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Chapter 1

Introduction

1.1 Frustrated Low Dimensional Quantum Spin

System

The study of physical properties of materials is one of the most emerging branches

of condensed matter physics. The frontier research in this field leads to many new

materials which can be used in our daily life like Light emitting diodes (LED’s),

organic polymer based touch screens, storage devices, magnetic sensors, high speed

RAM etc.

Most of the bulk materials are generally three dimensional (3D), but in some cases

they can effectively behave as a low dimensional (LD) system. The LD system

includes one dimensional (1D), quasi-1D or two dimensional (2D) systems. The

3D system can effectively be treated as a LD system if the inter-atomic distance

(bond length) in one direction is quite small compared to other directions. For

example, if the inter-atomic coupling along x-direction is much stronger than y

and z-direction then all the electronic properties are confined along x-direction.

In these LD systems the quantum fluctuations are dominant because of particles

confinement, and these fluctuations lead to many interesting phases.

1
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Figure 1.1: Schematic representation of the geometrical frustration. In each
triangle Ising spins are interacting through nearest neighbor AFM interaction.
There are total six configurations numbered as (i)-(vi) with minimum energy.

In each configuration one bond is frustrated.

In the last nine decades, studies of the LD systems were mostly theoretical. The

1D Ising model is one of the oldest and simplest models, and later the exact solu-

tion of 2D Ising model was given by Onsager [1]. He showed that the 2D system

exhibits spontaneous order. The isotropic Heisenberg model for a spin-1/2 chain

was studied by Bethe, and he calculated the ground state (gs) energy and cor-

relation function of this model using the Bethe ansatz technique [2]. Quasi-1D

and 2D model systems are extensively studied numerically [3]. Some of these

models are relevant to real materials and helps us to understand the properties of

the material. In the last four decades tremendous effort has been put to synthe-

size, characterize and understand the experimental findings of the LD systems [4].

These studies show many interesting properties like magnon condensation, spin

liquid, dimer order, vector chiral etc. In the last few decades many 1D system like

LiCuVO4 [5], LiCuSbO4 [6], LiCu2O2 [7] etc. and quasi-1D like Ba3Cu3Sc4O12 [8],

Ba3Cu3In4O12 [9] systems have been synthesized which show interesting behavior.

Some of these systems form frustrated magnets.

The frustrated magnetic systems in LD are abundant in nature, and their studies
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Figure 1.2: A 1D chain where spins are interacting with AFM nearest neighbor
interaction (J1) and AFM next nearest neighbor interaction (J2). Due to the

next nearest neighbor interaction the system is frustrated.

have been a frontier area of research in the last couple of decades. Recently the

frustrated magnetic materials has attracted lots of attention due to the observa-

tion of the striking magnetic properties in experimental as well as in theoretical

studies. A triangular lattice with anti-ferromagnetic (AFM) interaction is the pro-

totypical example of the frustrated magnetism. The frustration in the system can

be understood within the framework of Ising model, and one can show that if all

the spins are interacting through AFM interaction, then spins on all the vertices

of a triangle can not be simultaneously anti-parallel. For a system of 3 spins,

there are a total six configurations with a minimum energy and for each of these

configurations there is one frustrated bond as shown in Fig. 1.1. The degeneracy

in the gs of this system increases with the increase of the system size. This kind of

frustration is called geometrical frustration. The frustration can also be induced

through the interaction e.g., J1 − J2 model system which is shown in Fig. 1.2.

In this system J1 and J2 are the nearest neighbor (NN) and next nearest neigh-

bor (NNN) interaction strength, respectively, and if J1 is AFM then the system

is frustrated irrespective of the sign of J2. These systems show many interesting

phases like spin liquid, dimer, spiral phase etc. [10–14].

In this section, a brief overview of model Hamiltonian in the LD systems is pre-

sented at first, and then the frustrated quantum spin system in the absence and

presence of the magnetic field h is reviewed in the next section.
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1.2 Interacting Model Hamiltonian in the Low

Dimension

A solid is composed of atoms and these atoms are bonded together through various

kinds of interactions. In a metallic solid, atoms share electrons and their atomic

orbitals are hybridized with the orbitals of the neighboring atomic orbitals. These

shared electrons interact with each other through the coulomb interaction. The

nuclear degree of freedom can be ignored as the time scale of nuclear dynamics

is much larger than electrons. A general many-body electronic Hamiltonian for a

solid can be written as

H =
∑
<ij>,σ

tij(a
†
i,σaj,σ + h.c) +

∑
ijkl

∑
σ,σ′

Vijkl a
†
i,σa

†
j,σ′al,σ′ak,σ. (1.1)

In Eq. 1.1, tij is the hopping matrix element of an electron between two orbitals i

and j. ai,σ annihilates and a†i,σ creates an electron with spin σ(↑) or σ′(↓) on the

ith orbital. Vijkl represents coulomb repulsion of electron. The terms tij and Vijkl

are given by,

tij =

∫
d3~r φ∗

i
(~r)(− ~2

2m
∇2)φ

j
(~r), (1.2)

Vijkl =
1

2

∫
d3~r1

∫
d3~r2 φ

∗
i
(~r1)φj(~r1)V (~r1 − ~r2)φ∗k (~r2)φl(~r2), (1.3)

where V (~r1−~r2) = e2

r12
and subscripts i, j, k, and l have been used to index orbitals

while the index 1 and 2 corresponds to the electron coordinate. In the limit of

zero differential overlap case, most of the interaction integral vanishes and only

the charge density confined at one orbital interacts with the charge on the other

orbital. Therefore, we can safely write V (i, j, k, l) = V (i, i, k, k)δijδkl.

The Hamiltonian in Eq. 1.1 can be simplified further, based on the following

assumptions: (i) there is only one orbital per each site, (ii) hopping matrix elements

on on-site and NN sites are non-zero only, (tii = εi and tij = t if j = i±1), (iii) Vijkl

integral is non-zero for i = j = k = l i.e., Viiii which is usually denoted as U known

as Hubbard parameter, same for all sites in the system. This approximation is
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valid in a case where screening of coulomb interaction is very high. Therefore, the

Hamiltonian in Eq. 1.1 can be written as

H = t

N∑
i=1

∑
σ

(a†i,σai+1,σ + h.c) +
N∑
i=1

εini + U

N∑
i=1

ni,σni,σ′ , (1.4)

where ni,σ and ni,σ′ are number operators with spin σ and σ′, and ni = (ni,σ+ni,σ′)

is the total number operator for site i. In the limit, U = 0 or t = 0 the Hubbard

model is exactly solvable. The non-interacting limit i.e., U = 0 corresponds to the

band theory in the tight-binding approximation, while the t = 0 limit corresponds

to the atomic limit. The effective Hubbard U can be either attractive (U < 0)

or repulsive (U > 0). The repulsive single-band Hubbard model was proposed

independently in 1963 by Kanamori [15], Gutzwiller [16], and Hubbard [17] to

study the problem of itinerant electron ferromagnetism in transition metals. This

model looks a very simple model, but it is a highly non-trivial problem of electron

correlations, and it also takes care of short-range electron correlation effect. The

positive U has been used in many contexts to understand the metal to Mott

insulator transition [18], whereas the attractive Hubbard model (U < 0) claimed

to have explained the superconductivity in the system [19].

In the large U limit i.e., U/t → ∞, a half-filled Hubbard model system can be

mapped to an isotropic Heisenberg spin-1/2 model by using the perturbation the-

ory. In this limit the charge degrees of freedom are frozen, and each lattice site

is occupied by a single unpaired electron. Therefore, at every site there are two

possible degrees of freedom either spin up or spin down. In this case, electron can

not move, but it can still exchange its spin. Treating the hopping term as a per-

turbation in the strong electron-electron interaction limit, and if we consider the

leading terms only up to second order, then the spin Hamiltonian can be mapped

to an isotropic Heisenberg model which can be written as

H =
∑
<ij>

Jij ~Si · ~Sj, (1.5)

where ~Si and ~Sj are the spin operator localized at site i and j. The single bracket



Chapter 1. 6

holds for only NN and Jij represents exchange interaction strength between sites

i and j. Depending on the various kind of interaction strengths system can form

various lattices such as a linear chain, the square lattice, and the cubic lattice

etc. There are other lattice structures such as ladder which are the interpolation

structure between a linear chain and the square lattice. But in this thesis, our

main focus is on the 1D and quasi-1D spin chain. The spin ~Si is a vector quantity

in Eq. 1.5 and it is 3D in nature. Depending on the strength of interaction in

various spatial direction, it can be either an isotropic i.e., interaction strength in

all three spatial directions are same, or anisotropic where different directions have

different interaction strengths. The most general Hamiltonian can be written as

H =
∑
<ij>

Jα,βij Sαi · S
β
j , (1.6)

where Jα,βij is anisotropic exchange interaction and α/β = x, y or z. For Ising

model, exchange interactions are Jx,xij = Jy,yij = 0 and Jz,zij 6= 0. If the exchange

interactions along x and y-direction are same, and the interaction along the z-axis

vanishes then the model is called XY model and can be written as

HXY =
∑
<ij>

Jij[S
x
i S

x
j + Syi S

y
j ]. (1.7)

The model in Eq. 1.5 is isotropic if the interaction strength Jx,xij = Jy,yij = Jz,zij = J

then the Hamiltonian in Eq. 1.5 can be written as

H = J
∑
<ij>

~Si · ~Sj. (1.8)

The sign of the exchange interaction strength determines alignment of the spins.

For J < 0 the interaction of the spin is ferromagnetic (FM), and for J > 0 spins

are aligned anti-ferromagnetically. Now let us examine the effect of exchange

interaction on the magnetic ordering of the system one can consider large spins

as classical vector spin. The interaction energy of the model Hamiltonian in Eq.

1.8 can be given as JS2cosθ, where θ is the angle between spins. For J < 0 the

energy minima occurs for a configuration with θ = 0 i.e., the gs is FM where all
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the NN spins are parallel. Whereas, for J > 0, the minimum energy configuration

is at θ = π i.e., the AFM gs where NN spins are anti-parallel.

The magnetism is a purely quantum mechanical phenomenon, therefore, the Hamil-

tonian should be treated quantum mechanically rather than classically. The

Hamiltonian for a spin-1/2 system, in Eq. 1.8, can be written in second quan-

tized notation as

H = J
N∑
i=1

[
1

2
(S+

i S
−
i+1 + S−i S

+
i+1) + Szi S

z
i+1], (1.9)

where S+
i = Sxi + iSyi and S−i = Sxi − iS

y
i are the spin raising and spin lowering

operators, respectively. In the case of FM gs, the energy is same for the classical

and the quantum mechanical gs, but in the case of AFM gs or Néel state the

quantum fluctuation is quite significant and the classical gs is quite different from

the quantum gs. The solving of quantum mechanical problem is quite difficult as

the degrees of freedom increases as 2N where N is the number of sites.

Now let us represent the Eq. 1.6 with α = β, also known as XYZ model [20]

where the interaction strength along x, y, and z direction is different and it can

be written as

H =
N∑
i=1

[Jx S
x
i S

x
i+1 + Jy S

y
i S

y
i+1 + Jz S

z
i S

z
i+1]. (1.10)

This model is very important as it takes care of various kinds of anisotropy in

the system and can explain any real material with only spin degrees of freedom.

Other models are an approximation of this model and in various limits this can be

reduced to the Ising model for Jx = Jy = 0, XY model (Eq. 1.7) for Jz = 0, to an

isotropic Heisenberg model or XXX model for Jx = Jy = Jz, or to an anisotropic

Heisenberg model like XXZ model for Jx = Jy 6= Jz. These models for a 1D

system are studied extensively in the literature. Now let us consider the XXZ

model Hamiltonian which is written as

H = J

N∑
i=1

[Sxi S
x
i+1 + Syi S

y
i+1 + γ Szi S

z
i+1]. (1.11)
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In the limit of γ = 1 and J < 0 the system preserves the full rotational symmetry

and shows an isotropic FM behavior [21]. The gs wavefunction does not change

when an external magnetic field h is applied, but it results in an additional energy

contribution hSztot to the system. The external magnetic field h along the z-

direction lifts the (2S + 1) fold degeneracy in the gs of a system with total spin S

[21]. In the FM phase the lowest-lying excited states are one magnon excitation,

and it is gapped at momentum q → 0 for J < 0 and γ > 1. The excitation

spectrum is gapless for γ = 1 and J > 0 and the gs show continuous symmetry

breaking. In this system the Mermin and Wagner theorem holds as it shows a

quasi-long-range-order (QLRO) in the gs, and exponential decaying correlation at

finite temperature [22].

In the Ising anisotropy limit, J > 0 and γ > 1, the gs is in the AFM phase

and has finite sublattice magnetization and long-range-order (LRO) in the spin-

spin correlation function. However, quantum fluctuations prevent the LRO as the

sublattice magnetization coexist [22]. The gs is a doubly degenerate Néel phase.

The lowest elementary excitations can be induced by spin-flip from one of the two

Néel states [3].

When γ = 0 the model in Eq. 1.11 reduces to the isotropic XY model. The

anisotropic XY model is one where x and y component of exchange interactions

have unequal weights. This model is interesting because the exact solution can

be found by both Bethe ansatz and by mapping this model to a non-interacting

spin-less fermion model using Jordan-Wigner transformation [23, 24].

For γ = 1, the model in Eq. 1.11 becomes the isotropic Heisenberg model. For

J < 0 the gs is a FM state, whereas, for J > 0 it is AFM. The exact gs energy

in the FM phase is proportional to the product of z component of all the spins.

Whereas, the AFM model is exactly solved by Bethe [2] and the exact gs energy

for N site system is

Egs =
NJ

4
− JN ln 2. (1.12)
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The low-lying excitation spectrum calculated by des Cloizeaux and Pearson [25]

is

ε =
π

2
J | sin k|, (1.13)

where

k =
2πm

N
; m = 0,±1,±2, ...N/2. (1.14)

Faddeev and Takhtajan [26] calculated the low-lying spectrum more rigorously.

The energy of the low-lying excited states can be written as

E(k1, k2) = ε(k1) + ε(k2). (1.15)

For a fixed momentum k one gets continuum of scattering states. The lower bound

of the continuum is given by des Cloizeaux and Pearson [25]. The upper bound is

obtained for k1 = k2 = k/2

εUk = πJ
∣∣∣ sin k

2

∣∣∣. (1.16)

The low-lying excitation spectrum for a S = 1/2 HAF model is spinon which is

a S = 1/2 object, and the combination of two spinons give rise to S = 1 and

S = 0 states. In the Heisenberg model, the spinons are only non-interacting in the

thermodynamic limit.

1.3 Frustrated Model Hamiltonian

In the model Hamiltonian in Eq. 1.8, we have restricted our spin exchange inter-

action to NN only, but there are many systems where spin interactions extend to

NNN. This model is generally called J1− J2 model [27, 28]. The Hamiltonian can

be written as

H(J1, J2) = J1

∑
r

~Sr · ~Sr+1 + J2

∑
r

~Sr · ~Sr+2. (1.17)

The above model with isotropic exchange J1 and J2, between first and second

neighbors, respectively, is the prototypical example of a frustrated spin-1/2 chain.

The parameter α = J2/J1 quantifies the competition between first and second
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neighbor exchange interaction strength where the NN exchange interaction J1 can

be either AFM or FM. In J2 = 0, J1 > 0 limit, the model in Eq. 1.17 behaves like

a linear Heisenberg antiferromagnetic (HAF) model which has gapless spectrum

and shows a QLRO. However, for J1 = 0, J2 > 0 the system behaves like two

independent HAF chains where one chain is made up of even sites and whereas

the second chain is made up of odd sites of the full system. Sandvik [3] has

reviewed the linear HAF chain and other related spin chains including H(J1, J2)

for 0 < α < 1. An earlier review by Lecheminant addresses frustrated quantum

1D systems mainly in terms of field theory for 0 < α < 1 [29].

The Hamiltonian in Eq. 1.17 with J1 and J2 AFM interactions for 1D spin-1/2

chain has been studied extensively [27–32]. This model shows a quantum phase

transition from a gapless critical AFM phase to a gapped dimer phase at αc =

0.2411 shown by Okamoto and Nomura [32]. The exact gs of this model is known at

α = 1/2, and this model is known as the Majumdar-Ghosh model [27, 28] and this

model has dimerized doubly degenerate gs which can be represented as products

of singlet pairs. The doubly degenerate gs breaks the inversion symmetry through

the sites. In this phase, the system has a finite energy gap Em between the lowest

singlet and triplet state. For J2/J1 > 0.5 the system goes to an incommensurate

(IC) phase. However, its result at higher J2 is still debatable.

The model in Eq. 1.17 with FM J1 and AFM J2 is also an example of the frustrated

spin model. In this parameter space, gs goes from a FM to singlet gs at |α| = 0.25.

The gs is in the gapless FM phase with LRO for |α| 6 0.25. At the quantum

critical point |αc| = 0.25, singlet and FM state are degenerate with the energy

Egs = − 3
16
N |J1| [33]. Hamada et al. showed that the singlet is the uniformly

distributed resonating valence bond (RVB) state, and is degenerate with the FM

gs of parallel spins at this critical point [33]. In this parameter space the dimer

and IC phase coexist for |α| > 0.25. However, in the large J2 limit, the system

behaves like two decoupled HAF chains [34].

The 1D spin-1/2 isotropic J1−J2 model in the presence of an axial magnetic field

h have been studied, but is not a well understood model. The Hamiltonian for the
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J1 − J2 model in the axial magnetic field h is written as

H(J1, J2) = J1

∑
r

~Sr · ~Sr+1 + J2

∑
r

~Sr · ~Sr+2 − h
∑
r

Szr . (1.18)

The J1− J2 model in Eq. 1.18 with J1 and J2 AFM interactions is studied exten-

sively over several decades in the literature [35–45]. It exhibits various unconven-

tional phases induced by frustration in the system. The quantum phase diagram

in this parameter space is constructed by using the numerical results and bosoniza-

tion analysis. These studies shows that the J1−J2 model shows cusp singularities

and a plateau at 1/3 of the saturated magnetization Msat in the M − h curve

[36, 39–41]. The 1/3-plateau phase has a magnetic LRO of up-up-down structure.

At large magnetic field h and α > 1, two magnon bound state occurs. In the pres-

ence of h, the system shows a gapped dimer phase (M = 0), 1/3-plateau phase

(M = 1/6), FM phase (M = 1/2) at saturation field hs, TLL1, TLL2, vector chiral

(VC), and spin density wave of type two (SDW2) phase. Magnetization plateau

and cusp singularities occur at 0.487 < α 6 1.25 and 0.25 6 α 6 0.7, respectively,

at intermediate magnetic field [36, 39–41]. The model also shows LRO of VC in

the presence of anisotropic exchange couplings [46–48].

The frustrated S = 1/2 model with FM J1 and AFM J2 in the presence of an

external magnetic field h are relatively new and have not been explored exten-

sively. Since last decade there is sudden surge in studies of magnetic properties

of this model. The model has attracted lots of attention because it is considered

to explain many magnetic properties of recently synthesized edge-sharing chain

cuprates. These compound includes LiCuVO4 [5], LiCuSbO4 [6], Ba3Cu3Sc4O12

[8] ,Ba3Cu3In4O12 [9] etc. Therefore, these compounds are suitable for studies

of exotic phases induced by the quantum fluctuations, which are observed at low

temperature. Some of these compounds e.g., LiCu2O2 shows multiferroic behavior

below a critical temperature [7]. In this model the gs has FM phase with LRO for

|α| < 0.25 and gapped dimer phase coexisting with a spiral phase for |α| > 0.25

[11, 12, 14, 49]. The dimer phase is gapped in nature, and the spin-spin correlation

decays exponentially [10, 13, 31].
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In the last decade, the J1−J2 model with the FM J1 has been studied extensively

[50–54], but there is no agreement on the quantum phase diagram in the large α

limit [34]. The quantum phase diagram of the model at the finite h is a zoo of the

exotic quantum phases [50–54]. Using bosonization procedure, Chubukov has sug-

gested a uniaxial dimerized and a biaxial spin nematic phase in the gs [50], where

the rotational symmetry is broken about a site or about a bond, respectively [50].

Hikihara et al. used bosonization technique, ED and DMRG method to calculate

the different phases in the presence of the axial magnetic field h. The VC and

the multipolar phases are shown to exist in the presence of a finite magnetic field

h [51, 52]. Sudan et al. also showed the presence of the VC and the multipolar

phases using the ED. The square of the VC order parameter and the structure

factor are used to construct the quantum phase diagram [53]. In the earlier works,

the quantum phase diagrams are constructed based on correlation functions, es-

pecially the VC phase [53, 54], where the square of the order parameter and its

related correlation functions are calculated.

The VC phase is an interesting phase with spontaneously broken spin parity and

inversion symmetries. The phase boundary of these exotic phases such as VC

and multipolar phases are calculated based on the order parameters, energy level

crossings, and steps in the magnetization in the system. The order parameter of

the VC phase is calculated using broken symmetry state at the finite magnetic

field. In the presence of a magnetic field, the spin parity symmetry is broken.

Therefore, non-zero value of VC order parameter exist only if gs has the broken

inversion and spin parity symmetry. This kind of state can be created by taking

the linear combination of degenerate states. These degeneracies exist even in the

finite system [55]. The ED and DMRG results are used to show that the VC phase

exists only in a narrow range of parameter space J2/J1. In the quadrupolar phase

the magnetization steps can be associated with the binding energy of two magnons

localized at two different legs of the zigzag chain. The energy level crossings and

degeneracies in the presence of magnetic field h are studied in detail using ED

method. The VC phase has been studied extensively because of its potential

application in improper multiferroic systems [56, 57].
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Moreover, the frustrated J1 − J2 model in Eq. 1.18 with NN FM and NNN AFM

interaction for spin-1/2 and spin-1 chains are studied in the presence of magnetic

field h. Hikihara et al. suggest existence of metamagnetic or spin multipolar

phase in the presence of the high axial magnetic field h for FM J1 [52]. The

order parameters of these multipolar phases are hidden in nature so these can

not be probed directly. The number of paired magnons p of these multipoles

depend on the exchange coupling ratio α [52, 53]. These multipolar phases are of

different types such as dipolar (p = 1), quadrupolar (p = 2), octupolar (p = 3)

and hexadecapolar (p = 4) phases etc. Existence of the multipolar phases of odrer

p > 4 for this model near the quantum critical point |αc| = 0.25 is either not well

understood or has been controversial. In this model, there are many unsettled

issues such as the metamagnetic phase in the small α regime has been completely

unexplored, and is difficult to characterize because of small gaps.

The quadrupolar phase is a Tomonaga-Luttinger (TL) liquid of hard core bosons

[52], and each boson is made up of two magnons. In this phase, the correlations

between bosons and density fluctuations follow a power law. However, the boson

propagator is dominant over the density fluctuations in this phase [52]. In the

seminal work of Chubukov he has predicted that this phase has dimerized (gs) [50],

but Hikihara et al. showed the absence of dimerization [52]. In the large α regime,

field theoretical calculations show that the SDW2 phase exists in low magnetic

field, whereas spin nematic (SN) phase exists in the narrow range of magnetic

field near the saturation field [52]. The order parameter in the multipolar phases

is probed indirectly by inelastic neutron scattering (INS) [6, 58] and the resonant

inelastic X-Ray scattering (RIXS) [59, 60] experiments. The nematic phase in a

real material LiCuVO4 is confirmed by using the INS data of dynamical structure

factor [58], and NMR data of this compound shows a sharp single and solitary line

which moves with magnetic field [61, 62].

The existence of quadrupolar phase in spin-1 systems is controversial, as steps

of two i.e. ∆Sz = 2 in the magnetization-magnetic field M − h curve is absent

[63, 64], whereas the other studies for general spin show the existence of this phase.
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Now let us discuss the probing of the multipolar phases by using the dynamical

probes like inelastic neutron scattering etc.

