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Chapter 1

Introduction

Materials science is an interdisciplinary science encompassing many different
disciplines [1] [2] [3]. It is the horizon where physics meets chemistry and engineer-
ing. It is a subject which is of common interest to both the scientific community
engaged in basic research and the engineering community trying to create new
technological developments out of novel properties of materials.

Materials have been instrumental in the development of human civilization as
a whole. Naming various pre-historic eras viz. Stone age, Bronze age, Iron age or
Steel age after different materials is a clear indication of the extremely important
role played by materials in the development of human societies and civilization.
Even in the historic and modern eras, very important discoveries in the field of
materials have marked the overall revolutions in human progress. From chinese
lodestones for navigation by sailors to the entire silicon based industry which
technically runs the modern World on the wings of computers and smartphones,
every aspect of our life now has contributions from some fundamental research
on materials in the last few hundred years. Therefore materials science research
is irreplaceable to fulfill the growing demands of modern society. Recent times
have seen various classic discoveries which are mainly material dependent.

Thus no doubt it will be, and as we have been seeing in the last few decades,
it is one of the most exciting fields of research. Novel phenomena in materials
is the route to newer technologies and advances for the human race. Thus it is
essential to modify known materials in order to improve their properties and to
discover, or even design, new materials with specific properties. Hence there is
an ever increasing demand for materials with novel properties. These materials
must be functional materials which posses certain unique properties which may
be tunable. Such materials can be of the following broad classes:

(i) Materials whose existing properties may be improved or enhanced to make
the properties more accessible for practical uses. As an example we may
consider the family of high TC cuprate materials to fall in this category.

1
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(ii) Materials that are not any extension or evolution of families or combination
of other materials, but are distinct materials in their own right with very
unique and interesting properties and configurations. Examples of such
materials are carbon nano-tubes and fullerenes.

(iii) Composite materials where combination of two or more components lead
to unexpected or unconventional properties. The class of materials like
heterostructures, and hybrid systems of organic and inorganic components
fall in this category.

In this thesis we have primarily concentrated on the third class of the mate-
rials among the list enumerated above. In this class we have studied two broad
category of materials namely;

(a) Metal-Organic Hybrid materials,

(b) Inorganic Oxide Heterostructures.

A relatively new class of materials are composite organic-inorganic hybrid
materials. An intriguing phenomena observed sometimes in these materials, es-
pecially those containing transition metal ions in the inorganic component is a
spin crossover phenomena associated with hysteresis which one day may have
huge applications in memory and display devices. Similarly oxide heterostruc-
tures, which are composites of known perovskite oxide materials, have shown
tremendous application possibilities and may very well replace the silicon based
electronics industry completely and we may one day live in the age of oxide
electronics!

However, such materials are usually complex in structure and in behaviour,
containing several atoms in the unit cell involving several different degrees of
freedom. As a result, modeling of such complex materials plays an ever increas-
ing role in the study of physical properties of those compounds. With the ad-
vent of computational materials science these materials can now be understood
at the microscopic level. Such microscopic understanding is required for opti-
mization of known materials, with the possibility of prediction of new materials.
The proliferation of computing power is enabling exciting new approaches to the
characterization and design of materials. Computational methods already play
a central role in many materials studies and will only become more pervasive as
computing power advances in the decades ahead. Thus computational materials
science plays a two fold role in the development of this particular field of re-
search. Microscopic understanding of observed novel phenomena can be obtained
by simulating the behaviour of materials. This can provide very useful insight
into how materials can be modified or designed to achieve properties which may
be put to technological use. For example the understanding of the microscopic
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behaviour of high TC superconductors can help one to increase the critical tem-
perature further and possibly design room temperature superconductors which
understandably will have a huge impact on modern society transforming life itself
on Earth. The second very important aspect of computational materials science
is the aspect of prediction of properties and phenomena in materials which may
be further tested in the laboratory. This aspect has been leading the community
of scientists engaged in materials research to push further the boundaries of what
can be achieved in the laboratory. Starting from describing transition phenomena
to predicting the correct experimental conditions for growth of materials or on-
set of certain novel phenomena, this particular aspect of computational sciences
have made leaps and bounds in advances in the synergistic approach of theory
and experiments towards materials research. The purpose thus of this particular
field of study in a nutshell is to simulate the properties of material to understand
and complement the experiments, thus understanding and refining our materials
model (generating the model), hence to use it to calculate different properties of
that material under different conditions, and verifying the predictions through
experiments (predicting and validating the model), leading to design of materials
with specific properties on demand.

In the present thesis, we have investigated and understood the complex be-
haviour of some of these compounds in terms of suitable modeling, starting from
first-principles electronic structure calculations, in general. Both zero tempera-
ture and finite temperature first principles electronic structure calculations have
been carried out within the realm of Density Functional Theory (DFT) and Ab
Initio Molecular Dynamics (AIMD). The advantages of first principles method is
that, the only input required is the crystal structure with proper atomic infor-
mation. These are very reliable, fast, accurate and parameter free approaches,
and are able to capture the material dependent chemistry accurately. In addition
to first principles methods classical model Hamiltonians have been studied and
solved using techniques like classical Monte Carlo simulations.

In the next few sections we give a brief introduction to the materials studied
in the current thesis.
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1.1 Metal-Organic Complexes

Metal-organic complexes are a class of chemical compounds that contain metals
and organic ligands, which confer solubility in organic solvents. Compounds with
these attributes find multifarious applications. Metal organic complexes can be of
various types. These materials may form dense systems, porous system, isolated
molecular systems or extended network systems.

Among these types of materials, we primarily concentrate on coordination
polymers and hybrid perovskites, and we study a phenomenon called Spin Crossover
(SCO). SCO takes place in transition metal complexes, specially those consisting
of transition metal ions and flexible organic ligands, wherein the spin state of the
metal ion changes between low spin (LS) and high spin (HS) configuration under
the influence of external perturbation [4]. The transition between high spin (S
= 2) and low spin (S = 0) state of transition metal can be triggered by sev-
eral different possibilities such as temperature, pressure, light irradiation etc [5].
Though this process, in principle, can be observed in any octahedrally or tetrahe-
drally coordinated transition metal complexes with transition metal ions in d4-d7

or d3-d6 electronic configurations, the most commonly observed cases are that
of octahedrally coordinated iron(II) complexes with Fe2+ ions in 3d6 electronic
configuration. The SCO phenomenon deserves attention due to accompanying
changes in magnetic and optical properties. Various different application possi-
bilities have been suggested in information technology [6], as sensors [7], optical
switches [8], display and memory devices. For device applications, it is important
to induce cooperativity in the SCO phenomena implying spin transition rather
than spin crossover, which may happen with associated hysteresis effect. The
issue of cooperativity and associated hysteresis is important as it is expected to
confer memory effect to the system.

In this context, in comparison to molecular assemblies or crystals with iso-
lated molecular units connected by weak, van der Waals or hydrogen bonding,
the extended network with repeating coordination entities having extended solid
structures are better choices. We may broadly classify these systems into coordi-
nations polymers which consist of a plethora of compounds that contain inorganic
metallic centres connected via organic ligands or functional groups in various
possible ways, or ABX3 type hybrid perovskite structures that are coordination
frameworks with organic ligands containing potential voids, both of which have
been studied in this thesis. The presence of chemical bridges, linking the SCO
sites to each other, as in these compounds are expected to propagate the interac-

This section is based on ”Design and Control of Cooperativity in Spin-Crossover in Metal-
organic Complexes: A Theoretical Overview” Hrishit Banerjee, Sudip Chakraborty, Tanusri
Saha-Dasgupta Inorganics, 5(3), 47 (2017)
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tion between SCO centers more efficiently than that in molecular crystals. Inspite
of admitting the suitability of such compounds in exhibiting cooperativity there
are several issues that need attention. The key questions are, (a) understanding
the microscopic mechanism, i.e., what is the driving force for the cooperativity
and the hysteresis; and (b) how the cooperativity can be tuned or modified to
suit specific device application needs. These understandings are expected to pro-
vide an advancement of the field in terms of possible commercialization of this
technologically important property which relies on critical parameters of cross-
over being close to ambient condition, and a large enough hysteresis width. Of
prime importance in this case is the identification of materials able to show spin
crossover associated with cooperativity.

Thus in the next sections, we give a brief general introduction to both coor-
dination polymers and hybrid perovskites.

1.1.1 Coordination Polymers

Coordination polymers are organometallic polymeric structures having metal ion
centers linked by organic ligands [9].

A typical example of such a polymeric compound, namely Fe-triazole is shown
in the left panel of Figure 1.1. These are materials extending through repeating
coordination entities, in 1 dimension, but with cross-links between two or more
individual chains, and loops, while a coordination compound extends through
repeating coordination entities in 1, 2 or 3 dimensions. The dimensionality of a
coordination polymer is defined by the number of directions in space the array
extends to. A one-dimensional structure extends in a straight line (for example
along the x axis); a two-dimensional structure extends in a plane (two directions,
x and y axes); and a three-dimensional structure extends in all three directions
(x, y, and z axes) [11]. The work of Alfred Werner and his contemporary re-
searchers laid the foundational groundwork for the study of coordination poly-
mers. Terms unique to the field, such as coordination number, were coined by
Werner. Werner et al categorized a lot of organometallic materials as coordina-
tion polymers. These include the cyanide complexes Prussian blue and Hofmann
clathrates [12].

Metal centers, also called nodes, bond to a specific number of linkers at well
defined angles. The number of linkers bound to a node is known as the co-
ordination number, which, along with the angles they are held at, determines
the dimensionality of the structure. The coordination number and coordination
geometry of a metal center is determined by the nonuniform distribution of elec-
tron density around it, and in general the coordination number increases with
cation size. Transition metals are commonly used as nodes. Partially filled d
orbitals, can hybridize in different ways depending on environment. This elec-
tronic structure causes some of them to exhibit multiple coordination geometries,
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particularly copper and gold ions which as neutral atoms have full d-orbitals in
their outer shells. Alkali metals and alkaline earth metals exist as stable cations.
Alkali metals readily form cations with stable valence shells, giving them different
coordination behavior compared to transition metals. They are strongly affected
by the counterion from the salt used in synthesis, which is difficult to avoid.
Group II metals have also been used as nodes. In this case, the dimensionality
of these structures increases as the radius of the metal increases down the group
(e.g. from calcium to strontium to barium). In most coordination polymers, a

Coordination Polymer Hybrid Perovskite

A cation

Metal ion

BX Octahedra
6

Organic
Ligands

Figure 1.1: Schematic representation of linear, 1-D coordination polymer (left
panel) and hybrid perovskite (right panel). In case of linear, 1-D coordination
polymer, chains of metals are linked by organic ligands. In the ABX3 structure
of hybrid perovskite, BX6 forms octahedra with A cation sitting in the voids. B
cation is a metal ion and A cation is an organic cation. BX6 octahedra are also
linked by organic linkers. Figure adapted from Banerjee et al [Inorganics, 5(3),
47 (2017)]

ligand (atom or group of atoms) will formally donate a lone pair of electrons to
a metal cation and form a coordination complex via a Lewis acid/ base relation-
ship. Coordination polymers are formed when a ligand has the ability to form
multiple coordination bonds and act as a bridge between multiple metal centers.
Ligands that can form one coordination bond are referred to as monodentate, but
those which form multiple coordination bonds, which could lead to coordination
polymers are called polydentate. Polydentate ligands are particularly important
because it is through these ligands that connect multiple metal centers together,
that an infinite array is formed. Polydentate ligands can also form multiple bonds
to the same metal also known as chelation. Monodentate ligands are also referred
to as terminal ligands because they do not offer a place for the network to con-
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tinue. Often, coordination polymers will consist of a combination of poly- and
monodentate, bridging, chelating, and terminal ligands.

Almost any type of atom with a lone pair of electrons can be used as a ligand.
Ligands that are commonly found in coordination polymers include polypyridines,
phenanthrolines, hydroxyquinolines and polycarboxylates. Oxygen and nitrogen
atoms are commonly found to be the binding sites.

Besides the choice of metals and ligands, there are many other factors that
affect the structure of coordination polymers. For example, one of the important
factors which may affect properties of a coordination polymer is the counter ion.
Other than this there are also guest molecules like water or other molecules which
affect steric or other factors and may at times lead to Hydrogen bonding in these
materials.

Coordination polymers have multifarious applications. The chief among these
are molecular storage, where porous coordination polymers have potential as
molecular sieves in parallel with porous carbon and zeolites [12], in lumines-
cence [13], electrical conductivity [13], magnetism [13] and as sensors and memory
devices.

The context of the study of coordination polymers in our case is to address
the question of which are the materials which are suitable for cooperative SCO.
As mentioned previously, 1, 2 or 3-dimensional coordination polymers, which are
materials with repeating array of coordination entities, are suitable choices. The
dimensionality of a coordination polymer is defined by the number of directions
in space the array extends to. Most studied SCO materials showing cooperativ-
ity, so far are linear 1-dimensional coordination polymers which are compounds
extending through repeating coordination entities in 1-dimension forming chain
like structures, with weak links between individual chains [13], as shown in left
panel of Figure 1.1. The other possibilities are coordination network solids [13],
which are compounds extending through repeating coordination entities in 2 or
even 3 dimensions. Strategic crystal engineering that makes use of multidentate
ligands, connected by spacers, facilitates to increase the dimensionality from 1-D
to 2-D or 3-D. Pressure-induced LS-HS transition in 2-D net was first reported
for [Fe(btr)2(NCS)2]H2O [14] [btr → bis-triazole]. The compound consisted of
Fe(II) ions linked by btr in two directions producing infinite layers which were
connected by means of van der Waals or weak H bonds. [Fe(btr)3][(ClO4)2] [15]
represents the first 3-D SCO coordination polymer.

For the sake of brevity, we will restrict ourselves to only linear or 1-D coordi-
nation polymers, and not extend our discussion to 2-D or 3-D polymers.

Among the linear coordination polymers, or 1-D chain compounds 4R-1,2,4-
triazole based Fe(II) chain compounds have been in focus both in early studies
and in recent developments. [Fe(4R-1,2,4-triazole)3]A2.solv, where A is the coun-
terion and solv denotes the solvent molecule, are made up of linear chains in which
the adjacent Fe(II) ions in the chain are linked by three triazole ligands. The co-
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ordination linkers, which are 1,2,4-triazole blocks, form efficient chemical bonds
to transmit cooperative effect, leading to hysteresis loop of width ranging ≈ 2-20
K. [16] Sometimes these hysteresis loops are also found to be centered at room
temperature. [17] Bimetallic 1-D chain compounds like Fe(aqin)2(µ2-M(CN)4),
M=Ni(II) or Pt(II), aqin = Quinolin-8-amine, have been recently synthesized
which were found to show abrupt HS-LS SCO. [18] Novel 1-D Fe(II) SCO coordi-
nation polymers with 3,3’-azopyridine as axial ligand has been synthesized which
were found to show kinetic trapping effects and spin transition above room tem-
perature. [19] Combination of rigid links and a hydrogen bond network between
1-D Fe(II) chains has been recently shown as a promising tool to trigger SCO
with hysteresis loops having widths as large as ≈ 43 K. [20]

1.1.2 Hybrid Perovskites

We will now focus on a new class of materials in context of SCO, namely hybrid
perovskites. A subclass of coordination network solids are metal organic frame-
works (MOFs) which are coordination networks with organic ligands containing
potential voids [13], and thus can be labeled as porous coordination polymers.
Most of the research on MOFs are related to porosity of the systems, however,
recently attention has also been given to dense MOFs with limited porosity which
show potential for applications in other areas like optical devices, batteries, and
semiconductors.

Hybrid perovskites are a class of compounds with general formula ABX3 hav-
ing long range connectivity that form a subclass of dense MOFs. The extended,
3-dimensional connectivity with limited void space, together with possibility of
synthesizing hybrid perovskites containing transition metal ions have made these
compounds also probable candidates for exhibiting cooperative SCO. While lin-
ear coordination polymers have already been explored to a large extent in search
of cooperative SCO, ABX3 type hybrid perovskites, which though in attention in
recent time, has not been explored for cooperative SCO.

Hybrid perovskites are actually counterparts of inorganic perovskites (dis-
cussed in detail in the next section) and have attracted a great deal of attention
of the material chemists due to their varied technological applications and novel
optical, dielectric, and multi-ferroic properties [21], [22], [23], [24], [40]. These
materials have very useful applications in catalysis, [26] gas storage, [27] and thin
film solar cells [28]. Their usage in chemical sensors [29] and luminescent materials
have been known too to the scientific community. Combining some of these prop-
erties for their functionality like magnetism and optical properties, conductivity
and magnetic properties, magnetism and porosity, or molecular motion and elec-
tric and magnetic properties has been interesting fields of study. Very interesting
applications in the fields of drug delivery [30], methane storage [32], bio-mimetic
mineralization [30], as semiconductors, [31] and in carbon capture [33] has also
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been noted. The most famous applications for hybrid perovskites have been in the
case of perovskite solar cells [28] which have enjoyed a huge success in design and
implementation. These are primarily lead and tin halide based hybrids, which we
shall discuss in detail shortly. These perovskite materials have been well known
for many years, but the first incorporation into a solar cell was reported recently
by Miyasaka et al. in 2009 [34].

In case of hybrid perovskites, while the B cation is a metal ion as in inorganic
perovskites, both the A cation as well as the ligand can be organic. Lead halides
hybrid perovskite [35,36] family having [AmH]MX3 composition, where AmH+ is
the protonated amine part; M is either Sn2+ or Pb2+, and X− is the halogen part
(Cl, Br, or I) have been shown to demonstrate high performance and efficiency
in applications relating to design of mesostructural (and/or nanostructural) solar
cells and other photovoltaic devices [34, 37, 38]. Easy processing techniques like
spin-coating, dip-coating, and vapor deposition techniques have been known to
be of advantage in this case [39, 40].

Organic ligands like formate being simple enough have also been studied with
varied A cations and metal ions primarily from the transition metal family. This
class of materials have been shown to exhibit curious properties in the experi-
mental literature, of which multiferroicity seems to be the most intriguing one.
Computed crystal structures of representative compounds like dimethylammo-
nium iron formate (DMAFeF) and hydroxylammonium iron formate (HAFeF)
are shown in right panel of Figure 1.1. Studies have been carried out for transi-
tion metal atoms centres like Mn, Cu, Ni, Fe, Co [41] etc. In the crystal structure
of these compounds, as shown schematically in right panel of Figure 1.1, formate
bridges act as linkers that connect the BX6 octahedra, with the protonated amine
cations situated at the hollow spaces formed by the linked octahedra. These hol-
low spaces act as pseudo-cubic ReO3 type cavities.

Some of these compounds are canted weak ferromagnets with small values
of TC , and have shown hysteresis loops below their critical temperatures. It
has been seen from model calculations with these materials that the dominant
superexchange mechanism in them is antiferromagnetic. It has been suggested
that it is possible to synthesize other weak ferromagnets by changing the cen-
tral A amine cation. This class of materials has been shown to exhibit curious
properties, of which multiferroicity seems to be an intriguing one [42–44]. Ferro-
electricity and especially multiferroicity in these materials has been extensively
studied by Stroppa and coworkers mostly from a DFT based first principles per-
spective and at times combined with experimental studies [45–49]. Structural
details and effects due to structural phase transitions, strain tuning of various
effects like polarisation, and magnetic structure has also been studied [50–53]. It
has also been seen that these materials undergo structural order-disorder phase
transitions. This phase change is often associated with a dielectric anomaly when
cooling. When compared to the phase transition on heating, a clear hysteresis of
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a reasonable width was observed.
As mentioned previously, the presence of transition metal in these compounds

together with its octahedral environment makes them suited also for exhibiting
SCO behavior and possibly also cooperativity due to dense nature of framework,
which would provide another dimension to functionality of these interesting class
of compounds. This aspect of this interesting class of compounds has remained
unexplored, until our recent theoretical proposal [54].
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1.2 Inorganic Oxide Heterostructures

1.2.1 Oxides

Complex oxides represent a class of materials with a plethora of fascinating phys-
ical properties. The intriguing interplay of charge, spin, and orbital ordering
in these systems coupled with lattice effects opens up a scientifically rewarding
playground for both fundamental and application-oriented research. In particu-
lar transition metal oxides (TMO) continue to attract a great deal of attention
both experimentally and theoretically spanning over many decades, due to their
several interesting properties, e.g. Mott transition, High-Tc superconductivity,
ferromagnetism, antiferromagnetism, low-spin/high-spin transition, ferroelectric-
ity, antiferroelectricity, colossal magnetoresistance, charge ordering etc.

The basic structural unit of this class of materials is metal-oxygen polyhe-
dra (MOn, where M is the Transition Metal (TM) atom, O is the oxygen and
n is an integer) such as octahedra, square pyramid, square planar, tetrahedra,
pentagonal bipyramid, trigonal bipyramid etc. The strong tendency of surround-
ing oxygen atoms towards negative valency, remove the s electrons from the TM
atom and subject the d orbitals of TM ions to an anisotropic field, known as
crystal field. Under the influence of this field each d orbital is affected differently
and how a particular d orbital will be affected depends upon the geometry of the
oxygen surrounding. This results in splitting of the energy levels of the five fold
degenerate (including spin, 10- fold degenerate) d orbitals in the atomic limit.
The strength of this splitting, known as crystal field splitting, depends on the
following factors:

• Geometry of the oxygen polyhedra.

• Strength of TM-O covalency

The most common geometry is the octahedral geometry, where six oxygen
ligands form an octahedron around the metal ion. For a cubic symmetry the
d-orbitals split into two sets : a higher energy level of two-fold (including spin,
fourfold) degenerate eg orbitals and a lower energy level of three-fold (including
spin, six-fold) degenerate t2g orbitals. For a perfect octahedral symmetry, the
lobes of the eg orbitals, formed by dx2−y2 and d3z2 orbitals, are pointed directly
towards the oxygen atoms and therefore feel stronger electrostatic field than the
t2g orbitals, which are constituted by dxy, dyz and dxz orbitals with lobes directed
in between two oxygen atoms. If the degenerate eg states are occupied partially,
it generally leads to further lifting of degeneracy of the ground state. The perfect
octahedral geometry distort spontaneously driven by the combined effect of two
phonon modes Q2 and Q3. The modes are defined as

Q2 =
1√
2

(X1 −X4 − Y2 + Y5), (1.1)
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Figure 1.2: Jahn-Teller breathing modes. Figure (a) on left panel shows the Q2

breathing mode while figure (b) on right panel shows the Q3 breathing mode.

Q3 =
1√
6

(2Z3 − 2Z6 −X1 +X4 − Y2 + Y5). (1.2)

This spontaneous distortion removes the degeneracy and reduce the energy of the
system to stable states. This effect is known as Jahn-Teller effect as demonstrated
in Figure 1.2, named after Hermann Jahn and Edward Teller, who first gave the
full explanation of this effect [59]. In Figure 1.2 the Q2 and Q3 Jahn Teller
breathing modes are shown. The left panel shows the Q2 breathing mode where
one pair of the two in-plane O atoms move towards each other and the other
pair moves away from each other. In the right panel the Q3 breathing mode
is shown where the in plane oxygen atoms all move towards each other and
the out of plane oxygen atoms move away from each other. In TMOs, as the
direct overlap between TM d orbitals is negligibly small, the d electrons can
move only through hybridization with oxygen 2p-bands. The magnitude of this
indirect overlap depends on the following factors such as, the orientation of the
d orbitals with respect to the connecting O p orbitals, that are responsible for
the low energy phenomenon, and, the relative position of oxygen p-levels (εp) and
transition metal d-levels (εd), i.e. the value of charge transfer energy

∆ = εd − εp. (1.3)

In case of some 3d transition metal (Ti, V, Cr, Mn) oxides having octahedral sur-
rounding of oxygen ions the Fermi level lies in the manifold of t2g bands. Therefore
the net overlap between two adjacent TM d orbital takes place through the hy-
bridization between t2g bands and oxygen 2p bands. As the t2g orbitals point
away from the oxygen 2p orbitals, it forms weak π hybridization with oxygen.
Furthermore, low nuclear charge of early TM, makes the relative energy differ-
ence of d and p bands large. On the other hand in case of late 3d TM (Fe, Co, Ni,
Cu) based oxides, for the same octahedral symmetry, as the t2g levels are com-
pletely occupied, eg levels play the main role to create varied interesting physical
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phenomenon. Owing to the favorable geometric orientation of the eg orbitals
with respect to oxygen 2p orbital, the hybridization is stronger. Additionally, the
larger charge on the TM nuclei decreases the chemical potential of d electrons
and thus the relative energy difference of d and p bands.

Metal oxide perovskites constitute one of the largest class of oxide materi-
als. First perovskite based mineral CaTiO3 was discovered in 1839 in the Ural
mountains by geologist Guastav Rose and the name given in the honor of famous
Russian mineralogist Count Lev Alexevich Perovski. [60] It lends its name to the
class of compounds which have the same type of crystal structure as CaTiO3

known as the perovskite structure [55]. The perovskite crystal structure was
first described by Victor Goldschmidt in 1926 [61]. The general formula of any
perovskite is ABX3, where B atom is surrounded by X in a 6 coordinated environ-
ment whereas A atom is surrounded in a 12 coordinated environment by X atom.
Perovskite materials MgSiO3 and FeSiO3 are the most abundant compounds in
the Earths crust.

The general formula for perovskite based transition metal oxides is ABO3,
where A is a rare earth or alkaline earth element and B is a transition metal. B
site ions sit at the center of the lattice, and could be 3d, 4d, and 5d transition
metal elements. Generally the structure consists of an array of corner shared
BO6 octahedral units with large A cations sitting at the void spaces in between
the octahedral units. The structure of these perovskite oxides are mainly derived
from cubic structure. However many compounds at low temperatures often exist
with lower symmetry structures such as in tetragonal, orthorhombic or hexagonal
symmetries.

Among the complex oxides, the ABO3 perovskites and related layered com-
pounds stand out. The subtle interplay between competing energy scales result
in a variety of orderings of the spin, charge, and orbital degrees of freedom. It en-
dows these materials with a broad spectrum of functional properties; for instance,
charge transport can exhibit colossal magnetoresistance, metal-to-insulator tran-
sitions, or insulator-to-superconductor transitions (for strongly correlated com-
pounds). Cooperative alignment of electric dipoles or spins lead to ferroelectricity
or ferromagnetism, respectively. Tilting and buckling of oxygen octahedra, which
result in antiferrodistortive (AFD) structural ordering, can couple to other modes
in the system, driving structural and electronic phase transitions.

A large number of metallic elements are stable in the perovskite structure, if
the tolerance factor t is in the range of 0.75-1.0, where t may be defined as [57],

t =
RA +RO√
2(RB +RO)

(1.4)

Here RA, RB and RO are the ionic radii of A and B site elements and oxygen,
respectively.

In the idealized cubic unit cell of such a compound, type ’A’ atom sits at cube
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Figure 1.3: A schematic diagram demonstrating the various properties of com-
plex perovskite oxides. The green, blue, and red spheres forming the perovskite
structure illustrated in the centre represent the A, B, and O atoms, respectively.
Figure adapted from Triscone et al Annu. Rev. Condens.Matter Phys. 2011.
2:14165

corner positions (0, 0, 0), type ’B’ atom sits at body centre position (1/2, 1/2,
1/2) and oxygen atoms sit at face centred positions (1/2, 1/2, 0). As shown in
Figure 1.3. the green balls are the A atoms, the light blue ball in the middle of
the shaded octahedra is the B atoms and the small red balls are the O atoms.
Figure 1.3 also showcases the various interesting properties of perovskite oxides.

The relative ion size requirements for stability of the cubic structure are quite
stringent, so slight buckling and distortion can produce several lower-symmetry
distorted versions, in which the coordination numbers of A cations, B cations
or both are reduced. Tilting of the BO6 octahedra reduces the coordination of
an undersized A cation from 12 to as low as 8. Conversely, off-centering of an
undersized B cation within its octahedron allows it to attain a stable bonding
pattern. The resulting electric dipole is responsible for the property of ferroelec-
tricity shown by perovskites such as BaTiO3 that distort in this fashion.

The orthorhombic and tetragonal phases are most common non-cubic variants
of perovskite oxides.

Complex perovskite structures contain two different B-site cations. This re-
sults in the possibility of ordered and disordered variants.

Perovskites may be structured in layers, with the above ABO3 structure sep-
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arated by thin sheets of other materials. Different forms of intrusions, based on
the chemical composition of the intrusion or interpenetration, are defined as [58]:

• Ruddlesden-Popper phase: This phase happens to be the simplest of all the
three different phases. Here the intercalating layer occurs between every
one (n = 1) or two (n = 2) layers of the ABO3 lattice. Ruddlesden-Popper
phases have a similar relationship to perovskites in terms of atomic radii
of elements with A being quite large (such as La or Sr) and the B ion in
comparison being a much smaller transition metal ion (such as Mn, Co or
Ni).

• Aurivillius phase: In this phase the inter-penetrating layer is composed of a
[Bi2O2]

2+ ion, occurring every n ABO3 layers, leading to an overall chem-
ical formula of [Bi2O2]

−A(n−1)B2O7. The oxide ion-conducting properties
of materials belonging to this phase were first discovered in the 1970s by
Takahashi et al., and they have been used for this purpose ever since.

• Dion-Jacobson phase: In this particular phase interpenetrating layer is com-
posed of an alkali metal (M) for every n ABO3 layers, giving the overall
composite formula to be M10+A(n−1)BnO(3n+1)

Perovskite materials exhibit many interesting and intriguing properties from
both the theoretical and the application point of view. Colossal magnetoresis-
tance, ferroelectricity, superconductivity, charge ordering, spin dependent trans-
port, high thermopower and the interplay of structural, magnetic and transport
properties are commonly observed features in this family. These compounds are
used as sensors and catalyst electrodes in certain types of fuel cells and are can-
didates for memory devices and spintronics applications.

Many superconducting ceramic materials (the high temperature supercon-
ductors) have perovskite-like structures, often with 3 or more metals including
copper, and some oxygen positions left vacant. One prime example is yttrium
barium copper oxide which can be insulating or superconducting depending on
the oxygen content.

1.2.2 Heterostructures formed between Oxides

Developments in recent experimental methods like molecular beam epitaxy (MBE)
or pulsed laser deposition (PLD) have lead to the possibility of layer by layer
growth of perovskite oxides on one another. Such layered structures with more
than one oxide compound in the structure are called oxide heterostructures as
shown in the experimental annular dark field image in Figure 1.4. The pioneering
work by Ohtomo & Hwang [62] established that a two dimensional electron gas
(2DEG) of high carrier density and high mobility is formed at the interface (IF)
of two perovskite oxides, like LaAlO3(LAO) and SrTiO3(STO), both of which are
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Figure 1.4: Annular dark field (ADF) image of LaTiO3 layers (bright) of varying
thickness spaced by SrTiO3 layers. The view is along the [100] axis of the SrTiO3

substrate. The growth sequence is 5 × n (that is, 5 layers of SrTiO3 and n layers
of LaTiO3), 20 × n, n × n, and finally a LaTiO3 capping layer. The numbers in
the lower image indicate the number of LaTiO3 unit cells in each layer. Field of
view is 400 nm. Magnified view of the 5 × 1 series in the top panel. Figure is
adapted from Ohtomo and Hwang Nature 419, 378, 2002

band insulators, and [63] neither of which share the properties seen at the inter-
face. Interfaces can exhibit electrical conductivity [62], superconductivity [64],
ferromagnetism [65], large negative in-plane magnetoresistance [66], and giant
persistent photoconductivity [67].

Under the right conditions, the LaAlO3/SrTiO3 interface is electrically con-
ductive, like a metal. The angular dependence of Shubnikov-de Haas oscillations
indicate that the conductivity is two-dimensional, leading to its reference as a
two-dimensional electron gas (2DEG) [68]. Two-dimensional does not mean that
the conductivity has zero thickness, but rather that the electrons are confined to
only move in two directions.

However not all LaAlO3/SrTiO3 interfaces are conductive. Typically, conduc-
tivity is achieved only when:
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• The LaAlO3/SrTiO3 interface is along the [001], [110] and [111] crystallo-
graphic directions,

• The LaAlO3 and SrTiO3 are crystalline and epitaxial,

• The SrTiO3 side of the interface is TiO2-terminated (causing the LaAlO3

side of the interface to be LaO-terminated) [62], which is known as an n-type
interface,

• The LaAlO3 layer is at least 4 unit cells thick (this however is not the case
with other interfaces, like for example in interfaces between Mott insula-
tors and band insulators where there is no critical or cutoff thickness for
conduction). [71]

Conductivity may also be achieved when the SrTiO3 is doped with oxygen vacan-
cies; however, in that case, the interface is technically LaAlO3/SrTiO3−x instead
of LaAlO3/SrTiO3.

The source of conductivity at the LaAlO3/SrTiO3 interface has been debated
for years. SrTiO3 is a wide-band gap semiconductor that can be doped n-type in
a variety of ways. Clarifying the mechanism behind the conductivity is a major
goal of current research. Four leading hypotheses in this context are:

1. Polar catastrophe

2. Oxygen vacancies

3. Intermixing of cations

4. Structural distortions

The most prevalent hypothesis is the Polar Catastrophe Hypothesis which we
shall discuss in detail in the relevant chapter.

We could similarly have various types of interfaces between Mott insula-
tors and band insulators or Jahn Teller insulators and band insulators and see
how the property of the interfaces change! A large number of both conducting
and insulating interfaces have been identified . Some of the conducting inter-
faces are, GdTiO3/SrTiO3, LaTiO3/SrTiO3, LaVO3/SrTiO3, LaGaO3/SrTiO3,
PrAlO3/SrTiO3, NdAlO3/SrTiO3, NdGaO3/SrTiO3, GdAlO3/SrTiO3, Al2O3/SrTiO3,
YAlO3/SrTiO3, La0.5Al0.5Sr0.5Ti0.5O3/SrTiO3, DyScO3/SrTiO3, KTaO3/SrTiO3,
CaZrO3/SrTiO3, while the insulating interfaces are, LaCrO3/SrTiO3, LaMnO3/SrTiO3,
La2O3/SrTiO3, Y2O3/SrTiO3, LaYO3/SrTiO3, EuAlO3/SrTiO3, BiMnO3/SrTiO3.
The most intriguing property [69] among those shown by interfaces seem to be
the puzzling existence of both ferromagnetism and superconductivity!

