

सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र

सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र

प्रकाशक

सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र

डिज़ाइन एवं प्रिंट सेमाफोर टेक्नोलॉजीज प्रा. लिमिटेड 3, गोकुल बोराल स्ट्रीट, कोलकाता - 700012 मोबाइल: 91 9836873211

सत्यंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र का वार्षिक प्रतिवेदन इस वित्तीय वर्ष के उसके क्रियाकलापों का एक संक्षिप्त प्रस्तुतीकरण है। इस प्रतिवेदन में अनुसंधान क्रियाकलापों, प्रशासनिक कार्यों , युवा अनुसंधानकर्ताओं की शैक्षिक प्रगति एवं उपलब्धियों, बुनियादी सुविधाओं एवं सुविधाओं के विकास तथा पूरे विश्व में विकसित अनुसंधान समूह के साथ नेटवर्क स्थापित करने के संबंध में किए गए कार्यों को प्रस्तुत किया गया है। यह तेरहवीं बार है जब मुझे केंद्र की वार्षिक प्रगति के संकलन का कार्य सौंपा गया है। वार्षिक प्रतिवेदन तैयार करने के लिए केंद्र के सभी संकाय सदस्यों एवं अनुभागों ने अपने संबन्धित आंकड़ें प्रदान करने में अपना अमूल्य समय लगाया है। यह एक समयबद्ध कार्य है, जिसे अल्पाविध में पूरा करना पड़ता है। सातवीं बार वार्षिक प्रतिवेदन के अनुवाद एवं हिन्दी में टाइपिंग का कार्य केंद्र में हो रहा है। कार्यालय सहायक (हिन्दी), श्री अजय कुमार साव ने पूरी निष्ठा के साथ पूरे वार्षिक प्रतिवेदन को हिन्दी में अनुवाद किया तथा पुस्तकालय कर्मचारी श्री अमित रॉय, श्री गुरुदास घोष तथा सुश्री अनन्या सरकार ने एक बड़े ही सीमित अविध में वार्षिक प्रतिवेदन को हिन्दी में टाइप किया। हिन्दी अनुवाद टिम की श्रमसाध्य मेहनत के वर्णन हेतु शब्द पर्याप्त नहीं होंगे। मैं अपने पुस्तकालय के सदस्यों श्री गुरुदास घोष, सुश्री अनन्या सरकार तथा श्री अमित रॉय के अनवरत प्रयासों एवं परिश्रम के लिए आभार ज्ञापित करता हूँ, जिनके बिना यह कार्य निर्धारित समय के भीतर पूरा नहीं हो पाता। अंततः मैं केंद्र के वार्षिक प्रतिवेदन को तैयार करने में सहयोग देने हेतु केंद्र के सभी सदस्यों के प्रति हार्दिक धन्यवाद ज्ञापित करता हूँ।

मीर्मन अशिका

सौमेन अधिकारी पुस्तकालयाध्यक्ष-सह-सूचना अधिकारी

विषय-सूची

निदेशक का संदेश	6
अधिष्ठाता संकाय	8
अधिष्ठाता, शैक्षणिक कार्यक्रम	10
विस्तारित आगंतुक एवं संपर्क कार्यक्रम	22
सैद्धान्तिक भौतिकी संगोष्ठी सर्किट	36
कुलसचिव	39
केंद्र में राजभाषा कार्यान्वयन	41
समितियाँ	42
शैक्षिक सदस्य	47
प्रशासनिक एवं तकनीकी स्टाफ सदस्य	51
खगोल भौतिकी और उच्च ऊर्जा भौतिकी विभाग	
विभागाध्यक्ष रिपोर्ट	56
अमिताभ लाहिड़ी	60
अर्चन शुभ्र मजूमदार	63
रबीन बनर्जी	67
रामकृष्ण दास	69
सौमेन मण्डल	73
सुनंदन गंगोपाध्याय	78
तापस बाग	81
जटिल प्रणाली भौतिकी विभाग	
विभागाध्यक्ष रिपोर्ट	89
अरिजित हालदार	94
जयदेव चक्रवर्ती	96
माणिक बणिक	99
प्रोसेंजित सिंह देव	102
पुण्यव्रत प्रधान	103
शकुंतला चटर्जी	105
ऊर्णा बसु	107
रासायनिक और जैविक विज्ञान विभाग	
विभागाध्यक्ष रिपोर्ट	110
अली हुसैन खान	113
गौतम गंगोपाध्याय	116
गौतम दे	118
माणिक प्रधान	120
मनोज मण्डल	124
प्रदीप एस पचफुले	126
राजीव कुमार मित्रा	130
रंजीत विश्वास	133
समीर कुमार पाल	136
समन चक्रवर्ती	141

संघनित पदार्थ एवं पदार्थ भौतिकी विभाग	
विभागाध्यक्ष रिपोर्ट	147
अंजन बर्मन	149
अनूप घोष	154
अतीन्द्र नाथ पाल	156
अभिजीत चौधरी	160
बर्णाली घोष (साहा)	164
कल्याण मण्डल	168
मनोरंजन कुमार	171
नितेश कुमार	174
प्रभात मण्डल	177
प्रिया महादेवन	179
साकिब शमीम	182
सुमन चौधरी	184
तनुश्री साहा-दासगुप्ता	186
तिरुपतैय्या सेड्डी	189
ऐडजंक्ट संकाय	
गौतम शीट	194
इंद्रनील सरकार	195
पार्थ गुहा	196
समित कुमार रे	197
शुभ्रो भट्टाचार्जी	198
सुविधाएँ	
पुस्तकालय	200
अभियांत्रिकी अनुभाग	202
कम्प्युटर सेवा प्रकोष्ठ	205
परियोजना एवं पेटेंट प्रकोष्ठ	208
तकनीकी अनुसंधान केंद्र	216
तकनीकी प्रकोष्ठ	218
यांत्रिक कर्मशाला	220
अतिथि गृह	221
उत्सव के विशेष दिन	222
प्रकाशन	
प्रकाशनों की सूची 2022-2023	224
प्रकाशन के लिए प्रभाव कारक	240
लेखा	
लेखा बजट सारांश 2022-2023	246
स्वतंत्र लेखा परीक्षकों की रिपोर्ट	247
वित्तीय विवरण	249

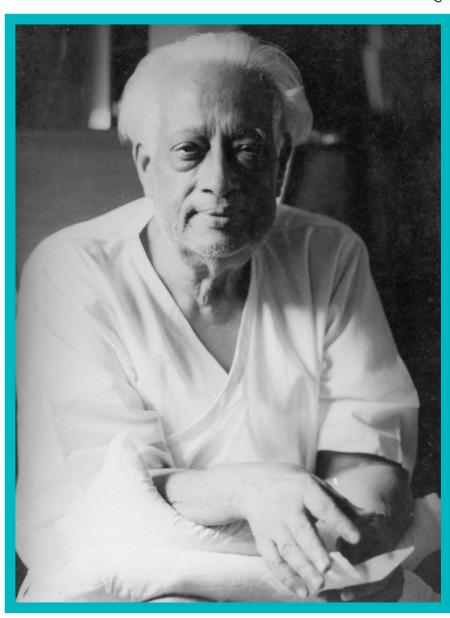
निदेशक का संदेश

सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र का वार्षिक प्रतिवेदन 2022-23 प्रस्तुत करते हुए मुझे अत्यंत ही हर्ष की अनुभूति हो रही है, खाशकर यह विशेष वर्ष जिसमें भारत ने अपने चंद्र मिशन के तहत चाँद पर अपना विजय पताका लहराया है। चंद्रयान-3 की महत्वपूर्ण तकनीकी प्रगति का जश्न मनाते हुए, मुझे यह घोषणा करते हुए खुशी हो रही है कि टीआरसी के विस्तार चरण के अंतर्गत उत्प्रेरित नई गतिविधियों के साथ केंद्र की ट्रांसलेशनल गतिविधि पुनः शुरू की गई है। मुझे आशा है कि इस महत्वाकांक्षी क्षेत्र में उपयोगी प्रौद्योगिकियों का विकास किया जाएगा।

कंद्र ने कई महत्वपूर्ण कार्यक्रम मनाए और आयोजित किए हैं। प्रो. सत्येन्द्र नाथ बसु के जन्मदिवस के उपरांत 2 जनवरी 2023 को उन्मुक्त दिवस (ओपन डे) मनाया गया, जिसमें जीवन के विभिन्न क्षेत्रों के विज्ञान प्रेमियों ने भाग लिया। प्रो. एस एन बसु के महत्वपूर्ण योगदानों को लोगों में जानकारी हेतु बसु अभिलेखागार का एक आभासी दौरा (वर्चुअल टूर) बनाया गया है, जिसका उद्घाटन 13 जून 2023 को कंद्र के स्थापना दिवस पर किया गया था। शिक्षण एवं अध्यापन उत्कृष्टता को मान्यता देने के लिए, इस वर्ष से स्थापना दिवस पर कंद्र के शिक्षकों को शिक्षण में उत्कृष्टता मान्यता देने की शुरुआत की गई है। मार्च 2023 में आयोजित बसु उत्सव के दौरान कंद्र के शोध छात्र-छात्राओं ने शैक्षणिक और संस्कृति से जुड़े कार्यक्रम का शानदार प्रदर्शन किया। 26वें एस.एन. बसु मेमोरियल व्याख्यान का आयोजन किया गया, जो प्रतिष्ठित बोल्ट्ज़मैन मेडल (सांख्यिकीय भौतिकी में सर्वोच्च मान्यता) से सम्मानित होने

वाले पहले भारतीय सैद्धांतिक भौतिक विज्ञानी प्रोफेसर दीपक धर द्वारा व्याख्यान दिया गया।

क्वांटम फील्ड सिद्धांत, गुरुत्वाकर्षण भौतिकी, प्रेक्षणीय खगोल विज्ञान और खगोलीय उपकरण, क्वांटम सूचना और स्थापना, सांख्यिकीय भौतिकी, भौतिक और क्वांटम रसायन विज्ञान का जैविक अणुओं के साथ इंटरफेस, आयनिक तरल पदार्थ और ऊर्जा संचयन मटेरियल्स. क्वांटम संघनित पदार्थ भौतिकी आदि के क्षेत्रों में प्रायोगिक, सैद्धांतिक और कम्प्यूटेशनल उपकरण के रूप में अत्याधुनिक अनुसंधान गतिविधियाँ जारी हैं। कई वैज्ञानिक कहानियों को डीएसटी मीडिया सेल में हाइलाइट किया गया है. साथ ही डीएसटी के समाचार पत्रिका में प्रकाशित भी किया गया है। केंद्र के पूर्व छात्रों को आईआईटी और विश्वविद्यालयों में प्लेसमेंट मिला है जिससे हमें गर्व महसूस हो रही है। नेचर इंडेक्स रैंकिंग के अनुसार, केंद्र ने शीर्ष डीएसटी संस्थानों में तीसरे स्थान पर अपना प्रदर्शन बनाए रखा है। संकायों की अनुसंधान उपलब्धियों को राष्ट्रीय और अंतरराष्ट्रीय स्तर पर मान्यता मिली है। इनमें से कुछ उल्लेखनीय हैं, प्रो. अंजन बर्मन को द रॉयल सोसाइटी, यूके द्वारा प्रतिष्ठित 'रॉयल सोसाइटी वोल्फसन विजिटिंग फ़ेलोशिप' से सम्मानित किया गया है। प्रो. तन्श्री साहा-दासगुप्ता, जर्नल ऑफ़ फिजिक्स मैटेरियल्स, आईओपी साइंस के कार्यकारी संपादकीय बोर्ड और फिजिकल रिव्यू बी के संपादकीय बोर्ड में शामिल किए गए हैं। डॉ. माणिक प्रधान को डायबिटीज मेलिटस हेत् नवीन निदान रणनीति के विकास और लेजर स्पेक्ट्रोस्कोपी का उपयोग करके जैवचिकित्सा विज्ञान में एप्लिकेशन-संचालित मौलिक अनुसंधान के लिए मौलिक विज्ञान के क्षेत्र में चेलाराम फाउंडेशन मधुमेह अनुसंधान पुरस्कार-2022 के लिए चुना गया है। केंद्र ने 253 ज़र्नल प्रकाशनों (प्रति संकाय ~ 8), और 10 अन्य प्रकाशनों के साथ अपना उच्च प्रकाशन ट्रैक रिकॉर्ड बनाए रखा है। केंद्र के 25 शोधछात्रों ने अपना पीएचडी शोधप्रबंध जमा एवं प्रस्तृत किए हैं और 23 शोधछात्रों को पीएचडी उपाधि प्रदान की गई है।


कंद्र ने एस.एन.बसु कंद्र में 650 टीएफ सुपरकंप्यूटिंग हब की स्थापना के लिए सीडीएसी के साथ एक समझौता ज्ञापन पर हस्ताक्षर किए हैं। इसके क्रियान्वयन के लिए तेजी से काम चल रहा है। एक बार मशीन स्थापित हो जाने के बाद यह न केवल केंद्र की कम्प्यूटेशनल जरूरतों को पूरा करेगी, बल्कि कोलकाता और इसके आसपास के संस्थानों की कम्प्यूटेशनल जरूरतों को भी पूरा करेगी। संयुक्त एसएनबी-आईएफडब्ल्यू सहभागिता कार्यक्रम के तहत, पांच छात्रों ने आईएफडब्ल्यू, ड्रेसडेन का दौरा किया और एसएनबी और आईएफडब्ल्यू के संकायों द्वारा संयुक्त रूप से पर्यवेक्षण की गई परियोजनाओं पर काम किया। एसएनबी और आईएफडब्ल्यू की अगली संयुक्त बैठक नवंबर 2023 में एस.एन.बसु केंद्र में होने की योजना है। सहयोगात्मक विनिमय अनुसंधान के लिए एसएनबी और आईआईटीबी की दूसरी संयुक्त बैठक जनवरी 2023 में हुई, जिससे एक जीवंत विनिमय कार्यक्रम सृजित हुआ है।

में केंद्र के इन उपलब्धियों के लिए अपने सभी सहयोगियों, कार्मिक सदस्यों और शोधछात्र-छात्राओं को सहृदय बधाई एवं धन्यवाद प्रकट करती हूँ। मैं केंद्र के शासी निकाय और अकादिमक सलाहकार समिति के सदस्यों को निरंतर सहयोग एवं समर्थन प्रदान करने के लिए भी आभार व्यक्त करती हूँ। केंद्र की नई शैक्षणिक सलाहकार समिति ने अपना पदभार संभाल लिया है तथा समिति के सदस्यों और एसएनबी के संकाय सदस्यों के बीच रोमांचक और उपयोगी वैज्ञानिक चर्चा के साथ समिति की 2 दिवसीय बैठक का सफल आयोजन किया गया है। अतः मुझे पूर्ण विश्वास है कि इनके कुशल मार्गदर्शन में केंद्र आने वाले दिनों में नित नए मुक़ाम हासिल करेगा।.

Tanuri Saha-Dagupta

तनुश्री साहा-दासगुप्ता निदेशक

सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र

S N Bose Photo credit: Sambhu Shaha

अधिष्ठाता (संकाय)

वर्ष 2022-23 में, केंद्र वैज्ञानिक सहभागिता, राष्ट्रीय और अंतरराष्ट्रीय सम्मेलनों, कार्यशालाओं, स्कूल की मेजबानी, आउटरीच कार्यक्रमों का आयोजन, बसु अभिलेखागार के नवीनीकरण आदि से संबंधित कई शैक्षणिक गतिविधियों में शामिल था। हमारे संकाय सदस्यों ने शीर्ष गुणवत्ता वाली अंतर्राष्ट्रीय पत्रिकाओं में प्रकाशन जारी रखा और राष्ट्रीय और अंतर्राष्ट्रीय सम्मेलनों/स्कूलों में व्याख्यान/सेमिनार दिए। इस वित्तीय वर्ष में प्रकाशनों की कुल संख्या 253 थी।

गत वर्ष के दौरान, केंद्र ने कई सेमिनार आयोजित किए और प्रतिष्ठित वैज्ञानिकों द्वारा स्वतंत्रता-पूर्व युग में प्रमुख भारतीय वैज्ञानिक विषय पर 05 (पांच) विशिष्ट व्याख्यान दिए और प्रोफेसर एंथनी के चीथम द्वारा 16वां सी.के. मजूमदार मेमोरियल व्याख्यान दिया गया। अकादिमक यात्राओं और सम्मेलनों में सहयोग सिहत विनिमय कार्यक्रमों के साथ-साथ एक्स्ट्रामुरल फंडिंग द्वारा समर्थित परियोजनाओं में भागीदारी के संदर्भ में भारत और विदेशों में विभिन्न संस्थानों के साथ हमारे चल रहे सहयोग ने केंद्र की अनुसंधान गतिविधियों को और प्रगति मिला है। चालू वर्ष में 35 चालू परियोजनाओं के अलावा 05 नई बाह्य परियोजनाएं स्वीकृत की गईं।

संकाय सदस्यों (नियमित और अनुबंध दोनों) द्वारा प्राप्त पुरस्कार/मान्यताएँ

1. प्रो. अंजन बर्मन, वरिष्ठ प्रोफेसर --

 2022 में स्टैनफोर्ड यूनिवर्सिटी द्वारा जारी शीर्ष 2% सर्वाधिक प्रभावशाली वैज्ञानिकों की सूची में शामिला

2. डॉ. अविजीत चौधरी, सहायक प्रोफेसर --

- आउटस्टैंडिंग रिव्यूवर अवार्ड (2022), सामग्री अनुसंधान एक्सप्रेस, आईओपी विज्ञान
- आउटस्टैंडिंग रिव्यूवर अवार्ड (2022), प्रिंटेबल एंड फ्लेक्सिबल इलेक्ट्रॉनिक्स, आईओपी विज्ञान

3. डॉ. बर्णाली घोष (साहा), वैज्ञानिक 'एफ'--

- 4 मार्च 2023 को वीनस इंटरनेशनल फाउंडेशन, भारत, महिला विकास केंद्र द्वारा संघनित पदार्थ भौतिकी और मैटेरियल्स VIWA 2023 में "उत्कृष्ट महिला शोधकर्ता"।"
- इंजीनियरिंग, विज्ञान और चिकित्सा आईएनएसओ 2023, पांडिचेरी, भारत में अंतरराष्ट्रीय पुरस्कार विजेता सम्मेलन में "उत्कृष्ट वैज्ञानिक पुरस्कार"।
- एसीएस पब्लिकेशन पीर रिव्यूअर सर्टिफिकेट ऑफ़ रिकगनिशन एंड ऐप्प्रेसिएशन 2022 प्राप्त किया।