1.4 Theory of Neutron Scattering

Neutron scattering is a powerful technique for the determination of microscopic

properties of magnetic materials. It measures the spin-spin correlation functions,

and gives the information about geometrical arrangements of spins. The probe can

even differentiate between a paramagnet and an ordered FM phase based on the

above information. Energy of neutron is comparable to the low energy magnetic

excitations, therefore, this can be probe to study the dynamics of the elementary

excitations such as magnons, spinons etc. The higher energy excitations can also

be probed by neutron scattering experiment, however, these excitations have very

weak signal. As neutron is chargeless, it can penetrate deep into the sample and

provide information about the bulk properties. Neutron has a very low magnetic

moment which enables it to interact with unpaired electrons of the magnetic atom

resulting in the scattering of neutron. This allows to obtain information about the

magnetic structure and spin dynamics of magnetic materials.

In the scattering experiment, one measures and analyzes the incident and outgoing

neutron beams and gives us information about energy and momentum transferred

to/from the sample [65, 66]. In the scattering experiment, the laws of energy

and momentum conservation is satisfied i.e., if the momentum and the energy of

the incident/outgoing neutron is ~~ki/~~kf and ~ωi/~ωf , the following condition is

satisfied

~ ~Q = ~~ki − ~~kf and ∆E = ~ωi − ~ωf . (1.19)

Based on the conservation laws, the neutron scattering is of two kinds, the elastic

and the inelastic neutron scattering [65, 66]. In elastic neutron scattering, the

total energy and momentum is conserved i.e., |Ei| = |Ef | and |~ki| = | ~kf |. In this
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case the angle of incidence is equal to the angle of scattering, and ~ ~Q is normal to

the set of crystal planes. The Bragg’s condition is satisfied when | ~Q| = |~G| where

~G is the reciprocal lattice vector. Thus the elastic neutron scattering experiment

provides the magnetic structure of the sample. Another interesting and a more

complicated type of scattering is the inelastic neutron scattering (INS). In this

case the kinetic energy and momentum of the incident particle is not conserved

because some fraction of the energy of the incident particle is transferred energy

and momentum to/from the sample. In a sample with single crystal, energies

become dependent on the relative momentum ~~q which is measured with respect

to the reciprocal lattice vector, and the momentum transfer to the sample can

be written as ~Q = ~G + ~q. In the INS experiment a constant ~~q measurement is

performed by varying the scattering angle [65, 66].

Let us consider a neutron beam, characterized by the wave vector ~ki and the flux

φ(~ki), incident on a sample. The rate of neutron scattering by the sample is given

by the product φ(~ki)σ, where σ is the scattering cross section. In a neutron scat-

tering experiment, the rate at which neutrons are scattered in a given solid angle

dΩf in the direction of the wave vector ~kf and in the energy range between Ef

and Ef + dEf , is given by the product of φ(~ki) and the double-differential cross

section d2σ
dΩfdEf

. The differential cross section is the sum of two parts, coherent and

incoherent i.e., d2σ
dΩfdEf

= ( d2σ
dΩfdEf

)coh+( d2σ
dΩfdEf

)incoh. The coherent part gives infor-

mation about the cooperative effects among different atoms, such as elastic Bragg

scattering or inelastic scattering by phonons or magnons, whereas the incoherent

part is proportional to the time auto-correlation of an atom, and provides informa-

tion of the motion of an individual particle. This part gives information about the

short range ordered phase. The neutrons act as a weak perturbation, therefore, it

does not modify the states within the systems. The scattering cross-section can

be obtained from the Fermi-Golden rule and can be written as [65, 66],

d2σ

dΩfdEf
= N

kf
ki
b2S(~q, ω), (1.20)
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where S(~q, ω) is the dynamical structure factor (DSF) and b is the nuclear scat-

tering length. The aim of neutron scattering is to obtain the information about

the spins spatial distribution and also explain the low energy excitation. The dy-

namical structure factor S(~q, ω) is given as a function of excitation momentum q

and energy ω. The momentum can be connected to the pitch angle between the

neighboring spins in the magnetic system.

1.5 Resonant Inelastic Neutron Scattering

Resonant inelastic x-ray scattering (RIXS) is a fast developing experimental tech-

nique to probe the low energy excitation in the magnetic system. In this probe

x-ray photons are scattered inelastically from the sample and measure the change

in energy, momentum, and polarization of the scattered photon which are trans-

ferred to intrinsic excitations of the material. Thus RIXS gives information about

low-lying excitations and works on the principal of resonant energy technique

[59, 60]. In this probe the energy of the incident photon is chosen such that ex-

citation coincides and hence resonates with absorption edges of the material such

as a K edge for exciting 1s (n = 1) core electrons, an L edge for electrons in the

n = 2 shell, or an M edge for electrons in n = 3 shell. Due to the resonance,

the inelastic scattering cross section is enhanced by many orders of magnitude,

and helps to detect the weak signal of excitations caused by the perturbation in

magnetic, charge, and orbital degrees of freedom in a crystal. In neutron scat-

tering, excitations always carry integer spin, so that pairwise creation of spinons

are probed through the INS experiment. The INS amplitude is determined by

the single spin dynamical structure factor (DSF) [67], whereas the corresponding

scattering amplitude is given by two spin DSF also known as spin exchange DSF

[59, 60]. In chapter 6, both the probes will be explained in detail.
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1.6 Outline of the Thesis

The thesis is organized in the following way:

Chapter 2 describe the numerical methods i.e., exact diagonalization and density

matrix renormalization group methods. These two numerical methods are used to

solve all the problems in this thesis.

In chapter 3, we focus on the numerical study of incommensurate and decou-

pled phases of spin-1/2 chains with isotropic exchange J1, J2 between first and

second neighbors in the absence of the magnetic field h. The decoupled phase

is characterised based on the level crossing of excited states and extrapolated to

the thermodynamic limit, divergence of structure factor peak, and jump in spin

densities in lowest triplet state in the absence of a magnetic field. The quantum

phase diagram is constructed in the J1 − J2 plane with J1 > 0 and J1 < 0 sector

by keeping J2(> 0) fixed. This chapter is based on our published paper in J.

Phys.: Condens. Matter 27, 316001 (7pp) (2015) and J. Phys.: Condens. Matter

28, 175603 (12pp) (2016).

Chapter 4 reports degeneracies and level crossings in an isotropic frustrated spin-

1/2 chain with FM NN and AFM NN in the presence of the external magnetic

field. These degenerate states are used to characterize the VC and multipolar

phases. In the large α limit, zigzag nature of the spin chain is responsible for the

quadrupolar phase. The boundary of these exotic phases are calculated based on

the level crossings and steps in the magnetization vs. magnetic field M − h plot.

The work related to this chapter has been published in J. Mag. Mag. Mat. 401,

96-101 (2016).

The existence of different phases for the J1 − J2 model with FM NN and AFM

NNN in an axial magnetic field h is either not understood in detail or has been

controversial yet. In chapter 5, we show the existence of higher order p > 4

multipolar phases near the critical point |αc| = 0.25. The criteria to detect the

quadrupolar or SN/SDW2 phase are discussed. We also discuss the dimerized and

degenerate ground state in the quadrupolar phase. We also show that the major
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contribution of binding energy in the spin-1/2 system comes from the longitudinal

component of the NN bonds. We also discuss SN/SDW2 phase in spin-1 system in

large α limit. The work related to this chapter has been published in Phys. Rev.

B 96, 054413 (2017).

Chapter 6 describes the dynamical properties of multipolar phases in the J1−J2

model in the presence of magnetic field h. The characterization of quadrupolar or

SN/SDW2 phase using the experimental INS result is discussed, and experimental

INS results of LiCuVO4 and LiCuSbO4 compound is modeled in the limit of J1−J2

model.

In chapter 7, conclusions of our all the investigations of this thesis are summed

up and some future outlook is provided.
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Chapter 2

Numerical Methods

In the first chapter, we discussed that the quantum many-body effect in the real

material is very relevant. There are only a few quantum many-body model sys-

tems which can be solved analytically, for example, for 1D Heisenberg model some

of the low energy state can be solved analytically using the Bethe ansatz [1]. How-

ever, most of these model Hamiltonians can be solved by approximate methods

which can be either analytical or numerical. The analytical methods are like spin

wave analysis, [2] and field theoretical methods, e.g., bosonization [3], and renor-

malization group [4]. These methods are widely used for the study of quantum

magnetism in LD. These approximate methods are limited to very few models.

For complicated models, these approximate analytical methods are not reliable.

In such scenario, the numerical methods have also been proved to be promising

tools. Numerical methods can be categorized into two types e.g., exact numerical

methods for finite systems and approximate numerical methods. Exact diagonal-

ization numerical technique is limited to small system sizes, whereas, approximate

numerical methods can be used for large system sizes. In some cases, approxi-

mate methods can be used to do the finite size scaling to understand the results

in the thermodynamic limit. We first discuss the exact diagonalization numerical

method, and then a brief introduction of the approximate numerical methods will

be provided.

24
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In fermionic quantum many-body systems each site can have four possible configu-

rations: vacant, singly occupied with spin up, singly occupied with spin down and

doubly occupied. The degrees of freedom of the system goes as 4N for a system of

size N . But in case of spin systems the charge degrees of freedom are frozen, and

spin degrees of freedom goes as 2N for N site system. In this thesis, model Hamil-

tonians discussed in chapter 1 are solved numerically. We have used two numerical

techniques i.e., the exact diagonalization (ED) and the density matrix renormal-

ization group (DMRG) method. At first, the ED method will be discussed in the

next section, and then DMRG method will be discussed.

2.1 Exact Diagonalization Method

The properties of the model Hamiltonians can be obtained by the calculation of

eigenvalues and eigenstates of the Hamiltonian. These eigenstates are obtained

by setting up the Hamiltonian matrix in a preferred basis and then diagonalize

it. In the ED method, one deals with the full Hilbert space of a finite system.

The Hamiltonians discussed in Eq. 1.5 of chapter 1 commute with S and Sz i.e.,

[H,S2] = 0 and [H,Sz] = 0. Therefore, if two operators commute with each other,

then they will have a common set of eigenfunctions. The eigenvalues of H,S2 and

Sz are denoted by E, S(S + 1) and ms, respectively. The commutation relation

assures the conservation of the S and Sz, and matrix elements of the Hamiltonian

in a fixed Sz is non-zero with different S. Therefore, the Hamiltonian matrix in

a Sz basis is block diagonal for each conserved quantities of a system. The block

Table 2.1: Total number of basis states in different Sz sectors for a system of
N spins

Sz Total no. of basis state

0.0 NCN/2

1.0 NCN/2−1

2.0 NCN/2−2

· · · · · ·
N/2 1
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Figure 2.1: Spin parity symmetry flips the spin at each site whereas inversion
symmetry rotates the system about an axis passes through the two sites.

diagonal properties of the Hamiltonian matrix help to reduce the computational

cost of diagonalization of the Hamiltonian blocks. For representation of the spin-

1/2 systems, the z-axis is chosen as quantization axis, and denote two possible

spin directions i.e., spin up and spin down by 1 and 0 respectively. The x and

y components of the spin operator i.e., Sx and Sy are expressed in terms of the

spin raising S+ and spin lowering S− operators in the total Hamiltonian. The

basis state forms an orthonormal set, therefore, the Hamiltonian matrix becomes

symmetric in this basis. For a system of N spins, the total number of basis states

in the different Sz sectors are shown in Table 2.1.

The gs properties of the frustrated magnetic model are non-trivial due to the

large degeneracies in the low-lying states and these degeneracies lead to slow or

non-convergence of the low-lying energy states. To get rid of this problem and

also to separate out these degenerate states in different symmetry subspaces, the

Hilbert space is divided into different symmetry subspaces. In the most of our

model systems, spin-parity and inversion symmetry are preserved. The spin-parity

operator corresponds to rotation of all the spins in a system around x or y-axis by

an angle π which leaves the Hamiltonian invariant, which is valid only in Sz = 0

sector. The inversion symmetry corresponds to a rotation of all sites about an

axis passing through two sites 1 and N/2 + 1 by an angle π, and this operation

leaves the Hamiltonian invariant. This full operation is depicted in the Fig. 2.1.

The Hamiltonian in different symmetry subspaces can be obtained by a rotation
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operation as H̃ = U †HU where U is a unitary symmetry operator of size N ×m.

After rotation of Hilbert space, the dimension of the Hamiltonian H̃ is m × m.

The Hamiltonian matrix is represented in the basis states of total S and Sz. It

is constructed in such way that it forms a sparse matrix and only the non-zero

matrix elements are stored.

To calculate the expectation value of any observable, first, we need to calculate

the eigenvalues and eigenvectors. However, even evaluating a few low-lying states

of a matrix of order 106 − 107 requires considerable computational efforts. There

are many algorithms to find some low-lying states, and this can be done without

full diagonalization of the Hamiltonian matrix. These algorithms are the Lanczos

[6], modified Lanczos [7], and Davidson algorithms [8]. Davidson algorithm is one

of the most celebrated algorithms for dealing with low-lying eigenstates of a large

symmetric and sparse matrix [8]. In this thesis, we have used Retrup’s algorithm

which is a modification of the Davidson algorithm to a non-symmetric matrix.

The brief outline of the Retrup’s algorithm is given below [9].

Retrup’s algorithm for a given large sparse Hamiltonian matrix H of order N ×N

starts with a set of m orthogonal vectors { ~Qi : i = 1, ...,m}. Using these vectors

as the basis, we construct a small m×m matrix h(m) such that h
(m)
ij = ( ~QiH ~Qj).

This small matrix is diagonalized using standard exact diagonalization routines.

The eigenvectors ~c
(m)
k of h(m) are arranged in ascending order of eigenvalues e

(m)
k .

The approximate eigenvectors for the large matrix are given by

~C
(m)
l =

m∑
i=1

~c
(m)
l (i) ~Qi, (2.1)

where ~c
(m)
l (i) is the ith component of the lth eigenvector of the small matrix h(m).

We construct ith component of the vector ~P
(m)
l as

~P
(m)
l (i) =

~R
(m)
l (i)

e
(m)
l −Hii

, (2.2)
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where ~R
(m)
l (i) is the ith component of the residue vector for the lth eigenvalue, and

is defined as

~R
(m)
l = (H− e(m)

l I)~Cm
l . (2.3)

The initial space is now augmented with a normalized vector ~Qm+1 which is ob-

tained from Gram-Schmidt orthogonalization of Pm
l to the set of vectors { ~Qi : i =

1, ...,m} i.e.,

~Qm+1 =
~Q′m+1

|| ~Q′m+1||
, ~Q′m+1 = ~P

(m)
l −

m∑
k=1

(~P
(m)
l , ~Qk) ~Qk. (2.4)

The small matrix h(m) is now augmented to the matrix h(m+1) by adding new row

and new column and the iteration is resumed. Next, we restart the procedure with

{ ~Qi : i = 1, ...,m} replaced by {~C(l)
i : i = 1, ...,m} until the dimensionality of the

small matrix h(k) exceeds a threshold value. The iteration is stopped when the

desired eigenvalue converges within a chosen accuracy.

However, the computational cost to find the lowest state goes as N2, therefore

diagonalization of the Hamiltonian matrix for the large system is difficult with

system size. Few low-lying states of a sparse matrix of dimension 107× 107 can be

obtained on a normal desktop. The ED for large systems and N ≥ 36 for spin-1/2

systems are only possible after applying all symmetries and parallel computing.

Therefore, the ED method is not suitable for large systems, and we rely on ap-

proximate techniques. There are many reliable approximate numerical techniques

like the renormalization group (RG) method [4], Quantum Monte Carlo (QMC)

method [5], and DMRG method for dealing with large system sizes. In this thesis,

we have used the DMRG method extensively, therefore, we discuss this method in

brief.
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2.2 Density Matrix Renormalization Group

Method

In 1975 renormalization group (RG) [4] method was developed and applied to the

Kondo lattice by Wilson found great success, and it was a breakthrough devel-

opment in the theoretical condensed matter physics. This development leads to

a new tool to solve quantum many-body problems, and later this method was

extended for solving the gs of the quantum many-body systems in real space [10].

Although the results of real space RG in the quantum systems are found to be

quite inaccurate. White discussed the main reason for the failure of this method

using the example of a particle in a box problem [11]. They argued that the direct

product of the gs of two boxes of length L will not give the gs of a box of size 2L.

White [12] showed a new way to truncate the Hilbert state of the system block

by keeping only the states with largest eigenvalues of the density matrix of the

system block. These states are used to construct a new basis for the larger system.

This new way of truncation of irrelevant degrees of freedom is known as DMRG

method.

The DMRG method is based on the systematic truncation of irrelevant degrees

of freedom i.e., truncation of the degrees of freedom is done at every step of the

growing system. This is a state-of-the-art numerical technique to solve the quan-

tum many-body problems in 1D [12–14]. The DMRG method is reviewed very

frequently because of its potential application in quantum many-body systems in

1D and quasi-1D. This method can deal with large system sizes without com-

pensating the accuracy of gs and calculate the wavefunction which can be used

to calculate both static and dynamic properties of the model Hamiltonian. The

DMRG method consists of two algorithms which are to be performed sequentially

as: (a) First, the infinite DMRG algorithm where system is grown systematically

and (b) Second, the finite DMRG algorithm which helps the superblock calculation

to optimize the basis of relevant degrees of freedom. Fig. 2.2 gives a schematic

picture of the infinite DMRG algorithm, and the procedure is explained below.
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Figure 2.2: Schematic representation of the infinite DMRG algorithm proce-
dure for a 1D chain. The filled red and green dots are old (numbering with
black color) and new sites (numbering with red color), respectively. The black
dashed boxes represent old system blocks (Left block) without new sites while,
the solid blue boxes depict the new system blocks including new sites. The right

side boxes are environment block.
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As shown in Fig. 2.2, we start with a four site superblock which consists of a left

and a right block where each block consists of one site, and two new sites. The

system consists of first two sites from left block whereas last two sites in the right

block are treated as the environment. Next, we calculate the gs eigenvector |ψ〉

and gs eigenvalue of the superblock, and expand the wavefunction |ψ〉 in the basis

of the system and the environment block as

|ψ〉 =
∑
ij

Cij |i〉 |j〉 . (2.5)

Here |i〉 and |j〉 represents basis states of the system and the environment block,

respectively. The matrix elements of the density matrix of the system block can

be written as

ρij =
∑
k

C∗ikCkj, (2.6)

where the sum is over the environment degrees of freedom. Let us assume that

the dimension of the density matrix ρ is M ×M . The density matrix ρ is then

diagonalized, and we keep the eigenvectors of the density matrix ρ corresponding

to the largest m eigenvalues. Now let us construct a reduced density matrix ρ′ of

dimension M ×m made up of m largest eigenvectors corresponding to m largest

eigenvalues. The Hamiltonian and all the operators are now renormalized with

reduced density matrix ρ′ and renormalized Hamiltonian and operators can be

represented in the truncated basis as

H̃ = (ρ′)†Hρ′ and Õ = (ρ′)†Oρ′, (2.7)

where (ρ′)† is the transpose of the reduced density matrix and H̃ and Õ are effective

Hamiltonian and operators, respectively, in the new system block.

The following steps illustrate the infinite DMRG algorithm for a 1D chain and

these steps are represented pictorially in Fig 2.2

(a) Initially start with four sites, the superblock in Fig. 2.2.

(b) Find the gs eigenvalue and eigenvector of the superblock.
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Figure 2.3: Schematic representation of the finite DMRG algorithm for a
1D chain. Filled green dots represent the new sites, blue boxes depict the
final system of size N coming from infinite DMRG algorithm, and red boxes of

unequal length represents the left and right block of varying sizes.
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(c) The density matrix ρ of the system block is constructed. Diagonalize ρ and

keep only the eigenvectors corresponding to the m largest eigenvalues.

(d) Renormalize all the operators and the Hamiltonian for the system block

using Eq. 2.2. The new system block is old system block and a new site.

(e) Construct the superblock Hamiltonian using the effective Hamiltonian and

operators of system blocks and two new sites.

(f) Repeat the process from (b) to (e) until the desired size is reached.

In the above process, the system is grown to desired N sites while keeping the fixed

number of m relevant basis. However, the wavefunction of the full system may

not be fully optimized. To have accurate results we need to optimized the system.

To obtain accurate results for spin densities, correlation functions, and other gs

properties in a finite system, the finite DMRG procedure is to be performed. The

finite DMRG procedure is depicted schematically in Fig. 2.3 and summarized

below.

(a) Start with the superblock with an equal number of sites in the left and the

right block which was obtained at the end of the infinite DMRG algorithm

procedure shown in Fig. 2.2.

(b) Find the gs eigenvector of the superblock. The new system block is the old

block plus a new site as shown in Fig. 2.3. In the system block, one site

is added to the system block at the left and removed from the environment

block at the right at every step. Construct the reduced density matrix ρ′ of

the system block.

(c) Renormalize the Hamiltonian and operators of the system block through ρ′.

(d) The superblock Hamiltonian is constructed using the effective Hamiltonian

and all the operators of the new system blocks and two new sites.

(e) Repeat all the steps from (a) to (d) until the left block goes to a site of N−3

and the right block reduced to one site.
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(f) Now we grow the right block using (a) to (d) process till the left block

reduced to 1 and the right block to N − 3.

(g) In the next step, we again start moving the left block and reducing the right

block till we reach a step where the left and the right block have the same

size. The whole process is called one finite sweep.

In general 5− 10 finite sweeps are adequate to thermalize the 1D system.

The DMRG algorithm is a state-of-art numerical technique for a 1D and quasi-

1D with open boundary condition (OBC). However, this algorithm fails to give

an accurate result. It is well known that the PBC is essential to get rid of the

boundary effect of a finite open chain and also to preserve the inversion symmetry

in the system [15]. The number of relevant degrees of freedom in a 1D system

with OBC is small as the entanglement between the blocks are small [13, 14]. Let

us consider that for a system with OBC and for a given accuracy, mobc number

of eigenvectors of the density matrix are required. Then for the PBC system in

the conventional DMRG, number of eigenvectors of the density matrix ρ required

is O(m2
obc) [16] for same accuracy. The computational effort in the conventional

DMRG for the OBC systems with sparse matrices goes as O(m3
obc), whereas it goes

as O(m6
obc) for the PBC system [17]. The convergence accuracy of energies for the

PBC systems calculated from the conventional DMRG decreases significantly.

The conventional DMRG is solved in a Sz basis. Therefore, most of the dominant

Sz operator remains diagonal, whereas the raising operator S+ and lowering opera-

tor S− are off diagonal in this basis. Therefore, the multiple times renormalizations

of these operators deteriorates the accuracy of these operators. The conventional

algorithm is excellent for a 1D open chain as superblock is constructed with only

one time renormalized operators. However, for a PBC system, one needs a long

bond; therefore, at least two operators of superblock are renormalized multiple

times. In a new algorithm [18], the multiple time renormalization of the operator

is avoided by considering a superblock with four blocks consisting of a left and a

right block and two new site blocks. In this algorithm, the superblock Hamilto-

nian is constructed using the effective Hamiltonian of blocks and operator which
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are renormalized once. Therefore, the truncation of long bond is avoided in this

algorithm [18].

In this thesis, we are using conventional DMRG and another modified DMRG

algorithm where four sites are added at every DMRG steps. This algorithm helps

us avoid to use the multiple time renormalized operator in constructing the su-

perblock of J1 − J2 model.
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Chapter 3

Study of Quantum Phases for the

Frustrated Heisenberg Spin-1/2

Model

3.1 Introduction

The J1−J2 model with isotropic exchange J1, J2 between first and second neighbors

is the frustrated spin-1/2 chain with a dimer phase, also called a bond-order-wave

(BOW) phase [1–16]. The J1 − J2 Hamiltonian with PBC is shown in Eq. 1.17

in chapter 1. There is one spin per unit cell and the total spin S is conserved.

