g4 − 3

2
g2g′2 +

3

4
g′4

−2 (γ1 + γ2)λ3 , (B.32)

βλ4 = 2 (λ1 + λ2)λ4 + 8λ3λ4 + 4λ2
4 + 8λ2

5 + 3g2g′2 − 2 (γ1 + γ2)λ4 , (B.33)

βλ5 = 2 (λ1 + λ2 + 4λ3 + 6λ4)λ5 − 2 (γ1 + γ2)λ5 , (B.34)
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and for type II,

βλ1 = 12λ2
1 + 4λ2

3 + 4λ3λ4 + 2λ2
4 + 2λ2

5 +
9

4
g4 +

3

2
g2g′2 +

3

4
g′4 − 4γ1λ1

−12 Tr
[
Y †d YdY

†
d Yd

]
− 4 Tr

[
Y †e YeY

†
e Ye

]
, (B.35)

βλ2 = 12λ2
2 + 4λ2

3 + 4λ3λ4 + 2λ2
4 + 2λ2

5 +
9

4
g4 +

3

2
g2g′2 +

3

4
g′4 − 4γ2λ2

−12 Tr
[
Y †uYuY

†
uYu

]
, (B.36)

βλ3 = (λ1 + λ2) (6λ3 + 2λ4) + 4λ2
3 + 2λ2

4 + 2λ2
5 +

9

4
g4 − 3

2
g2g′2 +

3

4
g′4 − 2 (γ1 + γ2)λ3

−12 Tr
[
Y †d YdY

†
uYu

]
, (B.37)

βλ4 = 2 (λ1 + λ2)λ4 + 8λ3λ4 + 4λ2
4 + 8λ2

5 + 3g2g′2 − 2 (γ1 + γ2)λ4

+12 Tr
[
Y †d YdY

†
uYu

]
, (B.38)

βλ5 = 2 (λ1 + λ2 + 4λ3 + 6λ4)λ5 − 2 (γ1 + γ2)λ5 . (B.39)

Here γ1 and γ2 are defined as,

γ1 =
9

4
g2 +

3

4
g′2 − T11 , (B.40)

γ2 =
9

4
g2 +

3

4
g′2 − T22 . (B.41)

For the quadratic couplings, the RGEs are,

βm2
11

= 6λ1m
2
11 + (4λ3 + 2λ4)m2

22 − 2γ1m
2
11 , (B.42)

βm2
22

= 6λ2m
2
22 + (4λ3 + 2λ4)m2

11 − 2γ2m
2
22 , (B.43)

βm2
12

= (2λ3 + 4λ4 + 6λ5)m2
12 − (γ1 + γ2)m2

12 . (B.44)

The RGEs for the vacuum expectation values were calculated in [7, 8]. We write
them below.

βv1 = γ1v1 , (B.45)

βv2 = γ2v2 . (B.46)

The vacuum expectation value is given by,

v =
1√√
2GF

, (B.47)

where,
GF = 1.1663787× 10−5GeV−2 . (B.48)

The fermion and the gauge boson masses as calculated in references [3–6] are,
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mu = 0.1 GeV , (B.49)

mc = 1.51 GeV , (B.50)

mt = 172.5 GeV , (B.51)

md = 0.1 GeV , (B.52)

ms = 0.1 GeV , (B.53)

mb = 4.92 GeV , (B.54)

me = 0.510998928× 10−3 GeV , (B.55)

mµ = 0.1056583715 GeV , (B.56)

mτ = 1.77682 GeV , (B.57)

mW = 80.385 GeV , (B.58)

mZ = 91.1876 GeV . (B.59)

Useful calculations on the evaluation of the beta functions of the various coupling
constants were done by authors of [9, 10].
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[8] M. Sperling, D. Stöckinger, and A. Voigt, 1310.7629v1.

[9] P Basler et al., “ High scale impact in alignment and decoupling in two-Higgs
doublet models”, arXiv: 1710.10410v2 [hep-ph].

[10] F. Herren, L. Mihaila and M. Steinhauser, “Gauge and Yukawa coupling beta
functions of two Higgs doublet models of three-loop order”, arXiv: 1712.06614[hep-
ph].

9



Appendix C

Contribution of Higgs towards
the oblique electroweak
parameters

h, H, A, ξ± are the physical Higgs bosons of the general two Higgs doublet models
with masses denoted respectively by mh, mH , mA and mξ. We consider h to be the
SM-like Higgs boson and thus after subtracting the SM Higgs corrections to S, T and
U with mh as the reference point, the one loop Higgs contributions to S, T and U read
as [1],

S′ =
1

πm2
Z

{
sin2 (β − α)B22

(
m2
Z ;m2

H ,m
2
A

)
− B22

(
m2
Z ;m2

ξ ,m
2
ξ

)
+ cos2 (β − α)

[
B22

(
m2
Z ;m2

h,m
2
A

)
+ B22

(
m2
Z ;m2

Z ,m
2
H

)
− B22

(
m2
Z ;m2

Z ,m
2
h

)
−m2

ZB0

(
m2
Z ;m2

Z ,m
2
H

)
+m2

ZB0

(
m2
Z ;m2

Z ,m
2
h

) ]}
, (C.1)

T ′ =
1

16πm2
W s

2
θW

{
F
(
m2
ξ ,m

2
A

)
+ sin2 (β − α)

[
F
(
m2
ξ ,m

2
H

)
− F

(
m2
A,m

2
H

)]
+ cos2 (β − α)

[
F
(
m2
ξ ,m

2
h

)
− F

(
m2
A,m

2
h

)
+ F

(
m2
W ,m

2
H

)
− F

(
m2
W ,m

2
h

)
−F

(
m2
Z ,m

2
H

)
+ F

(
m2
Z ,m

2
h

)
+ 4m2

ZB0

(
m2
Z ,m

2
H ,m

2
h

)
−4m2

WB0

(
m2
W ,m

2
H ,m

2
h

) ]}
, (C.2)

U ′ = −S′ + 1

πm2
Z

{
B22

(
m2
W ;m2

A,m
2
ξ

)
− 2B22

(
m2
W ;m2

ξ ,m
2
ξ

)
+ sin2 (β − α)B22

(
m2
W ;m2

H ,m
2
ξ

)
+ cos2 (β − α)

[
B22

(
m2
W ;m2

h,m
2
ξ

)
−B22

(
m2
W ;m2

W ,m
2
H

)
− B22

(
m2
W ;m2

W ,m
2
h

)
−m2

WB0

(
m2
W ;m2

W ,m
2
H

)
+m2

WB0

(
m2
W ;m2

W ,m
2
h

) ]}
. (C.3)
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He, Polonsky and Su have explicitly calculated the finite part of the B- functions
in their paper [2]. The results are quoted below. Before proceeding, two parameters x1

and x2 need to be defined as x1 ≡
m2

1
q2 and x2 ≡

m2
2

q2 .

B0

(
q2;m2

1,m
2
2

)
= 1 +

1

2

[
x1 + x2

x1 − x2
− (x1 − x2)

]
ln
x1

x2
+

1

2
f (x1, x2) , (C.4)

= 2− 2
√

4x1 − 1 arctan
1√

4x1 − 1
when m1 = m2 , (C.5)

B0

(
m2

1,m
2
2,m

2
3

)
≡ B0

(
0,m2

1,m
2
2

)
−B0

(
0,m2

1,m
2
3

)
=

m2
1ln m2

1 −m2
3ln m2

3

m2
1 −m2

3

− m2
1ln m2

1 −m2
2ln m2

2

m2
1 −m2

2

, (C.6)

B22

(
q2;m2

1,m
2
2

)
≡ B22

(
q2,m2

1,m
2
2

)
−B22

(
0,m2

1,m
2
2

)
=

q2

24

{
2 ln q2 + ln (x1, x2) +

[
(x1 − x2)3 − 3

(
x2

1 − x2
2

)
+3 (x1 − x2)

]
ln
x1

x2
−
[
2 (x1 − x2)2 − 8 (x1 + x2) +

10

3

]
−
[
(x1 − x2)2 − 2 (x1 + x2) + 1

]
f (x1, x2)− 6F (x1, x2)

}
(C.7)

B22

(
q2;m2

1,m
2
1

)
≡ q2

24

[
2 ln q2 + 2 ln x1 +

(
16x1 −

10

3

)
+ (4x1 − 1)G (x1)

]
when m1 = m2 .

(C.8)
The functions F (x1, x2), G (x) and f (x1, x2) are defined below.

F (x1, x2) =

{ x1+x2
2 − x1x2

x1−x2
ln x1

x2
, x1 6= x2

0 x1 = x2
(C.9)

G (x) = −4
√

4x− 1 arcsin
1√

4x− 1
, (C.10)

f (x1, x2) =


−2
√

∆
[
arctan x1−x2+1√

∆
− arctan x1−x2−1√

∆

]
, (∆ > 0)

0 , (∆ = 0)√
−∆ln x1+x2−1+

√
−∆

x1+x2−1−
√
−∆

, (∆ < 0) ,

(C.11)

where,
∆ = 2 (x1 + x2)− (x1 − x2)2 − 1 . (C.12)

The expressions for S′, T ′ and U ′ are simplified in the limit assuming m2
Higgs � m2

Z

and are written below,
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S′ =
1

12π

{
cos2 (β − α)

[
ln
m2
H

m2
h

+ g
(
m2
h,m

2
A

)
− ln

m2
ξ

mhmA

]

+ sin2 (β − α)

[
g
(
m2
H ,m

2
A

)
− ln

m2
ξ

mHmA

]}
, (C.13)

T ′ =
1

16πs2
θW
m2
W

{
cos2 (β − α)

[
F
(
m2
ξ ,m

2
h

)
+ F

(
m2
ξ ,m

2
A

)
− F

(
m2
A,m

2
h

)]
+ sin2 (β − α)

[
F
(
m2
ξ ,m

2
H

)
+ F

(
m2
ξ ,m

2
A

)
− F

(
m2
A,m

2
H

)] }
,(C.14)

U ′ =
1

12π

{
cos2 (β − α)

[
g
(
m2
h,m

2
ξ

)
+ g

(
m2
A,m

2
ξ

)
− g

(
m2
h,m

2
A

)]
+ sin2 (β − α)

[
g
(
m2
H ,m

2
ξ

)
+ g

(
m2
A,m

2
ξ

)
− g

(
m2
H ,m

2
A

)] }
, (C.15)

where,

g (x1, x2) = −5

6
+

2x1x2

(x1 − x2)2 +
(x1 + x2)

(
x2

1 − 4x1x2 + x2
2

)
2 (x1 − x2)3 ln

x1

x2
. (C.16)

In alignment limit when sin (β − α) ∼ 1, S′, T ′ and U ′ takes the form,

S′ =
1

12π

(
g
(
m2
H ,m

2
A

)
− ln

m2
ξ

mHmA

)
, (C.17)

T =
1

16π sin2 θWM2
W

[
F (m2

ξ ,m
2
H) + F (m2

ξ ,m
2
A)− F (m2

H ,m
2
A)
]
, (C.18)

U ′ =
1

12π

(
g
(
m2
H ,m

2
ξ

)
+ g

(
m2
A,m

2
ξ

)
− g

(
m2
H ,m

2
A

))
. (C.19)
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Appendix D

h→ Zγ decay width

If we proceed analogously for the decay width of h→ Zγ as we have done for h→ γγ
in Section 4.4.1 we have,

Γ (h→ Zγ) =
α2g2

29π3

m3
h

M2
W

|GW +Gt + χGξ|2
(

1−
M2
Z

m2
h

)3

, (D.1)

where again a new notation has been adopted as stated below.