4. प्रोफेसर कल्याण मंडल, वरिष्ठ प्रोफेसर –

• हम्बोल्ट फाउंडेशन से जर्मनी में नवीनीकृत अनुसंधान प्रवास के लिए दो महीने (मई-जून 2022) हेतु फेलोशिप।

5. डॉ. मनोरंजन कुमार, प्रोफेसर --

• प्रमाण के लिए सर्वश्रेष्ठ समीक्षक का पुरस्कार।

6. डॉ. नितेश कुमार, सहायक प्रोफेसर--

 100000 यूरो की कुल फंडिंग के साथ 5 वर्षों के लिए मैक्स प्लैंक-इंडिया पार्टनर ग्रुप का नेतृत्व करने के लिए एक लीडर के रूप में चुना गया।

7. डॉ. प्रदीप एस पचफुले, सहायक प्रोफेसर --

 रसायन और पदार्थ विज्ञान में दुनिया के शीर्ष 2% वैज्ञानिकों की स्टैनफोर्ड यूनिवर्सिटी की वैश्विक सूची में सूचीबद्ध (2022)

8. डॉ. शकुंतला चटर्जी, एसोसिएट प्रोफेसर --

- यूरोपियन फिजिकल सोसाइटी द्वारा जर्नल यूरोफिजिक्स लेटर्स के सह-संपादक के रूप में कार्य करने के लिए आमंत्रित किया गया
- यूरोपियन फिजिकल सोसाइटी में सदस्य के रूप में शामिल होने के लिए आमंत्रित किया गया।

9. प्रोफेसर समीर कुमार पाल, वरिष्ठ प्रोफेसर --

 अब्दुल कलाम टेक्नोलॉजी इनोवेशन नेशनल फ़ेलोशिप 2018 (इंडियन नेशनल एकेडमी ऑफ़ इंजीनियरिंग: INAE) अगले दो वर्षों के लिए विस्तार • वैश्विक नवाचार एवं प्रौद्योगिकी संगठन (जीआईटीए) की विशेषज्ञ समिति के अध्यक्ष

10. प्रो. सौमेन मंडल, प्रोफेसर--

 प्रेसीडेंसी विश्वविद्यालय की शैक्षणिक समिति के बाह्य समिति सदस्य में से एक के रूप में चयनित।

11. डॉ. सुमन चक्रवर्ती, एसोसिएट प्रोफेसर --

- भारतीय विज्ञान अकादमी, बेंगलुरु द्वारा प्रकाशित संवादः
 विज्ञान, वैज्ञानिक और समाज के संपादकीय बोर्ड के सदस्य
- बायोफिज़िक्स के संपादकीय बोर्ड पर समीक्षा संपादक (भौतिकी में फ्रंटियर्स, फिजियोलॉजी में फ्रंटियर्स और आणविक बायोसाइंसेज में फ्रंटियर्स का विशेष अनुभाग)

12. प्रोफेसर तनुश्री साहा दासगुप्ता, वरिष्ठ प्रोफेसर --

 विज्ञान विदुषी पुस्तक में प्रदर्शित फिजिकल रिव्यू बी के संपादकीय बोर्ड में शामिल हुए

13. प्रोफेसर गौतम डे, एमेरिटस प्रोफेसर (14.01.2023 तक) --

- इंडियन सिरेमिक सोसाइटी से "गणपुले पुरस्कार 2022"
 प्राप्त किया।
- सीआरएनएन (कलकत्ता विश्वविद्यालय) पीएचडी समिति के बाह्य सदस्य (जारी)।

पिछले वर्ष नए संकाय सदस्य शामिल हुए (इंस्पायर, रामानुजन आदि सहित)

- डॉ. माणिक बनिक, एसोसिएट प्रोफेसर, डीपीसीएस– 13.06.2022
- डॉ. अरिजीत हलदर, सहायक प्रोफेसर, डीपीसीएस– 05.09.2022
- डॉ. सािकब शमीम, सहायक प्रोफेसर, सीएमएमपी, CMMP 06.10.2022
- डॉ. सुमन चौधरी, डीएसटी इंस्पायर फेलो, सीएमएमपी –
 10.10.2022

 डॉ. सुजॉय घोष, डीएसटी इंस्पायर फेलो, सीएमएमपी– 09.03.2023

गत वर्ष सेवानिवृत्त हुए/ छोड़कर गए संकाय सदस्य (इंस्पायर, रामानुजन आदि सहित)

- डॉ. एम. संजय कुमार, विजिटिंग (माननीय) फेलो, पीसीएस –
 01.08.2022 (अनुबंध की समाप्ति)
- डॉ. देबंजन बोस, रामानुजन फेलो, एएचईपी 14.11.2022 (अनुबंध की समाप्ति)
- प्रो. पी.के. मुखोपाध्याय, विजिटिंग (माननीय) फेलो, सीएमएमपी
 31.12.2022 (अनुबंध की समाप्ति)
- प्रो. रंजन चौधरी, विजिटिंग (माननीय) फेलो, सीएमएमपी –
 31.12.2022 (अनुबंध की समाप्ति)
- प्रो. एस.एस. मन्ना, विजिटिंग (माननीय) फेलो, पीसीएस –
 31.01.2023 (अनुबंध की समाप्ति)

अब तक का नियमित/इंस्पायर/रामानुजन/विजिटिंग/ एमेरिटस फैकल्टी आदि की कुल संख्या -

- नियमित संकाय 32
- इंस्पायर संकाय-3
- रामानुजन फेलो 1
- राजा रमन्ना फेलो– 1
- रामलिंगास्वामी री-एंट्री फेलो 1
- एमेरिटस प्रोफेसर 1
- विजिटिंग प्रोपेसर 1
- सहायक संकाय/अध्येता 5

अब तक का पीडीआरए/आरए/परियोजना वैज्ञानिकों आदि की कुल संख्या -

- पीडीआरए (एसएनबी वित्त पोषित) 30
- आरए/एनपीडीएफ/एसआरए आदि 10
- ब्रीज़ फेलो (वित्त पोषित) 10

(Anjan Barman

अंजन बर्मन अधिष्ठाता (संकाय)

अधिष्ठाता, शैक्षणिक कार्यक्रम

हमारे केंद्र के अधिदेश का एक महत्वपूर्ण हिस्सा युवा वैज्ञानिकों को बुनियादी विज्ञान में अनुसंधान के लिए प्रशिक्षित करना है। कई प्रतिष्ठित पूर्व छात्र केंद्र में छात्र शोधकर्ताओं द्वारा और उनके लिए बनाए गए जीवंत शोध माहौल के गवाह हैं। पिछले दो शैक्षणिक वर्ष, 2020-21 और 2021-22, पूरी दुनिया में COVID-19 के प्रकोप से बुरी तरह प्रभावित थे और हम कोई अपवाद नहीं थे। हालाँकि, उचित सावधानी बरतने और सख्त प्रोटोकॉल का पालन करने से, केंद्र वर्ष 2021-22 में कामकाज फिर से शुरू करने में सक्षम था और वर्ष 2022-23 के दौरान सामान्य स्थिति में वापस आने के लिए सतर्क कदम उठा सकता था।

2022 से आवश्यक दूरी और मास्क के प्रोटोकॉल को बनाए रखते हुए परीक्षाएं फिजिकल मोड में आयोजित की गई। आवश्यक प्रोटोकॉल का पालन करते हुए कक्षाएं फिजिकल मोड में भी आयोजित की गईं। कुछ कक्षाएं हाइब्रिड मोड में आयोजित की गई। मुझे यह कहते हुए खुशी हो रही है कि हमने कोविड-19 परीक्षा को सफलतापूर्वक पार कर लिया है और अब हम अपनी शैक्षणिक गतिविधियों में सामान्य स्थिति में वापस आ रहे हैं।

जो छात्र केंद्र में अपना पीएचडी शोध करना चाहते हैं, उन्हें संबंधित विषय में उच्च अंकों के साथ एमएससी पूरी करनी होगी, या तो सीएसआईआर-नेट या इसी तरह की राष्ट्रीय पात्रता परीक्षा उत्तीर्ण करनी होगी, या उच्च रैंक के साथ जेईएसटी या गेट उत्तीर्ण करना होगा, और फिर केंद्र में लिया गया साक्षात्कार पास करें। जो छात्र डीएसटी-इंस्पायर फ़ेलोशिप के लिए अनंतिम रूप से अईता प्राप्त कर चुके हैं, वे अन्य आवश्यक शैक्षणिक मानदंडों को पूरा करने पर साक्षात्कार के लिए भी उपस्थित हो सकते हैं, लेकिन उन्हें फ़ेलोशिप जीतनी होगी और अपनी पीएचडी जारी रखने के लिए राष्ट्रीय स्तर की परीक्षा में भी अईता प्राप्त करनी होगी। जो छात्र अपनी बीएससी डिग्री के बाद एकीकृत पीएचडी कार्यक्रम में शामिल होना चाहते हैं, उन्हें जेईएसटी या एनजीपीई के माध्यम से अर्हता प्राप्त करनी होगी और फिर केंद्र में साक्षात्कार देना होगा।

शैक्षणिक वर्ष 2022-23 में, कुल 28 विद्वान केंद्र के पीएचडी कार्यक्रम में शामिल हुए। इनमें से 5 खगोल भौतिकी और ब्रह्मांड विज्ञान में शामिल हुए, 10 रासायनिक, जैविक और मैक्रोमोलेक्यूलर विज्ञान में शामिल हुए, 10 संघनित पदार्थ भौतिकी और सामग्री विज्ञान में शामिल हुए, और 3 सैद्धांतिक विज्ञान में शामिल हुए। कुल में से, 3 केंद्र के अपने एकीकृत पीएचडी कार्यक्रम से आए। इसके अलावा, 1 छात्र एसएनबीएनसीबीएस-आईआईएसईआर (के) संयुक्त पीएचडी कार्यक्रम में शामिल हुआ। इनके अलावा, 11 छात्र केंद्र के एकीकृत पीएचडी कार्यक्रम में शामिल हुए।

केंद्र ने हाल ही में जर्मनी के ड्रेसडेन में लाइबनिज इंस्टीट्यूट फॉर सॉलिड स्टेट एंड मैटेरियल्स रिसर्च (आईएफडब्ल्यू), भारतीय प्रौद्योगिकी संस्थान, बॉम्बे, प्रेसीडेंसी यूनिवर्सिटी, कोलकाता, आर्यभट्ट रिसर्च इंस्टीट्यूट ऑफ ऑब्जर्वेशनल साइंसेज (एआरआईईएस), नैनीताल के साथ समझौता ज्ञापनों पर हस्ताक्षर किए हैं। , और सिद्धो-कान्हो-बिरशा विश्वविद्यालय, पश्चिम बंगाल के साथ भी। केंद्र के कुछ छात्र जल्द ही एमओयू के तहत सहमत संयुक्त परियोजनाओं पर काम करने के लिए 3-6 महीने के लिए आईएफडब्ल्यू का दौरा करेंगे। कुछ छात्र पहले ही संयुक्त परियोजनाओं के हिस्से के रूप में आईआईटी बॉम्बे का दौरा कर चुके हैं। प्रेसीडेंसी विश्वविद्यालय के साथ समझौता ज्ञापन छात्रों को वर्तमान विकल्पों, कलकत्ता विश्वविद्यालय और जादवपुर विश्वविद्यालय के अलावा, अपने पीएचडी के लिए वहां पंजीकरण करने की अनुमति देता है। ARIES और सिद्धो-कान्हो-बिरशा विश्वविद्यालय के साथ समझौता ज्ञापनों से अब तक अवलोकन संबंधी खगोल विज्ञान पर कुछ संयुक्त परियोजनाएं शुरू हुई हैं।

इस शैक्षणिक वर्ष के दौरान कुल 23 छात्रों को उनकी पीएचडी डिग्री प्रदान की गई और अन्य 25 ने अपनी पीएचडी थीसिस जमा की। केंद्र द्वारा कई सम्मेलन आयोजित किए गए, साथ ही कई बोलचाल और सेमिनार भी आयोजित किए गए, ये सभी हाइब्रिड मोड में थे। केंद्र का वार्षिक छात्र सम्मेलन, बोस फेस्ट, इस वर्ष भौतिक मोड में आयोजित किया गया और यह एक शानदार सफलता रही।

अंत में, केंद्र के प्रत्येक आधिकारिक शैक्षणिक कार्य में मेरे संकाय सहयोगियों, शैक्षणिक अनुभाग के प्रशासनिक स्टाफ सदस्यों और छात्रों द्वारा प्रदान किए गए उत्साही सहयोग को स्वीकार करना बहुत खुशी की बात है। हमारी उपलब्धियाँ उनके निरंतर समर्थन और कड़ी मेहनत के बिना संभव नहीं होतीं।

2022-2023 में पढ़ाए जाने वाले पाठ्यक्रम

एकीकृत पीएच.डी. भौतिक विज्ञान में कार्यक्रम (आईपीएचडी-पीएचडी)

प्रथम सेमेस्टर (New Subject Code w.e.f. Academic Year: 2022-2023):

- PHY 401, गणितीय तरीके, सुनंदन गंगोपाध्याय;
- PHY 403, शास्त्रीय गतिशीलता, तापस बाग;
- PHY 405, क्वांटम यांत्रिकी I, अमिताभ लाहिडी;
- PHY 407, भौतिकी में कम्प्यूटेशनल तरीके, सुभ्रांग्शु एस मन्ना;
- PHY 491, बुनियादी प्रयोगशाला I, समीर कुमार पाल और सौमेन मंडल.

दुसरा सेमेस्टर (नया विषय कोड प्रभावी शैक्षणिक वर्ष: 2022-2023):

- PHY 402, विद्युत चुम्बकीय सिद्धांत, थिरुपथैया शेट्टी;
- PHY 404, सांख्यिकीय यांत्रिकी, शकुंतला चटर्जी;
- PHY 406, क्वांटम यांत्रिकी II, अरिजीत हालदार;
- PHY 408, इलेक्ट्रॉनिक्स एवं इंस्ट्रमेंटेशन, कल्याण मंडल और अविजीत चौधरी;
- PHY 492, बुनियादी प्रयोगशाला II, कल्याण मंडल और अविजीत चौधरी.

तीसरा सेमेस्टर (पूराना सिलेबस):

- PHY 301, परमाणु एवं आणविक भौतिकी, अंजन बर्मन और राजीब कुमार मित्रा;
- PHY 302, संघनित पदार्थ भौतिकी, नितेश कुमार और प्रभात मंडल;
- PHY 303, उन्नत क्वांटम यांत्रिकी एवं अनुप्रयोग, मनोरंजन कुमार और अरिजीत हालदार;
- PHY 304, परियोजना अनुसंधान II, संकाय पर्यवेक्षक;
- PHY 305, परमाणु एवं कण भौतिकी, रामकृष्ण दास और सुभेंद्र मोहंती, पीआरएल.

चतुर्थ सेमेस्टर (पुराना सिलेबस):

PHY 401, परियोजना अनुसंधान III, संकाय पर्यवेक्षक;

- ♦ PHY 403, खगोल भौतिकी और खगोल विज्ञान, रामकृष्ण दास और सौमेन मंडल;
- ♦ PHY 405, जैविक भौतिकी, मनोज मंडल;
- ♦ PHY 407, *उन्नत क्वांटम क्षेत्र सिद्धांत*, स्नंदन गंगोपाध्याय और राबिन बनर्जी:
- ♦ PHY 413, क्वांटम सूचना सिद्धांत, माणिक बनिक;
- PHY 416, नरम पदार्थ, जयदेब चक्रवर्ती:
- ◆ PHY 491, *प्रायोगिक भौतिकी के तरीके*, नितेश कुमार, प्रदीप एस पचफुले, रामकृष्ण दास और कल्याण मंडल (समन्वयक)

पीएच.डी. पाठ्यक्रम कार्य कार्यक्रम

(नया विषय कोड प्रभावी शैक्षणिक वर्ष: 2022-2023)

- ♦ PHY 601, अनुसंधान क्रियाविधि, राबिन बनर्जी और प्रतीप कुमार मुखोपाध्याय;
- ◆ PHY 602, सामयिक अनुसंधान की समीक्षा, संकाय पर्यवेक्षक;
- PHY/CB 691, परियोजना अनुसंधान, संकाय पर्यवेक्षक;
- PHY 603, संघनित पदार्थ भौतिकी, नितेश कुमार एवं प्रभात मंडल:
- PHY 604, खगोल भौतिकी, सौमेन मंडल और रामकृष्ण दास;
- PHY 616, खगोल विज्ञान में अवलोकन तकनीकें, रामकृष्ण दास और तापस बाग;
- ♦♦ PHY 624, क्वांटम सूचना सिद्धांत, माणिक बनिक;
- PHY 628, मेसोस्कोपिक भौतिकी , अतींद्र नाथ पाल और साकिब शमीम:
- ♦ CB 624, भौतिक रसायन विज्ञान: सिद्धांत और प्रयोग; रंजीत विश्वास
- ◆ CB 626, बायोफिज़िक्स के मूल सिद्धांत, मनोज मंडल;
- CB 627, आणविक भौतिकी और स्पेक्ट्रोस्कोपी, राजीब कुमार मित्रा और अंजन बर्मन:
- CB 628, भौतिकी और रसायन विज्ञान में स्टोकेस्टिक प्रक्रियाएं, गौतम गंगोपाध्याय:
- CB 631, उन्नत संख्यात्मक तरीके और सिमुलेशन, सुमन चक्रवर्ती:

♦♦ CB 641, सतहें और इंटरफ़ेस, जयदेब चक्रवर्ती;

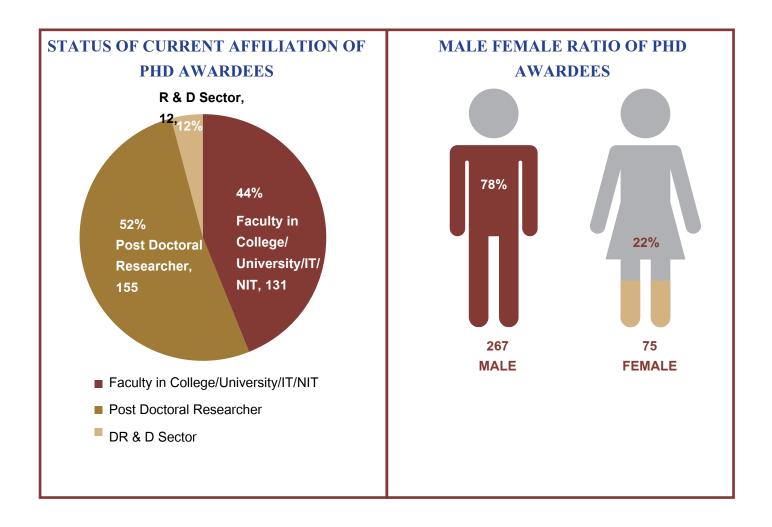
टिप्पणी: ♦ ♦ आंशिक रूप से आईपीएचडी कार्यक्रम के संयोजन में आयोजित किया गया।