The limit J2 = 0, J1 > 0 is the linear Heisenberg antiferromagnet (HAF) with non-

degenerate ground state and QLRO at wave vector q = π. The limit J1 = 0, J2 > 0

corresponds to HAFs on sublattices of odd and even numbered sites, QLRO at

q = π/2 and the model is frustrated for either sign of J1. Sandvik [17] has reviewed

numerical studies of the HAF and related spin chains, including H(J1, J2) at α < 1.

An earlier review by Lecheminant [18] addresses frustrated 1D spin systems mainly

in terms of field theory, also for α < 1.

In addition to extensive HAF results, the exact gs is known at α
MG

= 1/2, the

MajumdarGhosh [1] point, and at J1/J2 = −4, J2 > 0, the quantum critical point

38
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Figure 3.1: Quantum phase diagram of H(J1, J2), Eq. 1.17. The J1/J2 values
at the critical points are P1 = −4, P2 = −1.24, P3 = 0.44, and P4 = 4.148.
The exact point P1 is between a gapless FM phase and a gapped IC phase. The
gapless decoupled phase is between P2 and P3; open and closed circle denote
spins pointing in and out of the plane. The gapped IC phase extends to the
MG point, J1 = 2J2, and the dimer phase to P4 = 4.148, beyond which lies a

gapless AFM phase.

P1 discussed by Hamada et al. [7] and shown in Fig. 3.1. Okamoto and Nomura

[9] used ED of finite systems, level crossing and extrapolation to find the critical

point P4 at 1/α
ON

= 4.148 in Fig. 3.1. The dimer phase has doubly degenerate

gs, broken inversion symmetry at sites and finite energy gap Em to the lowest

triplet state. The dimer phase and P4 were the initial focus of theoretical and

numerical studies [1–19]. Attention has recently shifted to the J1− J2 model with

FM J1 < 0 that is the starting point for the magnetic properties of Cu(II) chains

in some cupric oxides [19–22]. Moreover, models in an applied magnetic field or

with anisotropic exchange have multipolar, vector chiral and exotic phases [23–

28]. Furukawa et al. [28] discuss both anisotropic and isotropic exchange using

field theory and numerical methods and note that less is known about the J1 < 0

sector.
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The critical points P2 and P3 in Fig. 3.1 are obtained in the present study. An

earlier estimate (P2 = −1.2, P3 = 0.45) was based [29] on level crossing and

divergent structure factor peaks. We consider the phase diagram of the J1 −

J2 model with particular attention to P2 and P3, the IC or spiral phases with

spin correlations of finite range, the decoupled phase with QLRO(π/2), and the

commensurate to incommensurate (C-IC) point [30, 31] at J1/J2 = 2. We present

numerical evidence such as the degeneracy of the gs to identify IC phases, the

periodicity of spin correlations and the spin densities of the triplet state using

ED for systems up to N = 28 spins and DMRG calculations [32, 33]. DMRG

returns accurate gs energies and spin correlation functions C(r) in systems of a

few hundred spins. The combination of ED and DMRG in finite systems affords a

detailed picture of IC and decoupled phases. The thermodynamic limit is deferred

as long as possible.

Field theories introduce continuous operators for spin chains at the beginning and

follow RG flows to distinguish between gapped and gapless phases. Exponentially

small energy gaps or long-range spin correlations are beyond the reach of approx-

imate numerical methods, and that is the case when J1/J2 is small or negative.

Direct comparison is limited to systems with short-range spin correlations. Other

comparisons are needed to support field theory or to assess conflicting results for

IC and dimer phases. However, all field theories [12–14, 18, 23–26, 28] find that

the QLRO(π/2) phase in Fig. 3.1 is limited to the point J1 = 0. We question the

assertion that arbitrarily small J1 suppresses the QLRO(π/2) phase while finite

J2/J1 = 0.2411 is needed to suppress the QLRO(π) phase. Weak exchange J1

between HAFs on sublattices poses interesting and unresolved challenges, akin to

dispersion forces, that merit closer attention.

There are basic differences at arbitrarily small gaps. Gapless critical phases at

J1 = 0 or J2 = 0 have non-degenerate gs and divergent structure factor peaks.

Gapped phases have doubly degenerate gs and finite structure factor peaks. We

show that variable q in IC phases provides direct information about gs degeneracy

and that the lowest triplet in the QLRO(π/2) phase has broken sublattice spin

densities. The physical picture in Fig. 3.1 extends the QLRO(π/2) phase of HAFs
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on sublattices to small frustration J1 of either sign, just as the QLRO(π) phase

is stable against small frustration J2. Increasing J1/J2 > 0 induces a quantum

transition at P3 to a gapped IC phase with q > π/2 that terminates at the MG

point, J1/J2 = 2. Decreasing J1/J2 < 0 gives a transition at P2 to an IC phase

with q 6 π/2 that terminates at J1/J2 = −4. We use other numerical results than

exponentially small energy gaps to obtain the quantum phase diagram in Fig. 3.1.

The chapter is organized as follows. The gs degeneracy and inversion symmetry

are related in section 3.2 to the wave vector q
G

of gs correlations. The structure

factor S(q), the Fourier transform of gs spin correlations, of finite systems is a

discrete function. Its peak S(q∗) is shown in section 3.3 to occur at q∗ = q
G

except

near the C-IC point. DMRG yields q
G

in systems of several hundred spins using

spin correlations instead of energy degeneracy. Level crossing of excited states is

combined with q
G

in section 3.4 and extrapolated to the thermodynamic limit to

estimate the critical points P2 and P3. The decoupled phase is characterized in

section 3.5 using the spin densities and sublattice spin of the lowest triplet state.

The magnitude of S(q) peaks at π or π/2 with increasing system size are compared

in section 3.6. The gs expectation value S2
A = S2

B of the square of sublattice

spin is related in section 3.7 to the asymmetry of P2 and P3 about J1 = 0.

Spin correlations C(2r) within sublattices and C(2r − 1) between sublattices are

compared. Two extensions of the J1 − J2 model are sketched in section 3.8. The

first is an analytical model in which IC phases are suppressed and the decoupled

phase expands to J1/J2 = ±4 ln 2. The second has frustrated sublattices and a

single IC phase without an intervening QLRO(π/2) phase. In the Discussion we

summarize the numerical evidence for the phase diagram in Fig. 3.1 and compare

the field theoretical expression for C(r) in gapped IC phases to DMRG results.

3.2 Ground State Spin Correlations

An even number of spins is assumed in spin-1/2 chains with isotropic exchange to

ensure integer S 6 N/2. We take N = 4n in order to have integer spin SA, SB 6 n
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Figure 3.2: ED results for the wave vector qG of gs correlations of the J1− J2

model with 24 spins in Eq. 1.17. The singlet gs is degenerate at 12 points
in sectors that are even and odd under inversion at sites; qG switches between
σ = ±1 with increasing J1/J2 starting with qG = 0 at J1/J2 = −4 and ending
with qG = π at J1/J2 = 2, both exact in the thermodynamic limit. The critical
point P4 = 4.148 is to the gapless phase that includes the linear HAF at J2 = 0.

on sublattices of odd and even numbered sites. The J1 = 0 limit of Eq. 1.17 is

then 2n-spin HAFs, which is quite different from half-integer SA, SB when N/2 is

an odd integer. The spontaneously broken symmetry is inversion σ at sites. Finite

systems of 4n spins with PBC also have inversion symmetry σ′ at the center of

bonds. Open boundary conditions break σ symmetry and limit σ′ to the central

bond. While this does not matter in the thermodynamic limit, the issue would

not come up if there were accurate results in that limit. The size limitations of

ED are partly compensated by access to excited states. DMRG yields accurate

gs properties [32, 33] of much larger systems. We use DMRG with PBC and four

spins added per step [29, 34].

The gs is non-degenerate in J1−J2 models of 4n spins with PBC except at 2n values

[15, 27] of J1/J2. The wave vector is k = 0 or π in the σ = 1 or −1 sectors. We

focus below on the wave vector q
G

of gs spin correlations instead of k. As sketched
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in Fig. 3.1, spin correlations in the FM gs with J1/J2 6 −4 have long-range order

(LRO) at q
G

= 0. On the AFM side, the gs has short-range spin correlations at

q
G

= π for J1/J2 > 2 and QLRO at q
G

= π for J1/J2 > 4.148. The point J1 = 0

with HAFs on sublattices has QLRO at q
G

= ±π/2. The gs of classical spins in Eq.

1.17 is a spiral phase with LRO(qcl) in the interval −4 6 J1/J2 6 4. The pitch

angle qcl between adjacent spin is given by 4 cos qcl = −J1/J2 and ranges from

qcl = 0 to ±π with increasing J1/J2. The same range of q
G

occurs for quantum

spins in which fluctuations suppress LRO and there is no simple relation to J1/J2.

The evolution of q
G

with increasing J1/J2 holds more generally for spin-1/2 chains

with isotropic exchange and q
G

= 0 or π at large negative or positive J1.

Spin correlations 〈S0 ·Sr〉 are gs expectation values that are commensurate in finite

systems and limited to r 6 2n for N = 4n sites. PBC leads to discrete q in the

first Brillouin zone

q =
πr

2n
, r = 0,±1, ..., 2n. (3.1)

The periodicity of gs correlations in the J1− J2 model increases from q
G

= 0 to π,

or decreases from q
G

= 0 to −π, in 2n steps of π/2n between P1 at J1/J2 = −4

and the MG point at J1/J2 = 2. The end points are exact and hold in the

thermodynamic limit.

The gs degeneracy at J1/J2 = 2 is between two singlets, the Kekulé valence bond

(VB) diagrams for singlet-pairing of adjacent spins,

|K1〉 = (1, 2)(3, 4)...(4n− 1)(4n),

|K2〉 = (2, 3)(4, 5)...(4n, 1),
(3.2)

where (1, 2) = (α1β2 − β1α2)/
√

2 at sites 1 and 2. The diagrams are related by

inversion at sites. The inversion symmetry is also broken at J1/J2 = −4 and

altogether at 2n points αp(4n) = J2/J1, p = 1, 2, ...2n [15, 27]. The αp are known

up to N = 28 and are accessible [17] for N = 32. The Kekulé diagrams are

asymptotically orthogonal, with overlap 〈K1|K2〉 = (−2)−n+1 for n singlet pairs

given by Paulings island counting rule [35]. Spin correlations in small systems
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at J1/J2 = 2 depend on overlap [5], but overlap is negligible for N > 24 and

〈S0 · Sr〉 = 0 for r 6 2 at the MG point.

The FM gs for J1/J2 6 −4 and singlet gs for J1/J2 > 2 are in the σ = 1 sector

for arbitrarily large N = 4n. The gs transforms as σ = −1 at q
G

= πr/2n when

r is an odd integer and as σ = 1 when r is an even integer. Fig. 3.2 shows q
G

for

N = 24 as a function of J1/J2 with 12 steps at αp(4n). The staircase goes from

q
G

= 0 to π. An equivalent staircase runs from q
G

= 0 to −π(= π). The stairs have

equal risers π/2n and variable steps governed by αp(4n), both of which depend

on system size. The onset and termination of IC phases at J1/J2 = −4 and 2 are

exact. The long step or plateau at q
G

= π/2 in Fig. 3.2 is between αn(4n) with

J1 < 0 and αn+1(4n) with J1 > 0. Another special feature of this step becomes

apparent on doubling the system from N to 2N , or from 24 to 48 in Fig. 3.2. The

wave vectors {q}
N

also appear in {q}
2N

of the larger system that has N additional

qs. The additional wave vectors are midway between every {q}
N

except at q = π/2

where there are two new steps at q = π/2± π/N .

The gs degeneracy and inversion symmetry specify the periodicity 2π/q
G

of spin

correlations in finite J1 − J2 models. The wave vectors are uniformly distributed

while the degeneracies are not. The degeneracy density between 0 6 J1/J2 6 2

is twice that between −4 6 J1/J2 6 0. More important is the possibility of an

interval without degeneracy. What is the fate of the q
G

= π/2 plateau in the

thermodynamic limit? A plateau implies a C phase, as in Fig. 3.1, between two

IC phases. Small deviations from q
G

= ±π/2, on the other hand, would indicate

a C point at J1 = 0 between IC phases. Exact degeneracies require ED and are

therefore limited to small systems. To follow the evolution of q
G

with increasing

J1/J2, we use DMRG and gs spin correlations instead of energy degeneracy.
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3.3 Spin Structure Factor

The static structure factor S(q) is the Fourier transform of spin correlations in the

gs

S(q) =
∑
r

〈~S0 · ~Sr〉 exp(iqr). (3.3)

The wave vectors in Eq. 3.1 are for 4n spins and one spin per unit cell. S(q) is

even in q and symmetric about q = 0 and π. S(0) is the sum of 〈S0 ·Sr〉 over r, and

S(0) = 0 when the gs is a singlet. The discrete function S(q) has peaks at ±q∗ over

a finite J1/J2 interval. Bursill et al. [11] discussed an effective periodicity 2π/q∗

based on S(q) peaks. Except close to J1/J2 = 2, IC phases have q
G

= q∗. Instead

of energy degeneracy and symmetry, however, q∗ is based on gs spin correlations

and is much more convenient to evaluate. First, we are seeking q
G

as a function of

J1/J2 in the thermodynamic limit rather than staircases such as Fig. 3.2 in large

systems. Second and more importantly, DMRG is an excellent gs approximation

that yields spin correlations in large systems.

Broken inversion symmetry is the motivation for evaluating average spin correla-

tions as

C(r) = (〈~S0 · ~Sr〉+ 〈~S0 · ~S−r〉)/2. (3.4)

The two expectation values are equal by translational symmetry for non-degenerate

gs, for example in the σ = 1 or −1 sectors, but are not equal for arbitrary linear

combinations of degenerate gs. Indeed, the order parameter of the dimer phase in

Fig. 3.1 is the difference between the two expectation values with r = 1 in Eq.

3.4 and can be evaluated directly in finite J1 − J2 models at points where the gs

is doubly degenerate [15, 27]. The Kekulé diagrams have 〈S0 · S1〉 = −3/4 and 0

at nearest neighbors. The average C(r) enters in S(q) since the sum in Eq. 3.3

is over sites both to the right and left. Inversion symmetry is not specified in our

DMRG algorithm. We compute both expectation values in Eq. 3.4 and take the

average or difference as required by the problem being addressed.

The nodal structure of C(r) for J1 < 0 confirms that q
G

= q∗. The S(q) peak

is at the Fourier component that matches the sign changes of C(r). Peaks at
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q∗ = ±π/2n close to q
G

= 0 at P1 are well resolved for any system size since

S(0) = 0 in the singlet gs with σ = −1 and two sign changes of C(r). The peaks

jumps to q∗ = ±π/n at α2(4n) when the gs is even under inversion and C(r)

changes sign four times. We verified for N = 24 that q∗ follows q
G

exactly when

J1 < 0 and C(r) changes sign up to 2n times. We have C(2r − 1) = 0 at J1 = 0

and C(2r) ∝ (−1)r. The q∗ = π/2 peak is reached well before J1 = 0, however, at

small rather than vanishing correlations between spins in different sublattices.

We also find q∗ = q
G

for J1 > 0 except near the MG point, J1/J2 = 2, where the

exact structure factor is

S
MG

(q) = 3(1− cos q)/4. (3.5)

The size dependence is entirely in the discrete values of q, with q∗ = π and
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Figure 3.3: DMRG results for the wave vector qG of gs correlations as a
function of J1/J2 in models of N spins in Eq. 1.17. Closed circles are exact
in the thermodynamic limit. The insets show the J1/J2 values in Table 3.1 at
which the qG/π = 1/2 plateau is reached and left in a step 2/N for J1 < 0 and
J1 > 0; linear extrapolation gives the quantum critical points P2 = −1.24 and
P3 = 0.44. The intervals (−4, P2) and (P3, 2) with variable qG are IC phases
with degenerate gs. The C phase between P2 and P3 has a non-degenerate gs.



Chapter 3. 47

S
MG

(π) = 3/2. A broad profile in reciprocal space is readily understood as ex-

tremely short range C(r) in real space. The profile narrows for J1/J2 > 2 as the

range of correlations increases [29]; S(π) increases and diverges in the QLRO(π)

phase with J1/J2 > 4.148.

On the other hand, the gs in the σ = −1 sector at the MG point has q
G

= π−π/2n

and is the C-IC point of the J1 − J2 model, as noted [30, 31] previously for spin

chains with an exact point. Finite S(π) leads to overlapping profiles at q
G

=

π±r±/2n that are first resolved in the thermodynamic limit at the Lifshitz point

where S ′′(π) = 0. Bursill et al. [11] found (J2/J1)L = 0.52063(6) using DMRG

with OBC. S ′′(π) = 0 requires that the spin correlations at (J1/J2)L satisfy

0 = −4n2C(2n)− 2
2n−1∑
r=1

r2(−1)rC(r). (3.6)

Short-range correlations make it possible to evaluate (J1/J2)L accurately. We find

(J2/J1)L = 0.52066(2) for N > 50 in excellent agreement with the earlier result

[11]. The resolved peaks at ±q∗ separate for J1/J2 < 1.92 and merge with ±q
G

.

We have q∗ = q
G

for q
G
6 2π/3 at N = 24 and expect similar merging of q∗ to q

G
in

large systems since as shown in section 3.7, S(π) decreases rapidly with decreasing

J1/J2 < 2.

DMRG and S(q) peaks yield q
G

in large systems. The evolution of q∗ = q
G

with

J1/J2 in IC phases is shown in Fig. 3.3 for 4n = 48, 96 and 144. The point at

J1 = 0 is exact, as are q
G

= 0 and π for J1/J2 6 −4 and > 2, respectively. The

size dependence is confined to the q
G

= π/2 plateau that defines an interval with

non-degenerate gs in finite systems. The plateau is reached at (J1/J2)n in a step of

π/2n for J1 < 0 and is left at (J1/J2)n+1 in a step of π/2n for J1 > 0. These points

are listed in Table 3.1 up to N = 192 and are shown in the insets of Fig. 3.3.

The lines are linear extrapolations to the thermodynamic limit. The intercepts

J1/J2 = −1.24 and 0.44 are the q
G

estimates for P2 and P3 in Fig. 3.1. To check

the accuracy, we recall that the sum
∑

r C(r) = S(0) is zero in singlet states; it is

< 6×10−4 up to N = 144 in Table 3.1 and about 3×10−3 at N = 192. The linear
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Figure 3.4: Excitation energies of the J1 − J2 model, Eq. 1.17: (a) Lowest
triplet Em and singlet Eσ for N = 12 and α = J2/J1 6 αMG = 1/2 where the gs
is doubly degenerate. The crossing Em = Eσ is α∗ = 0.245. (b) N = 24, J2 = 1
and 1/α = J1/J2 6 0.87 where the gs is doubly degenerate. 2Em is nine-fold
degenerate at J1 = 0 with a triplet on each sublattice. The singlet 1ETT has

allowed crossings with Eσ and Em.

behavior of (J1/J2)n and (J1/J2)n+1 for N > 48 are directly related to system size

since q
G

steps are known to be ±π/2n.

To conclude the analysis of q
G

in IC phases, we construct the solid line in Fig. 3.3.

Classical spins account for the square root behavior at the exact point J1/J2 = −4.

Nomura and Murashima [33] suggested on general field theoretical grounds that

q ∝ (α − αc)1/2 near the C-IC point, with J2/J1 > αc = 1/2. We expand instead

about small J1/J2 and recall that the gs correlations of Eq. 1.17 have q
G

= 0, π/2

and π, respectively, at J1/J2 6 −4, 0 and > 2. The combination of a square root

singularity at exact points and the J1 = 0 constraint of q
G

= π/2 suggests the
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expressions

q
G

π
= A

(
4 +

J1

J2

)1/2

exp

(
− a
(

4 +
J1

J2

))
6

1

2
− 4 6

J1

J2

6 P2

q
G

π
=

1

2
P2 6

J1

J2

6 P3

q
G

π
= 1−B

(
2− J1

J2

)1/2

exp

(
− b
(

2− J1

J2

))
>

1

2
P3 6

J1

J2

6 2.

(3.7)

The corresponding curve from q
G

= 0 to −π(= π) is −q
G
/π. The parameters in Fig.

3.3 are A = 0.38, B = 0.565, a = 0.086 and b = 0.22. A and B refer to singularities

that are known in the thermodynamic limit; a and b are negligible near the exact

points but they matter for the critical points P2 and P3 that delimit the q
G

= π/2

phase. Eq. 3.7 combines singularities at exact points and with the translational

symmetry of the J1 − J2 model before making a continuum approximation.

3.4 Level Crossing

The gs degeneracy of finite J1−J2 models is between singlets with opposite inver-

sion symmetry. We define Eσ and Em as the excitation energy to the lowest singlet

and triplet, respectively. Both have finite-size contributions. Fig. 3.4 (a) shows

the evolution of Em and Eσ with increasing frustration α = J2/J1 for N = 12 spins

in Eq. 1.17. The gs and excited singlet cross at α
MG

= 1/2 where Eσ = 0. The

singlet and triplet levels cross at α∗(12) = 0.245 where Eσ = Em. Motivated by

field theory, Okamoto and Nomura [9] argued that the gapped dimer phase with

doubly degenerate gs must have two singlets below the lowest triplet. In finite

systems, the singlet and triplet cross at α∗(N) where Eσ = Em. They found [9]

α∗(N) exactly to N = 24, noted the weak size dependence and extrapolated to

α
ON

= 0.2411 = 1/P4.
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Figure 3.5: ED results for level crossing and DMRG results for gs degeneracy
in J1 − J2 models with N = 4n spins in Eq. 1.17. The crossing Eσ = Em
is between the lowest singlet excitation and lowest triplet state; 1ETT is the
singlet excitation that evolves from triplets on each sublattice at J1 = 0. The
gs degeneracy and linear extrapolation are the qG points in the insets to Fig.
3.3. The critical points in the thermodynamic limit are at P2 = −1.24 and

P3 = 0.44.

The excitations Em and Eσ are well known at J2 = 0. To lowest order in logarith-

mic corrections,Woynarovich and Eckle report [36]

Em(N) =
π2

2N

(
1− 1

2 lnN

)
. (3.8)

Faddeev and Takhtajan show [37] that the triplet (Em) and singlet (Eσ) are de-

generate in the infinite chain; they are the S = 1 and 0 linear combinations of

two S = 1/2 kinks with identical dispersion relations. Combining Em(N) with

coupling constants reported by Affleck et al. [8], the difference Eσ(N)−Em(N) is

of order 1/(N lnN), even smaller than 1/N .

The J1 = 0 limit of Eq. 1.17 has HAFs on sublattices. As seen in Fig. 3.4 (b),

the N = 24 excitations at 1/α = 0 are those of N = 12 HAFs. Now Em and

Eσ transform [29] with wave vector k = ±π/2 and remain doubly degenerate for
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Table 3.1: DMRG results for the points (J1/J2)n and (J1/J2)n+1 at which the
qG = π/2 plateau is reached and left in J1 − J2 models of 4n spins.

N = 4n (J1/J2)n (J1/J2)n+1

24 -2.033 0.868

48 -1.745 0.710

72 -1.600 0.629

96 -1.515 0.581

144 -1.439 0.543

192 -1.379 0.510

∞ -1.24 0.44

small J1/J2. The nine-fold degeneracy at 2Em for a triplet on each sublattice

corresponds to a singlet, a triplet, and a quintet whose energies we denote as

1E
TT
, 3E

TT
, and 5E

TT
, respectively. The degeneracy is lifted for J1 > 0 when only

total spin is conserved. The singlet at excitation energy 1E
TT

has allowed crossings

[29] with Eσ and Em at finite J1/J2 that are shown in Fig. 3.5 up to N = 28.

The HAF excitations above rationalize why both level crossings in finite systems

extrapolate to J1/J2 ∼ 0.45. The crossings Eσ(N) = Em(N) for J1 < 0 are also

shown to N = 28.