ρx ≡ (2mx/MZ)2 . (D.2)

The functions GW , Gt and Gξ are given by [1],

GW = cot θw

[
4
(
tan2 θw − 3

)
I2 (τW , ρW )

+

((
5 +

2

τW

)
−
(

1 +
2

τW

)
tan2 θw

)
I1 (τw, ρW )

]
, (D.3)

Gt =
4
(

1
2 −

4
3 sin2 θw

)
sin θw cos θw

[I2 (τt, ρt)− I1 (τt, ρt)] , (D.4)

Gξ =

(
2 sin2 θw − 1

)
sin θw cos θw

I1 (τξ, ρξ) . (D.5)

The functions I1 and I2 are given by

I1 (τ, ρ) =
τρ

2 (τ − ρ)
+

τ2ρ2

2 (τ − ρ)2 [f (τ)− f (ρ)] +
τ2ρ

(τ − ρ)2 [g (τ)− g (ρ)] ,(D.6)

I2 (τ, ρ) = − τρ

2 (τ − ρ)
[f (τ)− f (ρ)] . (D.7)

The function f is defined as,

f(τ) =


arcsin2

√
1/τ , τ ≥ 1

−1

4

[
log

1 +
√

1− τ
1−
√

1− τ
− iπ

]2

, τ < 1 .
(D.8)
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Since τx > 1 and ρx > 1 for x = W, t and ξ the function g assumes the following
form:

g (a) =
√
a− 1 sin−1(

√
1/a) . (D.9)

The parameter χ which carries the significance of the new physics contribution to
the h→ Zγ in Eq. (D.1) takes the below form in the alignment limit.

χ =
1

m2
ξ

(
m2
A −m2

ξ −
1

2
m2
h

)
. (D.10)
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Appendix E

Custodial Symmetry

An approximate symmetry of the Standard model is the custodial symmetry that pro-
tect the value of the well known ρ parameter from large radiative corrections.

ρ =
m2
W

m2
Z cos2 θW

, (E.1)

mW and mZ being the masses of the W boson and Z boson respectively and θW being
the Weinberg angle.

ρ = 1 for first order perturbation theory and is true for all orders of perturbation
theory when custodial symmetry is exact.

If we write the SM Higgs doublet as,

Φ =

(
φ1 + iφ2

φ3 + iφ4

)
, (E.2)

then the SM scalar potential will solely depend on the scalar invariant Φ†Φ =
φ2

1 + φ2
2 + φ2

3 + φ2
4. This automatically imposes the SO(4) symmetry on the SM po-

tential. SO(4) is isomorphic to SU(2) × SU(2) which is larger than the SM gauge
group SU(2)L×U(1)Y . The scalar gauge kinetic terms specifically those involving the
weak-hypercharge coupling g′ and and the Yukawa terms linear in Φ do not abide by
the SO(4) symmetry. Thus SO(4) is an approximate symmetry of the SM potential
only and not the full Lagrangian and is also called the custodial symmetry [1, 2].

In general the 2HDM potential does not bear any SO(4) symmetry and thus large
radiative corrections to ρ is inevitable. If one wants to avoid them, one may impose cus-
todial symmetry. Pomarol and Vega did considerable amount of work in this regard [3].

We write the two Higgs doublet fields as given in [4]

φi =

(
φ+
i

φ0
i

)
, i = 1, 2. (E.3)
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Then εφ?i are also two SU(2)L doublets with components

εφ?i =

(
φ0?
i

−φ−i

)
, (E.4)

where φ−i = φ+?
i . The Higgs bi-doublet fields are given by

Φi =
1√
2

(
εφ?i φi

)
,

=
1√
2

(
φ0?
i φ+

i

−φ−i φ0
i

)
. (E.5)

The SU(2)L × U(1)Y gauge symmetry acts on the Higgs bi-doublets as

SU(2)L : Φi → LΦi (E.6)

U(1)Y : Φi → Φie
−iσ3θi/2 . (E.7)

In the limit that hyper charge vanishes, the Lagrangian also has the following global
symmetry

SU(2)R : Φi → ΦiR
† (E.8)

When the Higgs fields acquire their respective vacuum expectation values, both SU(2)L
and SU(2)R are broken, however the subgroup SU(2)L=R is unbroken, i.e at

〈
φ0
i

〉
= vi ,

one has

〈Φi〉 =
1√
2

(
v?i 0
0 vi

)
. (E.9)

The vacuum expectation values are chosen to be real, v?i = vi, then 〈Φi〉 is proportional
to the 2× 2 identity matrix and the vacuum preserves a group SU(2)V (the V stands
for “vectorial”) corresponding to the identical matrices SU(2)L=R i.e,

L 〈Φi〉L† = 〈Φi〉 . (E.10)

This remaining group preserved by the vacuum is the custodial-symmetry group and
the corresponding transformation of the Higgs bi-doublet under this group.



References

[1] P. Sikivie, L. Susskind, M. B. Voloshin, and V. I. Zakharov, Nucl. Phys. B 173
(1980) 189.

[2] M. S. Chanowitz and M. Golden, Phys. Lett. B 165 (1985) 105.

[3] A. Pomarol and R. Vega, Nucl. Phys. B 413 (1994) 3 [hep-ph/9305272].

[4] S. Willenbrock, (2004), hep-ph/0410370.

19



Masses of physical scalars in two Higgs doublet models
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We find bounds on scalar masses resulting from a criterion of naturalness, in a broad class of two Higgs
doublet models. Specifically, we assume the cancellation of quadratic divergences in what are called the
type I, type II, lepton-specific, and flipped two Higgs doublet models, with an additional U(1) symmetry.
This results in a set of relations among masses of the physical scalars and coupling constants, a
generalization of the Veltman conditions of the standard model. Assuming that the lighter CP-even neutral
Higgs particle is the observed scalar particle of mass ∼125 GeV, and imposing further the constraints from
the electroweak T-parameter, stability, and perturbative unitarity, we calculate the range of the mass of each
of the remaining physical scalars.
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I. INTRODUCTION

With the discovery of a 125 GeV neutral scalar boson
[1,2], the menagerie of fundamental particles in the
standard model appears to be complete. Some questions
still remain unanswered, including the origins of neutrino
mass and dark matter, keeping the door open for physics
beyond the standard model. Among the simplest extensions
of the standard model are two Higgs doublet models
(2HDMs) (for a recent review see [3]). Originally motivated
by supersymmetry, where a second Higgs doublet is
essential, 2HDMs have also been studied in several other
contexts. Peccei-Quinn symmetry [4,5] solves the strong
CP problem, but must be spontaneously broken. The
corresponding Goldstone boson is the axion, which can
be a combination of the phases of two Higgs doublets.
Models of baryogenesis often involve 2HDMs [6] because
their mass spectrum can be adjusted to produce CP
violation, both explicit and spontaneous. Another motiva-
tion, one that is important to us, is their use in models of
dark matter [7–9]. These models are the inert doublet
models, so called because one of the Higgs doublets does
not couple to the fermions. Of the 2HDMs wewill consider,
the Yukawa couplings of one model (type I) approach the
inert doublet model for large values of the ratio of the
vacuum expectation values (VEVs) of the two Higgs fields.
The other models also have small couplings to one or more
types of fermions in that limit.
In this paper we consider 2HDMs with a softly broken

global U(1) symmetry [4,10], with the parameters chosen
so as to make the 2HDM “SM-like.”We choose the fermion
transformations under this U(1) symmetry, and impose a
naturalness condition of vanishing quadratic divergences
on the scalar sector of the models. Using additional
restrictions coming from partial wave unitarity, vacuum

stability, and the T parameter measuring “new physics,”
and assuming that the lighter CP-even Higgs particle in the
2HDMs is the one observed at the Large Hadron Collider
(LHC), we find bounds on the masses of the additional
scalar particles for each of the 2HDMs.
We will work with the scalar potential [11,12]

V ¼ λ1

�
jΦ1j2 −

v21
2

�
2

þ λ2

�
jΦ2j2 −

v22
2

�
2

þ λ3

�
jΦ1j2 þ jΦ2j2 −

v21 þ v22
2

�
2

þ λ4ðjΦ1j2jΦ2j2 − jΦ†
1Φ2j2Þ

þ λ5

����Φ†
1Φ2 −

v1v2
2

����
2

; ð1:1Þ

with real λi. This potential is invariant under the symmetry
Φ1 → eiθΦ1, Φ2 → Φ2, except for a soft breaking term
λ5v1v2ℜðΦ†

1Φ2Þ. Additional dimension-4 terms, including
one allowed by a softly broken Z2 symmetry [13] are also
set to zero by this U(1) symmetry.
The scalar doublets are parametrized as

Φi ¼
� wþ

i ðxÞ
viþhiðxÞþiziðxÞffiffi

2
p

�
; i ¼ 1; 2 ð1:2Þ

where the VEVs vi may be taken to be real and positive
without any loss of generality. Three of these fields get
“eaten” by theW� and Z0 gauge bosons; the remaining five
are physical scalar (Higgs) fields. There is a pair of charged
scalars denoted by ξ�, two neutralCP even scalarsH and h,
and one CP odd pseudoscalar denoted by A. With

tan β ¼ v2
v1

; ð1:3Þ*ambalika12t@boson.bose.res.in
†amitabha@bose.res.in
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these fields are given by the combinations

�
ω�

ξ�

�
¼

�
cβ sβ

−sβ cβ

��
w�
1

w�
2

�
; ð1:4Þ

�
ζ

A

�
¼

�
cβ sβ

−sβ cβ

��
z1
z2

�
; ð1:5Þ

�
H

h

�
¼

�
cα sα

−sα cα

��
h1
h2

�
; ð1:6Þ

where cα ≡ cos α, etc.
If we rotated h1 − h2 fields by the angle β,

�
H0

R

�
¼

�
cβ sβ

−sβ cβ

��
h1
h2

�
; ð1:7Þ

we would find that H0 has exactly the standard model
Higgs couplings with the fermions and gauge bosons
[14,15]. The physical scalar h is related to H0 and R via

h ¼ sinðβ − αÞH0 þ cosðβ − αÞR: ð1:8Þ

Thus in order for h to be the Higgs boson of the standard
model, we require sinðβ − αÞ ≈ 1, which has been called

the SM-like or alignment limit [16]. Accordingly, we will
assume β − α ¼ π

2
in the rest of this paper.