पीएच.डी. थीसिस प्रस्तुत की गई

- 1. पेरोव्स्काइट हैलाइड का संक्षेषण, लक्षण वर्णन, भौतिक संपत्ति अध्ययन और अनुप्रयोग, अविसेक मैती, पर्यवेक्षक: बर्णाली घोष (साहा), कलकत्ता विश्वविद्यालय में, मई, 2022 में
- 2. क्वांटम सूचना सिद्धांत में सकारात्मक मानचित्रों के विभिन्न पहल्, बिहालन भट्टाचार्य, पर्यवेक्षक: अर्चन एस मजूमदार, कलकत्ता विश्वविद्यालय में, मई, 2022 में
- 3. गांगेय तारा-निर्माण क्षेत्रों का एक बहुतरंगदैर्घ्य अध्ययन, अलीक पांजा, पर्यवेक्षक: सौमेन मंडल, कलकत्ता विश्वविद्यालय में, मई, 2022 में
- 4. अल्ट्राफास्ट स्पेक्ट्रोस्कोपिक तकनीकों का उपयोग करके कुछ **बायोफिजिकल प्रक्रियाओं का अध्ययन**, पार्थ पाईन, पर्यवेक्षक: राजीब कुमार मित्रा, कलकत्ता विश्वविद्यालय में, मई 2022 में
- म-ड्वाफ्र्स के भौतिक गुणों को समझना: ऑप्टिकल और निकट-आईआर स्पेक्ट्रोस्कोपिक अध्ययन, धृमाद्रि खाता, पर्यवेक्षक: सौमेन मंडल और रामकृष्ण दास, कलकत्ता विश्वविद्यालय में, मई, 2022 में
- 6. भूरे बौनों और कम द्रव्यमान वाले सितारों के वातावरण को समझना, सम्राट घोष, पर्यवेक्षक: सौमेन मंडल, कलकत्ता विश्वविद्यालय में, मई, 2022 में
- 7. गतिशील प्रणाली और सूचना सिद्धांत में सामान्यीकृत एन्ट्रॉपी, सौमा मजूमदार, पर्यवेक्षक: पार्थ गुहा, कलकत्ता विश्वविद्यालय में, जुन, 2022 में
- 8. Spectroscopic **Studies** On **Functional** Nanohybrids and Their Potential Biological Applications, अर्पण बेरा, पर्यवेक्षक: समीर कुमार पाल, कलकत्ता विश्वविद्यालय में, जून, 2022 में
- सहसंबंधित फर्मिओनिक सिस्टम में सुपरकंडिक्टंग पेयरिंग तंत्र की सेद्धांतिक जांच, कौशिक मंडल, पर्यवेक्षक: रंजन चौधरी और मनोरंजन कुमार, कलकत्ता विश्वविद्यालय में, जून, 2022 में
- 10. बड़े पैमाने पर परिवहन प्रक्रियाओं में हाइड्रोडायनामिक्स और उतार-चढ़ाव का अध्ययन, धीरज तपदार, पर्यवेक्षक: पुण्यब्रत प्रधान, कलकत्ता विश्वविद्यालय में, जून, 2022 में

- 11. नवीन जर्मेनियम नैनोस्ट्रक्चर का विकास, लक्षण वर्णन, ऑप्टोइलेक्ट्रॉनिक और थर्मल गुण, विशाल कुमार अग्रवाल, पर्यवेक्षक: माणिक प्रधान और अरूप के रायचौधरी, कलकत्ता विश्वविद्यालय में, जुलाई, 2022 में
- **12. नोवे गुणों का अध्ययन**, रुचि पांडे, पर्यवेक्षक: रामकृष्ण दास, कलकत्ता विश्वविद्यालय में, जुलाई, 2022 में
- 13. इंटरफेस पर सामग्री के गुण, एड्विन टेंडोंग, पर्यवेक्षक: तनुश्री साहा दासगुप्ता और जयदेब चक्रवर्ती, कलकत्ता विश्वविद्यालय में, जुलाई, 2022 में
- 14. कुछ द्वि-आयामी सामग्री का ऑप्टो-इलेक्ट्रॉनिक, इलेक्ट्रिकल और रपेक्ट्रोस्कोपिक अध्ययन, दिधिति भट्टाचार्य, पर्यवेक्षक: समित कुमार रे और राजीब कुमार मित्रा, कलकत्ता विश्वविद्यालय में, जुलाई, 2022 में
- 15. मैग्नेटिक थिन फिल्म्स और हेटेरोस्ट्रक्चर में अल्ट्राफास्ट *रिपन डायनेमिक्स*, सूर्य नारायण पांडा, पर्यवेक्षक: अंजन बर्मन, कलकत्ता विश्वविद्यालय में, अगस्त, 2022 में
- 16. सूचना प्रसंस्करण में क्वांटम सहसंबंध के पहलू, Shounak Datta, पर्यवेक्षक: अर्चन एस मजूमदार, कलकत्ता विश्वविद्यालय में, सितंबर, 2022 में
- 17. ब्रह्माण्ड विज्ञान और ब्लैक होल थर्मोडायनामिक्स में कार्यात्मक पुनर्सामान्यीकरण समूह के अनुप्रयोग, ऋतुपर्णा मंडल, पर्यवेक्षक: स्नंदन गंगोपाध्याय, कलकत्ता विश्वविद्यालय में, नवंबर, 2022 में
- 18. संक्रमण धातु डाइक्लोजेनाइड्स का संक्षेषण, लक्षण वर्णन, परिवहन और इलेक्ट्रॉनिक संरचना अध्ययन, इंद्राणी कर, पर्यवेक्षक: थिरुपथैया शेट्टी, कलकत्ता विश्वविद्यालय में, दिसंबर, 2022 में
- 19. क्वांटम सूचना और क्वांटम नींव के ढांचे में सापेक्ष क्वांटम सिस्टम, रिद्धि चटर्जी, पर्यवेक्षक: अर्चन एस मजूमदार, कलकत्ता विश्वविद्यालय में, दिसंबर, 2022 में
- 20. संक्रमण धातु-आधारित मिश्र धातुओं में बड़े मैग्नेटो-कार्यात्मक प्रतिक्रियाएं: मार्टेंसिटिक चरण संक्रमण में प्रोटोकॉल निर्भरता, सहेली सामंत, पर्यवेक्षक: कल्याण मंडल, कलकत्ता विश्वविद्यालय में, जनवरी, 2023 में
- 21. ऊर्जा संचयन के लिए नैनोसंरचित पीजोइलेक्ट्रिक सामग्री पर जांच, रनेहमयी हाजरा, पर्यवेक्षक: बर्णाली घोष (साहा), कलकत्ता विश्वविद्यालय में, जनवरी, 2023 में

- 22. तनावपूर्ण NdNiO3 फिल्मों की वृद्धि, संरचना और भौतिक **गृण**, पुरूषोत्तम माझी, पर्यवेक्षक: बरनाली घोष (साहा) और अरूप के रायचौधरी, कलकत्ता विश्वविद्यालय में, फरवरी, 2023 में
- 23. सुपरकंडिक्टंग सिस्टम के लिए क्वांटम फील्ड सैद्धांतिक द्वंद्व के कुछ अनुप्रयोग, शांतनु मुखर्जी, पर्यवेक्षक: अमिताभ लाहिड़ी, कलकत्ता विश्वविद्यालय में, फरवरी, 2023 में
- 24. प्रोटीन में विश्राम की घटनाओं की सूक्ष्मदर्शी अंतर्दृष्टि, अभिक घोष मौलिक, पर्यवेक्षक: जयदेब चक्रवर्ती, कलकत्ता विश्वविद्यालय में, मार्च, 2023 में
- 25. गैर संतुलन स्थितियों में नरम पदार्थ प्रणाली का हेरफेर, राहुल कर्मकार, पर्यवेक्षक: जयदेब चक्रवर्ती, कलकत्ता विश्वविद्यालय में, मार्च. 2023 में


पीएच.डी. पुरस्कार प्राप्त

- 1. धात् ऑक्साइड सेमीकंडक्टर नैनोस्ट्रक्चर और पतली फिल्मों का संक्षेषण, भौतिक गुण और अनुप्रयोग, चंदन सामंत, पर्यवेक्षक: बर्णाली घोष (साहा), कलकत्ता विश्वविद्यालय में, अप्रैल, 2022 में
- 2. प्रीक्लिनिकल रोग मॉडल में विभिन्न नैनोमटेरियल्स और एथनोबोटैनिकल अवयवों की चिकित्सीय क्षमता पर अध्ययन, अनिरुद्ध अधिकारी, पर्यवेक्षक: समीर कुमार पाल, कलकत्ता विश्वविद्यालय में, मई, 2022 में
- द्विपरत फेरोमैग्नेटिक-फेरोइलेक्ट्रिक पतली फिल्मों और संबंधित मुद्दों के इंटरफेस पर तापमान और आवृत्ति पर निर्भर विद्युत परिवहन घटना की जांच, सुभमिता सेनगुप्ता, पर्यवेक्षक: अरूप के रायचौधरी, कलकत्ता विश्वविद्यालय में, जून, 2022 में
- क्वांटम रूपेस-टाइम और पदार्थ पर कुछ सिद्धांतों और उनके संभावित निहिताथों पर, सायन कुमार पाल, पर्यवेक्षक: विश्वजीत चक्रवर्ती, कलकत्ता विश्वविद्यालय में, जून, 2022 में
- 5. विभिन्न क्वांटम सूचना सैद्धांतिक संसाधनों और उनके अनुप्रयोगों का अध्ययन, आनंद गोपाल मैती, पर्यवेक्षक: अर्चन एस मजूमदार और माणिक बनिक, कलकत्ता विश्वविद्यालय में, जून, 2022 में
- 6. शारीरिक रूप से प्रासंगिक इंजीनियर वातावरण में बायोमोलेक्यूलर मान्यता पर माइक्रोफ्लुइडिक-असिस्टेड ऑप्टिकल रपेक्ट्रोस्कोपिक अध्ययन, दीपांजन मुखर्जी, पर्यवेक्षक: समीर कुमार पाल, कलकत्ता विश्वविद्यालय में, जून, 2022 में

- 7. दो-घटक विशेषण प्रवाह समाधान का उपयोग करके वर्ग चर स्रोत जीआरएस 1915+105 के वर्णक्रमीय और समय गुण, अनुभव बनर्जी, पर्यवेक्षक: संदीप के चक्रवर्ती, कलकत्ता विश्वविद्यालय में, जुलाई, 2022 में
- 8. क्वांटम अंतरिक्ष-समय पर क्वांटम यांत्रिकी और क्वांटम क्षेत्र सिद्धांत के कुछ पहलू, पार्थ नंदी, पर्यवेक्षक: विश्वजीत चक्रवर्ती, कलकत्ता विश्वविद्यालय में, जुलाई, 2022 में
- 9. द्विआणविक और बायोमिमेटिक पहचान में फ्लोरोसेंट जांच पर अल्ट्राफास्ट गतिशीलता और स्पेक्ट्रोस्कोपिक जांच पर अध्ययन, एसके इमाद्ल इस्लाम, पर्यवेक्षक: राजीब कुमार मित्रा, कलकत्ता विश्वविद्यालय में, जुलाई, 2022 में
- 10. फेरोमैग्नेटिक पैटर्न वाले नैनोस्ट्रक्चर और मल्टीलेयर्स में अल्ट्राफास्ट स्पिन डायनेमिक्स, अनुलेखा दे, पर्यवेक्षक: अंजन बर्मन और राजीब कुमार मित्रा, कलकत्ता विश्वविद्यालय में, अगस्त, 2022 में
- 11. निम्न-आयामी इंटरैक्टिंग क्वांटम सिस्टम के थर्मोडायनामिक्स: एक हाइब्रिड सटीक विकर्णीकरण और घनत्व मैट्रिक्स पुनर्सामान्यीकरण समूह अध्ययन, सुदीप कुमार साहा, पर्यवेक्षक: मनोरंजन कुमार, कलकत्ता विश्वविद्यालय में, सितंबर, 2022 में
- 12. कैटेलिसिस में संभावित अनुप्रयोग के लिए नैनोस्केल मिश्र और धातु ऑक्साइड का संश्लेषण और लक्षण वर्णन, अर्नब सामंत, पर्यवेक्षक: समीर कुमार पाल और सुभ्रा जाना, कलकत्ता विश्वविद्यालय में, अक्टूबर, 2022 में
- 13. द्वि-आयामी (2डी) सामग्री के लिए ऑप्टिकल बीम शिफ्ट *की जांच*, आकाश दास, पर्यवेक्षक: माणिक प्रधान, कलकत्ता विश्वविद्यालय में, अक्टूबर, 2022 में
- 14. होलोग्राफिक उलझाव एंट्रोपी और जटिलता के पहलू, सौरव करार, पर्यवेक्षक: सुनंदन गंगोपाध्याय और अर्चन एस मजूमदार, कलकत्ता विश्वविद्यालय में, अक्टूबर, 2022 में
- 15. दो घटक विशेषण प्रवाह के प्रकाश में अति-विशाल ब्लैक होल के वर्णक्रमीय और अस्थायी गुण, प्रांतिक नंदी, पर्यवेक्षक: संदीप के चक्रवर्ती, कलकत्ता विश्वविद्यालय में, नवंबर, 2022 में
- 16. उपन्यास और कार्यात्मक सामग्रियों पर पहला सिद्धांत अध्ययन, श्रेया दास, पर्यवेक्षक: तनुश्री साहा दासगुप्ता, कलकत्ता विश्वविद्यालय में, नवंबर, 2022 में
- 17. जैव-आणविक परिसरों पर सृक्ष्म अध्ययन, षष्ठी चरण मंडल, पर्यवेक्षक: जयदेब चक्रवर्ती, कलकत्ता विश्वविद्यालय में, नवंबर, 2022 में

- 18. ग्रहीय नीहारिकाओं का बह्तरंगदैर्घ्य अध्ययन, राहुल बंदोपाध्याय, पर्यवेक्षक: रामकृष्ण दास, कलकत्ता विश्वविद्यालय में, नवंबर, 2022 में
- 19. फेरोमैग्नेटिक नैनोस्ट्रक्चर में स्पिन डायनेमिक्स, कार्तिक अधिकारी, पर्यवेक्षक: अंजन बर्मन, यादवपुर विश्वविद्यालय में, 2022 में
- 20. 2डी और 3डी सीमित चुंबकीय संरचना और पतली फिल्म हेटेरोस्ट्रक्चर में स्पिन डायनेमिक्स, सौरव साहू, पर्यवेक्षक: अंजन बर्मन, कलकत्ता विश्वविद्यालय में, जनवरी, 2023 में
- 21. संक्रमण धातु ऑक्साइड आधारित चुंबकीय तरल पदार्थों की

- रियोलॉजिकल प्रतिक्रिया में सुधार, प्रियंका साहा, पर्यवेक्षक: कल्याण मंडल, कलकत्ता विश्वविद्यालय में, जनवरी, 2023 में
- 22. एक फोटोइलेक्ट्रोकेमिकल सेल में सौर ऊर्जा संचयन: पृथ्वी पर प्रचुर मात्रा में सामग्री के आधार पर फोटोएनोड का विकास, दीपांजन मैती, पर्यवेक्षक: कल्याण मंडल, कलकत्ता विश्वविद्यालय में. फरवरी. 2023 में
- 23. जैव अणुओं की संरचना, कार्यक्षमता और गतिविधि पर भीड़ एजेंटों के प्रभाव पर कुछ अध्ययन, सैकत पाल, पर्यवेक्षक: राजीब कुमार मित्रा, कलकत्ता विश्वविद्यालय में, फरवरी, 2023 में

अनुसंधान छात्र – पीएच.डी. कार्यक्रम (सम्मिलित वर्ष के अनुसार)

	विजिटिंग रिसर्चर	पर्यवेक्षक	
2016	-2017 :		
1	शेख इमादुल इस्लाम (UGC)	राजीव कुमार मित्रा	31/07/2022 तक
2	षष्ठी चरण मण्डल (CSIR)	जयदेव चक्रवर्ती	22/12/2022 तक
3	पार्थ नंदी	विश्वजीत चक्रवर्ती	25/07/2022तक
4	सायन कुमार पाल (UGC)	विश्वजीत चक्रवर्ती	25/07/2022तक
5	आकाश दास (UGC)	माणिक प्रधान	31/12/2022 तक
6	सैकत पाल (CSIR)	राजीव कुमार मित्रा	31/12/2022 तक
7	प्रियंका साहा (INSPIRE)	कल्याण मण्डल	12/12/2022 तक
8	दीपांजन माइति (CSIR)	कल्याण मण्डल	14/12/2022 तक
9	शुभमिता सेनगुप्ता (UGC)	बर्णाली घोष (साहा) (O)	30/06/2022तक
10	सुमंती पात्र	प्रिया महादेवन	31/07/2022 तक

	वरिष्ठ अनुसंधान अधिसदस्य	पर्यवेक्षक	
2010	6-2017:		
11	कौशिक मण्डल (UGC)	मनोरंजन कुमार (O)	31/05/2022 तक
12	बिहलन भट्टाचार्य (INSPIRE)	अर्चन एस मजूमदार	08/06/2022तक
2017	7-2018:		
13	एडविन टेंडोंग (TWAS-BOSE)	तनुश्रि साहा दासगुप्ता	02/08/2022तक
14	सौमा मजूमदार	गौतम गंगोपाध्याय (O)	31/07/2022 तक
15	अनिर्वाण मुखर्जी (INSPIRE)	पुण्यव्रत प्रधान	
16	शुभदीप मौलिक (CSIR)	अतीन्द्र नाथ पाल	
17	विशाल कुमार अगरवाल	अरूप कुमार रायचौधरी एवं माणिक प्रधान	31/07/2022 तक
18	अरुंधति अधिकारी	अंजन बर्मन	
19	पार्थ पाइन	राजीव कुमार मित्रा	31/07/2022 तक
20	परुषोत्तम माजी	अरूप कुमार रायचौधरी एवं बर्णाली घोष (साहा)	14/02/2023तक
21	दीधिति भट्टाचार्य	समित कुमार राय एवं राजीव कुमार मित्रा	31/07/2022तक
22	कौस्तव दत्ता (INSPIRE)	अंजन बर्मन	31/01/2023 तक
23	अमृत कुमार मण्डल	अंजन बर्मन	
24	शेख सनिउर रहमान (UGC)	मनोरंजन कुमार	
25	ऋतुपर्णा मण्डल (INSPIRE)	सुनंदन गंगोपाध्याय	25/07/2022तक
26	अभिक घोष मौलिक (INSPIRE)	जयदेव चक्रवर्ती	
27	अर्पण बेरा (CSIR)	समीर कुमार पाल	31/03/2023तक
28	विश्वजीत पाबी (INSPIRE)	अतीन्द्र नाथ पाल	
29	ध्रुबज्योति माझी (INSPIRE)	रंजीत विश्वास	
30	इंद्राणी कर	तिरुपतइयाह सेट्टी	13/03/2023तक
31	जयंत मण्डल (INSPIRE)	रंजीत विश्वास	
32	रफीकुल आलम (INSPIRE)	अतीन्द्र नाथ पाल	
33	राहुल कर्मकार (INSPIRE)	जयदेव चक्रवर्ती	
34	शुभ्राशिष मुखर्जी(INSPIRE)	समित कुमार रे एवं अतीन्द्र नाथ पाल	13/03/2023तक