In case of LAO/STO carrier densities are found [70] to be an order of magni-
tude smaller than (e/2) which is expected out of polar catastrophe model. More-
over the IFs have been reported to be insulating below a critical thickness of
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LAO layers [71]. Recently superlattices & heterostructures consisting of GdTiO3

(GTO) which is a Mott insulator and SrTiO3 which is a band insulator have been
grown [72] which show 2DEG densities of 3.3×1014cm−2 in accordance with polar
catastrophe model irrespective of layer thickness.

Among the various novel properties of heterointerfaces, a lot of effort has been
made to control and utilize magnetic properties as well for e.g. the magneto-
electric coupling, the magnetic ordering modification, and the charge-transfer
effect were observed by using manganese oxides as a constituent layer within ox-
ide heterostructures. In this context, LaMnO3(LMO), a Jahn Teller Insulator,
based layers have been widely adopted to employ magnetism to the oxide het-
erostructures. The primary advantage of using LMO is that its magnetic and
electric phases can be modified diversely by a small amount of doping. Stoichio-
metric LMO is an A-type antiferromagnet and is a good insulator. The system
can be doped by cautiously controlling its stoichiometry and can become a fer-
romagnetic metal. On the other hand, such a doping effect can also be a major
disadvantage in identifying a system. The delicate effect of doping requires the
careful characterization of LMO, especially when it is used in a heterostructure.
Numerous experimental studies have been undertaken to identify the nature of
the LMO/STO interfaces and it was found that the electronic structure of the
LMO/STO interface depends strongly on the relative thickness of LMO and STO
and in which geometry it is being studied Having been studied in both superlattice
and thin-films geometry, the interfaces also show strong dependence on the type
of geometry in which it is studied. In the superlattice geometry, it is seen that
when LMO much thicker than STO one obtains a ferromagnetic metal, however
when LMO and STO have comparable thickness one obtains experimentally a
ferromagnetic insulator. There is however no consistent satisfactory explanation
of this FM insulating state! In the thin-film/substrate geometry for thickness of
LMO ≤5 unit cells, LMO is AFM. However when thickness of LMO ≥6 unit cells,
LMO is FM and in these cases FM state is usually accompanied with insulating
behaviour above the critical thickness.

Huge number of applications have been predicted for interfaces of these com-
plex oxides. Some of these applications have been included in field-effect devices,
sensors, photodetectors, and thermoelectrics and in functional solar cells. Thus
oxide electronics is thought to one day replace for the better the silicon semicon-
ductor industry as we know it today. Just as Nobel laureate Herbert Kroemer
mentioned in his Nobel lecture ”the interface is the device” [73], it indeed seems
to be the way to look to the future.

In this part of the thesis we study 3 different interfaces, LaAlO3/SrTiO3,
GdTiO3/SrTiO3, LaMnO3/SrTiO3, and try to look at interesting features and
properties of these interfaces which shall be dealt with in the subsequent chapters.
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1.3 Overview of present thesis

It is apparent from the several examples presented in the previous sections that
diverse classes of systems show a variety of properties which are not completely
understood at the microscopic level. Thus first principles calculations on these
compounds have been the most obvious choice, in terms of making accurate pre-
dictions at the microscopic level. It is abundantly clear that impressive improve-
ments in computational techniques and resources have made it easier to reach
this point. First principles calculations assist in understanding the structure
and various intriguing and interesting properties of these compounds, which at a
glance seems to be very complex with a wide gamut of degrees of freedom. The
understanding at the microscopic level opens up new avenues for the design of
novel functional materials. A better understanding of the interplay between the
different ordering like magnetic, charge and orbital degrees of freedom may lead
to the identification of materials with desirable functional properties. Parallel to
this, first principles calculations are capable of making more precise connection
between real systems and simplified models to understand the underlying physics
of the materials leading to conceptual advances and a stronger feedback between
theory and experiment.

In this thesis six different compounds have been studied belonging to two
different classes of materials. Thus the thesis may be thought of to be divided
into two parts: The first part dealing with novel properties derived from the
phenomena of spin crossover in metal organic complexes and the second part
dealing with the exciting field of 2-dimensional electron gases at the interfaces
between inorganic oxides heterostructures. Among metal organic complexes a
detailed study has been made of Fe-triazole polymeric chain compounds, fol-
lowed by metal organic frameworks taking the example of hybrid perovskites
like Dimethylammonium Iron formate (DMAFeF) and Hydroxylamine Iron For-
mate (HAFeF). Among inorganic oxide hetero-interfaces, three different types of
heterostructures have been studied, (a) the interface between two band insula-
tors taking the example of the interface between Lanthanum Aluminate LaAlO3

(LAO), and Strontium Titanate SrTiO3 (STO), (b) the interface between a band
insulator STO and a Mott insulator, Gadolinium Titanate GdTiO3 (GTO) and fi-
nally, (c) the Interface between a band insulator STO and a Jahn-Teller insulator
Lanthanum Manganate LaMnO3 (LMO).

First principles calculations based on advanced Density Functional Theory
techniques, at times in conjunction with finite temperature techniques like Ab
initio molecular dynamics (AIMD) and model Hamiltonian approaches have been
performed on these materials to understand from microscopic point of view the
exciting properties exhibited by them. The contents of the various chapters dis-
cussed in the present thesis have been organized as follows :

• Chapter 2: In this chapter, we discuss the theoretical methodology of
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our calculations. This includes both the theoretical background of Den-
sity Functional Theory (DFT) and applying the same, how in practice one
can solve a many electron Hamiltonian. In addition to this we discuss the
different basis sets which we have considered during the course of calcu-
lation, depending upon the properties we have studied. We discuss the
construction of low energy model Hamiltonian of such complex materials
starting from first-principles calculations. We also discuss few tools beyond
the zero temperature DFT such as Ab-initio molecular dynamics (AIMD),
and classical Monte Carlo simulations.

• Chapter 3: In this chapter a study of the origin of cooperativity associ-
ated with the spin crossover phenomena has been undertaken. A model
Hamiltonian was developed and solved using Monte Carlo techniques to
study the effect of various interaction parameters on cooperativity in SCO
materials in general. Taking a real life example of Fe-triazole the advent
of hysteresis was shown to be driven by magnetic interactions primarily
and the experimental TC and width of hysteresis was reproduced using the
DFT derived model Hamiltonian. Furthermore AIMD calculations were
undertaken to actually demonstrate a bistability and hence the presence of
hysteresis region at the critical transition temperature.

• Chapter 4: In this chapter an extensive study of pressure dependent spin
crossover phenomena was made in MOF systems taking hybrid perovskites
like DMAFeF and HAFeF. Crystal structures of these materials were pre-
dicted by first principles methods. SCO driven by pressure was seen to
arise in these two materials albeit at different PC owing to their differing
mechanical strengths as demonstrated by their different bulk moduli. On
reversal of pressure the materials were shown to demonstrate a hysteresis
effect which implies the presence of cooperativity in the materials. The
widths of hysteresis were found to be tunable by chemical means through
change of the A-site cation. The hysteresis was found to be driven primarily
by elastic interactions.

• Chapter 5: This particular chapter deals with a comparative analysis
of the interfaces between two band insulators LAO and STO and a Mott
insulator GTO with a band insulator STO. A complete study of both the
experimentally observed superlattice and thin-film/substrate configurations
were undertaken. Though the two interfaces were found to behave similarly
in the superlattice geometry, a large qualitative and quantitative difference
in properties was observed in case of the film/substrate geometry. Band
bending and polar catastrophe was seen to be the driving reasons for the
generation of the 2D electron gas in case of the overlayer/substrate geom-
etry. A correlation driven charge disproportionated state was discovered
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which was found to be responsible for driving the surface layer to be in-
sulating in case of GTO/STO which is otherwise found to be metallic in
LAO/STO.

• Chapter 6: This particular chapter studies the properties of strained Jahn
Teller insulator LaMnO3, along with its interface with the band insulator
STO. The effect of square planar strain which is induced by matching of
LMO lattice constants to cubic STO lattice constants is the important
issue. The electronic and magnetic properties of these systems have been
studied with different techniques with varying degrees of sophistication in
handling electron electron exchange correlation effects like GGA+U and
hybrid functionals. This multi-pronged approach reveals that the curious
state of ferromagnetic insulator of LMO, as observed experimentally, may
be driven by electronic instability towards charge disproportionation.

• Chapter 7: This chapter deals with summary of the results of study on the
various different organic and inorganic compounds at one place. Possibilities
of future work has also been discussed here.
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Chapter 2

Theoretical methodology

2.1 Introduction

In this chapter I shall discuss the various methods and techniques that have been
used to study the electronic structure of materials and their novel properties. We
have used both T=0K conventional ab-initio techniques as well as its extension
to finite temperature within the framework of ab initio molecular dynamics. We
have also carried out classical statistical mechanical calculations like Monte Carlo
Simulation of model Hamiltonian. We start this section by stating the many body
Hamiltonian which is the fundamental Hamiltonian describing atoms, molecules,
clusters, and bulk systems. We then get into various approximations adopted to
solve this many body Hamiltonian. Following this, we discuss the finite tempera-
ture extension. Finally we discuss the Monte Carlo (MC) simulation of the model
Hamiltonian.

2.2 The many body Hamiltonian

The microscopic description of the physical and chemical properties of matter is
a complex problem. Matter is a collection of interacting atoms. This ensemble
of particles may be in the gas phase (molecules and clusters) or in a condensed
phase. They could be solids or liquids, crystalline or amorphous, homogeneous
or heterogeneous. However, in all these cases one can without any ambiguity
describe the system as a collection of nuclei and electrons interacting through
Coulombic (electrostatic) forces. Thus the many body Hamiltonian for any such
system can be written in a generalized form as,

H = −
P∑
I=1

~2

2MI

∇2
I −

N∑
i=1

~2

2mi

∇2
i +

e2

2

P∑
I=1

P∑
J 6=I

ZIZJ
|RI −RJ|

27
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+
e2

2

N∑
i=1

N∑
j 6=i

1

|ri − rj|
− e2

P∑
I=1

N∑
i=1

ZI
|RI − ri|

, (2.1)

where, R = { RI }, I=1,...P, are P nuclear coordinates, and r = { ri }, i=1,N,
are a set of N electronic coordinates. ZI and MI are the P nuclear charges and
masses respectively. mi are the N electronic masses each of charge e.

Electrons are fermions, and thus the total electronic wave function must be
anti-symmetric, with respect to exchange of two electrons. Nuclei can be bosons,
fermions or even distinguishable particles, according to the concerned problem.
Thus it appears that all the components are perfectly known , and, in principle, all
the properties can be obtained by solving the many body Schrödinger’s Equation,

HΨi(r,R) = EiΨi(r,R). (2.2)

However in reality, this problem is almost impossible to solve in a full quan-
tum mechanical framework. The possibility of finding exact analytical solutions
is limited to very few potentials even for a single particle, and hence one has
to resort to approximate techniques, such as variational principle or perturba-
tive treatments. In an alternate approach, one may in principle attempt a direct
numerical solution. However the difficulty arises due to the sheer number of
variables (3N) involved in the wave-function Ψ(r1,r2...,rN), as has been best de-
scribed by D.R.Hartree: ”It has been said that the tabulation of a function of
one variable requires a page, of two variables a volume, and of three variables
a library; but the full specification of a single wave function of neutral Fe is a
function of seventy-eight variables. It would be rather crude to restrict to ten the
number of values of each variable at which to tabulate this function, but even
so, full tabulation of it would require 1078 entries, and even if this number could
be reduced somewhat from considerations of symmetry, there would still not be
enough atoms in the whole solar system to provide the material for printing such
a table” . Added on to this are the problems of interpretation. In the words of
R. P. Feynman, ” The trouble with quantum mechanics is not only in solving the
equations, but in understanding what the solutions mean.”

Thus different factors contribute to this problem. First, this is a multi-component
many body system, where each component obeys its own statistics. Second, the
complete wave function cannot be factorized due to Coulomb correlations, and
one has to deal with (3N+3P) coupled degrees of freedom. Thus usually one re-
sorts to some sensible approximations. Most calculations presented in literature
are based on:
(1) Born Oppenheimer or Adiabatic Approximation, and,
(2) Classical Nuclei Approximation.
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2.2.1 Born-Oppenheimer Approximation

The first step towards the simplification of the problem was the Born-Oppenheimer
(B-O) approximation(1927). [1] The timescale associated with the motion of the
nuclei is usually much slower than that associated with electrons. The negligible
mass of the electrons compared to the protons (a ratio of 1 in 1836) implies that
their velocity is much larger. Thus it is generally accepted that the electrons can
be adequately described as following the motion of the nuclei instantaneously,
while maintaining the same stationary state of the electronic Hamiltonian. This
stationary state varies in time because of the Coulombic coupling of the two sets
of degrees of freedom. Thus as the nuclei follow their dynamics, the electrons
instantaneously adjust their wave function in accordance with the nuclear wave
function.

Thus a possibility of factorizing the full wave function and decoupling the nu-
clear and electronic motion arises. One may write without much loss of generality,

Ψ(R, r, t) = Θm(R, t)Φ(R, r), (2.3)

where the electronic wave function Φm(R,r) [normalized wave-function for ev-
ery R] is the mth stationary state of the electronic Hamiltonian,

He = Te + Uee + Vne = H − Tn − Unn, (2.4)

where, Tn, and Unn are the nuclear kinetic and potential operators, respectively,
Te, and Uee are the same for the electronic case, and, Vne the electron-nuclear
interaction.

The electronic energy eigenvalues are εm(R). In electronic (stationary) Schrödinger’s
equation, the nuclear coordinates R are merely parameters, while the nuclear
wave-function Θm(R,t) obeys the time dependent Schrödinger’s equation,

i~
∂

∂t
[Θm(R, t)] = [Tn + Unn + εm]Θm(R, t), (2.5)

or the stationary version

[Tn + Unn + εm]Θm(R) = EmΘm(R). (2.6)

Inspite of the fact that m can be any eigenstate, m = 0, the ground state is
most prevalent in literature focusing on these phenomena.
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2.2.2 Classical Nuclei Approximation

Solving any of the last two equations (2.5) or (2.6) is still a formidable task for
primarily two reasons. Firstly, it is a many body equation in 3P nuclear co-
ordinates, the interaction potential being given in an implicit form. Secondly,
determination of the potential energy surface for all possible nuclear configura-
tions involve solving M3P times the electronic equation, where M is the number
of grid points. Not more than 6 nuclear degrees of freedom can be handled using
non-stochastic methods.

In most cases, however it turns out that solving the quantum nuclear equation
is redundant. The rationale for this being:
(i) The thermal wavelength for a particle of mass M is

λT =
h

2π
√
MkBT

, and regions of space separated by distance more than λT do not show quantum
phase coherence. Even for the largest λT ≈ 0.4A0 for hydrogen , inter-atomic
distances are ≈ 1A0.
(ii) Nuclear wave functions are mostly localized due to the fact that potential
energy surfaces are generally quite stiff in typical bonding environments.

Though quantum nuclear effects are not unheard of in certain systems of inter-
est, in the majority of systems, nuclear wave packets are well localized and might
in most cases be replaced by Dirac’s δ functions. The centers of these δ functions
are then by definition, the classical positions Rcl.

Ehrenfest’s theorem [2] for mean values of position and momentum operators
paves the way for connection between classical and quantum mechanics. The
quantum mechanical analogue to Newton’s equations yields,

MI
d2

dt2
〈RI〉 = −〈∇RI

εn(R)〉, (2.7)

where we deal with quantum expectation values. The classical nuclei approxima-
tion identifies 〈 RI 〉 with Rcl

I . Thus,

〈∇εm(R)〉 = ∇εm(Rcl), (2.8)

is valid for δ functions or harmonic potentials, the error term being proportional
to the an-harmonicity of the potential and the spatial extension of the wave-
function.
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Thus with the above two approximations in place and the problem of many elec-
tron and many nuclear Hamiltonian being effectively reduced to a many electron
Hamiltonian , one must proceed to solving the many body electronic Schrödinger’s
equation for a set of fixed nuclear positions.

To solve the many electron problem two different approaches are generally
taken:
(i) The wave-function based approach as implemented by the Hartree and the
Hartree Fock Approximations, and,
(ii) The density based approach as implemented by the Density Functional The-
ory.
In the next section, we discuss the two wave-function based approaches, and in
the subsequent sections to follow we devote our attention to the density based
approach.

2.3 The Electronic Problem

The primary problem in the structure of matter is to solve the Schrödinger
equation for a system of N interacting electrons in the Coulombic field created by
a collection of atomic nuclei. It is a very difficult problem in many-body theory
and, in fact, the exact solution is known only in case of the uniform electron gas,
for atoms with a small number of electrons and for a few small molecules. These
exact solutions are always numerical. At the analytic level, one always has to
resort to approximations. However, the effort of devising schemes to solve this
problem is really worthwhile because the knowledge of the electronic ground state
of a system gives access to many of its important properties.

2.3.1 The Hartree approximation

The many body Hamiltonian for a system of N interacting electrons in presence
of nuclei fixed in selected configuration can be written as,

He = Te + Vne + Uee =
N∑
i=1

h(ri) +
1

2

N∑
i 6=j

e2

rij
, (2.9)

writing |ri − rj| = rij,
where,

h(r) = − ~2

2m
∇2 + Vne =

p2

2m
+ Vne, (2.10)

and the many body eigenvalue problem written as,
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HeΨ(r1σ1, r2σ2, ..., rNσN) = EΨ(r1σ1, r2σ2, ..., rNσN), (2.11)

where ri σi are the space and spin variables for the ith electron.

The first approach to solve eqn.(2.11) was the Hartree Theory (1928) [3] where
the total N electron ground state is represented by the simple product of N one-
electron spin orbitals.

Thus one considers a complete set of orthonormal one-electron orbitals {φi(r)}.
From this a complete set of orthonormal spin orbitals {ψi(rσ)} = φi(r)χi(σ) are
formed, where φi(r) and χi(σ) are spatial orbitals and spin functions respectively,
and σ could be either spin up α or spin down β.

Therefore, in Hartree theory, the ground state wave-function of the many body
system can be expressed as a simple product of orthonormal one-electron spin
orbitals of the form,

Ψ(r1σ1, r2σ2, ..., rNσN) = ψ1(r1σ1)ψ2(r2σ2)...ψN(rNσN). (2.12)

Here any given electron is assigned to some given spin orbital. However it is very
apparent that the simplistic Hartree product (2.12) does not have the required
anti-symmetric character for interchange of space and spin coordinates of any two
electrons. Also this product completely neglects any correlation in the position
of electrons and Pauli’s exclusion principle is built in by hand avoiding multiple
occupancy of spin orbitals. Thus in present time Hartree theory is merely of
historical significance.

The electronic charge density ρ(r) corresponding to the Hartree wave-function
(2.12) is given by,

ρ(r) = −e
occ∑
j

φ∗j(r)φj(r), (2.13)

where the sum runs over all occupied spin orbitals, entering the ground state Ψ.
The Coulomb or Hartree Potential corresponding to the electronic charge density
(2.12) is

Vcoul(r) =
occ∑
j

∫
φ∗j(r

′)
e2

|r− r′|
φj(r

′)dr′. (2.14)

We note that VCoul(r) = V H
i (r), where V H

i (r) is the Hartree Potential which is
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defined as the electrostatic potential from the electron charge density and must
be calculated from the Poisson equation:

∇2VH [n](r) = −4πn(r).

In Hartree self consistent approximation, it is generally assumed that each elec-
tron moves in the effective field corresponding to the Coulomb potential generated
by the charge distribution of all the other (N-1) electrons; the effective field for
any electron is given by the Hartree Potential. Thus the spin-orbitals entering in
the product wave-function satisfy the Hartree equations.

[
p2

2m
+ Vne + V H

i (r)]ψi = εiψi. (2.15)

Here Hartree potential is defined in terms of the occupied orbitals ψi and therefore
must be determined in a self consistent method. From a certain initial guess of the
functions ψ1, ψ2, ...ψN one evaluates the space charge distribution (2.13), and the
corresponding Hartree Potential (2.14). A new set of improved wave-functions are
then calculated by solving Hartree equations (2.15). The corresponding Hartree
Potential is used to again start a new cycle. This iterative process is repeated
upto self consistency of input and output functions and potentials.

2.3.2 The Hartree-Fock approximation

The next level of sophistication was then introduced by Fock in 1930, [4] in-
corporating the fermionic nature of electrons in the many body wave-function
Ψ({ri}). To achieve this one may choose a wave-function which is a properly
anti-symmetrized form of the Hartree wave-function which changes sign when
the coordinates of two electrons are interchanged. For the sake of convenience
one may neglect the spin degrees of freedom of electrons and keep only the spa-
tial degrees of freedom. This does not have any serious implication since at the
Hartree-Fock level one may include explicitly the spin degrees of freedom, by con-
sideration that electrons with up and down spins are at position r. Thus taking
together the Hartree type wave-functions to form a properly anti-symmetrized
wave function for the system, we may write,

ΨHF ({ri}) = A{φ1(r1)φ2(r2)...φN(rN)}, (2.16)

where A is the anti-symmetrization operator,

A =
1√
N !

N∑
i=1

(−1)piPi, (2.17)

The sum extends over all the N ! permutations Pi of the electronic coordinates
and (−1)pi equals +1 or -1 for permutations of even or odd class with respect to
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the fundamental one. ΨHF is normalized to one provided the composing orbitals
are orthonormal. Putting expression (2.17) into (2.16) ΨHF can be conveniently
written in the determinantal form suggested by Slater,

where, N is the total number of electrons. This has the required property,
since interchanging the position of two electrons is equivalent to interchanging
the corresponding coloumns in the determinant, which changes its sign. It also
shows that any two electrons with the same spin cannot be in the same spatial
position, since the nodes of ΨHF occur whenever,

ri ≡ rj.

The total energy with the Hartree-Fock wave-function is

EHF = 〈ΨHF |He|ΨHF 〉,

EHF =
N∑
i

〈φi|−
~2∇2

2m
+Vne(r)|φi〉+

e2

2

N∑
i 6=j

〈φiφj|
1

|r− r′|
|φiφj〉−

e2

2

N∑
i 6=j

〈φiφj|
1

|r− r′|
|φjφi〉,

(2.18)
and the single particle Hartree-Fock equations, obtained by a variational calcu-
lation are,

[−~2∇2

2m
+ Vne(r) + V H

i (r)]φi(r)]− e2
N∑
j 6=i

〈φj|
1

|r− r′|
|φi〉φj(r) = εiφi(r). (2.19)

Thus we observe that this equation has one extra term compared to the Hartree
equation, the last term, which is called the ”exchange” term. This exchange
term describes the effects of exchange between electrons which we introduce in
the Hartree-Fock many particle wave-function by construction. However this term
cannot be written simply as V X

i (ri)φi(ri).

Here we first try to express the Hartree term differently, writing the single
particle and total densities as,

ρi(r) = |φi(r)|2,
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ρ(r) =
N∑
i

ρi(r),

Thus the Hartree term takes the form,

V H
i (r) =

∑
j 6=i

∫
ρj(r

′)
e2

|r− r′|
dr′ = e2

∫
ρ(r′)− ρi(r′)
|r− r′|

dr′, (2.20)

In the previous step, we take the sum of ρj(r
′) over all j’s except the ith

coordinate. Now, taking the sum of ρj(r
′) over all j gives ρ(r′) as shown in the

previous step. However, since this is a restricted sum we must exclude the ith

ρ(r′) and thus we would obtain the value of the sum as ρ(r′)− ρi(r′). It is worth
noting here that the sum and the integral are independent of each other.

Constructing the single particle density as,

ρXi (r, r′) =
∑
j 6=i

φi(r
′)φ∗i (r)φj(r)φ∗j(r

′)

φi(r)φ∗i (r)
, (2.21)

Hence the single particle Hartree-Fock equations take the form,

[−~2∇2

2m
+ Vne(r) + V H

i (r) + V X
i (r)]φi(r) = εiφi(r). (2.22)

Thus the exchange potential, drawing analogy to the Hartree Potential, is given
by,

V X
i (r) = −e2

∫
ρXi (r, r′)

|r− r′|
dr′. (2.23)

The Hartree and exchange potentials together yield the following potential for
electron-electron interaction in the Hartree-Fock approximation,

V HF
i (r) = e2

∫
ρ(r′)

|r− r′|
dr′ − e2

∫
ρXi (r, r′) + ρi(r

′)

|r− r′|
dr′, (2.24)

which can be written with the help of Hartree-Fock density,

ρHFi (r, r′) =
∑
j

φi(r
′)φ∗i (r)φj(r)φ∗j(r

′)

φi(r)φ∗i (r)
, (2.25)

as the following expression for electron-electron interaction potential,

V HF
i (r) = e2

∫
ρ(r)′

|r− r′|
dr′ − e2

∫
ρHFi (r, r′)

|r− r′|
dr′. (2.26)

The first term is the total Coulombic repulsion common for all states φi(r), while
the second term is the effect of fermionic exchange, and is different for each state
φi(r). The flow chart for the algorithm of Hartree-Fock self consistent method,
is shown in Figure 2.1.
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Figure 2.1: Algorithmic flowchart illustrating the Hartree−Fock method.

2.4 Density Functional Theory

Parallel to the wave-function based approaches, a different line of thought based
on reduction of the problem to lower dimensions led L.H.Thomas and E.Fermi
to propose, at about the same time as Hartree, that the full electronic density
was the fundamental variable of the many body problem. Starting from this very
idea they derived a differential equation for the density without any reference
to the one electron orbitals (Thomas 1927, Fermi 1928) [5]. The Thomas Fermi
approximation however was too crude, primarily because the approximation used
for the kinetic energy of the electrons was unable to sustain bound states, but
it had paved the way for the later development of Density Functional Theory
(DFT) by Hohenberg and Kohn in 1964 [6] to deal with many electron problems
more efficiently, and has been till date the way of choice for electronic struc-
ture calculations in condensed matter physics. In more recent times, it has also
been accepted by the quantum chemistry community due to its computational
advantages compared to post Hartree-Fock methods of comparable quality.
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The primary advantages of taking electronic density as the basic variable are:
(i) it is a function of 3 variables , unlike the wave-function which is a function of
3N variables, and is simpler to tabulate and plot,
(ii) it is a function in 3D space in which we live and perceive,
(iii) it provides better visualization, and,
(iv) it is an experimental variable.

However one must also ensure that,
(i) density contains sufficient information,
(ii) it is possible to develop a procedure for direct calculation of density, and,
(iii) calculations of energy and other physical quantities are possible from density
alone.

In the next section we discuss the reduced density matrices and hence develop
the mathematical formalism required for density functional theory.

2.4.1 Reduced Density Matrices

Here we write the electronic Hamiltonian as

He = −1

2

∑
i

∇2
i +

∑
i

v(ri) +
1

2

∑
i

1

rij
, (2.27)

in atomic units for convenience. Although the many particle wave-function
Ψ(r1, r2, ..., rN) is a function of 3N variables, the expectation value of any op-
erator 〈Θ〉 = 〈Ψ|Θ|Ψ〉 may be calculated by means of other derived quantities
depending on lesser number of variables, if Θ is a sum of one- or two- parti-
cle operators, as is the case for many electron Hamiltonian. Therefore for the
nuclear-electron potential energy comprising of the one-particle terms one has,

〈Vne〉 =

∫
Ψ∗(r1, r2, ..., rN)

∑
i

v(ri)Ψ(r1, r2, ..., rN)dr1dr2...drN ,

= N

∫
dr1v(r1)

∫
Ψ∗(r1, r2, ..., rN)Ψ(r1, r2, ..., rN)dr2dr3...drN , (2.28)

and thus the result that emerges,

〈Vne〉 = 〈Ψ|
∑
i

v(ri)|Ψ〉 =

∫
drv(r)ρ(r), (2.29)

which is valid in general for any single-particle multiplicative operator, where the
single particle density is defined as,

ρ(r1) = N

∫
Ψ∗(r1, r2, ..., rN)Ψ(r1, r2, ..., rN)dr2dr3...drN , (2.30)
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In a similar manner one may proceed to write for two particle multiplicative
operators, as for example for the electron- electron repulsion,

〈Vee〉 = 〈Ψ|1
2

∑
i,j

1

rij
|Ψ〉 =

1

2

∫
dr1dr2

Γ2(r1, r2)

r12
, (2.31)

where the two-particle density is defined as,

Γ2(r1, r2) = N(N − 1)

∫
Ψ∗(r1, r2, ..., rN)Ψ(r1, r2, ..., rN)dr3dr4...drN , (2.32)

The reduced density functions may also be written as the expectation values of
the corresponding density operators, viz.,

ρ(r1) = 〈Ψ|
∑
i

δ(r− ri)|Ψ〉, (2.33)

Γ2(r1, r2) = 〈Ψ|
∑
i 6=j

δ(r1 − ri)δ(r2 − rj)|Ψ〉. (2.34)

For the kinetic energy term comprising of differential operators one may write,

T = −〈Ψ|1
2

∑
i

∇2
i |Ψ〉,

= −1

2
N

∫
Ψ∗(r1, r2, ..., rN)∇2

1Ψ(r1, r2, ..., rN)dr1dr2...drN ,

= −1

2
N

∫
[∇2

1Ψ
∗(r′1, r2, ..., rN)Ψ(r1, r2, ..., rN)]r1=r′1

dr1dr2...drN ,

= −1

2

∫
dr1[∇2

1γ(r1, r
′
1)]r1=r′1

, (2.35)

with the first order reduced density matrix defined as,

γ(r1, r
′
1) = N

∫
Ψ∗(r′1, r2, ..., rN)Ψ(r1, r2, ..., rN)dr2dr3...drN . (2.36)

For spin-polarized situation, one has to include spin dependence, viz.,

ρ(x1) ≡ ρ(r1σ1),∫
dx→

∑
σ

∫
dr,

ρ(r1) =

∫
ρ(x1)dσ1,



2.4. Density Functional Theory 39

ρ(r) = ρ↑(r) + ρ↓(r),

σ(r) = ρ↑(r)− ρ↓(r),

The total energy can thus be expressed in terms of the Reduced Density Matrices
(RDM) as,

E[ρ, γ,Γ2] = T [γ(r1, r
′
1)] + Vne[ρ(r)] + V ee[Γ2(r1, r2)], (2.37)

and this leads to the possibility of developing a quantum mechanical formal-
ism of many electron systems in reduced space in terms of RDMs bypassing
the wave-function formalism. A pre-requisite of the formalism is the possibil-
ity of directly determining the RDMs by minimizing the energy with respect
to the RDMs for which the Pauli exclusion principle must be built into the
RDMs. Also the existence of an anti-symmetric wave-function Ψ from which the
RDMs can be constructed has to be guaranteed. This problem known as the N-
representability problem must be solved by imposing necessary and sufficient con-
ditions on γ(r1, r

′
1) and Γ2(r1, r2) which are yet unknown. The N-representability

condition on ρ(r) is given as,∫
ρ(r)dr = N, ρ(r) ≥ 0 (2.38)

Thus the single particle density (simplest reduced quantity) emerges as a promis-
ing candidate for the formulation of quantum mechanics in reduced space.

Next we discuss the theorems proposed by Hohenberg and Kohn which are the
basic postulates of density functional theory.

2.4.2 The Hohenberg-Kohn Theorems

Theorem 1

The external potential is unequivocally determined by electronic density, and an
additive constant.

Corollary 1

ρ(r) also determines ground state wave function, which can be obtained by solving
the full many body Schrödinger’s equation.

Theorem 2

A universal functional for the energy E[ρ] in terms of density ρ(r) can be defined,
valid for any external potential. For any particular external potential, the exact
ground state energy of the system is the global minimum value of this functional,
and the density that minimizes the functional is the exact ground state density.
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Corollary 2

The functional E[ρ] alone is sufficient to determine the exact ground state energy
and density. In general excited states of the electrons must be determined by
other processes.

Proof of Theorem 1

Let the ground state of two N-electron systems characterized by two different
external potentials (differing by more than an additive constant) v1(r) and v2(r)
with the corresponding Hamiltonians and Schrödinger’s equations given by,

H1 = T + U +
∑
i

v1(ri),

H1 = T + U +
∑
i

v1(ri),

T = −1

2

∑
i

∇2
i ,

U =
1

2

∑
i 6=j

1

rij
,

H1Ψ1 = E1Ψ1,

H2Ψ2 = E2Ψ2,

A pre-assumption that the two wave-functions Ψ1 and Ψ2 yield the same density
as given by,

ρ(r1) = N

∫
Ψ∗(r1, r2, ..., rN)Ψ(r1, r2, ..., rN)dr2dr3...drN . (2.39)

One may make use of the variational principle and write the energy expressions
as,

E1 = 〈Ψ1|H1|Ψ1〉 < 〈Ψ2|H1|Ψ2〉, (2.40)

〈Ψ2|H1|Ψ2〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|H1 −H2|Ψ2〉 = E2 +

∫
drρ(r)[v1(r)− v2(r)].

(2.41)
Hence one obtains,

E1 < E2 +

∫
drρ(r)[v1(r)− v2(r)], (2.42)

on interchanging the suffices, one has,

E2 < E2 +

∫
drρ(r)[v2(r)− v1(r)]. (2.43)
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Summation of these two leads to a contradiction,

E1 + E2 < E2 + E1. (2.44)

Thus one may arrive at the conclusion that the assumption of identical density
arising from two different external potentials is wrong. Hence a given ρ(r) corre-
sponds to only one v(r) and since v(r) is fixed, the Hamiltonian and hence the
wave-function are also fixed by the density.

Proof of Theorem 2

Since the wave-function is a functional of density, the energy functional Ev[ρ] for
a given external potential v(r) is a unique functional of density. From here one
must prove that this functional assumes a minimum value for the true density,
i.e.,

E0 < Ev[ρ̃],

where ρ̃(r) is a non-negative density normalized to N, for,

Ev[ρ̃] = F [ρ̃] +

∫
ρ̃(r)v(r)dr,

where,
H = T + U + V,

and,
F [ρ̃] = 〈Ψ[ρ̃]|T + U |Ψ[ρ̃]〉.

Thus we have,

〈Ψ[ρ̃]|H|Ψ[ρ̃]〉 = F [ρ̃] +

∫
ρ̃(r)v(r)dr = Ev[ρ̃] ≥ Ev[ρ] = E0 = 〈Ψ|H|Ψ〉. (2.45)

The above inequality follows from Rayleigh-Ritz variational principle for the
wave-function but applied to the electronic density. Therefore the variational
principle gives,

δ{Ev[ρ]− µ(

∫
ρ(r)dr−N)} = 0, (2.46)

and from this a generalized equation is obtained,

µ =
∂

∂ρ
Ev[ρ] = v(r) +

∂

∂ρ
F [ρ]. (2.47)

The crux of the problem now is to obtain an expression for the energy functional
in terms of density which brings us to the next section.