II. VELTMAN CONDITIONS

The scalar masses get quadratically divergent contribu-
tions which require a fine-tuning of parameters. We thus
impose naturalness conditions, a generalization of the
Veltman conditions for the standard model, that these
contributions cancel [17]. The resulting masses and cou-
plings should not then require fine-tuning.
The Yukawa potential for the 2HDMs is of the form

LY ¼
X
i¼1;2

½−l̄LΦiGi
eeR − Q̄L

~ΦiGi
uuR − Q̄LΦiGi

ddR þH:c:�;

ð2:1Þ

where lL, QL are 3-vectors of isodoublets in the space of
generations, eR, uR, dR are 3-vectors of singlets,G1

e, etc. are
complex 3 × 3 matrices in generation space containing the
Yukawa coupling constants, and ~Φi ¼ iτ2Φ�

i .
Cancellation of quadratic divergences in the scalar

masses gives rise to four mass relations, which we
may call the Veltman conditions for the 2HDMs being
considered [18],

2TrG1
eG

1†
e þ 6TrG1†

u G1
u þ 6TrG1

dG
1†
d ¼ 9

4
g2 þ 3

4
g02 þ 6λ1 þ 10λ3 þ λ4 þ λ5; ð2:2Þ

2TrG2
eG

2†
e þ 6TrG2†

u G2
u þ 6TrG2

dG
2†
d ¼ 9

4
g2 þ 3

4
g02 þ 6λ2 þ 10λ3 þ λ4 þ λ5; ð2:3Þ

2TrG1
eG

2†
e þ 6TrG1†

u G2
u þ 6TrG1

dG
2†
d ¼ 0; ð2:4Þ

where g, g0 are the SUð2Þ and Uð1ÞY coupling constants. A
fourth equation is the complex conjugate of the third one.
As we will see below, the last equation vanishes identically
for all the 2HDMs we consider. The mass relations come
from the first two equations above.
When the fermions are in mass eigenstates, the Yukawa

matrices are automatically diagonal if there is only one
Higgs doublet as in the standard model, so there is no flavor
changing neutral current (FCNC) at the tree level. But in
the presence of a second scalar doublet, the two Yukawa
matrices will not be simultaneously diagonalizable in gen-
eral, and thus the Yukawa couplings will not be flavor
diagonal. Neutral Higgs scalars will mediate FCNCs. The
necessary and sufficient condition for the absence of FCNC
at tree level is that all fermions of a given charge and helicity
transform according to the same irreducible representation of
SU(2), corresponding to the same eigenvalue of T3, and that

a basis exists in which they receive their contributions in the
mass matrix from a single source [19,20].
For the fermions of the standard model, this theorem

implies that all right-handed singlets of a given charge must
couple to the same Higgs doublet. We will ensure this using
the global U(1) symmetry mentioned earlier, which gen-
eralizes a Z2 symmetry more commonly employed for
this purpose. The left-handed fermion doublets remain
unchanged under this symmetry, QL → QL, lL → lL.
The transformations of right-handed fermion singlets
determine the type of 2HDM. There are four such pos-
sibilities, which may be identified by the right-handed
fields which transform under the U(1): type I (none),
type II (dR → e−iθdR; eR → e−iθeR), lepton specific
(eR → e−iθeR), flipped (dR → e−iθdR). We note in passing
that another way of avoiding FCNCs at tree level is by
aligning the Yukawa and mass matrices in flavor space
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[21]. However, only these four 2HDMs admit symmetries
such as the U(1) [22].
The fermion mass matrix is diagonalized by independent

unitary transformations on the left and right-handed fer-
mion fields. In any of the 2HDMs, either G1f or G2f vanish
for each fermion type f. For example, in the Type II model
Φ1 couples to down-type quarks and charged leptons, while
Φ2 couples to up-type quarks, so G2e ¼ G2d ¼ G1u ¼ 0.
Thus Eq. (2.4) is automatically satisfied in each 2HDM.
The nonvanishing Yukawa matrices are related to the
fermion masses by [18]

Tr½G†
1fG1f� ¼

2

v2cos2β

X
m2

f; ð2:5Þ

Tr½G†
2fG2f� ¼

2

v2sin2β

X
m2

f; ð2:6Þ

where f stands for charged leptons, up-type quarks, or
down-type quarks, and the sum is taken over generations.
In order to rewrite the Veltman conditions in terms of the

known masses, we first note that in the alignment limit and
with the global U(1) symmetry, the independent parameters
in the scalar potential may be taken to be the masses mh,
mH, mξ, the angle β, the electroweak VEV v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
,

and the constant λ5. The λi are related to these parameters
by [23]

λ1 ¼
1

2v2c2β
m2

H −
λ5
4
ðtan2β − 1Þ; ð2:7Þ

λ2 ¼
1

2v2s2β
m2

H −
λ5
4

�
1

tan2β
− 1

�
; ð2:8Þ

λ3 ¼ −
1

2v2
ðm2

H −m2
hÞ −

λ5
4
; ð2:9Þ

λ4 ¼
2

v2
m2

ξ ; λ5 ¼
2

v2
m2

A: ð2:10Þ

Inserting Eq. (2.5)–Eq. (2.10) into Eq. (2.2) and Eq. (2.3),
we get the Veltman conditions in terms of the physical
particle masses. These are shown in Table I. The Yukawa
matrices which vanish in each model are listed in the
second column. We note here that although naturalness
conditions in specific 2HDMs have been studied earlier on
a few occasions [24,25], they were not done in the SM-like
scenario, nor expressed in terms of the physical masses for
the different types as in here.

III. BOUNDS ON THE MASSES OF HEAVY
AND CHARGED SCALARS

We now display our main results, the bounds we have
obtained for the masses of the heavy and charged Higgs
particles. We will assume that the h particle is the one that
has been observed at the LHC, so that mh ¼ 125 GeV, and
v ¼ 246 GeV. Let us consider the example of the type II
model to explain our derivation of the bounds.
Since we want the bounds on mH and mξ, let us rewrite

VC1 and VC2 for the type II model in a convenient form,

m2
Hð3tan2β − 2Þ þ 2m2

ξ ¼ 4

�X
m2

e þ 3
X

m2
d

�
sec2β − 6M2

W − 3M2
Z − 5m2

h þ λ5
3v2

2
tan2β; ð3:1Þ

m2
Hð3cot2β − 2Þ þ 2m2

ξ ¼ 12
X

m2
ucsc2β − 6M2

W − 3M2
Z − 5m2

h þ λ5
3v2

2
cot2β: ð3:2Þ

On the right-hand side of either equation, all but the
last term are experimentally known. The Uð1Þ symmetry
implies that λ5 > 0, and we impose the restriction of jλij ≤
4π based on the validity of perturbativity. Comparing with

Eq. (2.10), we see that this last puts a restriction
mA ≲ 617 GeV.
For a fixed value of tan β, we plot both equations on the

mH −mξ plane for various values of λ5. The point where

TABLE I. Veltman conditions for the different 2HDMs.

Model Zero Yukawa VC1 VC2

6M2
W þ 3M2

Z þ 5m2
h þ 2m2

ξ

þm2
Hð3tan2β − 2Þ − 3v2

2
λ5tan2β ¼

6M2
W þ 3M2

Z þ 5m2
h þ 2m2

ξ

þm2
Hð3cot2β − 2Þ − 3v2

2
λ5cot2β ¼

Type I G1e; G1d; G1u 0 4½Pm2
e þ 3

P
m2

u þ 3
P

m2
d�csc2β

Type II G2e; G2d; G1u 4½Pm2
e þ 3

P
m2

d� sec2 β 12
P

m2
u csc2 β

LS G2e; G1d; G1u 4
P

m2
e sec2 β 12½Pm2

u þ
P

m2
d� csc2 β

Flipped G1e; G2d; G1u 12
P

m2
d sec

2 β 4½Pm2
e þ 3

P
m2

u� csc2 β
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the two curves cross for a given value of λ5, is an allowed
value of the pair ðmH;mξÞ.
We can restrict the allowed range of the masses even

further by imposing constraints coming from stability,
perturbative unitarity, and the oblique electroweak
T-parameter. Conditions for stability, i.e., for the scalar
potential being bounded from below, were examined in
[3,15,26], and found to provide lower bounds on certain
combinations of the quartic couplings λi. On the other
hand, the requirement of perturbative unitarity translates
into upper limits on combinations of the λi, which for
two-Higgs models have been derived by many authors
[23,27–29]. One condition coming from perturbative
unitarity is

j3ðλ1þ λ2þ2λ3Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðλ1−λ2Þ2þð4λ3þλ4þλ5Þ2

q
j≤ 16π:

ð3:3Þ

Stability provides the inequalities

λ1 þ λ3 > 0; λ2 þ λ3 > 0; ð3:4Þ

so that we can write Eq. (3.3) as jA� Bj ≤ 16π, with
A;B ≥ 0. It then follows that

0 ≤ λ1 þ λ2 þ 2λ3 ≤
16π

3
: ð3:5Þ

In terms of the scalar masses, this reads

FIG. 1 (color online). Degeneracy of mH −mA (in GeV) for progressively increasing tan β. The condition jλij ≤ 4π restricts
mA ≲ 617 GeV.
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0 < ðm2
H −m2