	वरिष्ठ अनुसंधान अधिसदस्य	पर्यवेक्षक	
35	सिद्धार्थ विश्वास (INSPIRE)	सौमेन मण्डल	
36	सुदीप्ता चटर्जी	बर्णाली घोष (साहा)	
2018	g-2019:		
37	सुमना पाइन	राजीव कुमार मित्रा	
38	दीपांजन मुखर्जी	समीर कुमार पाल	15/05/2022 तक
39	विश्वजीत पांडा	माणिक प्रधान	
40	नारायण चन्द्र माइति (CSIR)	रंजीत विश्वास	
41	शोभन देव मण्डल (CSIR)	शकुंतला चटर्जी	
42	प्रेमाशीष कुमार	गौतम गंगोपाध्याय	
43	अनीश दास	विश्वजीत चक्रवर्ती	
44	मोहम्मद नूर हसन (CSIR)	समीर कुमार पाल	
45	तन्मय चक्रवर्ती (CSIR)	पुण्यव्रत प्रधान	
46	सुष्मिता मण्डल	समीर कुमार पाल	
47	दीपशिखा दास	पुण्यव्रत प्रधान एवं शकुंतला चटर्जी	
48	प्रसून बोयाल (CSIR)	प्रिया महादेवन	
49	देवायन मण्डल (CSIR)	प्रिया महादेवन	
50	ज्योतिर्मय साऊ (UGC)	मनोरंजन कुमार	
51	मोनालिसा चटर्जी (INSPIRE)	मनोरंजन कुमार	
52	सुष्मिता चांगदार (UGC)	तिरुपतइयाह सेट्टी	
53	प्रताप कुमार पाल (CSIR)	अंजन बर्मन	
	C (1) (2) (3)		
54	शिवम मिश्रा (INSPIRE)	प्रिया महादेवन	06/01/2023तक
	ाशवम गमश्रा (INSPIRE))-2020 :		06/01/2023तक
)-2020 : कृशनेंदु पात्र	प्रिया महादेवन	06/01/2023तक
2019)-2020 : कृशनेंदु पात्र रिया साहा	प्रिया महादेवन राजीव कुमार मित्रा	06/01/2023तक
2019 55	7-2020 : कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती	06/01/2023तक
2019 55 56	२-2020 : कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास	06/01/2023तक
55 56 57	7-2020 : कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा	06/01/2023तक
55 56 57 58 59 60	कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभजित सिंह सोमा दत्ता	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन	06/01/2023तक
55 56 57 58 59	9-2020 : कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभजित सिंह सोमा दत्ता कंचन मीणा (CSIR)	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव	06/01/2023तक
55 56 57 58 59 60 61 62	• कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभजित सिंह सोमा दत्ता कंचन मीणा (CSIR)	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन	06/01/2023तक
55 56 57 58 59 60 61 62 63	कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभजित सिंह सोमा दत्ता कंचन मीणा (CSIR) श्रेया पाल (CSIR)	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन मनोरंजन कुमार	06/01/2023तक
55 56 57 58 59 60 61 62	कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभजित सिंह सोमा दत्ता कंचन मीणा (CSIR) श्रेया पाल (CSIR) मनोदीप राऊत अभिनंदन दास	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन मनोरंजन कुमार सुमन चक्रवर्ती	06/01/2023तक
55 56 57 58 59 60 61 62 63 64 65	कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभजित सिंह सोमा दत्ता कंचन मीणा (CSIR) श्रेया पाल (CSIR) मनोदीप राऊत अभिनंदन दास	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन मनोरंजन कुमार सुमन चक्रवर्ती रामकृष्ण दास	06/01/2023तक
55 56 57 58 59 60 61 62 63 64 65 66	कृशनेंदु पात्र रिया साहा कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभिजत सिंह सोमा दत्ता कंचन मीणा (CSIR) श्रेया पाल (CSIR) मनोदीप राऊत अभिनंदन दास शुभिजत कर अनिर्वाण पॉल (CSIR)	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन मनोरंजन कुमार सुमन चक्रवर्ती रामकृष्ण दास जयदेव चक्रवर्ती	06/01/2023तक
55 56 57 58 59 60 61 62 63 64 65 66 67	कृशनेंदु पात्र रिया साहा कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभजित सिंह सोमा दत्ता कंचन मीणा (CSIR) श्रेया पाल (CSIR) मनोदीप राऊत अभिनंदन दास शुभजित कर अनिर्वाण पॉल (CSIR)	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन मनोरंजन कुमार सुमन चक्रवर्ती रामकृष्ण दास जयदेव चक्रवर्ती माणिक प्रधान	06/01/2023तक
55 56 57 58 59 60 61 62 63 64 65 66 67 68	• कृशनेंदु पात्र रिया साहा कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभिजत सिंह सोमा दत्ता कंचन मीणा (CSIR) श्रेया पाल (CSIR) मनोदीप राऊत अभिनंदन दास शुभिजत कर अनिर्वाण पॉल (CSIR) अर्धेंदु पाल गेसेसेव रेता हबती (TWAS-BOSE)	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन मनोरंजन कुमार सुमन चक्रवर्ती रामकृष्ण दास जयदेव चक्रवर्ती	06/01/2023तक
55 56 57 58 59 60 61 62 63 64 65 66 67 68	• कृशनेंदु पात्र रिया साहा कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभजित सिंह सोमा दत्ता कंचन मीणा (CSIR) श्रेया पाल (CSIR) मनोदीप राऊत अभिनंदन दास शुभजित कर अनिर्वाण पॉल (CSIR) अधेंदु पाल गेसेसेव रेता हबती (TWAS-BOSE)	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन मनोरंजन कुमार सुमन चक्रवर्ती रामकृष्ण दास जयदेव चक्रवर्ती माणिक प्रधान रामकृष्ण दास	06/01/2023तक
55 56 57 58 59 60 61 62 63 64 65 66 67 68 2020	• कृशनेंदु पात्र रिया साहा कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभिजत सिंह सोमा दत्ता कंचन मीणा (CSIR) श्रेया पाल (CSIR) मनोदीप राऊत अभिनंदन दास शुभिजत कर अनिर्वाण पॉल (CSIR) अर्थेंदु पाल गेसेसेव रेता हबती (TWAS-BOSE)	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन मनोरंजन कुमार सुमन चक्रवर्ती रामकृष्ण दास जयदेव चक्रवर्ती माणिक प्रधान रामकृष्ण दास	06/01/2023तक
55 56 57 58 59 60 61 62 63 64 65 66 67 68 2020 70	• कृशनेंदु पात्र रिया साहा कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभजित सिंह सोमा दत्ता कंचन मीणा (CSIR) श्रेया पाल (CSIR) मनोदीप राऊत अभिनंदन दास शुभजित कर अनिर्वाण पॉल (CSIR) अर्धेंदु पाल गेसेसेव रेता हबती (TWAS-BOSE) 9-2021: राजीव कुंभकार (INSPIRE) शशांक शेखर पांडे(CSIR)	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन मनोरंजन कुमार सुमन चक्रवर्ती रामकृष्ण दास जयदेव चक्रवर्ती माणिक प्रधान रामकृष्ण दास	06/01/2023तक
55 56 57 58 59 60 61 62 63 64 65 66 67 68 2020	• कृशनेंदु पात्र रिया साहा कृशनेंदु पात्र रिया साहा कृशनेंदु सिन्हा अमृता मण्डल शुभिजत सिंह सोमा दत्ता कंचन मीणा (CSIR) श्रेया पाल (CSIR) मनोदीप राऊत अभिनंदन दास शुभिजत कर अनिर्वाण पॉल (CSIR) अर्थेंदु पाल गेसेसेव रेता हबती (TWAS-BOSE)	प्रिया महादेवन राजीव कुमार मित्रा सुमन चक्रवर्ती रंजीत विश्वास राजीव कुमार मित्रा अंजन बर्मन प्रोसेंजित सिंघा देव अंजन बर्मन मनोरंजन कुमार सुमन चक्रवर्ती रामकृष्ण दास जयदेव चक्रवर्ती माणिक प्रधान रामकृष्ण दास	06/01/2023πΦ

	वरिष्ठ अनुसंधान अधिसदस्य	पर्यवेक्षक
73	मनोज गुप्ता (CSIR)	तनुश्री साहा दासगुप्ता
74	शिंजिनी पॉल (INSPIRE)	प्रिया महादेवन
75	कौशिक प्रधान	तनुश्री साहा दासगुप्ता
76	इंद्रजीत घोष	अमिताभ लाहिड़ी
77	रिया बारीक	अमिताभ लाहिड़ी
78	रिक निरंजन मुखर्जी (INSPIRE)	रंजीत विश्वास एवं प्रदीप के घोरई (IISER-K)
79	सुचेतना मुखोपध्याय(INSPIRE)	अंजन बर्मन एवं चिरंजीत मित्रा (IISER-K)
80	अंकित मण्डल (INSPIRE)	प्रशांत पाणिग्रही (IISER-K) एवं सुनंदन गंगोपाध्याय
81	अरिफुल हॉक (CSIR)	तापस बाग
82	सनुजा कुमार खूंटिया (UGC)	प्रिया महादेवन
83	चंद्रदीप खमराई (CSIR)	शकुंतला चटर्जी
84	ऋत्विक सरकार (CSIR)	ऊर्णा बसु
85	रमेश प्रामाणिक (CSIR)	शकुंतला चटर्जी

	कनिष्ठ अनुसंधान अधिसदस्य	पर्यवेक्षक	
2021	-2022:		
86	अभिजीत मण्डल	रामकृष्ण दास	
87	बिभास मल्लिक (INSPIRE)	अर्चन एस मजूमदार	
88	सहेली मुखर्जी	अर्चन एस मजूमदार	
89	निशांत गर्ग	तापस बाग	
90	सौम्यदीप्त चक्रवर्ती	माणिक प्रधान	
91	चन्दन कुमार	अंजन बर्मन	
92	अरुनांगशु पांडा	नितेश कुमार	13/03/2023तक
93	राज गुप्ता (CSIR)	कल्याण मण्डल	30/06/2022तक
94	सैकत मित्रा	अभिजीत चौधरी एवं बर्णाली घोष (साहा)	
95	सायन घोष (INSPIRE)	मनोरंजन कुमार	
96	शिवम जानी	प्रिया महादेवन	
97	सौमिक दास	अभिजीत चौधरी	02/08/2022तक
98	सौम्य घोरई (UGC)	तिरुपतइ्याह सेट्टी	
99	सौरभ साहा (INSPIRE)	मनोरंजन कुमार	
100	सौरभ सरकार (INSPIRE)	कल्याण मण्डल	
101	रूपायन साहा	पुण्यव्रत प्रधान	
102	सहेली सामंत	कल्याण मण्डल	26/12/2022 तक
103	रनेहमयी हाज़रा	बर्णाली घोष (साहा)	11/01/2023 तक
104	विकास चंद्र मिश्रा (CSIR)	प्रदीप एस पचफूले	
2022	-2023:		
105	अमन दास (UGC)	तापस बाग	
106	अरित्र मारिक (UGC)	राजीव कुमार मित्रा	
107	शाह इंताजुल हॉक (UGC)	राजीव कुमार मित्रा	
108	दयाल दास (UGC)	अतीन्द्र नाथ पाल	

	कनिष्ठ अनुसंधान अधिसदस्य	पर्यवेक्षक	
109	मुकुल विश्वास (UGC)	अभिजीत चौधरी	
110	शुभजित मण्डल (UGC)	साकिब शमीम	
111	शेख साहिल	रामकृष्ण दास	
112	सुदीप प्रामाणिक	सौमेन मण्डल	
113	अभिरूप नायक	राजीव कुमार मित्रा	16/12/2022 तक
114	अनुश्री सेन	राजीव कुमार मित्रा एवं जयदेव चक्रवर्ती	
115	विधान कुंभकार (UGC)	प्रदीप एस पचफूले	
116	इंद्रायणी पात्र (UGC)	माणिक प्रधान	
117	पल्लवी रॉय	शकुंतला चटर्जी एवं गौतम गंगोपाध्याय	
118	सबूज मण्डल	जयदेव चक्रवर्ती	
119	सौस्तव बोस	रंजीत विश्वास	07/11/2022 तक
120	श्रेयान भौमिक	सुमन चक्रवर्ती	
121	सुतनु मुखोपाध्याय	सुमन चक्रवर्ती	
122	अनुतोष विश्वास	मनोरंजन कुमार एवं तनुश्री साहा दासगुप्ता	
123	अन्येश सरस्वती	नितेश कुमार	
124	विक्रम बघीरा (UGC)	अंजन बर्मन	
125	मधुरिता दास	प्रिया महादेवन	
126	मन्मय मोल्ला	तनुश्री साहा दासगुप्ता	26/08/2022 तक
127	राजेश जाना	अभिजीत चौधरी	
128	शुभंकर दे	अतीन्द्र नाथ पाल	
129	स्वप्नमय प्रामाणिक (UGC)	अभिजीत चौधरी	
130	गोविंद लाल सिद्धार्थ (CSIR)	माणिक बणिक	
131	साहिल गोपालकृष्ण नायक (CSIR)	माणिक बणिक	
132	प्रशांत सरकार (UGC)	तनुश्री साहा दासगुप्ता एवं गौतम देव मुखर्जी (IISER-K)	
133	मुहम्मद उस्मान शेहु (TWAS-BOSE)	तापस बाग	
134	डोरोथी मिउजीओ म्वंजिया (TWAS-BOSE)	सौमेन मण्डल	

अनुसंधान छात्र – इंटीग्रेटेड पीएच.डी. कार्यक्रम (शामिल होने के वर्ष तक)

विजिटिंग रिसर्चर	पर्यवेक्षक	
2014–2015:		
135 आनंद गोपाल माइति	अर्चन एस मजूमदार	23/07/2022तक
136 सौरव साहू	अंजन बर्मन	31/07/2022तक
2016-2017:		
137 अर्णव सामंत	समीर कुमार पाल	15/09/2022तक

वरिष्ठ अनुसंधान अधिसदस्य	पर्यवेक्षक	
2014–2015:		
138 रुचि पांडे	रामकृष्ण दास	31/07/2022तक
2015–2016:		
139 अनुपम गोराई	कल्याण मण्डल	

	वरिष्ठ अनुसंधान अधिसदस्य	पर्यवेक्षक	
140	अतुल राठोड़	पुण्यव्रत प्रधान (O)	
141	शांतनु मुखर्जी	अमिताभ लाहिड़ी	28/02/2023तक
142	सुदीप मजूमदार	अंजन बर्मन एवं राजीव कुमार मित्रा	
143	सूर्य नारायण पांडा	अंजन बर्मन	31/07/2022तक
144	स्वर्णाली हाइट	कल्याण मण्डल	
2016	-2017:		
145	अचिंत्य लो	तिरुपतइयाह सेट्टी	
146	अंकुर श्रीवास्तव	सुनंदन गंगोपाध्याय	
147	अन्वेषा चक्रवर्ती	विश्वजीत चक्रवर्ती	
148	सायन राऊत	तिरुपतइयाह सेट्टी	
149	नीरज कुमार	सुनंदन गंगोपाध्याय	
2017	-2018:		
150	निवेदिता पान	समीर कुमार पाल	
151	रिजु पाल	अतीन्द्र नाथ पाल	
152	समीर रोम	तनुश्री साहा दासगुप्ता	
153	शुभम पुरवर	तिरुपतइयाह सेट्टी	
154	मंजरी दत्ता	सुनंदन गंगोपाध्याय	
2018	-2019:		
155	सोहम साहा	कल्याण मण्डल	
156	अनिमेष हाज़रा	पुण्यव्रत प्रधान	
157	अभिक सासमल	जयदेव चक्रवर्ती	
158	ईशिता जाना	कल्याण मण्डल	
159	अनिर्वाण रायचौधरी	सुनंदन गंगोपाध्याय	
160	सौमेन मण्डल	माणिक प्रधान	
161	राजदीप विश्वास	तनुश्री साहा दासगुप्ता	
162	अर्णव चक्रवर्ती	अमिताभ लाहिड़ी	

	कनिष्ठ अनुसंधान अधिसदस्य	पर्यवेक्षक	
2019	-2020:		
163	अजय शर्मा	शकुंतला चटर्जी एवं देवांजन बोस	
164	अर्णव पॉल	तनुश्री साहा दासगुप्ता	
165	बणिक राई	नितेश कुमार	
166	दिव्येंदु माइति	अमिताभ लाहिड़ी	
167	जे श्रीधर मोहंती	कल्याण मण्डल	
168	जयर्शी भट्टाचार्य	गौतम गंगोपाध्याय	
169	सागर कुमार माइति	सुमन चक्रवर्ती	
170	सोहम सेन	सुनंदन गंगोपाध्याय	
171	सौम्यव्रत हाज़रा	अर्चन एस मजूमदार	20/07/2022तक
172	सौरव कंठ	अमिताभ लाहिड़ी	
	2020-2021:		
173	अनन्या चक्रवर्ती	माणिक बणिक	

कनिष्ट	अनुसंधान अधिसदस्य	पर्यवेक्षक	
174	प्रीतम रॉय	अर्चन एस मजूमदार	
175	सुदीप चक्रवर्ती	अर्चन एस मजूमदार	
176	देवांगशु रॉय	प्रोसेंजित सिंह देव	

अंशकालिक शोध छात्र – पीएच.डी. कार्यक्रम आशीष साहा, कल्याणी विश्वविद्यालय, सुनंदन गंगोपाध्याय के नेतृत्व में सुकान्त भट्टाचार्य, पश्चिम बंगाल राज्य विश्वविद्यालय, सुनंदन गंगोपाध्याय के नेतृत्व में