2.4. Density Functional Theory 42

2.4.3 Energy Functional and Kohn-Sham Equations

The equations of Kohn and Sham, published in 1965, turn DFT into a practical
tool. [7]

The energy functional in terms of density has thus the generalized form,

Ev[ρ] = F [ρ] +

∫
ρ(r)v(r)dr, (2.48)

where F [ρ] is a universal functional of density.
Comparing with Energy functional in terms of RDMs which is,

Ev[ρ, γ,Γ2] = T [γ] +

∫
v(r)ρ(r)dr +

1

2

∫ ∫
Γ2(r1, r2)

r12
dr1dr2, (2.49)

and assuming a decomposition of Γ2 of the form,

Γ2(r1, r2) = ρ(r1)ρ(r2)[1− f(r1, r2)], (2.50)

where f(r1, r2) is the correlation function, and one may separate out from the
electron-electron repulsion term Vee[ρ], the classical electrostatic contribution.

Ecoul[ρ] =
1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2. (2.51)

The exact kinetic energy functional T [ρ] is usually replaced by the kinetic energy
of a system of non interacting particles Ts[ρ] and the contribution Vee[ρ]−Ecoul[ρ]
together with T [ρ] − Ts[ρ] comprise of what is in general called the exchange-
correlation (XC) energy functional EXC [ρ]. Hence one may write,

Ev[ρ] =

∫
v(r)ρ(r)dr + Ecoul[ρ] + {Ts[ρ] + EXC [ρ]}. (2.52)

The procedure for obtaining the non-interacting K.E. functional Ts[ρ] for a certain
ρ(r) is through the solution of the one particle Schrödinger’s equations,

[−1

2
∇2 + λ(r)]ψi = εiψi, (2.53)

for a suitable chosen λ(r) so that the resulting orbitals yield the density as,

ρ(r) =
∑
i

|ψi |2,

and henceforth the functional may be evaluated as,

Ts[ρ] =
∑
i

εi −
∫
drλ(r)ρ(r). (2.54)
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The energy functional to be minimized for determining equilibrium density may
then be written as,

Ev[ρ] =
∑
i

εi −
∫
drλ(r)ρ(r) +

∫
v(r)ρ(r)dr + Ecoul[ρ] + EXC [ρ], (2.55)

which leads to the variational condition,

δEv[ρ] = 0 =
∑
i

δεi−
∫
drδλ(r)ρ(r)+

∫
δρ(r)[−λ(r)+v(r)+

δEcoul[ρ]

δρ(r)
+
δEXC [ρ]

δρ(r)
].

(2.56)
Now since,

εi = −〈ψi|
1

2
∇i2|ψi〉+ 〈ψi|λ(r)|ψi〉, (2.57)

one has, taking differentials of the above equation,

δεi = 〈δψi|
1

2
∇i2|ψi〉+ 〈δψi|λ(r)|ψi〉+ c.c.+ c.c.+ 〈ψi |δλ(r)|ψi〉,

δεi = εiδ〈ψi|ψi〉+ 〈ψi|δλ(r)|ψi〉,

δ〈ψi|ψi〉 = 0,

and, hence the result, ∑
i

δεi =

∫
drδλ(r)ρ(r), (2.58)

which when combined with the variational condition leads to,

δEv[ρ] = 0 =

∫
δρ(r)[−λ(r) + v(r) +

δEcoul[ρ]

δρ(r)
+
δEXC [ρ]

δρ(r)
]. (2.59)

Since the variation of δρ(r) is arbitrary, the bracketed quantity must be zero and
hence one obtains,

λ(r) = v(r) +
δEcoul[ρ]

δρ(r)
+
δEXC [ρ]

δρ(r)
. (2.60)

This clearly shows that if one chooses λ(r) given by this expression, the single
particle Schrödinger’s equation leads to the correct density for the system. Hence
one arrives at the basis for the Kohn-Sham (KS) density functional scheme which
involves solution of a set of N-nonlinear integro-differential equations called the
Kohn-Sham equations,

[−1

2
∇2 + veff (r; ρ)]ψi = εiψi, (2.61)
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with the effective potential given by,

veff (r) = v(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δEXC
δρ(r)

= φes(r) +
δEXC
δρ(r)

, (2.62)

where ∇2φes(r) = 4πρ(r) and the density is calculated as,

ρ(r) =
∑
i

|ψi|2. (2.63)

The energy functional in this theory developed is hence calculated as,

Ev[ρ] =
∑
i

εi −
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + EXC [ρ(r)]−

∫
drρ(r)

δEXC
δρ(r)

. (2.64)

The Kohn-sham equations may be solved using a self consistent numerical method
as shown in Figure 2.2

Figure 2.2: Algorithmic flowchart illustrating the iterative procedure to solve the
Kohn-sham equations.

For the spin-polarized cases, one may include the spin components of density
as the basic variables, and write,

Ev[ρα, ρβ] = Ts +

∫
v(r)ρ(r)dr + Ecoul[ρ] + EXC [ρα, ρβ], (2.65)

and the Kohn-sham equations are given by,

[−1

2
∇2 + veff (r; ρσ)]ψkσ = εkσψkσ, (2.66)
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with an effective potential,

veff,σ(r) = v(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δEXC [ρα, ρβ]

δρ(r)
, (2.67)

and densities given by

ρσ(r) =
∑
k

|ψkσ|2. (2.68)

Although the Kohn-Sham theory has been quite successful, its limitations arise
from the fact that:
(i) it gives only ground state ρ(r) and Eρ, but no wave-function can be constructed
from the orbitals,
(ii) the expectation values of only single particle operators are obtainable and
approximations are required for two particle or differential operators, and,
(iii)there is no simple interpretations of the energy eigenvalues.

2.4.4 Interpretation of the Kohn-Sham equations

On introducing the non-interacting reference system, one is able to take into
account the most important part of the kinetic energy. The missing part (corre-
lations) is due to the fact that the full many body wave-function is not the single
Slater determinant, otherwise Hartree-Fock theory would be exact. If one thinks
of a true non-interacting system then the KS scheme is exact.

The price one must pay for having a good description of kinetic energy is
that, instead of solving a single equation for the density, one has to deal with a
system of N Euler equations. The primary difference between the Kohn-Sham
and Hartree equations is that the effective potential now includes exchange and
correlation. Hence the computational effort is of the same order as Hartree but
much less than Hartree-Fock, which includes exact non-local exchange.

Hence the density functional theory is able to solve the complicated many body
electronic ground state problem by mapping exactly the many body Schrödinger’s
equation onto a set of N coupled single particle equations. Hence with a given
external potential one is in a position to find the electronic density, the energy,
and any desired ground state property. The density of the non-interacting system
is equal to that of the true interacting system. Till this point one has an exact
theory, and there is no approximation involved in the electronic problem. All
the unknown terms in the many-electron Hamiltonian has been relegated to the
exchange-correlation functional term, while remaining terms are well known. A
further investigation into the nature of T [ρ] and Ts[ρ] reveals that both are ex-
pectation values of kinetic energy but in different states, with the non-interacting
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one corresponding to the expectation value in the ground state of the kinetic
operator, while the interacting one to that of the full Hamiltonian, and hence
Ts[ρ] ≤ T [ρ] with a positive contribution to the correlation term.

2.5 Exchange and Correlation

Although DFT is exact in principle, the crux of the matter lies in the fact that
exact expressions for the XC energy and potential are yet unknown and these
quantities are generally approximated. In practice the utility of the theory lies
on the approximations used for EXC [ρ].

As derived previously,

EXC [ρ] = {Vee − Ecoul[ρ]}+ {T [ρ]− Ts[ρ]}.

It can be shown that kinetic contribution to correlation energy (kinetic contri-
bution to exchange is Pauli’s exclusion principle, which is present in Ts[ρ], and
in the density when adding up the contributions of N lowest eigenstates ) can
be taken into account by averaging the pair correlation function f(r, r′) over the
strength of the electron-electron interaction, i.e.,

EXC [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
[f̃(r, r′)− 1]drdr′, (2.69)

where, f̃(r, r′) =
∫ 1

0
fλ(r, r

′)dλ, and fλ(r, r
′), is the pair correlation function

corresponding to the Hamiltonian H = T + V + λUee. Separating the exchange
and correlation contributions, one obtains,

f̃(r, r′) = 1−
∑

σ |ρσ(r, r′)|2

ρ(r)ρ(r′)
+ f̃c(r, r

′), (2.70)

with ρσ being the spin-up and spin-down components of the one body matrix,
which in general is a non-diagonal operator.

The exchange-correlation hole is defined in the following form,

EXC [ρ] =
1

2

∫ ∫
ρ(r)ρ̃XC(r, r′)

|r− r′|
drdr′, (2.71)

ρ̃XC(r, r′) = ρ(r′){1− f̃(r, r′)}, (2.72)

Hence EXC [ρ] could be written as the interaction between the electronic charge
distribution that has been displaced by exchange and correlation effects,i.e., by
the fact that the presence of an electron at r reduces the possibility for a second
electron to be at r′, in the vicinity of r. The displaced electron comes exclusively
from the exchange part, and the correlation hole integrates to zero. The different
approximate functionals for exchange-correlation are discussed next.
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2.5.1 Local Density Approximation

The Local Density Approximation (LDA) has been for a long time the most
widely used approximation to the exchange correlation energy. The primary idea
is to consider generally in-homogeneous electron systems as locally homogeneous,
and then to use the exchange-correlation hole corresponding to the homogeneous
electron gas for which there are good approximations as well as exact numerical
(quantum Monte-Carlo) results. LDA postulates that the exchange correlation
functional has the following form,

ELDA
XC =

∫
ρ(r)εXC [ρ(r)]dr, (2.73)

where, under the local density approximation, εXC [ρ(r)] is assumed to be the
exchange-correlation energy density of the homogeneous electron gas of density
ρ(r). Within the LDA, εXC [ρ(r)] is a function of only the local value of density.
It can be separated into exchange and correlation contributions,

εXC [ρ(r)] = εX [ρ(r)] + εC [ρ(r)]. (2.74)

In LDA, the exchange energy is given by the Dirac expression,

EX [ρ(r)] = −CX
∫
ρ

4
3 (r)dr, (2.75)

or the corresponding spin-polarized expressions,

EX [ρα, ρβ] = −2
1
3CX

∫
[ρ

4
3
α(r) + ρ

4
3
β (r)]dr. (2.76)

For the LDA exchange-only situation, the Kohn-Sham exchange potential as ob-
tained through functional derivative of the LDA exchange energy is, [8] [9]

vx[ρ] = −4

3
CXρ

1
3 ;CX =

3

4
(
3

π
)
1
3 . (2.77)

The Kohn-Sham theory treats the non-interacting kinetic energy exactly through
the LDA.
The kinetic energy density in LDA is given by the Thomas-Fermi approximations,
as,

Ekin = Ck

∫
drρ

5
3 (r);Ck =

3

10
(3π2)

2
3 . (2.78)

The energy functional within the LDA is expressed as,

Ev[ρ] = −Ck
∫
ρ

5
3 (r)dr+

∫
v(r)ρ(r)dr+Ecoul(ρ)−CX

∫
ρ

4
3 (r)dr+EC(ρ), (2.79)
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which on minimization subject to the constraint of fixed number of particles yields
the Euler equation for density,

µ =
δEv
δρ(r)

=
5

3
Ckρ

2
3 (r) + v(r) +

δEcoul
δρ(r)

− 4

3
CXρ

1
3 (r) +

δEC
δρ(r)

. (2.80)

The functional form for E is unknown, and has been simulated for the homoge-
neous electron gas in numerical quantum Monte-Carlo calculations which yield
essentially exact results. [10] The resultant XC energy has been fitted by a number
of analytic forms [11] [12] [13] all of which yield exact results and are collectively
referred to as LDA functionals.

2.5.2 Generalized Gradient Approximation

Generalized Gradient Approximations (GGA) [14] constitutes the next step to-
wards the improvement of LDA wherein the information on how the density ρ(r)
varies spatially is included in the functional. The primary idea of GGAs is to
express the exchange-correlation energy in the following generalized form,

EXC [ρ] =

∫
ρ(r)εXC [ρ(r)]dr +

∫
FXC [ρ(r),∇ρ(r)]dr, (2.81)

where the functional FXC is required to satisfy a number of formal conditions for
the exchange-correlation hole, such as, sum rules, long range decay and so on.
Different GGAs differ in the choice of the functional FXC . A few of them are
Langreth-Mehl(LM) [15], Perdew-Wang (PW’86 and PW’91) [16] [17], Becke ’88
(B88) [18] exchange functional, Lee-Yang-Parr (LYP) correlation functional, [19]
Pedew-Burke-Ernzerhof (PBE) [20]exchange-correlation etc. Among these PBE
is the most widely used.

PBE exchange-correlation functional: In case of PBE exchange correlation
functional, first the enhancement factor FXC over the local exchange is defined
as,

EXC [ρ] =

∫
ρ(r)εLDAX [ρ(r)]FXC(ρ, ζ, s), (2.82)

where ρ = local density, ζ =relative spin-polarization, and,

s =
|∇ρ(r)|
2kFρ

,

is the dimensionless density gradient.

FXC(s) = 1 + κ− κ

1 + µs2/κ
,
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κ and µ are empirically fitted to a database of ionization energies. The correlation
energy is written as,

EGGA
C =

∫
ρ(r)[εLDAC (ρ, ζ) +H(ρ, ζ, t)], (2.83)

with,

H[ρ, ζ, t] = (
e2

a0
)γφ3 ln{1 +

βγ2

t
[

1 + At2

1 + At2 + At4
]}, (2.84)

here,

t =
|∇ρ(r)|
2φksρ

,

is the dimensional density gradient, and,

ks = (
4kF
πa0

),

is the Thomas Fermi screening wave number, and,

φ(ζ) = [(1 + ζ)
2
3 + (1− ζ)

2
3 ]/2,

is a spin scaling factor.
The function A has the form,

A =
β

γ
[exp−εLDAC [ρ]/(γφ3e2/a0)− 1]−1. (2.85)

This GGA retains the correct features of LDA and combines them with the in-
homogeneity features that are most important energetically.

2.5.3 Hybrid Functionals

In spite of the more or less accurate performance of LDA and different GGAs, the
search for more accurate functionals go on and various beyond GGA functionals
have appeared. Examples are hybrid functionals which incorporate a portion
of exact exchange from Hartree-Fock theory with exchange and correlation from
other sources (such as LDA). Few of the most popular forms of hybrid functionals
are B3LYP (Becke, three-parameter, Lee-Yang-Parr) and HSE (Heyd-Scuseria-
Ernzerhof) [21], etc. In this section we briefly describe various hybrid functionals.

The hybrid approach to constructing density functional approximations was
introduced by Becke in 1993. Hybridization with Hartree-Fock (exact) exchange
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provides a simple scheme for improving the calculations of many molecular prop-
erties, such as atomization energies, bond lengths and vibration frequencies, which
tend to be poorly described with simple ab initio functionals.

A hybrid exchange-correlation functional is usually constructed as a linear
combination of the Hartree-Fock exact exchange functional, EHF

X , where,

EHF
X = −1

2

∑
ij

∫ ∫
ψi ∗ (r1)ψj ∗ (r1)

1

r12
ψi(r2)ψj(r2)dr1dr2,

(here the wavefunctions ψ are as has been defined before for the Hartree Fock for-
malism) and any number of exchange and correlation explicit density functionals.

The HSE (Heyd-Scuseria-Ernzerhof) [21] exchange-correlation functional uses
an error function screened Coulomb potential to calculate the exchange portion
of the energy in order to improve computational efficiency,

EHSE
XC (ω) = αEHF,SR

X (ω) + (1− α)EPBE,SR
X (ω) + EPBE,LR

X (ω) + EPBE
C ,

where α is the mixing parameter and ω is an adjustable parameter controlling the
short-rangeness of the interaction. Standard value of ω=0.2 (usually referred to
as HSE06) along with varying values of α from 0.15 to 0.35 were used in our cal-
culations. EHF,SR

x (ω) is the short range Hartree-Fock exact exchange functional,
EPBE,SR

x (ω) and EPBE,LR
x (ω) are the short and long range components of the PBE

exchange functional, and EPBE
c (ω) is the PBE correlation functional.

2.6 Basis Sets

Numerous methods to solve the Kohn-Sham equations have been introduced,
However one must choose an appropriate basis set to expand the single particle
wave functions. The choice of the basis set depends on the specification of a
given problem, such as the crystal symmetry, the nature of the involved elements
of the periodic table. Several basis methods have been developed in last four
decades and are widely used for band structure calculations of solids. Depending
on the choice of basis functions these methods can be broadly classified into two
categories, (i)fixed basis set method and (ii)partial wave basis set method.

The fixed basis set method is based on energy independent basis sets or fixed
basis sets, like tight binding method using linear combination of atomic orbitals
(LCAO) type basis [22], orthogonalized plane wave (OPW) method within a
pseudopotential scheme [25] [26] using plane waves orthogonalized to core states
as the basis set.

Considering the partial wave basis sets the crucial approximation that these
methods are based on is the Muffin-tin (MT) sphere approximation. These meth-
ods include Linear Muffin-Tin orbital method (LMTO) [23], Linearised Aug-
mented plane wave based method (LAPW) [29]
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Finally, we have the Projector Augmented Wave (PAW) [27] [28] method
which is a general approach for the all electron solution, proposed by Blöchl [28].
The unique feature of this method is the combination of the formal simplicity of
plane wave pseudopotential approach and the versatility of the LAPW method.

In this thesis we have primarily used the partial wave basis set methods like
LMTO (as implemented in the TB-LMTO-ASA code) and LAPW (as imple-
mented in the Wien2K code) and the generalised PAW method (as implemented
in the Vienna ab initio Simulation Package (VASP) code) In this section we dis-
cuss these above-mentioned basis sets.

2.6.1 Fixed basis set methods

Orthogonalized Plane Waves (OPW)-Pseudopotential Method

Plane wave expansions are required to accommodate two very different features
of Bloch functions. Inside the core of the atoms, the potential is spherically
symmetric and ψk has rapid oscillations and angular dependence of atomic wave
functions. In the region between ion cores, the potential is nearly flat and ψk
is slowly varying in the manner of plane waves. The atomic levels are classified

Figure 2.3: Figure showing the Bloch function ψk oscillating rapidly near atomic
sites where the lattice potential is deep and attractive

into valance levels and ion cores. Orthogonalized plane waves or OPWs are quite
literally plane waves that have been made orthogonal to occupied ion core orbitals.
This is demostrated in Figure 2.3.

Considering Bloch functions constructed out of core states,

btk =
∑
l

exp(ik.l)btk(r− l), (2.86)

where core orbitals which are a combination of degenerate one electron states,
each corresponding to localization of the electron on a particular atom, and btk
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are solutions of Schrodinger equation of whole crystal corresponding to the core
levels ξt.

Higher states which are solutions of same Schrodinger equation all orthogonal
to btk,

〈ψk|btk〉 = 0, (2.87)

one may consider,

χk = exp(ik.r)−
∑
t

βtbtk,

as possible wave functions for one of the higher states, choosing βt such that χk
satisfies the orthogonality condition.

Thus one may make χk an OPW,

χk = exp(ik.r)−
∑
t

〈btk| exp(ik.r)btk〉 = 0. (2.88)

One may now use the OPWs as basis sets for the wave functions, considering

ψk =
∑
k

αk−Kχk−K, (2.89)

as a solution of the Schrodinger equation.
One may use the variational principle to minimize energy and determine αk−K.

This process converges very rapidly, and often a single OPW is sufficient to rep-
resent the wave function. To justify this, one may consider the wave function χk
as exact with definite αk−K. Let,

φ =
∑
k

αk−K exp(i(k−K).r). (2.90)

Then
ψ = φ−

∑
t

〈bt|φ〉bt,

omitting the k index. Substituting in the Schrodinger equation,

Hψ = ξψ,

=⇒ Hφ−
∑
t

〈bt|φ〉Hbt = ξφ−
∑
t

〈bt|φ〉ξbt,

=⇒ Hφ−
∑
t

〈bt|φ〉ξtbt + ξ
∑
t

〈bt|φ〉bt = ξφ, (2.91)

bt is also an eigenstate of H with energy ξt,

Hφ+
∑
t

(ξ − ξt)bt〈bt|φ〉 = ξφ. (2.92)
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The above equation looks almost like a new Schrodinger’s equation,

(H + VR)φ = ξφ,

where,

VRφ =
∑
t

(ξ − ξt)bt〈bt|φ〉. (2.93)

The smoothened out wave-function φ satisfies a new equation of which the Hamil-
tonian is,

H + VR = − ~2

2m
+ U + VR. (2.94)

As if one had to find plane wave solution for eigenfunctions in the pseudo poten-
tial,

Γ = U + VR, (2.95)

where VR is the non-localized operation

VR =
∑
t

(ξ − ξt)|bt〉〈bt|, (2.96)

φ is the pseudo wave-function, and satisfies Schrodinger’s equation in which ef-
fective potential is relatively weak.

VR(r− r′) =
∑
t

(ξ − ξt)bt(r)b∗t (r), (2.97)

such that,

VRφ =

∫
VR(r, r′)φ(r′)dr′. (2.98)

U being the attractive potential of an atom is negative , but VR containing (ε−εt)
and the square of the core orbitals is positive. Thus there is some cancellation
between them reducing the value of veff .

The whole process of constructing VR is not unique. One may show that the
valence eigenfunctions of the Hamiltonian (H+VR) are the same for any operator
of the form VRφ =

∑
t〈Ft|φ〉bt, where Ft are completely arbitrary functions.

Ft = −Ubt,Γφ = (U + VR)φ = Uφ−
∑
t

〈Ubt|φ〉. (2.99)

One may subtract from V any part that can be expanded as a sum of core
functions. This is because VR always projects onto the manifold of the core
states. But the valence eigenfunction is orthogonal to this manifold. So addition
of VR to H makes no difference to the eigenvalue problem in the space of valence
eigenfunctions.
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Cancellation between true attractive potential and repulsive orthgonalization
term may be viewed as a manifestation of Pauli’s Exclusion Principle, which
require the valence electrons (Bloch functions) to be orthogonal to core orbitals.
Requirement of orthogonality is expressed through the rapid oscillations of true
wave-function in core region where true potential is deep and attractive. Rapid
oscillations give rise to high kinetic energy of valence electrons, which behaves as
repulsive potential in ion core region. Hence as a result valence electrons tend to
face only a net weak potential called pseudo-potential. Effective electronic wave-
function corresponding to the replacement of the true potential by the pseudo-
potential does not have all the rapid oscillations of the true wave-function. This
is the pseudo wave-function. A graphical representation of the pseudo potential
and the pseudo wave function are provided in Figure 2.4.

Figure 2.4: Comparison of a wave-function in the Coulomb potential of the nu-
cleus (dashed) to the one in the pseudo-potential (solid). The real and the pseudo
wave-function and potentials match above a certain cutoff radius. Figure adapted
from Wikipedia.

However even after the huge utility of the pseudo-potential method it’s not
free of its fair share of failures. The failure of this method is primarily due to the
fact that it depends too much on energy and angular momentum. It is not a true
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local potential and it can not deal elegantly with d-bands.

Norm Conserving Pseudo Potentials (NC-PP)

Norm conserving pseudopotentials (NCPP) are constructed with an extra con-
straint that the pseudo-wave function must ensure that the charge within the
core radius is same for the pseudo and all-electron wave function, i.e.,∫

|φnlAE(r)|2dr =

∫
|φnlps(r)|2dr,

where φnlAE(r) is the all electron wave function and φnlps(r) is the pseudo wave
function.

NCPP works well for most elements except for some first period 2p and 3d
elements. In these cases the pseudo and the all-electron wave functions are almost
identical. In norm-conserving pseudo-potential scheme, inside some core radius,
the all electron (AE) wave function is replaced by a soft nodeless pseudo (PS)
wave function, subject to the condition that within the chosen core radius the
norm of the PS wave function has to be the same with the AE wave function and
outside the core radius both the wave functions are identical. However, the charge
distribution and moments of AE wave function are well reproduced by the PS
wave function only when the core radius is taken around the outer most maximum
of AE wave function. This in practice makes the situation for strongly localized
orbitals like 3d and rare-earth elements, complicated as the resulting pseudo-
potentials require a large plane-wave basis set. This situation was remarkably
improved by Vanderblit by introduction of ultra-soft pseudo-potential.

Ultrasoft Pseudopotentials (US-PP)

According to the scheme proposed by David Vanderbilt the norm conservation
constraint was relaxed and localized atom centered augmentation charges were
introduced to make up for the charge deficit. These augmentation charges are
defined as the charge density difference between the AE and the PS wavefunction.
Only for the augmentation charges, a small cutoff radius must be used to restore
the moments and the charge distribution of the AE wavefunction accurately. But
the success of this particular approach is partly hampered by rather difficult
construction of the pseudo potential. As the name suggests, ultrasoft pseudo
potentials attain much smoother (softer) pseudo wave-functions so considerably
fewer plane-waves for calculations of the same accuracy may be used. This is
achieved by relaxing the norm-conservation constraint, which offers greater flex-
ibility in the construction of the pseudo-wave-functions. In this scheme the total
valence density ρ(r)is partitioned into so-called hard and soft contributions,

ρ(r) =
∑
n

[|φn(r)|2 +
∑
ij

Qij〈φn|βj〉〈βi|φn〉], (2.100)
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where βi are projector functions that depend on the ionic positions, and the
augmentation function Qij is given by,

Qij(r) = ψ∗i (r)ψj(r)− φ∗i (r)φj(r), (2.101)

ψj(r) are the all-electron wave-functions, φj(r) and are ultrasoft wave-functions
constructed without satisfying the norm-conservation condition Qij(r) = 0. The
plane wave code VASP uses ultra-soft potentials to describe the interaction be-
tween ions and electrons as one of the many basis sets.

2.6.2 Partial wave basis set methods

Linear Muffin-Tin Orbital method (LMTO)

The linear muffin-tin orbital method is a good choice to evaluate the correct
eigenstates of the many electron Hamiltonian subject to a real crystal potential
in a computationally more ”efficient” and less ”expensive” method. It is based on
the tight binding model. In this method, the muffin-tin approximation is used,
in which the actual crystal potential is approximated in the following way (as
shown in Figure 2.5)

P
o
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n
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al

Actual Potential

Approximate Potential

Position

Atom Core

Figure 2.5: Schematic diagram of potential inside real crystal and approximated
potential considered in LMTO method. Potential is rapidly varying in the vicinity
of core atomic region. In the interstitial region i.e. away from atom core region,
the actual potential is approximated as a constant potential.

In this approximation, the space inside the crystal in considered to be divided into
two parts, atom-centered muffin tin spheres and the rest region as interstitial. The
potential around each atom is treated as spherically symmetric within a radius
SR and in the interstitial region the potential is considered to be constant. Hence
the potential is of the following form,
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Inside the spherically symmetric muffin tin sphere the rapidly varying part of
wave-function is represented by the radial solution of Schrödinger equation times
spherical harmonics, known as partial waves, which is given as,

φ(rR) = θ(r̂R, ε)YL(r̂R). (2.102)

Here L denotes the angular momentum labels (l,m), YL(r̂R) are the spherical
harmonics functions and r̂R are the angular variables associated with the vector
rR . This solution is regular at r = R and behaves like rlR at rR → 0. Outside
the muffin-tin region the potential is assumed to be constant, and therefore the
radial equation with a constant vrR = v0 takes the form,

[
d2

dr2R
+
l(l + 1)

r2R
− κ2]rRθRL(rR, ε) = 0, (2.103)

where κ2 = ε− v0.

Thus in the interstitial region the solution is plane waves, which can be ex-
panded in terms of spherical Neumann and Bessel functions. It is needless to
mention that, the solutions must be continuous and smooth at the sphere bound-
ary in order to have a well-behaved wave-function. This particular method relies
on atomic sphere approximation (ASA) which replaces the muffin tin spheres by
space-filling atomic spheres, called Wigner-Seitz (WS) spheres. Including this
approximation, the information needed to set up the Hamiltonian can be divided
into two independent parts. One part contains the structure matrix which de-
pends only on the structure and the positions of the atoms and not on the type of
atoms occupying the sites. The solution of the Schrödinger’s equation inside each
inequivalent WS sphere with appropriate boundary conditions form the other
part of the information. Finally following Andersens approach of linearization,
the LMTO basis functions within ASA can be expressed as,

χαRL = φRL(rR) +
∑
R′L′

φ̇αR′L′(rR′)hαR′L′,RL, (2.104)

where φs are the partial waves inside the WS sphere centered at R for a energy
of linearization ε

RL
. The functions φ̇α are the linear combinations of the φs and

their energy derivatives φ̇s The matrix hα is given by,

hα = Cα − εv + (∆α)
1
2Sα(∆α)

1
2 , (2.105)
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where C and ∆ are the diagonal potential matrices. They depend on the potential
inside the sphere, α and on sphere radii. C and ∆ are commonly known as band
center parameter and band width. S is the structure matrix depending on the
representation and the geometrical arrangement of the atomic sites.

An improved LMTO method called N th order LMTO or NMTO method [30]
was developed. The characteristics of the method are:
(1) It still has muffin tin potential.
(2) It still uses partial waves in atomic spheres.
(3) Instead of Neumann functions, screened spherical waves (SSW) are used in
the interstitial regions.
(4) Kinked partial waves (KPWs) are defined out of partial waves and screened
spherical waves.
(5) Energy dependent NMTOs are constructed which are superposition of KPWs
at (N+1) energy points.

Linearised Augmented Plane Wave (LAPW) method

Keeping in mind the fact that pseudo potential methods are extremely useful, if
one is interested in information that is inherently contained in the region near
the nucleus, pseudo potential methods may not be a reasonable choice. In such
cases Augmented Plane Wave (APW) basis set can be more useful. In the region
far away from the nuclei, the electrons are relatively delocalized and thus can be
described by plane waves. On the other hand, close to the nuclei, the electrons
behave in a localized manner confined in an isolated atom. In such case atomic like
functions can describe the behaviour of the electrons more efficiently. Therefore
the space can be treated as divided into two regions, as was discussed for LMTO
method previously. Around each atom a sphere of radius r0 is considered and
such spheres are usually referred to as muffin tin spheres. The remaining space is
known as interstitial region. The potential is that of a free ion at the core, and is
strictly constant outside the core. The wave function for the wave vector k is taken
to be ψk(r) where r0 is the core radius. Outside the core, the function is a plane

wave because the potential is constant there. Inside the core the function is atom-
like, and is found by solving the appropriate free-atom Schrödinger equation. The
well-known condition for well-behaved wave-function is that the solution must be
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continuous at the boundary and the atomic function must be chosen in such a way
that it joins continuously to the plane wave at the surface of the sphere forming
the core (this is the boundary condition here). However this is not an obvious
thing, since a plane wave is oscillating in nature and has a unique direction built
in. Therefore to match it with another function based on spherical harmonics
over the entire surface of a sphere, is not straightforward. One may use a very
large number of the constants included in the atomic functions to create a good
matching between the two functions.
Up till this point the basis set functions are dependent on energy E. Linearization
of APW method ie. Linearized Augmented Plane Wave (LAPW) [31] helps to
get rid of this problem.

The linearized version of Augmented Plane Wave (LAPW) basis, following
Andersen’s linearization approach, is expressed as,

where the coeffcients Aqlm;R and Bq
lm;R can be determined by matching these

solutions in magnitude and slope at the sphere boundary. To do so the plane
wave solution in the interstitial is required to expand in terms of Bessel functions
jl(rR; q). In principle a large number of l values are required for exact matching,
but to keep the problem tractable one truncates this number at some value lmax.
Therefore in band structure calculations based on LAPW basis set a crucial pa-
rameter is lmax for which a reasonable choice is needed. The condition that allows
a good choice of lmax is :

RiKmax = lmax

where Ri is the radius of ith MT sphere and Kmax determines the cut-off for the
plane waves. The accuracy of the basis is controlled by the quantity Rmin

i Kmax,
where Rmin

i is the smallest MT sphere radius in the unit cell.
In this method the core states, those do not participate in chemical bonding,

are treated as in free atoms, but subject to the potential due to the valence
states. The problem arises in order to treat the semi-core states, which lie in
between core and valence states. In order to solve this problem an additional
set of basis functions can be added. They are called ”local orbitals” and consist
of a linear combination of two radial functions at two different energies and one
energy derivative at one of these energies:

φLOlm = Alm;RφLR(rR; εν1) +Blm;Rφ̇LR(rR; εν1) + Clm;RφLR(rR; εν2)

The coeffcients are determined by the requirements that φLO should be nor-
malized and should have zero value and slope at the sphere boundary. Though
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adding local orbitals increases the LAPW basis set size, still their number is quite
small compared to typical LAPW basis set size of a few hundred functions. The
problem with the APW method was the energy dependence of the basis set, which
is removed in the LAPW+LO method, however at the cost of a somewhat larger
basis set size.

2.6.3 The Projector-Augmented-Wave (PAW) Formalism

The projector-augmented- wave (PAW) method was developed by P.E. Blöchl in
1994. This method turned out to be computationally elegant, transferable and
accurate method for electronic structure calculation, and facilitates density func-
tional theory calculations to be performed with greater computational efficiency.
Later Kresse and Joubert modified this PAW method and implemented it within
the plane wave code of Vienna Ab-initio Simulation Package(VASP). Here also
valence wave-functions tend to have rapid oscillations near ion cores due to the
requirement that they be orthogonal to core states; this situation is problematic
because it requires many Fourier components to describe the wave-functions ac-
curately. The PAW approach addresses this issue by transforming these rapidly
oscillating wave-functions into smooth wave-functions (by a linear transforma-
tion) which are more computationally convenient. This approach is somewhat
reminiscent of a change from the Schrödinger picture to the Heisenberg picture.
In this formalism, the AE wave-function Ψn is derived from the PS wave-function
Ψ̃n by means of a linear transformation:

|Ψn〉 = |Ψ̃n〉+
∑
i

(|φi〉 − |φ̃i〉)〈p̃i|Ψ̃n〉 (2.106)

The index i is a shorthand for the atomic site at Ri. The all electron partial waves
φi are the solutions of the radial Schrödinger equation for the isolated atom. The
PS partial waves φ̃i are equivalent to the AE partial waves outside a core radius
rc . Of course these two wave-functions match both in value and slope at the
boundary rlc. The projector function pi for each PS partial wave localized within
the core radius, obeys the relation 〈p̃i|φ̃j〉 = δij.
The AE charge density in PAW method can be written as,

ρ = ρ̃+ ρl − ρ̃l (2.107)

where ρ̃ is the soft pseudo-charge density calculated directly from the pseudo
wave-functions on a plane wave grid. The on-site charge densities ρl and ρ̃l are
treated on radial support grids localized around each atom. It must be stated
that the charge density ρ̃l is exactly the same as ρl within the augmentation
spheres around each atom. In PAW approach, an additional density, called com-
pensation charge density is added to both auxiliary densities ρ̃l and ρl so that
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the multi-pole moments of the terms ρl- ρ̃l vanish. Thus the electrostatic poten-
tial due to these terms vanishes outside the augmentation spheres around each
atom.Like density, the energy can also be written as a sum of three terms and
by functional derivatives of the total energy, one can derive the expressions of
Kohn-Sham equations. The PAW method is typically combined with the frozen
core approximation, in which the core states are assumed to be unaffected by the
ions’ environment. There are several online repositories of pre-computed atomic
PAW data.