AÞðtan2β þ cot2βÞ þ 2m2
h <

32πv2

3
: ð3:6Þ

For tan β ≫ 1, this inequality implies thatmH andmA are
almost degenerate, a result also found in [30]. In Fig. 1 we
have shown this degeneracy by plotting mA against mH for
different values of tan β. It is easy to see from the plots
that the degeneracy is more pronounced at higher values
of mA for any value of tan β. For these plots we have
used the perturbativity condition jλij ≤ 4π, which restricts
mA ≲ 617 GeV.
We will also need another inequality which follows from

the condition

j2λ3 þ λ4j ≤ 16π ð3:7Þ

required for perturbative unitarity. Substituting the mass
relations Eq. (2.9) and (2.10) into this, we get

j2m2
ξ −m2

H −m2
A þm2

hj ≤ 16πv2: ð3:8Þ

Next we take into account the oblique parameter T for the
2HDMs, which has the expression [31,32]

T¼ 1

16πsin2θWM2
W
½Fðm2

ξ ;m
2
HÞþFðm2

ξ ;m
2
AÞ−Fðm2

H;m
2
AÞ�;

ð3:9Þ

with

Fðx; yÞ ¼
� xþy

2
− xy

x−y ln
x
y ; x ≠ y

0 x ¼ y:
ð3:10Þ

The T parameter is constrained by the global fit to precision
electroweak data to be [33]

T ¼ 0.05� 0.12: ð3:11Þ

Our results consist of the pairs ðmH;mξÞ for each type of
2HDM, satisfying the two Veltman conditions, and con-
sistent with the constraints from stability, tree-level unitar-
ity and the T parameter. For tan β ¼ 5, we have plotted the
mH −mξ curves corresponding to VC1 and VC2 for several
values of λ5. These have been superimposed on the bound
determined by (3.6), (3.8), and (3.11). The resulting plot is
shown in Fig. 2. VC1 produces ellipses, and VC2 gives a
narrow band of hyperbolas. Their crossings which fall

FIG. 2 (color online). Allowed mass range (in GeV) for the charged Higgs and the heavy CP even Higgs in (a) type I (b) type II
(c) lepton specific and (d) flipped 2HDM for jλ5j ≤ 4π and tan β ¼ 5.
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inside the band representing the bound from the inequal-
ities are the allowed masses. From the plot we can estimate
the individual bounds: for all four models, we find
approximately 550 GeV≲mξ ≲ 700 GeV, and about
450 GeV≲mH ≲ 620 GeV, with a higher mH implying
a higher mξ. As mentioned earlier, mA is close to mH as a
result of (3.6). We also note that direct searches have put a
rough lower bound of mξ > 100 GeV [34].

IV. DISCUSSION

Some comments are in order for the values of some
parameters that we have used in this analysis. We chose
β − α ¼ π

2
so that the 2HDMs are in the alignment limit, in

which the lighter CP-even scalar h has the couplings of the
Higgs particle of the standard model. We note that in the
decoupling limit [15] defined by m2

A ≫ jλijv2 subject to a
condition of perturbativity jλij≲ 4π, we also find
sinðβ − αÞ ≈ 1. (The relation between these λi and ours
may be found in [15].) Although we find from our
computations in this paper that mA must be large, we do
not require it a priori, so our results are valid for the
SM-like alignment limit of the 2HDMs, without going to
the decoupling limit. It is worth pointing out that the issue
of distinguishing between the decoupling limit and the
SM-like scenario was first explored in [35].
Perturbativity requires that the quartic couplings of the

physical Higgs fields are small. Our choice of jλij ≤ 4π
keeps the models inside the perturbative regime, and this
requirement also keeps mA ≲ 617 GeV. Allowing for
larger values of λi would also allow higher values of mA
as well as of mH and mξ. In that sense, what we have found

in this paper are the lower bounds on the masses of H;A,
and ξ�, in the SM-like limit of 2HDMs.
The most important parameter in the 2HDMs is tan β.

There is no consensus on the value of tan β, except that it
should be larger than unity, based on constraints coming
from Z → bb̄ and BqB̄q mixing [36]. Several arguments
have been proffered for a large tan β in 2HDMs of different
types, using muon g − 2 in lepton specific 2HDM [37], or
using b → sγ in type I and flipped models [38], which also
suppresses the t → bHþ branching ratio to a rough agree-
ment with 95% CL limits from the light charged Higgs
searches at the LHC [39,40]. A large value of tan β also
makes the heavy Higgs particle difficult to detect [41]. We
have used a conservative tan β ¼ 5 to estimate the scalar
masses mH and mξ�—note that mA is not very far from mH

because of the degeneracy relation (3.6). A larger tan β
makes the mH −mA degeneracy more pronounced, so the
inequality band becomes narrower. This narrows the ranges
of mH and mξ, also pushing the region of overlap upwards,
making the heavy and charged Higgses more difficult to
detect. Recent analyses of LHC data at

ffiffiffi
s

p ¼ 8 TeV, as a
search for the pseudoscalar Higgs particle, also appear to
favor a value of 5 or larger for tan β near the alignment
limit [42,43].
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Yukawa couplings in two Higgs doublet models
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We consider two Higgs doublet models with a softly broken U(1) symmetry, for various limiting values
of the scalar mixing angles α and β. These correspond to the Standard Model Higgs particle being the
lighter CP-even scalar (alignment) or the heavier CP-even scalar (reverse alignment), and also the limit in
which some of the Yukawa couplings of this particle are the opposite sign of the vector boson couplings
(wrong sign). In these limits we impose a criterion for naturalness by demanding that quadratic divergences
cancel at one loop. We plot the allowed masses of the remaining physical scalars based on naturalness,
stability, perturbative unitarity, and constraints coming from the ρ parameter. We also calculate the h → γγ
decay width in the wrong sign limit.
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I. INTRODUCTION

The discovery of a new boson in July 2012 by the
ATLAS [1] and CMS collaborations [2] at the Large
Hadron Collider (LHC) is a landmark in the history of
particle physics. This scalar is most likely the Higgs boson,
which is the last missing block in the StandardModel (SM).
Although it answers most of the questions concerning
fundamental particles, the SM has a few shortcomings, thus
encouraging a search for theories beyond the Standard
Model. Among the inadequacies are the lack of clear
answers on the questions of the origins of neutrino mass
and dark matter. It also cannot provide the observed matter-
antimatter asymmetry of the Universe.
One of the simplest ways to go beyond the SM is by

extending the scalar sector. This of course affects the ρ
parameter, whose deviation from the tree-level value of
unity is a measure of new physics. The general expression
for the tree-level ρ parameter for an SUð2Þ × Uð1Þ gauge
theory with N scalar multiplets is [3]

ρ≡ m2
W

cos2θWm2
Z
¼

P
N
i¼1 ½TiðTi þ 1Þ − 1

4
Y2
i �v2i

1
2

P
N
i¼1 Y

2
i v

2
i

; ð1Þ

where Ti and Yi denote the weak isospin and the hyper-
charge of the ith scalar multiplet respectively, and vi is the
vacuum expectation value (VEV) of the neutral component
of that multiplet. If the scalar sector contains only SU(2)
singlets with Y ¼ 0 and doublets with Y ¼ �1, then ρ ¼ 1
is automatically satisfied without requiring any fine-tuning
among the VEVs. This conforms with the experimental
value of ρ, which is very close to unity [4]. We therefore
confine our discussions to the doublet extensions, specifi-
cally the two Higgs doublet models (2HDMs) [5], which

have received a lot of attention mainly because the type II
2HDM arises as part of minimal supersymmetry.
In this paper we consider the restrictions imposed on the

scalar masses by a criterion of naturalness, embodied in the
Veltman conditions, in various limits of 2HDMs of all types.
The alignment limit and the reverse alignment limit are two
scenarios in which the lighter and the heavier CP-even
neutral scalar, respectively, correspond to the observedHiggs
particle. We also consider the cases where these occur in
conjunction with the wrong sign limit, in which the Yukawa
coupling of at least one type of fermion is of the opposite sign
as the vector coupling. Using the naturalness conditions we
analyze the parameter space of masses of scalars in 2HDMs
of different types. The parameter space is further restricted by
constraints arising from the ρ parameter, global stability of
the scalar potential, and requirement of perturbative unitarity.
Section II gives a brief review of the 2HDM. Sections III
and IV deal with various limits of two Higgs doublet models
and their permutations. In Sec. V we calculate the Higgs-
diphoton decay width for one of the scenarios and Sec. VI
concludes with a discussion of the results.

II. BRIEF REVIEW OF 2HDMs

We will work with the scalar potential [6,7] considered
under the imposition of a U(1) symmetry which forbids
flavor-changing neutral currents (FCNCs),

V ¼ λ1

�
jΦ1j2 −

v21
2

�
2

þ λ2

�
jΦ2j2 −

v22
2

�
2

þ λ3

�
jΦ1j2 þ jΦ2j2 −

v21 þ v22
2

�
2

þ λ4ðjΦ1j2jΦ2j2 − jΦ†
1Φ2j2Þ

þ λ5

����Φ†
1Φ2 −

v1v2
2

����
2
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with real λi’s. This potential is invariant under the sym-
metry Φ1 → eiθΦ1, Φ2 → Φ2, except for a soft breaking
term λ5v1v2ℜðΦ†

1Φ2Þ. Additional dimension-4 terms,
including one allowed by a softly broken Z2 symmetry
[8], are also set to zero by this U(1) symmetry. This is the
same U(1) symmetry which prevents FCNC by having left-
and right-handed fermions transform differently under it,
leading to the four types of 2HDMs.
The scalar doublets are parametrized as

Φi ¼
� wþ

i ðxÞ
viþhiðxÞþiziðxÞffiffi

2
p

�
; i ¼ 1; 2 ð3Þ

where the VEVs vi may be taken to be real and positive
without any loss of generality. Three of these fields get
“eaten” by theW� and Z0 gauge bosons; the remaining five
are physical scalar fields. There is a pair of charged scalars
denoted by ξ�, two neutral CP-even scalars H and h, and
one CP-odd pseudoscalar denoted by A. The two CP-even
scalars have distinct masses, and mh < mH. With

tan β ¼ v2
v1

; ð4Þ

the scalar fields are given by the combinations

�
ω�

ξ�

�
¼

�
cβ sβ

−sβ cβ

��
w�
1

w�
2

�
; ð5Þ

�
ζ

A

�
¼

�
cβ sβ

−sβ cβ

��
z1
z2

�
; ð6Þ

�
H

h

�
¼

�
cα sα

−sα cα

��
h1
h2

�
; ð7Þ

where cα ≡ cos α, etc. We will assume, without loss of
generality, that 0 ≤ β ≤ π

2
, and − π

2
≤ α ≤ π

2
.