परियोजना के फ़ेलों / सहायक / प्रशिक्षु	पर्यवेक्षक	
2019-2020:		
अरुण कुमार दास (Project SRF)	अर्चन एस मजूमदार	
शुभंकर बेरा (Project SRF)	अर्चन एस मजूमदार	
2020-2021:		
सुरंजना चक्रवर्ती (Project Assistant)	अनूप घोष	
2021-2022:		
नेहा भट्टाचार्य (Project Research Staff)	समीर कुमार पाल	31/03/2023तक
रिया घोष (Project SRF)	समीर कुमार पाल	
अर्णव मुखर्जी (Project JRF)	अर्चन एस मजूमदार	
सौम्यदीप दे (Project Assistant)	अली हुसैन खान	31/07/2022तक
अवन्ती चक्रवर्ती (Project Assistant)	अली हुसैन खान	

इंटीग्रेटेड पीएच.डी. कार्यक्रम	पर्यवेक्षक	
2020-2021:		
राजद्वीप भर		31/10/2022तक
2021-2022:		
अनीश चौधरी		
देवराज दत्ता		
सायरी भट्टाचार्य		
देवेन्द्र मेहर		
पार्थ पात्र		
प्राप्ति मुखर्जी		
 प्रेरक गुप्ता		
श्रावस्ती बनर्जी		
शौभिक पॉल		
2022-2023:		
अर्पिता जाना		
दिप्येंदु धर		
केशव साऊ		
नज़रुल अंसारी		
राकेश घोष		
रुद्र प्रसाद सरकार		

इंटीग्रेटेड पीएच.डी. कार्यक्रम	पर्यवेक्षक	
साक्षी चौधरी		
शाहीरा शहीद		
सौरव मण्डल		
सुमित यादव		
त्रिशा मिश्रा		

अधिष्ठाता, शैक्षणिक कार्यक्रम

amitatha Lalini

विस्तारित आगंतुक और लिंकेज कार्यक्रम

सामान्य गतिविधियाँ

इम्पाक्ट-2022: पूर्व छात्र सम्मेलन

केंद्र ने अतीत और वर्तमान शोधकर्ताओं के बीच संबंधों को नवीनीकृत और मजबूत करने के उद्देश्य से 28 मई, 2022 को IMPACT-2022: पूर्व छात्र बैठक का आयोजन किया। पूर्व छात्र सदस्यों ने ऑनलाइन और ऑफलाइन मोड के माध्यम से अपनी शैक्षणिक यात्रा साझा की। भविष्य के विकास के लिए सीखने में नए अवसर पैदा करने और शिक्षा और उद्योग में अत्याधुनिक अनुसंधान के संबंध में प्रदर्शन की आत्म-जांच करने के लिए एक पैनल चर्चा भी हुई। कार्यक्रम के बाद केंद्र के शोधार्थियों द्वारा सांस्कृतिक कार्यक्रम आयोजित किये गये।

स्थापना दिवस

केंद्र ने 13 जून को अपना स्थापना दिवस मनाया। इस अवसर पर भारतीय विज्ञान शिक्षा एवं अनुसंधान संस्थान, पुणे के भौतिकी विभाग के प्रोफेसर उमाकांत डी. रापोल ने 'बोस-आइंस्टीन संघनन' पर व्याख्यान दिया।

इंटरैक्टिव सत्र

सुश्री शीना मिश्रा घोष (सलाहकार मनोवैज्ञानिक) ने 23.05.2022 को शोध विद्वानों के साथ नव सामान्य में मानसिक स्वास्थ्य स्थिति पर चर्चा करने के लिए इंटरैक्टिव सत्र आयोजित किया।

आगंतुक और लिंकेज कार्यक्रम

आउटरीच गतिविधि

राष्ट्रीय प्रौद्योगिकी दिवस 2022

कंद्र ने 11 मई 2022 को राष्ट्रीय प्रौद्योगिकी दिवस मनाया। डॉ. बी.एन. जगताप, प्रोफेसर, भौतिकी विभाग, भारतीय प्रौद्योगिकी संस्थान बॉम्बे, मुंबई और अध्यक्ष, शासी निकाय, एसएनबीएनसीबीएस ने स्वागत भाषण दिया। प्रोफेसर समित के रे, सहायक प्रोफेसर, एसएनबीएनसीबीएस ने केंद्र की तकनीकी गतिविधियों पर जानकारी दी। प्रोफेसर इंद्रनील मन्ना, जेसी बोस फेलो और कुलपति, बिड़ला इंस्टीट्यूट ऑफ टेक्नोलॉजी (बीआईटी) ने 'विज्ञान-इंजीनियरिंग-प्रौद्योगिकी तालमेल और आईएनएई की भूमिका' पर व्याख्यान दिया। प्रोफेसर सुमन चक्रवर्ती, प्रोफेसर, मैकेनिकल इंजीनियरिंग, भारतीय प्रौद्योगिकी संस्थान-खड़गपुर ने 'फ्लिपिंग विद द फ्लो - पर्सपेक्टिव्स ऑफ पज़लिंग फ्लूइड डायनेमिक्स एंड ह्यूमन हेल्थ' विषय पर व्याख्यान दिया।'.

ओपन डे 2023

हाई स्कूल, स्नातक और स्नातकोत्तर विज्ञान के छात्रों, उभरते अनुसंधान विद्वानों और भौतिकी शिक्षकों को 129वीं जयंती के अवसर

पर आयोजित एक "ओपन डे" के दौरान एस.एन. बोस नेशनल सेंटर फॉर बेसिक साइंसेज द्वारा आयोजित अत्याध्निक वैज्ञानिक अनुसंधान कार्यों से अवगत कराया गया। प्रोफेसर सत्येन्द्र नाथ बोस की. कलकत्ता विश्वविद्यालय में भौतिकी के प्रोफेसर प्रोफेसर अनिर्बान कुंडू के एक लोकप्रिय विज्ञान व्याख्यान में डार्क मैटर, ब्लैक होल और यूनिफाइड फील्ड थ्योरी के बारे में बताया गया, जो यहां किए जा रहे कुछ प्रदर्शनों के माध्यम से आम लोगों से जुड़ने के लिए आयोजित किया गया था। निदेशक प्रोफेसर तनुश्री साहा दासगुप्ता ने केंद्र में किए जा रहे अनुसंधान के विविध क्षेत्रों का अवलोकन दिया। डीन, डॉ. अमिताभ लाहिडी ने दर्शकों को याद दिलाया कि एस.एन. बोस का मौलिक पेपर "प्लैंक का नियम और प्रकाश क्वांटम परिकल्पना" 1924 में प्रकाशित हुआ था। इन सौ वर्षों में, विज्ञान ने बहुत तेजी से प्रगति की है। एस.एन. बोस सेंटर नवीनतम विकास के साथ तालमेल बनाए रख रहा है और, कई मामलों में, आगे बढ़कर नेतृत्व कर रहा है।.

आगंत्कों को बोस संग्रह में ले जाया गया, जहां उन्हें चित्रों, पत्रों, प्रकाशित पत्रों और कलाकृतियों के माध्यम से बोस के जीवन और कार्यों की झलक दिखाई गई, और तीन प्रयोगशालाओं में भी ले जाया गया। नैनो लैब में, उन्होंने देखा कि कैसे पल्स लेजर जमाव विधि का उपयोग करके नैनोस्ट्रक्चर बनाए जाते हैं, स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप लैब में, उन्होंने देखा कि कैसे इलेक्ट्रॉन बीम का उपयोग छोटी वस्तुओं की सुपर आवर्धित छवियों को 'पेंट' करने के लिए किया जाता है, और एक्स-रे क्रिस्टलोग्राफी लेब में , उन्होंने देखा कि क्रिस्टल में परमाणुओं की व्यवस्था को समझने के लिए एक्स-रे विवर्तन विधि का उपयोग कैसे किया जाता है। एक्स-रे क्रिस्टलोग्राफी एस.एन. बोस द्वारा अपनाए गए अनुसंधान के पसंदीदा क्षेत्रों में से एक था। आगंतुकों को केंद्र के सुपरकंप्यूटिंग हब में क्रे सुपरकंप्यूटर की एक झलक भी मिली। दिन के यात्रा कार्यक्रम में अंतिम आइटम रोल-ऑफ़ छत के साथ 8-इंच दूरबीन के माध्यम से आकाश को देखना था। मेनू में चार खगोलीय वस्त्एँ चंद्रमा, बृहस्पति और उसके चार चंद्रमा, मंगल और शनि थे। अधिकांश युवा आगंतुकों ने अपने जीवन में पहली बार चंद्रमा और बृहस्पति ग्रहों के क्रेटर देखे।

राष्ट्रीय विज्ञान दिवस 2023

कार्यक्रम में कुल 75 स्नातक छात्रों ने बड़े उत्साह के साथ भाग लिया। उद्घाटन सत्र के बाद भारतीय विज्ञान शिक्षा और अनुसंधान संस्थान कोलकाता के प्रोफेसर दिब्येंदु नंदी द्वारा "लिविंग विद स्टार्स" विषय पर लोकप्रिय विज्ञान वार्ता हुई। बाद में प्रतिभागियों ने एस.एन. बोस संग्रह का दौरा किया। अंतर-कॉलेज प्रश्नोत्तरी प्रतियोगिता और अंतर-कॉलेज पोस्टर प्रतियोगिता नामक दो प्रतिस्पर्धी कार्यक्रम थे।

शैक्षणिक भ्रमण

एम. एससी के छात्र। इलेक्ट्रॉनिक्स (द्वितीय सेमेस्टर) ने धनमंजुरी विश्वविद्यालय, इम्फाल, मणिपुर के अपने शिक्षकों के साथ अपने बाहरी शैक्षणिक दौरे के हिस्से के रूप में 10-11 अक्टूबर, 2022 के दौरान एस.एन. बोस नेशनल सेंटर फॉर बेसिक साइंसेज का दौरा किया है। अनुसंधान विद्वानों द्वारा वैज्ञानिक वार्ता, ग्रहों और सितारों के दूरबीन दृश्य, प्रायोगिक प्रयोगशालाओं और एस.एन. बोस पुरालेख की यात्रा सहित अकादिमक यात्रा को बड़ी रुचि और उत्साह के साथ सफलतापूर्वक पूरा किया गया है।

ग्रीष्मकालीन अनुसंधान कार्यक्रम:

	<u> </u>		एसएनबी में	
क्र.		संबंधन		
सं.	नाम	संबंधन	विभाग के अंतर्गत	एसएनबी में गाइड
	4 :	0.0	शामिल हुए	~ ~ ~
1	कौस्तव पांडा	कलकत्ता विश्वविद्यालय	एएचईपी	डॉ अतींद्र नाथ पाल
2	देबलीना दास	आईआईटी (आईएसएम), धनबाद	एएचईपी	डॉ बरनाली घोष (साहा)
3	हरेशभाई राजूभाई जादव	सरदार पटेल विश्वविद्यालय, गुजरात	एएचईपी	डॉ बरनाली घोष (साहा)
4	देबोलिना बिस्वास	सेंट जेवियर्स कॉलेज (स्वायत्त), कोलकाता	एएचईपी	डॉ. देबंजन बोस
		इंटर-यूनिवर्सिटी सेंटर फॉर एस्ट्रोनॉमी एंड		
5	रूपम सामंत	एस्ट्रोफिजिक्स (आईयूसीएए) - सावित्रीबाई फुले पुणे	एएचईपी	डॉ. देबंजन बोस
		यूनिवर्सिटी (एसपीपीयू)		
6	अंशुमान साहू	एनआईएसईआर, भुवनेश्वर	एएचईपी	डॉ नितेश कुमार
7	आरुषि कुमार	वेल्लोर इंस्टीट्यूट ऑफ टेक्नोलॉजी, वेल्लोर	एएचईपी	डॉ. रामकृष्ण दास
8	मोहम्मद समसूर रहमान	एसकेबीयू	एएचईपी	डॉ. रामकृष्ण दास
9	शौविक मंडल	राजाबाजार साइंस कॉलेज	एएचईपी	डॉ. रामकृष्ण दास
10	संप्रीति रॉय	कलकत्ता विश्वविद्यालय	एएचईपी	डॉ. सुनंदन गंगोपाध्याय
11	देबलीना कर	बनारस हिंदू विश्वविद्यालय	एएचईपी	डॉ. तापस बाग
12	सुभ्रदीप कर्मकार	एसकेबीयू	एएचईपी	डॉ. तापस बाग
13	अभिनव एम	पंजाब केंद्रीय विश्वविद्यालय	एएचईपी	डॉ. थिरुपथैया शेट्टी
14	रिद्धिमा साधु	बिरला इंस्टीट्यूट ऑफ टेक्नोलॉजी, मेसरा	एएचईपी	डॉ. थिरुपथैया शेट्टी
15	नंदिता देबनाथ	कलकत्ता विश्वविद्यालय	एएचईपी	प्रो. अर्चन एस. मजूमदार
16	सौमित रॉय	आरकेएमवेरी	एएचईपी	प्रो. अर्चन एस. मजूमदार
17	सौमिली नाथ	कलकत्ता विश्वविद्यालय	एएचईपी	प्रो. प्रिया महादेवन
	\. 0 \.	महाराजा श्रीराम चंद्र भांजा देव विश्वविद्यालय,	. 0	/ // 0 0. /
18	स्वप्नेश्वर बिसोई	बारीपदा	एएचईपी	प्रो. प्रोसेनजीत सिंघा देव
19	कृतार्थ डे	आईआईटी (आईएसएम), धनबाद	एएचईपी	प्रोफेसर सौमेन मंडल
20	प्रियांक त्रिपाठी	कुमाऊं विश्वविद्यालय	एएचईपी	प्रो. तनुश्री साहा दासगुप्ता
21	राजश्री मैत्र	जादवपुर विश्वविद्यालय	सीबीएस	डॉ अली हुसैन खान
22	उषसी दत्त	कल्याणी विश्वविद्यालय	सीबीएस	 डॉ अली ह्सैन खान
23	श्वेता शिवकुमार	एनआईटी, सूरथकल	सीबीएस	 डॉ.मनोज मंडल
24	 इशिता घोष	बनारस हिंदू विश्वविद्यालय	 सीबीएस	डॉ. प्रदीप एस. पचफुले
		राष्ट्रीय विज्ञान शिक्षा एवं अनुसंधान संस्थान,		
25	अदवे मजूमदार	भ्वनेश्वर	सीबीएस	डॉ. सुमन चक्रवर्ती
		भारतीय विज्ञान शिक्षा एवं अनुसंधान संस्थान,		.,
26	टीशा डैश	कोलकाता	सीबीएस	डॉ. सुमन चक्रवर्ती
27	उमा गांगुली	कलकत्ता विश्वविद्यालय	 सीबीएस	डॉ. सुमन चक्रवर्ती
		este di lagramista	MI-HAM	51. 31. 7M. 7MI

क्र. सं.	नाम	संबंधन	एसएनबी में विभाग के अंतर्गत शामिल हुए	एसएनबी में गाइड
28	अमित रॉय	असम विश्वविद्यालय, सिलचर	सीबीएस	प्रो. गौतम गंगोपाध्याय
29	भावना कुली	आईआईटी (बीएचयू), वाराणसी	सीबीएस	प्रो गौतम डे
30	सौविक प्रमाणिक	रामकृष्ण मिशन विवेकानन्द शताब्दी महाविद्यालय, रहरा	सीबीएस	प्रोफेसर माणिक प्रधान
31	मुस्कान शर्मा	राष्ट्रीय प्रौद्योगिकी संस्थान, सिक्किम	सीबीएस	प्रो रंजीत विश्वास
32	सौम्या दासगुप्ता	एनआईएसईआर, भुवनेश्वर	सीएमएमपी	डॉ अतींद्र नाथ पाल
33	गौरब सामंत	रामकृष्ण मिशन आवासीय महाविद्यालय	सीएमएमपी	डॉ अविजीत चौधरी
34	साग्निक घोष	आईआईटी गुवाहाटी	सीएमएमपी	डॉ अविजीत चौधरी
35	नीलाचल चक्रवर्ती	भारतीय प्रौद्योगिकी संस्थान, गांधीनगर	पीसीएस	डॉ उर्ना बसु
36	मोनाली रॉय	कलकत्ता विश्वविद्यालय	पीसीएस	प्रो पुण्यब्रत प्रधान

सेमिनार और बोलचाल कार्यक्रम (स्कॉल्प)

बोस उत्सव 2022

केंद्र ने 27-29 अप्रैल, 2022 के दौरान विज्ञान का वार्षिक उत्सव बोस फेस्ट 2022 मनाया। नामांकित शोध विद्वानों और पोस्टडॉक्टरल फेलो ने अपनी मौखिक और पोस्टर प्रस्तुतियाँ प्रस्तुत कीं। उत्सव के हिस्से के रूप में फोटो फेस्ट और इन-हाउस सांस्कृतिक कार्यक्रम भी आयोजित किए गए।

बोस उत्सव 2023

केंद्र ने 1-3 मार्च, 2023 के दौरान विज्ञान का वार्षिक उत्सव बोस फेस्ट 2023 मनाया। नामांकित शोध विद्वानों और पोस्टडॉक्टरल फेलो ने अपनी मौखिक (45 संख्या) और पोस्टर (34 संख्या) प्रस्तुतियां दीं। उत्सव के तहत फोटो फेस्ट, सांस्कृतिक कार्यक्रम का भी आयोजन किया गया।.