2.7 Ab initio Molecular Dynamics

Conventional DFT formalism has certain shortcomings. For example, it can not
take care of time variation, i.e, the dynamics in the system. Therefore apart
from above mentioned basic electronic structure methods, in the present thesis
we have employed a few advanced techniques. Among these Molecular Dynamics
(MD) forms a primary part of the study. Molecular dynamics is a computer
simulation method for studying the physical movements of atoms and molecules,
and is thus a type of N-body simulation. The atoms and molecules are allowed to
interact for a fixed period of time, giving a view of the dynamic evolution of the
system. In the most common version, the trajectories of atoms and molecules are
determined by numerically solving Newton’s equations of motion for a system
of interacting particles, where forces between the particles and their potential
energies are calculated using interatomic potentials or molecular mechanics force
fields. The method was originally developed within the field of theoretical physics
in the late 1950s but is applied today mostly in chemical physics, materials science
and the modelling of biomolecules.

Molecular Dynamics (MD) of a many body system is a method which describe
the dynamical evolution of the system at a microscopic level. For solid state
systems molecular dynamics generates configurations from dynamical evolution
of atoms.

The prime objective of any molecular dynamics method is to solve primarily
the Newtons equations of motion which are of the form;

MR̈(t) = F (t) = ∇V (R(t)),

where R̈(t) is the double time derivative of ionic coordinates, which can be related
to the gradient of effective potential field in which the system evolves.

In the last few decades enormous number of studies have been done on how
to describe more efficiently and reliably the potential for multi-atom systems.
In principle, potential energy landscape may be calculated from full quantum
mechanical calculations. However, in reality, it is not possible. The traditional
method of approximating the potential is to determine the potential in advance.
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In this method the full many body interaction can be split into different parts in
different ways depending on the number of terms and also on the basis of long
range-short range interaction. Taking into account this intuitive information,
the potentials are represented by suitable empirical functional forms. Using this
empirical potential energy landscape the dynamics of the system is determined.
In spite of huge success [32] of the empirical potential MD method in various cases
like liquids, gas phases etc, it fails in a number of cases [33,34]. These predefined
empirical model potentials MD fails where electronic degrees of freedom plays a
very crucial role in the description of the system. Therefore it was imperative to
develop a new route to handle the above mentioned shortcomings, by coupling
the traditional MD with the ab-initio electronic structure calculations named as
”Ab-initio Molecular Dynamics” (AIMD). The basic idea of ab-initio MD is to
calculate the forces on the nuclei from the electronic structure calculations for
the generated dynamical configurations of nuclei, by treating electronic degrees
of freedom quantum mechanically and ionic degrees of freedom classically.

Therefore in this method the electronic degrees of freedom are treated actively,
which capture the details of all electronic behavior as well as all sorts of chemical
complexity derived by electronic level. In literature mainly three types of AIMD
have been reported based on the way of generating the quantum many body
potential by solving quantum electronic structure calculation. These methods
are:

1. Ehrenfest MD

2. Born-Oppenheimer MD

3. Car-Parrinello MD

We shall describe each of these methods in some detail.

2.7.1 Ehrenfest Molecular Dynamics

The many body Hamiltonian contains both ionic and electronic degrees of free-
dom. In this scheme [35] using the technique of separation of variables the ionic
and electronic degrees of freedom are separated out. For the electronic part we
solve the time dependent Schrödinger equation for a particular configuration of
nuclei, which may be expressed as,

i~
∂ψ

∂t
= He(r,R)ψ(r,R, t), (2.108)

where, H is the complete many body Hamiltonian with the K.E part of nuclei
and ψ(r,R, t) is the electronic part of the full wave function. The nuclear motion
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is treated classically in the field created by the quantum mechanical dynamics of
electrons and it may be expressed as,

MR̈(t) = −∇ < He > . (2.109)

Hence the salient features of Ehrenfest MD method may be summarized as follows
:

• (i) The electronic Hamiltonian He depends parametrically on the instanta-
neous nuclear position R, and it is time dependent via nuclear propagation
R(t).

• (ii) The connection between classical and quantum mechanical degrees of
freedom are established in a mean field way.

• (iii) Time evolution of nuclei are dictated by Newton’s law of motion in a
mean field created by the electron whereas the electrons evolve according
to time dependent Schrödinger’s equation.

• (iv) It is a hybrid method of classical and quantum mechanical approach.

2.7.2 Born-Oppenheimer Molecular Dynamics

Born and Oppenheimer proposed an alternative way [1] to solve coupled electron-
nuclei wave equation by treating electrons completely time independently at each
time configuration of nuclei. That means we have to solve the time independent
Schrödinger’s equation for electrons at each molecular dynamics step of time
varying nuclear positions. Mathematically it can be written as,

HeΨ0 = E0(R)Ψ0, (2.110)

MR̈(t) = −∇min < Ψ0|He|Ψ0 > .

Hence we might conclude,

• (i) The effective potential energy is obtained from the time independent
electronic part for a particular nuclei configuration.

• (ii) Here ψ is no longer intrinsically time dependent. It is assumed that
electronic degrees of freedom follow adiabatically the classical nuclear mo-
tion.

In Born-Oppenheimer MD (BO-MD) the electronic wave function of the Schrödinger’s
equation is calculated at each ionic configuration and the force at each step is
calculated by minimizing the Hamiltoninan He with respect to the exact eigen
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functions. Hence any unwanted contribution in the force are eliminated automat-
ically in Born-Oppenheimer MD.

In the case of DFT based AIMD within the formalism given by Born-Oppenheimer,
the Hamiltonian He is replaced with the Kohn-Sham Hamiltonian HKS

e . Thus
we get the energy eigenvalues as the Kohn-Sham eigenvalues, EKS

0 , and the wave
functions are simply the Kohn-Sham orbitals.

2.7.3 Car-Parrinello Molecular Dynamics

Car-Parrinello MD (CP-MD) [36, 37] is a combined approach of both Ehrenfest
MD and BO-MD scheme. In CP-MD we have to solve the nuclear motion classi-
cally over a large time scale set by the time of nuclear motion. On top of that we
have to take onto account evolution of intrinsic quantum mechanical electronic
part. In order to handle this mixed quantum/classical problem the route is to
map this two component problem into one component problem with two differ-
ent energy scales. Instead of Hamiltonian in the previous cases, in this method
we deal with the corresponding Lagrangian involving both nuclear and electronic
part,

L =
∑

(1/2)MṘ2+
∑
i

µi < ψ̇i|ψ̇i > − < Ψ0|He|Ψ0 > +
∑
ij

Λij(< ψi|ψi > −δij),

(2.111)
where, the first two terms of eqn. (2.122) are the K.E of nuclear and electronic
part respectively, the third term is the potential energy and the fourth term is the
constraint involved in the Lagrangian. Here µ is the fictitious mass associated
with electronic degrees of freedom. The corresponding Lagrange’s equation of
motion for nuclear part thus becomes,

MR̈(t) = − ∂

∂R
< Ψ|He|Ψ >, (2.112)

and the electronic part becomes,

µiψ̈i(t) = − δ

δ|ψi >
< Ψ0|He|Ψ0 > +

∑
j

Λijψj. (2.113)

The primary disadvantage of Car Parrinello MD lies in the fact that the calcula-
tion of force acting on the nuclei is taken into account. The force acting on the
nuclei may be calculated by Hellmann-Feynman theorem of the form [39],

FHF = − < Ψ0|∇He|Ψ0 >,

where, Ψ0 is an exact eigen function corresponding to the Hamiltonian He. In
case of Car Parrinello MD the expectation values of the Hamiltonian He are not
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minimized with respect to the wave function, which is also a problem with the
previously described Ehrenfest MD too. Thus in both of these cases the force is
calculated with respect to the non self consistent wave function, which leads to
additional non self consistent force terms in the calculation.

2.7.4 AIMD used in this thesis

In both Ehrnfest MD and CP-MD one has to simultaneously integrate over the
coupled equations of motion of electrons and nuclei, whereas in the case of Born-
Oppenheimer MD there are no explicit electron dynamics, so one needs to inte-
grate over one time scale dictated by the nuclear motion. This is a huge advantage
of Born-Oppenheimer method over the other two methods. In respect of com-
putational time, Born-Oppenheimer MD may be made as fast as CP-MD at the
expense of energy conservation. However by suitable choice of ensemble the prob-
lem of energy conservation can be avoided and as far as the convergence of wave
function and energy is concerned this problem is not so serious.

In this thesis we adopted the Born-Oppenheimer approach to include the
finite temperature effect in our calculations. For implementation of the above
scheme in practice, the primarily task is to separate the nuclear and electronic
motion. The basic requirement is that the fictitious temperature associated with
the electronic motion should remain low compared to the nuclear motion. This
may be achieved by proper choice of time steps and thermostats in the simulation.
Various thermostats like Berendsen thermostat or Nosé-Hoover thermostat are
available for this purpose.

In the case of DFT based AIMD within the formalism given by Born-Oppenheimer
the equations for Born-Oppenheimer MD takes the forms,

HKS
e Ψ0 = EKS

0 (R)Ψ0,

MR̈(t) = −∇min < Ψ0|HKS
e |Ψ0 > .

2.8 Monte Carlo simulation of model systems

Not all calculations in this thesis are based purely on Density functional theory
or its extensions thereof. Calculations employing model Hamiltonians developed
specifically to address the requirements of the system, were solved using Monte
Carlo algorithms, often in conjunction with Density functional theory calcula-
tions. Here we give a brief overview of the Monte Carlo methods employed in
this thesis.

Monte Carlo methods are in general a broad class of computational algorithms
that rely on repeated random sampling to obtain numerical results. Their essen-
tial idea is using randomness to solve problems that might be deterministic in
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principle. They are often used in physical and mathematical problems and are
most useful when it is difficult or impossible to use other approaches. Monte
Carlo methods are mainly used in three distinct problem classes [38]: optimiza-
tion, numerical integration, and generating draws from a probability distribution.

2.8.1 Metropolis Algorithm

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo (MCMC)
method for obtaining a sequence of random samples from a probability distribu-
tion for which direct sampling is difficult. This sequence can be used to approxi-
mate the distribution (e.g., to generate a histogram), or to compute an integral
(such as an expected value). Metropolis-Hastings and other MCMC algorithms
are generally used for sampling from multi-dimensional distributions, especially
when the number of dimensions is high. For single-dimensional distributions,
other methods are usually available (e.g. adaptive rejection sampling) that can
directly return independent samples from the distribution, and are free from the
problem of autocorrelated samples that is inherent in MCMC methods.

2.8.2 Simulation of the Ising Model

Our model Hamiltonian developed was based on the simple ideas of an Ising
model. With the brief introduction to importance sampling and Metropolis algo-
rithm we now use these techniques in developing a simple algorithm for simulation
of an Ising like Hamiltonian. We consider here a single spin flip Ising model sim-
ulation.

First we need to specify the type and and size of lattice and the boundary
conditions which may be used. For all practical purposes in real systems we
are required to model a 3D Ising spin chain. Here a simple cubic lattice of size
L × L × L is considered, with all linear dimensions being equal and periodic
boundary conditions. Next an initial spin configuration is chosen, e.g. all spins
may be initially pointing up or down. Hence the following steps are repeated
until a self-consistency condition is reached [40].

1. Selecting one lattice site i, at which the spin Si is considered for flipping
(Si → −Si)

2. Computing the energy change δE associated with that spin flip.

3. Calculating the transition probability τSW for that spin flip.

4. A random number Z uniformly distributed between zero and unity is drawn.

5. If Z < τSW the spin flip is allowed, otherwise the spin flip is not allowed.
In any case the configuration of the spins obtained in this way at the end
of step 5 is counted as a new configuration.
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6. The resulting configuration is analyzed as desired, it’s properties are stored
to calculate the necessary averages. If one is for e.g. just interested in the
un-normalized magnetization Mtot, one may update it replacing Mtot by
Mtot + 2Si.
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Chapter 3

Cooperativity in Spin-crossover
Transition in Metalorganic
Complexes : Interplay of
magnetic and elastic interactions

3.1 Introduction

Spin Crossover (SCO) is a phenomena which may take place in certain transition
metal (TM) complexes, especially in metalorganic molecules or molecular assem-
blies, wherein the spin state of the metal ion changes between low spin (LS) and
high spin (HS) configurations under the influence of external perturbations such
as temperature, pressure, light irradiation, magnetic field etc. as shown in Figure
3.1 [1]

Though this phenomena, in principle, may be observed in octahedrally coordi-
nated transition metal complexes with TM ions in d4−d8 electronic configurations
(c.f. Figure 3.2), the most commonly observed cases are that of octahedrally coor-
dinated iron(II) complexes with Fe2+ ions in 3d6 electronic configuration. [2] The
SCO phenomenon deserves attention due to accompanying changes in magnetic
and optical properties, which opens up their application possibilities as optical
switches, sensors or memory devices. [3]

To be useful as devices, it is desirable to make the SCO phenomena coopera-
tive implying a spin transition rather than spin crossover, which may happen with

This chapter is based on ”Cooperativity in spin crossover transition in metalorganic com-
plexes : Interplay of magnetic and elastic interactions” - Hrishit Banerjee, Manoranjan Kumar,
and Tanusri Saha-Dasgupta, Phys Rev. B, 90, 174433 (2014)
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Figure 3.1: Molecular SCO showing a spin state change of the molecular SCO
system driven by various external stimuli. Figure adapted from T. Saha-Dasgupta
et al [1]

associated hysteresis effect. Cooperativity is a phenomenon displayed by certain
systems involving identical or near-identical elements, which act dependently of
each other, relative to a hypothetical standard non-interacting system in which
the individual elements are acting independently. The hysteresis effect associ-
ated with this cooperativity is of immense importance as this confers memory
effect to the system. Thus much attention has been paid to the issue of cooper-
ativity in SCO phenomena. In this respect, SCO polymers or 3D coordination
compounds are better choices compared to molecular assemblies with isolated
molecular units, which even from a purely geometric point of view, are expected
to favour long range interaction, increasing cooperativity as seen from Figure
3.3. [4]. Coordination polymeric compounds with repeating coordination entities
having extended solid structures are thus assumed to be better choices. The pres-
ence of chemical bridges, linking the SCO sites to each other, as in coordination
polymers are expected to propagate the interaction between SCO centers more
efficiently than that in molecular crystals. In spite of recognising the suitability
of such compounds in exhibiting cooperativity there are however several issues
that need attention. The prime questions are, (a) understanding the microscopic
mechanism i.e. what is the driving force for the cooperativity and the hysteresis,
and (b) how the cooperativity can be tuned or modified to suit specific device
needs. These understandings are expected to provide an advancement to the field
in terms of possible commercialization of this technologically important property
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Figure 3.2: SCO materials mostly belong to the first row of transition metal ions.

which relies on critical parameters of cross-over being close to ambient condition,
and a large enough hysteresis width.

Figure 3.3: From Molecular SCO systems to connected systems like coordination
polymers where cooperativity arises.

The above issues are very intimately connected to the materials issue, namely
what are the materials to look for which might display cooperative SCO. Indeed
a large number of polymeric SCO materials have been synthesized [5] which are
found to show cooperativity at the HS-LS transition accompanied by hysteresis
effect. 1, 2 or 3-dimensional coordination polymers, which are materials with
repeating arrays of coordination entities, are the suitable choices. The dimen-
sionality of a coordination polymer is defined by the number of directions in
space the array extends to. Most studied SCO materials showing cooperativity,
so far are linear 1-dimensional coordination polymers which are compounds ex-
tending through repeating coordination entities in 1-dimension forming chain like
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structures, with weak links between individual chains, [6] as shown in right panel
of Figure 3.3. The other possibilities are coordination network solids, [6] which
are compounds extending through repeating coordination entities in 2 or even
3 dimensions. Strategic crystal engineering makes use of multidentate ligands,
connected by spacers, which facilitate to increase the dimensionality from 1-D to
2-D or 3-D. Pressure-induced LS-HS transition in 2-D net was first reported for
[Fe(btr)2(NCS)2].H2O. [7] The compound consisted of Fe(II) ions linked by btr
(→4,4’-bis-1,2,4-triazole) in two directions producing infinite layers which were
connected by means of van der Waals or weak H bonds. [Fe(btr)3][(ClO4)2] [8]
represents the first 3-D SCO coordination polymer. [8].

In this chapter we will restrict ourselves to only linear or 1-D coordina-
tion polymers, and not extend our discussion to 2-D or 3-D polymers of type
[Fe(btr)2(NCS)2].H2O or [Fe(btr)3][(ClO4)2]. The case of metal-organic frame-
works(MOFs) and hybrid perovskites which may prove to be a promising candi-
date for showing cooperativity shall be taken up in the next chapter.

Among the linear coordination polymers, or 1-d chain compounds 4R-1,2,4-
triazole based Fe(II) chain compounds have been in focus both in early stud-
ies and in recent developments. [Fe(4R-1,2,4-triazole)3]A2.solv, where A is the
counterion, and solv denotes the solvent molecule, are made up of linear chains
in which the adjacent Fe(II) ions in the chain are linked by three triazole lig-
ands. The coordination linkers, which are 1,2,4-triazole blocks form efficient
chemical bonds to transmit cooperative effect, leading to hysteresis loop of width
ranging ≈ 2-20 K. [9] Sometimes these hysteresis loops are also found to be cen-
tered at room temperature. [4] Bimetallic 1-d chain compounds like Fe(aqin)2(µ2-
M(CN)4), M=Ni(II) or Pt(II), aquin → quinoline-8-amine, have been recently
synthesized which were found to show abrupt HS-LS SCO. [10] Novel 1-d Fe(II)
SCO coordination polymers with 3,3’-azopyridine as axial ligand has been syn-
thesized which were found to show kinetic trapping effects and spin transition
above room temperature. [11] Combination of rigid links and a hydrogen bond
network between 1-d Fe(II) chains has been recently shown as a promising tool
to trigger SCO with hysteresis loops having widths as large as ≈ 43 K. [12]

It is rather easy to understand what drives the spin crossover in the molecular
materials. As can be seen from Figure 3.4 there may be an intra ionic transfer
of two electrons (taking Fe2+ as an example) between the t2g and eg orbitals,
accompanied by a spin flip due to competition between crystal field splitting ∆
and Hund’s Rule coupling JH .

One of the key questions behind the microscopic understanding of SCO in
polymeric metalorganic compounds, is what drives the cooperativity and the
hysteresis at the intermolecular level of the extended polymeric system. This
understanding is important, as this is expected to lead to designing of SCO poly-
mers with improved properties, i.e. large hysteresis effect at room temperature
- a challenge to meet. There has been attempts by different research groups to
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Figure 3.4: Figure showing the intra ionic transfer of electrons due to compe-
tition between crystal field splitting and Hund’s rule coupling being driven by
temperature or pressure.

account for and explain the origin of this transition and its cooperativity. [13–16]
The most prevailing concept is that the responsible factor driving the cooper-
ativity is the long range elastic interaction arising due to interaction between
local lattice distortions at each molecular unit. [17] This approach however ig-
nores completely the importance of the long range magnetic interaction that may
build up between transition metal ions via super-exchange interaction mediated
through the organic ligands connecting the metal centers. The importance of
magnetic interaction has been pointed out only recently in a density functional
theory based study [18] which estimated the strength of magnetic exchange in-
teraction in a Fe-triazole compound, and found it to be of the same order of
magnitude as that of elastic exchange, estimated in similar compounds. To the
best of our knowledge, no systematic study exists taking together the effect of
magnetic and elastic interactions to study the interplay of the two in development
of cooperativity.

In the present chapter, we first study the interplay of the two possible driving
mechanisms of cooperativity, namely elasticity and magnetism, employing Monte-
Carlo simulation in context of a general model Hamiltonian. Following this,
we consider the specific example of Fe-triazole compound, which forms quasi 1-
dimensional polymeric structure. Extracting the material specific inputs from
DFT, and plugging them into the model Hamiltonian, we further find that the
hysteresis at the LS-HS transition in this specific case, is driven entirely by the
magnetic super-exchange. Finally we show that the finite temperature ab-initio
molecular dynamics calculations within the framework of DFT on this compound,
can successfully reproduce the bistable behavior of the compound at the HS-LS
transition. The transition temperature is found to be in very good agreement with
experimentally measured temperature, establishing the efficiency of DFT method
in capturing the material specific details associated with the transition. Our study
underlines the significance of magnetic super-exchange in cooperativity in SCO,
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which should be treated with equal importance as elastic interaction. In certain
cases the magnetic exchange interaction can influence the qualitative description
of the cooperativity, not merely the quantitative description.

3.2 Monte Carlo study of the Model Hamilto-

nian

3.2.1 The Hamiltonian

There have been a number of studies using model Hamiltonian approaches to
study the collective behavior of SCO. These studies primarily focus on the eval-
uation of thermodynamic quantities like HS fraction. In the first category of the
calculations, [19–21] Ising type Hamiltonians, describing the elastic interaction
between spin states, LS or HS, in terms of pseudo spin operators σi = -1 (+1)
for LS(HS) that interact via the nearest neighbour coupling, were considered.
The coupling constants were parameters of the theory. In the second category of
calculations, [13–15] free energy of SCO systems have been calculated based on
anisotropic sphere model describing the volume and shape changes of the lattice
at the transition. Calculations have also been carried out considering a spin-state
independent elastic interaction and Ising-like magnetic interaction. [22]
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Figure 3.5: Schematic diagram showing the different site labels of the intercon-
nected chains and the respective interactions.
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For our study, we used model Hamiltonian set up in the basis of pseudo-spin,
describing the elastic part of the interaction and the actual spin, describing the
magnetic interaction.

The system consists of linked chains of spin crossover centers labeled with
indices i and k, i denoting the chain number and k denoting the site number in
a given chain (c.f. Figure 3.5). Thus, i and and i±1 denote two neighbouring
chains, while (i, k) and (i, k ± 1) denote two neighbouring sites within the same
chain i. The SCO ions in a chain are connected by intra-chain elastic interactions
that depend on their spin states given by Ev(σi,k, σi,k+1), where σ denotes the
pseudo-spin describing the spin state of SCO ion, σ = -1(1) for LS(HS). The
spin-dependent rigidity of the lattice introduces the spin-phonon coupling in the
system, making the elastic interactions dependent on the spin-state of the site.
These elastic interactions are assumed to be simple harmonic. Given the highly
anisotropic nature of the SCO polymers, the magnetism is described by Ising
spin S, where mi,k = Si,k with mi,k = 0 for σi,k = −1 (LS state) and mi,k =
−2, ..., 2 for σi,k = 1, corresponding to the HS Fe2+ state. The energy of the
HS state is assumed to be higher compared to LS state, by an energy difference
of ∆. The inter-chain interactions, though expected to be weaker compared to
intra-chain interactions are crucial for the description of cooperativity in SCO as
strict 1-dimensional system cannot support phase transition. Indeed quasi 1-D
polymeric SCO chains are not isolated, rather the presence of counter-ions or
non-bonded water molecules generate steric as well as electrostatic interactions
among the neighbouring chains, which needs to be taken into account in the
model Hamiltonian. [20] Thus, the model Hamiltonian taking together the effect
of lattice and the spin can be written as,

H = −
∑
k

Ev(σi,k, σi,k+1)σi,kσi,k+1 + ∆
∑
i,k

σi,k

−
∑
i,k

[V⊥σi,kσi+1,k + V‖(σi,k + σi+1,k)]

+J
∑
k

mi,kmi,k+1

where, Ev(σi,k, σi,k+1) =
ek,k+1

2
q2i , qi being a small displacement, and ek,k+1

= e−− for both k and k + 1 sites in LS, = e++ for both sites in HS, and =
e−+ for k site in LS and k + 1 in HS, or vice-versa (c.f. Figure 3.6). The
experimental literature on SCO polymers [23–25] shows e−− > e++ which is
essentially driven by the size change of the SCO molecular unit upon changing
temperature. The nature of the elastic interaction, however, crucially depends on
the value of e−+, which is expected to lie in between e−− and e−+. The effective
elastic interaction turns out to be [20] of ferroelastic nature for e+− >

√
e++ × e−−
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Figure 3.6: Figure showing the spin dependence of the intra chain elastic inter-
action. Figure adapted from K. Boukheddaden et al [20]

and of antiferroelastic nature for e+− <
√
e++ × e−−, which is found to have a

direct influence on the cooperativity. V⊥ (=Vinter in Figure 3.5) and V‖ (= Velast in
Figure 3.5) represent inter-chain interactions arising out of electrostatic and steric
interactions, respectively, as discussed in Ref. [20](cf Appendix for full derivation).
The Hamiltonian consisting of the first three terms, which involves ligand field
energy, and the spin-dependent elastic interaction has been studied in Ref. [20]
using transfer matrix technique for the one dimensional intra-chain problem, and
treating the inter-chain interactions in a mean field way. The study, however, did
not include the magnetic interaction, given by the fourth term of the Hamiltonian,
which involves Ising-like antiferromagnetic super-exchange interaction J acting
between two Fe2+ ions with spin S = 2. This as pointed out earlier, may play an
equally important role as the elastic interaction.

3.2.2 Results of Monte-Carlo simulations

The constructed Hamiltonian is solved using Monte Carlo simulation based on
standard Metropolis algorithm. Through Monte-Carlo simulation the degenera-
cies of the spin states are explicitly taken into account in the calculation, taking
the approach of a Potts model rather than the simpler Ising case, and definitely
not in a mean-field manner in the Hamiltonian as done in most of the other re-
lated studies reported in the literature. [16,20,22] Finite size scaling in the Monte
Carlo simulation results has been checked and a system containing 50 chains, each
chain of 50 sites has been found to be large enough to avoid finite size effects.

The Monte Carlo simulations were carried out in the parameter space of ∆,
e++, e−−, e+−, J , V‖ and V⊥. While ideally all these parameters are material-
specific and therefore should be extracted from a material-specific quantum-
chemical or density functional theory based calculation, at the level of model
study, the parameters, ∆, e−−, e++ were fixed to some typical values, ∆ = 20
K, e++ = 1 and e−− = 20. The change in the values of ∆, e−− and e++ does
not affect the qualitative behavior, though the quantitative numbers, specially
the transition temperature is strongly influenced. The value of e+− was varied
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Figure 3.7: High spin fraction plotted as a function of increasing temperature
(heating cycle) and decreasing temperature (cooling cycle), for (a) Ferroelastic
intrachain coupling with magnetic coupling set to zero, (b) Ferroelastic intrachain
coupling with finite, nonzero magnetic coupling, (c) Antiferroelastic intrachain
coupling with magnetic coupling set to zero, and (d) Antiferroelastic intrachain
coupling with finite, nonzero magnetic coupling.

to simulate the ferroelastic and antiferroelastic regimes respectively. The effect
of variation in the strength in interchain interactions has been also studied, they
have been found to affect the cooperativity once it sets in. The central quantity,
computed to study the SCO transition is the HS fraction, defined as nHS

N
, where

N is the total number of lattice sites, and nHS is the number of the sites in
HS state, averaged over several Monte Carlo sweeps after thermal equilibration.
Figure 3.7 summarizes the results of the Monte Carlo study. Figure 3.7(a) shows
the results without magnetic term of the Hamiltonian H with e+− = 20, which
makes the system fall in ferroelastic regime. The system shows hysteresis in the
temperature dependence of the HS fraction, with a difference in HS-LS transition
temperature between the cooling and heating cycle. The choice of inter-chain
interactions V⊥, V‖ of 10, gives a hysteresis width of ≈ 1 - 2 K. Introduction of
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magnetic interaction of J = 1.375 K, is found to enhance the width of hysteresis
significantly to about 7 K, with shift in transition temperature, T1/2, where T1/2

is the mid point of the hysteresis region, by ≈ 5 K, as shown in Figure 3.7(b).
The behavior of the system changes drastically upon changing the value of e+−
to 2, thereby changing to antiferroelastic regime, which is found to kill the hys-
teresis behavior completely, making the transition more gradual, shown in Figure
3.7(c). The transition temperature is found to decrease from ≈ 27 K to ≈ 16 K.
Remarkably with the choice of e+− = 2, i.e. with antiferroelastic interactions,
turning on the super-exchange driven magnetic interaction, J , brings back the
hysteresis. For choice of J = 2 K, the width of the hysteresis is found to be ≈ 1
K (cf Figure 3.7(d) ). Increase of J value is found to increase the width of the
hysteresis further, following the expectation.

The above results lead us to conclude that for polymeric compounds with
antiferroelastic interactions, the cooperative behavior is solely determined by the
magnetic super-exchange between the TM ions. In the following, we find that
this is indeed the case for a typical Fe-triazole system under study.

3.3 First principles study of Cooperativity in

SCO of Fe-Triazole

Establishing a general idea for the interactions that might possibly give rise to
cooperativity in SCO materials we set out to examine the interactions which may
be important in case of a real material from materials specific first principles
calculations, There are of course various challenges for this kind of calculations
which include

• Strong electron-electron correlation in the open d-shell of the metal center,

• The very complex geometry of these metal organic complexes and the lack
of enough crystal structure data,

• Ability to capture electronic and structural changes in these materials under
external perturbation.

Our proposed methodology to deal with these challenges to the materials spe-
cific calculations is using density functional theory methods combined with the
strong correlation problem being addressed by Hubbard U , and the problem of ex-
ternal perturbation such as temperature being treated using Ab-initio molecular
dynamics calculations within the framework of DFT.

For our calculations we choose Fe-triazole polymeric complexes which are a
very popular class of SCO materials, which consist of Fe(II) centers, neighbour-
ing Fe’s connected through three pyrazole bridges, forming a chain like struc-
ture. This creates an octahedral environment of six nitrogen atoms surrounding
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Figure 3.8: Crystal structure of Fe-triazole complexes. (a) The synthesized com-
pound Fe[(hyetrz)3](4-chlorophenylsulphonate)2.3H2O. (b) The simplified com-
puter designed complex. The medium sized blue, and black balls represent N and
C, respectively. The small balls represent the H atoms, while the green medium
sized balls denote counter-ion, F−.

each Fe center. The counter-ions and non-bonded water molecules separate the
chains. A typical example for the Fe[(hyetrz)3](4-chlorophenylsulphonate)2.3H2O
(hyetrz denotes 4-(2’-hydroxyethyl)-1,2,4-triazole) complex [26] is shown in left
panel of Figure 3.8. The SCO transitions are observed for a wide range of
variation in choice of counter-ions and the substituents in pyrazole ring. Un-
fortunately, hardly any crystal structure data is available due to the nature of
the samples, which are polymeric powder insoluble in water and organic sol-
vents. Computational modeling of such complexes, is therefore a challenge. A
simplified computer designed crystal structure was used in the DFT study in
Ref. [18], in which fluorine was used as counter-ion and the substituent was
chosen as CH3. The structure is shown in right panel of Figure 3.8. This
computer-designed structure which keeps the local environment of Fe same as the
Fe[(hyetrz)3](4-chlorophenylsulphonate)2.3H2O complex, was found to reproduce
the SCO behavior of the Fe[(hyetrz)3](4-chlorophenylsulphonate)2.3H2O complex
rather well. [18] In absence of other crystal structure data, we used the same
crystal structure in our DFT study, as used in Ref. [18] This structure has P21/m
symmetry with two formula units per unit cell. All the Fe(II) ions are crystal-
lographically equivalent and the Fe-N octahedra are arranged with alternating
orientations along the chain direction.

For the DFT calculations, we used the plane wave based basis set with the
all-electron potential given by Projector Augmented Wave (PAW) method [27]
included by fitting the pseudo-potential, as implemented in the Vienna Ab-initio
Simulation Package (VASP). [28] The exchange correlation functional was chosen
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to be that of generalized gradient approximation (GGA) implemented following
the method of Perdew-Burke-Ernzerhof(PBE). [29] For the plane wave calculation
500 eV plane wave cutoff was used. A k-point mesh of 2 × 4 × 2 in the Brillouin
zone was used for self-consistent calculations. The plane wave cutoff and the
k-point mesh have been checked for convergence of obtained results. In order
to have a correct description of the insulating solution, specially in high-spin
state, the missing correlation beyond GGA was included in the form of GGA+U
calculation, [30] with choice of U = 4 eV and JH = 0.8 eV. The variation within
3 eV ≤ U ≤ 6 eV is found to keep the qualitative result the same.

3.3.1 Electronic structure of Fe-triazole

From the LMTO calculations carried out previously in our group [1] thermally
frozen structures of this Fe- triazole compound was constructed and two different
spin states corresponding to two different Fe-N bond-lengths were identified. It
was observed that for the structure with Fe-N bond-length =2.0Å the magnetic
state of the system is the low spin (LS) state, and for the structure with Fe-N
bond-length =2.2Å the magnetic state of the system is the high spin (HS) state.

Here we calculate by an ab-initio approach within the framework of density
functional theory, the Density of States(DOS) for the two different structures one
with Fe-N bond-length=2.0Å and another with Fe-N bond-length=2.2Å. From
the non spin-polarized DOS (not shown here for the sake of brevity) it is seen
in both the structures that near the Fermi level the major contribution to the
density of states is from the Fe-3d orbitals, with an admixture of contributions
from F-p, N-p and C-p orbitals. However non spin-polarised calculations do not
offer any information as regards the spin state of the system.