The quartic couplings are related to the physical Higgs
masses by [9,10]

λ1 ¼
1

2v2c2β

�
c2αm2

H þ s2αm2
h −

sαcα
tan β

ðm2
H −m2

hÞ
�

−
λ5
4
ðtan2β − 1Þ; ð8Þ

λ2 ¼
1

2v2s2β
½s2αm2

H þ c2αm2
h − sαcα tan βðm2

H −m2
hÞ�

−
λ5
4

�
1

tan2β
− 1

�
; ð9Þ

λ3 ¼
1

2v2
sαcα
sβcβ

ðm2
H −m2

hÞ −
λ5
4
; ð10Þ

λ4 ¼
2

v2
m2

ξ ; ð11Þ

λ5 ¼
2

v2
m2

A: ð12Þ

Let us now turn our attention to the fermion couplings.
The scalar doublets couple to the fermions in the theory via
the Yukawa Lagrangian

LY ¼
X
i¼1;2

½−l̄LΦiGi
eeR − Q̄L

~ΦiGi
uuR − Q̄LΦiGi

ddR þH:c:�:

ð13Þ

Here lL, QL are three-vectors of isodoublets in the space of
generations, eR, uR, dR are three-vectors of singlets,G1

e etc.
are complex 3 × 3 matrices in generation space containing
the Yukawa coupling constants, and ~Φi ¼ iτ2Φ�

i .
When the fermions are in mass eigenstates, the Yukawa

matrices are automatically diagonal if there is only one
Higgs doublet, as in the Standard Model. But in the
presence of a second scalar doublet, the two Yukawa
matrices will not be simultaneously diagonalizable in
general. Thus the Yukawa couplings will not be flavor
diagonal, and neutral Higgs scalars will mediate FCNCs
[11–13]. The necessary and sufficient condition for the
absence of FCNCs at tree level is that all fermions of a
given charge and helicity transform according to the same
irreducible representation of SU(2), corresponding to the
same eigenvalue of T3, and that a basis exists in which they
receive their contributions in the mass matrix from a single
source [14,15].
For the fermions of the Standard Model, this theorem

implies that all right-handed singlets of a given charge must
couple to the same Higgs doublet. This can be ensured by
using the global U(1) symmetry mentioned earlier, which
generalizes a Z2 symmetry more commonly employed for
this purpose. The left-handed fermion doublets remain
unchanged under this symmetry, QL → QL, lL → lL. The
transformations of right-handed fermion singlets determine
the type of 2HDM. There are four such possibilities, which
may be identified by the right-handed fields which trans-
form under the U(1): type I (none), type II (dR → e−iθdR,
eR → e−iθeR), lepton specific (eR → e−iθeR), and flipped
(dR → e−iθdR).
The scalar masses get quadratically divergent contribu-

tions which require very large fine-tuning of parameters.
We will impose a criterion of naturalness on the scalar
masses, viz., the cancellation of these quadratic divergen-
ces. This gives rise to four mass relations, which we
may call the Veltman conditions for the 2HDMs being
considered [16],
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2TrG1
eG

1†
e þ 6TrG1†

u G1
u þ 6TrG1

dG
1†
d

¼ 9

4
g2 þ 3

4
g02 þ 6λ1 þ 10λ3 þ λ4 þ λ5; ð14Þ

2TrG2
eG

2†
e þ 6TrG2†

u G2
u þ 6TrG2

dG
2†
d

¼ 9

4
g2 þ 3

4
g02 þ 6λ2 þ 10λ3 þ λ4 þ λ5; ð15Þ

2TrG1
eG

2†
e þ 6TrG1†

u G2
u þ 6TrG1

dG
2†
d ¼ 0; ð16Þ

and another one which is the complex conjugate of the third
equation. Here g, g0 are the SUð2Þ and Uð1ÞY coupling
constants, respectively.
The fermion mass matrix is diagonalized by independent

unitary transformations on the left- and right-handed
fermion fields. In any of the 2HDMs, the U(1) symmetry
implies that either G1f or G2f must vanish for each fermion
type f. For example, in the type II model Φ1 couples to
down-type quarks and charged leptons, while Φ2 couples to
up-type quarks, so G2e ¼ G2d ¼ G1u ¼ 0. Thus Eq. (16) is
automatically satisfied in each 2HDM, and the relevant
mass relations come from the first two equations above.
The nonvanishing Yukawa matrices are related to the
fermion masses by

Tr½G†
1fG1f� ¼

2

v2cos2β

X
m2

f; ð17Þ

Tr½G†
2fG2f� ¼

2

v2 sin2 β

X
m2

f; ð18Þ

where f stands for charged leptons, up-type quarks, or
down-type quarks, and the sum is taken over generations.
These and the scalar mass relations of Eqs. (8)–(12) allow
us to write the Veltman conditions in terms of the physical
masses of particles.
There are some additional conditions on the parameters

which further constrain the scalar masses. One is the
pertubativity condition, which puts a constraint on the
quartic coupling constants, λi ≤ 4π [17]. Another set comes
from the condition that the potential is bounded from
below. This was examined for more general potentials in
2HDM under U(1) symmetry in [18,19], and for the
potential given in Eq. (2) these conditions become

λ1 þ λ3 > 0; ð19Þ

λ2 þ λ3 > 0; ð20Þ

2λ3 þ λ4 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 þ λ3Þðλ2 þ λ3Þ

p
> 0; ð21Þ

2λ3 þ λ5 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 þ λ3Þðλ2 þ λ3Þ

p
> 0: ð22Þ

These conditions put lower bounds on the above combi-
nations of quartic couplings, but there are also upper

bounds on these couplings arising from the considerations
of perturbative unitarity [20]. These conditions are

j2λ3 − λ4 þ 2λ5j ≤ 16π; ð23Þ

j2λ3 þ λ4j ≤ 16π; ð24Þ

j2λ3 þ λ5j ≤ 16π; ð25Þ

j2λ3 þ 2λ4 − λ5j ≤ 16π; ð26Þ

j3ðλ1þ λ2þ2λ3Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðλ1−λ2Þ2þð4λ3þλ4þλ5Þ2

q
j≤ 16π;

ð27Þ

jðλ1þλ2þ2λ3Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1−λ2Þ2þðλ4−λ5Þ2

q
j≤ 16π; ð28Þ

jðλ1 þ λ2 þ 2λ3Þ � ðλ1 − λ2Þj ≤ 16π: ð29Þ

There is another condition that we need to take into
account when we calculate bounds on the scalar masses.
The oblique electroweak correction T, which measures
deviations from the Standard Model due to new physics, is
related to the deviation of the ρ parameter from its SM
value of unity by

δρ≡ ρ − 1 ¼ αT; ð30Þ

where α ¼ e2=4π is the fine structure constant. The effect
of the general 2HDM on the ρ parameter is known to be
[21,22]

δρ ¼ g2

64π2m2
w
ðFðm2

ξ ; m
2
AÞ þ sin2ðβ − αÞFðm2

ξ ; m
2
HÞ

þ cos2ðβ − αÞFðm2
ξ ; m

2
hÞ

− sin2ðβ − αÞFðm2
A;m

2
HÞ − cos2ðβ − αÞFðm2

A;m
2
hÞ

þ 3cos2ðβ − αÞ½Fðm2
Z;m

2
HÞ − Fðm2

W;m
2
HÞ�

þ 3sin2ðβ − αÞ½Fðm2
Z;m

2
hÞ − Fðm2

W;m
2
hÞ�

− 3½Fðm2
Z;m

2
hSM

Þ − Fðm2
W;m

2
hSM

Þ�Þ; ð31Þ

where Fðx; yÞ is a function of two non-negative arguments
x and y, symmetrical under the exchange of the arguments,
and vanishes only if x ¼ y. The function has the property
that it grows linearly with maxðx; yÞ, i.e., quadratically with
the heaviest scalar mass when that mass becomes very
large. The current experimental bound on the total new
physics contribution to ρ is given by δρ ¼ −0.00011 [4].

III. LIMITS OF 2HDMs

In order to relate a 2HDM to the Higgs sector of the
Standard Model, we need to identify some combination of
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the neutral scalar particles in the theory as the observed
Higgs particle. This can be done in several ways, by
considering different combinations of the angles α and
β. Is this section we will consider the different limits for
which part of the 2HDM matches the Standard Model, and
calculate the allowed range of masses for the additional
scalars.
A crucial parameter of the 2HDMs is tan β. Its value is

larger than one, based on constraints coming from Z → bb̄
and BqB̄q mixing [23]. A large tan β is suggested by muon
g − 2 in a lepton specific 2HDM [24], by using b → sγ in
type I and flipped models [25], which also suppresses the
t → bHþ branching ratio to a rough agreement with
95% C.L. limits from the light charged Higgs searches
at the LHC [26,27]. We will assume that tan β is large, and
certainly larger than unity, specific values will be consid-
ered for the plots as needed.

A. Alignment limit

If we rotated the neutral ðh1; h2Þ doublet by the angle β,

�
H0

R

�
¼

�
cβ sβ

−sβ cβ

��
h1
h2

�
; ð32Þ

we would find that H0 has exactly the Standard Model
Higgs couplings with the fermions and gauge bosons
[11,18]. The physical scalar h is related to H0 and R via

h ¼ sinðβ − αÞH0 þ cosðβ − αÞR: ð33Þ

Thus in order for h to be the Higgs boson of the Standard
Model, we require sinðβ − αÞ ≈ 1, which has been called
the SM-like or alignment limit [28].
There remain three unknown mass parameters, namely

mH,mξ, andmA, which span the parameter space. By fixing
tan β at some specific value, we can use the Veltman
conditions to plot the accessible region of the mH −mξ

plane corresponding to the allowed range of values for mA.
On the other hand, constraints from perturbative unitarity
and the oblique correction T also restrict the accessible
region on this plane. The intersection of all these regions
provides the allowed ranges for mH and mξ.
The mass ranges were studied for the alignment limit in

[29], where it was found that if we set mh ¼ 125 GeV, and
allowed mA to run over its entire range of 0 < mA ≲
617 GeV as determined by the condition of perturbativity,
the two unknown masses mH and mξ became restricted to
ranges of 550 GeV≲mξ ≲ 700 GeV, 450 GeV≲mH≲
620 GeV. The value of tan β used in these calculations
was tan β ¼ 5, and it was also found that a higher value of
tan β pushed the ranges to higher values and also made
them narrower. These mass ranges are in agreement with
bounds found by analyzing experimental data [30].