Fig. 3.5 also shows the points in Table 3.1 at which the q
G

= π/2 plateau is

reached and left. The same linear extrapolation is used. Level crossing and gs

degeneracy are consistent and independent determinations. Level crossing involves

excited states while q
G

depends on gs correlations. Although P2 = −1.24(3) and

P3 = −0.44(2) are approximate, they indicate two IC phases in Fig. 3.1 separated

by a C phase with q
G

= π/2 and non-degenerate gs between J1/J2 = −1.24 and

0.44. The size dependence of level crossings at small J1 is far weaker than that of

q
G

, but not as weak as at small J2.

On the other hand, field theories that limit QLRO(π/2) to J1 = 0 would require

all lines in Fig. 3.5 to extrapolate to J1 = 0. This seems unlikely to us and in any

case level crossing has to be taken into account. For whatever reason, field theories

[12–14, 18, 23, 28] that routinely refer to Eσ = Em for P4 have not considered level

crossing at small J1/J2. The present analysis of gs degeneracies is new evidence
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for a C phase with non-degenerate gs and q
G

= ±π/2 between two IC phases with

doubly degenerate gs and variable q
G

.

3.5 Triplet State Spin Densities

In this section we further characterize the decoupled C phase using the triplet

state |T, σ〉 with S = Sz = 1, excitation energy Em and inversion symmetry σ.

ED gives |T, σ〉 explicitly in finite systems. The spin density at site r is

ρr(σ) = 〈T, σ|Szr |T, σ〉. (3.9)

The triplets wave vector k
T

can be inferred from spin densities. Uniform ρr =

(4n)−1 at all sites indicates non-degenerate |T, σ〉 with k
T

= 0 for σ = 1 and

π for σ = −1. Doubly degenerate |T, σ〉 with ±k
T

in Eq. 3.1 indicates broken

-3 -2 -1 0 1 2 3J
1
/J

2

0

0.2

0.4

0.6

0.8

1

Su
bl

at
tic

e 
sp

in
 d

en
si

ty
, ρ

A
 >

 ρ
B N = 16  ED
    = 20
    = 24
    = 28

ρB

ρA

P3P2

Figure 3.6: Sublattice spin density, Eq. 3.10, with ρA > ρB as a function of
J1/J2 for N spins in Eq. 1.17. ED results to N = 28 show finite |ρA − ρB | when
the lowest triplet state |T, σ〉 has wave vector kT = ±π/2 and ρA = ρB = 1/2
otherwise. The critical points P2 and P3 are based on qG and |ρA − ρB | = 1 at

J1 = 0 is exact.
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spin density symmetry with ρr(1) 6= ρr(−1). The spin densities for σ = ±1 are

proportional to cos2 k
T
r and sin2 k

T
r, so that the sum (4n)−1 is the same at all

sites. The spin density of odd numbered sites is

ρ
A

=
n∑
r=1

ρ2r−1 . (3.10)

The sublattice spin density of even numbered sites is ρ
B

= 1 − ρ
A

since Sz = 1

is conserved. We have ρ
A

= ρ
B

= 1/2 except when k
T

= ±π/2. At J1 = 0, for

example, |T, σ〉 is either |T 〉 |G〉 or |G〉 |T 〉 where |G〉 and |T 〉 are the gs and lowest

triplet of sublattices. The product functions have opposite σ symmetry; ρ
A

or ρ
B

is uniformly (2n)−1 on one sublattice and 0 on the other.

The evolution of ρ
A
6 ρ

B
is shown in Fig. 3.6 as a function of J1/J2 using ED

up to N = 28. The sudden changes to ρ
A

= ρ
B

= 1/2 at (J1/J2)T indicate a

level crossing of triplets. There are four degenerate triplets at (J1/J2)T , a pair

|T,±1〉 with k
T

= π/2 and a pair with k
T

= π/2 − π/2n in the J1 < 0 sector or

π/2 + π/2n in the J1 > 0 sector. Increasing J1/J2 > 0 or decreasing J1/J2 < 0

generates additional triplet degeneracies at which the sublattice spin densities do

not change. The points (J1/J2)T are close to (J1/J2)n and (J1/J2)n+1 where q
G

reaches and leaves the π/2 plateau. The IC phases have degenerate |T, σ〉 with

k
T
< π/2 or > π/2, while |T, σ〉 is non-degenerate in the dimer phase with Em > 0

or in the QLRO(π) phase with Em = 0.

The eigenstates at J1 = 0 are products of 2n-spin HAFs. The product basis

is complete, and |T, σ〉 can expanded at any J1/J2 as a linear combination of

products of sublattice eigenstates with SA +SB = 1. Since σ does not interchange

sublattices, product functions have fixed σ. Since the sublattices are equivalent,

however, the expansion coefficients Cij and Cji of products such as 3|j〉 1|i〉 and

1|i〉 3|j〉 must have equal magnitudes, where |i〉 and |j〉 refer to the ith singlet and

jth triplet of 2n-spin HAFs. Triplets based on SA = SB > 1 have ρ
A

= ρ
B

= 1/2,

while triplets based on |SA − SB| = 1 have ρ
A
6= ρ

B
. Degenerate triplets |T, σ〉

at finite J1/J2 are linear combinations of product functions with decreasing but

finite |ρ
A
− ρ

B
| in Fig. 3.6 as long as k

T
= ±π/2.
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Figure 3.7: Spin structure factor S(q), Eq. 3.3, for J2 = 0, J1 = 0, and
J1/J2 = 2 in Eq. 1.17. Open symbols are ED for N = 24 and discrete wave
vector q. Lines are DMRG for N = 48, 96, and 192, respectively, with increasing
peaks and continuous q. S(q) at J1/J2 = 2 is Eq. 3.5, exact in the thermody-

namic limit. The π and π/2 peaks diverge in that limit.

DMRG is applicable to larger systems because |T, σ〉 has the lowest energy in

the sector S = Sz = 1. The algorithm does not specify inversion symmetry,

however, and returns some linear combination of |T, 1〉 and |T,−1〉 for a degener-

ate triplet. There are four degenerate triplets at (J1/J2)T where sublattice spins

become unequal. When k
T

= π/2, we have ρ
A
6= ρ

B
except for the plus or mi-

nus linear combination. On the other hand, all linear combinations of |T, 1〉 and

|T,−1〉 lead to ρ
A

= ρ
B

= 1/2 when k
T
6= π/2. The wave vector is sufficient

to estimate (J1/J2)T in large systems. Within numerical accuracy, finite J1/J2

leads to equal sublattice spin densities when k
T
6= π/2 and to finite fluctuations

|ρ
A
− ρ

B
| > 0 when k

T
= π/2. DMRG results for (J1/J2)T are consistent with but

considerably less accurate than (J1/J2)n and (J1/J2)n+1 in Table 3.1 for reaching

and leaving the q
G

= π/2 plateau. The J1 = 0 spin densities for non-interacting

sublattices are exact for any system size and |ρ
A
− ρ

B
| > 0 is readily demonstrated

for −1.2 < J1/J2 < 0.4. The decoupled C phase identified by level crossing and gs
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degeneracy has a degenerate triplet |T,±1〉 with k
T

= ±π/2 and broken sublattice

spin density ρ
A
6= ρ

B
.

3.6 Magnitude of Structure Factor Peaks

The spin structure factor, Eq. 3.4, has C(0) = 3/4 for S = 1/2 and satisfies the

sum rule
1

4n

∑
q

S(q) =
3

4
=

1

π

∫ π

0

S(q)dq. (3.11)

The sum and integral refer to finite and infinite systems with discrete and contin-

uous q. HAF spin correlations, indicated by the subscript zero, between distant

sites go as [6, 17]

C0(r) ∝ (−1)r(ln r)1/2

r
. (3.12)

Fig. 3.7 shows S(q) for HAFs and for the J1 − J2 model at J1/J2 = 2. Since

(−1)rC0(r) is positive, the sum is over |C0(r)| and S(π) diverges as (lnN)3/2 when

the integral is cut off at N . The S(π) peak increases as shown from N = 24 to

192. The size dependence is weak except at the peak, the area is conserved in all

curves, and S ′(π) is not defined in the thermodynamic limit.

Only spins in the same sublattice contribute to S(π/2). At J1 = 0, the correlations

between distant sites have even r in Eq. 3.12 and cos (rπ/2) instead of (−1)r.

The gs has QLRO(π/2) and divergent S(π/2). The size dependence in Fig. 3.7 is

again small except at the peaks π/2 and 3π/2 (= −π/2). The S(π/2) divergence is

suppressed by J1 in gapped IC phases. This is readily shown [29] for 1 < J1/J2 < 2

where Em is large and correlations are short ranged.

Eq. 3.12 indicates divergent S(π) at J2 = 0 and S(π/2) at J1 = 0 in the ther-

modynamic limit. Divergent peaks are signatures of QLRO but have not been

demonstrated directly for other parameters. Finite S
MG

(π) = 3/2 clearly implies a

critical point P4 such that S(π) diverges for J1/J2 > P4. The same logic leads to

the critical points P2 and P3 where S(π/2) diverges. We compute C(r) in finite
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systems and compare the size dependence of S(π/2) at small J1 to that of S(π)

at small J2.

The magnitudes of S(π; J2 = 0, 4n) and S(π/2; J1 = 0, 8n) are necessarily equal

since both systems are 4n-spin HAFs. Small J2 gives a first-order correction,

J2C0(2), that reduces π order for J2 > 0 and enhances it for J2 < 0. Small J1

couples non-interacting HAFs and there is no first-order correction. The difference

between a perturbed system and weak exchange between two systems has impor-

tant consequences. To lowest order in J1, spin correlations within a sublattice go

as [29]

C(2r) = C0(2r) +O(J1/J2)2. (3.13)

The result holds in finite systems whether or not C(2r) is amenable to exact

evaluation. The leading terms in the Taylor expansion of S(π; J2, 4n) about J2 = 0

and of S(π/2; J1, 8n) about J1 = 0 are

S(π; J2/J1, 4n) = S(π; 0, 4n)− An(J2/J1)

S(π/2; J1/J2, 8n) = S(π; 0, 4n)−Bn(J1/J2)2.
(3.14)

ED for 24 spins returns [29] A6 ∼ 10B3 > 0 for J1/J2 > 0. DMRG to N = 100

confirms [29] that small J2/J1 reduces the π peak more than small J1/J2 reduces

the π/2 peak, which in turn is reduced faster for J1/J2 > 0 than for J1/J2 < 0.

The initially quadratic dependence in Eq. 3.13 points to weaker suppression of

the S(π/2) divergence by J1 than of the S(π) divergence by J2. Field theory

asserts instead that S(π/2) becomes finite for arbitrarily small J1/J2. Numerical

analysis is consistent with divergent peaks in QLRO phases whose critical points

are determined by level crossing and gs correlations.

There is a basic difference between the π and π/2 peaks. S(q) is symmetric about

π, with S(π−ε) = S(π+ε). If a finite system has a π peak, the peak remains there

when S(q) is assumed to be continuous in the thermodynamic limit, whether or not

the system size exceeds the range of spin correlations. In other words, whether or

not the assumption is justified. The divergence is not related to the peaks position.

The critical points P2 and P3 are between IC and QLRO(π/2) phases, however,
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and S(q) is not symmetric about q = π/2 except at J1 = 0. A finite system

with a π/2 peak has unequal S(q) at q = π/2 ± π/2n, as can readily be verified

analytically. The peak necessarily shifts to q < π/2 for J1 < 0 and continuous S(q)

or to q > π/2 for J1 > 0 when S(π/2) is assumed to be finite in the thermodynamic

limit and hence differentiable at the peak. Even if accurate C(r) could be found

at small J1/J2 in large systems, extrapolation would be necessary to determine

whether S(π/2) diverges. Gapped IC phases have spin correlations of finite range,

and q
G

immediately shifts at P2 or P3 from the q
G

= π/2 plateau in Fig. 3.3.

3.7 Sublattice Spin and Correlations

The critical points P2 = −1.24 and P3 = 0.44 are far from symmetric about

J1 = 0. AF exchange between sublattices quickly induces an IC phase at P3 while

the IC phase at P2 requires stronger FM exchange. A qualitative explanation

is that J1 > 0 stabilizes the singlet 1E
TT

that is involved in level crossing and

generates the gs degeneracy (J1/J2)n+1 in systems of 4n spins. The eigenstate

1|T 〉 |T 〉 at J1 = 0 is the singlet linear combination of the lowest triplet on each

sublattice. On the contrary, FM exchange raises the energy of 1|T 〉 |T 〉 and the

singlet gs must be achieved with minimal sublattice spin. We present a more

quantitative analysis of the P2, P3 asymmetry.

The gs of Eq. 1.17 with J2 > 0 is a singlet for −4 6 J1/J2. Sublattice spin is

conserved at J1 = 0 where SA = SB = 0, but not in general. The gs expectation

value of 〈S2
A〉 = 〈S2

B〉 per site is

〈S2
A〉

2n
≡

2n−1∑
r=0

C(2r) =
S(π)

2
= −2

n−1∑
r=1

C(2r − 1). (3.15)

The equality with S(π)/2 follows on using S(0) = 0 for singlets. The second

equality is an immediate consequence of 〈(SA + SB)2〉 = 0. The following results

are exact: 〈S2
A〉/2n = 0 at J1 = 0 as required; 〈S2

A〉/2n is 3/4 at J1/J2 = 2 and it

diverges for J1/J2 > 4.148. Another exact result obtained below is 〈S2
A〉/2n = 1/4
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Table 3.2: DMRG spin correlation functions 〈S0 · Sr〉 = C(r) to r = 20 for
N = 96 spins in Eq. 1.17 and J1/J2 = −1, 0.4 and 0.

N = 96 J1
J2

= −1 J1
J2

= 0.4 J1
J2

= −1 J1
J2

= 0.4 J1 = 0

r C(2r − 1) C(2r − 1) C(2r) C(2r) C0(2r)

1 0.02577 -0.02141 -0.43154 -0.43771 -0.44351

2 -0.05097 0.02980 0.17342 0.17652 0.18238

3 0.03521 -0.02220 -0.13741 -0.14199 -0.15160

4 -0.02960 0.01836 0.09029 0.09506 0.10487

5 0.02275 -0.01498 -0.07859 -0.08305 -0.09414

6 -0.01934 0.01258 0.06035 0.06431 0.07490

7 0.01576 -0.01045 -0.05427 -0.05801 -0.06963

8 -0.01331 0.00890 0.04498 0.04839 0.05917

9 0.01110 -0.00744 -0.04164 -0.04488 -0.05619

10 -0.00928 0.00640 0.03663 0.03959 0.04963

at J1/J2 = −4, three times smaller than at J1/J2 = 2. The size dependence is weak

when S(π) is a minimum. DMRG at J1/J2 = −1 and 0.4 returns 〈S2
A〉/2n ∼ 0.015

and 0.010, respectively.

In units of J2, the gs energy per site is −3/4 at J1/J2 = −4. The singlet cor-

relations C(r) go as cos (πr/2n) and satisfy two conditions: C(0) = 3/4 and∑
r C(r) = 0. Up to amplitude A(n), we have

C(r) =
A(n)

4
cos (πr/2n) +

(
3

4
− A(n)

4

)(
4nδ0r − 1

4n− 1

)
, (3.16)

where δ0r is the Kroneker delta. The energy per site is −4C(1) + C(2). Setting

the energy equal to −3/4 gives a linear equation for A(n). We obtain A(n) =

1 + 1/(2n) up to corrections of order n−4 and 〈S2
A〉/2n = 1/4. Adjacent spins are

asymptotically parallel in the singlet. Eq. 3.16 is consistent with Hamada et al.

[7] where a note added in proof indicates that an analytical expression for 〈Szi Szj 〉

had been found at J1/J2 = −4.
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Figure 3.8: Spin correlation functions C(r) in J1−J2 models with N spins in
Eq. 1.17. Both J1/J2 = −1 and 0.4 are in the decoupled phase with qG = π/2

that includes J1 = 0.

We chose to study J1/J2 = −1 and 0.4 in the decoupled phase with q
G

= π/2.

Table 3.2 lists C(r) up to r = 20 for N = 96 at J1/J2 = −1, 0.4 and 0, where

C0(2r) refer to a 48-spin HAF. Shiroishi and Takahashi [38] obtained analytical

expression for C0(r) in the thermodynamic limit up to r = 4. The first four

entries C0(2r) at N = 96 differ from the analytical results by less than 10−3, and

the N = 192 correlations by < 2.5× 10−4. DMRG is quite accurate, as expected.

Spin correlations C(2r) within sublattices are almost identical at J1/J2 = −1

and 0.4. Their nodal structure goes as cos (πr), just as at J1 = 0. Indeed, they

remain close to C0(2r) as suggested by Eq. 3.13 even at substantial deviations

from J1 = 0. Exchange between sublattices leads to comparable but out of phase

C(2r − 1) that follows from the fact that the gs energy has J1C(1) < 0.

Correlations are strictly limited to r 6 2n in systems of N = 4n sites with PBC.

Converged C(r) are further limited to r ∼ n/2 = N/8 based on various criteria

[17, 39]. DMRG results in Fig. 3.8 at J1/J2 = −1 and 0.4 show r|C(r)| separately

for even and odd r up to r = n for 4n = 64, 96 and 144. Convergence is fair
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to r < n/2 along with typical HAF oscillations at small r, here on sublattices.

Converged r|C(2r)| ∼ 0.25 in Fig. 3.8 are roughly constant whereas the r|C0(2r)|

at J1 = 0 in Eq. 3.12 increases slowly.

Substantial spin correlations C(2r− 1) are new results: at intermediate r we find

(2r − 1)|C(2r − 1)| ∼ 0.06 and ∼ 0.04 at J1/J2 = −1 and 0.4, respectively. The

nodal structure of C(2r − 1) in Table 3.2 goes as ± sin ((2r − 1)π/2) with wave

vector π/2. We understand J1C(1) < 0 and q = π/2 but not why the magnitude

of C(3) is larger than that of C(1) or why C(2r−1) then decreases roughly as 1/r.

The small value of S(π)/2 at J1/J2 = −1 or 0.4 in the decoupled phase is due to

extensive cancellation in Eq. 3.15 among spin correlations in different sublattices.

FM spin correlations C(1) > 0 are central to the Haldane dimer phase proposed

by Furukawa et al. [28] in the interval −4 6 J1/J2 < 0, as indicated in their

Eq. (32) and shown in their Fig. (2) at J1/J2 = −2,∆ = 1 (isotropic exchange),

which is well inside the IC phase. The gs has slightly larger C(1) > 0 with one

neighbor than the other. Such broken symmetry states can be constructed in

finite J1 − J2 models whenever the gs is doubly degenerate, and only inversion

symmetry is broken in J1−J2 models with isotropic exchange [27]. The IC phases

in Fig. 3.1 can also be viewed as dimer or bond-order-wave phases, both with

J1C(1) < 0. Numerical results are shown in Fig. (6) of [28] for C(1), correlation

lengths and string correlations. No points are shown,however, between −1 <

J1/J2 < 0.5 which is considered to be an IC phase (except at J1 = 0) that is beyond

numerical analysis. The excluded region almost coincides with the QLRO(π/2)

phase between P2 and P3 in Fig. 3.1.

3.8 Two Related Models

In this section we summarize two models whose quantum phases are related to

those of the J1 − J2 model. The first is an analytical model with HAFs on

sublattices and mean-field exchange that suppresses IC phases and widens the

QLRO(π/2) phase; the critical points P1/P2 merge to J1/J2 = −4 ln 2 and P3/P4
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to J1/J2 = 4 ln 2. The second retains J1 between neighbors. Frustration within

sublattices merges P2/P3 and generates a single IC phase from q
G

= 0 to ±π.

The motivation is to manipulate the critical points in Fig. 3.1 in predictable ways

using exact thermodynamic results as far as possible.

The J1−J2 model has N exchanges J1 between adjacent sites. The total exchange

is the same for (N/2)2 exchanges 4J1/N between all spins in different sublattices,

as in the Lieb-Mattis model [40]. Equal exchange 4J1/N is the mean-field (mf)

approximation for exchange between sublattices. The frustrated mf model for 4n

spins is

Hmf =
4J1

N

2n∑
r,r′=1

~S2r · ~S2r′−1 + J2

4n∑
r=1

~Sr · ~Sr+2. (3.17)

Sublattice spin is conserved as seen on rewriting the first term as

4J1

N

2n∑
r,r′=1

~S2r · ~S2r′−1 =
2J1

N
((SA + SB)2 − S2

A − S2
B). (3.18)

The eigenstates of Hmf are products of HAF eigenstates in sectors with SA =

SB 6 n. We define J2E(S, 2n) as the lowest energy for S 6 n. The S = 0 energy

per site is E(0, 2n)/2n = ε0 = 1/4 − ln 2 in the thermodynamic limit. The gs is

the combination of S = SA + SB and SA = SB that minimizes the energy in Eq.

3.17.

The QLRO(π/2) phase with S = SA = SB = 0 is the gs for J1 < 0 until the FM

state with S = SA + SB = 2n is reached at J1/J2 = −4 ln 2 in the thermody-

namic limit. The gapped IC phase with J1 < 0 has disappeared and q
G

changes

discontinuously from 0 to π/2 at J1/J2 = −2.773. The quantum transition is first

order. The gapped IC and dimer phases are also suppressed for J1 > 0. The AFM

state with S = 0 and SA = SB = n is reached in the thermodynamic limit at

J1/J2 = 4 ln 2 where q
G

jumps from π/2 to π. In fact, the gs remains the product

|G〉 |G〉 of noninteracting HAFs between J1/J2 = −4 ln 2 and π2/4; all C(2r − 1)

are rigorously zero in the interval [29]. The gs between π2/4 and 4 ln 2 is [41]

1|T 〉 |T 〉, the singlet linear combination of the lowest triplet of each sublattice.
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Figure 3.9: ED results for the wave vector qG of gs correlations of the doubly
frustrated model, Eq. 3.19, with N = 24 spins and J4/J2 = 0, 1/4, and 1/2.
The inset enlarges the qG = π/2 region. The singlet gs is degenerate at 12 points

in sectors that are even and odd under inversion at sites.

There are infinitely many ways of going from equal 4J1/N between spins in dif-

ferent sublattices and to nearest neighbor J1. The critical points depend on the

choice of exchange between sublattices. Large J1 < 0 generates LRO(0) while

large J1 > 0 generates either [41, 42] LRO(π) or QLRO(π). The mf model, Eq.

3.17, rigorously has a gapless critical QLRO(π/2) phase. The critical points de-

pend on the choice of exchanges, and all choices have QLRO(π/2) at J1 = 0 for

decoupled sublattices. If somehow the QLRO(π/2) phase of the J1 − J2 model

were limited J1 = 0, the immediate question would be what exchange between

sublattices restores the QLRO(π/2) phase to a J1/J2 interval.

The second model is doubly frustrated. In addition to exchange J1 between first

neighbors, we consider exchangeJ4 > 0 between second neighbors of sublattices.

The doubly frustrated chain is

H
D

= J1

∑
r

~Sr · ~Sr+1 + J2

∑
r

~Sr · ~Sr+2 + J4

∑
r

~Sr · ~Sr+4. (3.19)
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Several exact results follow immediately. When J1 = 0, frustration is within

sublattices and the MG point at J4/J2 = 1/2 is four-fold degenerate. The singlet-

paired sites in one of the Kekulé diagrams of sublattice A is

|K1A〉 = (1, 3)(5, 7)...(2n− 3)(2n− 1). (3.20)

The other diagram goes as (3, 5)(7, 9)...(2n − 1, 1). The corresponding pairing in

sublattice B is between nearest neighbor even sites. Still at J1 = 0, the QLRO(π/2)

phase of either sublattice extends to J4/J2 = 0.2411, the critical point P4 for

sublattices.