In case of the spin polarised partial DOS showing Fe-3d orbitals for the struc-
ture with Fe-N bond-length=2.0Å (top panel Figure 3.9) we see that in the two
different spin channels the DOS are exactly identical. Also it is seen from the
spin-polarised self consistent field calculations that the total magnetic moment
in this case turns out to be equal to 0µB, thus confirming in this case, the system
is in the low spin (S=0) state.

In case of the DOS for the structure with Fe-N bond-length=2.2Å (bottom
panel Figure 3.9) we see that in the two different spin channels the DOS have
a considerable splitting. This structure therefore, can be confirmed to be in the
magnetic state, and from the spin-polarized self consistent field calculations, total
magnetic moment of the system is observed to be equal to 8µB and thus we can
conclude that Fe(II) ion is in the high spin state S=2, with two Fe(II) ions in the
unit cell.

The major contribution to the splitting in total DOS is by Fe (since Fe is the
magnetic element in the compound) with lesser but finite contributions from other
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Figure 3.9: GGA Fe-3d partial DOS. Top panel shows DOS for Fe-N bond-
length=2.0Å and bottom panel shows DOS for Fe-N bond-length=2.2Å. Black
shaded area shows the up spin channel and red shaded area shows the down spin
channel.

elements too. We, however, notice that this calculation leads to a half metallic
situation, with finite (zero) DOS at Fermi energy in down (up) spin channel while
in reality the compound is insulating.

To rectify this, subsequent calculations (Figure 3.10) were performed for Fe-N
bond-length=2.2Å with Hubbard U included in the calculations. The Hubbard U
is required in case of strongly correlated electron systems. For Fe-3d orbitals the
electrons are strongly correlated electrons and without inclusion of the Hubbard
U correct ground state electronic structure cannot be obtained. The inclusion of
Hubbard U is not required in case of the LS state structure since it behaves as an
insulator already at the level of GGA calculation (hence LS DOS with GGA+U
is not shown here). The band gap in LS and HS configuration are found to be ∼
2.1 eV and ∼ 1.6 eV respectively.

Thus we see a spin state change happens with change in Fe-N bondlength
which is driven by temperature.

Given the experimental observation of cooperativity in the experimentally
studied Fe-triazole complex, the natural questions to ask are, what is the primary
driving force behind cooperativity in this system ? Is it driven by conventional
elastic interactions ? What is the role of magnetic super-exchange interactions,
which is estimated [18] to be large (≈ 22 K) in this complex.

In the next step, we therefore extracted the elastic as well as magnetic inter-
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Figure 3.10: GGA+U Fe-3d partial DOS. DOS plotted for Fe-N bond-
length=2.2Å corresponding to the HS state. Black shaded area shows the up
spin channel and red shaded area shows the down spin channel.

actions of the studied complex from DFT calculations, and carried out the Monte
Carlo study plugging in these parameters in the model Hamiltonian.

3.3.2 Monte Carlo results with material-specific parame-
ters of Fe-triazole

One of the crucial parameters in the model Hamiltonian study, is the spin-state
dependent elastic interaction. To estimate the spin-state dependent elastic in-
teractions, the following steps were followed. Analysis of the optimized crystal
structure data shows that the LS state is stabilized for average Fe-N bondlength
of 2.0 Å or less, while the HS state is stabilized for Fe-N bondlength of 2.2 Å or
more. Following this, model structures were constructed by considering regular
FeN6 octahedra and setting the Fe-N bondlength at 2.0 Å and 2.2 Å to mimic
the LS-LS and HS-HS state of neighbouring FeN6 units, respectively. To model
the LS-HS situation, chains of alternating FeN6 octahedra with Fe-N bondlengths
of 2.0 Å and 2.2 Å, was created. Considering these three model structures, the
Fe-N bondlength was varied by small amount around the equilibrium bondlength,
maintaining the harmonic oscillation limit. The obtained energy versus displace-
ment curves for the three cases are shown in Figure 3.11. A parabolic fit through
the data points provide the estimates of the elastic interactions. Setting the
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Figure 3.11: The variation of total energy as a function of variation of Fe-N
bondlength about the equilibrium value, for three different configurations, LS-
LS (circles), LS-HS (squares) and HS-HS (diamonds). Solid lines are fit to data
points.

small displacement, q as 0.005 Å, this gives Ev(++) = 72 K, Ev(−−) = 101 K
and Ev(+−) = 80 K. As mentioned before, it is known from experimental litera-
ture [23–25] that the lattice is more rigid in the low temperature phase (LS) than
at high temperature (HS) phase. The ab-initio estimates of elastic interactions
for Fe-triazole reconfirms this trend, establishing the confidence in the followed
procedure. Very interestingly we note that the value of Ev(+−) turns out to be
such that it makes the effective elastic interaction to be of antiferroelastic type.
This makes us conclude that the observed cooperativity in this real system, is
driven entirely by magnetic interactions.

The Fe-Fe magnetic exchange interactions were obtained by carrying out
GGA+U total energy calculations of parallel and antiparallel orientations of Fe
spin considering the high spin crystal structure. The energy difference between
the two spin configurations gave rise to an antiferromagnetic super-exchange in-
teraction of magnitude 18 K, in good agreement with the values reported previ-
ously. [18] While the DFT calculation captures the elastic and magnetic properties
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Figure 3.12: High spin fraction plotted as a function of increasing and decreasing
temperature calculated with DFT derived elastic and magnetic interactions cor-
responding to that of Fe-triazole. The insets show the snap-shots of pseudo-spin
configurations with LS (HS) state shown in black (yellow), at two different tem-
peratures (80 K and 95 K) in cooling cycle, and two different temperatures (65
K and 80 K) in heating cycle. At T = 80 K, in the phase co-existence region, the
configuration is HS or LS dominated, depending on the heating or cooling cycle.

rather well, the accurate estimate of the energy difference between LS and HS
state of an isolated molecular unit is a challenge due to poor representation of
the excited state properties within DFT, which is well known in literature. A
possible remedy would be to use time-dependent DFT [33] or quantum-chemical
calculations based on multi-determinantal wavefunctions, [34] both of which are
computationally very expensive and beyond the scope of the present study on
an extended polymeric system. The parameter, ∆ was therefore chosen to have
a typical value of 130 K, estimated in literature in similar systems from heat
capacity measurements. [35] The inter-chain interactions are kept as a fraction
of ∆ in accordance with model study described in section 3.2. The measured
susceptibility in Fe[(hyetrz)3](4-chlorophenylsulphonate)2.3H2O complex showed
a hysteresis of width 20 K and a transition temperature of 80 K. We find that
calculation of temperature dependent HS fraction plugging in the material spe-
cific parameters obtained from the DFT calculation of the simplified computer
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designed Fe-triazole complex, gives rise to a very similar scenario, as shown in
Figure 3.12. The insets in Figure 3.12 show the snapshots of the MC runs of the
simulations along the heating and cooling cycle, at temperatures 65 K and 80 K
for heating path and at temperatures 95 K and 80 K for the cooling path. At
the temperature of 80 K, the snap shot configuration of pseudo-spins shows sites
with primarily HS (LS) configurations for the cooling (heating) cycle, proving the
signature of bistability in this material and hence also showing that there indeed
is a hysteresis loop in the physical properties like magnetic susceptibility in these
materials.

3.4 Finite temperature study with Ab initio molec-

ular dynamics

In order to further probe and establish from a purely first principles basis, the
presence of the hysteresis region by showing a certain bistability exists in the tem-
perature driven SCO in the above mentioned Fe-triazole compounds, we carried
out rigorous Ab initio Molecular Dynamics (AIMD) calculations as implemented
in VASP. [28] Ideally, given the problem, the calculations should be carried out
in NPT ensemble. However, for technical reason, we decided to carry out the
calculations in NVT ensemble. For this purpose, the structures were initially
optimized at 0 K at different volumes which correspond to the thermal expansion
of Fe-triazole at the studied temperatures in AIMD study. Starting from the T
= 0K optimized structures, the temperature was increased using a Berendsen
thermostat [31] with a time step of 1 fs for each molecular dynamics step and 600
temperature steps between the 0 K and the final temperature. At the final step
the system was thermalized using an NVT ensemble for a time duration of 1 ps.
A canonical ensemble is simulated in this case using the algorithm of Nosé. The
Nosé mass controls the frequency of the temperature oscillations during the sim-
ulation. In our calculation a Nosé-mass corresponding to period of 40 time steps
was chosen. The Nosé-mass was set such that the induced temperature fluctuation
show approximately the same frequencies as the typical ’phonon’-frequencies for
our specific system. The frequency of the approximate temperature fluctuations
induced by the Nosé-thermostat is calculated. At the end, a NVE ensemble ther-
malization was carried out to accurately determine the free energy of the system
at the final temperature. The free energy here is calculated in this microcanon-
ical ensemble. This is a constant energy molecular dynamics simulation. The
computed Feynman-Hellman forces serve as an acceleration acting on the ions.
The total free energy including the free electronic energy + Madelung energy of
ions + kinetic energy of ions is calculated. The above mentioned calculations
were carried out constraining the total moment of the system, corresponding to
LS state (0 µB) and the HS state (8 µB corresponding to two Fe2+ ions in the unit
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Figure 3.13: Relative change in free energy plotted as a function magnetic moment
in the cell for (a) T = 10K, (b) T = 80K, (c) T = 200K. The relative change is
measured with respect to the global minima of the free energy (F0).

cell each having a HS magnetic moment of 4 µB), and seven different intermediate
spin states. In each of the calculations, the positions of all unconstrained atoms
were relaxed within AIMD until the forces became less than 0.01 eV/Å, and the
change in bond lengths less than 10−3 Å.

The temperatures at which AIMD calculations were carried out, were chosen
to be 10 K, 80 K and 200 K. This choice was driven by the measured susceptibility
on Fe[(hyetrz)3](4-chlorophenylsulphonate)2.3H2O complex, which showed a SCO
transition at a temperature of ≈ 80 K with a width of ≈ 20 K. The AIMD
calculations at three different temperatures, fixing the total magnetic moment,
resulted in three different free energy profiles, as a function of varying magnetic
moments in the unit cell. The results are summarized in Figure 3.13. We find that
all three free energy profiles exhibit miminas either at total magnetic moment of 0
µB, corresponding to LS state of the system, or at 8 µB, corresponding to HS state
of the system. We find that at T = 10 K, the LS state is a global minima while
the HS state is a local minima, the reverse being true for T = 200 K, supporting
the temperature induced spin state transition in this complex. Interestingly, at
T = 80K, we find both LS and HS states to be having same free energies, proving
the existence of bistability in this compound. Remarkably, we find that our AIMD
results are in very good agreement with the experimental scenario, though the
calculations have been carried out in a simplified crystal structure. This in turn,
proves the efficiency of the AIMD in capturing correctly the temperature driven
SCO transitions, together with the cooperativity. Interestingly in all the studied
temperatures, the free energy profile shows a local minima at a total magnetic
moment of 4 µB with 2 µB moment contributed by each of the two Fe2+ ions
in the unit cell. This corresponds to intermediate spin state of Fe2+ with S=1.
Tuning the value of Ev(+−) it might be possible to achieve intermediate spin
(IS) state as the minimum energy state at an intermediate temperature range.
This would make the SCO transition a two-step transition from LS → IS → HS,
as reported for Fe-Nb based coordination polymer under pressure [32]. Thus, it
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might be worthwhile to study the SCO transition in Fe-triazole complexes under
pressure.

3.5 Conclusion

In conclusion, our MC study based on model Hamiltonian firmly establishes the
important role of magnetic super-exchange interaction acting between the TM
ion centers in the cooperativity in spin transition in polymeric metalorganic com-
plexes. They turn out to be equally important as the elastic interaction, popularly
accepted as the main cause of cooperativity in polymeric SCO systems. Depend-
ing on the nature of the spin-dependent elastic interaction, which depends on
the nature of the spin-phonon coupling, the magnetic interaction can contribute
to the development of cooperativity in a quantitative or a qualitative manner.
In case of ferro type elastic interaction, the magnetic interaction helps in en-
hancing the hysteresis effect, set-up already by the elastic interaction, thus being
important for the quantitative description of the cooperativity in SCO. In case
of antiferro nature of elastic interaction, the magnetic interaction plays the de-
ciding role in driving the hysteresis the system, putting the elastic interaction to
a back seat. Taking the real example of a Fe-triazole complex, we demonstrate
the existence of bistability in this compound through Ab-initio Molecular Dy-
namics simulation, which is known from experimental measurement on similar
compounds. [18] This establishes the capability of ab-initio technique to capture
the bistability accurately. Extraction of the material specific parameters for this
Fe triazole complex, shows the elastic interaction to be of antiferroelastic nature.
The observed bistability in this system, is therefore totally driven by the magnetic
exchange interaction. The computed transition temperature, and the width of
the hysteresis are found to be in reasonable agreement with that of the measured
susceptibility reported for the similar compound. [18] Our study highlights the
microscopic role of magnetic exchange interaction in cooperativity and bistabil-
ity in the class of Fe-triazole SCO polymers. Similar study may be extended to
other coordination metalorganic compounds to find out the applicability of mag-
netic interaction driven cooperativity in a general class of metalorganic polymeric
materials.
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3.6 Appendix

Intra-chain Elastic Interactions A model consisting of two-level atoms and
elastic interaction between them is considered. The two levels of the atom are
expressed by fictitious spins σ = ±1. The state σ = 1 denotes the HS state,
which is gH-fold degenerate, and the state σ = −1 denotes the LS state, which is
gL-fold degenerate,

Hspin =
N+1∑
i=0

∆eff

2
σi, (3.1)

where ∆eff = ∆kBT ln(g). Here, g = gH
gL

is the degeneracy ratio, ∆ is the ligand
field energy, and T is the temperature.

In the case of intra-chain interactions, the fictitious spins are coupled by spin-
dependent intra-chain elastic interactions, given by the Hamiltonian,

Hphonon =
N∑
i=0

ei,i+1

2
(ui+1 − ui)2, (3.2)

where ui = xi − x0i ,is the deviation from equilibrium position, xi is the position
of the ith spin, x0i is the equilibrium position, and,

x0j =
i−1∑
j=0

(a0 +
δ

2
[σj + σj+1]), (3.3)

where δ is the difference in HS and LS volume, and a0 is the average distance
between neighbouring HS-LS molecules.
To include the spin dependence of the elastic interaction the following expression
was considered,

ei,i+1 = A+B(σi + σi+1) + C, (σiσi+1) (3.4)

where,

A =
1

4
(e++ + 2e+− + e−−),

B =
1

4
(e++ − e−−),

C =
1

4
(e++ − 2e+− + e−−),

which yield with the values of A,B,C plugged into the equation, the proper spin
dependence of the elastic interaction, i.e., when
ei,i+1 = e++ for HS-HS interaction,
ei,i+1 = e+− for HS-LS interaction,
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ei,i+1 = e−− for LS-LS interaction.

Thus the Hamiltonian becomes:

Hphonon =
1

2

N∑
i=0

[A+B(σi + σi+1) + C(σiσi+1)]q
2
i , (3.5)

where qi = ui+1 − u1.
The kinetic energy part of the Hamiltonian is given by,

HKE =
N+1∑
i=0

p2i
2ma

, (3.6)

wherema is the atom mass, which will be taken as equal to 1 in all the calculations.
So the Total Hamiltonian is

H = Hspin +Hphonon +HKE. (3.7)

Solving we obtain the effective Hamiltonian in the form of an Ising Hamilto-
nian as,

H̃ = −J̃
N∑
i=0

σiσi+1 −
h̃

2

N∑
i=0

(σi + σi+1) + [
∆eff

4
× (σ0 + σN+1)] + E0, (3.8)

where,
J̃ = kBT ×K,

h̃ = −∆eff

2
+ 2LkBT,

and
E0 = kBT ln(2πI2kBT ).

Here I, K, and L are given respectively by the expressions,

I =
√

2πkBT (e++ × e−− × e2+−), (3.9)

K =
1

8
ln(

e2+−
e++ × e−−

), (3.10)

L =
1

8
ln(

e−−
e++

). (3.11)

Using the coupling e+− as a variable to tune the coupling parameter, with
e++ ≤ e+− ≤ e−−, it appears that the effective interaction is such as,

−kBT
4
ln

√
e−−
e++

≤ J̃ ≤ kBT

4
ln

√
e−−
e++

. (3.12)

The effective elastic interaction turns out to be of ferroelastic nature for e+− >√
e++ × e−− and of antiferroelastic nature for e+− <

√
e++ × e−−.



3.6. Appendix 92

Inter-chain Elastic interaction In some cases it happens at times that in
SCO polymers, the chains are not isolated, and steric or/and electrostatic inter-
actions are present between neighbouring chains. As for example in Fe-triazoles
water molecules and counter anions are present between the polymeric chains.
These are responsible for the steric or/and electrostatic interactions. The Hamil-
tonian is then written in the following form:

H =
N∑
i=1

Hphonon
i +

N∑
i,k

Hphonon−inter
i,k , (3.13)

where Hphonon−inter
i,k is given by,

Hphonon−inter
i,k =

Einter
2

(ui+1,k − ui,k)2, (3.14)

where i denotes the index of the chain and k denote the specific atom in the ith

chain. Here spin dependence of elastic inter-chain interaction is not considered.
However the form of equation (3) is used in this case neglecting the constant term
A. B is rewritten as e⊥ and C is rewritten as J⊥. Thus we arrive at the form,

Einter = e⊥(σi,k + σi+1,k) + J⊥σi,kσi+1,k (3.15)

Thus the Hamiltonian has the form,

Hphonon−inter =
1

2

N∑
i,k

[e⊥(σi,k + σi+1,k) + J⊥σi,kσi+1,k](ui+1,k − ui,k)2, (3.16)

or,

Hphonon−inter =
1

2

N∑
i,k

[e⊥(σi,k + σi+1,k) + J⊥σi,kσi+1,k]q
2
i,k, (3.17)

where qi,k = ui+1,k − ui,k.
For the weak inter-chain interaction where spin dependence is not explicitly con-
sidered we have taken this form of the Hamiltonian when developing our code
mapping e⊥ → Velast and J⊥ → Vinter. Thus in our case since for the inter chain
interaction part we are not following the previous scheme for spin dependence
and taking the Hamiltonian of the form of eqn. 3.8. Here for us e⊥ → V‖ is the
interchain elastic constant which takes care of the steric strains between the two
chains, and J⊥ → V⊥ is the electronic interaction between two atoms belonging
to neighbouring chains which takes care of the electrostatic interactions between
two polymeric chains.
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Chapter 4

Cationic Effect on Pressure
driven Spin-State Transition and
cooperativity in Hybrid
Perovskites

4.1 Introduction

Metal organic framework (MOF) complexes, built from inorganic and organic
components, form a vibrant area of research which has undergone a rapid and
immense growth in the last decade. [1, 2] In Figure 4.1 in the left panel a Scan-
ning Electron Microscope (SEM) image of a MOF crystal is seen. From the right
panel of the same figure which shows the schematic diagram of a MOF crystal it is
seen that MOFs can be of many types and various different connectivity ranging
from node connectivity, to long rods in 1 dimension and complete networks in
3 dimensions. Most of the study in this field are focused on open systems with
large porous regions [3–5] having potential applications in gas storage, [6] chem-
ical sensing, [7] catalysis [8], drug delivery [9], bio mimetic mineralization [9]
etc. In recent times however much of the attention has been directed towards
dense hybrid frameworks with limited porosity. Some of these dense hybrid com-
pounds adopt the celebrated perovskite geometry of general formula ABX3. [10]
This has opened up an emerging research area on hybrid perovskites, parallel
to the well-established field of inorganic perovskite oxides. Hybrid perovskites

This chapter is based on ”Cationic Effect on Pressure driven Spin-State Transition and
cooperativity in Hybrid Perovskites”, Hrishit Banerjee, Sumilan Banerjee, Sudip Chakraborty,
Tanusri Saha-Dasgupta, Chemistry of Materials, 28(22), 8379-8384 (2016)
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Figure 4.1: Representation of Metal-organic frameworks. The left panel shows
scanning electron microscope image of the seed inside a MOF crystal. The right
panel shows the schematic representation of a MOF-76 crystal, where oxygen,
carbon, and lanthanide atoms are represented by maroon, black, and blue spheres,
respectively. Figures adapted from wikipedia.

are a class of compounds with general formula ABX3 having long range con-
nectivity that form a subclass of dense MOFs. The synergistic effect between
inexpensive synthesised organic cation and mechanically stable inorganic anion
in hybrid perovskites have enabled these materials to emerge with superior phys-
ical and chemical properties in recent decades. The halide hybrid perovskites
of general composition, [AmH]MX3 (AmH+ = protonated amine, M = Sn2+ or
Pb2, and X = Cl− or Br− or I−) have already attracted a great deal of attention
due to their potential use in solar cell applications [11] and have been shown to
demonstrate high performance and efficiency in applications relating to design of
both mesostructural (and/or nanostructural) solar cells and other photovoltaic
devices [12–14] like Light Emitting Diodes (LEDs) [15,16] and spintronics [17–19].
Their efficiency as LED materials is due to the compatible ionization potential
and electron affinity of such perovskites as compared to other organic systems.
They have also become strong candidates for low-cost LEDs with comparable
energy levels similar to organic semiconductors by overcoming the luminescence
quenching at room temperature. The hybrid perovskites are organic counterparts
of inorganic ABO3 perovskite oxides. The inherent high carrier mobility of the in-
organic part in hybrid perovskites is suitable for various nano-electronic devices.
Easy processing techniques like spin-coating, dip-coating and vapor deposition
techniques have been known to be of advantage in this case [20,21]. These mate-
rials have been investigated intensely in photovoltaic community to acquire high
absorption coefficient, reasonable carrier mobility with smaller exciton binding
energy and longer exciton diffusion length. There is a humongous effort to study
these materials from different perspectives like stability, efficiency, hysteresis with
different possible combinations of organic, metallic, and halogen parts.
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Figure 4.2: Figure showing an example of a hybrid perovskite where the octahedra
are connected by formate ligands and various different A site cations may occupy
the ReO3 type pseudocubic cavities.

The other class of hybrid perovskites discussed in very recent times due to their
attractive ferroic properties, [22–27] are transition metal formates [AmH]M(HCOO)3
(M = Mn, Cu, Ni, Fe, Co), where MO6 octahedra are linked via formate bridges,
and the protonated amine molecules sit in the hollow cavity formed by the octahe-
dral framework, establishing hydrogen bonding with formates. [28] These hollow
spaces act as pseudo-cubic ReO3 type cavities. Organic ligands like formates be-
ing simple enough have been mostly studied with varied A cations, as shown in
Figure 4.2.

This class of materials has been shown to exhibit curious properties, of which
multiferroicity seems to be an intriguing one [29–31]. Ferroelectricity and espe-
cially multiferroicity in these materials has been extensively studied by Stroppa
and coworkers mostly from a DFT based first principles perspective and at times
combined with experimental studies [32–38]. Structural details and effects due to
structural phase transitions, strain tuning of various effects like polarisation, and
magnetic structure has also been studied by the same groups [39–43]. Interest-
ingly, in these materials due to the non-centrosymmetric nature of the formate
linkers, spin canting has been observed and structural order-disorder phase tran-
sition accompanied by hysteresis is observed as well. The variation of specific heat
with respect to temperature reflects the aspect of prominent dielectric anomalies
at two temperatures with a hysteresis width. These anomalies can be correlated
to a transition leading to magnetic and electrical ordering. At present, there
are no extensive theoretical or experimental studies available to our knowledge



4.2. Experimental studies on Hybrid Perovskites 99

for specifically probing the underlying reason behind such exciting hysteresis and
phase transition phenomena.

4.2 Experimental studies on Hybrid Perovskites

An mentioned previously, a number experimental investigations have been con-
ducted with the focus of synthesis and characterization of metal-organic com-
plexes in the last few years. The works of Jain and co-workers [29, 30] are few
among many such experimental investigation of hybrid perovskites that consists
of Dimethylammonium (DMA) metal formates with the variation of metal ions as
Zn, Mn, Fe, Co and Ni. They have found an exciting phase transition in dielectric
constant with a hysteresis width of about 10K, and a dielectric anomaly around
160K in Dimethylammonium Zn formate, which shows antiferroelectric behaviour
while cooling below 160K temperature. Additionally, a specific heat anomaly has
been observed around 156K along with a order-disorder phase transition and elec-
trical ordering, that is shown at the same temperature. The DMA cation at the
centre of the ReO3 type cavity is found to be disordered at room temperature and
Mn, Co and Ni based compounds show ordering at TC=8.5K, 14.9K, and 35.6K
respectively with corresponding magnetic exchange coupling values of J= -0.32,
-2.3, -4.85. All the three compounds exhibit canted weak ferromagnetism with a
hysteresis loop below TC . The AFM super-exchange and spin canting originate
from non-centrosymmetric character of the atoms forming the HCOO− bridge.
DMAFeF shows ferromagnetism below 20K with a corresponding phase change
that has been associated with a dielectric constant anomaly. The anomaly oc-
curred at 185K, accompanied by a hysteresis of width ∼10K, and a paraelectric to
anti-ferroelectric phase transition, which corresponds to a structural phase tran-
sition. The corresponding TC values for Fe, Co, and Ni based hybrid perovskites
are 160K, 165K and 180K respectively. The specific heat anomaly in DMAMnF
is found to occur at 183K with the associated electrical and magnetic ordering at
8.4K. All four compounds are multiferroic metal organic frameworks with a com-
plex transition as compared to a straight-forward three fold order-disorder model.
DMA cation is found to be dynamically disordered in rhombohedral paraelectric
phase with a corresponding transition to monoclinic anti-ferroelectric phase that
involves H bonded ordered DMA cations. The magnetic ordering can be achieved
through magnetic cooling and one can observe the co-existence of antiferroelectric
ordering along with weak ferromagnetic ordering. The experimental demonstra-
tion of hysteresis associated with order-disorder phase transitions in this system
is indicative of the fact that these systems are capable of undergoing other kinds
of phase transitions associated with hysteresis effects.

It has been found in a recent study [44] that a large spontaneous electric
polarization below the Curie point accompanied with a colour change exists in
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case of electrically polar and magnetic, halide based hybrid perovskites. The
system has also been found to be ferroelectric, with large remnant polarization.
The origin of this multiferroicity has been attributed to hydrogen-bond ordering of
the organic ligands. It has been shown that in these classes of hybrid perovskites
the underlying hydrogen bonding is easily tunable via the availability of a plethora
of organic building blocks in combination with the 3d transition-metal octahedral
geometries. This shall be shown to be particularly useful in subsequent sections.

4.3 Motivation for studying Spin Crossover in

hybrid perovskites

The presence of transition metal in these compounds together with its octahedral
environment makes these materials also well suited for exhibiting spin crossover
(SCO) behavior and possibly also cooperativity due to dense nature of framework,
which would provide another dimension to functionality of these interesting class
of compounds. The presence of organic components in the structure offers greater
structural flexibility, and thus better tunability of properties by external means,
as compared to that of inorganic perovskites. The flexibility of hybrid perovskites
to undergo large structural changes in response to external stimuli has already
been reported. [45] Furthermore, it is possible to tailor properties by changing
the amine molecule, thereby changing the strength and cross-linking of hydrogen
bondings in the structure, yet maintaining the basic topology. [46] Needless to
say, much remains to be explored in terms of functionalities that can be achieved
in this new class of perovskite materials.

Here we focus on this unexplored area of hybrid perovskites, namely the ex-
ternal stimuli driven spin-crossover. The tremendous flexibility of the organic
linkers makes the transition metal based formate hybrid perovskites ideally suited
for triggering spin-crossover from a high-spin (HS) to low-spin (LS) state at the
transition metal site by external perturbation. A much discussed aspect in this
context is the issue of cooperativity in SCO phenomena. [47] The cooperativity
in SCO phenomena makes it a spin transition rather than spin-crossover, which
may show up with associated hysteresis, as shown in of Figure 4.3, having impor-
tant implications in designing memory devices. [48] For device applications, the
challenges primarily are;

1. to achieve a large hysteresis width which would enable the memory effect
to be observable over a wide range of external stimuli,

2. facilitating the transition to occur at a value of the stimuli that can be
reached readily.

In this respect, commonly the explored candidates are SCO polymers or 3D coor-
dination compounds which are expected to provide better connectivity compared
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Figure 4.3: Schematic diagram demonstrating the cooperativity associated with
spin crossover phenomena in hybrid perovskites. Figure shows the hysteresis
in magnetic moment with change of pressure. The y axis shows the magnetic
moment (M) and x axis represents pressure (P) increasing in the positive direction
as shown in the figure. Upon decreasing P, a transition happens from LS S=0
state where all spins are paired up in the t2g states octahedrally coordinated d6

Fe, to HS S=2 state where two of the electrons from t2g states are promoted to
eg states. The reverse effect happens as demonstrated in the previous chapter
on application of temperature. Due to the cooperativity between Fe(II) centres
in the extended solid state geometry, hysteresis loop appears between cycles of
exertion and release of pressure

to molecular crystals with isolated molecular units. [49] Considering the dense
topology of the newly discussed hybrid perovskites, they can be a potential alter-
native to SCO polymers or 3D coordination compounds in exhibiting cooperative
spin-state transitions. This will add a new functionality to this interesting class of
compounds. The extended, 3-dimensional connectivity with limited void space,
together with possibility of synthesizing hybrid perovskites containing transition
metal ions have made these compounds excellent probable candidates for exhibit-
ing cooperative SCO.

In light of the above, we venture onto the study of SCO properties of transition
metal based formate hybrid perovskites, through first-principles calculations.

Although the inorganic part of a hybrid perovskite is mechanically stable, but
the organic linker is sensitive enough to external pressure and temperature to
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undergo morphological transformation (/structural transition). This was brought
to the attention of scientific community by Kieslich and co-workers [50], where
they showed a drastic change in mechanical properties, particularly in rigidity
modulus while changing the amine with other cations of different effective radii
rAeff

and consequent effect in hydrogen bonding mode alteration. The effective
radii of the molecular cation rAeff

can be expressed as

rAeff
= rmass + rion,

where rmass is the distance between the molecular centre of mass and furthest
atom from the centre of mass and rion is the corresponding ionic radius of the
atom. The hydrogen atoms generally are not considered while determining rAeff

.
This work has encouraged us to investigate for profound understanding the or-
ganic cationic effect on spin state transition and the elastic interaction in the
constant anionic environment and how they can be tuned under external pres-
sure with associated hysteresis.

In particular we consider Fe2+ based hybrid perovskites. The choice is prompted
by the fact that SCO transitions in Fe(II)-based compounds, having 6 d-electrons
in Fe(II) ion, and showing a transition from a LS (S = 0) to a HS (S = 2) state
are pronounced and abrupt, making them suitable for applications. In our study,
we consider hydrostatic pressure as an external stimuli. To the best of our knowl-
edge, no study exists so far on the pressure effect on hybrid perovskites, although
hydrostatic pressure is considered as one of the effective means to tune properties
in inorganic perovskites. [51] Additionally, to study the influence of changing the
primary organic component, namely the amine cation, located in the perovskite
cavity, we consider two different cations, Dimethyl-ammonium (CH3NH2CH3),
and Hydroxylammonium (NH3OH). It is worth noting that our conscious choice
of these two different molecular cations, leads to a change in the tolerance fac-
tor of the Fe formate perovskite structures, as the effective molecular radii for
Dimethyl-ammonium and Hydroxylammonium are different, being 272 pm and
215 pm, respectively. As previously mentioned a change in mechanical properties,
particularly in rigidity can be achieved by changing cations of different effective
molecular radius.

Our density functional theory (DFT) based computational study that takes
into account all structural and chemical aspects in full rigor, shows that pressure
induced spin-state transitions are achieved in both Dimethyl-ammonium Iron
Formate (DMAFeF) and Hydroxylammonium Iron Formate (HAFeF) for modest
critical pressure range of 2-7 GPa, associated with large hysteresis of 2-5 GPa.
The latter implies that these compounds should exhibit spin-switchability over
a wide range of operating pressure. Our findings highlight the possible tech-
nical use of spin-switching functionalities of hybrid perovskite compounds with
accompanied changes in electronic, magnetic and optical properties, in sensors
and memory devices. Interestingly, the flexibility in choice of the A site cation,
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i.e. the protonated amine molecule adds another dimension, namely the tuning
and modulation of spin-switching properties.

4.4 Computational Methodology

Our first-principles calculations were carried out in the plane wave basis as
implemented in the Vienna Ab-initio Simulation Package (VASP) [52, 53] with
projector-augmented wave (PAW) [54] potential. The exchange-correlation func-
tional was chosen to be that of generalized gradient approximation (GGA) im-
plemented following the Perdew-Burke-Ernzerhof [55] prescription. For ionic re-
laxations, internal positions of the atoms were allowed to relax until the forces
became less than 0.005 eV/Å. Energy cutoff of 500 eV, and 4×4×2 Monkhorst-
Pack k-points mesh were found to provide a good convergence of the total energy
in self-consistent field calculations. To take into account of the correlation effect
at Fe sites beyond GGA, which turned out to be crucial for the correct descrip-
tion of the electronic and magnetic properties, calculations with supplemented
Hubbard U (GGA + U) a la Liechtenstein et al [56] were carried out, with the
choice of U = 4 eV and Hund’s coupling parameter JH = 1 eV. In order to study
the effect of hydrostatic pressure, calculations were done by first changing the
volume of the unit cell isotropically and then relaxing the shape of the cell to-
gether with the ionic positions for each of the modified volume. The estimate
of applied hydrostatic pressure for each compressed volume was obtained from
the knowledge of the calculated bulk modulus. The bulk modulus was calculated
by varying the volume of the unit cell and relaxing the ionic positions at each
volume. Accurate self-consistent-field calculations were carried out to obtain the
total energy of the systems at each volume. The energy versus volume data was
fitted to the third order Birch-Murnaghan isothermal equation of state [57], given
by,

E(V ) = E0 +
9V0B0

16
{[(V0

V
)2/3 − 1]3B′0 + [(

V0
V

)2/3 − 1]2[6− 4(
V0
V

)2/3]}

where V0 is the equilibrium volume, B0 is the bulk modulus and is given by
B0 = −V (δP/δV )T evaluated at volume V0. B

′
0 is the pressure derivative of B0

also evaluated at volume V0.