B. Reverse alignment limit

Let us rearrange the equations described in the previous
section. Using Eqs. (7) and (32) we obtainH in terms ofH0

and R,

H ¼ H0 cosðβ − αÞ − R sinðβ − αÞ ð34Þ

Had H been the SM-like Higgs boson, it would have to
resemble the properties of H0, and for that β would have to
approximately equal α or π þ α. The ultimate results with
β ≈ α and β ≈ π þ α are identical, so in what follows we
will work with β ≈ α and call it the reverse alignment limit.
Equations (8)–(12) become, in the reverse alignment

limit,

λ1 ¼
m2

h

2v2
ðtan2β þ 1Þ − λ5

4
ðtan2β − 1Þ; ð35Þ

λ2 ¼
m2

h

2v2
ðcot2β þ 1Þ − λ5

4
ðcot2β − 1Þ; ð36Þ

λ3 ¼
1

2v2
ðm2

H −m2
hÞ −

λ5
4
; ð37Þ

λ4 ¼
2

v2
m2

ξ ; ð38Þ

λ5 ¼
2

v2
m2

A: ð39Þ

Let us write the Veltman conditions defined in Eqs. (14)
and (15) using the above equations. We will write the
equations explicitly for one case, that of the type II 2HDM,
for which the two Veltman conditions read, in the reverse
alignment limit,

m2
hð3tan2β−2Þþ2m2

ξ ¼4

�X
m2

eþ3
X

m2
d

�
sec2β−6M2

W

−3M2
Z−5m2

Hþλ5
3v2

2
tan2β; ð40Þ

m2
hð3cot2β−2Þþ2m2

ξ ¼ 12
X

m2
ucsc2β−6M2

W

−3M2
Z−5m2

Hþλ5
3v2

2
cot2β: ð41Þ

We have plotted the above equalities on the mh −mξ plane
for several values of λ5 for a fixed value of tan β and with
mH ¼ 125 GeV, with mh ≤ mH. On the same plane, we
have also plotted the region allowed by stability, perturba-
tive unitarity, and constraints from δρ. The conditions of
stability and perturbative unitarity, Eqs. (19)–(29), produce
the following two inequalities in the reverse alignment limit
relevant to this plot:

AMBALIKA BISWAS and AMITABHA LAHIRI PHYSICAL REVIEW D 93, 115017 (2016)

115017-4



0 ≤ ðm2
h −m2

AÞðtan2β þ cot2βÞ þ 2m2
H ≤

32πv2

3
; ð42Þ

j2m2
ξ −m2

h −m2
A þm2

Hj ≤ 16πv2: ð43Þ

These are analogous to similar inequalities found in [29] in
the alignment limit.
For tan β ¼ 5, the plots for all four types of 2HDM are

shown in Fig. 1. The gray region covers the points which
satisfy the inequalities (42) and (43) in addition to the
constraints from δρ, the first Veltman condition provides
the curves (ellipses) which cross this region, and the second
Veltman condition provides the nearly flat hyperbolas
above the gray region.
As we can see from the plots in Fig. 1, there is no region

on the mh −mξ plane where all the constraints are obeyed.
In other words, if we insist on naturalness, as embodied by
the Veltman conditions, the reverse alignment limit is not a
valid limit for any of the 2HDMs, i.e., the observed Higgs
particle cannot be the heavier CP-even neutral scalar in any
of the 2HDMs.
It should be mentioned here that allowed mass ranges of

scalars in both the alignment limit and the reverse align-
ment limit were studied in [31]. However, that paper

considered an unbroken Z2 symmetry, not a softly broken
symmetry as we have considered. As a result the mass
ranges of scalars, as well as the allowed range of tan β
found in that paper, are different from the ones we
have found.

IV. WRONG SIGN YUKAWA COUPLINGS

The wrong sign Yukawa coupling regime [28,32,33] is
defined as the region of 2HDM parameter space in which at
least one of the couplings of the SM-like Higgs to up-type
and down-type quarks is opposite in sign to the corre-
sponding coupling of SM-like Higgs to vectors bosons.
This is to be contrasted with the Standard Model, where the
couplings of hSM to f̄f and vector bosons are of the same
sign. The wrong sign limit needs to be considered in
conjunction with either the alignment limit or the reverse
alignment limit. We will now calculate the regions of
parameter space when each of these two limits is combined
with the wrong sign limit.
The CP-even neutral scalars couple to the up-type and

down-type quarks in the various 2HDMs as shown in
Table I, with the SM couplings of the quarks to the SM
Higgs field normalized to unity.

FIG. 1. Allowed mass range (in GeV) for the charged Higgs and the light CP-even Higgs in reverse alignment limit for (a) type I,
(b) type II, (c) lepton specific, and (d) flipped 2HDMs for jλ5j ≤ 4π and tan β ¼ 5.
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A. Wrong sign and reverse alignment limit

Let us first consider the case of wrong sign Yukawa
couplings in the reverse alignment limit. The heavier
CP-even neutral scalar H corresponds to the SM Higgs
in the reverse alignment limit, with a coupling to vector
bosons which is cosðβ − αÞ times the corresponding SM
value. In the convention where cosðβ − αÞ ≥ 0, the HVV
couplings in the 2HDM are always non-negative. To
analyze the wrong sign coupling regime, we write the
Yukawa couplings in the type II and Flipped 2HDMs in the
following form:

HD̄D∶
cos α
cos β

¼ cosðβ þ αÞ þ sinðβ þ αÞ tan β; ð44Þ

HŪU∶
sin α
sin β

¼ − cosðβ þ αÞ þ sinðβ þ αÞ cot β: ð45Þ

In the case when cosðβ þ αÞ ¼ −1, the HD̄D coupling
normalized to its SM value is equal to −1, whereas the
normalized HŪU coupling is þ1. Thus in this case, when
the reverse alignment limit is taken in conjunction with the
wrong sign limit, we have α ≈ β ≈ π

2
. It turns out there is no

point on the mh −mξ plane which satisfies the Veltman
conditions as well as the bounds coming from unitarity,
stability and the ρ parameter. In Fig. 2 only the first
Veltman condition has been plotted, and it does not cross
the gray region corresponding to the bounds. The other

Veltman condition does not show up in this picture at all, it
is not satisfied for any point in this plot.
On the other hand, in the case when cosðβ þ αÞ ¼ 1, the

HŪU coupling normalized to its SM value is equal to −1,
while the normalized HD̄D coupling is þ1. In this limiting
case, cosðβ − αÞ ¼ cos 2β, which implies that the wrong
signHŪU couplings can only be achieved for tan β < 1 for
the type II and flipped 2HDMs.
In the type I and lepton specific 2HDMs, both the HD̄D

and HŪU couplings are given by Eq. (45). Thus, for
cosðβ þ αÞ ¼ 1, the normalizedHD̄D andHŪU couplings
are both equal to −1, which is only possible if tan β < 1.
Since tan β > 1, we see that the wrong sign Yukawa

coupling is incompatible with the reverse alignment limit in
all of the four types of 2HDMs.

B. Wrong sign in the alignment limit

Let us now look at what happens if some Yukawa
couplings are of the wrong sign, in the alignment limit. In
this case h is the SM Higgs, and its coupling to the vector
bosons is sinðβ − αÞ times the corresponding SM value.
Then in the convention where sinðβ − αÞ ≥ 0, the hVV
couplings in the 2HDM are always non-negative. As in the
previous case, we write the type II and flipped Higgs-
fermion Yukawa couplings, normalized with respect to the
Standard Model couplings, in the following form:

hD̄D∶ −
sin α
cos β

¼ − sinðβ þ αÞ þ cosðβ þ αÞ tan β; ð46Þ

hŪU∶
cos α
sin β

¼ sinðβ þ αÞ þ cosðβ þ αÞ cot β: ð47Þ

In the case when sinðβ þ αÞ ¼ 1, the hD̄D coupling
normalized to its SM value is equal to −1, while the
normalized hŪU coupling is þ1. Note that in this limiting
case, sinðβ − αÞ ¼ − cos 2β, which implies that the wrong
sign hD̄D Yukawa coupling can only be achieved for
values of tan β > 1.
Likewise, in the case of sinðβ þ αÞ ¼ −1, the hŪU

coupling normalized to its SM value is equal to −1,
whereas the normalized hD̄D coupling is þ1. Then
sinðβ − αÞ ¼ cos 2β, which implies that the wrong sign
hŪU couplings can occur only if tan β < 1. In the type I
and lepton specific 2HDMs, the hD̄D and hŪU couplings
are both given by Eq. (47). Thus for sinðβ þ αÞ ¼ −1, the
normalized hD̄D and hŪU couplings are both equal to −1,
which is only possible if tan β < 1. Thus realistically only
the hD̄D coupling of the type II and flipped 2HDM can be
of the wrong sign, since tan β > 1.
Let us therefore consider a type II model with a wrong

sign hD̄D coupling. The wrong sign limit approaches the
alignment limit for tan β ≈ 17 as was displayed in [32,33]
for the allowed parameter space of the type II CP-
conserving 2HDM, based on the 8 TeV run of the LHC.

TABLE I. Yukawa couplings for the different 2HDMs.

2HDMs hŪU hD̄D HŪU HD̄D

Type I cosα
sin β

cosα
sin β

sin α
sin β

sin α
sin β

Type II cosα
sin β − sin α

cos β
sin α
sin β

cosα
cos β

Lepton specific cosα
sin β

cosα
sin β

sin α
sin β

sin α
sin β

Flipped cosα
sin β − sin α

cos β
sin α
sin β

cosα
cos β

FIG. 2. Veltman conditions are not satisfied for any (mh, mξ)
satisfying unitarity and other bounds, in the reverse alignment
limit with wrong sign Yukawa couplings.
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For this model, we will plot the values of the pair (mH, mξ)
allowed by the naturalness conditions as well as the
constraints imposed by perturbativity, stability, tree-level
unitarity, and the ρ parameter. We will do this for four
different values of tan β around the “critical” value of 17.
By choosing a small enough α we can ensure that for all
these choices, both sinðβ − αÞ ≈ 1 and sinðβ þ αÞ ≈ 1, as
needed for the alignment limit and the wrong sign coupling.
In Fig. 3 we have plotted the Veltman conditions on the

mH −mξ plane for type II 2HDM for the four choices of
tan β, for different values of mA constrained by jλ5j ≤ 4π.
These plots are further constrained by conditions coming
from stability of the potential, perturbative unitarity, and
experimental bounds on δρ. We have also taken
mh ¼ 125 GeV. One can estimate from the plots that for
tan β ¼ 17 that the range of mH is approximately (250,
330) GeV, and that of mξ is approximately (260, 310) GeV.
At higher values of tan β, both ranges become narrower and
move down on the mass scale.