At constant J4/J2 = 0.2411, the quantum phase diagram of H
D

as a function of

J1/J2 has a QLRO(π/2) point at J1 = 0 between two IC phases, and any additional

frustration J1 6= 0 suppresses long-range spin correlations. The J1− J2 model has

J4 = 0 and its QLRO(π/2) phase in Fig. 3.1 is suppressed at finite J1/J2. Lets

consider the phase boundaries in the J1/J2, J4/J2 plane. The QLRO(π/2) phase

at the origin is stable along J1 = 0 up to J4/J2 = 0.2411 and, in our analysis, to

P2 < 0 and P3 > 0 when J4 = 0. Field theories limit the QLRO(π/2) phase of

the J1 − J2 model to J1 = 0. The implied fragility of the QLRO(π/2) phase to

J1 6= 0 at J4 = 0 is contrasted in the doubly frustrated model its robustness at

J1 = 0 to J4 > 0.

The J4 term of H
D

strongly perturbs the points at which the gs is degenerate. ED

for N = 24 returns the q
G

versus J1/J2 staircases in Fig. 3.9 for J4/J2 = 0, 1/4,

and 1/2. The inset enlarges where q
G

= π/2 is reached at J1 < 0 and left at J1 > 0.

Increasing J4 substantially lengthens the steps on the J1 < 0 side and decreases the

π/2 plateau, which at J4/J2 = 1/4 is no wider than some other steps. As shown

in the inset, the q
G

= π/2 step is almost entirely suppressed at J4/J2 = 1/2, the

MG point of non-interacting sublattices. Finite J1 breaks the four-fold degeneracy.

The S(q) peak at J4/J2 = 1/2 remains at π/2 for J1/J2 = ±105 but is already at

π/2± π/12 at J1/J2 = ±10−4.

Increasing J4 shifts the gs degeneracy with the FM state to more negative J1/J2.

Classical spins provide a qualitative explanation. The extra term J4 cos 4qcl leads
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to pitch angle qcl
J1

J2

= −4
(

1 +
4J4

J2

cos 2qcl

)
cos qcl. (3.21)

The qcl = 0 result is J1/J2 = −4, exact at J4 = 0. It increases to J1/J2 = −8

and −12 at J4/J2 = 1/4 and 1/2, which is more negative than for quantum spins.

The slope (∂qcl/∂(J1/J2))0 at J1 = 0 is 1/4 when J4 = 0. The slope diverges

at J4/J2 = 1/4, when the rhs of Eq. 3.21 is −8 cos 3qcl. For classical spins and

J4/J2 = 1/2, qcl jumps discontinuously from π/3 to 2π/3 at J1 = 0, as follows

from 4 cos 2qcl = 1. The N = 24 results for q
G

in Fig. 3.9 are consistent with the

expectation that the QLRO(π/2) phase of H
D

is suppressed in the thermodynamic

limit for J4/J2 > 0.2411.

3.9 Discussion

The gs of the J1 − J2 model, Eq. 1.17 with J2 > 0, is a singlet for −4 6 J1/J2.

Other spin-1/2 chains with frustrated isotropic exchange have a singlet gs over

some range of parameters. The singlet gs of finite systems with PBC is non-

degenerate in general, but is doubly degenerate at 2n points in models with 4n

spins and inversion symmetry at sites. The wave vector q
G

of spin correlations can

be used to find gs degeneracies in IC phases, which is our principal result. Variable

q
G

in Fig. 3.3 indicates two IC phases. One is between the exact critical point

J1/J2 = −4 and J1/J2 = −1.24 based on the size dependence of q
G

; the other is

between J1/J2 = 0.44 estimated from q
G

and the exact MG point, J1/J2 = 2, which

is the C-IC point. In between is a gapless critical C phase with non-degenerate

gs and QLRO(π/2). The lowest triplets |T,±1〉 in the decoupled phase have

wave vector k
T

= ±π/2 and broken sublattice spin densities ρ
A
6= ρ

B
that reaches

|ρ
A
− ρ

B
| = 1 at J1 = 0.

The structure factor S(q) is a convenient way to find energy degeneracies in finite

systems using gs properties. The gs is rigorously non-degenerate on the q
G

= π/2

plateaus between (J1/J2)n and (J1/J2)n+1 in Table 3.1. Our numerical results are

in excellent agreement with previous results for S(q) in other contexts. As noted
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in section 3.3, the Lifshitz point where S ′′(π) = 0 is (J1/J2)L = 0.52066, which

matches the result of Bursill et al. [11]. Sudan et al. [24] studied multipolar spin

correlations and magnetization of the J1−J2 model with J1 < 0. The lower panel

of their Fig. (4) shows the S(q) peak, qmax/π, for −4 6 J1/J2 6 −2 at zero field

based on ED to N = 28. Our DMRG results leading to Eq. 3.7 are closely similar:

qmax/π = 0.250 at J1/J2 = −3.53 and ≈ 0.45 at −2 in either case. Furukawa et

al. [28] use the infinite time evolving block decimation algorithm (iTEBD). The

∆ = 1 (isotropic exchange) curve of the S(Q) peak Q versus J1/J2 in Fig. (16)

of [28] has constant Q = π/2 in the J1/J2 interval from about −1.1 to 0.5. The

resemblance to q
G
/π in Fig. 3 is striking. In the IC phase at J1/J2 = −1.8, Fig.

(8) of [28], has Q/π = 0.470 compared to 0.466 according to Eq. 3.7.

We summarize the quantum phase diagram of the J1 − J2 model in Fig. 3.1 as

follows. The gapless FM phase with LRO(0) holds in the sector with J1 < 0 and

J2/J1 6 −1/4, including J2 < 0. Similarly, the gapless AFM phase with QLRO(π)

holds in the sector J1 > 0 and J2/J1 6 0.2411. The gapless decoupled phase with

QLRO(π/2) holds in the sector with J2 > 0 and −1.24 6 J1/J2 6 0.44. Between

the gapless phases with non-degenerate gs are gapped IC and dimer phases with

doubly degenerate gs and spin correlations of finite range. The IC phase with

−4 6 J1/J2 6 −1.24 has variable q
G

ranging from 0 to ±π/2. The IC phase

with 0.44 6 J1/J2 6 2 has q
G

ranging from ±π/2 to π(= −π). The dimer phase

has q
G

= π, and 2 6 J1/J2 6 4.148. As seen in Fig. 3.5, level crossing and gs

degeneracy extrapolate to the same critical points P2 = −1.24 and P3 = 0.44.

The gapless QLRO(q) phases have divergent S(q) peaks while gapped phases have

finite peaks.

These numerical results have a simple qualitative interpretation. The gs energy

per site of the J1 − J2 model is

ε0(J1, J2) = J1C(1) + J2C(2). (3.22)

The gs at J2 = 0 has spin correlations with q
G

= 0 for J1 < 0 and q
G

= π for

J1 > 0. The second neighbor correlation C(2) is positive in both cases. It follows
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that C(1) changes sign when J1 does and that J2 > 0 is frustrating in either case.

Increasing J2 leads to C(2) = 0 at the MG point, J1/J2 = 2, or at q
G

= π/4 where

J1/J2 = −3.53. The situation is quite different in the decoupled QLRO(π/2)

phase in which spin correlations C(2r− 1) between sublattices are identically zero

at J1 = 0. Since the phase is compatible with small C(1) of either sign, finite J1 is

very weakly frustrating at first and the decoupled phase extends over a substantial

interval about J1 = 0.

As proposed by White and Affleck [12], the distance dependence of spin correla-

tions in gapped IC phases goes as

C
IC

(r) ∝ (cosQr)r−1/2 exp−r/ξ. (3.23)

They remark that Eq. 3.23 is approximate and holds for r/ξ � 1. DMRG

calculations of C
IC

(r) at J1/J2 = 0.56, well inside the IC phase, were fit [12] in

their Fig. (9) to ξ = 17.1 and pitch angle Q = π/2 + π/(4ξ). DMRG with two

spins added per site has numerical difficulties [12] when J1/J2 < 0.5. The field

theory of White and Affleck leads [12] to 1/ξ ∝ exp(−aJ2/J1) for J1 > 0, where a

is a free parameter, while that of Itoi and Qin returns [14] 1/ξ ∝ exp(−c(J2/J1)2/3)

with different c for positive and negative J1. In either case, ξ > 0 ensures a finite

range of correlations and hence a finite S(q) peak for J1 6= 0.

The expression for C
IC

(r) has been adopted and rationalized in subsequent studies

of the J1 − J2 model [28, 33] as well as the bilinear-biquadratic chain of S = 1

spins [30]. Now Q is identified as q∗, the structure factor peak. Furukawa et al.

[30] report (Fig. 6(b) of [28]) ξ = 36 at J1/J2 = −1.8 in the IC phase; they note

that, as anticipated by Itoi and Qin [14], ξ is larger for J1 < 0 than for J1 > 0.

Still in the IC phase, DMRG with four spins added [16] per step leads to ξ = 27

and 23.5 at J1/J2 = 0.48 and 0.54, respectively, and as shown in Fig. (6) of [16]

requires different amplitudes for C(2r) within and C(2r− 1) between sublattices.

These examples indicate that C
IC

(r) holds in IC phases. However, the C(r) in

Table 3.2 are not compatible with C
IC

(r) and Q = π/2, which immediately gives

C(2r−1) = 0, in contrast to finite correlations in Fig. 3.9 between spins in different
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sublattices and q
G

= π/2 at both J1/J2 = −1 and 0.4. These J1/J2 parameters

are in the decoupled C phase with QLRO(π/2) rather than in a gapped IC phase.

We have presented numerical evidence for the quantum critical points P2 and

P3 in Fig. 3.1 between gapped IC phases and a gapless decoupled phase with

QLRO(π/2). First, gs spin correlations yield the structure factor S(q) whose peak

q
G

tracks energy degeneracy. The gs is non-degenerate with q
G

= π/2 between

P2 = J1/J2 = −1.24 and P3 = J1/J2 = 0.44 as shown in Table 3.1 and Fig. 3.3

using DMRG up to N = 192 spins. Second, level crossing discriminates between

systems whose lowest excitation is a singlet or triplet. Exact level crossings in

Fig. 3.5 up to N = 28 spins yield the same critical points as q
G

. Third, the

lowest triplet has k
T

= π/2 and sublattices spin densities ρ
A
6= ρ

B
in the decoupled

C phase. Fourth, gapless critical phases have divergent S(q) peaks, with q = π

for J1/J2 > P4 = 4.148 in the familiar QLRO(π) phase and q = π/2 in the C

phase between P2 and P3. Extrapolation to the thermodynamic limit is also

required for the divergence of S(π) or S(π/2). The related models in section 3.8

are additional evidence for a decoupled phase with QLRO(π/2) in spin-1/2 chains

with non-interacting sublattices at J1 = 0.

We mentioned in the Introduction that weak exchange J1 between quantum sys-

tems presents challenges with some resemblance to dispersion forces that, for ex-

ample, have been difficult to include in density functional theory. Methods that

are suitable at small frustration J2/J1 may be less effective at small J1/J2. Field

theories extend a finite energy gap to J1 = 0 on the basis of RG flows. The contin-

uum limit of the lattice is an approximation and there are other approximations as

well. Field theory has not so far addressed level crossing of excited states, variable

q
G

of gs spin correlations in IC phases, spin densities of the lowest triplet or the

magnitude of S(q) peaks in connection with the critical points P2 and P3. We

anticipate that the field theory of J1 − J2 model will eventually be as consistent

with numerical results in the sector of small J1/J2 as it is for the critical point P4

and dimer phase at small J2/J1.
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Chapter 4

Vector Chirality in the Frustrated

J1 − J2 Spin-1/2 Chain

4.1 Introduction

Frustrated quantum spin systems have been a frontier area of extensive studies due

to the existence of various exotic gs. The realization of low dimensional spin-1/2

systems such as edge-sharing chain cuprates like (N2H5)CuCl3 [1], LiCuSbO4 [2],

and LiCuVO4 [3], where quantum effects give rise to various interesting magnetic

phases [3]. These magnetic systems are modeled by the isotropic J1 − J2 spin-

1/2 model with J1 AFM [4–13] or FM exchange interaction [14–19]. The isotropic

J1−J2 model in an axial magnetic field h is written in Eq. 1.18 in chapter 1 where

J1 = −1 and J2 are NN and NNN exchange interaction strength, respectively. For

an AFM J2, competition between these two interaction parameters can lead to

frustration [4–14, 16–20]. Systems with isotropic FM J1 are relatively new and

has not been studied extensively. The study of the above model in the presence

of the axial magnetic field [21–25] is scant.

Recently synthesized one dimensional (1D) chain compounds, such as LiCuSbO4,

LiCuVO4, Li2CuZrO4 [26] and quasi-1D like Ba3Cu3In4O12 and Ba3Cu3Sc4O12

[27, 28] have FM J1 exchange interactions. These compounds are 1D in nature

71
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for temperature greater than 3K. Other compounds like Li2CuZrO4, LiCuSbO4

and LiCuVO4 also have low three dimensional ordering temperature T3D, and

their interaction strength ratios are |α| ∼ 0.45, 3.0 and about 0.25 respectively.

Therefore, these compounds are suitable for studies of the exotic phases induced by

the quantum fluctuations, which are observed at low temperature. Some of these

compounds, e.g., LiCu2O2 show multiferroic behavior below a critical temperature

[29].

In the last decade, though the J1−J2 model with the FM J1 in the absence of the

magnetic field has been studied extensively [21–25], there is no agreement on the

quantum phase diagram in the large |α| limit [13]. In this model the gs has FM

phase with long range order for |α| < 0.25 and a gapped dimer phase coexisting

with a spiral phase for |α| > 0.25 [17–20]. The quantum phase diagram of the

model at the finite axial magnetic field is the playground of the exotic quantum

phases [21–25]. Using bosonization procedure, Chubukov has suggested a uniaxial

dimerized and a biaxial spin nematic phase in the gs [21], where the rotational

symmetry is broken through the sites or the bonds, respectively [21]. Hikihara

et al. used bosonization technique, the ED and the DMRG method to calculate

the different phases in the presence of the axial magnetic field. The vector chiral

(VC) and the multipolar phases are shown to exist in the presence of a finite

magnetic field [22, 23]. Sudan et al. also showed the presence of the VC and the

multipolar phases using the ED. The square of the VC order parameter and the

structure factor are used to construct the quantum phase diagram [24]. In the

earlier works, the quantum phase diagrams are constructed based on correlation

functions, especially the VC phase [23–25], where the square of the order parameter

and its related correlation functions are calculated.

In this chapter, we focus mainly on the degeneracies and the level crossings in

the gs of the Hamiltonian and these degeneracies are also used to characterize the

VC and the multipolar phases of the Hamiltonian H of Eq. 1.18. We also show

that in the large |α| limit, the zigzag structure of the spin chain is responsible for

a quadrupolar phase. This chapter is organized as follows: section 4.2 discusses

about the VC phase, the multipolar phases and various broken symmetry states in
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those phases. Results are presented in section 4.3 and these results are discussed

in section 4.4.

4.2 Vector Chiral and Multipolar Phases

The VC phase is an interesting phase with spontaneously broken spin parity and

inversion symmetry [20]. The order parameter of this phase can be written as

κij = 〈Si × Sj〉, (4.1)

where i, j are the neighboring sites. The spin current, Jijκ
z
ij can be derived from

the equation of motion [23]. The z-component of the above can be defined as

follows

κzr = 〈Si × Si+r〉z =
i

2
〈S+

i S
−
i+r − S−i S+

i+r〉, (4.2)

where S+
i and S−i+r are the spin raising and lowering operators at site i and (i+r),

respectively. The z-component of the above operator is just an anti-symmetric

combination of bond order operators. For non-zero expectation values of the spin

current, the Z2 symmetry should be broken, i.e., the system chooses a particular

direction of the spin current spontaneously [23]. The Z2 symmetry can also be

broken by applying the Dzyaloshinskii-Moriya (DM) interaction.

The spin parity of the Hamiltonian in Eq. 1.18 is not conserved for a non-zero Sz

spin state in the presence of a high axial magnetic field. Therefore, to have the VC

phase only inversion symmetry of the state with non-zero Sz should be broken. In

these systems, spontaneous inversion symmetry is broken for doubly degenerate

gs. The expectation value of the axial component of the order parameter, κzr, spin

current, as defined in Eq. 4.2 can be written as

κzr = 〈ψ+| (Si × Si+r)
z |ψ−〉 , (4.3)
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where |ψ+〉 and |ψ−〉 are the two degenerate gs with opposite inversion symmetry.

The multipolar phases and chiral vector boundaries are determined on the basis

of non-zero values of κz.

The existence of multipolar phases is an another interesting phenomenon in this

model system. At |α| = 0.25, the FM and the singlet gs cross each other [17]

in the absence of the magnetic field. At |α| = 0.25, a multi-magnon state with

p = N/2 is stable where p is number of magnons condensed. In the neighborhood

of the quantum critical point |α| = 0.25, smaller p multi-magnon states with p =

6, 5, 4, 3, 2 are stable [23, 24]. All the higher p state phases are narrow compared

to p = 3 and 2 as shown by Hikihara et al. [23] and Sudan et al. [24]. In this

chapter, we concentrate on the triatic (p = 3) and the nematic (p = 2) phases.

It is shown that the nematic phase is a Tomonaga-Luttinger liquid (TL) of hard

core bosons with two magnon bound states. The Nematic phase is commensurate

with momentum q = π, whereas incommensurate with its neighborhood. In these

phases, both the boson propagator and the density-density correlation follow the

power law decay [23]. One can define an n−type spin nematic order parameter

[30] of this phase as

Qβγ
ij = Sβi S

γ
j + Sγi S

β
j −

2

3
〈Si · Sj〉δβγ, (4.4)

where β and γ stand for x, y and z-component of the spin. As pointed out by

Andreev and Grishchuk [31], and Hikihara et al. [23] that

Qx2−y2
ij = Sxi S

x
j − S

y
i S

y
j ,

Qxy
ij = Sxi S

y
j + Syi S

x
j ,

(4.5)

Qx2−y2
ij and Qxy

ij are thought to be the quadrupolar spin operators. As pointed out

by Chubukov, the nematic order can be realized because of pairing of two-magnon

excitations [21]. The nematic order parameter can be redefined as Q−−ij = Qx2−y2
ij −

iQxy
ij = S−i S

−
j . Similarly, the order parameter of the higher order multipolar phases

can also be redefined as octupolar triatic phase S−i S
−
j S
−
k , hexadecapolar quartic

phase S−i S
−
j S
−
k S
−
l etc. These phases have been shown to exist in the magnetization
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curve by Hikihara et al. [23] and Sudan et al. [24]. Starykh and Balents [32] has

also shown the existence of the quadrupolar phase in this model. Using Q−−ij as the

order parameter, the quadrupolar phase can be characterized by the step ∆Sz = 2

in the magnetization vs. magnetic field as shown in Fig. 4.8.

4.3 Results

In this chapter, we study the quantum phase diagram of the J1 − J2 model in the

presence of an axial magnetic field. Symmetrized ED and DMRG methods [9] are

used to calculate the various results presented here. In the conventional DMRG

algorithm for the J1 − J2 model the superblock is constructed by using renormal-

ized operator twice. The multiple times renormalized operator in constructing of

superblock Hamiltonian operator leads to poor convergence and low accuracy of

the eigenvalue and eigenvector. To avoid that we use a modified DMRG algo-

rithm where four sites are added at every step. This algorithm is used to avoid

usage of the twice renormalized operators in constructing superblock, therefore the

convergence and efficiency of the DMRG method increase. It is shown that the

gs converges faster by using the modified DMRG than the conventional DMRG

[33–35]. We have used 500 eigenvectors of the density matrix and 4 − 5 finite

sweeps for our calculations. The truncation error of density matrix eigenvalues

of the DMRG calculation is less than 10−14. Accuracy of the energy gaps in the

system is 3% whereas the accuracy of the correlation functions are less than 2%.

The calculations are done for system sizes up to N = 300 with OBC. The ED

method with inversion and spin parity symmetries are used to determine various

energy level crossing points of the Hamiltonian up to 28 sites. All the calculations

are done for the lowest state in each Sz manifold and their respective symmetry

subspaces.

The VC order parameter can be directly calculated using the definition as shown

in Eq. 4.3. This order parameter is the difference of two operators which are

hermitian conjugate of each other. Therefore, the expectation values of operators



Chapter 4. 76

0.25 0.5 0.75 1
|α|

0

0.006

0.012

0.018

0.024
E

σ

S
z
=1.0

      3.0
      5.0
      7.0
      9.0
      11.0

0.25 0.5 0.75 1
|α|

0

0.01

0.02

E
σ

S
z
=3.0N=24, Odd S

z

Figure 4.1: The lowest excited state gaps Eσ for odd Sz with the system size
N = 24 are shown. Inset: The lowest excited state gap in a particular Sz = 3.0

sector for the system size N = 24.

are same in a non-degenerate state of the Hamiltonian in Eq. 1.18 in chapter 1.

Let us consider that we have two degenerate states and the linear combination of

these two states belonging from two different subspaces of symmetry space break

the symmetry of the state. In that case, one can calculate the order parameter

in the broken symmetry state. For example, a broken symmetry state which is

linear combination of two degenerate states with different spin parity and inversion

symmetries have non-zero VC order parameter κ. At sufficiently high magnetic

field, spin parity symmetry is broken for a gs with non-zero Sz. Therefore, to have

non-zero VC order parameter κ, inversion symmetry should also be broken in

these states, which can be done by taking a linear combination of the degenerate

gs with opposite inversion symmetry. To calculate κzr doubly degenerate state

|ψ+〉 and |ψ−〉 should be studied. To avoid the accuracy problem, in case of

small excitation gaps and to separate the two different symmetry subspaces, ED

method with inversion symmetry is used. We have calculated the lowest gaps

Eσ = E(σ = 1) − E(σ = −1) where E(σ = 1) and E(σ = −1) are the lowest



Chapter 4. 77

eigenvalues in a Sz sector with inversion subspace σ = + and σ = −, respectively,

for different system sizes.

Fig. 4.1 shows the lowest excited state gaps Eσ for odd Sz sectors as a function

of |α| with the system size N = 24. The inset of the Fig. 4.1 shows Eσ for Sz = 3.

We notice that there are multiple energy level crossings between |α| = 0.26 and

0.67. These crossings are at 0.261, 0.293, 0.391, 0.65, and 0.67. There is continuous

degeneracy of energy levels from |α| = 0.391 to 0.65 and |α| > 0.67. In the odd

Sz sector, there are energy level crossovers between the two fold degenerate states

with a non-degenerate state. The zero gap represents continuous degeneracies in

the gs. We notice that for smaller |α| < 0.7, low Sz states are degenerate at

multiple values of |α|. The multiple degeneracies for different values of the Sz

correspond to the multiple energy levels crossing. These multiple degeneracies are

due to the spiral arrangement of the spins. Earlier, it has been shown that spiral

phase sets in the systems for |α| > 0.25 at magnetic field h = 0 [20]. For finite

Figure 4.2: In the large |α| limit, Fig. 4.2 (a) and (b) show the spin arrange-
ments in the two degenerate states in the Sz = 3.0 sector for the system size

N = 12.
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Figure 4.3: Spin densities of the gs for different low Sz sectors are shown. In
even Sz sectors, spin density of only non-degenerate gs are shown, whereas, spin

densities of both the degenerate gs in the odd Sz sectors are shown.

system size, the energy levels become degenerate if the wavelength of the spiral

spin wave is commensurate with system size.

For large |α| limit, the above 1D chain can be mapped into a zigzag chain like

structure as shown in Fig. 4.2. Degeneracies in the odd Sz = 2p+ 1 state can be

explained in terms of nearly decoupled phase of the zigzag chain. We notice that

the 2p spin densities are equally distributed on both the legs, but extra Sz = 1 is

localised either on upper arm of one state or on the lower arm of second state, as

shown in Fig. 4.2 (a) and (b).