4.5 Crystal Structure of DMAFeF and HAFeF

An essential pre-requisite for the first-principles study is the accurate information
of the crystal structure. An interesting feature of [AmH]M(HCOO)3 compounds
is the order-disorder transition of the A-site amine cations through ordering of
hydrogen bonds. [28] While the crystal structure data for disordered phase of
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Figure 4.4: Computed crystal structures of DMAFeF [panel (a)] and HAFeF
[panel (b)] in A-site ordered phase. The FeO6 octahedra are connected to each
other by the formate ligands while the DMA or HA cations sit in the hollow
formed by the octahedra. Various atoms have been marked. N-H· · ·O and O-
H· · ·O bonds are represented by dashed lines, with thickness of lines indicating
the strength of the bonds.

DMAFeF [28] is available, no such data exists for the corresponding ordered phase.
Moreover, in case of HAFeF, no crystal structure data has been reported till
date. Therefore we started with crystal structure data for the ordered phases of
DMAMnF [58] and HAMnF [59], the Mn analogues of DMAFeF and HAFeF. We
relaxed the structure completely after replacing Mn atoms with Fe atoms, which
gave the first-principles predicted ordered structures of DMAFeF and HAFeF.
Mn being next to Fe in the periodic table, this forms a legitimate approach. We
carried out a complete structural relaxation, which involved relaxation of the unit
cell volume and shape, as well as atomic positions. We found that though the
symmetries do not change between Fe compounds and their corresponding Mn
counterparts, there is appreciable change in the volume of the unit cells, as ex-
pected. DMAFeF and HAFeF crystallize in two different monoclinic space groups,
DMAFeF being in Cc space group and HAFeF being in P21 space group. The
lattice constants for DMAFeF are found to be, a=14.464Å, b=8.355Å, c=8.975Å,
with the angle γ = 119.80, whereas for HAFeF the lattice constants are found to
be a=7.812Å, b=7.961Å, c=13.173Å, with angles α = β = γ = 900.

The calculated crystal structures as cif files can be found in the Appendix.
As shown in Figure 4.4, in both the framework compounds each FeO6 octa-

hedra is connected to neighbouring FeO6 octahedra via HCOO− ligand bridges.
This forms a three-dimensional ReO3-type network, with Dimethyl-ammonium
or Hydroxylammonium, cations occupying the centers of the ReO3-type cavities.
In DMAFeF, two bridging N-H· · ·O hydrogen bonds from each DMA cation are
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Figure 4.5: Projected density of states of DMAFeF and HAFeF at ambient and
high pressure conditions. Panels (a) and (c) are for ambient pressure, while panels
(b) and (d) are for high pressure. The DOS projected to Fe d, O p, C p, N p and
H s are marked in red, cyan, black, green and blue, respectively. The zero of the
energy is set at Fermi energy.

formed, while in HAFeF, three N-H· · ·O hydrogen bonds, and a O-H· · ·O hydro-
gen bond are formed from each HA cation. The nature of hydrogen bondings is
expected to be different between N-H· · ·O and O-H· · ·O due to the less polar
nature of N-H bond as compared to O-H bond. Thus the O-H· · ·O hydrogen bond
is stronger than N-H· · ·O hydrogen bond. The lattice for HAFeF is therefore ex-
pected to be more rigid compared to the lattice for DMAFeF, having important
bearing on SCO phenomena as we will be discussing in the following sections.

4.6 Spin-state transition under pressure and Co-

operativity

In order to determine the spin-states of the Fe atoms in DMAFeF and HAFeF,
we calculated the spin-polarized electronic structures. The spin-polarized density
of states at ambient pressure condition for DMAFeF and HAFeF are shown in
panels (a) and (c) of Figure 4.5, respectively. The states close to Fermi level (EF )
are dominantly of Fe d character, which are found to be strongly spin-polarized.
The octahedral coordination of oxygen atoms around Fe, groups the Fe d states
into states of eg and t2g symmetries. The Fe d states are found to be completely
occupied in the majority spin channel, with empty Fe eg states, and partially filled
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Figure 4.6: Computed magnetic moment per Fe atom plotted as a function of
pressure for DMAFeF [panel (a)] and HAFeF [panel (b)]. The data are plotted for
two different paths. The data points in blue denote the path following increasing
pressure, starting from the HS state and the data points in red denote the path
following decreasing pressure, starting from the LS state. HS → LS transitions
in both compounds exhibit interesting hysteresis effects.
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Fe t2g states in the minority spin channel. The distortion in the FeO6 octahedra
causes further splitting within states of Fe t2g, leading to a small gap at the
Fermi region in the minority spin channel. Insulating solution is obtained for
both compounds at ambient condition, with a large band gap (≈ 2 eV) between
occupied Fe d and empty C p states in majority spin channel and a tiny band gap
(≈ 0.1 eV) within the Fe t2g states in the minority spin channel. This suggests at
ambient condition spin-state of Fe in both DMAFeF and HAFeF to be HS. The
calculated total magnetic moment (M) turned out to be 4 µB per Fe atom, for
both the compounds, in conformity with the stabilization of HS (S=2) state of
Fe. Panels (b) and (d) of Figure 4.5 show the spin-polarized density of states for
DMAFeF and HAFeF at high pressure condition. We find the exerting pressure
(P) in the range of ≈ 5-7 GPa causes drastic change in the electronic structure.
First of all, for both the compounds the ground states turned out to be non spin-
polarized, with calculated magnetic moments of 0 µB. This confirms a spin-state
transition from HS (S=2) state to LS (S=0) state, obtained by application of
pressure. In the high-pressure LS state a large band gap of ≈ 1 eV opens up
between the fully occupied Fe t2g states, and completely empty Fe eg states. The
spin-state transition thus should be accompanied by a significant change in the
overall band gap, which should be manifested in corresponding change in optical
response.

In the next step, in order to find out the critical pressure where such spin-
state transition happens for the two compounds, we increased the pressure in
steps of 0.6-0.7 GPa, starting from the ambient pressure condition. As shown
in the plot of the magnetic moment (M) versus pressure (P) in Figure 4.6, we
find a spin-state transition from HS with a total magnetic moment of 4 µB/Fe to
LS with a total moment of 0 µB/Fe at pressure (Pc ↑) of 4.7 GPa for DMAFeF
and 6.6 GPa for HAFeF. This implies a strong influence of the choice of A cation
on the optimal pressure needed for spin-state transition. We then decreased the
pressure starting from the highest applied pressure. Interestingly we find the
optimal pressure required for the transition from LS with a total moment of 0
µB/Fe to HS with total magnetic moment of 4 µB/Fe, happens at a different
pressure (Pc ↓) compared to Pc ↑, having values 2.5 GPa for DMAFeF and 1.4
GPa for HAFeF. This is reflected as significant hysteresis effect in M-P data in
case of both compounds, with width of hysteresis being 2.2 GPa for DMAFeFe as
compared to 5.2 GPa for HAFeF, the former being more than a factor of 2 smaller
than the latter. Therefore, the choice of A cation has a significant influence on
spin-switching properties. This constitutes the key finding of our investigation.
We note that both Pc ↑ and Pc ↓ are of moderate values for both compounds,
that can be generated in a laboratory set-up.

Additionally, we have calculated the energies (E) upon varying the cell volume
(V) within the scheme of fixed moment calculations, once fixing the moment to
HS state and another fixing the moment to LS state. The generated E-V curve



4.7. Microscopic understanding of Cooperativity 108

-80 -60 -40 -20 0 20 40 60 80 100

V (Å )

0

0.1

0.2

0.3

0.4

0.5

0.6

 E
 (

eV
)

DMAFeF
HAFeF

3
∆

∆

Figure 4.7: Total energy versus volume of the unit cell for DMAFeF and HAFeF.
Energy and volumes have been measured with respect to the equilibrium values,
E0 and V0, respectively. The symbols denote the DFT calculated data points.
The lines depict that obtained from Murnaghan [57] equation of state fit.

showed the strong hysteresis effect, confirming our finding in the above.

4.7 Microscopic understanding of Cooperativ-

ity

In order to understand the microscopic origin of the quantitative differences in
response of the two formate frameworks considered in this study to the applied
pressure, we firstly calculated the mechanical strengths of the two compounds. As
mentioned previously due to the differential nature of H bonding, the lattice for
HAFeF is expected to be more rigid compared to that of DMAFeF. This is con-
firmed by the magnitudes of the calculated bulk moduli of the two systems. The
fit of the DFT total energy versus volume data to the Birch-Murnaghan equation
of state, [57] as shown in Figure 4.7, gave the bulk modulus to be 21.55 GPa
for DMAFeF, and 24.27 GPa for HAFeF, with B

′
0 = 5.39 and 1.84, respectively.

This would in turn imply that the critical pressure needed to cause spin-switching
through change in Fe-O bond-length to be larger in the significantly more rigid
lattice of HAFeF compared to that in comparatively less rigid lattice of DMAFeF,
as reflected in different values of Pc ↑ in two compounds.
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Further to elucidate the mechanism by which the cooperativity, manifested in
the form of hysteresis in the M-P plot, develops in these materials we computed
the elastic and magnetic exchange interactions. The most prevalent idea in this
context attributes the microscopic origin of cooperativity to the elastic interaction
between local distortions at the SCO centers. [60] However in our very recent
work, as described in Chapter 3, the importance of magnetic super-exchanges
in driving cooperativity was uncovered. [47] Depending on the sign of the spin-
dependent elastic interaction, which is dictated by the nature of the spin-phonon
coupling in the material, the magnetic interaction was found to influence the
hysteresis in a quantitative or qualitative way. As was found in our previous
work in Chapter 3, [47] the interplay between elastic and magnetic interaction
in building up cooperativity, crucially relies on the spin-dependent rigidity of the
lattice. Depending on the spin-state of the spin-crossover ion, which is Fe in
the present case, the elastic interaction between two neighbouring Fe ions can be
different, which are labeled as e++ (e−−) for both neighbouring sites in HS (LS)
state, and e−+ for one site in LS and another in HS. The size change of the SCO
unit upon change of spin-state makes e−− > e++. It is thus the value of e−+ which
decides the nature (sign) of the effective elastic interaction. Following the work
by K. Boukheddaden et al., [60], and as also explicitly shown in the Appendix of
Chapter 3, the effective elastic interaction between two neighbouring SCO sites
is given by,

K =
1

8
ln(

e2+−
e++ × e−−

)

Thus the effective elastic interaction, K turns out to be of ferroelastic nature for
e+− >

√
e++ × e−− and of antiferroelastic nature for e+− <

√
e++ × e−−. It was

demonstrated [47] that for ferro type elastic interaction, the magnetic interaction
becomes operative only in qualitative manner, in terms of enhancing the hysteresis
width, while for antiferro nature of elastic interaction, the magnetic exchange is
the sole driving force in setting up the hysteresis.

In order to have a microscopic understanding of the observed hysteresis in
M-P plot of the studied formate frameworks and its dependence on the choice
of the amine cation, we thus first calculated the spin-state dependent elastic
interactions for the two compounds. To do so, we adopted the same procedure
as in Chapter 3 [47]. Electronic structure of the optimized crystal structure data
shows that the LS state is obtained at a high pressure phase for an average Fe-
O bond length of 1.9 Å or less, while the HS state is obtained at an ambient
pressure phase for an average Fe-O bond length of 2.1 Å or more. Keeping
this in mind, we constructed crystal structures setting the average Fe-O bond
length at 1.9 and 2.1 Å to emulate the LS and HS states of neighbouring Fe-
O6 octahedra, respectively. To simulate the LS-HS situation, structure with
alternating arrangements of Fe-O6 octahedra having average Fe-O bond lengths
of 1.9 and 2.2 Å was constructed. Considering the three model structures with
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Material Eelastic Jmagnetic Relative strength
DMAFeF 3.52K 3.19K E≈J
HAFeF 8.93K 2.85K E>J

Table 4.1: Table summarising the elastic and magnetic exchanges.

HS-HS, LS-LS and LS-HS arrangements of neighbouring Fe-O6 octahedra, the
Fe-O bond lengths were varied by small amounts (≈ 0.02 - 0.06 Å) within the
harmonic oscillation limit around the equilibrium bond lengths. The obtained
energy versus bond length variation for the three cases for both the compounds
are shown in Figures 4.8 top and bottom panel. A parabolic fit of the data points
provides the estimates of the spin-dependent elastic interactions. DMAFeF is
found to be weakly ferroelastic with e+− '

√
e++ × e−− while HAFeF is found to

be strongly ferroelastic with e+− >
√
e++ × e−−, having effective elastic constant

of 3.52 K for DMAFeF compared to a substantially larger effective elastic constant
of 8.93K for HAFeF.

We next turn our attention to the magnetic super-exchange coupling between
neighbouring Fe(II) centers in HS state. To estimate their values we calculated
the total energies of ferromagnetic and antiferromagnetic Fe2+ spin configurations,
and mapped on to the spin Hamiltonian,

Hmagnetic = −JSiSj,

where, J is the magnetic exchange between nearest neighbour Fe2+ spins, Si and
Sj. The difference of the ferromagnetic and antiferromagnetic energies provides
the estimate of J . The calculated J-s turned out to be of negative signs which
indicate antiferromagnetic nature of magnetic exchanges, and of values 3.19K
and 2.85K for DMAFeF and HAFeF, respectively. A summary of the elastic and
magnetic exchanges is given in Table 4.1. This leads us to conclude that while
the magnetic exchanges in the two compounds are of same sign and of similar
strengths, the spin-dependent elastic interactions are of ferroelastic nature with
significantly larger strength for HAFeF compared to DMAFeF. Following the
work from the previous chapter [47] we also conclude that the primary responsible
factor in driving cooperativity in these formate frameworks is the spin-dependent
lattice effect, wherein the magnetic exchange only plays a role in quantitatively
increasing the width of the hysteresis region in the system. This is different from
the case of coordination polymer compounds discussed in Chapter 3 in which it
was found to be entirely driven by the magnetic super-exchanges. [47, 61] The
change of amine cation, leads to the change in cross-linking hydrogen bonding,
and thus to the rigidity of the lattices. Interestingly, the change of amine molecule
is also found to affect the spin-phonon coupling, thereby producing a profound
effect on the cooperativity. This also demonstrates that the cooperativity may be
tuned by chemical means and hence with the huge plethora of organic A cations
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available one might simply choose a suitable organic amine cation to tailor the
cooperativity according to device requirements.

4.8 Conclusions

In conclusion, we show that apart from exhibiting interesting multiferroic prop-
erties transition metal formate based hybrid perovskites are also potential can-
didates for exhibiting spin-switching upon application of external stimuli. We
demonstrated this through rigorous first-principles calculations, considering two
formate based hybrid perovskite compounds, DMAFeF and HAFeF under hydro-
static pressure. We found that dense framework structures of these compounds
help in building up cooperativity in spin-switching, making the phenomena a
spin-state transition with appreciable hysteresis effect. The spin-switching is re-
flected in associated changes in electronic, magnetic and also possible changes
in optical properties. This opens up several novel potential applications of these
materials, for example, as pressure sensors, as active elements of various types
of displays, and in information storage and retrieval - an aspect which has re-
mained unexplored so far. Our computed values of pressure needed to drive the
spin-state transition is found to be in the range of about 2-6 GPa, which should
be readily achievable in a laboratory set-up of a low to medium pressure dia-
mond anvil cell (DAC). The appreciable hysteresis effect of 2-5 GPa associated
with these spin-state transitions would make them functional in memory devices
for a reasonably wide range of pressure. Interestingly, taking the advantage of
flexibility of these MOF perovskites to undergo substantial change in mechani-
cal properties upon tuning of hydrogen bonds, both the pressure required from
the transition, as well as the hysteresis-width are found to be tunable by choice
of appropriate amine cation. Microscopic investigation shows elastic properties
are vastly different between the two studied compounds, lending support to our
observation.

It is worth mentioning that all the calculations, reported here, have been car-
ried out within the scheme of T = 0 K DFT calculations. The magnetic exchange
interactions being a few K, the magnetic ordering temperature is expected to be
few tens of K, for e.g. considering S = 2 state of Fe and using simple mean
field formula, it turns out to be about 40 K. However, following the analysis,
as presented above, the effective elastic interaction is of ferroelastic nature, in
which case the magnetic interaction becomes operative only in qualitative man-
ner, in terms of enhancing the hysteresis width. [47] We thus expect the pressure
induced spin-state transition and the related hysteresis effect, reported in the
present study, to be observable even at high temperature. It is to be noted, how-
ever, our study has been carried out considering the experimental ordered phases
of the compounds. The order-disorder transition of H bonds in such compounds
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is estimated to be around 160 - 180 K, [28] so the chosen temperature should be
less than that.
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4.9 Appendix

This section contains the calculated crystallographic information files for the ma-
terials DMAFeF and HAFeF.
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DMAFeF crystal structure
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HAFeF crystal structure
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Chapter 5

Electronic Structure of Oxide
Interfaces: A Comparative
Analysis of GdTiO3/SrTiO3 and
LaAlO3/SrTiO3 Interfaces

5.1 Introduction

Metal oxide perovskites constitute one of the largest classes of oxide materials. A
general discussion of perovskite metal oxide materials along with some introduc-
tion to the possible distortions in the perovskite lattice has been given in Chapter
1. In this section we discuss further details of the distortions in the perovskite
lattice and in particular how it may affect the heterostructure systems we intend
to study.

One of the primary types of distortions in perovskite materials is gadolinium
ferrite GdFeO3 type distortion. Owing to this distortion the corner shared ]B-
O-B deviates from the ideal value of 180◦ as shown in right panel of Figure 5.1,
in comparison to a perfect cubic perovskite structure shown in the left panel.
Primarily this distortion arises due to mismatch between A site and B site ionic
radii. It is the GdFeO3 distortion which reduces the symmetry of the perfectly
cubic perovskite to lower symmetries like orthorhombic, or tetragonal symmetries.
This is intrinsic to the entire series of rare earth orthogallates and is responsible
for reducing the d band width of the B site which is driven by the B-O-B covalency.

This chapter is based on ”Electronic Structure of Oxide Interfaces: A Comparative Analysis
of GdTiO3/SrTiO3 and LaAlO3/SrTiO3 interfaces”, Hrishit Banerjee, Sumilan Banerjee, Mohit
Randeria, Tanusri Saha-Dasgupta Scientific Reports 5, 18647 (2015)
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(a) (b)

Figure 5.1: Cubic and distorted perovskites. Figure (a) on the left panel shows
a perfectly cubic perovskite structure with no distortion as found for example in
SrTiO3. Figure (b) on the right panel shows a perovskite structure with what
is known as GdFeO3 type distortion where there is rotation of the octahedra in
plane and tilt of the octahedra out of plane.

This GdFeO3 distortion will have particular bearing on our further discussion of
the crystal structure of perovskite heterostructures in a later section.

Another type of distortion which is particularly important in case of per-
ovskites is the Jahn-Teller distortion [1]. In Chapter 1 the Jahn Teller breathing
modes have already been defined. In this section we discuss how the Jahn Teller
distortion affects the splitting of the d energy levels of the B site in a perovskite
structure. The Jahn-Teller theorem in its most general form states that any non-
linear molecule with a spatially degenerate electronic ground state will undergo a
geometric distortion that removes that degeneracy, because the distortion helps
in lowering the overall energy of the species. In case of perovskites, this occurs in
the form of contraction or elongation of the metal-oxygen octahedra. In absence
of any Jahn-Teller effect we have the usual crystal field splitting of the degener-
ate d orbitals into t2g orbitals comprising of dxy, dyz, dzx orbitals and eg orbitals
comprising of dz2 , dx2−y2 orbitals, shown in left panel of Figure 5.2. Compression
of octahedra results in a Jahn-Teller distortion which lifts the degeneracy by the
stabilization of the d orbitals without a z component, while the orbitals with a z
component are destabilized as shown in middle panel of Figure 5.2. This is due
to the z-component d orbitals having greater overlap with the ligand orbitals,
resulting in the orbitals being higher in energy. Since the dz2 orbital is anti-
bonding, it is expected to increase in energy due to compression. The dxz and
dyz orbitals are nonbonding, but these are destabilized due to the interactions.
Elongation of octahedra results in a type of Jahn-Teller distortion in which the
degeneracy is broken by the stabilization (lowering in energy) of the d orbitals
with a z component, while the orbitals without a z component are destabilized
(higher in energy) as shown in the right panel of Figure 5.2. This is due to the
dxy and dx2−y2 orbitals having greater overlap with the ligand orbitals, resulting
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Figure 5.2: Schematic diagram showing tetragonal distortion (compres-
sion/elongation) for an octahedral complex. The top panel shows the compression
and elongation effects. The bottom panel shows the effect of compression or elon-
gation on the distribution of orbitals and the lift of degeneracy in energy of the
orbitals.

in the orbitals being higher in energy. Since the dx2−y2 orbital is antibonding, it is
expected to increase in energy due to elongation. The dxy orbital is nonbonding,
however it is destabilized due to the interactions.

5.1.1 Different kinds of Insulators

In this chapter we shall discuss the interfaces between different kinds of perovskite
oxide insulators. Let us thus first discuss the various kinds of insulators, the
insulating properties being driven by different mechanisms.

Based on the mechanism we primarily identify five different kinds of insulators:
1. Band insulator (band structure driven)
2. Mott insulator (correlation driven)
3. Charge transfer insulator (charge transfer process driven)
4. Anderson insulator (disorder driven)
5. Jahn Teller insulator (geometry driven)

Band insulators: These are insulators by virtue of their basic band structure
and form the most common class of insulators that are found in nature. A band
insulator fits all the standard one-electron criteria of being an insulator, i.e. it
possesses an even number of valence electrons per unit cell, has an integral number
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of filled bands, and a band gap.
Mott insulators: A class of insulators that should conduct electricity under

conventional band theories, but are insulators when measured experimentally
(particularly at low temperatures). Although the band theory of solids has been
very successful in describing various electrical properties of materials, in 1937 Jan
Hendrik de Boer and Evert Johannes Willem Verwey pointed out that a variety
of transition metal oxides predicted to be conductors by band theory (because
they have an odd number of electrons per unit cell) are insulators. Neville Mott
and Rudolf Peierls [2] then (also in 1937) predicted that this anomaly can be
explained by including interactions between electrons. In 1949, in particular,
Mott proposed a model for NiO as an insulator, where conduction is based on
the formula

(Ni2+O2−)2 → Ni3+O2− +Ni1+O2−.

Circumstanced as such, the formation of an energy gap preventing conduction can
be understood as the competition between the Coulomb potential U between 3d
electrons and the transfer integral t of 3d electrons between neighbouring atoms
(the transfer integral is a part of the tight-binding approximation). The energy
gap is then

Egap = U − 2zt,

where z is the number of nearest-neighbour atoms. In general, Mott insulators
occur when the repulsive Coulomb potential U is large enough to create an energy
gap. One of the simplest theories of Mott insulators is the 1963 Hubbard model.

Charge-transfer insulators: These are also a class of materials predicted
to be conductors following conventional band theory, but which are in fact in-
sulators due to a charge-transfer process. Unlike Mott insulators, where the
insulating properties arise from electrons hopping between unit cells, the elec-
trons in charge-transfer insulators move between atoms within the unit cell [3].
In the Mott-Hubbard case, it is far more convenient for electrons to transfer
between two adjacent metal sites (on-site Coulomb interaction U); in the charge-
transfer case, however it’s easier to facilitate a transfer from the anion to the
metal (charge-transfer energy ∆). U is determined by repulsive/exchange effects
between the cation valence electrons. ∆ is tuned by the chemistry between the
cation and anion. Determining the size of the on-site Coulomb interactions U
is quite complicated. A hand waving approximation is that it’s the energy for
two metals Mm+ to go to M (m+1)+ and M (m−1)+. The Lower Hubbard Band
(LHB) therefore reflects the metal electron energy in the former configuration
and the Upper Hubbard Band (UHB) reflects the metal electron energy in the
latter configuration. So a rough intuitive estimate for U is the difference between
the metal’s ionization potential and electron affinity. The charge-transfer gap is
defined as the electronegativity difference between the cation and anion in the
crystal lattice - which is quite different from atomic electronegativity, although
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similar in certain respects. Anions are naturally unstable in vacuum. In con-
trast to cations, they require the surrounding crystal lattice to stabilize their
electronic energy, which alters their electronegativity. The electrostatic potential
of the surrounding ions (the Madelung potential) reduces their electron energy
and increases their electronegativity. This is what makes the p states lower in
energy than the metal’s d states to begin with. However, the Madelung potential
destabilizes the transition metal’s d states, raising them in energy: the cations are
surrounded by negatively charged anions, making it more difficult for electrons
to occupy those states. Thus, one may be able to tune the size of the charge-
transfer gap ∆ by making use of the Madelung potential, the electronegativity of
the cation, and the electronegativity of the anion. Based on trends in ionization
potentials/electron affinities and the estimates described above, we can thus see
that late transition metals or transition metals with high oxidation states will
have higher U and smaller ∆, resulting in the LHB lying below the anion p-band.
On the other hand, early transition metals or transition metals with low oxidation
states will have lower U and larger ∆, which is consistent with Mott-Hubbard
behaviour. The covalency between the transition metal and anion also plays an
extremely important role in this case. A comparison of Mott Hubbard insulator
with the charge transfer insulator has been shown schematically in Figure 5.3.
Here we see how the band structures of the two types of closely related insulators
differ from each other, and the relations of U and ∆ as described above.

Anderson insulators: These insulators are driven by the presence of disor-
der in the system. These are the result of Anderson localisation, which is defined
as the absence of diffusion of waves in a disordered medium. Named after the
American Nobel laureate P. W. Anderson, who suggested that electron local-
ization is possible in a lattice potential, provided that the degree of disorder in
the lattice is sufficiently large, as is often seen in experiments for example in
a semiconductor with impurities or defects. This localization theory suggests
that a disorder-induced metal-insulator transition (MIT) exists for a system of
non-interacting electrons in 3D systems at zero magnetic field and in the ab-
sence of spin-orbit coupling. In 1D and 2D systems, the same theory shows that
there are no extended states and thus no MIT. However, since 2D is the lower
critical dimension of the localization problem, the 2D case is in certain senses
close to 3D: the states are only marginally localized for weak disorder and a
small spin-orbit coupling can lead to the existence of extended states and thus a
MIT. Consequently, the correlation lengths of a 2D system with potential-disorder
can be quite large so that in numerical approaches one may find a localization-
delocalization transition when either decreasing system size for fixed disorder or
increasing disorder for fixed system sizes.

Jahn Teller Insulators: These materials become insulating due to the pres-
ence of Jahn Teller distortions in the system. If the TM-O octahedra is either
elongated or compressed in the perovskite oxide classes of materials that we shall
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Figure 5.3: A schematic diagram showing the difference in band structure between
the two closely related systems of Mott insulators and charge transfer insulators.
The left panel shows a schematic density of states (DOS) for a Mott insulator with
the various energy scales marked and the right panel shows a similar schematic
for that of a charge transfer insulator.



5.1. Introduction 128

primarily be considering, as we have pointed out before there occurs a breakdown
of the degeneracy in the t2g and eg orbitals which causes the system to become
insulating. If the Jahn Teller distortions in the system are reduced due to some
geometrical effects, one may find these systems to show a transition from an
insulating to a metallic state.

5.1.2 Oxide Heterostructures

A heterostructure of two compounds forms the interface that occurs between two
layers or regions of dissimilar crystalline semiconductors or in our case perovskite
oxides. Heterostructure fabrication generally requires the use of molecular beam
epitaxy (MBE), chemical vapor deposition (CVD), or pulsed laser deposition
(PLD) techniques in order to precisely control the deposition thickness and create
a sharp lattice-matched abrupt interface.

Heterostructures have found use in a variety of specialized applications where
their unique characteristics are critical:

1. Lasers: Using heterojunctions in lasers was first proposed in 1963 when
Herbert Kroemer, who famously proclaimed in this Nobel lecture ”Interface is
the device”, suggested that population inversion could be greatly enhanced by
heterostructures. By incorporating a smaller direct band gap material like GaAs
between two larger band gap layers like AlAs, carriers can be confined so that
lasing can occur at room temperature with low threshold currents.

2. Junction transistors: When a heterostructure is used as the base-emitter
junction of a bipolar junction transistor, an extremely high forward gain and low
reverse gain result. This results in excellent frequency operation and very meagre
leakage currents. This device is called a heterojunction bipolar transistor (HBT).

3. Field effect transistors: Heterostructures are also used in high electron
mobility transistors (HEMT) which work at extremely high frequencies. The
proper band alignment gives rise to extremely high electron mobilities by creating
a 2 dimensional electron gas (2DEG) within a dopant free region where very little
scattering can occur.

As mentioned in the previous section the metal oxide perovskite family, in-
cludes a huge number of different types of structures, and at the same time
different elements of the periodic table, giving rise to wide variety of physical
properties. In this chapter we are interested in heterostructures arises out of
layered combination of different types of insulating transition metal oxides. The
perovskite oxides ABO3 may be thought of as alternating AO and BO2 layers.
Here we have considered layered heterostructure interface between a Mott In-
sulator and a band insulator and studied it in contrast to an interface between
two band insulators and demonstrated the effect of correlation in these types
of systems. Carefully controlled interfaces between two materials can give rise
to novel physical phenomena and functionalities not exhibited by either of the



5.1. Introduction 129

constituent materials alone. Modern synthesis methods have yielded heterostruc-
tures and superlattices of oxide materials with competing quantum many-body
states. In order to explore new correlation-driven interface phenomena, we try to
understand and manipulate spin, charge and orbital order at oxide interfaces.

Oxide heterostructures span a wide range of combinations of complex oxides
and play host to an incredible variety of physical phenomena. High dielectric
permittivities, piezo-, pyro-, and ferroelectricity are just a few of the function-
alities offered by this class of materials, while the potential for applications of
the more exotic properties like high temperature superconductivity and colossal
magnetoresistance is still waiting to be fully exploited. With recent advances in
deposition techniques, the structural quality of oxide heterostructures now rivals
that of the best conventional semiconductors, taking oxide electronics to a new
level. Such heterostructures have enabled the fabrication of artificial multifunc-
tional materials. At the same time they have exposed a wealth of phenomena at
the boundaries where compounds with different structural instabilities and elec-
tronic properties meet, giving unprecedented access to new physics emerging at
oxide interfaces.

Following the pioneering work by Ohtomo and Hwang [4] on LAO/STO, there
has been much effort in understanding the interface between two different insulat-
ing ABO3 perovskites. The [001] stacking consists of AO and BO2 layers, which
are charge neutral in one of the oxides like the (SrO)0 and (TiO2)

0 layers in STO,
but have charge +1/-1 in the other oxides, like LaO and AlO2 in LAO. This cre-
ates a polar discontinuity at the interface of the two types of oxides and a build
up of electrostatic potential, which can only be averted by a transfer of charge
to the interface. The 2DEG that results from this simple polar catastrophe (de-
scribed in subsequent section) picture should lead to an interface carrier density
of 0.5e−/IF, corresponding to ∼ 3.3× 1014cm−2, much larger than that achieved
in conventional semiconductor hetero-junctions.

5.1.3 Polar catastrophe hypothesis

Polar catastrophe or divergence catastrophe hypothesis was the first and most
successful mechanism used to explain the conductivity at LaAlO3/SrTiO3 in-
terfaces. It postulates that LaAlO3, which is polar in the 001 direction (with
alternating sheets of positive and negative charges), act as an electrostatic gate
on the insulating SrTiO3. It is an allusion to the scenario where a sudden jump
in potential occurs from charge neutral SrO and TiO2 layers to the charged LaO
and AlO2 layers which have charges of +1 and -1 respectively. Due to this jump
in charge as shown in Figure 5.4 there is a corresponding jump in electric field and
the voltage in the LaAlO3 section builds up forever and diverges eventually. Thus
this hypothesis has also been called the divergence catastrophe hypothesis. Of
course it is highly unlikely that such a divergence in potential can exist in nature
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Construction

Response

Figure 5.4: Diagram demonstrating the polar catastrophe hypothesis and the
associated electronic reconstruction in an n-type interface. Figure adapted from
J. Mannhart et al, MRS Bull. 33 1027 (2008)

and hence it is avoided by means of an electronic reconstruction, where, half an
electron per unit cell is transferred to the interface TiO2 layer and consequently
half a hole is transferred to the surface AlO2 layer. This is how the origin of half
an electron charge at the interface of two insulators have been explained. This
has also been called electron reconstruction hypothesis highlighting the fact that
electrons, not ions, move to compensate the potential buildup.

5.1.4 Existing studies on Oxide heterostructures

The n-type interface in LAO/STO heterostructures is the most studied of all
oxide interfaces. [5–8] It exhibits gate-tunable superconductivity and in addition
shows signatures of local moments and possible ferromagnetism [9–12] coexisting
with the superconductivity. The density of itinerant carriers, however, is consis-
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tently found to be an order of magnitude smaller [13–15] than 0.5e−/interface,
the value expected from the polar catastrophe model. In addition, the interfaces
are insulating, rather than being metallic, below a certain critical thickness of
LAO layers. [15]

A more recent development is the study of the n-type interface between the
Mott insulator GTO and the band insulator STO grown by molecular beam epi-
taxy. [16–18] Remarkably, the GTO/STO samples give rise to 2DEGs with carrier
densities of 0.5e−/interface, exactly as expected from the ideal polar catastrophe
scenario. Furthermore, the GTO/STO interface is found to be conducting irre-
spective of layer thickness of GTO, and hence there is no thickness threshold for
metallic behavior. In both these respects GTO/STO seems to be qualitatively
different from LAO/STO.

The GTO/STO interface also shows many other interesting properties. Quan-
tum oscillation experiments have corroborated the presence of confined 2DEG and
revealed the possibility of a sub-band structure different from LAO/STO. [16–18]
Below a certain STO thickness, the interface has been found to exhibit signs
of ferromagnetism, which might be an intrinsic property induced by electronic
correlations in the high-density 2DEG, rather than induced by the proximity to
ferromagnetic GTO layer. [19] The signatures of strong electronic correlations
have also been observed in transport measurements [20] and this has led to the
theoretical proposal of dimer Mott insulator for single SrO layer sandwiched be-
tween GTO layers. [21]

An extremely striking result for the 2DEG at the interface between another
strongly correlated Mott insulator LaTiO3 (LTO) and SrTiO3 has been the ob-
servation of a 2D superconducting state [22] . The mechanism responsible for the
onset of superconductivity is debatable. The effect of correlations in this Mott
insulator is yet to be clarified. It has been shown that inspite of STO being a
band insulator and the expected electronic correlations being present in LTO,
the LaTiO3/SrTiO3 interface 2DEG undergo a superconducting transition at a
critical temperature Tc ∼ 300mK. It was also found that the superconducting
electron gas is confined over several layers of thickness of 12 nm and is located as
usual on the STO substrate.