V. MODIFICATION OF HIGGS-DIPHOTON
DECAY WIDTH

The h → γγ decay channel is perhaps the most popular
channel for Higgs and related searches. The decay width

can be enhanced or reduced in the 2HDMs due to loop
effects. In the alignment limit, the couplings of the lighter
CP-even neutral scalar h to gauge bosons are identical to
that for the SMHiggs. Then the tree-level decay widths of h
will be the same as for the SM Higgs. For loop induced
decays, such as h → γγ and h → Zγ, the contribution of the
W boson loop and the top loop diagrams are the same as in
the SM. But there will have to be some additional
contributions due to the virtual charged scalars ξ� in the
loop. Thus the decay widths will be different from the SM
in general. Contributions from the fermion loops are the
same in this case as for the SM.
On the other hand, suppose h has wrong sign Yukawa

couplings to the down-type quarks. Then the bottom quarks
will contribute with a relative negative sign in the loops,
and the h → γγ decay width will be different from the SM,
as well as from 2HDMs in the usual alignment limit.
The Higgs-diphoton decay width is calculated using the

formula [34]

Γðh → γγÞ ¼ Gμα
2m3

h

128
ffiffiffi
2

p
π3

����
X

f
NcQ2

fghffA
h
1=2ðτfÞ

þ ghVVAh
1ðτWÞ þ

m2
Wλhξþξ−

2c2WM
2
ξ�

Ah
0ðτξ�Þ

����
2

: ð48Þ

FIG. 3. Allowed mass range in GeV for the charged Higgs and the heavyCP-even Higgs when approaching wrong sign and alignment
limits simultaneously for (a) tan β ¼ 10, (b) tan β ¼ 17, (c) tan β ¼ 20, and (d) tan β ¼ 30 for jλ5j ≤ 4π and a type II 2HDM.
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In this equation, Nc is the number color multiplicity, Qf is
the charge of the fermion f, Gμ is the Fermi constant, and
the reduced couplings ghff and ghVV of the Higgs boson to
fermions and W bosons are ghtt ¼ cosα

sin β , ghtt ¼ − sin α
cos β, and

ghWW ¼ sinðβ − αÞ, while the trilinear λhξþξ− couplings to
charged Higgs bosons is given by

λhξþξ− ¼ cos 2β sinðβ þ αÞ þ 2c2W sinðβ − αÞ ð49Þ

¼ λhAA þ 2c2WghVV; ð50Þ

where cW ¼ cos θW , with θW being the Weinberg angle.
The decay width does not depend on the type of the 2HDM.
The amplitudes Ai at lowest order for the spin-1, spin-12,

and spin-0 particle contributions are given by [7]

Ah
1=2 ¼ −2τ½1þ ð1 − τÞfðτÞ�; ð51Þ

Ah
1 ¼ 2þ 3τ þ 3τð2 − τÞfðτÞ; ð52Þ

Ah
0 ¼ τ½1 − τfðτÞ� ð53Þ

in the case of the CP-even Higgs boson h.
Here

τx ¼ 4m2
x=m2

h ð54Þ

and

fðτÞ ¼
(
arcsin2

ffiffiffiffiffiffiffi
1=τ

p
; τ ≥ 1

− 1
4

h
log 1þ ffiffiffiffiffiffi

1−τ
p

1−
ffiffiffiffiffiffi
1−τ

p − iπ
i
2
; τ < 1

: ð55Þ

Using the above definitions in the decay width formula
given in Eq. (48), we arrive at a much simplified expression
for the decay width,

Γðh → γγÞ ¼ Gμα
2m3

h

128
ffiffiffi
2

p
π3

����ghVVAh
W þ 4

3
ghttAh

t

� 1

3
ghbbAh

b þ κAh
ξ

����
2

; ð56Þ

where the þ before Ah
b is for when the hb̄b Yukawa

coupling has the same sign as the hVV coupling and
the − is for the wrong sign of the Yukawa coupling, and κ is
defined as

κ ¼ 1

m2
ξ

�
m2

ξ þ
1

2
m2

h −m2
A

�
: ð57Þ

The appearance of mA in Eq. (57) is merely an artifact of
U(1) symmetry of the scalar potential. For a more general
potential the expression for κ involves λ5 [35]. In Fig. 4 we
have plotted the h → γγ decay width in 2HDMs in the
alignment limit, normalized with respect to the SM value,
against the mass of the charged Higgs particle, and for
different values of the mass of the CP-odd scalar.
Figure 4(a) shows the decay width for the case where
the hq̄q Yukawa coupling has the same sign as the hVV
coupling, whereas Fig. 4(b) is for the decay width corre-
sponding to the case where the Yukawa coupling of h to the
down-type quarks is the opposite sign of the hVV coupling.
We note that the first case has been plotted, albeit for
smaller values of tan β and without the use of the Veltman
conditions (thus for a much larger range of mξ), in [36].
As we have seen in the previous section, simultaneously

choosing the alignment limit and the wrong sign limit also
sets tan β at a high value. The critical value tan β ¼ 17 , and
a small but nonzero value of α, namely α≃ 0.035, was
chosen for both the plots. The plots are not noticeably
different for other high values of tan β or other similar
values of α. The decay width does not depend on the type of
2HDM once the masses of the charged Higgs particle
and the CP-odd Higgs particle are fixed. However,
the range of allowed masses depends on the type of
2HDM being considered. We have chosen the ranges

FIG. 4. Diphoton decay width of the SM-like Higgs particle (normalized to SM) as a function of the charged Higgs mass in GeV at
tan β ¼ 17, for (a) the same sign and (b) the wrong sign, of down-type Yukawa couplings.
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225 GeV ≤ mξ ≤ 290 GeV and 200GeV≤mA≤300GeV,
which cover the allowed ranges for all four types for
tan β ¼ 17. Although a picture is worth a thousand words,
it is perhaps worth pointing out that when mA is small, for
example mA ≃ 200 GeV, the diphoton decay width devi-
ates from the SM value by 5%–7% for all values ofmξ. The
deviation is noticeable for many other values of mA also, as
can be easily seen from the plots. On the other hand, for
specific choices of (mA, mξ) the h → γγ decay width is the
same as for the SM, so the nonobservation of a deviation
does not rule out 2HDMs.
The two plots are similar, but not identical. The decay

width when the hD̄DYukawa coupling is of the wrong sign
is smaller than the decay width for the case when it is of the
same sign (as hVV couplings) by about 1.5%, as can be
seen from the ratio of the decay widths, displayed in Fig. 5.

VI. RESULTS AND CONCLUSION

In this paper we have looked at how a certain criterion of
naturalness, namely the cancellation of quadratic divergen-
ces, affects the allowed ranges of masses of the additional
scalars in 2HDMs in the alignment or SM-like limit with
wrong sign Yukawa couplings, and also in the reverse
alignment limit. A similar calculation was done in [29] for
the alignment limit without the wrong sign assumption.
We found that reverse alignment, i.e., the scenario in

which the heavier CP-even neutral scalar is the Standard

Model Higgs particle, is clearly not a viable scenario for
2HDMs. Constraints arising from naturalness, stability,
perturbative unitarity, and experimental bounds on the ρ
parameter completely rule out this scenario. The natural-
ness criterion is crucial for this conclusion—reverse align-
ment is an allowed scenario if quadratic divergences are
taken care of by some mechanism of fine-tuning, for
example.
We have also considered a limit where the lighter CP-

even neutral scalar corresponds to the SM-like Higgs but
where the Yukawa couplings of this particle to D-type
quarks are of the wrong sign relative to their gauge
couplings. In this scenario we obtain mass ranges for the
rest of the physical Higgs bosons for various benchmark
values of tan β. In this paper we have shown only the plot
for the type II 2HDM, but the results are similar for the
other 2HDMs with a small variation of a few GeV.
The Higgs-diphoton decay width in a 2HDM receives

additional contributions from loops containing the charged
scalar ξ� , so the decay width in a 2HDM is different from
the SM value. Furthermore, in the wrong sign limit, loops
containing down-type quarks contribute with a different
sign. We have plotted the h → 2γ decay width against the
mass of the charged Higgs, and also for different values of
the mass of the CP-odd neutral scalar, and found that the
decay width can differ from its SM value by up to 6% for
some values of the parameters.
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Note added.—Recently, another paper which investigates
what we call the reverse alignment limit appeared [37].
However, that paper uses fewer constraints, so limits on the
masses of ξ� are less restrictive. Even more recently, the
ATLAS and CMS collaborations at the LHC have reported
an excess corresponding to a diphoton resonance at
750 GeV [38]. We note that according to the naturalness
criterion we have used in this paper, this excess cannot be
one of the scalar particles in any of the four types of
2HDMs, in agreement with the negative result found in [39]
using several other lines of argument.

[1] G. Aad et al. (ATLAS Collaboration), Observation of a new
particle in the search for the Standard Model Higgs boson
with the ATLAS detector at the LHC, Phys. Lett. B 716, 1
(2012).

[2] S. Chatrchyan et al. (CMS Collaboration), Observation of a
new boson at a mass of 125 GeV with the CMS experiment
at the LHC, Phys. Lett. B 716, 30 (2012).

[3] P. Langacker, Grand unified theories and proton decay,
Phys. Rep. 72, 185 (1981).

[4] K. A. Olive et al. (Particle Data Group Collaboration),
Review of particle physics, Chin. Phys. C 38, 090001 (2014).

[5] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M.
Sher, and J. P. Silva, Theory and phenomenology of two-
Higgs-doublet models, Phys. Rep. 516, 1 (2012).

FIG. 5. hγγ decay width for a wrong sign hD̄D coupling
relative to the case with same sign Yukawa couplings.

ALIGNMENT, REVERSE ALIGNMENT, AND WRONG SIGN … PHYSICAL REVIEW D 93, 115017 (2016)

115017-9

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1016/0370-1573(81)90059-4
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1016/j.physrep.2012.02.002


[6] T. D. Lee, A theory of spontaneous T violation, Phys. Rev.
D 8, 1226 (1973).

[7] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, The
Higgs hunter’s guide, Frontiers in Physics Vol. 80
(Addison-Wesley, New York, 2000).

[8] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson,
Errata for The Higgs hunter’s guide, arXiv:hep-ph/9302272.

[9] S. Kanemura, T. Kubota, and E. Takasugi, Lee-Quigg-
Thacker bounds for Higgs boson masses in a two doublet
model, Phys. Lett. B 313, 155 (1993).

[10] A. G. Akeroyd, A. Arhrib, and E. M. Naimi, Note on tree
level unitarity in the general two Higgs doublet model, Phys.
Lett. B 490, 119 (2000).