To verify the hypothesis, spin density in the gs for Sz = 1, 2, 3, and 4 manifolds

is calculated for N = 24 system size as shown in Fig. 4.3. The spin densities of

degenerate states with odd Sz = 1, 3 and non-degenerate states with Sz = 2, 4

are shown. We notice the spin densities are equally distributed on each leg of the

zigzag chain. For Sz = 1, almost 99.9% of the spin density is concentrated either

on the upper leg for one state or on the lower leg in case of the second state. For

Sz = 3 sector, two magnons are confined on the upper leg and one on the lower
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Figure 4.4: The lowest excited state gaps Eσ for even Sz with system size
N = 24 are shown. Inset: The lowest excited state gap in a particular Sz = 2.0

sector for the system size N = 24.

leg in one state, whereas one magnon on the upper leg and two on the lower leg

in the second state.

Similarly, Fig. 4.4 shows the lowest excited state gaps Eσ for even Sz sectors as a

function of |α| for N = 24. The inset of the Fig. 4.4 shows Eσ for Sz = 2. Clearly

Eσ in this Sz sector shows a similar pattern to that of the odd sectors in small |α|

limit. The energy level crossings are at |α| = 0.267, 0.272, 0.296, 0.308, 0.378, 0.381,

and 0.428. There are continuous degeneracies from 0.308 to 0.378 and 0.381 to

Table 4.1: Last energy levels crossing points |αc| for different system sizes N
in the even Sz sectors are shown.

Sz N(16) N(20) N(24) N(28)

2 0.394 0.412 0.428 0.440
4 0.375 0.376 0.378 0.380
6 0.370 0.368 0.370 0.373
8 - 0.372 0.367 0.367
10 - - 0.373 0.370

12 - - - 0.374
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Figure 4.5: Expectation values of κz in the odd Sz sectors as a function of
|α| with system size N = 24 are shown. Values of κz are calculated only at
degenerate points. Inset: The expectation values of κz at a particular Sz = 3.0
sector as a function of |α| are shown. Black circle, red square, green diamond,

blue triangle up, violet left triangle represent Sz = 1, 3, 5, 7, 9, respectively.

0.428, because of degenerate gs. In the large|α| limit, Eσ is finite in even Sz sectors,

whereas, it is degenerate in even Sz sectors for |α| > |αc|. The |αc| decreases with

increasing values of Sz.

In Table 4.1, the last energy level crossing points |αc| for even Sz sectors are

listed. The ED calculations of system size up to N = 28 show weak system

size dependence of |αc| for larger Sz. The |αc| for system size N = 28 in Sz =

8, 10, and 12 manifolds are 0.367, 0.370, and 0.374, respectively. Below |αc|, the

first excited state and gs are related by inversion symmetry. Therefore, in these

parameter limits, the gs becomes degenerate in the thermodynamic limit. Using

these degenerate states broken symmetry states can be constructed, and the VC

order parameter is non-zero in this broken symmetry state.

The expectation value of the z-component of the chiral vector order parameter, κ,

is calculated at degenerate points using the Eq. 4.3. For the system size N = 24,
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Figure 4.6: Expectation values of κz in the even Sz sectors as a function of
|α| with the system size N = 24 are shown. Values of κz are calculated only at
degenerate points. Inset: The expectation values of κz at a particular Sz = 2.0
sector as a function of |α| are shown. Black circle, red square, green diamond,

blue triangle up, violet left triangle represent Sz = 2, 4, 6, 8, 10, respectively.

κz for odd Sz sectors are shown in the Fig. 4.5. In the inset of this figure, κz as a

function of |α| for Sz = 3 is shown. κz is not a continuous function of |α| because of

the energy level crossings. The sudden jumps in κz are due to symmetry crossover

of lowest states. As shown in the inset, κz is continuous for|α| in between 0.392 and

0.66, and |α| > 0.67. The energy levels in these intervals are doubly degenerate,

as shown in the inset of Fig. 4.1, and the discontinuity in the κz at |α| = 0.66

is because of energy levels crossing. We notice that the variation of κz with the

system size is weak. In the main Fig. 4.5, values of κz, between |α| = 0.25 and

0.4, are relatively high for smaller Sz. In the large |α| limit κz in all the odd Sz

sectors decrease weakly with |α| and finally go to zero in the decoupled phase.

The κz for all the even Sz is shown in Fig. 4.6. The κz for the Sz = 2 is shown

in the inset of the Fig. 4.6. The κz is discontinuous at four values of |α| and all

the discontinuities occur at the energy level crossing points. We notice that the

discontinuity point coincides with the energy levels crossing in the inset of Fig.
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Figure 4.7: Magnetization vs. axial magnetic field h for |α| = 0.35 is shown.
The calculations are done for system sizes N = 24 and 48 for the PBC and
N = 48 for OBC. Inset: The M vs. h for the N = 48 and 100 for OBC are

shown.

4.4. κz of Sz = 2 is confined between |α| = 0.25 and |α| ≈ 0.45, whereas this

extends to higher values of |α| for Sz = 3. The main Fig. 4.6 shows that for all

the even sectors of Sz non-zero values of κz are confined below |α| = 0.5 for the

system size N = 24. Similar to odd Sz sector, values of κz in the small |α| limit

are larger for smaller Sz. As we have stated earlier, κz is the order parameter for

the VC phase, therefore, depending on the values of Sz of the gs in the strong

magnetic field h, the VC phase can be confined to less than 0.45 or extended to

large values of |α| for even or odd Sz, respectively.

To understand the multipolar phases and value of Sz in the applied axial field at

absolute zero temperature, we calculate the magnetization as a function of axial

magnetic field h (M−h plot) shown in Fig. 4.7 and 4.8 for |α| = 0.35 and |α| = 0.8,

respectively. In the main Fig. 4.7, M − h curve is shown for N = 24, 48 with

PBC and for N = 48 with OBC. The inset shows M − h curve for the OBC case

with system sizes N = 48 and 100 with thicker and thinner lines, respectively. For
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Figure 4.8: Magnetization vs. axial magnetic field h for |α| = 0.60 for system
sizes N = 24 and 48 for the PBC and N = 48 for OBC is shown. The inset

shows M vs. h for the N = 48 and 100 for OBC is shown.

|α| = 0.35, in PBC case, first few steps in the magnetization are ∆Sz = 1 and

afterwards the steps are ∆Sz = 3. The dotted line indicates the boundary of VC

(∆Sz = 1) and triatic phases (∆Sz = 3). The OBC system also has the similar

trend as that of the PBC, except that the magnetic field required in case of OBC

is lower than that for PBC case. As shown in the inset of Fig. 4.7, magnetization

step ∆Sz is one up to Sz = 7 (M = 0.15) and Sz = 18 (M = 0.18) for system sizes

N = 48 and 100, respectively. The dotted line indicates the boundary of step of

one and three. We notice that these steps are associated with the finite binding

energies of three magnons in the thermodynamic limit. Therefore, these steps are

finite in the triatic phase, even in the thermodynamic limit.

The magnetization M with different h, at |α| = 0.8, is shown in the Fig. 4.8. Main

figure shows the M − h curve for both PBC with N = 24 and 48 and OBC with

N = 48. In OBC system, magnetization start with step of one for Sz below 2 and

the step of 2 for Sz > 2. These steps in the PBC systems, are always two. Inset of

Fig. 4.8 shows that first two steps are one in the magnetization curve. The inset
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Figure 4.9: For two values of |α| = 0.8 and 1.0, ∆1 and ∆2 are extrapolated
where, ∆1 = E(Sz = 1)− E(Sz = 0) and ∆2 = E(Sz = 2)− E(Sz = 0), where
E(Sz = 0), E(Sz = 1), and E(Sz = 2) are the lowest states in the Sz = 0, 1,

and 2, respectively.

of Fig. 4.8 shows the magnetization for two systems N = 48 and 100 for an OBC

systems. Similar to triatic phase, quadrupolar phase also has steps of two and is

associated with the binding energies of two magnons [36]. The binding energies

are finite and largest for |α| ≈ 1 at finite magnetic field.

For |α| = 0.8, step of one in OBC and PBC systems behave differently. In the

infinite size systems, these differences should not be there. To resolve the issue,

we have extrapolated the gaps ∆1 = E(Sz = 1) − E(Sz = 0) and ∆2 = E(Sz =

2)−E(Sz = 0), where E(Sz = 0), E(Sz = 1), and E(Sz = 2) are the lowest states

in the Sz = 0, 1, and 2 spin sectors, respectively. In Fig. 4.9, ∆1 and ∆2 are shown

as a function of 1/N for |α| = 0.8 and |α| = 1.0. Extrapolated values of ∆1 and ∆2

are smaller than the accuracy limit of our calculations. Therefore, in the infinite

systems for |α| > 0.8, one can see only steps of two in both PBC and OBC case.

The extrapolated PBC and OBC results are consistent with each other.

At|α| = 0.25 our calculations show a magnetization step of N/2 which is consistent
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Figure 4.10: The quantum phase diagram of J1 − J2 model in the axial mag-
netic field is shown. Phase boundaries are obtained using OBC and PBC calcu-
lations. FM, QP, TP, and QRP represent ferromagnetic, quadrupolar, triatic,
and quartic phase, respectively. Boundary represented by circle and triangle

are calculated from PBC and OBC, respectively.

with the earlier calculations [17]. In this limit system goes from a fully polarized

state Sz = N/2 to singlet gs. We also find that increasing |α|, the value of multipo-

lar order p decreases, which is consistent with earlier results [23–25]. Our results

for finite system sizes with OBC show that for |α| > 0.8, steps are always in steps

of 2. Our DMRG calculation for system size up to 48 sites with PBC show that

the gs for |α| > 0.54 is always in sectors with even Sz in the presence of the axial

magnetic field.

Based on the degeneracy and the magnetization steps, the quantum phase diagram

is shown in the Fig. 4.10. Our quantum phase diagram in h− α parameter space

agrees with the existence of multipolar phases with p = 2, 3 and 4. The VC phase

is confined to low magnetization, whereas the multipolar phase is a stable phase

at higher magnetic field. For N = 24 calculation shows that the degenerate gs

has always magnetization step of one, i.e., ∆Sz = 1. Therefore, the coexistence

of the VC and the multipolar phases are avoided. Our phase boundaries of the
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quantum phase diagram, for|α| < 0.5 are similar to what Hikihara et al. found. As

stated earlier, the VC phase for the finite system is bounded by |αc| values listed

in Table 4.1. We notice that for an accurate |αc| value, large system calculations

are required. The boundary obtained from energy level crossing in finite N is

|αc| ≈ 0.54, whereas from magnetization step in large N also gives very similar

phase boundary at |α| ≈ 0.8.

For large values of |α| in OBC, the finite size effect is dominant. A finite system

with PBC and OBC have different phase boundaries, but extrapolated values of

the phase boundaries of the VC and the quadrupolar phases are same. We notice

that for 0.31 < |α| < 0.37, the boundaries of the VC and the triatic phases are

mediated by the small region of the quadrupolar phase.

4.4 Discussion

Numerical study of the isotropic J1−J2 model with FM J1 and AFM J2 exchange

interaction in the axial magnetic field h is done. In this system, Z2 symmetry is

spontaneously broken in the presence of the axial magnetic field [23–25]. In earlier

studies, the VC phase has been characterized based on various kinds of correlation

functions like current-current correlation function and scalar chiral correlation

etc. The scalar chiral vector (SCV) operator involves three spin operators. The z-

component of an SCV operator Si · (Sj × Sk) can be written as Szi (S+
j S
−
k −S

−
j S

+
k )

[37]. The characterization of VC phase based on the SCV correlation can be

misleading in a finite size system. Our calculations suggest that this correlation

function in a finite system can be non-zero even in the absence of the VC phase.

The order parameter κ can be calculated using the broken symmetry states in

this model, and it is shown for the first time that there are degeneracies in the

lower states of Sz 6= 0. A large number of level crossing occur at different values

of |α| in the presence of spiral phase or chiral phase in the system. The broken

symmetry state is constructed using degeneracies in the gs to characterize the VC
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phase. The calculation of κ can be useful in calculating the electronic polarization

P ∝κ in the improper multi-ferroic materials such as LiCuVO4 [3, 4].

These frustration induced degeneracies in the gs of the Hamiltonian are very similar

to the degeneracy in the spiral phase of AFM-AFM spin-1/2 chain model [10].

These two states are related through inversion symmetry, same as that of the gs of

the MG model [4]. There are two prominent reasons for degeneracy; first, because

of the spiral like arrangement of spin where degeneracy occurs, in finite system,

when spiral wavelength is commensurate with the system size, and second, in the

large |α| limit, the zigzag chain behaves like two decoupled chains and for odd

number 2p + 1 of magnon excitation, p number of magnons confined to each leg

and extra magnon can be confined to any one of the two legs. Therefore, the gs

becomes degenerate to let magnon to be confined in either upper leg or lower leg

as shown in Fig. 4.2. We find the second type of degeneracy which is continuous

in nature even in the finite system. In the decoupled limit, the lowest excitation is

triplet excitation on each leg. In this limit, 2∆1 is larger than ∆2, therefore M−h

plot shows steps of 2.

We have constructed a new quantum phase diagram using ED and modified DMRG

results. Our results agree with the existing phase diagram below |α| < 0.5 [23–25].

Contrary to earlier results which show the existence of the VC in low magnetic

field and the quadrupolar phase in the high magnetic field [23], our results suggest

that for |α| > 0.8, only quadrupolar phase exists. These conclusions are based

on various criteria such as the magnetic step, the energy level crossings, and the

order parameters etc. The magnetic step in our calculations is always ∆Sz = 2

for |α| > 0.8, whereas the existing results show ∆Sz = 1 for low field h. The

excitation gaps have large finite size effect at low field and earlier studies lack the

finite size scaling [23]. The last energy level crossing point is another criterion,

below the last crossing points both levels become degenerate and give rise to VC

phase. The energy level crossing points are shown in Table 4.1. We notice that

the last energy level crossing point for smaller Sz have large finite size effect and

underestimate the VC-quadrupolar phase boundary. On the basis of the above
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results, we conclude that the VC phase exists only in the narrow range of the

parameter space α− h.

In conclusion, using the ED and the modified DMRG results, a new quantum phase

diagram of the J1−J2 model in presence of the axial magnetic field is constructed

and VC phase is shown to exist only in the narrow range of parameter space. The

main focus of this chapter is to show the degeneracies in lowest states in different

Sz manifold of the Hamiltonian. Broken symmetry states are constructed using

these degenerate gs to calculate the VC order parameters. In the large |α| limit,

frustration induced degeneracies in the odd Sz sectors are studied in detail.
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Chapter 5

Study of Multipolar Phase in the

Spin-1/2 Chain

5.1 Introduction

Interaction induced frustration and confinement of electrons in a one dimensional

(1D) magnetic system generates many exotic phases [1–4]. Some of these phases

can have well defined order parameters, whereas other phases can have hidden

order parameter. The 1D spin-1/2 systems with an isotropic J1− J2 model [5–21]

in the presence of an axial magnetic field h have been extensively studied [2–

5, 22–26]. The J1 − J2 model in an axial magnetic field h is shown in Eq. 1.18 in

chapter 1 where J1 and J2 are NN with FM and NNN AFM exchange interactions,

respectively. The ratio of NN and NNN is defined as α = J2/J1 in chapter 1.

The model with a FM J1 shows many interesting phases like spin liquid [5–9],

dimer [5–9], chiral vector [1, 27], spin multipolar [3, 4], decoupled phase [8]. The

spin liquid phase is gapless and possesses quasi-long range order [9, 14]. The

dimer phase is gapped in nature, and the spin-spin correlation decays exponentially

[9, 14, 17]. This model has been extensively used for modeling the magnetization

properties of LiCuSbO4 [28], LiCu2O2 [29], Rb2Cu2Mo3O12 [30], Li2CuZrO4 [31],

Ba3Cu3In4O12, and Ba3Cu3Sc4O12 [32, 33]. In the chiral vector phase, both spin
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parity and inversion symmetry are spontaneously broken [34]. This phase has been

studied extensively because of its potential application in improper multiferroic

systems [35, 36].

The field theoretical and numerical studies by Hikihara et al. suggest that meta-

magnetic or spin multipolar phase exist in the presence of the high axial magnetic

field h for FM J1 [3]. These multipolar phases have hidden order parameters.

In this model multipoles of order p depend on the J2/J1 ratio [3, 4], and the

nomenclature of each phase is done based on the number of bound magnons in the

systems i.e., the number of paired magnons p in dipolar, quadrupolar, octupolar

and hexadecapolar phases are 1, 2, 3, 4, respectively. The quadrupolar phase is a

Tomonaga-Luttinger liquid of hard core bosons [3], and each boson is made up of

two magnons. In this phase, the correlations between bosons and density fluctu-

ations follow a power law. However, the boson propagator is dominant over the

density fluctuations in this phase [3]. In his seminal work Chubukov predicts that

this phase has dimerized gs [1], but Hikihara et al. show the absence of dimer-

ization [3]. In the large J2/J1 regime, field theoretical calculations show that the

SDW2 phase exists in low magnetic field, whereas SN phase exists in the narrow

range of magnetic field near the saturation field [3]. The numerical calculations in

|α| > 0.6 show the finite binding energy of magnon even for a small field h [27].

The order parameter of the SN phase 〈S+
i S

+
i+1〉 is defined in Refs. [1, 37, 38].

It is hidden in nature, although the probes like the INS [28, 39] and the reso-

nant inelastic X-Ray scattering (RIXS) [40] methods can indirectly measure these

phases. The nematic phase in LiCuVO4 compound is confirmed by using the INS

data of dynamical structure factor [39], and NMR data of this compound shows a

sharp single and solitary line which moves with magnetic field [41, 42]. There is a

characteristic feature of INS measurement for the SDW2 and SN phase.

In this model, there are many unsettled issues such as the metamagnetic phase

in the small J2/J1 regime has been completely unexplored, and is difficult to

characterize because of very small gaps. We have shown the gs degeneracies in

the odd Sz sectors [27], but dimer order parameter B is vanishingly small in this
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sector. The existence of quadrupolar phase in spin-1 systems is controversial, as

steps of two in the M − h curve is absent [43, 44], whereas the other studies for

general spin show the existence of this phase. We explore this phase for the spin-1

system using the Hamiltonian in Eq. 1.18.

We use modified DMRG algorithm, where four new sites are added to avoid the

multiple time of renormalization of operators in the superblock which is already

discussed in chapter 2. The modified DMRG has better convergence and also has

sparse Hamiltonian matrix of superblock for the model Hamiltonian in Eq. 1.18,

compared to the conventional DMRG where only one site is added in each block

at every step [16]. The number of eigenvectors of the density matrix retained up

to m = 400 to maintain the truncation error of density matrix eigenvalues less

than 10−10. In the worst case error in the energy is less than 0.01%. The DMRG

is used for calculating various properties of large system sizes up to N = 368 chain

with OBC. The number of finite DMRG sweeps required for an accurate gs and

spin correlation function in the different Sz sectors is approximately 20. Recently

developed PBC algorithm is also employed for calculating the accurate gs and the

correlation functions [45].

The rest of the chapter goes in the following sequence. Results are discussed in

section 5.2. We start with the higher order multipolar phase and the relation

between the pitch angle θ and magnetization M is discussed in subsection 5.2.1.

The quadrupolar phase is discussed thereafter. The dimer phase in the SN/SDW2

phase is presented in the subsection 5.2.2. The results for spin-1 for the same

model are discussed in section 5.3. The discussion of all the results is done in the

next section 5.4.

5.2 Results

The quantum phase diagram of the J1− J2 model in an axial magnetic field given

in Eq. 1.18 consists of numerous phases such as the vector chiral (VC) [1, 27],

the dimer [5–10, 12–21], the decoupled chain [8, 18], and multipolar/SDWn phases
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[3, 4]. In this work, the SN/SDW2 phase and other higher order multipolar phases

are discussed. This section is divided into three subsections. In subsection 5.2.1,

multipolar phases for spin-1/2 are discussed in the beginning; SN/SDW2 phase

is presented in the later part of subsection 5.2.1. The coexistence of dimer and

SN/SDW2 phase is presented in subsection 5.2.2.

5.2.1 Multipolar Phases in S = 1/2

The multipolar phase and the spin density wave in the J1−J2 model for a spin-1/2

chain in the presence of magnetic field h are discussed in this part. We notice that

there is a level crossing from FM to singlet gs at |αc| = 0.25 [6], and near to the

critical point |αc|, but |α| > 0.25 limit, multiple magnons bind to form multipoles

below the saturation magnetic field. It is also noted that the number of p changes

rapidly with |α|. In this chapter, multipolar phase with order p is explored based

on the magnetic steps, pitch angle θ of spin density, and spin correlations in the

gs at a finite magnetic field h. The angle between two nearest neighbor spin is

called pitch angle θ and is defined as

θ =
2π

L
, (5.1)

where L is the smallest distance between spins whose pitch angle differs by 2π.

The field theoretical bosonization calculations [6] suggest that for |α| > 0.25, the

system shows SDWn in low magnetic field, whereas it shows multipolar phase at

high magnetic field [3]. The multipolar correlation of order p or boson propagator

〈S+
i S

+
i+1 · · · S+

p+i−1S
−
i+r+1S

−
i+r+2 · · · S−i+r+p−1〉 is written [3] as

〈S+
0 · · · S+

p−1S
−
r · · · S−r+p−1〉 = (−1)r〈b0b

†
r〉

=
Am(−1)r

|r|1/η
− Ãm(−1)r

|r|η+1/η
cos(2πρr) + · · ·,

(5.2)
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where Am and Ãm are constants, η is twice of the Luttinger liquid parameter, and

r represents distance. The density-density correlation is written as

CL(r) = 〈Sz0Szr 〉 =

〈(
1

2
− pb†0b0

)(
1

2
− pb†rbr

)〉

= M2 − p2η

4π2r2
+
Az cos(2πρr)

|r|η
+ · · ·,

(5.3)

where ρ = 1
p
(1− M

M0
), M0 is the saturation magnetization. The pitch angle θ = 2πρ

varies with the magnetic field. The spin density 〈Szr 〉 calculated from the field

theoretical method is written [3] as

〈Szr 〉 =
1

2
(1− p)− pz(r; q);

z(r; q) =
q

2π
− a(−1)r sin(qr)

fη/2(2r)
;

q =
2πN

N + 1
(ρ− 1

2
);

fν(x) =

[
2(N + 1)

π
sin

(
π|x|

2(N + 1)

)]ν
.

(5.4)

The pitch angle θT in transverse direction can also be extracted from the transverse

correlation function CT (r) = 〈(Sxi Sxi+r + Syi S
y
i+r)〉. However, the pitch angle θ in

the longitudinal direction is calculated from CL(r) and spin density 〈Szr 〉.

The 〈Szr 〉 and CL(r) are shown in Fig. 5.1 (a) for M = 0.35, |α| = 1.0 and N = 168.

The CL(r) is scaled by 3.25 and r is shifted by 1.0 unit to match the magnitude

of 〈Szr 〉. Interestingly, the complex looking equation of 〈Szr 〉 in Eq. 5.4 has similar

variation as that of CL(r). All the 〈Szr 〉 and CL(r) give the same pitch angle. The

Friedel oscillation at the edge of the chain is seen in both 〈Szr 〉 and CL(r). The

spin densities are plotted in Fig. 5.1 (b) for M = 0.05, 0.1, 0.25 and 0.3. The

amplitude of 〈Sz0Szr 〉 decreases with the distance, whereas |〈Szr 〉| at site r is more

or less constant with r. Therefore, it is easier to calculate θ from 〈Szr 〉 than from

〈Sz0Szr 〉. We find that θ decreases with M and reduces to zero at M = 0.5 for

the spin-1/2 system. These results are consistent with the Sudan et al. exact

diagonalization results [4].
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Figure 5.1: The upper panel (a) shows the spin density 〈Szr 〉 and longitudinal
correlation function CL(r) for M = 0.35. CL(r) is multiplied by 3.25 times and
x-axis of this plot is shifted by 1 unit to match the magnitude and phase of
〈Szr 〉. In the lower panel, spin densities 〈Szr 〉 for M = 0.05, 0.1, 0.25, and 0.3 are

shown. For the CL(r) mid site of the chain is kept as reference site.