सेमिनार के प्रकार	दिनांक	वक्ता एवं संबद्धता	शीर्षक
16वां सीकेएम मेमोरियल व्याख्यान	08.12.2022	सर एंथोनी के. चीथम प्रोफेसर, एफआरएस, सामग्री अनुसंधान प्रयोगशाला, कैलिफोर्निया विश्वविद्यालय; सामग्री विज्ञान और इंजीनियरिंग विभाग, नेशनल यूनिवर्सिटी ऑफ़ सिंगापुर	•
	01.04.2022	सिबाजी राहा रामानुजन फेलो, बोस इंस्टीट्यूट	जगदीस चंद्र बोस: उनका जीवन, उनका समय और उनकी विरासत
पोस्टर टॉक की शृंखला :: स्वतंत्रता-	06.05.2022	पार्थ पी मजूमदार राष्ट्रीय विज्ञान अध्यक्ष (वैज्ञानिक उत्कृष्टता), भारत सरकार, प्रतिष्ठित प्रोफेसर और संस्थापक, नेशनल इंस्टीट्यूट ऑफ बायोमेडिकल जीनोमिक्स, कल्याणी, एमेरिटस प्रोफेसर, भारतीय सांख्यिकी संस्थान, कोलकाता, मानद प्रोफेसर, भारतीय विज्ञान शिक्षा और अनुसंधान संस्थान, मोहाली, अध्यक्ष, भारतीय विज्ञान अकादमी	प्रशांत चंद्र महालनोबिस: सांख्यिकीय विज्ञान और हमारे राष्ट्रीय विकास के वास्तुकार
पूर्व युग में शानदार भारतीय वैज्ञानिक	27.05.2022	विकास चौधरी सिन्हा आईएनएसए के वरिष्ठ वैज्ञानिक और पूर्व निदेशक, एसआईएनपी और वीईसीसी	होमी जे भाबा, कोलोसस, एक कालजयी प्रतीक
	15.07.2022	कालीप्रसन्ना धारा कलकत्ता विश्वविद्यालय के सेवानिवृत्त एसोसिएट प्रोफेसर	असीमा चङ्टोपाध्याय: वरतिया वेशाजा उद्विदर एक अनन्या अन्वेषक
	22.07.2022	रंजीत विश्वास वरिष्ठ प्रोफेसर, एसएनबीएनसीबीएस	सत्येन्द्रनाथ: विज्ञान से परे : সত্যেন্দ্ৰ নাথ : विজ्ঞाন পেরিয়ে।

सेमिनार के प्रकार	दिनांक	वक्ता एवं संबद्धता	शीर्षक
	01.12.2022	आशुतोष शर्मा	वैज्ञानिक सामान्य ज्ञान द्वारा जटिलता को नेविगेट
		संस्थान के अध्यक्ष प्रो केमिकल इंजीनियरिंग विभाग, भारतीय	
		प्रौद्योगिकी संस्थान, कानपुर और निर्वाचित राष्ट्रपति (2023-25),	
		भारतीय राष्ट्रीय विज्ञान अकादमी (आईएनएसए) और भारत सरकार	
		के पूर्व सचिव विज्ञान और प्रौद्योगिकी विभाग	
बोस कोलोक्वियम	18.01.2023	पुरु जेना	क्लस्टर-आधारित कार्यात्मक सामग्री - डिजाइन और
		प्रोफेसर, वर्जीनिया कॉमनवेल्थ यूनिवर्सिटी, रिचमंड, वर्जीनिया	संश्लेषण में एक आदर्श बदलाव
	27.02.2023	जीन-पास्कल सटर	चुंबकीय अनिसोट्रॉपी से आणविक चुंबक तकः
		अनुसंधान निदेशक, सीएनआरएस, टूलूज, फ्रांस	पंचकोणीय द्विपिरामिड परिसरों के समन्वय रसायन विज्ञान में एक यात्रा
	05.04.2022	गीतम बस्	मामूली संरचना-ट्रिगर अंतर-आणविक अंतःक्रिया
	00.00	वरिष्ठ प्रोफेसर, बायोफिज़िक्स विभाग, बोस संस्थान	
	06.04.2022	इंद्र दासगुप्ता	सशक्त रूप से सहसंबद्ध प्रणालियों के मॉडलिंग में
		वरिष्ठ प्रोफेसर, स्कूल ऑफ फिजिकल साइंसेज, आईएसीएस	चुनौतियाँ और संभावनाएँ
	20.07.2022	जयसिम्हा अतुलसिम्हा	स्पिन और स्पिन एन्सेम्बल के साथ शास्त्रीय और
		प्रोफेसर, वर्जीनिया कॉमनवेल्थ यूनिवर्सिटी, यूएसए	क्वांटम कंप्यूटिंग
	25.08.2022	भारकरन मुरलीधरन	मायावी मेजराना मोड की खोज: संचालन अंतराल
		प्रोफेसर, इलेक्ट्रिकल इंजीनियरिंग विभाग, भारतीय प्रौद्योगिकी संस्थान बंबई	समापन और टोपोलॉजिकल गैप प्रोटोकॉल
	30.09.2022	शंकर पी. दास	अनाकार कांचयुक्त अवस्था में जटिलता और एन्ट्रापी
संस्थान कोलोक्वियम		प्रोफेसर, स्कूल ऑफ फिजिकल साइंस, जे.एन.यू., दिल्ली	संकट
काला।क्वयम	30.11.2022	पार्थ घोष	गुरुत्वाकर्षण और इलेक्ट्रोडायनामिक्स का एकीकरण
		NASI के वरिष्ठ वैज्ञानिक और टैगोर सेंटर फॉर नेचुरल साइंसेज एंड	
		फिलॉसफी, कोलकाता में प्रतिष्ठित फेलो	
	09.12.2022	दीपंकर भट्टाचार्य प्रतिष्ठित खगोलभौतिकीविद् प्रोफेसर, अशोका विश्वविद्यालय	एस्ट्रोसैट: भारतीय खगोल विज्ञान मिशन
	13.12.2022	सिबाशीष घोष	असंगति के माप के रूप में विग्नर वितरण फ़ंक्शन की
	10.12.2022	गणितीय विज्ञान संस्थान, चेन्नई के प्रोफेसर	नकारात्मकता
	07.02.2023	सत्रजीत अधिकारी	फोटोइलेक्ट्रॉन स्पेक्ट्रा पर इलेक्ट्रॉन-परमाणु युग्मन
		वरिष्ठ प्रोफेसर, आईएसीएस और सहायक प्रोफेसर, आईआईएसईआर	~ ~ ~
		कोलकाता, एचओडी सीसीआरईएस	ठोस पदार्थों का चरण संक्रमण
	09.12.2022	डॉ. मैरी-गैब्रिएल मेडिसी	ओस संघनन और संचयन: पीने के पानी का संभावित
विशेष बातचीत		वैज्ञानिक, नीस विश्वविद्यालय	स्रोत। कुछ शुष्क देशों के लिए नई चुनौती
	19.04.2022	सौम्या दे	एनएमआर स्पेक्ट्रोस्कोपी द्वारा मुझे हुए और
		सहायक प्रोफेसर, बायोसाइंस स्कूल आईआईटी खड़गपुर	अव्यवस्थित प्रोटीन की संरचना और गतिशीलता में
विभागीय सेमिनार			अंतर्दृष्टि
	26.04.2022	पद्माकर सिंह परिहार	एक नई खगोलीय वेधशाला की विशेषता बताने के लिए
		प्रोफेसर, भारतीय खगोल भौतिकी संस्थान, बेंगलुरु	उपकरण और तकनीकें

सेमिनार के प्रकार	दिनांक	वक्ता एवं संबद्धता	शीर्षक
	26.04.2022	रंजीत विश्वास	डीप यूटेक्टिक सॉल्वैंट्स: नए उत्साह और हमारी
		वरिष्ठ प्रोफेसर, एसएनबीएनसीबीएस	समझ
	04.05.2022	अमित कुमार अग्रवाल	टोपोलॉजिकल चरण संक्रमण, नॉनलाइनियर ट्रांसपोर्ट,
		एसोसिएट प्रोफेसर, भौतिकी विभाग। ईट कानपुर	और मोइर सुपर लैटिस में प्लारमोंस
	19.05.2022	तन्मय पॉल	उच्च वक्रता युग्मन से पुन: तापन चरण के साथ
		सहायक प्रोफेसर, चंदननगर कॉलेज, भौतिकी विभाग	मुद्रास्फीतिकारी मैग्नेटोजेनेसिस
	24.05.2022	अस्मिता कुमारी	लेगेट-गर्ग असमानताओं की लुडर्स सीमाएं, क्वांटम
		पोस्ट-डॉक्टोरल फेलो, हरीश चौधरी। अनुसंधान संस्थान,	चैनल, पीटी सममित विकास और समय का तीर
		इलाहाबाद	
	20.06.2022	गौरव घोषाल	शहरी प्रणालियों का अध्ययन करने के लिए एक
		एसोसिएट प्रोफेसर, भौतिकी और खगोल विज्ञान स्टीफ़न बिगगर '92	भौतिकी दृष्टिकोण
		और एलिज़ाबेथ असारो '92 डेटा साइंस में फेलो,	
		रोचेस्टर विश्वविद्यालय	
	21.06.2022	श्रद्धा मिश्रा	सक्रिय प्रणालियों में आंतरिक और बाह्य विषमताओं
		सहायक प्रोफेसर, आईआईटी, बी.एच.यू	की भूमिका
	22.06.2022	शुभंकर बेदांत	भारी धातुओं, टोपोलॉजिकल इंसुलेटर और
		एसोसिएट प्रोफेसर, स्कूल ऑफ फिजिक्स,	एंटीफेरोमैग्नेट के साथ स्पिन टू चार्ज रूपांतरण
		एनआईएसईआर, भुवनेश्वर	
	23.06.2022	सब्यसाची रॉय चौधरी	बहुसंदर्भ विधियों द्वारा संक्रमण धातु परिसरों की
		पोस्टडॉक्टरल शोधकर्ता, साउथ डकोटा विश्वविद्यालय वर्मिलियन,	आणविक ज्यामिति की जांच
		साउथ डकोटा, यूएसए	
	27.06.2022	रूपक मुखर्जी	कैसे कम्प्यूटेशनल भौतिकी परमाणु संलयन रिएक्टरों
		एसोसिएट रिसर्च फिजिसिस्ट, प्रिंसटन प्लाज्मा भौतिकी प्रयोगशाला,	को आकार दे रही है
		प्रिंसटन यूनिवर्सिटी, यूएसए	
	29.06.2022	सुभाष बोस	ऑल-स्काई सुपरनोवा सर्वेक्षणों से चरम और
		पोस्टडॉक्टरल फेलो, ओएसयू सेंटर फॉर कॉरमोलॉजी एंड	असामान्यताओं का पता लगाना.
विभागीय सेमिनार		एस्ट्रो-पार्टिकल फिजिक्स (सीसीएपीपी), ओहियो स्टेट यूनिवर्सिटी	0.))
	30.06.2022	अभिषेक माझी	बिंदु को देखकर विलक्षणता का समाधान करना और
		डीएसटी इंस्पायर फैकल्टी,	सातत्य परिकल्पना की अनिर्णयता का प्रदर्शन करना
		आईएसआई, कोलकाता	
	05.07.2022	देबाशीष चौधरी	सक्रिय पदार्थ: एकल कण प्रक्षेपवक्र से सामूहिक
		एसोसिएट प्रोफेसर जी भौतिकी संस्थान, भुवनेश्वर	व्यवहार तक
	05.07.2022	तमस कुमार पांडा	मैकेनोकेमिस्ट्री: मेटल ऑर्गेनिक फ्रेमवर्क (एमओएफ)
		सहायक प्रोफेसर, स्वच्छ पर्यावरण केंद्र और रसायन विज्ञान विभाग,	में इंजीनियरिंग करने का अवसर
		वेल्लोर इंस्टीट्यूट ऑफ टेक्नोलॉजी, वेल्लोर परिसर,	
		तमिलनाडु, भारत	
	12.07.2022	अली हुसैन खान	ऑप्टो-इलेक्ट्रॉनिक अनुप्रयोगों के लिए द्वि-आयामी
		रामानुजन फेलो, एसएनबीएनसीबीएस	कोलाइडल नैनोक्रिस्टल डिजाइन करना
	21.07.2022	बानिब्रत मुखोपाध्याय	ब्लैक होल गुणों की जांच के लिए चुंबकीय रूप से
		प्रोफेसर, भौतिकी विभाग, भारतीय विज्ञान संस्थान,	प्रभावी अभिवृद्धि प्रवाह
		बैंगलोर	
	10.08.2022	एम वेंकट कमलाकर	द्धि-आयामी स्पिन सर्किट: कुशल स्पिन धाराओं और
		एसोसिएट प्रोफेसर और टीम लीडर, क्वांटम मटेरियल डिवाइसेस ग्रुप	नवीन उपकरणों के लिए इंटरफेस और सब्सट्रेट्स की
		भौतिकी और खगोल विज्ञान विभाग, उप्साला विश्वविद्यालय	खोज

सेमिनार के प्रकार	दिनांक	वक्ता एवं संबद्धता	शीर्षक
	11.08.2022	तीर्थंकर बनर्जी	प्रारंभिक स्थितियाँ और एकल-फ़ाइल प्रसार:
		अनुसंधान सहयोगी, अनुप्रयुक्त गणित और	संपीड़ितता, अतिसमानता और चिरस्थायी स्मृति
		सैद्धांतिक भौतिकी विभाग, गणितीय विज्ञान केंद्र, कैम्ब्रिज विश्वविद्यालय	
	19.08.2022	सुमित डे	जेनेरिक नल हाइपरसर्फेस के संबंध में आइंस्टीन-
		सीनियर रिसर्च फेलो, भौतिकी विभाग भारतीय प्रौद्योगिकी संस्थान	कार्टन क्षेत्र समीकरणों की थर्मोडायनामिक और द्रव
		गुवाहाटी, भारत	गतिशील व्याख्या
	23.08.2022	सम्राट घोष	द्धि-आयामी छिद्रित कार्बनिक अर्धचालकों में
		वैज्ञानिक सीएसआईआर-सीएलआरआई,	फोटोकैटलिटिक हाइड्रोजन विकास के लिए चार्ज
		चेन्नई, भारत	ट्रांसपोर्ट महत्वपूर्ण क्यों है?
	24.08.2022	परमिता दत्ता	जे=3/2 सुपरकंडक्टर्स में बोगोलीउबोव फर्मी सतह
		सहेयक प्रोफेसर सैद्धांतिक भौतिकी प्रभाग,	और विदेशी कूपर जोड़े
		भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद	
	26.08.2022	अंकुर सेनशर्मा	विकृत वर्ग और सरल घन जालकों में अंतःस्राव
		यूनिवर्सिटी ऑफ फिजिक्स के एसोसिएट प्रोफेसर गौर बंगा	
	05.09.2022	अनुपम कुंडू	हाइड्रोडायनामिक्स और क्रॉसओवर डिफ्यूसिव से
		एसोसिएट प्रोफेसर, अंतर्राष्ट्रीय सैद्धांतिक विज्ञान केंद्र,	एनोमलस ट्रांसपोर्ट तक
		<u>बैंगलोर</u>	
	27.09.2022	गौतम दे	जर्नल ऑफ मैटेरियल्स केमिस्ट्री ए के एसोसिएट
		एमेरिटस प्रोफेसर, एस एन बी एन सी बी एस,	एडिटर के रूप में अपना अनुभव साझा करना
		कोलकाता एसोसिएट एडिटर, जर्नल ऑफ मैटेरियल्स केमिस्ट्री ए;	
		सामग्री अग्रिम (आरएससी)	
विभागीय सेमिनार'	30.09.2022	सुमंत कुंडू	जटिल पॉलिमर टोपोलॉजी की मशीन लर्निंग
		पोस्टडॉक्टोरल रिसर्च फ़ेलो भौतिकी और	भविष्यवाणियाँ
		खगोल विज्ञान विभाग "गैलीलियो गैलीली", पडोवा विश्वविद्यालय	
	10.10.2022	अनिकेत पात्रा	सतत माप के माध्यम से क्वांटम चरणों का एकल-शॉट
		पोस्टडॉक्टरल शोधकर्ता, आरहूस विश्वविद्यालय भौतिकी और	निर्धारण
	10.10.0000	खगोल विज्ञान विभाग डेनमार्क रिया सेबैत	कमरे के तापमान पर मोनोलेयर WS2 में दोष-प्रेरित
	12.10.2022		
		पीएच.डी. छात्र, भौतिकी विभाग,	ट्रियोन
		सुंगक्यंकवान विश्वविद्यालय, 	
	44.40.2022	कोरिया गणराज्य मिलन सिल	विकिरण-प्रधान क्षेत्र में उत्कृष्ट गैस प्रजातियों की खोज
	14.10.2022	पीडीआरए - I, एसएनबीएनसीबीएस	विविध्यान विश्व न उत्पृष्ट गस प्रजातिया का खाज
	17.10.2022	राह्ल देबनाथ	ट्विस्टेड बाइलेयर ट्रांज़िशन मेटल डाइक्लोजेनाइड्स
	17.10.2022	पोस्ट-डॉक्टोरल शोधकर्ता, क्वांटम सामग्री और उपकरण समूह,	के ऑप्टिकल और इलेक्ट्रिकल ट्रांसपोर्ट गुणों पर
		भौतिकी विभाग, भारतीय विज्ञान संस्थान, बेंगलुरु	अध्ययन
	20.10.2022	श्रेयसी चट्टोपाध्याय	एक्सोल्यूशन: फोटो/इलेक्ट्रो उत्प्रेरक डिजाइनिंग की
	20.10.2022	एमआरएससी रिसर्च फेलो, जेटीएसआई समूह स्कूल ऑफ केमिस्ट्री,	दिशा में उभरते नैनोकणों के लिए दृष्टिकोण
		सेंट एंड्रयूज विश्वविद्यालय	विस्ता न उनारत नानावरमा वर्गाल पुराटवरावा
	31.10.2022	बिप्लब सान्याल	द्भि-आयामी FenGeTe2 (n=3, 4, 5) चुम्बकों में
	J.110.2022	एसोसिएट प्रोफेसर (यूनिवर्सिटेस्लेक्टर) प्रभाग प्रमुख,	चुनौतियाँ और संभावनाएँ
		सामग्री सिद्धांत प्रभाग भौतिकी और खगोल विज्ञान विभाग,	3 11 511 X 11 11 X
		उप्साला विश्वविद्यालय	
		O MICH HAMMINIA	