[11] G. C. Branco, W. Grimus, and L. Lavoura, Relating the
scalar flavor changing neutral couplings to the CKMmatrix,
Phys. Lett. B 380, 119 (1996).

[12] F. J. Botella, G. C. Branco, A. Carmona, M. Nebot, L.
Pedro, and M. N. Rebelo, Physical constraints on a class of
two-Higgs doublet models with FCNC at tree level, J. High
Energy Phys. 07 (2014) 078.

[13] G. Bhattacharyya, D. Das, and A. Kundu, Feasibility of light
scalars in a class of two-Higgs-doublet models and their
decay signatures, Phys. Rev. D 89, 095029 (2014).

[14] S. L. Glashow and S. Weinberg, Natural conservation laws
for neutral currents, Phys. Rev. D 15, 1958 (1977).

[15] E. A. Paschos, Diagonal neutral currents, Phys. Rev. D 15,
1966 (1977).

[16] C. Newton and T. T. Wu, Mass relations in the two Higgs
doublet model from the absence of quadratic divergences,
Z. Phys. C 62, 253 (1994).

[17] S. Kanemura, T. Kasai, and Y. Okada, Mass bounds of the
lightest CP even Higgs boson in the two Higgs doublet
model, Phys. Lett. B 471, 182 (1999).

[18] J. F. Gunion and H. E. Haber, The CP conserving two Higgs
doublet model: The approach to the decoupling limit, Phys.
Rev. D 67, 075019 (2003).

[19] M. Sher, Electroweak Higgs potentials and vacuum stability,
Phys. Rep. 179, 273 (1989).

[20] B. W. Lee, C. Quigg, and H. B. Thacker, Weak interactions
at very high energies: The role of the Higgs-boson mass,
Phys. Rev. D 16, 1519 (1977).

[21] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland, A
precision constraint on multi-Higgs-doublet models,
J. Phys. G 35, 075001 (2008).

[22] S. Kanemura, Y. Okada, H. Taniguchi, and K. Tsumura,
Indirect bounds on heavy scalar masses of the two-Higgs-
doublet model in light of recent Higgs boson searches, Phys.
Lett. B 704, 303 (2011).

[23] A. Arhrib, R. Benbrik, C. H. Chen, R. Guedes, and R.
Santos, Double neutral Higgs production in the two-Higgs
doublet model at the LHC, J. High Energy Phys. 08 (2009)
035.

[24] J. Cao, P. Wan, L. Wu, and J. M. Yang, Lepton-specific two-
Higgs doublet model: Experimental constraints and impli-
cation on Higgs phenomenology, Phys. Rev. D 80, 071701
(2009).

[25] J. h. Park, Lepton non-universality at LEP and charged
Higgs, J. High Energy Phys. 10 (2006) 077.

[26] G. Aad et al. (ATLAS Collaboration), Search for charged
Higgs bosons decaying via Hþ → τν in top quark pair
events using pp collision data at

ffiffiffi
s

p ¼ 7 TeV with the
ATLAS detector, J. High Energy Phys. 06 (2012) 039.

[27] S. Chatrchyan et al. (CMS Collaboration), Search for a light
charged Higgs boson in top quark decays in pp collisions atffiffiffi
s

p ¼ 7 TeV, J. High Energy Phys. 07 (2012) 143.
[28] P. M. Ferreira, J. F. Gunion, H. E. Haber, and R. Santos,

Probing wrong-sign Yukawa couplings at the LHC and a
future linear collider, Phys. Rev. D 89, 115003 (2014).

[29] A. Biswas and A. Lahiri, Masses of physical scalars in two
Higgs doublet models, Phys. Rev. D 91, 115012 (2015).

[30] S. Kanemura, H. Yokoya, and Y. J. Zheng, Complementarity
in direct searches for additional Higgs bosons at the LHC
and the International Linear Collider, Nucl. Phys. B886, 524
(2014).

[31] B. Coleppa, F. Kling, and S. Su, Constraining type II 2HDM
in light of LHC Higgs searches, J. High Energy Phys. 01
(2014) 161.

[32] P. M. Ferreira, R. Guedes, M. O. P. Sampaio, and R. Santos,
Wrong sign and symmetric limits and non-decoupling in
2HDMs, J. High Energy Phys. 12 (2014) 067.

[33] P. M. Ferreira, R. Guedes, J. F. Gunion, H. E. Haber,
M. O. P. Sampaio, and R. Santos, The wrong sign limit in
the 2HDM, arXiv:1410.1926.

[34] A. Djouadi, The anatomy of electro-weak symmetry break-
ing. II. The Higgs bosons in the minimal supersymmetric
model, Phys. Rep. 459, 1 (2008).

[35] A. Arhrib, M. Capdequi Peyranere, W. Hollik, and S.
Penaranda, Higgs decays in the two Higgs doublet model:
Large quantum effects in the decoupling regime, Phys. Lett.
B 579, 361 (2004).

[36] G. Bhattacharyya, D. Das, P. B. Pal, and M. N. Rebelo,
Scalar sector properties of two-Higgs-doublet models with a
global U(1) symmetry, J. High Energy Phys. 10 (2013) 081.

[37] J. Bernon, J. F. Gunion, H. E. Haber, Y. Jiang, and S. Kraml,
Scrutinizing the alignment limit in two-Higgs-doublet
models. II. mH ¼ 125 GeV, Phys. Rev. D 93, 035027
(2016).

[38] ATLAS Collaboration, Report No. ATLAS-CONF-2015-
081, 2015; CMS Collaboration, Report No. CMS-PAS-
EXO-15-004, 2015.

[39] A. Angelescu, A. Djouadi, and G. Moreau, Scenarii for
interpretations of the LHC diphoton excess: Two Higgs
doublets and vector-like quarks and leptons, Phys. Lett. B
756, 126 (2016).

AMBALIKA BISWAS and AMITABHA LAHIRI PHYSICAL REVIEW D 93, 115017 (2016)

115017-10

http://dx.doi.org/10.1103/PhysRevD.8.1226
http://dx.doi.org/10.1103/PhysRevD.8.1226
http://arXiv.org/abs/hep-ph/9302272
http://dx.doi.org/10.1016/0370-2693(93)91205-2
http://dx.doi.org/10.1016/S0370-2693(00)00962-X
http://dx.doi.org/10.1016/S0370-2693(00)00962-X
http://dx.doi.org/10.1016/0370-2693(96)00494-7
http://dx.doi.org/10.1007/JHEP07(2014)078
http://dx.doi.org/10.1007/JHEP07(2014)078
http://dx.doi.org/10.1103/PhysRevD.89.095029
http://dx.doi.org/10.1103/PhysRevD.15.1958
http://dx.doi.org/10.1103/PhysRevD.15.1966
http://dx.doi.org/10.1103/PhysRevD.15.1966
http://dx.doi.org/10.1007/BF01560241
http://dx.doi.org/10.1016/S0370-2693(99)01351-9
http://dx.doi.org/10.1103/PhysRevD.67.075019
http://dx.doi.org/10.1103/PhysRevD.67.075019
http://dx.doi.org/10.1016/0370-1573(89)90061-6
http://dx.doi.org/10.1103/PhysRevD.16.1519
http://dx.doi.org/10.1088/0954-3899/35/7/075001
http://dx.doi.org/10.1016/j.physletb.2011.09.035
http://dx.doi.org/10.1016/j.physletb.2011.09.035
http://dx.doi.org/10.1088/1126-6708/2009/08/035
http://dx.doi.org/10.1088/1126-6708/2009/08/035
http://dx.doi.org/10.1103/PhysRevD.80.071701
http://dx.doi.org/10.1103/PhysRevD.80.071701
http://dx.doi.org/10.1088/1126-6708/2006/10/077
http://dx.doi.org/10.1007/JHEP06(2012)039
http://dx.doi.org/10.1007/JHEP07(2012)143
http://dx.doi.org/10.1103/PhysRevD.89.115003
http://dx.doi.org/10.1103/PhysRevD.91.115012
http://dx.doi.org/10.1016/j.nuclphysb.2014.07.007
http://dx.doi.org/10.1016/j.nuclphysb.2014.07.007
http://dx.doi.org/10.1007/JHEP01(2014)161
http://dx.doi.org/10.1007/JHEP01(2014)161
http://dx.doi.org/10.1007/JHEP12(2014)067
http://arXiv.org/abs/1410.1926
http://dx.doi.org/10.1016/j.physrep.2007.10.005
http://dx.doi.org/10.1016/j.physletb.2003.10.006
http://dx.doi.org/10.1016/j.physletb.2003.10.006
http://dx.doi.org/10.1007/JHEP10(2013)081
http://dx.doi.org/10.1103/PhysRevD.93.035027
http://dx.doi.org/10.1103/PhysRevD.93.035027
http://dx.doi.org/10.1016/j.physletb.2016.02.064
http://dx.doi.org/10.1016/j.physletb.2016.02.064

	Acknowledgements
	List of Publications
	Content
	List of Figures
	List of Tables
	Abbreviations
	Is Nature hinting at a wider horizon?
	Beyond Standard Model Physics
	The two Higgs doublet model
	The Higgs basis
	CP violation in 2HDM
	Flavour conservation
	Symmetries and the scalar potential
	Some lessons from the previous studies made on various 2HDMs


	References
	Nature is a strict mother with all its constraints
	Stability of the 2HDM potential
	Perturbative unitarity constraints
	New Physics corrections

	References
	On Naturalness
	A brief background
	Reviving the question of naturalness of the standard model
	Veltman conditions in the framework of 2HDMs

	References
	How obese are the non-standard Higgs bosons?
	Alignment limit
	Mass bounds in Alignment limit

	Reverse Alignment limit
	Wrong sign limit
	Wrong sign in the Alignment limit
	Wrong Sign and Reverse alignment limit

	Higgs decay
	Study of Higgs-diphoton decay width in 2HDMs


	References
	Is Higgsium a possibility?
	Formalising 2HDM with the new physics scale
	Effective couplings
	Will bound states be formed?
	Relative strengths of couplings
	HIGGSIUM: Production and Decay

	Outlook

	References
	Yet another model - the HTM
	Higgs Triplet model  -  Modelling
	Constraints on the scalar potential
	Diphoton decay in the Higgs Triplet model
	What happens when mH>mH?
	Numerical analysis
	Results and Conclusion

	References
	Cessation
	Simultaneous diagonalisation
	References
	RGEs for 2HDMs
	References
	Contribution of Higgs towards the oblique electroweak parameters
	References
	hZ decay width
	References
	Custodial Symmetry
	References
	Total papers 90% reduce.pdf
	PhysRevD.91.115012
	PhysRevD.93.115017