As shown in the Fig. 5.1 (a) θ calculated from 〈Szr 〉 and CL(r) are same. With

M the variations in θT of the transverse correlation functions CT (r) is less than

5%. The accurate calculation of θ near M0 ≈ 0.5 requires larger system size, and

for these calculations we have used N = 168 for low magnetization and 368 for

higher magnetization. The θ and θT are calculated from the 〈Szr 〉 and the CT (r),

respectively, for |α| = 0.265, 0.27, 0.3, 0.4, and 1.0 as a function of M/M0 shown

in Fig. 5.2 (a) and 5.2 (b). The filled symbols are the DMRG calculations for

N = 168 with OBC, and dotted lines are fitted line with θ
π

= 1
p
(1 − M

M0
) where p

is the order of the multipole.

In Fig. 5.2 (a) we notice that the variation of the θ with M shows linear relation

θ
π

= 1
p
(1− M

M0
) especially at large M . For |α| > 0.4 and large M , θ varies linearly

with M/M0 with a slope 2/p = 1. The linear behavior of θ deviates from the

straight line at low M/M0 for |α| 6 0.6. The deviation point for |α| = 0.4 is at

M/M0 ≈ 0.28. In the VC phase θ depends weakly on M as shown in Fig. 5.2 (a).
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The phase boundary of the quadrupolar and the VC phase is estimated using the

level crossing or magnetic step criterion as in Refs. [3, 27]. For |α| ≥ 0.4 results

will be discussed in the later part of this section.

The three magnon bound phase or the triatic/SDW3 phase occurs in the vicinity

of |α| = 0.3 and θ
π

is less than 0.26 at M < 0.21 as shown in Fig 5.2 (a). At

large M the slope of the green line in Fig. 5.2 (a) is 1/p = 1/3. The phase

boundary of the triatic/SDW3 and the VC phase can also be estimated from

the deviation of the θ
π

from linear relation as shown in Fig. 5.2 (a). In fact θ

weakly depends on M in the VC phase and remains constant for the given value

of |α|, whereas it varies linearly with slope 1/p = 1/3 in the triatic/SDW3 phase.

The phase boundary of the triatic/SDW3 and the VC phase calculated with this

method is consistent with other calculations [3, 4]. The maximum value of θ for

a multipole of order p for a given |α| is π/p, and it decreases with the number

of magnons or p. Our DMRG result shows that for |α| = 0.265 at large M ,

0 0.2 0.4 0.6 0.8 1
M/M

0

0

0.1

0.2

0.3

0.4

0.5

θ/
π

|α| = 0.265
         0.27
         0.3
         0.4
         1.0

0 0.2 0.4 0.6 0.8
M/M

0

0

0.1

0.2

0.3

0.4

0.5

θ T
/π

p=4

p=2

p=5

p=3

(a) (b)

|α| = 1.0

|α| = 0.4

|α| = 0.3

|α| = 0.27

|α| = 0.265

Figure 5.2: In panel (a); Pitch angle θ is calculated from 〈Szr 〉 and C(r). In
panel (b) transverse pitch angle θT is calculated from transverse correlation as a
function of M/M0 for |α| = 0.265, 0.27, 0.3, 0.4, and 1.0 are shown. The dashed
lines in the left panel are fitted lines with the equation θ

π = 1
p(1− M

M0
) where p

is the order of the multipolar phase.
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Figure 5.3: (a) Magnetization vs. axial magnetic field h for |α| = 0.254 is
shown. The calculations are done for system sizes N = 16, 20, 24, and 28 with
PBC. (b) The M vs. h for N = 28 for |α| = 0.254, 0.256, 0.258, and 0.26 with

PBC is shown.

p = 5 state shows up for M/M0 > 0.4, and system show the p = 4 state for

intermediate magnetization 0.12 < M/M0 < 0.4. The vector chiral phase sets in

below the M/M0 ≤ 0.12. For |α| < 0.265, θ calculations become difficult with the

approximate numerical technique. In this limit, energy states are closely spaced,

and accurate determination of wavefunctions of the closely spaced energy levels is

difficult.

In the quadrupolar phase the binding energy Eb of the magnons defined in Eq. 5.6

below is an important quantity to understand the condensation phenomenon. The

M − h curve is analyzed to see the effect of condensation of magnons. Near the

critical point |αc| = 0.25, energy level spacings are tiny. Therefore, to maintain the

accuracy of results, the ED method is used to solve the Hamiltonian for systems

with N = 16, 20, 24 and 28. In Fig. 5.3 (a), the finite size effect on the M − h

curve is shown for |α| = 0.254. The N = 16 shows steps of 1 and 7, whereas

N = 20 shows steps in M of size 1 and 8. The gaps between the energy levels
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decrease with system size N , and for N = 24 and 28 system shows steps of N/2.

For |α| = 0.254 the value of p can be equal or higher than N/2. The finite system

size effect on the gaps is weak in this parameter regime. The M − h curve for

different values of |α| = 0.254, 0, 256, 0.258 and 0.26 are shown in Fig. 5.3 (b) for

N = 28. We notice that the h required for saturation increases with |α|. The step

size depends on |α| for example, at |α| = 0.256 and 0.258 system shows steps of 1

and 12, whereas for |α| = 0.26 the steps are 1, 2 and 6. The VC phase exists in the

low M limit, and the phase boundary decrease with |α|. The magnetic steps or the

order of multipole p increases rapidly with 1/|α| near the critical point 0.25, and

the magnetic gaps decrease with |α| as shown in Fig. 5.3 (a). Unfortunately, we

need large system size to confirm the large p > 14, but these results are consistent

with the prediction of the existence of larger p in Ref. [48].

In case of incommensurate spin density wave, there are level crossings or the gs de-

generacies, and these two degenerate states have opposite inversion symmetry [27].

0 0.2 0.4 0.6 0.8 1
h/|J

1
|

0

0.1

0.2

0.3

0.4

0.5
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       168

0 0.2 0.4 0.6 0.8 1
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Figure 5.4: (a) M−h plot for |α| = 0.6 of system sizes N = 104 and 168 using
DMRG with OBC is shown. (b) The pitch angle θ as a function of magnetization
(M/M0) for system sizes N = 104 and 168 at |α| = 0.6 is shown. The dotted

line is fitted line with θ
π = 1

p(1− M
M0

) where p = 2.
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Our ED calculations show that the gs energies are degenerate at large magnetiza-

tion for |α| < 0.4 for both odd and even Sz sectors. We calculate the z-component

of VC order parameter κzi = 1
N

∑
i 〈ψ+| (S+

i S
−
i+1−S−i S+

i+1) |ψ−〉 [27]. In the multi-

polar phase, the κzi at large Sz limit is non-zero for 0.25 < |α| < 0.55 and system

sizes up to N = 28. The κzi for N = 24 system size is shown for different M for

0.25 < |α| < 1.0 in Ref. [27].

In the large |α| limit, the SDW2 and SN phase exist in the presence of the magnetic

field h. In the SN phase, two magnons can condense to form a single boson

[3, 27], and this phase is determined based on the presence of magnetic step of

two (∆Sz = 2) in M − h curve [3, 27], order parameter and various correlation

functions. In this phase a local order parameter is defined as in Refs. [1, 37, 38]

ρq = 〈ψn+2|S+
i S

+
i+1 |ψn〉 , (5.5)

where |ψn〉 and |ψn+2〉 are gs of Sz = n and n + 2 spin sector, but both of these

are degenerate in the presence of an applied magnetic field. The order parameter

ρq can be calculated analytically at n = N/2− 2 and it is proportional to 1/
√
N .

However, for other values of n ρq is calculated numerically, and it has a non-zero

value in a finite system size.

In this phase, the variation of θ, magnitude of Eb, and ρq as a function of M are

calculated in the presence of magnetic field. The variation of magnetization M

with h at |α| = 0.6 is shown in Fig. 5.4 (a) for chains with N = 104 and 168. The

magnetic step of ∆Sz = 2 exists in the full range of M . The existing literature

shows the SDW2 phase at low magnetic field and SN type at high magnetic field

[3, 37, 48]. To analyze the quadrupolar phase, θ is plotted as a function of M/M0

in Fig. 5.4 (b) for two different N = 104 and 168 chains. The dashed line

indicate θ
π

= 1
p
(1− M

M0
) line with p = 2. These calculations demonstrate weak size

dependence of the pitch angle θ.

The average binding energy of two magnons is defined as

Eb(n) =
1

2

[
E(n+ 2) + E(n)− 2E(n+ 1)

]
, (5.6)
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Figure 5.5: The main figure shows the binding energy |Eb| as a function of
|α| for magnetization M = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.45. In the Inset |Eb|

vs. 1/N for magnetization M = 0.05, 0.1, and 0.4 at |α| = 1.0 are shown.

where E(n) is the energy of the system with even number of magnons n. The

binding energy of two magnons in the SN/SDW2 phase is shown as a function of

N in the inset of Fig. 5.5. The |Eb| has weak finite size dependence in large M

limit, whereas it shows significant change with system size in low field limit. The

finite size scaling are done for M = 0.05, 0.1 and 0.4 at |α| = 1.0 for N up to 200.

|Eb| increases with M and has finite extrapolated value for M > 0.1. However,

|Eb| at low magnetization M = 0.05 is vanishingly small.

In Fig. 5.5 the extrapolated values of |Eb| as a function of |α| for different M =

0.05, 0.1, 0.15, 0.2, 0.25 and 0.45 are shown. The error bars reflect the error in

extrapolation and inaccuracy in DMRG calculations. We notice that |Eb| increases

with |α| and it attains a maximum value around |αm(M)| for a given M , and

decreases thereafter. The value of |αm(M)| increases with M . The |Eb| increases

with M initially and either it saturates or decreases near the saturation magnetic

field. This trend of |Eb| is consistent with the calculations done by Onishi [46].
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The bond energies are analyzed to understand the contribution of different bonds

to Eb. In the large |α| limit the J1 − J2 model for a chain behaves like a zigzag

chain, and the next nearest neighbor interaction J2 of the model act as the interac-

tion between the spins along the leg, whereas the nearest neighbor interaction J1

becomes the interaction along the rung [16]. The contribution of different bonds

in the Eb are calculated for |α| = 1.0 and at M = 0.25 and 0.4 for a chain of sizes

N =16, 20, 24 and 28 with PBC. However, data are shown only for N = 24 and 28

in the Table 5.1. The binding energy contribution of different bonds Ex,y
b where x

stands for longitudinal (L) or transverse (T ) and y stands for leg (L) or rung (R).

The Eb is defined in terms of Exy
b as,

Eb(n) =
1

2

[
Ex,y
b (n+ 2) + Ex,y

b (n)− 2Ex,y
b (n+ 1)

]
. (5.7)

For M = 0.25 the major contribution to Eb are transverse component ET,R
b , ET,L

b

and EL,R
b , however, transverse component weakens the Eb as shown in Table 5.1.

The EL,L
b decreases with system size, whereas ET,L

b increases with the system size.

The magnitude of ET,R
b is significantly smaller than the EL,R

b . The major contribu-

tion of Eb comes from the EL,R
b . The magnitude of ET,R

b is almost 1/3 of the EL,R
b ,

but these two have opposite signs. However, both these quantities increase with

M . For M = 0.4 both along the leg and the rung transverse bonds contributions

Table 5.1: The contribution of different bonds in the Eb are calculated for
|α| = 1.0 and at M = 0.25 and 0.4 for a chain of sizes N =16, 20, 24, and 28

with PBC

|α| System Eb
M = 0.25 M = 0.4

N(24) N(28) N(24) N(28)

1.0

Leg
EL,L
b -0.0408 -0.0713 -0.0332 -0.0237

ET,L
b 0.1935 0.2208 -0.2217 -0.0815

Total 0.1526 0.1495 -0.2549 -0.1051

Rung
EL,R
b -0.7103 -0.6600 -0.7150 -0.7493

ET,R
b 0.2070 0.1963 0.6597 0.5756

Total -0.5033 -0.4637 -0.0552 -0.1737
Total binding energy -0.3507 -0.3142 -0.3102 -0.2788
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weaken the total Eb. The ET,L
b also decreases, whereas ET,R

b increases. The mag-

nitude of EL,R
b and ET,R

b are very similar, but opposite to each-other for M = 0.4.

In conclusion, rung contributes most of the Eb in small M , but contribution of leg

increases with M of M < M0. The Eb is still small, however, ET,L
b is significantly

large.

5.2.2 Dimers in Spin Nematic Phase

In the paper by Chubukov, he suggested the existence of dimerized uniaxial SN

phase which is different from the conventional dimerization where the two nearest

spin form singlet pair [1]. In this type of dimerization state two neighboring spin

forms spin S = 1 state. The gs wave function is written as

|ψgs〉 =
∏
n=2L

{n, n± 1}, {i, j}

=
∏
n=2L

(|1〉n,n±1 + η|−1〉n,n±1)/
√

1 + η2,
(5.8)

where |1〉 and |−1〉 are |↑↑〉 and |↓↓〉 triplet states, respectively. Although, bosoniza-

tion calculation by Hikihara et al. suggests that dimerization is proportional to

cos(aφ− + πM) and their average vanishes to zero [3].

We notice that gs is doubly degenerate in odd Sz in a finite system with PBC for

|α| > 0.5 [27]. These two degenerate gs have opposite inversion symmetry. We

notice that these degeneracies are independent of system size. In large J2 limit

Table 5.2: Bobc for |α| = 1.0 is shown at different M for different N .

|α| N
Bobc

M =
0.1

M =
0.2

M =
0.3

M =
0.4

1.0

48 0.0256 0.0205 0.0113 0.0012
64 0.0242 0.0204 0.0073 0.0013
72 0.0245 0.0184 0.0076 0.0017
96 0.0207 0.0157 0.0076 0.0012
144 0.0186 0.0147 0.0052 0.0007
200 0.0183 0.0126 0.0049 0.0006



Chapter 5. 105

this system is mapped to a zigzag chain with leg A and B. In the odd Sz sectors

the difference between the total spin densities on each leg A and B differ by 1.

Therefore, the extra magnon is confined to either leg A or B depending on the

symmetry of the system [27]. We note that the bond order parameter in the gs of

odd Sz sectors have non-zero value in a finite system.

We calculate the dimer order parameter Bobc in OBC system in even Sz sector.

In this sector, gs is non-degenerate and it shows the spiral arrangement of spins.

We follow the standard procedure to calculate Bobc as in Refs. [14, 15]. The Bobc

is defined as

Bobc = 〈ψgs|SN/2 · SN/2+1 − SN/2+1 · SN/2+2 |ψgs〉 . (5.9)

In this procedure, Bobc is calculated only for the middle bond of the system to

avoid the boundary effect. The Bobc shows non-monotonic decreasing behavior

with system size, and it is small for a large system as shown in Table 5.2. The non-

monotonic behavior is associated with the spiral nature of the spin arrangement.

5.3 Quadrupolar Phase in Spin-1 Chains

In this section, we explore the SN/SDW2 or quadrupolar phase for spin S = 1 for

finite system size with PBC, and assuming the spins interaction follows the model

Hamiltonian in Eq. 1.18.

For the model in Eq. 1.18, the FM to singlet crossover occurs at |α| = 0.25 and

the singlet state extends for all values of |α| > 0.25. The singlet and the triplet

excitation or spin gap near the critical point |α| ≈ 0.25 is small compare to the spin

gap in AFM J1 model. However, the double Haldane gap is observed in large |α|

limit. The multipolar phase of higher order p > 2 is observed for |α| < 0.5 which

is consistent with earlier studies. The gs have spiral arrangement of the spins for

|α| > 0.25. A detailed study of these properties of the system will be presented

somewhere else [49]. In this section SN or SDW2 phase is explored for a spin-1
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Figure 5.6: The M − h curve is shown in the main figure for |α| = 0.97, 0.98,
and 0.99 and N = 16 chain with PBC using the ED for spin S = 1. In the inset
the finite size effect of M − h plot is shown for N = 8, 12, and 16 at |α| = 1.0.

chain with PBC in the large |α| limit. We notice that the energy convergence in

DMRG calculation depends on the number of relevant degrees of freedom m kept

in the calculation, and energy of odd and even Sz sectors follow the linear relation

with m but with different slopes. Therefore, we limit our calculations only to ED

up to N = 16.

The M − h plot for three |α| = 0.97, 0.98 and 0.99 for N = 16 is shown in Fig.

5.6. The magnetic steps ∆Sz in a chain with OBC is one, however, in PBC chain

it is two. This may be because of the edge modes at the end of the chain in OBC

case. We notice that there are elementary steps of ∆Sz = 2 in the magnetization

with the magnetic field. The transition of steps ∆Sz = 1 to ∆Sz = 2 occurs

at high magnetic field, and as |α| value increases the crossover point shifts to

higher magnetic field. We also notice that for |α| > 1, all the elementary steps are

∆Sz = 2. In the main Fig. 5.6, variation of M with h is shown. The transition

from mixed steps of ∆Sz = 1 and ∆Sz = 2 to purely ∆Sz = 2 step occurs at

|α| = 0.98 for N = 16 for different M as shown in the main Fig. 5.6. To see the
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finite size effect, M − h curve is plotted for N = 8, 12 and 16 for |α| = 1.0. We

notice that the magnetic gaps decrease with N .

5.4 Discussion

In this work frustrated J1 − J2 model Hamiltonian in Eq. 1.18 for spin-1/2 and 1

chains is studied. Our studies are focused on the model with FM NN and AFM

NNN interactions in the presence of a magnetic field h. We use the ED and the

DMRG numerical techniques to solve the Hamiltonian in Eq. 1.18. Here we have

discussed multipolar phases, and especially, focused on SN phase of this model.

The pitch angle θ, the binding energy Eb, the order parameter ρq and the steps in

the magnetization are used to characterize the SN phase. The quadrupolar phase

in the spin-1 chain is also discussed in the large |α| limit.

The multipolar phase is characterized based on the pitch angle θ calculated from

spin density and correlation function. We show that spin density and longitudinal

spin-spin correlations are commensurate with each other as shown in Fig. 5.1.

The pitch angle θ vs. magnetization M plot shows the multipolar phase of the

order up to p = 5 at |α| = 0.265, however, the previous calculations by Sudan et

al. are restricted to p = 4 and all calculations were limited to system size up to

N = 28 [4]. In this work the DMRG calculations are done for system size up to

N = 368, especially in the large magnetization limit. We notice that in M → 0

limit θ is weakly dependent on M , although, in the large magnetization limit, the

pitch angle θ shows a linear behavior in the multipolar phase for |α| < 0.60. This

result is consistent with the calculations of Sudan et al. [4]. The junction of flat

regime and the linear variation of pitch angle θ is a good estimate of the VC and

the multipolar phase boundary. The variation of θT calculated from transverse

correlation is almost independent of magnetization, and it is explained in terms of

the finite gap and exponentially decaying correlation function [3].

The characterization of multipolar phase of order p > 5 with approximate numer-

ical technique is a difficult task because of the presence of large number of nearly
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degenerate states, and in this case it is difficult to get pure gs without using sym-

metry. To avoid the accuracy problem the ED is used to calculate step in M − h

curve. After careful investigation of gaps we show that the multipolar phase of

order p = 12 at |α| = 0.256, and p = N/2 for |α| < 0.254 for N ≥ 24. Although

some of the previous works show that these are metamagnetic phases [3, 4], we

find these are actually higher order multipolar phases with small binding energy.

The binding energy |Eb| in SN/SDW2 phase rapidly increases with |α| initially, and

it has maxima at |αm(M)|. In the large |α| limit the bond energy contribution

of the rung decreases with |α|, therefore |Eb| decreases with |α|. The value of

|αm(M)| increases with M , and the |Eb| have a broad maximum as a function of

|α| as shown in the Fig. 5.5. The bond energy analysis is done in Table 5.1. For

lower M , transverse bond energy for legs and rungs both have the contribution to

Eb, whereas the longitudinal contribution of rung plays a major role in binding

of two magnons. The contributions of legs and rungs for higher M have similar

trend except that the magnitude of longitudinal contribution decreases in the

leg, and it increases in the rung. The ET,L
b decreases for higher M , whereas ET,R

b

increases significantly. The ET,R
b actually weakens the binding of the magnons and

longitudinal component try to enhance the Eb. The values of Eb for |α| = 0.5, 1, 1.5

and 2 have similar value to the previous calculation by Onishi [46].

The earlier studies of J1 − J2 model of general S chain show the absence of spin

nematic phase in S = 1 chain [43, 44]. However, the study of Balents et al. shows

the presence of nematic phase in general spin using the Lifshitz non-linear sigma

model [48]. Our finite size calculations at |α| > 0.98 show steps of 2 in M−h curve

and this results can be understood using their model [48]. The double Haldane

phase agrees with Refs. [43, 44]. However, we note doubly degenerate gs in odd

Sz sectors.

The bond dimerization in the SN phase at finite h has been under debate. Chubukov

claims that there are S = 1 dimerization and the doubly degenerate gs [1], but the

analytical calculation by Hikihara et al. [3] shows the absence of dimerization. We

show that the even Sz have non-degenerate and spiral gs. The odd Sz have doubly
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degenerate gs for PBC system. The bond order Bobc decreases non-monotonically

with system size in even Sz sector and has very small value for finite N = 200.

In conclusion, we have studied the J1 − J2 model in an axial magnetic field h

with FM J1. The multipolar phases with multipole up to p = 14 are calculated.

We have analyzed Eb in SN/SDW2 phase, and we show that longitudinal energies

of rung have a major contribution to the Eb. In this work, we have shown that

magnitude of dimerization is vanishingly small, and gs is doubly degenerate in the

SN phase.

The model Hamiltonian in Eq. 1.18 supports many quantum phases in the 1D

system. There are many open questions to be answered, like how to characterize

the SN phase and other multipolar phases, what happens to magnon pairing in

large |α| limit, and how to increase the binding energies of magnon pairing. The

RIXS is a good experimental tool which may distinguish the SDW2 and SN phase.

In the large |α| limit, the J1−J2 chain should behave like two decoupled chains and

their behavior looks like HAF chains. We can ask a question like what happens

to magnon as low lying excitations should be similar to Heisenberg spin-1/2 one

dimensional chain.
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Chapter 6

Study of the Dynamical

Properties of the Multipolar

Phase of Spin-1/2 Chain

6.1 Introduction

The frustrated low dimensional spin systems have been a frontier area of active

research due to the existence of exotic phases in the system as discussed in chapter

1. These phases can be realized in some real materials like LiCuVO4 [1], LiCuSbO4

[2] etc. Although these systems are 3D in nature, but interaction along two axis are

weak and modeled by the 1D isotropic J1−J2 model with spin-1/2 in the presence

of an axial magnetic field h given in Eq. 1.18 in chapter 1. The J1−J2 model with

FM J1 and AFM J2 in the presence of an axial magnetic field h is our main focus

in this chapter. The field theoretical and numerical studies suggest that at high

magnetic field h the system shows metamagnetic or multipolar such as dipolar,

quadrupolar, octupolar, hexadecapolar phase etc. In this system multimagnon

bind to form higher order of multipolar system. The order parameter of these

phases are hidden in nature therefore there is no direct evidence for these phases
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[3]. However, probes like INS and RIXS can indirectly shows the existence of these

phases.

The lowest excitations in the J1 − J2 model are the magnon which is basically

simultaneous flip of the spin in a 1D spin-1/2 chain, and these low-lying excitations

can be investigated by INS. In neutron scattering process integer spin excitations

are created, and whole process can be understood in terms of the single spin

dynamical structure factor [4, 5].