Another highly interesting case of conductivity and magnetism at oxide het-
erointerface arises at an interface between LaMnO3(LMO) and SrMnO3(SMO)
[23]. Individually, both these oxides are antiferromagnetic insulators in their
bulk ground state, however at their interface, a double-exchange ferromagnetism
arises in analogy to the behavior of their bulk solid solution, the famous colos-
sal magnetoresistance manganites. Here, the interface charge reconstruction has
been experimentally observed by resonant x-ray scattering [24], providing an-
other intriguing instance of novel two-dimensional states that may be induced by
manipulating oxide heterostructures.

Motivated by all these observations, we present here a detailed electronic
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structure study of the GTO/STO interface which is a Mott insulator/band insu-
lator interface and contrast our results with those obtained for LAO/STO which
is an interface between two band insulators. While the LAO/STO interface has
been thoroughly studied by electronic structure calculations, [25–27] much less
is known about GTO/STO. The specific problem of single SrO layer in a GTO
matrix in the superlattice geometry has been studied [21, 28, 29] by a variety of
techniques, first-principles, model Hamiltonian as well as combined density func-
tional theory (DFT) and dynamical mean field theory (DMFT). There have been
some suggestions [30] about the origin of the differences between the LAO/STO
and GTO/STO systems, but to the best of our knowledge, no first principles
electronic structure study exists which compares the LAO/STO and GTO/STO
interfaces on same footing in different heterostructure geometries. Gaining in-
sight into GTO/STO and into the differences and similarities with LAO/STO is
very important for further advancement in the field of oxide interfaces.

5.2 Computational details

Our first-principles calculations are based on plane wave basis as implemented in
the Vienna Ab-initio Simulation Package (VASP) [31,32] with projector-augmented
wave (PAW) potential. [33] The exchange-correlation functional is chosen to be
that given by generalized gradient approximation (GGA). [34] Since we are not
interested in the magnetism of Gd spins in the present study, in the plane-wave
calculations for the results reported here, the Gd f electrons are considered to be
part of the core orbitals. The correlation effect beyond GGA is taken into account
through supplemented on-site Hubbard U correction in form of GGA+U . [35] The
use of GGA+U turn out to be crucial for the correct description of the Mott in-
sulating behavior of GTO. A U value of 7eV at Ti site is found adequate to
describe the insulating solution. The Hunds coupling parameter JH is chosen to
be 1 eV. We have thus consistently used U = 7 eV and JH = 1 eV on Ti d states
throughout our calculations. We found a smaller U value (≈ 4 eV) within the
linear muffin tin orbital (LMTO) basis calculation to be sufficient to drive bulk
GTO insulating, a value more consistent with spectroscopic considerations. The
fact that different U values are needed in different basis set implementations of
DFT has been appreciated in the literature [36]. We found in our LMTO calcula-
tions of bulk GTO that taking into account the effect of U on both Ti d and Gd
f states, with choice of UT i = 4 eV and UGd = 9 eV, and JH = 1 eV, resulted in
a ferrimagnetic ground state with antiparallel alignment of the Ti and Gd spins,
consistent with experiment.

The in-plane lattice constants of the simulation cells are fixed at the exper-
imental lattice constant of STO with a value of 3.91 Å, while the out-of-plane
lattice constant is allowed to relax. The consideration of tilt and rotation of
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metal-oxygen octahedra becomes rather important for GTO with significant or-
thorhombic distortion. In order to take that into account, the in-plane dimension
of the simulation cell is expanded by

√
(2) ×

√
(2). Internal positions of the

atoms are allowed to relax until the forces become less than 0.01 eV/Å.
For the calculations carried out on thin film geometry, the thickness of vacuum

layer is chosen to be 16 Å. The effect of the artificial electric field in vacuum due
to periodic boundary condition is taken into account through dipole correction, as
implemented in VASP. The effect of this artificial electric field is however small,
as shown in the detailed calculation by Chen et al. [27] in Appendix B1 of their
paper. Considering the dielectric constants of STO and that of LAO and GTO, as
shown by Chen et al. [27] the field in STO is found to be only about 0.3% of that
in LAO or GTO for a vacuum thickness of 16 Å. Further to establish the con-
vergence of our calculations in terms of vacuum layer thickness, we have carried
out additional calculations considering an increased thickness of vacuum layer
(30 Å). We found from our conclusions concerning the carrier density, minimum
thickness of conductivity to remain unchanged, justifying physical soundness of
our calculations. The situation becomes different in presence of external electric
field which is not considered in the present study.

5.3 Heterostructure Geometries

A study of both experimental and theoretical literature [4–6,16–18,37–39] shows
that the oxide interfaces have been investigated in two different geometries, (i)
superlattice geometry with periodic repetition of alternating layers of STO and,
LAO or GTO, and (ii) thin overlayer of LAO or GTO grown on a STO (001)
substrate. Most experimental study on LAO/STO is carried out on overlayer
geometry, the opposite being true for GTO/STO. Since we would like to have
a comparative study of the two systems with an aim to arrive at a common
understanding, in the present study we consider both the geometries, as shown
in Figure 5.5. Following the experimental literature on GTO/STO, [16–18] we
consider only the n-type IFs, i.e that formed between GdO layer from GTO and
TiO2 layer from STO in GTO/STO, and IFs formed between LaO and TiO2 in
LAO/STO. Within the superlattice geometry, two symmetric n-type interfaces
in the cell are considered which resulted in non-stoichiometric supercells with
additional TiO2 layer in STO and an additional GdO (LaO) layer in GTO (LAO).
This resulted in general formula of the superlattices being (LAO)p.5/(STO)q.5 or
(GTO)p.5/(STO)q.5. Calculations are carried out for choices of p = 1, 2, 3, 4 and
q = 4 and 9.

The adopted geometry of thin film-substrate, as shown in bottom panel of Fig-
ure 5.5, creates a single n-type interface and a surface of TiO2 (in case GTO/STO)
or AlO2 (in case of LAO/STO) facing the vacuum. The general formula of the
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Figure 5.5: The two geometries used in the present study, the superlattice (up-
per panel) and the thin film-substrate (lower panel) geometry. Shown are the
representative cases of (GTO)1.5/(STO)4.5 superlattice and (GTO)1/(STO)5 thin
film-substrate geometry, projected onto the ac plane. The large, medium and
small balls represent Sr/Gd, Ti and O atoms, respectively. The interfaces, formed
between GdO from GTO and TiO2 layers from STO, are marked.

thin film-substrate systems is (LAO)p/(STO)q or (GTO)p/(STO)q. Calculations
are carried out for choices of p = 1,2,3,4,5 and q = 9.

The inplane dimensions of the simulation cell is expanded by
√

(2) ×
√

(2)
creating two Ti or Al atoms in the BO2 layers in the unit cell to take into account
the GdFeO3-type orthorhombic distortion characterized by tilt and rotation of
the TiO6/AlO6 octahedra. This becomes specially important for the GTO/STO
system, as we will see in the following sections.

5.4 Structure

We first start with discussion of the structural properties of the studied het-
erostructures. As mentioned already, the presence of GdFeO3-type orthorhombic
distortion forms an important structural aspect of GTO. This distortion in bulk
GTO makes the structural properties of the optimized GTO/STO systems rather
different compared to that of LAO/STO. Structural distortions observed include
the tilt and rotation of the metal (M) - oxygen(O) octahedra as well as the com-
pression or elongation of the individual MO6 octahedra. Figure 5.6 shows the
plots of the deviation of M-O-M bondangle from 1800, as well as the difference
between out-of-plane and in-plane M-O bondlengths. The former quantifies the
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tilt/rotation of MO6 octahedra, while the latter quantifies the compression (for
negative sign) or elongation (for positive sign) of MO6 octahedra. The top panels
of the figure show the result for the superlattice geometry while the bottom pan-
els are for the thin film-substrate geometry. The qualitative behavior is similar
between the two geometries.

For the GTO/STO systems, the deviation of the Ti-O-Ti bond angle from
1800 is as high as 300 or so in the GTO side. This decreases systematically and
reaches a value of about 100 - 50 within the interior of STO block. For thin film-
substrate geometry the tilt/rotation attains a constant value within the interior
of STO, which is found to be substantial for rotation. At the interfaces, the
tilt angles become highly asymmetric with two different out-of-plane tilt angles
varying between about 150 and about 25-300. The in-plane and out-of-plane M-O
bondlengths become unequal in GTO layers, with maximum difference of 0.1 - 0.2
Å, indicating distortion of the TiO6 octahedra. This distortion becomes smaller
at IF and inside the STO block it attains a value of ≈ 0.1 Å or smaller. The
MO6 octahedra are compressed in GTO layers, and are elongated in STO block.
For the thin film-substrate geometry, the distortion of TiO6 attains more or less
a small constant value inside the interior of STO block.

In comparison, in LAO/STO, the deviation of M-O-M bond angle from 1800

occurs only for rotation, which is much smaller in magnitude compared to GTO/STO.
The rotation angles are only significant at the IFs or close to them with values
of about 5-9o. The tilt angles are found to be zero. Like in GTO/STO, the
metal-oxygen octahedra are compressed in LAO side and elongated in STO side.

The structural differences between GTO/STO and LAO/STO, specially in
terms of tilt and rotation of MO6 octahedra, has important bearing on the orbital
character of the conducting electrons at different layers, as will be elaborated in
the following section.

5.5 Electronic and Magnetic Structure

Electronic structure of the optimized GTO/STO and LAO/STO heterostructures
in both superlattice and thin film-substrate geometry has been analyzed in terms
of density of states, charge and orbital populations.

Figure 5.7 shows the layer-wise density of states (DOS) projected to Ti xy, xz
and yz states in (GTO)1.5/(STO)4.5 and (LAO)1.5/(STO)4.5 superlattices. Qual-
itatively similar results are obtained for (GTO)1.5 or LAO)1.5/(STO)9.5 super-
lattices, proving the physics in the superlattice geometry is independent of the
STO thickness. First of all, we find both GTO/STO and LAO/STO superlat-
tices are metallic with non-zero density of states at the Fermi level (EF ). Since
the layer thickness of GTO or LAO of 1.5 layers is the minimum possible within
the superlattice geometry, we conclude that for both LAO/STO and GTO/STO
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Figure 5.6: The deviation of M-O-M angles from 1800, ∆ (φM−O−M) and the dif-
ference of M-O lengths in the out-of-plane and inplane directions, ∆ (dM−O) plot-
ted as function of TiO2 layers, for LAO/STO (right panels) and GTO/STO (left
panels) in superlattice and thin film-substrate geometries. Top left: ∆ (φM−O−M)
for GTO/STO, top right: ∆ (φM−O−M) for LAO/STO. Bottom left: ∆ (dM−O) for
GTO/STO, bottom right: ∆ (dM−O) for LAO/STO. In case of superlattices, re-
sults for two system sizes are shown, (LAO or GTO)4.5/(STO)1.5 (black symbols)
and (LAO or GTO)9.5/(STO)1.5 (red symbols). In case of thin film-substrate ge-
ometries, results are shown for (GTO)1/(STO)9 (black symbols), (GTO)2/(STO)9
(red symbols), and (LAO)1/(STO)9 (black symbols), (LAO)5/(STO)9 (red sym-
bols). For LAO/STO, only the rotation angles are shown as circles, the tilt
angles being zero. The rotation and the asymmetric tilts in +c and -c directions
in GTO/STO are shown as circles, squares and diamonds, respectively. The x-
axis marked in red on normal side corresponds to layer numbering of the larger
systems (shown in red symbols) while the x-axis marked in black on opposite side
corresponds to layer numbering of the smaller systems (shown in black symbols).
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superlattices, there is no critical thickness for conductivity. As expected, calcula-
tions with larger thickness of GTO and LAO (checked with thicknesses of 2.5, 3.5
and 4.5 unit cells), are also found to be metallic. We find in both superlattices,
the conducting electronic charge is not strictly confined to the IF, and percolates
to several layers in STO block, which is in agreement with experimental find-
ings on LAO/STO. [40] Such behavior of LAO/STO superlattice has also been
reported from theoretical calculations before. [41] It is interesting to note this
is also the case for GTO/STO. Both superlattices, thus behave similarly as far
as conduction goes. We, however, note the nature of the conduction electron is
different in the two superlattices. Focusing on the DOS characters presented in
Figure 5.7, we find that for both GTO/STO and LAO/STO, the carriers at the
IFs are predominantly of xy character. The situation, however, is different in two
systems in the other TiO2 layers in STO. The orbital characters of the carriers in
these layers are rather mixed in case of GTO/STO, and mostly xz/yz in case of
LAO/STO. This is also seen from the orbital occupancies shown in Figure 5.10
and charge density plots in Figure 5.11. This difference stems from the structural
difference between GTO/STO and LAO/STO. To obtain the layer-wise contri-
bution to the conduction electron, we integrate the layer projected DOS from 0.5
eV below EF to EF . For GTO/STO system this corresponds to integrating from
the upper edge of the lower Hubbard band of Ti d in insulating GTO layer to
EF . The electron from Ti3+ ion in GTO layer in its d1 charge state occupies the
localized lower Hubbard band and does not contribute to conduction. Table 5.1,
shows the layer-wise contribution to the conduction electron for 1.5/4.5 as well
as 1.5/9.5 superlattices. We find the total conduction charge in the LAO/STO as
well as in GTO/STO superlattices to be 1 e− irrespective of the thickness of STO
layers. This is fully consistent with the presence of two symmetric interfaces in
the unit cell (u.c.), and a carrier density of 0.5e− per IF. Interestingly we find Ti
d states at the IF of GTO and STO are spin-polarized, with Ti d states within
STO layers adjacent to IF inheriting this spin-polarization, as shown in Figure
5.9. Moving further away from the IF, the spin-polarization decreases and finally
vanishes deep inside the STO block.

The calculated magnetic moments at Ti sites are found to be ≈ 0.15µB,
≈ 0.12µB in the STO layer next to IF, ≈ 0.02µB in the following layer, and
vanishingly small in other layers. The Ti moments are found to be aligned in a
ferromagnetic arrangement, consistent with experimental results.

A similar analysis in the thin film-substrate geometry shows dramatically
different behavior. The left most and the middle panels in Figure 5.8, show
the plot of the DOS in different TiO2 layers of LAO/STO in thin film-substrate
geometry. The left and middle panels correspond to LAO/STO with two different
thicknesses of LAO layers, 1 and 5 unit cells, respectively. We find the IF in 1
unit cell of LAO on STO is insulating with a large gap between the valence and
conduction states, and zero states at EF . On the other hand, 5 unit cell of LAO on
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For the thin film-substrate geometry, in the topmost TiO2 layer, which is the sur-
face layer of GTO, the projection to two charge disproportionate Ti d states are
shown in black and red lines. The zero of the energy is set at Fermi level.

STO is barely metallic, setting a critical LAO thickness of 5 unit cell or so for the
conductivity. This behavior is significantly different from that of LAO/STO in
superlattice geometry for which IF’s are found to be conducting for any thickness
of LAO. This difference in conduction properties of LAO/STO, depending on
the system geometry has been pointed out previously in literature. [26, 27] A
markedly different picture is obtained for GTO/STO system. The right most
panel of Figure 5.8, shows the plot of density of states of GTO/STO in thin
film-substrate geometry with 1 unit cell thickness of GTO. We find the solution
to be metallic even at the limit of 1 unit cell thickness of GTO. This is in sharp
contrast to LAO/STO case, but in excellent agreement with experimental reports
on GTO/STO. [16] The calculation of total conduction charge by integrating the
layer wise density of states from -0.5 eV below EF to EF gives a charge of 0.5e−

(as seen from Table 5.1) for GTO/STO in thin film-substrate geometry with 1
unit cell thickness of GTO. This is in complete accordance with a single n-type
interface in the unit cell, and the expectation from polar catastrophe model. On
the contrary, the total conduction charge for the LAO/STO in thin film-substrate
geometry with 5 unit cell thickness of LAO, which is at the critical thickness of
metallicity, is found to be about 0.14 e−. This is about a factor of 4 smaller
than that expected from polar catastrophe model. Increasing the LAO thickness
beyond 5 u.c., the carrier concentration is found to slowly increase (for example for
(LAO)6/(STO)9 the conduction charge is found to be 0.18 e−) which is expected
to reach the asymptotic value of 0.5 e− for very large thickness of LAO.

The analysis of orbital population of the conduction electron, from right panel
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Figure 5.10: Plot of orbital occupancies with number of STO layers. The left
panel shows the occupancies for the superlattice geometry and the right panel
shows that for the thin-film/substrate geometry. The orbital characters are
marked with different colours as shown in the legends. In the superlattice ge-
ometry both (STO)4.5 and (STO)9.5 blocks are shown. For the case of thin-films,
only (STO)9 substrates are shown.

of Figure 5.10 which shows the orbital occupancies plotted against number of lay-
ers in either the STO block, and also from Figure 5.11 which shows the charge
density in the superlattice geometry, explicitly demonstrating the orbital char-
acter, and shows that the carriers at the IFs are predominantly of xy charac-
ter, while that within the STO block are predominantly of yz/xz character in
LAO/STO with LAO thickness beyond the critical thickness of conductivity. For
GTO/STO, the IF is of significant xy character, the subsequent layers being of
mixed character which converts to predominant yz/xz character in the interior
of STO block. We thus find a similarity in the comparison of orbital character of
LAO/STO and GTO/STO between the superlattice and the thin film-substrate
geometry. This follows the expectation as the qualitative trend of the difference
in structure between LAO/STO and GTO/STO systems are found to be similar
in the superlattice and in the thin film-substrate geometry.

Another pertinent issue in the context of thin film-substrate geometry is the
fate of the surface layer facing the vacuum, which is AlO2 in LAO, or TiO2 in
GTO. By simple charge balance, the uppermost surface layer should be missing
0.5 e− which would bring the electric field and potential back to zero at the sur-
face. This simple picture, of course, does not take into account the disordering
effects like oxygen vacancy, cation disorder as well the effect of surface recon-
struction, which are reported to be important in the context of LAO/STO. [42]
Interestingly, our DFT calculation which allows for possible structural reconstruc-
tion only within the scope of

√
(2)×

√
(2) cell, shows the topmost AlO2 surface

in LAO to be metallic, while the topmost TiO2 surface in GTO to be insulating.
This is seen in the plot of charge density contributed by a narrow energy window
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Table 5.1: The layer-wise contribution of the conduction electron in GTO/STO
and LAO/STO in superlattice and thin film-substrate geometries. In case
of superlattices, results for both (LAO or GTO)1.5/(STO)4.5 and (LAO or
GTO)1.5/(STO)9.5 are shown. For thin film-substrate geometry, the results at
minimum thickness of conductivity of LAO and GTO are shown, which are 5 u.c.
and 1 u.c., respectively.

LAO/STO GTO/STO
Superlattice Thin film-substrate Superlattice Thin film-substrate

1.5-4.5 1.5-9.5 5-9 1.5-4.5 1.5-9.5 1-9
Layer No.: Charge Layer No: Charge Layer No: Charge Layer No: Charge Layer No: Charge Layer No: Charge

2 : 0.185 2 : 0.200 6 : 0.062 2 : 0.181 2 : 0.163 2 : 0.185
(1st IF) (1st IF) (IF) (1st) IF (1st )IF (IF)

3 : 0.184 3 : 0.104 7 : 0.050 3 : 0.203 3 : 0.101 3 : 0.108
4 : 0.260 4 : 0.070 8 : 0.006 4 : 0.231 4 : 0.058 4 : 0.034
5 : 0.184 5 : 0.066 9 : 0.007 5 : 0.203 5 : 0.082 5 : 0.045
6 : 0.185 6 : 0.060 10 : 0.005 6 : 0.181 6 : 0.096 6 : 0.049
(2nd IF) (2nd IF)

7 : 0.060 11 : 0.004 7 : 0.096 7 : 0.044
8 : 0.066 12 : 0.002 8 : 0.082 8 : 0.029
9 : 0.070 13 : 0.001 9 : 0.058 9 : 0.006
10 : 0.104 14 : 0.000 10 : 0.101 10 : 0.000

11 : 0.200 11 : 0.163
(2nd IF) (2nd IF)

Total Charge: 0.999 Total Charge: 1.000 Total Charge: 0.137 Total Charge: 0.999 Total Charge: 1.000 Total Charge: 0.500

around EF , for (LAO)5/(STO)9 and for (GTO)1/(STO)9 (cf Figure 5.12). While
the surface reconstruction in reality can be complex, which undoubtedly needs
further exploration both from experimental and theoretical side, the stabilization
of the insulating solution at the topmost TiO2 surface layer of GTO doped with
0.5 hole is interesting. We find this to be triggered by charge disproportionation
between two Ti atoms at the top layer. With the choice of U = 7 eV applied
on Ti atoms, [43,44] this charge disproportionation becomes complete leading to
insulating solution with nominal charge of d1 on one Ti atom and d0 on the other,
maintaining an average charge of d0.5 per Ti at the top layer. This is evident from
the charge density plot focused on the energy window around the occupied lower
Hubbard band (LHB) of Ti d states (shown as inset in Figure 5.12), which shows
significantly large charge on one set of Ti atoms and a significantly smaller on
the other.

We find this to be triggered by the strong correlation effect which together
with small differences in local environment of two Ti atoms, make the charges on
two Ti’s significantly different.The associated magnetic moments at two charge
disproportionated Ti sites are found to be ≈ 1µB and ≈ 0µB, with spins of mag-
netic Ti ions feromagnetically aligned. The spin polarised DOS for GTO/STO
in film/substrate geometry in shown in rightmost panel of Figure 5.9. Our theo-
retical observation of charge disproportionation in top TiO2 layer in GTO/STO
in thin film-substrate geometry should be explored experimentally.
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5.6 Electronic reconstruction

The above described DFT results lead to the following conclusions,

(i) Both GTO/STO and LAO/STO show essentially similar behavior in the
superlattice geometry, despite differences in details of the orbital character
of the carriers due to differences in the structural distortions. The central
result is that both GTO/STO and LAO/STO superlattices have the full
interfacial charge density of 0.5e−/IF, and there is no critical thickness of
GTO or LAO for conductivity.

(ii) The behavior of the two systems is very different in the thin film-substrate
geometry. We find that GTO/STO conducts even for GTO thickness of 1
unit cell with a carrier density of 0.5e−/interface, the minimum thickness
possible, while LAO/STO conducts only beyond a critical thickness of 5
unit cells of LAO.

The obvious question is what causes this difference between two geometries
and two systems? What are the driving mechanisms behind the similarity and
contrast ?

The nonstoichiometry of GTO or LAO in the superlattice geometry, intro-
duces a fixed carrier doping. The extra layer of GdO or LaO has a charge of +1,
and thus an extra electron which is shared between the two symmetric interfaces.
This results into doping of each interface by 0.5e− which, as pointed out Chen et
al., [27] exactly compensates the generated polar field. By construction, irrespec-
tive of the chosen thickness of LAO or GdO, the superlattice geometry behaves
like ideal IF systems with infinite thickness of LAO or GTO and carrier density
of 0.5e− per IF. It is therefore understandable that difference between LAO/STO
and GTO/STO shows up only in thin film-substrate geometry with a single IF
and a surface of AlO2 (for LAO) or TiO2 (for GTO) layer. In this context, the
differences in band alignment, band bending and the electronic reconstruction
between LAO/STO and GTO/STO systems appear to be crucial.

Figure 5.13 shows the DFT density of states plotted over a wide energy win-
dow, projected onto O p, Al p, Ti d and La/Ga d states for (LAO)5/(STO)9
and (GTO)2/(STO)9 in thin film-substrate geometry. This provides the picture
after electronic reconstruction as given by DFT. From Figure 5.13, focusing on
LAO/STO, we see that the upper edge of the oxygen valence band (VB) on the
LAO side bends progressively towards EF in moving from IF to surface, and
matches with the lower edge of the Ti d band at the IF of the STO block which
forms its conduction band (CB). In case of GTO/STO, keeping in mind the earlier
discussed charge disproportionation scenario, projection to Ti d states is made
separately to two charge disproportionated Ti atoms in a layer. We find a rather
strong charge disproportionation at the topmost TiO2 layer which weakens in
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moving towards IF and vanishes at IF and inside the STO block. We thus find
the LHB of Ti d states at the top layer of GTO which otherwise would have
been partially filled and matching with the lower edge of the Ti d band at the IF
with the STO block, becomes split into occupied and unoccupied bands due to
opening of charge gap. The band alignment before electronic reconstruction can
be derived from the bulk band structure, shown schematically in upper panels
in Figure 5.14. In case of LAO/STO, the valence band offset is small, and the
valence band maxima of LAO and STO which is the upper edge of filled O-p
bands, are almost aligned. The experimentally measured bulk band gap of STO
is 3.3 eV, while that of LAO is 5.6 eV. For conduction, therefore a large band
bending with VB maxima of LAO aligning with conduction band minima of STO
is needed, as observed in DFT results presented in Figure 5.13 and and shown
schematically in left lower panel of Figure 5.14. The necessary band bending is
estimated to be about the same as band gap of STO i.e., 3.3 eV. The bare poten-
tial shift of a 4-5 u.c. of LAO is about 80 - 90 eV. This is, however screened by
the electronic and ionic polarization. Using the bulk dielectric constant of LAO,
ε = 24, the in-plane lattice constant of 3.9 Å, the screened potential shift comes
to be 3.4 - 3.5 eV, which is just sufficient to allow the necessary band bending of
3.3 eV, setting thus a critical thickness of about 4-5 u.c. For GTO/STO, on the
other hand, the upper edges of VB of GTO and STO are misaligned. In case of
GTO, it is the Ti d lower Hubbard band, which energetically lies far above the
upper edge of the VB of STO which is the O p band, as shown in right upper
panel in Figure 5.14. After electronic reconstruction, as given by DFT, in the
topmost layer the Ti d LHB splits into two bands, due to charge disproportion-
ation, requiring a small bending of ≈ 0.5 eV for the charge flow, shown in right
lower panel in Figure 5.14. Using the estimate of the bulk dielectric constant of
GTO as 30, and a similar analysis as in LAO/STO, it is found that a thickness of
1 u.c. of GTO would be sufficient to allow for the band bending and conduction.
This would suggest the charge mismatch to be immediately accommodated at IF,
independent of the thickness of the layers, justifying the DFT conclusion and the
experimental observation.

The necessary band bending in LAO/STO is estimated to be about the same
as band gap ∆=3.3 eV of STO. One can make a simple estimate of the critical
thickness Nc of LAO layers for charge transfer from the surface to the interface as
follows. The potential difference between the surface and interface is eEpolNca,
due to the polar field Epol = 2πe/εa2 (where ε is the dielectric constant of LAO
arising from both electronic and ionic screening) should be equated to the gap
∆ . Using the bulk dielectric constant of LAO, ε ' 24, and the in-plane lattice
constant of a = 3.9Å, the critical thickness could be estimated to be 4 layers,
consistent with experiment and the DFT result. For thickness N ≥ Nc, when
an amount of charge q is transferred to the interface the potential difference
(4πe/εa)(0.5e − q)N stays pinned at ∆ . This leads to an estimate of q(N) =
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Figure 5.13: The layer decomposed DFT density of states for (LAO)5/(STO)9
(left panel) and (GTO)2/(STO)9 (right panel) in thin film-substrate geometry,
projected onto O p (brown shaded), Al p (green line), Ti d (black/red line) and
Ga d (magenta) and La d (blue line) states. For GTO/STO projection to two
charge disproportionated Ti atoms are shown as black and red lines, respectively,
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Figure 5.14: Band offset and electronic reconstruction in LAO/STO (left panels)
and GTO/STO (right panels). The upper edge VB of LAO and STO are almost
aligned derived from O p bands, thereby causing a large band bending required
for conduction. The upper edge VB of GTO and STO, on the other hand are
completely misaligned, one being Ti d lower Hubbard band (GTO), and another
being O p band (LAO). This makes band bending required for conduction much
smaller.

0.5e(1−Nc/N), that approaches the asymptotic value of 0.5 e for N →∞. For 5
LAO layers, one obtains q ' 0.10, roughly consistent with the DFT result of Table
5.1. Finally, we stress again the fate of the holes on the top surface layer next to
vacuum, that must exist to counterbalance the electrons at the interface. Unlike
LAO, which is a band insulator, GTO is a correlation driven Mott insulator
in the bulk. As described above, we find a rather strong correlation-induced
charge disproportionation on the topmost TiO2 layer of GTO at the surface.
We thus find the LHB of Ti d states at the top layer of GTO, which would
naively have been partially filled (average filling of d0.5) and metallic, splits into
occupied and unoccupied bands due to opening of a charge gap due to the charge
disproportionation. This is clearly seen in the DFT result of Figure 5.13 (right
panel) and shown schematically in the lower right panel of Figure 5.14.

5.7 Conclusion

In this chapter we have carried out a detailed first-principle DFT study of LAO/STO
and GTO/STO heterostructures, focusing on their essential similarities and dif-
ferences in two experimentally well-studied geometries, namely the superlattice
and thin film-substrate geometry. While the two systems behave quite similarly
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in the superlattice set up, e.g. in terms of the total 0.5 e−/Ti transfer of charges
to the interface, very different pictures emerge in case of thin film-substrate geom-
etry due to the differences in electronic reconstructions in the two systems, even
though, in both the cases, the reconstructions are driven by the same underlying
electrostatic mechanism, namely the need to avert the polar catastrophe. We find
a full 0.5 e−/Ti conducting charge at the interface even for 1 u.c. thick GTO on
STO substrate, consistent with experiments. On the other hand, in case of LAO
on STO, the transferred charge only increase gradually with thickness from a
small value of ∼ 0.14e−/T i above a critical thickness of about 4. Additionally, in
the thin film-substrate case, we find the fate of the surface layers, which host the
neutralizing charges for the interface carriers, to be quite distinct. The electronic
states derived from O p orbitals at the surface LAO layer turn out to be metallic
within DFT but are experimentally found to be localized, possibly due to disorder
or surface imperfections like oxygen vacancies. On the other hand, the Ti d states
at the top most layer of GTO/STO correspond to a doped Mott insulating layer
of GTO and stays insulating by opening a charge gap via an interesting correla-
tion driven charge disproportionation. Such a correlation induced phenomenon
could be a robust feature, at least within a short length scale, even in the presence
of surface disorder and, in principle, could be probed experimentally. This also
pertains to the experimental verification of the polar catastrophe mechanism by
detecting the counter charges at the surface of the heterostructure. The presence
of conducting charges at the interface by itself does not unambiguously establish
the polar catastrophe mechanism for the polar oxide interfaces as there could be
other possible sources of interfacial charge carriers, e.g. oxygen vacancies.
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Chapter 6

Understanding curious
ferromagnetic insulating state of
LaMnO3 on SrTiO3

6.1 Introduction

In recent times the study of interfaces formed between perovskite oxides have
made a deep impact on the community engaged in both theoretical and experi-
mental condensed matter research. The presence of the highly conducting 2 di-
mensional electron gas (2DEG) at the interface between oxide insulators have the
possibility of many different device applications. In the previous chapter [1] it has
been shown that the mechanism giving rise to the electron gas depends on polar
catastrophe and band bending arguments and hence interfaces between band insu-
lators and Mott insulators give rise to varying electronic effects. Among the vari-
ous novel properties of heterostructures, a lot of effort has been devoted to control
and utilize the magnetic properties of the interfaces for e.g. the magneto-electric
coupling, the magnetic ordering modification, and the charge-transfer effect etc.
In this context it is worthwhile to study the interface formed by heterostructures
of LaMnO3(LMO), which is a Jahn Teller insulator and SrTiO3(STO), which is
a band insulator.

LMO exhibits a very diverse phase diagram in the bulk state [2]. In un-
doped bulk LMO, orbital order due to Jahn-Teller (JT) distortions of the MnO6

octahedra sets in at reasonably high temperatures of ∼ 750K. Subsequently, mag-

This chapter is based on ”Understanding curious ferromagnetic insulating state of LaMnO3

on SrTiO3” - Hrishit Banerjee, Oleg Janson, Karsten Held, and Tanusri Saha-Dasgupta, (under
preparation)
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netic exchange between Mn3+ ions leads to formation of A-type antiferromagnetic
(AFM) insulating phase with Néel temperature of ∼140K in which ferromagnetic
(FM) planes are coupled in an antiferromagnetic manner. The primary charac-
teristic of LMO is that the stoichiometric compound can be doped by cautiously
controlling its stoichiometry. Doping La by Ca or tuning oxygen content, a phase
transition can be triggered in bulk LMO from AFM insulating state to a FM
metallic state. On the other hand, such a doping effect can also be a major
disadvantage in identifying a system. The delicate effect of doping requires the
careful characterization of LMO, especially when it is used in a heterostructure.

A lot of experiments have been done to identify the nature of the LMO/STO
interfaces and the varied nature of the electronic structure of the LMO/STO in-
terfaces have been reported ranging from ferromagnetic metal, antiferrogmanetic
insulator, ferromagnetic insulator and even superparamagnetism, depending on
the relative thickness of LMO and STO and their geometry [3], [4], [5], [6], [7]. Fol-
lowing is a brief summary of experimental findings. LMO/STO has been studied
experimentally in both superlattice and thin-films geometry. In the superlattice
geometry, it has been reported that when LMO is much thicker than STO one
obtains a ferromagnetic metal, however when LMO and STO have comparable
thickness one obtains a ferromagnetic insulator. There is however no consistent
satisfactory explanation of this FM insulating state! In the thin-film/substrate
geometry for thickness of LMO ≤5 unit cells, LMO is AFM. However when thick-
ness of LMO ≥6 unit cells, LMO is FM and in these cases FM state is usually
accompanied with insulating behaviour above the critical thickness. One of the
studies [7] have shown the emergence of an abrupt transition occurs from an AFM
phase to a highly inhomogeneous magnetic state when more than five unit cells
(u.c.) of LMO are epitaxially grown on STO. This experimental study claims to
reveal well separated and weakly correlated superparamagnetic (SPM) islands.
According to the study these nanoscale magnetic puddles account for the entire
magnetization of the LMO/STO heterostructure as observed in global measure-
ments. It is interpreted as electronic phase separation leading to the nucleation
of metallic nanoscale ferromagnetic islands embedded in an insulating antiferro-
magnetic matrix which requires the polar discontinuity charge at the interface to
reside on LMO side. No systematic microscopic study, ab-initio or otherwise to
explain and/or verify all the above experimental results exist till date. There have
been some theoretical calculations considering LMO films geometrically strained
to an STO substrate which mostly fails to explain the FM insulating state [8] or
considers symmetry broken structures to explain this behaviour [9].