सेमिनार के प्रकार	दिनांक	वक्ता एवं संबद्धता	शीर्षक
	10.11.2022	समिक दत्तगुप्ता	धात्विक एंटीफेरोमैग्नेट के साथ स्पिन-ऑर्बिट्रोनिक्स
		एसोसिएट प्रोफेसर (ई) सीएमपी प्रभाग साहा इंस्टीट्यूट ऑफ	
		न्यू क्लियर फिजिक्स	
	10.11.2022	प्रशांत नायक	टी-टौरी स्टार्स का पहला यूवीआईटी अध्ययन
		पोस्ट-डॉक्टरल फेलो, टीआईएफआर, मुंबई	
	11.11.2022	मलय बनर्जी	पारिस्थितिक मॉडल के लिए व्यवस्थित स्थानीय और
		प्रोफेसर, गणित एवं सांख्यिकी विभाग, आईआईटी कानपुर	वैश्विक विभाजन विश्लेषण
	17.11.2022	नरेश दाधीच	बुचडहल स्टार्स पर
		एक सैद्धांतिक भौतिक विज्ञानी, पूर्व में इंटर-यूनिवर्सिटी सेंटर फॉर	
		एस्ट्रोनॉमी एंड एस्ट्रोफिजिक्स में	
	22.11.2022	अर्नब मुखर्जी	भौतिकी-आधारित और मशीन लर्निंग एल्गोरिदम के
		प्रोफेसर, रसायन विज्ञान विभाग, भारतीय विज्ञान शिक्षा एवं	संयोजन का उपयोग करके डी-नोवो ड्रग-डिज़ाइन का
		अनुसंधान संस्थान, पुणे	अनुमोदन करना
	24.11.2022	मीर अलीमुद्दीन	क्वांटम उलझाव के थर्मोडायनामिक हस्ताक्षर
		चाणक्य पीडीएफ, डीपीसीएस, एसएनबीएनसीबीएस	
	28.11.2022	बिजय कुमार अग्रवाल	निरंतर और असतत तापीय मशीनों में उतार-चढ़ाव पर
		सहायक प्रोफेसर, भौतिकी विभाग भारतीय विज्ञान शिक्षा एवं	सार्वभौमिक सीमाएँ
		अनुसंधान संस्थान, पुणे	
	02.12.2022	सोम शंकर भट्टाचार्य	एकतरफा शून्य-त्रुटि क्वांटम संचार में मनमाना
		पोस्ट डॉक्टर फेलो एडियंकट, आईसीटीक्यूटी,	पृथक्करण, इनपुट के सीमित सेट के साथ संबंधों की
		ग्दान्स्क, पोलैंड	जटिलता
विभागीय सेमिनार	06.12.2022	अर्नब बोस	विद्युत क्षेत्र प्रेरित नवीन स्पिन-वर्तमान पीढ़ी
		पोस्टडॉक्टरल फेलो, भौतिकी विभाग,	
	07.40.0000	जोहान्स गुटेनबर्ग यूनिवर्सिटी, मेन्ज़ अंकित राज	
	07.12.2022		रमन स्पेक्ट्रोस्कोपी के मानकीकरण की ओर: बिल्कुल
		यूएसआईएल-एनवाईसीयू, ताइवान में पोस्टडॉक्टरल शोधकर्ता	मात्रात्मक विश्लेषण के लिए सटीक तरंग संख्या और तीव्रता अंशांकन योजनाएं
	15.12.2022	सौरव भट्टाचार्य	आदिम ब्रह्मांडीय मुद्रास्फीति में लूप और गैर-परेशान
	13.12.2022	एसोसिएट प्रोफेसर, भौतिकी विभाग, जादवपुर विश्वविद्यालय	प्रभाव
	16.12.2022	तमधना हाजरा	हंड्स-कोंडो मॉडल से ट्रिपलेट युग्मन तंत्र - भारी
	10.12.2022	पोस्टडॉक्टरल शोधकर्ता, रटगर्स विश्वविद्यालय	फर्मियन सुपरकंडक्टर्स के लिए अनुप्रयोग
		गर्टिंग देश राजगरा, रहारा विवासकाराच	गाच । पुनरकण्यवस्य करात् वादुराचा
	21.12.2022	कपिलदेब दोलुई	स्पिन-ऑर्बिट-प्रॉक्सिमाइज्ड एंटीफेरोमैग्नेट्स में एब-
		पोस्ट-डॉक्टरल फेलो, सामग्री विज्ञान और धातुकर्म विभाग,	इनिटियो स्पिन टॉर्क और स्पिन-पंपिंग
		कैम्ब्रिज विश्वविद्यालय, यूके	
	22.12.2022	विष्णु राजगोपाल	गैर-क्रमविनिमेय अंतरिक्ष-समय में अधिकतम त्वरण
		पीएचडी छात्र, स्कूल ऑफ फिजिक्स, हैदराबाद विश्वविद्यालय,	
		केंद्रीय विश्वविद्यालय	
	22.12.2022	विजयकुमार चिक्कडी	बैक्टीरिया के सक्रिय निलंबन में कोलाइडल कणों का
		सहेयक प्रोफेसर भौतिकी प्रभाग, भारतीय विज्ञान शिक्षा एवं	चरण पृथक्करण
		अनुसंधान संस्थान पुणे	
	03.01.2023	सोमेश चंद्र गांगुली	वैन डेर वाल्स हेटरोस्ट्रक्चर में डिजाइनर क्वांटम
		पोस्ट डॉक्टरल शोधकर्ता, एप्लाइड फिजिक्स विभाग,	पदार्थ
		आल्टो यूनिवर्सिटी स्कूल ऑफ साइंस, एस्पू, फिनलैंड	

सेमिनार के प्रकार	दिनांक	वक्ता एवं संबद्धता	शीर्षक
	09.01.2023	सुमन जी दास	संचालित अव्यवस्थित फिटनेस परिदृश्य पर जैविक
		रेसर्च एसोसिएट, इंस्टीट्यूट फॉर बायोफिज़िक्स,	विकास
		कोलोन विश्वविद्यालय, जर्मनी	
	11.01.2023	उपमन्यु मोइत्रा	2डी में स्व-समान गुरुत्वाकर्षण गतिशीलता,
		पोस्टडॉक्टरल फेलो, उच्च ऊर्जा, ब्रह्मांड विज्ञान और	विलक्षणताएं और आलोचनात्मकता
		एस्ट्रोपार्टिकल भौतिकी अनुभाग सैद्धांतिक भौतिकी के लिए अब्दुस	
		सलाम इंटरनेशनल सेंटर, स्ट्राडा कोस्टिएरा, इटली	
	13.01.2023	सायंतन भट्टाचार्य	स्टारबर्स्ट गैलेक्सी आईसी 10 में ब्लू सुपरजायंट
		रिसर्च स्कॉलर,	एक्स-रे बायनेरिज़
		मैसाचुसेट्स लोवेल विश्वविद्यालय में भौतिकी विभाग	
	16.01.2023	मुकुल भट्टाचार्य	भारी तत्व न्यूक्लियोसिंथेसिस और उच्च-ऊर्जा
		पेन स्टेट यूनिवर्सिटी में एबर्ली रिसर्च फेलो	न्यूट्रिनो की संभावित साइटों के रूप में चुंबकीय बहिर्वाह
	17.01.2023	बिद्युत सरकार	माइक्रोसेकंड समय रिज़ॉल्यूशन के साथ
		अनुसंधान वैज्ञानिक, आणविक स्पेक्ट्रोस्कोपी प्रयोगशाला,	बायोमोलेक्युलस की संरचना-गतिशीलता-कार्य संबंध
		रिकेन, रसायन विज्ञान और सामग्री भौतिकी भवन, जापान	की जांच
	19.01.2023	स्वप्नमय मंडल	स्ट्रिंग थ्योरी में ब्लैक होल माइक्रोस्टेट्स
		डबलिन इंस्टीट्यूट फॉर एडवांस्ड में पोस्ट-डॉक्टर अध्ययन,	
		आयरलैंड	
	19.01.2023	अविजीत मिश्रा	क्वांटम ऑप्टिकल सेटअप में माप और नॉनलाइनियर
विभागीय सेमिनार		पोस्ट-डॉक्टर रिसर्च फेलो, द वीज़मैन विज्ञान संस्थान	इंटरैक्शन द्वारा थर्मल शोर से कार्य निष्कर्षण
	31.01.2023	अधनी के. तिवारी	धातु सतहों पर H2O पृथक्करण की गतिशीलता
		प्रोफेसर, एफआरएससी अंतर्राष्ट्रीय संबंध और	
		आउटरीच के डीन रसायन विज्ञान विभाग, भारतीय विज्ञान शिक्षा और	
		अनुसंधान संस्थान (आईआईएसईआर) कोलकाता	
	01.02.2023	सौम्यकांति बोस	गॉसियन संसाधनों का उपयोग करके ऑप्टिकल
		पोस्टडॉक्टरल रिसर्च फेलो,	क्वैबिट का क्वांटम टेलीपोर्टेशन
		सियोल नेशनल यूनिवर्सिटी	
	02.02.2023	चंद्रमौली चौधरी	सूचना की होलोग्राफी का सिद्धांत
		आईसीटीएस-टीआईएफआर में पीएचडी छात्र	
	03.02.2023	राजीब सरकार	प्रतिस्पर्धी आदेश और स्पिन गतिशीलता: परमाणु
		वैज्ञानिक, टेक्नीश यूनिवर्सिटैट ड्रेसडेन इंस्टीट्यूट फर फेस्टकोर्पर-	जांच
		और मटेरियलफिजिक ड्रेसडेन, जर्मनी	
	10.02.2023	शुभाशीष मंडल	परे-डीएफटी विधियों का उपयोग करके रासायनिक
		सहेयक प्रोफेसर, भौतिकी एवं खगोल विज्ञान विभाग,	सटीकता के साथ दृढ़ता से सहसंबद्ध सामग्रियों पर
		वेस्ट वर्जीनिया विश्वविद्यालय	प्रथम-सिद्धांत जांच
	14.02.2023	शिशिर कुमार पांडे	स्पिन-ऑर्बिट कपलिंग असिस्टेड मॉट इंसुलेटर में
		विज्ञान संस्थान, बीजिंग के लिए एआई	क्वांटम स्पिन लिक्विड अवस्था तक पहुंचने का मार्ग
	15.02.2023	सुभायन रॉयचौधरी	कम्प्यूटेशनल इलेक्ट्रॉनिक संरचना और एक्स-रे
		पोस्ट डॉक्टरल शोधकर्ता,	स्पेक्ट्रोस्कोपी: एक सहजीवी मित्रता
		आणविक फाउंड्री लॉरेंस बर्कले राष्ट्रीय प्रयोगशाला	

वार्षिक प्रतिवेदन २०२२-२०२३

सेमिनार के प्रकार	दिनांक	वक्ता एवं संबद्धता	शीर्षक
	21.02.2023	एंड्रियास श्रीमैन	साइड चेन कार्यात्मक सहसंयोजक कार्बनिक फ्रेमवर्क
		सहायक प्रोफेसर, तकनीकी विश्वविद्यालय ड्रेसडेन, ड्रेसडेन, जर्मनी	- सुविधायुक्त प्रदूषण से लेकर संपत्ति इंजीनियरिंग तक
	01.03.2023	राजेश मंडल	21-सेमी ब्रह्माण्ड विज्ञान
		पोस्टडॉक्टोरल सदस्य, तेल अवीव विश्वविद्यालय,	
		तेल अवीव-याफो, इज़राइल	
	22.03.2023	अनिदिता बेरा	बेल विकर्ण उलझाव का एक वर्ग C^4 🛇 C^4 में
		इंस्टीट्यूट ऑफ फिजिक्स, एस्ट्रोनॉमी एंड इंफॉर्मेटिक्स,	गवाह: अनुकूलन और फैलाव संपत्ति
विभागीय सेमिनार		निकोलस कॉपरनिकस यूनिवर्सिटी, पोलैंड में पोस्ट डॉक्टरल फेलो	0 % 0
	24.03.2023	देबर्षि दास	विशाल वस्तुओं की वास्तविक मात्रा का द्रव्यमान-
		रॉयल सोसाइटी - न्यूटन इंटरनेशनल फेलो और मानद रिसर्च फेलो,	स्वतंत्र परीक्षण.
		भौतिकी और खगोल विज्ञान विभाग, यूनिवर्सिटी कॉलेज लंदन, यूके	
	30.03.2023	राजेश्वरी रॉय चौधरी	स्तरित चुम्बकों में अपरंपरागत चुम्बक प्रतिरोधी
		डीएसटी इंस्पायर संकाय, भौतिकी विभाग, आईआईएसईआर भोपाल	व्यवहार
	31.03.2023	शंकर पी. दास	ब्राउनियन द्रव के लिए गतिशील घनत्व कार्यात्मक
		भौतिकी के प्रोफेसर स्कूल ऑफ फिजिकल साइंसेज,	सिद्धांत
	4	जवाहरलाल नेहरू विश्वविद्यालय, नई दिल्ली	

आगंतुक एवं सहयोगी एवं छात्र कार्यक्रम:"

"सांख्यिकीय यांत्रिकी" की वीएएसपी संगोष्ठी/वेबिनार श्रृंखला

Date	Speaker	Affiliation	Title
07-06-2022	प्रोफेसर येल रोइचमैन	स्कूल ऑफ केमिस्ट्री, तेल अवीव विश्वविद्यालय	बेतरतीब ढंग से संचालित कोलाइड्स की स्थिति का समीकरण
19-07-2022	प्रो वेलेरिया मोलिनेरो	यूटा विश्वविद्यालय	आणविक सिमुलेशन का उपयोग करके जिओलाइट्स के संश्लेषण के तंत्र को स्पष्ट करना
13-09-2022	डॉ. अपर्णा भारकरन	ब्रेंडिस यूनिवर्सिटी, यूएसए	सक्रिय पदार्थ: पदार्थ भौतिकी प्रतिमान को जीव विज्ञान में लागू करना
10-11-2022	प्रो. क्रिश्चियन मेस	केयू ल्यूवेन, बेल्जियम	बाघ की एन्ट्रापी क्या है?
26-12-2022	प्रोफेसर सत्य मजूमदार	लेबोरेटरी डी फिजिक थियोरिक एट मॉडल्स स्टैटिस्टिक्स (एलपीटीएमएस)	स्टोकेस्टिक रीसेटिंग
30-01-2023	प्रो. उरीएल फ्रिस्क	वैज्ञानिक अनुसंधान के लिए फ्रांसीसी राष्ट्रीय केंद्र	लियोनार्डो दा विंची, आंद्रेई कोलमोगोरोव और जियोर्जियो पेरिसी। लियोनार्डो से मल्टीफ्रैक्टल सिद्धांत तक अशांति का ऊर्जा क्षय

"क्वांटम सामग्री और उपकरण" की वीएएसपी सेमिनार/वेबिनार श्रृंखला

Date	Speaker	Affiliation	Title
11 05 2022	प्रोफेसर कामरान बेहनिया	ईएसपीसीआई-पेरिस साइंस और	फर्मी तरल पदार्थों में टी-स्क्वायर प्रतिरोधकता की उत्पत्ति और
11-05-2022	प्राफक्षर कामरान बहानया	लेट्रेस यूनिवर्सिटी	आयाम पर
08-06-2022	प्रोफ हिडेनोरी तकागी	मैक्स-प्लैंक इंस्टीट्यूट फॉर सॉलिड स्टेट रिसर्च, जर्मनी	किताएव क्वांटम स्पिन लिक्विड की प्राप्ति की ओर
47.00.0000	प्रो. क्रिश्चियन शॉनेंबर्गर	भौतिकी विभाग और स्विस नैनोसाइंस	कूपर-जोड़े अच्छे हैं, लेकिन विभाजित जोड़े और भी अच्छे हैं!
17-06-2022	प्रा. क्राज्ययम सामवगर	संस्थान, बेसल विश्वविद्यालय	कूपर-जोड़ी को "अनपेयर" करना दिलचस्प क्यों है?
19-10-2022	प्रोफेसर अल्बर्टी मोरपुरगो	जिनेवा विश्वविद्यालय	2डी अर्धचालकों की आयनिक गेटिंग

सम्मेलनों, कार्यशालाओं और विस्तार कार्यक्रमों की एक संक्षिप्त रिपोर्ट (सीडब्लूईपी) 01.04.2022 से 31.03.2023 तक

उपलब्ध रिकॉर्ड के अनुसार, संदर्भाधीन अविध के दौरान, केंद्र में निम्नलिखित सम्मेलन/कार्यशालाएं आयोजित की गईं। कार्यशालाओं/ सेमिनारों/चर्चा बैठकों की संक्षिप्त रिपोर्ट इस प्रकार है:

- 1. सी.के. मजुमदार मेमोरियल वर्कशॉप इन फिजिक्स 2022 का आयोजन इंडियन एसोसिएशन ऑफ फिजिक्स टीचर्स (रीजनल काउंसिल 15) और एस.एन. द्वारा संयुक्त रूप से किया गया था। बोस नेशनल सेंटर फॉर बेसिक साइंसेज, कोलकाता। अवधि: 10 दिन (12.07.2022 से 21.07.2022) ऑनलाइन और ऑफलाइन दोनों मोड के माध्यम से। संयुक्त संयोजक आईएपीटी से डॉ. शाश्वती दासगुप्ता और केंद्र के वरिष्ठ प्रोफेसर प्रो. कल्याण मंडल थे। प्रतिभागी बी.एससी तृतीय वर्ष (भौतिकी ऑनर्स) आउटगोइंग बैच और प्रथम वर्ष एम.एससी. थे। (भौतिकी) बैच। पूरे भारत के 27 संस्थानों से कुल 19 प्रतिभागियों ने ऑफ़लाइन मोड के माध्यम से भाग लिया और 14 प्रतिभागियों ने ऑनलाइन मोड के माध्यम से भाग लिया। ब्रह्माण्ड विज्ञान, खगोल भौतिकी, ब्लैक होल सूचना विरोधाभास, क्वांटम कंप्यूटिंग, संघनित पदार्थ और कम्प्यूटेशनल सामग्री विज्ञान, ऊर्जा अनुसंधान और चिकित्सा अनुप्रयोगों के लिए सेंसर के विकास जैसे विविध विषयों पर सिद्धांत पर बातचीत की गई। उन प्रयोगों पर कुछ बातचीत की गई जो स्मार्टफोन सेंसर का उपयोग करके घर से किए जा सकते हैं। इन प्रयोगों के आधार पर छात्रों को घर पर कुछ कार्य करने के लिए कहा गया। छात्रों के सत्र में, प्रतिभागियों ने पावर प्वाइंट के साथ-साथ व्हाइट बोर्ड का उपयोग करके प्रस्तुतियाँ दीं। .
- 2. 14 से 16 नवंबर, 2022 के दौरान गोवा विश्वविद्यालय में इलेक्ट्रॉनिक संरचना पर राष्ट्रीय सम्मेलन (एनसीईएस-2022) आयोजित किया गया (एसएनबीएनसीबीएस, टीआईएफआर, आईओपी, भुवनेश्वर और सीएटी, इंदौर द्वारा संयुक्त रूप से आयोजित)। एसएनबीएनसीबीएस के संयोजक डॉ. थिरुपथैया शेट्टी थे। सम्मेलन में प्रसिद्ध राष्ट्रीय वक्ताओं द्वारा कुल 28 वार्ताएँ और 1 विशेष शाम व्याख्यान दिया गया। 29 वक्ताओं