6.2 Dynamical Structure Factor

The dynamical structure factor [4] in the frequency and momentum space is defined

as

Sββ(q, ω,M) =
∑
n

| 〈ψn|Sβq |ψ0〉 |2

En − (E0 + ω) + iη
, (6.1)

where |ψ0〉 is the gs wavefunction for fixed Sz = M and |ψn〉 is the nth excited

state for the same M or M ±1. Sβq is defined as, Sβq = (
√

2π/N)
∑

j S
β
j e

iqj, where

β = x, y and z-component. E0 and En are the gs and nth excited state energies,

respectively, ω is the energy transferred to the spin lattice. η is broadening factor

and is fixed at 0.1 for all the calculations.

6.2.1 Results for Dynamical Structure Factor

The general observations about the dynamical property and M − h curve in the

quadrupolar phase are presented here. In the later part we model the dynamical

structure factor of LiCuVO4 [15–17] and LiCuSbO4 [2] compounds and also com-

pare our results with the experimental data available in the literature. Some part

of this section is published in Ref. [18].
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Figure 6.1: The longitudinal dynamical structure factor Szz(qm , ω) for |α| =
1.0 as a function of ω with PBC using dynamical DMRG method is shown in
the main figure for finite system size N = 104. The maximum value of qm/π
is calculated from Szz(q, ω) and qm/π = 0.50, 0.40, 0.31, 0.21, 0.09, and 0.06 for
M = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.45, respectively. Inset shows qm/π as a function
of M/M0 for |α| = 1.0 and dotted line is fitted line with qm

π = 1
p(1− M

M0
) where

p = 2.

6.2.2 Dynamical Structure Factor in the Quadrupolar Phase

The dynamical structure factor Szz(qm , ω) is shown in Fig. 6.1 for |α| = 1.0. The

Szz(qm , ω) for the system of size N = 104 with given M represents structure factor

for a given value of momentum qm for which the intensity is the highest. The

Szz(qm , ω) for qm is shown as a function of ω for different M = 0.0, 0.1, 0.2, 0.3, 0.4

and 0.45. As M increases the peak position of Szz(qm , ω) shifts towards lower qm

and ωm. However, the longitudinal spin excitation is gapless in the SN/SDW2

in the thermodynamic limit. For M = 0.0, qm/π is at 0.5 and qm decreases

with increasing M . In the inset of Fig. 6.1 open circle represents the qm for

different values of M . The calculated qm is fitted with a function qm/π = (1 −

M/M0)/2. These features of SN/SDW2 phase is directly examined by inelastic

neutron scattering experiment in the presence of magnetic field h.
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Figure 6.2: Calculated Longitudinal dynamical structure factor of LiCuVO4

as a function of wave vector (q/π) and energy (ω). The color box is the longitu-
dinal dynamical structure factor. The logarithm of S(q, ω) is shown for better
resolution of intensities. The calculations are done for J1 = −1.6 meV, J2 = 3.8

meV for M = 0.0.

The existence of SN phase in a real material like LiCuVO4 is confirmed in the

presence of high magnetic field h. This material consists of planar arrays of spin-

1/2 copper chains with a FM nearest neighbor J1 and AFM next nearest neighbor

exchange interactions J2. The exchange interaction strengths are J1 = −1.6 meV

and J2 = 3.8 meV, found by fitting the data of INS and other experiments [1].

We use these parameter values for our calculations. The dynamical structure

factor Szz(q, ω) in the absence of the magnetic field is shown in Fig. 6.2. The

intensity is shown by the contour plots. The experimentally observed S(q, ω) in

figure 2 of Ref. [15] shows as a function of q and ω > 3 meV. The random phase

approximation (RPA) calculation shows continuous intensity below ω < 5 meV,

whereas experimental data shows high intensity between ω = 3 to 5 meV with

momentum between q/π = 0.2 and 0.5. The S(q, ω) calculation in Ref. [17] also

shows that peak is at q = π/2 and ω < 1 meV for both the parameter. In Ref.

[19], they considered |α| = 2 for modeling this compound and they also show
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the highest intensity of S(q, ω) at q = π/2 and ω < 0.3 meV. The experimental

data is restricted to ω ≥ 3 meV and shows only higher level of excitations. For

better resolution of intensity, we plot the logarithm of S(q, ω) intensity in Fig.

6.2. Our DMRG calculations shows that the most intense peak is at qm = π/2 and

ω = 0.4 meV. In fact, there are several values of q and ω < 3 meV at which this

system shows the significant intensity of Szz(q, ω). The S(q, ω) follows the sum

rule and we notice that major part of the intensity sum is limited to smaller ω,

and intensities of S(q, ω) observed experimentally are only a small fraction of the

total intensity. Actually, this is easily justified by the slow variation of intensity

for ω > 3 meV in experimentally observed S(q, ω).

The binding energy |Eb| and momentum qm in the presence of magnetic field are

two important quantities to characterize the SN phase. The INS experiment on

LiCuVO4 by Mourigal et al. in Ref. [16] shows the linear variation of momentum

q with magnetic field in high magnetic field h limit. However, q is independent
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Figure 6.3: (a) The binding energy |Eb| of LiCuVO4 sample with J1 = −1.6
meV, J2 = 3.8 meV as a function of magnetization for the system sizes N = 104
and 168 using DMRG with OBC is shown. (b) The momentum qm as a function
of magnetization M/M0 for the system sizes N = 104 and 168 using DMRG
with PBC is shown. The dotted line is fitted by qm

π = 1
p(1− M

M0
) where p = 2.
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of the magnetic field below h = 8T . Our results for the |Eb| and momentum qm

are shown in Fig. 6.3 (a) and (b) for two system sizes N = 104 and 168. The qm

for LiCuVO4 as a function of magnetization is shown in Fig. 6.3 (b) for T = 0K.

We notice that qm follows the linear relation with M with a slope of 1/p = 0.5.

The linear dependence of momentum is followed in the full range of M . The |Eb|

is shown in Fig. 6.3 (a) as a function of M/M0. For M = 0, |Eb| vanishes and

it increases with M up to M ≈ 0.4 and then remains constant and it increases

thereafter.

Similarly, the existence of SN phase in a real material like LiCuSbO4 is also con-

firmed in the presence of high magnetic field h. In this material edge-sharing

CuO6 octahedra form spin-1/2 copper chains with a FM nearest neighbor J1 and

AFM next nearest neighbor exchange interactions J2. The exchange interaction
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Figure 6.4: The longitudinal dynamical structure factor Szz(qm , ω) for |α| =
0.67 as a function of ω with PBC using dynamical DMRG method is shown
in the main figure for finite system size N = 104. The maximum value of
qm/π is calculated from Szz(q, ω) and qm/π = 0.50, 0.40, 0.31, 0.21, and 0.06 for
M = 0.0, 0.1, 0.2, 0.3, and 0.45, respectively. Inset shows qm/π as a function of
M/M0 for |α| = 0.67 and dotted line is fitted line with qm

π = 1
p(1 − M

M0
) where

p = 2.
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strengths are J1 = −2.475 meV and J2 = 1.66 meV, found by fitting the thermo-

dynamic data such as susceptibility, specific heat and other experiments [20].

The Szz(qm , ω) is shown in Fig. 6.4 for LiCuSbO4 at |α| = 0.67. The Szz(qm , ω)

for the system size N = 104 with given M represents structure factor for a given

value of momentum qm for which the intensity is the highest. The Szz(qm , ω) for qm

is shown as a function of ω for different M = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.45. As M

increases the peak position of Szz(qm , ω) shifts towards lower qm and ωm. However,

the longitudinal spin excitation is gapless in the SN/SDW2 in the thermodynamic

limit. For M = 0.0, qm/π is at 0.5 and qm decreases with increasing M . In the inset

of Fig. 6.4 open circle represents the qm for different values of M . The calculated

qm is fitted with a function qm/π = (1 −M/M0)/p with p = 2. These features

of SN/SDW2 phase is directly examined by INS experiment in the presence of

magnetic field h.
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Figure 6.5: Calculated Longitudinal dynamical structure factor of LiCuSbO4

as a function of wave vector (q/π) and energy (ω). The color box is the longitu-
dinal dynamical structure factor S(q, ω) which is proportional to the intensity
in INS experiment. The calculations are done for J1 = −2.475 meV, J2 = 1.66

meV for M = 0.0.
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The dynamical structure factor Szz(q, ω) of LiCuSbO4 material in zero magnetic

field is shown in Fig. 6.5. The intensity is shown by the contour plots. The

experimentally observed S(q, ω) in figure 4 (a) and (e) of Ref. [2] shows as a

function of q and ω. The experimental data shows that most of the intensity is

observed below ω = 1.8 meV and the highest intensity is observed at q/π = 0.475

for ω < 0.5 meV. Our DMRG calculations for system size N = 104 at M = 0.0

shows that most intense peak is also coming at q/π = 0.5 and at ω = 0.25 meV.

Fig. 6.5 shows significant intensity for other values of q close to the q/π = 0.5 value.

We notice that our calculated values of intensity and experimentally observed

intensity agrees well.
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Figure 6.6: The longitudinal dynamical structure factor Szz(qm , ω) for |α| =
0.3 as a function of ω with PBC using dynamical DMRG method is shown
in the main figure for finite system size N = 104. The maximum value of
qm/π is calculated from Szz(q, ω) and qm/π = 0.29, 0.25, 0.19, 0.13, and 0.08 for
M = 0.0, 0.1, 0.2, 0.3, and 0.4, respectively. Inset shows qm/π as a function of
M/M0 for |α| = 0.3 and dotted line is fitted line with qm

π = 1
p(1 − M

M0
) where

p = 3.
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6.2.3 Dynamical Structure Factor in the Triatic Phase

The general observations about the dynamical property in the triatic phase are

presented here. We calculate the dynamical structure factor at |α| = 0.3 which is

shown in Fig. 6.6. The Szz(qm , ω) is calculated for the the system of size N = 104

with given M . For each M the structure factor has the highest intensity for a

given value of momentum qm . The Szz(qm , ω) for qm is shown as a function of ω

for different M = 0.0, 0.1, 0.2, 0.3, and 0.4. As M increases the peak position of

Szz(qm , ω) shifts towards lower qm and ωm. For M = 0.0, qm/π is at 0.29 and

qm decreases with increasing M . In the inset of Fig. 6.6 open circle represents

the qm for different values of M . The calculated qm is fitted with a function

qm/π = (1 − M/M0)/p with p = 3. Therefore, in this parameter regime the

system is in the triatic phase and this feature is shown in Fig. 5.2 (a) of chapter 5

[18]. These features of triatic phase can be directly examined by INS experiment

in the presence of magnetic field h.

6.3 Resonant Inelastic X-ray Scattering Cross

Section

In the previous section we have calculated the DSF of single magnon. In this

process excitation takes place only between the states with difference in Sz = ±1.

In the J1−J2 model our gs is in a singlet spin sector, therefore, all the excitations

correspond to the triplet spin sector. The low-lying excitation in the singlet energy

manifold is still quite important and unexplored states. To understand the excita-

tions in the singlet spin sector we use resonant inelastic X-ray scattering (RIXS)

probe which excites two magnons at a time and the total spin of the system is

conserved during this process[6–9].

In RIXS process the incident photon energy is resonant with the absorption edges

such as K-edges, L-edges etc. of the material. Recent experiments reveal that

indirect RIXS is also a new probe for the spin dynamics. It has two important
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advantages, first, it is sensitive to weak excitations which are difficult to probe

by other techniques, and second, unlike optical methods it can probe directly the

momentum dependence of those excitations. The magnetic RIXS scattering ampli-

tude is expressed in terms of an intrinsic dynamical four spin correlation function

of the system [6–9] and gives us information about the two magnon excitation

process.

The RIXS scattering cross section where core-hole couples to magnetic excitations

obtained from Krammers-Heisenberg formulae is [10]

I ∝ d2σ

dΩdω
∝
∑
f

|Afi|2δ(ω − ωfi) and Afi = ωres
∑
n

〈f | D̂ |n〉 〈n| D̂ |i〉
ωin − En − iΓ

,

(6.2)

where Afi is the scattering amplitude from the initial state i to a final state f of

the system. The momentum and energy transfer to the lattice are q = qin − qout
and ω = ω0

in − ω0
out where qin/out and ω0

in/out are the momentum and energy of the

incoming/outgoing photons. ω
fi

= Ef − Ei is the energy difference between the

final and initial state. ωres represents resonant energy, n denotes the intermediate

state and D̂ is the dipole operator which describes the excitation from initial to

intermediate states and the de-excitation from intermediate to final state. En is

the energy of the intermediate state |n〉 with respect to the resonance energy ωres.

ωin = ω0
in−ωres is the energy of the incoming X-rays with respect to the resonant

energy ωres. Γ denotes core-hole energy broadening which is proportional to the

inverse core-hole lifetime.

The RIXS amplitude is calculated by expanding it in a power series [11]

Afi =
ωres
∆

∞∑
j=1

1

∆j
〈f | D̂(Hint)

jD̂ |i〉 , (6.3)

where ∆ = ωin − iΓ and Hint is the Hamiltonian in the intermediate state. The

intermediate state Hamiltonian consists of two part Hint = H0 + H1, where H0

is the Hamiltonian without core-hole interaction and H1 is the Hamiltonian when
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core-hole interaction is present in the system. In order to calculate magnetic RIXS

cross section one needs to find out the operator (Hint)
j. So for Γ� En, Afi can be

expanded in a power series and the magnetic differential scattering cross section

can be written as

I ∝ d2σ

dΩdω
∝ Sexch(q, ω), (6.4)

where Sexch(q, ω) is the spin exchange dynamical structure factor and which has

the form

Sexch(q, ω) = 2π
∑
n

| 〈0|Oβ
q |n〉 |2δ(ω − ωn), (6.5)

where |0〉 is the gs, |n〉 excited states, excitation energies ωn = En −Egs, β = x, y

and z-component and the spin exchange operator is defined [6–10] as

Oβ
q =

√
2π/N

∑
j

(Sβj · S
β
j+1)eiqj. (6.6)

From above equations it is clear that magnetic RIXS measures four spin correlation

function.

We use the ED method to numerically study RIXS data for the spin dynamics of

the J1−J2 model Hamiltonian in the presence of a magnetic field h in Eq. 1.18 in

the chapter 1. Our main focus in this section is to analyze the singlet excitation

at h = 0 especially for parameter J2/J1 = −0.67 and J2/J1 = −2.375 which are

corresponding to model parameters for LiCuSbO4 and LiCuVO4. We know from

the previous literature [2] that LiCuSbO4 is close to the decoupled phase boundary,

whereas LiCuVO4 is in the decoupled phase.

In the Table 6.1 and 6.2, we show the matrix element |〈ψn|Oβ
q |ψ0〉|2 between the

gs and first few low-lying nth excited states with an energy gap ωn for two com-

pounds LiCuVO4 and LiCuSbO4. This matrix element is corresponding to the

transition probability between these two states. We notice that the lowest singlet



Chapter 6. 125

Table 6.1: Non-zero value of matrix element of |〈ψn|Oβq |ψ0〉|2 for LiCuVO4

compound with the model parameter J2/J1 = −2.375.

q/π ωn |〈ψn|Oβ
q |ψ0〉|2 State

0.000 5.8033500 0.0098381 99

0.000 6.7819909 0.0594062 176

0.000 7.6080435 0.1518843 286

0.000 8.6209214 0.1700853 460
0.125 4.9408855 0.0604943 54

0.125 4.9408855 0.0604944 55

0.125 6.6782809 0.0001408 159

0.125 6.6782809 0.0001408 160
0.250 4.5288968 0.0374585 40

0.250 4.5288968 0.0374586 41

0.250 5.5979352 0.1101265 85

0.250 5.5979352 0.1101266 86
0.375 3.9885498 0.1626607 27

0.375 3.9885498 0.1626609 28

0.375 4.5590547 0.0036086 42

0.375 4.5590547 0.0036086 43
0.500 2.1663662 0.0374589 4

0.500 2.1663662 0.0374591 5

0.500 6.3765184 0.0066716 139

0.500 6.3765184 0.0066716 140
0.625 4.3805133 0.0058464 35

0.625 4.3805133 0.0058463 36

0.625 5.0331897 0.3643616 56

0.625 5.0331897 0.3643624 57
0.750 4.6329864 0.0003192 44

0.750 4.6329864 0.0003192 45

0.750 5.6038037 0.1374158 87

0.750 5.6038037 0.1374153 88
0.875 5.2487638 1.3171722 68

0.875 5.2487638 1.3171744 69

0.875 6.4607713 1.0378879 149

0.875 6.4607713 1.0378886 150
1.000 2.8122485 5.1472578 10

1.000 4.1711524 0.7469611 29

1.000 5.8970968 0.0659032 103

1.000 6.9872321 0.0497567 197
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Table 6.2: Non-zero value of matrix element of |〈ψn|Oβq |ψ0〉|2 for LiCuSbO4

compound with the model parameter J2/J1 = −0.67.

q/π ωn |〈ψn|Oβ
q |ψ0〉|2 State

0.000 1.1055764 0.0051602 81

0.000 1.5789376 0.0018013 282

0.000 1.7797202 0.0001214 428

0.000 1.9533380 0.0056165 597
0.125 1.3150370 0.0006355 146

0.125 1.3150370 0.0006355 147

0.125 1.3513820 0.0117696 154

0.125 1.3513820 0.0117696 155
0.250 0.8579474 0.0594621 43

0.250 0.8579474 0.0594621 44

0.250 1.5066503 0.0046201 229

0.250 1.5066503 0.0046201 230
0.375 0.7872240 0.1332974 28

0.375 0.7872240 0.1332976 29

0.375 1.3690526 0.0003898 163

0.375 1.3690526 0.0003898 164
0.500 0.4544681 0.2364985 9

0.500 0.4544681 0.2364984 10

0.500 1.2540109 0.0076316 129

0.500 1.2540109 0.0076316 130
0.625 0.9414896 0.0468909 51

0.625 0.9414896 0.0468908 52

0.625 1.2344720 0.0073031 123

0.625 1.2344720 0.0073031 124
0.750 0.8519285 0.0000427 41

0.750 0.8519285 0.0000427 42

0.750 0.9928458 0.0260883 62

0.750 0.9928458 0.0260884 63
0.875 0.8328589 0.0349973 35

0.875 0.8328589 0.0349973 36

0.875 1.1452325 0.0099153 84

0.875 1.1452325 0.0099153 85
1.000 0.4260147 0.3651047 5

1.000 1.0331458 0.4873706 68

1.000 1.1615131 1.0219555 98

1.000 1.3629430 2.6490684 162
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is degenerate and have almost negligible transition probability. The highest tran-

sition probability highlighted with bold face in Table 6.1 and 6.2 is for magnons

with q ≈ π which is very similar to INS results. We notice that lowest singlet

states with finite matrix element are 4 and 5 for LiCuVO4 and LiCuSbO4 as lower

states belong to triplet manifold. Most of dominant transition probabilities are

restricted to low-lying states.

6.4 Discussion

We modeled the dynamical structure factor S(q, ω) of the LiCuVO4 and LiCuSbO4

compound using the parameter values at |α| = 2.375 and |α| = 0.67 in the litera-

ture [1, 2].

To characterize the SN/SDW2 or quadrupolar phase the dynamical structure factor

S(q, ω) is analyzed, and we notice that the momentum qm of most intense peak of

S(q, ω) for a given M varies linearly with M . This result can be directly confirmed

by the INS experiments. The LiCuVO4 is the most studied material for SN/SDW2

phase, and we calculate the S(q, ω) in the absence of magnetic field h. The high

energy peak is consistent with the earlier results, but the most intense peak is at

q = π/2 and ω = 0.4 meV. We also predict the dependence of qm as a function of M

and the M −h curve for a single crystal of this compound. The linear variation of

q with magnetic field h is shown for LiCuVO4 at a high magnetic field by Mourigal

et al. [16]. However, a more accurate measurement should be performed at a low

field to verify the theoretical predictions. For this material, our calculation shows

the linear variation of qm with M for longitudinal Szz(q, ω) for the given parameter

in Ref. [1]. We also analysed the RIXS data for gs of LiCuVO4 and LiCuSbO4.

In conclusion, we have studied the dynamical properties of the J1 − J2 model in

the presence of an axial magnetic field h. We have shown the characterization of

the SN phase with INS experiment and also predicted the qm −M relation. We

think that the most of intensities of S(q, ω) in LiCuVO4 is below 3 meV and the

most intense peak is at q = π/2 and ω = 0.4 meV. We have also characterized the
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dynamical structure factor for LiCuSbO4 and also predicted the qm −M relation

which confirms the existence of SN/SDW2 phase. We have shown the triatic (p =

3) phase by analyzing dynamical structure factor in the presence of a magnetic

field h. Our small system size calculation using ED shows that excitations in the

system which is probed through RIXS is corresponding to the singlet sector.
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Chapter 7

Conclusion

In conclusion, this thesis presents a detailed study of the exotic phases, spin dy-

namics, and their characterization for the frustrated J1 − J2 model Hamiltonian

in Eq. 1.18 of chapter 1 with AFM and FM J1 and AFM J2 for spin-1/2 chain in

the absence and presence of a magnetic field h. We have presented the numerical

evidence for the quantum critical points P2 and P3 between gapped IC phases

and a gapless decoupled phase with QLRO(π/2) in the quantum phase diagram

of J1 − J2 model in the absence of the magnetic field h. The quantum phase

diagram of this model is shown in Fig. 3.1 for the Hamiltonian in Eq. 1.17 in

chapter 3 of this thesis. The decoupled phase is non-degenerate with q
G

= π/2

between P2 = −1.24 and P3 = 0.44 as shown in Fig. 3.1. The characterization

of the decoupled phase has shown based on following criteria like level crossing,

divergence of structure factor peak, and jump in spin densities in the lowest triplet

state. The divergent structure factor peaks in the gs denote the critical gapless

phase with QLRO with wave vector q
G

= π/2 or π.

Furthermore, this thesis elaborates numerical studies of exotic phases in the isotropic

J1−J2 model with FM J1 and AFM J2 exchange interaction in the axial magnetic

field h. In this system, Z2 symmetry is spontaneously broken in the presence of the

axial magnetic field. In earlier studies, the VC phase has been characterized based

on various kinds of correlation functions like current-current correlation function

and scalar chiral correlation etc. Our calculations suggest that this correlation
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function in a finite system can be non-zero even in the absence of the VC phase.

The order parameter κ can be calculated using the broken symmetry states in this

model, and it is shown that there are degeneracies in the lower states of Sz = 0.

A large number of level crossings occur at different values of |α| in the presence of

spiral phase. The VC order parameter κ is proportional to the electronic polar-

ization P ∝ κ in the improper multi-ferroic materials such as LiCuVO4. A new

quantum phase diagram of the J1−J2 model in the presence of the axial magnetic

field is constructed, and the VC phase is shown to exist only in the narrow range

of parameter space.

In this thesis, we have also studied higher order multipolar phase of order up to

p = 14. These studies are done based on the magnetic steps in M − h curve and

the variation of the pitch angle between neighboring spins with magnetic field.

We have analyzed binding energy Eb in the SN/SDW2 phase and show that the

longitudinal component of bond energy of zigzag ladder of rung have major con-

tribution to the Eb. The binding energy of the two magnons decreases with |α|.

It is shown that the existence of quadrupolar and triatic phase can be character-

ized through INS experiments, by measuring the dynamical structure factor. The

momentum q of the most intense peak varies linearly with the magnetization M .

We have shown this relation to LiCuVO4 and LiCuSbO4 compounds. For given

parameters of LiCuVO4, most of the intensities of S(q, ω) in LiCuVO4 is below 3

meV, and the most intense peak is at q = π/2 and ω = 0.4 meV. In this thesis, we

have shown that magnitude of dimerization is vanishingly small, and gs is doubly

degenerate in the SN phase. The existence of the quadrupolar phase is shown for

the frustrated FM spin-1 J1 − J2 model with FM J1 and AFM J2 based on the

step in the magnetization in the presence of magnetic field h.
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