In this chapter we aim to explain the origin of the elusive insulating FM ground
state in LMO films strained to thick STO blocks from ab-initio approaches. We
take into account the inadequacies which may be present in a DFT framework in
the proper description of such strongly correlated systems.
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6.2 Computational Details

Our first-principles calculations were carried out based on plane wave basis as
implemented in the Vienna Ab-initio Simulation Package (VASP) [10, 11] with
projector-augmented wave (PAW) potential. [12] The exchange-correlation func-
tional was chosen to be that given by generalized gradient approximation (GGA),
implemented following the Perdew Burke Ernzerhof (PBE) prescription. [13] The
correlation effect beyond GGA was taken into account through supplemented on-
site Hubbard U correction in form of GGA+U . [14] The value of U in the GGA+U
scheme was varied from 2.5eV to 8eV. A U value of 3.5eV at Mn site was found to
be adequate to describe the insulating A-AFM nature of bulk unstrained LaMnO3

as found experimentally. The Hund’s coupling parameter JH was chosen be 0.9
eV. However it was found that band gap estimated from GGA+U calculated elec-
tronic density of states falls short of reproducing experimentally measured band
gap. Note that the indirect or direct band gap obtained from GGA+U band
structure provide a different estimate, than that obtained from density of states
(DOS).

In order to have a better description of the system, we employed the hybrid
functional based calculations. Hybrid functionals are a class of approximations
to the exchange-correlation energy functional in density functional theory (DFT)
that incorporate a portion of exact exchange from Hartree-Fock (HF) theory with
the rest of the exchange-correlation energy estimated by DFT. The HSE (Heyd-
Scuseria-Ernzerhof) [15] exchange-correlation functional uses an error function
screened Coulomb potential to calculate the exchange portion of the energy in
order to improve computational efficiency. The functional can be mathematically
expressed as,

EHSE
XC (ω) =αEHF,SR

X (ω) + (1− α)EPBE,SR
X (ω)

+ EPBE,LR
X (ω) + EPBE

C (6.1)

where α is the mixing parameter and ω is an adjustable parameter controlling
the short-rangeness of the interaction. Here EHF,SR

X denotes the short range HF
exchange functional, EPBE,SR

X denotes the short range PBE exchange functional,
EPBE,LR
X indicates the long range PBE exchange functional and EPBE

C refers to
the correlation functional as given by PBE. Standard value of ω=0.2 (referred to
as HSE06) along with varying values of α of 0.15, 0.20, 0.25, and 0.30 were used
in our calculations. All calculations reported in this chapter are for a standard
hybrid functional value of 25% exact HF exchange which is seen to reproduce very
well the band gaps and magnetic exchanges for bulk unstrained LMO obtained
experimentally.
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6.3 Results

6.3.1 Bulk Calculations

Unstrained LMO

Crystal Structure: We start our discussion with the bulk unstrained LMO
which forms in orthorhombic Pbnm crystal structure. Considering the exper-
imental structure for LMO and using a

√
2 ×
√

2 × 2 perovskite supercell, a
5 × 5 × 3 Γ centred k-point mesh, and a 500eV plane-wave cutoff were used for
total-energy calculations and structural optimization. We relaxed both the lat-
tice parameters and ionic positions considering A-AFM and FM magnetic states.
The A-AFM state as defined previously consists of ferromagnetic planes of Mn
atoms coupled antiferromagnetically.

Lattice constant Experimental FM (calc.) A-AFM (calc.)

a (Å) 5.532 5.569 5.576

b (Å) 5.742 5.619 5.862

c (Å) 7.668 7.905 7.710

Volume (Å3) 243.572 247.365 252.013

Table 6.1: Lattice parameters (Å) of bulk LaMnO3 from experiment and GGA+U
calculations

In Tables 6.1 and 6.2 , we report the results of the first- principles calculations
for the orthorhombic Pbnm bulk unstrained structure of LMO. Consistent with
experiments and previous first-principles results [8], we find the ground state to
be of A-AFM type. The structural parameters and other properties, including the
magnitude of the Jahn-Teller distortions, the oxygen octahedral rotation angles,
the local magnetic moment of Mn, the exchange coupling, and the direct band
gap, are found to be in good agreement with previous first principles studies.
Table 6.1 shows the relaxed lattice parameters of unstrained LMO. In Table 6.2
we compare the structure and properties of the ground-state A-AFM-I phase, with
the FM-M phase which is energetically close to the ground state being separated
by a small energy difference of 9meV/fu. The most striking difference between
the two phases is that the A-AFM phase is strongly orthorhombic, while the
FM-M phase is nearly tetragonal. The degree of orthorhombicity is related to
the magnitude of the JT distortions (c.f. Chapter 1 for definition of Q3), which
is large in the A-AFM phase and almost negligible in the FM-M phase.

Another important point evident from Table 6.2 is that the energy difference
between AFM and FM is small, and thus the FM phase may be stabilized by an
appropriate perturbation. The large difference in orthorhombicity suggests that
epitaxial growth on a square-lattice substrate could be effective. Matching to
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Figure 6.1: Figure showing the structures of unstrained and epitaxially strained
LMO. The top panel shows how the LMO is strained to a square lattice. The
middle panel shows the different epitaxial strains and corresponding values of
the a lattice parameter. The bottom panel shows the rotation and tilt in the
Mn-O octahedra and the corresponding Jahn Teller distortions at various values
of strains.
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Property measured Bulk Phase Alternate Phase
Magnetic order A-AFM FM
Relative Energy 0meV/fu 9.01meV/fu

Electronic property insulating half-metallic
JT magnitude (Q3) 0.833au 0.031au

Rotation angles (θR,θT ) 14.65o,12.3o 12.16o, 8.16o

Volume/fu 63.003 61.841

Orthorhombicity(b/a-1,c/
√

2a-1) 5.13%,-2.23% 0.897%,0.37%

Table 6.2: Properties of the ground-state and low-energy competing bulk phases
in LaMnO3

Quantity Exptl. GGA+U HSE06
Band gap (from DOS) 1.7eV 0.75eV 1.72eV
Magnetic exchange J1 1.85meV 2.19meV 2.46meV
Magnetic exchange J2 -1.1meV -1.14meV -0.60meV

Table 6.3: Electronic properties of ground state bulk A-AFM insulating phase of
LaMnO3 using GGA+U and hybrid functionals in comparison to experimentally
measured values.

a square lattice would force distortion of the orthorhombic AFM phase, costing
elastic energy, while the nearly tetragonal FM phase can match to a square lattice
with little elastic energy cost for the shape change. Furthermore, the FM phase,
with a smaller volume per formula unit, will be favored by compressive strain.

Electronic and Magnetic structure: Next we discuss the basic electronic
structure of unstrained bulk LMO from both GGA+U and HSE06 calculations,
and find the ground state to be A-AFM insulating. Previous calculations by
Spaldin et al [8] and Hou et al [9] both estimated band gaps from band structure
and not DOS. Hou et al estimated a direct gap of 1.2eV, while Spaldin et al
estimated a direct gap of 1.1eV and indirect gap of 0.83eV. Our calculation gives
a direct band gap of 1.3eV from GGA+U bandstructure. The experimental band
gap is measured to be 1.7eV [16]. From our HSE06 calculations using 25% HF
exchange, we find a measured band gap of 1.72eV, which is a better agreement
with experimental results than GGA+U , a fact that has been stressed upon by
Munoz et al [17]. The magnetic interaction paths J1 and J2 are shown in figure
6.2. Here J1 is the in plane magnetic exchange in the ab plane and J2 is the out
of plane magnetic exchange in the c direction. Our GGA+U calculation of mag-
netic exchanges gives J1=2.19meV, J2=-1.14meV. Our hybrid calculation with
HSE06, with 25% HF exchange gives, J1=2.46meV, J2=-0.60meV, in comparison
to experimentally measured values of J1=1.85meV, J2=-1.1meV. [18]
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Figure 6.2: Figure showing the four Mn atoms in the unit cell, and the mag-
netic superexchange interactions J1 and J2 between them. The four Mn atoms
are structurally equivalent, however they form two groups when treated within
the regime of hybrid functional calculations, where each group is represented by
Mn1(yellow) and Mn2(violet).

Strained LMO

Crystal Structure: We next performed calculations on epitaxially strained
LMO. Here epitaxial strain is defined as the in-plane strain produced by coherent
matching of LMO to a square-lattice substrate with lattice parameter ac, quanti-
fied as ac−a0

a0
with a0 = 3.976Å, the cube root of the computed volume per formula

unit of the relaxed A-AFM Pbnm structure. To study the effect of such epitaxial
strain, we first performed calculations of bulk LMO in its strained geometry, in
which the structural parameters (c lattice, ionic positions) of the bulk periodic
supercells (

√
2×
√

2×2 perovskite) were optimized subject to the constraint that
the two in-plane lattice vectors which define the matching plane were fixed to
produce the specified square lattice, of lattice parameter ac. At each value of
the strain, we considered FM, A-AFM, C-AFM, and G-AFM magnetic ordering
for the epitaxially constrained Pbnm structure. Here C-AFM refers to antifer-
romagnetically arranged planes coupled ferromagnetically and G-AFM refers to
antiferromagnetic alignment of Mn atoms both within the planes and in the out
of plane directions.

The top panel of Figure 6.1 shows the structure of LMO both when unstrained
and strained to a square substrate and viewed along the c direction. The a and
b lattice parameters here are taken as

√
2 × ac. The middle panel shows the ac

cubic lattice parameters which has been used to constrain the in plane lattice
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Figure 6.3: Energy differences ∆E = EFM−EAFM between FM and A-AFM con-
figurations at various square matching epitaxial strain values for both GGA+U
and HSE06, showing that the trend in magnetic ground state for both GGA+U
and HSE06 are the same.

constants of LMO to a square lattice. The lattice constant corresponding to both
the special case of STO (=aSTO) and unstrained LMO (aLMO = a0) have been
shown. All the different strain values corresponding to our chosen values of ac
are shown. The strained structures were relaxed considering relaxation of c-axis
lattice parameters and ionic positions. The bottom panel shows the tilt (] T) and
rotation (] R) of the Mn-O octahedra and also the Jahn Teller distortions (Q2, Q3

as defined in Chapter 1) in the Mn-O octahedra, as a function of epitaxial strain.
It is seen that the Jahn Teller distortion decreases significantly in the regime of
compressive strain compared to unstrained or tensile strain cases. This particular
behaviour was argued to favour FM ground state by Spaldin et al [8].

Electronic and Magnetic structure: Next we investigated the ground state
electronic structure of orthorhombic LMO with its lattice parameters strained to
different values of cubic lattice parameters including that of STO to emulate the
effect of LMO/STO heterostructures. This leads to generation of both compres-
sive and tensile strains on LMO. Depending on the values of compressive and
tensile strains we identify three different ground states of LMO from our HSE06
calculations with 25% exact HF exchange. Comparison of these results with
GGA+U results reveals that while the HSE06 results render a good description
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Figure 6.4: Projected Density of states (PDOS) for LMO strained to STO and
band gaps for various epitaxial strains. The upper block shows the band gaps
as calculated from both GGA+U (blue line) and HSE06 (red line) calculations.
The lower block show PDOS using GGA+U and HSE06 at 25% HF exchange
with Mn1 − d(red), Mn2 − d(green) and O−p(brown). The zero of energy is set
to Fermi energy.

of the experimental scenario, the GGA+U do not.
Let us first consider the magnetic ground states of these strained structures.

We find that the qualitative trend is same between GGA+U and HSE06, which
is in agreement with experimental trend. As seen from the plot of ∆E =
EFM −EAFM presented in Figure 6.3 for large compressive strains of -3.4% both
functionals show a FM state to be ground state though the energy differences are
not very large. The energy differences increase as we decrease the compressive
strain on the system and we find an increased propensity towards a FM ground
state. This also corresponds to the reduction in JT distortion modes as indicated
previously by Spaldin et al [8]. Moving to tensile strain values, for moderate
tensile strains again the JT distortion increases and hence the relative stability
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of the FM ground state is reduced, though the FM state continues to be lower in
energy compared to A-AFM state. As we increase the tensile strain to +2.1%, we
find the situation changes considerably and we find A-AFM state to be stabilized
with respect to FM state, however the energy difference is quite small.

Following the discussion on magnetic state for which a good comparison is
found between GGA+U and hybrid functionals, we move on to the comparison
of electronic state. The upper panel of Figure 6.4 shows the variation of band
gaps with epitaxial strain values as obtained in GGA+U , and HSE06. We find
the ground state is metallic in GGA+U until a very large tensile strain, while
HSE06 produces insulating ground states until a large value of compressive strain.
We find that for GGA+U the band gaps for all strain values are zero except for
the case of +2.1% tensile strain where an AFM ground state is gapped with a
band gap of ∼0.7eV., while for HSE06 we find that band gap increases from
0eV at -3.4% compressive strain, which corresponds to a half metallic state, to
a moderate value of ∼ 0.4eV for moderate compressive strain values of -1.8%,
-1.4% and remains more or less constant upto a small compressive strain value of
-0.4%, and thus being a small band gap insulating state. When we move on to
the regime of tensile strain we see an increase in band gap values upto 1.2-1.4eV
at moderate tensile strain values of +0.6% and +1.4% and finally to a rather
large band gap close to bulk band gap of ∼1.8eV at +2.1% tensile strain.

The density of states projected to d states of four Mn atoms in the unit cell and
the O-p states is shown in the bottom panel of Figure 6.4 for the representative
case of compressive strain of -1.8% which corresponds to matching to STO lattice
parameters. We see that using GGA+U , the ground state turn out to be a
ferromagnetic half metal. Even with a very high value of Hubbard U (U=8eV),
it is not possible within the framework of GGA+U calculations to drive the
system towards an insulating state (not shown). The GGA+U calculation further
shows identical PDOS for all the four Mn atoms in the unit cell with a large
hybridization of O-p states with Mn-d states close to the Fermi energy. For the
HSE06 calculation of the same situation we find the solution to be insulating.
The four Mn atoms in the unit cell which are structurally equivalent, split up
into two electronically inequivalent groups Mn1 and Mn2, each group consisting
of two Mn atoms, shown in Figure 6.2. The d states of Mn1 and Mn2 are found
to differ substantially hinting towards a large charge disproportionation between
Mn1 and Mn2. This will be discussed in detail later. The oxygen p orbitals are
plotted as average of all the oxygen p contributions in case of both GGA+U and
HSE06. A shift in the O-p band is seen away from the Fermi energy in case of
HSE06 in comparison to the GGA+U case. A similar FM-I state, which arises
due to the charge disproportionation in the system with HSE06 calculations, is
also observed for -1.4% and -0.4% compressive strain values.
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Figure 6.5: Charge density for various epitaxial strain values in the orthorhombic
geometry, calculated using the HSE06 functional.

Microscopic understanding: In order to understand what gives rise to the
curious FM-I behaviour in strained square lattice matched LMO, within a range
of both compressive and tensile strain, we examine the charge density and hence
the orbital character of the Mn atoms in the unit cell. For this purpose we
plot the partial charge density for the orthorhombic unit cell taking an energy
window from -0.5eV below Fermi energy upto the Fermi energy. Figure 6.5 shows
charge density for various values of epitaxial strain. In this case we look at only
the calculations with HSE06 functionals since GGA+U is unable to produce the
FM-I solution in any case.

In case of large compressive strain values we see that a ferro type orbital
ordering exists between the Mn atoms in the unit cell. This explains the FM-
M behaviour at large compressive strains on LMO. When we move to moderate
values of compressive strains we find that for strain values of -1.8%, -1.4% and
-0.4% we find a similar ferro type ordering, albeit with a considerable charge
disproportionation between the central Mn atom (Mn2) and the Mn atom at the
corner(Mn1). Here it is the considerable charge disproportionation in this regime
which gives rise to the FM insulating behaviour in this case.

The strong charge disproportionation between Mn1 and Mn2 atoms is re-
flected in large difference in magnetic moments between Mn1 and Mn2 atoms, as
shown in Figure 6.6. Examining Figure 6.6 we see that there is no difference in
moments for large compressive strains however as we decrease the compressive
strains respectively to -1.8%, -1.4% and -0.4% we find a large moment difference
of approximately 0.16-0.18 µB. When we move on to the case of tensile strains
we find that both for moderate values of tensile strains of +0.6% and +1.4%
and large tensile strain of +2.1% there is hardly any charge disproportionation,
however we find a strong anti-ferro alternating type orbital ordering of the kind
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d3x2−r2/d3y2−r2 , as shown in Figure 6.5. Thus the FM I phase arises which has
a type of three-dimensionally d3x2−r2/d3y2−r2 alternated orbital order, in case of
+0.6% and +1.4% and AFM I phase for a large strain of +2.1%, with the same
ordering. As demonstrated in Figure 6.5 the alternating orbital ordering in case
of tensile strain values gives rise to insulating behaviour in case of both FM and
A-AFM cases.

We try to identify how this charge disproportionation arises in manganites.
In LaMnO3, Mn is in 3+ or d4 state. Compounds like CaFeO3 has Fe is 4+ or d4

state. Thus Mn in LaMnO3 and Fe in CaFeO3 are isoelectronic i.e. both in d4, t32g
e1g state. Fe d4, in spite of their orbital-degenerate, t32g e

1
g configuration remain free

from Jahn-Teller instabilities. They rather show charge-disproportionation (CD)
transitions [19]. This has been understood as manganites prefer a JT distortion
because the covalent character is weak in the Mn-O bond, while the Fe-based
perovskites like CaFeO3 favor a CD distortion because the covalent character is
stronger in the Fe-O bond [20]. Putting LMO on STO, causes -1.8% (compressive)
strain on LMO, which in turn increases the Mn-O covalency thereby dis-favoring
JT distortion and enhancing the tendency to CD. While this aspect is not cap-
tured by GGA+U owing to restriction on correlation being operative in one spin
channel only for half metallic GGA+U solution, this is captured correctly in our
hybrid HSE06 calculation. HSE06 shows the CD between Mn atoms in the unit
cell, with two Mn atoms having 4 + δ charge and another two Mn atoms having
4− δ charge. This in turn gives rise to an insulating solution.

This effect of both the alternating orbital ordering and charge disproportion-
ation is seen arising purely as an electronic phenomena since all the Mn atoms in
the unit cell are structurally equivalent in the orthorhombic geometry and there
is no difference in either their environments or their JT distortions. Hence these
phenomena can only arise as an electronically driven phenomena which is not
captured by GGA+U however HSE06 having exact short range HF functional is
well suited to capture this phenomena. The role of hybrid functionals in correctly
capturing the electronic ground state of bulk unstrained LMO and similar oxide
materials with complex band structures and strong hybridisation between Mn d
and O p orbitals have been emphasized previously by Munoz et al. [17]

6.3.2 Superlattice Calculations

To understand exactly what happens when LMO is put next to STO in a superlat-
tice where LMO and STO are of reasonable and comparable thickness, we finally
performed both GGA+U and hybrid HSE06 calculations on (LMO)4.5/(STO)4.5
in superlattice geometry. Experimentally similar systems have been studied which
have been shown to be FM insulators. We placed LMO in orthorhombic geometry
matched to cubic STO layers, where a

√
2 ×
√

2 × c superlattice of both LMO
and STO are allowed to tilt and rotate. This results in four structurally equiv-
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Figure 6.6: Charge disporportionation using HSE06 functionals for various epi-
taxial strain values in the orthorhombic geometry. The histograms are calculated
by measuring the difference between the magnetic moments of the two Mn atoms,
with change in epitaxial strain.

alent Mn and Ti atoms in each LMO and STO layer. The ionic positions and c
lattice parameters were allowed to relax, keeping the a and b lattice parameters
fixed, with a = b, thus generating a square matched epitaxial strain of -1.8%, as
seen previously. We find a significant decrease in both Jahn Teller distortion and
tilt and rotation angles in case of LMO, while some JT distortion and tilt and
rotation is introduced in the STO layers due to its proximity to largely distorted
LMO layers, as we have also seen before in Chapter 5 in case of GTO/STO. As we
see from the left panel of Figure 6.7, the GGA+U PDOS gives a solution which
is metallic and from comparison of energy of FM and AFM calculations we find
the FM state to be lower in energy. Next HSE06 calculations were performed
with 15%, 25% and 30% fraction of exact HF exchange. While the 15% HF ex-
change calculation gave rise to a FM metallic ground state similar to that found
in GGA+U calculation, for 25% and 30% HF exchange a FM insulating ground
state was obtained. We present in right panel of Figure 6.7 the PDOS for HF
exact exchange of 25%. We find that the Mn layers are charge disproportionated,
as seen from the PDOS, and that gives rise to the insulating behaviour in case
of the LMO as was seen previously also in case of -1.8% strain. What is very
interesting is that the electron gas generated due to polar catastrophe in the STO
side is locally spin polarised and that causes a gap to arise at the Fermi level even
in the STO block, thus turning the entire system towards an insulating ground
state.

In case of GGA+U calculations, all the four structurally equivalent Mn atoms
in each layer of LMO produce identical PDOS contributions, however in case of
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Figure 6.7: Layer projected Density of States for (LMO)4.5/STO4.5 superlattice
with states projected to Mn1 − d (red), Mn2 − d (green), Ti d (blue), and O p
(cyan). The left panel shows the layer resolved DOS with the GGA+U functional
compared to the right panel which shows the layer resolved DOS with HSE06
hybrid functional. The zero of energy is to Fermi energy.
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Figure 6.8: Layerwise charge disproportionation for (LMO)4.5/STO4.5 superlat-
tice calculated being taking difference in magnetic moment between Mn1d and
Mn2d in each layer.
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HSE06 calculations, two of the Mn atoms in each layer form electronically inequiv-
alent groups of two Mn atoms each and hence produce different contributions to
the PDOS. To estimate the charge disproportionation quantitatively in the LMO
block we plot here the difference in magnetic moments between the two electron-
ically inequivalent Mn atoms, as indicated in the PDOS by red and green lines,
in each MnO2 layer in Figure 6.8. We find that in this case the layers 1 and 4
which are the IF layers have maximum charge disproportionation while the mid-
dle layers 2 and 3 have a lesser amount of charge disproportionation, however
considerable enough to cause the LMO block emerge as an insulator.

6.4 Conclusion

In this chapter we have shown that the ferromagnetic insulating phase in or-
thorhombic LMO strained to an STO substrate arises from the charge dispro-
portionation as obtained within the formulation of hybrid functionals. Though
it has been suggested in previous studies that an orbital ordering arises due to
an intrinsic difference in the JT distortions in the LMO unit cell arising due to
a slight monoclinicity in the unit cell it however seems unlikely to happen in
the experimental case where LMO thin films are put over thick STO substrates
which plausibly forces LMO to conform to the symmetry of the substrate which
is tetragonal in nature. This is also the case with other moderate values of com-
pressive strain by charge ordering gives rise to FM insulating behaviour over a
wide range of compressive strain values. For tensile strain values we find FM-I
state to be driven by an alternate orbital ordering. For large values of tensile
strain an AFM-I phase is stabilised which is also the ground state for bulk un-
strained LMO where the LMO in plane lattice parameters are not fitted to that of
a square lattice. Thus we find that not only strain but also matching the lattice
parameters to a square lattice plays an important role in this case.

We have also investigated the case of superlattice structure with comparable
thicknesses of LMO and STO and we find that we can qualitatively reproduce the
experimental result of a ferromagnetic insulating ground state. The microscopic
analysis of our results reveals that LMO block becomes insulating owing to the
charge disproportionation which is again a purely electronic phenomena as was
in the case of epitaxially strained LMO, while the STO layers become insulating
due to spin polarisation in the system which makes the itinerant electron gas
generated due to polar catastrophe model spin split and hence opens up a gap at
Fermi level driving it insulating. It is also to be noted that unlike some previous
suggestions [7] the electron gas in our calculations does not reside in LMO side,
instead as in the cases of LAO/STO and GTO/STO heterostructures, it resides
on the STO side.
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Chapter 7

Conclusion

The aim of the studies undertaken in the current thesis is to investigate the mi-
croscopic origin of various exciting and intriguing physical properties of different
complex and novel materials, employing primarily ab-initio electronic structure
techniques coupled with many body and model Hamiltonian methods as and
when deemed necessary. In particular, both zero temperature and finite temper-
ature first principles electronic structure calculations have been performed within
the framework of Density Functional Theory (DFT) and Ab Initio Molecular Dy-
namics (AIMD). In addition to first principles study, classical model Hamiltonians
have been studied and solved using techniques like classical Monte Carlo simula-
tion. Applications of these computational techniques have been used in studying,
understanding and designing novel properties in inorganic oxide compounds as
well as hybrid materials.

In chapters 3 to 6 we have considered two different novel phenomena arising
in two different classes of materials including both organic and inorganic com-
plexes. In the present chapter we summarize the primary findings described in
the previous chapters that emerge out of our study. We then discuss the future
directions.

7.1 Summary

7.1.1 Summary of Chapter 3

This chapter emphasized the microscopic role of magnetic superexchange in co-
operativity and bistability in the class of Fe-triazole Spin crossover (SCO) linear
coordination polymers.

Our Monte Carlo study based on model Hamiltonian vehemently established
the important role of magnetic super-exchange interaction acting between the
transition metal (TM) ion centers in the cooperativity in spin transition in co-
ordination polymers. They turned out to be equally important as the elastic
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interaction, the latter being generally accepted as the main cause of cooperativ-
ity in polymeric SCO systems. Depending on the nature of the spin-dependent
elastic interaction, which is decided by the nature of the spin-phonon coupling,
the magnetic interaction was thought to contribute to the development of coop-
erativity in a quantitative or a qualitative manner. In case of ferro type elastic
interaction, the magnetic interaction helps enhancing the hysteresis effect, devel-
oped already by the elastic interaction, thus being important in a quantitative
manner. In case of antiferro nature of elastic interaction, the magnetic inter-
action play a decisive role in driving the hysteresis in the system. Considering
linear coordination polymer, Fe triazole, which was found to belong to the latter
category we demonstrated the existence of bistability in this compound through
Ab-initio Molecular Dynamics simulation. This established the capability of ab-
initio technique to capture the bistability accurately. The observed bistability in
this system, was found to be totally driven by the magnetic exchange interaction.
The computed transition temperature, and the width of the hysteresis was found
to be in excellent agreement with that of the measured susceptibility reported for
the similar compound.

7.1.2 Summary of Chapter 4

This chapter was devoted to designing spin crossover properties in transition
metal hybrid perovskites, which have been explored so far in context of multifer-
roic properties.

We demonstrated that these hybrid perovskites can also undergo spin crossover
using rigorous first-principles calculations, and considering two formate based
hybrid perovskite compounds, Dimethylammonium Iron Formate and Hydrox-
ylammonium Iron Formate under hydrostatic pressure. We found that dense
framework structures of these compounds help in building up cooperativity in
spin-switching, making the phenomena a spin-state transition with appreciable
hysteresis effect. The spin-switching is reflected in associated changes in elec-
tronic, magnetic and also possible changes in optical properties. This opens up
several novel potential applications of these materials, for example, as pressure
sensors, as active elements of various types of displays, and in information storage
and retrieval - an aspect which has remained unexplored so far in this class of
materials. Our computed values of critical transition pressure required to drive
the spin-state transition was found to be in the range of about 2-6 GPa, which
should be readily achievable in any standard laboratory set-up. The appreciable
hysteresis effect of 2-5 GPa associated with these spin-state transitions would
make them functional in memory devices for a reasonably wide range of pressure.
It was also seen that unlike the previous class of materials studied in Chapter 3,
hybrid perovskites considered in this chapter are ferroelastic materials and in this
case elastic interaction is the driving element behind cooperitivity and magnetic
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superexchange having only quantitative effect. Taking the advantage of flexibility
of these MOF perovskites to undergo substantial change in mechanical proper-
ties upon tuning of hydrogen bonds, both the pressure required for the transition,
as well as the hysteresis-width are found to be tunable by choice of appropriate
amine cation.

7.1.3 Summary of Chapter 5

In this chapter we considered the oxide interfaces formed between two band in-
sulators like Lanthanum Aluminate (LAO) and Strontium Titanate (STO) and
between a band insulator and a Mott insulator like STO and Gadolinium Ti-
tanate (GTO). Our study provided a microscopic understanding of the essential
similarities and dissimilarities between these two classes as observed experimen-
tally.

While the two systems were found to behave quite similarly in the superlattice
set up, viz. in terms of the total 0.5 e−/Ti transfer of charges to the interface,
very different pictures emerged in case of thin film-substrate geometry due to the
differences in electronic reconstructions in the two systems, even though, in both
the cases, the reconstructions are driven by the same underlying electrostatic
mechanism, namely the need to avert the polar catastrophe. We found a full 0.5
e−/Ti conducting charge at the interface even for 1 unit cell thick GTO on STO
substrate, consistent with experiments. On the other hand, in case of LAO on
STO, the transferred charge only increase gradually with thickness from a small
value of ∼ 0.14e−/T i above a critical thickness of about 4-5 unit cells. Addition-
ally, in the thin film-substrate case, we found the fate of the surface layers, which
host the neutralizing charges for the interface carriers, to be quite distinct. The
electronic states derived from O p orbitals at the surface LAO layer turn out to be
metallic within band theory but are experimentally found to be insulating, which
have been suggested to be due to disorder or surface imperfections like oxygen
vacancies. On the other hand, we found the Ti d states at the topmost layer of
GTO/STO correspond to a doped Mott insulating layer of GTO and stays in-
sulating by opening a charge gap via an interesting electronic correlation driven
charge disproportionation. Such a correlation induced phenomenon is expected
to be a robust feature, at least within a short length scale, and may be probed
experimentally.

7.1.4 Summary of Chapter 6

In this chapter we studied the origin of the elusive ferromagnetic insulating phase
in some cases of LMO/STO interfaces. The effect of square planar strain which
is induced by matching of LMO lattice constants to cubic STO lattice constants
is the crucial issue here. The electronic and magnetic properties of epitaxially
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strained LMO and LMO/STO superlattices have been studied with different tech-
niques and with varying degree of sophistication in handling electron-electron
correlation and exchange effects like GGA+U and hybrid functionals. This multi
pronged approach reveals the curious state of ferromagnetic insulator of LMO,
as observed experimentally arises owing to a correlation driven charge dispropor-
tionation which is found to be captured by the hybrid functional calculations.

7.2 Outlook

7.2.1 Metal-organic Complexes

The present thesis focused primarily on theoretical studies of temperature and
pressure induced cooperative SCO. A much less studied and worth exploring
area from theoretical point of view would be study of cooperativity in light in-
duced spin state trapping (LIESST). While empirical theories have been pro-
posed within the non-adiabatic multiphonon framework [1] for mononuclear com-
pounds in terms of ∆E0

HL, the energy difference between the lowest vibrational
levels of HS and LS states, and the change of metal-ligand bond length ∆rHL,
the ab-initio description of the complete process is lacking, apart from very few
quantum-chemical calculations [2, 3] studying the electronic structure of excited
state geometries. More importantly, extension to multinuclear systems with pos-
sible cooperative effect is non-existent. The study by Létard et al. [4] through
irradiation of the sample at low temperature with laser coupled to an optical
fiber within a SQUID cavity showed that the temperature dependence of the
photomagnetic properties of mononuclear and multinuclear systems to be very
different. To the best of our knowledge no microscopic theory has been devel-
oped to explain this difference. This thesis also focused on Fe(II) based systems,
which are so far the most popular ones. However, in addition to Fe or Co based
systems, there are few examples of SCO in Mn(III) [5, 6]. Mn(III) is a particu-
larly interesting candidate for SCO as it should exhibit a significant Jahn-Teller
effect in its HS state. It is an interesting question to ask how the Jahn-Teller
distortion affects the phononic contribution to cooperativity in terms of influ-
encing the spin-lattice coupling. This may result in different profiles of SCO,
like double transition, compared to those observed for Fe(II). This issue demands
future attention. Finally, hybrid perovskites which are new candidates proposed
for observing cooperative SCO effect, should be also explored for LIESST effect
both from experimental and theoretical point of view. Given the observation of
multiferroicity, already reported in literature for hybrid perovskites, it will be
also worth to investigate any exotic magnetic ordering of HS Fe(II)s leading to
breaking of inversion symmetry, and thus resulting in magneto-electric coupling.

Moreover related to the formate linked hybrid perovskites that we have stud-
ied there is another class of halide linked hybrid perovskites which have very
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similar properties to the formate based hybrids. Some similar halide based class
of materials have been shown to form very interesting 2D ferromagnets in two
recent studies. Our conjecture is that the halide based hybrid perovskites may
be cleaved to form similar 2D compounds with ferromagnetic properties which
shall have immense binding on theoretical studies of these materials and shall
diversify immensely the application possibilities of these materials. I intend to
investigate this extremely interesting aspect of metal organic complexes as a part
of my future research endeavours.

7.2.2 Inorganic Oxide heterostructures

A few interesting future directions in this section for theoretical study would
be to investigate in detail the sub-band structures, that is relevant for quantum
oscillation measurements, and spin-orbit coupling in the GTO/STO interface.
Our structural analysis indicates substantially larger polar distortions of the Ti-
O-Ti bonds at the GTO/STO interface compared to that in LAO/STO. This
could potentially lead to much larger Rashba spin-orbit coupling for GTO/ STO
heterostructure. The magnetic property of the interface 2DEG in GTO/STO
should also be investigated by DFT. As demonstrated in Chapter 5, GTO/STO
shows signature of ferromagnetism that could be an intrinsic correlation driven
phenomenon, independent of the proximity to magnetic GTO layer. Calculation
of magnetic superexchanges and building a model for the magnetic ground state of
these heterostructures can shed further light on the understanding of the magnetic
structure of these materials.

There are a plethora of hetero-interfaces which have been known experimen-
tally and interfaces between Samarium Titanate SmTiO3(SmTO) and STO have
been shown to be extremely interesting and I would like to investigate such ma-
terials. Also a very interesting case of study would be an interface between two
Mott insulators, since we have mostly considered interfaces of Mott insulators
with band insulators and we have found that the band structure of the het-
erostructures influences to a great extent the type of interface formed and its
properties. In this content an interface between GTO and LTO might be an
extremely interesting case to study both of them being Mott insulators.
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