- में से 5 महिला वक्ता थीं और 2 वक्ता आरक्षित वर्ग से हैं। सभी वक्ता सम्मेलन में भौतिक रूप से शामिल हुए। सम्मेलन में 20 छात्रों ने भाग लिया और 20 में से 11 ने पोस्टर प्रस्तुत किये। सम्मेलन अविध के दौरान गोवा विश्वविद्यालय के वक्ताओं और स्थानीय संकाय सिहत कुल 60 प्रतिभागियों ने शारीरिक रूप से भाग लिया।.
- 3. उभरते क्वांटम पदार्थ के लिए कम्प्यूटेशनल तरीकों पर एपीसीटीपी-आईएसीएस-एसएनबीएनसीबीएस कार्यशालाः सैद्धांतिक अवधारणाओं से प्रायोगिक अहसास तक केंद्र, आईएसीएस और एपीसीटीपी द्वारा संयुक्त रूप से आयोजित की गई थी। कार्यशाला 17 से 25 नवंबर, 2022 के दौरान एस.एन. में आयोजित की गई। बोस नेशनल सेंटर फॉर बेसिक साइंसेज। केंद्र के संयोजक प्रोफेसर मनोरंजन कुमार थे और आयोजन समिति के सदस्य प्रोफेसर प्रिया महादेवन थे।
- 4. चुंबकत्व और टोपोलॉजिकल सामग्रियों में हाल के विकास पर ध्यान केंद्रित करने के साथ 24 जनवरी, 2023 को केंद्र में क्वांटम सामग्रियों पर केंद्रित बैठक आयोजित की गई थी। संयोजक केंद्र की विरष्ठ प्रोफेसर प्रोफेसर प्रिया महादेवन थीं। मुख्य रूप से केंद्र और कोलकाता और उसके आसपास के अन्य संस्थानों से आए वक्ताओं के साथ 10 वार्ताएं आयोजित की गईं। इसके अलावा 12 विद्यार्थी पोस्टर प्रस्तुत कर रहे थे।
- 5. 16 से 18 मार्च, 2023 के दौरान नरम पदार्थ, सक्रिय और जैविक प्रणालियों में स्थिर राज्य घटना सम्मेलन का आयोजन केंद्र में किया गया था। संयोजक प्रोफेसर जयदेब चक्रवर्ती, वरिष्ठ प्रोफेसर, प्रोफेसर पुण्यब्रत प्रधान, प्रोफेसर, डॉ. शकुंतला चटर्जी, एसोसिएट प्रोफेसर और डॉ. उरना बसु, सहायक प्रोफेसर थे। सम्मेलन का उद्देश्य युवा शोधकर्ताओं और छात्रों को नरम पदार्थ, सक्रिय पदार्थ और जैविक प्रणालियों के क्षेत्रों में सांख्यिकीय यांत्रिकी उपकरणों के अनुप्रयोग में वर्तमान विकास से अवगत कराना था।

एडवांस्ड पोस्ट-डॉकटोरल रिसर्च प्रोग्राम (APRP) : 2022-23 [31.03.2023) तक]

क्र. सं.	नाम	पद	विभाग	मेंटर
1	अजित कुमार साहू	PDRA –I (21.11.2022 से)	सी एम एम पी	प्रोफ. अंजन बर्मन
2	 अख़्तर आलम	PDRA –I (15.11.2022 से)	 सी बी एस	
3	 अलिक पाँजा	Bridge Fellow (15.09.2022 से)	ए एच ई पी	 डॉ तापस बाग
4	अरविंदन वी	PDRA –I (09.03.2023 से)	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता
5	अरिजित मण्डल	PDRA –II (01.03.2023 से)	— पी सी एस	प्रोफ. जयदेव चक्रवर्ती
6		PDRA – I (10.12.2022 तक)	सी एम एम पी	प्रोफ. अंजन बर्मन
7	अरुण कुमार मौर्य	PDRA –I (01.12.2022 से)	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता
8	अशादुल हालदार	PDRA – I (18.05.2022 से)	ए एच ई पी	प्रोफ. अर्चन एस मजूमदार
9	अशमिता दास	PDRA – III (11.05.2022 से)	ए एच ई पी	डॉ सुनंदन गंगोपाध्याय
10	बिजॉय एन	PDRA –I (28.11.2022 से)	सी एम एम पी	प्रोफ. प्रिया महादेवन
11	बुद्धदेब पाल	PDRA – I (19.08.2022 तक)	सी एम एम पी	डॉ अतीन्द्र नाथ पाल
12	दीधिति भट्टाचार्य	Bridge Fellow (27.09.2022 से)	सी एम एम पी	डॉ अभिजीत चौधरी
13	धर्मेश जैन	PDRA –III (01.04.2022 तक)	पी सी एस	डॉ सुनंदन गंगोपाध्याय
14	धृमाद्री खाटा	Bridge Fellow (28.09.2022 तक)	ए एच ई पी	प्रोफ. सौमेन मण्डल
15	दुष्मंत पात्र	PDRA –I (26.04.2021 से)	ए एच ई पी	प्रोफ. सौमेन मण्डल
16	गार्गी भट्टाचार्य	PDRA – II (05.01.2023 तक)	सी एम एम पी	प्रोफ. प्रिया महादेवन
17	इप्सिता बसु	PDRA –II (27.05.2022 तक)	सी बी एस	डॉ सुमन चक्रवर्ती
18	इंद्राणी भट्टाचार्य	PDRA –I (27.12.2022 तक)	सी बी एस	प्रोफ. राजीव मित्रा
19	जयेता बनर्जी	PDRA –II (01.02.2023 से)	सी बी एस	प्रोफ. रंजीत विश्वास
20	कौशिक मण्डल	PDRA –I (30.10.2022 से)	सी बी एस	प्रोफ. माणिक प्रधान
21	महिमा सिंह	PDRA – I (20.07.2022 से)	सी एम एम पी	डॉ नितेश कुमार
22	मयूख के राय	PDRA –III (28.02.2023 तक)	सी एम एम पी	डॉ नितेश कुमार
23	मिलन सील	PDRA –I (06.05.2022 से)	ए एच ई पी	डॉ रामकृष्ण दास
24	मिली कुंडु	PDRA – I (03.02.2023 से)	सी एम एम पी	प्रोफ. कल्याण मण्डल
25	मुश्ताक़ अली खान	PDRA – I (12.07.2021 से)	सी एम एम पी	डॉ बर्णाली घोष (साहा)
26	पार्थ पाइन	Bridge Fellow (18.01.2023 तक)	सी बी एस	डॉ पी एस पचफूले
27	पियाली साहा	PDRA – I (15.09.2022 तक)	ए एच ई पी	डॉ तापस बाग
28	प्रियंका गर्ग	PDRA – I (30.06.2022 तक)	सी एम एम पी	प्रोफ. प्रिया महादेवन
29	प्रशांत कुंडु	PDRA –II (26.04.2021 से)	सी बी एस	प्रोफ. गौतम गंगोपाध्याय
30	पुष्पेंदु बारीक	PDRA –III (10.05.2022 से)	सी बी एस	प्रोफ. माणिक प्रधान
31	ऋत्मय भूनिया	PDRA –III (09.02.2023 से)	सी एम एम पी	
32	ऋतुपर्णा मण्डल	Bridge Fellow (09.01.2023 से)	सी बी एस	प्रोफ. गौतम गंगोपाध्याय
33	रुचि पांडे	Bridge Fellow (23.12.2022 तक)	ए एच ई पी	डॉ रामकृष्ण दास
34	सहेली सामंत	Bridge Fellow (13.03.2023 से)	सी एम एम पी	प्रोफ. मनोरंजन कुमार
35	सम्राट घोष	Bridge Fellow (25.08.2022 से)	ए एच ई पी	प्रोफ. सौमेन मण्डल
36	शंभुनाथ दास	PDRA – I (20.03.2023 तक)	सी एम एम पी	प्रोफ. मनोरंजन कुमार
37	शेख़ मोहम्मद ओबईदुल्ला	PDRA – II (01.12.2022 से)	सी एम एम पी	डॉ अतीन्द्र नाथ पाल
38	शेख़ समीर अहमद	PDRA – I (01.02.2023 से)	सी बी एस	डॉ सुमन चक्रवर्ती
39	शिवेंदु गुप्ता चौधरी	PDRA – I (14.02.2023 से)	ए एच ई पी	प्रोफ. अमिताभ लाहिड़ी
40	श्रेया दास	Bridge Fellow (25.11.2022 तक)	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता

क्र. सं.	नाम	पद	विभाग	मेंटर
41	रनेहमयी हाजरा	Bridge Fellow (27.02.2023 से)	सी एम एम पी	डॉ बर्णाली घोष (साहा)
42	शुभदीप चक्रवर्ती	PDRA –I (23.01.2023 तक)	सी बी एस	प्रोफ. राजीव मित्रा
43	सौमी दास	PDRA – I (20.06.2022 से)	पी सी एस	प्रोफ. जयदेव चक्रवर्ती
44	सौम्य चक्रवर्ती	PDRA –II (28.10.2022 तक)	पी सी एस	प्रोफ. अमिताभ लाहिड़ी
45	सुदीप कुमार साहा	Bridge Fellow (27.09.2022 तक)	सी एम एम पी	प्रोफ. मनोरंजन कुमार
46	सुमंती पात्र	Bridge Fellow (28.02.2023 तक)	सी एम एम पी	प्रोफ. प्रिया महादेवन
47	सुतपा साहा	PDRA – I (01.03.2023 से)	ए एच ई पी	प्रोफ. अर्चन एस मजूमदार
48	तन्मय पाल	PDRA –III (01.08.2022 तक)	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता
49	तापस साहू	PDRA –III (10.05.2022 से)	सी बी एस	प्रोफ. गौतम गंगोपाध्याय
50	तनिमा नंदी	PDRA –I (06.05.2022 से)	सी बी एस	प्रोफ. रंजीत विश्वास
51	तिथेंदु सिन्हा	PDRA – I (01.11.2022 से)	ए एच ई पी	तापस बाग
52	त्रिदीब रॉय	PDRA – I (17.01.2023 से)	ए एच ई पी	डॉ रामकृष्ण दास
53	तुषार कान्ति भौमिक	PDRA – I (02.02.2023 से)	सी एम एम पी	डॉ टी सेट्टी
54	विशाल के अगरवाल	Bridge Fellow (20.10.2022 तक)	सी एम एम पी	प्रोफ. मनोरंजन कुमार

एनपीडीएफ / रिसर्च एसोसिएट (बाहरी कोष): 2022-2023

क्र. सं.	नाम	पद	कार्यकाल	विभाग	मेंटर	परियोजना का शीर्षक
1	अनुभव बनर्जी	रिसर्च असोसिएट-।	14.11.2022 तक	ए एच ई पी	डॉ देबांजन बोस	जमीन आधारित गामा किरण और न्यूट्रिनो टेलीस्कोप का उपयोग करके बहुत उच्च ऊर्जा क्षेत्र में खगोलभौतिकीय स्रोतों का अध्ययन
2	डॉ अस्मिता कुमारी	रिसर्च असोसिएट-। (ऍडहॉक)	20.03.2022 तक	ए एच ई पी	प्रोफ. अर्चन एस मजूमदार	क्वांटम सूचना का अनुप्रयोग
3	डॉ देबाशीष साहा	एनपीडीएफ	12.08.2022 तक	ए एच ई पी	प्रोफ. अर्चन एस मजूमदार	क्वांटम उपकरणों का स्व-परीक्षण और उपकरण-स्वतंत्र सूचना प्रसंस्करण
4	डॉ दिपायन सेन	रिसर्च असोसिएट-॥।	31.01.2023 तक	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता	जे.सी. बोस पुरस्कार (फ़ेलोशिप)
5	डॉ इंद्राणी भट्टाचार्य	एनपीडीएफ	28.12.2022 से	सी बी एस	प्रोफ. राजीव मित्रा	टेराहर्ट्ज़ स्पेक्ट्रोस्कोपी और पूरक प्रायोगिक तकनीकों को नियोजित करके स्थानीय पर्यावरणीय मापदंडों में मॉड्यूलेशन द्वारा ट्रिगर किए गए प्रोटीन एकत्रीकरण की हाइड्रेशन गतिशीलता और तरल-तरल चरण पृथक्करण के साथ इसके संबंध की खोज
6	डॉ गार्गी भट्टाचार्य	एनपीडीएफ	06.01.2023 से	सी एम एम पी	प्रोफ. प्रिया महादेवन	चुंबकीय टोपोलॉजिकल क्वांटम मैटर (एमटीक्यूएम) से ग्राफीन पर निकटता प्रेरित स्पिन-ऑर्बिट युग्मन और चुंबकत्व

क्र. सं.	नाम	पद	कार्यकाल	विभाग	मेंटर	परियोजना का शीर्षक
7	डॉ जयेता बनर्जी	एनपीडीएफ	30.12.2022	सी बी एस	प्रोफ. माणिक	संवेदन में अनुप्रयोगों के साथ संक्रमण
			तक		प्रधान	धातु डाइक्लोजेनाइड आधारित सतह
						प्लास्मोन अनुनाद संरचना पर सैद्धांतिक
						और प्रयोगात्मक जांच
8	डॉ मीर अलिमुद्दीन	चाणक्य पीडीएफ	13.06.2022 से	पी सी एस	डॉ माणिक बणिक	क्वांटम संसाधनों की सहायता से संचार
						के व्यावहारिक रूप से कार्यान्वयन योग्य
						उन्नत साधन तैयार करना
9	डॉ पार्थ नंदी	रिसर्च असोसिएट-।	30.11.2022	ए एच ई पी	प्रोफ. अर्चन एस	क्वांटम सूचना का अनुप्रयोग
		(ऍडहॉक)	तक		मजूमदार	
10	डॉ संजुक्ता पॉल	रिसर्च असोसिएट-।	06.12.2022	सी एम एम पी	प्रोफ. प्रिया	ट्रांज़िशन मेटल डाइक्लोजिनाइड्स के
			तक		महादेवन	साथ ट्विस्ट्रोनिक्स
11	डॉ सौमेंदु दत्ता	रिसर्च असोसिएट-॥।	25.08.2021 से	सी एम एम पी	प्रोफ. तनुश्री	जे.सी. बोस पुरस्कार (फ़ेलोशिप)
					साहा दासगुप्ता	
12	डॉ सौम्य भट्टाचार्य	रिसर्च असोसिएट-।	04.04.2022 से	ए एच ई पी	प्रोफ. रबीन	गैर-सापेक्षतावादी सिद्धांतों में गेज और
					बनर्जी	गुरुत्वाकर्षण समरूपता: औपचारिकता
						और अनुप्रयोग
13	डॉ सौरव चक्रवर्ती	रिसर्च असोसिएट-।	05.12.2022 से	सी एम एम पी	प्रोफ. मनोरंजन	कम तापमान पर कुंठित चुंबकों में क्वांटम
		(ऍडहॉक)			कुमार	और थर्मल उतार-चढ़ाव की खोज
14	डॉ सुमित नंदी	रिसर्च असोसिएट-।	04.07.2022	ए एच ई पी	प्रोफ. अर्चन एस	क्वांटम सूचना का अनुप्रयोग
			तक		मजूमदार	
15	डॉ सुमित हालदार	रिसर्च असोसिएट-।	02.12.2022	सी एम एम पी	प्रोफ. मनोरंजन	कम तापमान पर कुंठित चुंबकों में क्वांटम
	_		तक		कुमार	और थर्मल उतार-चढ़ाव की खोज
16	श्रेया दास	रिसर्च असोसिएट-।	09.07.2022	सी एम एम पी	प्रोफ. तनुश्री	जे.सी. बोस पुरस्कार (फ़ेलोशिप)
		(ऍडहॉक)	तक		साहा दासगुप्ता	-
17	डॉ उपासना दास		26.12.2022 से	सी बी एस	 डॉ पी एस	स्तन कैंसर स्टेम कोशिकाओं को लक्षित
					पचफूले	करने के लिए थेरानोस्टिक्स के रूप में
					υ,	क्रिस्टलीय फ्रेमवर्क-आधारित चुंबकीय
						नैनोकम्पोजिट्स के एक समूह का विकास

अवकाशप्राप्त / अन्य संविदात्मक संकाय/ डीएसटी (इंस्पायर) / रामानुजन फ़ेलो : 2022-2023

क्र. सं.	नाम	पद	विभाग
1	प्रोफ. रबीन बनर्जी	राजा रमन्ना फ़ेलो	ए एच ई पी
2	प्रोफ. गौतम दे	एमेरिटस प्रोफेसर, 15.01.2023 तक, विजिटिंग प्रोफेसर, 16.01.2023 से	सी बी एस
3	प्रोफ. प्रभात मण्डल	एमेरिटस प्रोफेसर	सी एम एम पी
4	प्रोफ. सुभ्रांग्शु शेखर मन्ना	विजिटिंग (ओनोररी) फ़ेलो, 31.01.2023 तक	पी सी एस
5	प्रोफ. रंजन चौधरी	विजिटिंग (ओनोररी) फ़ेलो, 31.12.2022 तक	सी एम एम पी
6	प्रोफ. पी के मुखोपध्याय	विजिटिंग (ओनोररी) फ़ेलो, 31.12.2022 तक	सी एम एम पी
7	प्रोफ. एम संजय कुमार	विजिटिंग (ओनोररी) फ़ेलो, 01.08.2022 तक	पी सी एस
8	प्रोफ. समित कुमार राय	ऍडजंक्ट फैकल्टी	सी एम एम पी
9	प्रोफ. पार्थ गुहा	ऍडजंक्ट फैकल्टी	पी सी एस
10	डॉ गौतम शीट	ऍडजंक्ट फैकल्टी	सी एम एम पी

क्र. सं.	नाम	पद	विभाग
11	डॉ शुभ्र भट्टाचार्जी	ऍडजंक्ट फैकल्टी	सी एम एम पी
12	डॉ इंद्रनील सरकार	ऍडजंक्ट फैकल्टी	सी एम एम पी
13	डॉ अनूप घोष	डीएसटी इंस्पायर फैकल्टी	सी एम एम पी
14	डॉ दीपांविता मजूमदार	डीएसटी इंस्पायर फैकल्टी	सी एम एम पी
15	डॉ सुमन चौधरी	डीएसटी इंस्पायर फैकल्टी, 10.10.2022 से	सी एम एम पी
16	डॉ सुजय कुमार घोष	डीएसटी इंस्पायर फैकल्टी, 09.03.2023 से	सी एम एम पी
17	डॉ देबांजन बोस	रामानुजन फ़ेलो, 14.11.2022 तक	ए एच ई पी
18	डॉ अली हुसैन खान	रामानुजन फ़ेलो	सी बी एस
19	डॉ मनोज मण्डल	रामालिंगस्वामी रि-एंट्री फ़ेलो	सी बी एस

Alibelita Kovan

निवेदिता कोनार

Debarhish Pshestadija

देबाशीष भट्टाचार्य

Rupam Porel

रूपम पोरेल

Members of Academic Section

सैद्धांतिक भौतिकी सेमिनार सर्किट

टीपीएससी के अंतर्गत आउटरीच गतिविधियाँ

स.ना.ब.रा.मौ.वि.केंद्र सैद्धांतिक भौतिकी सेमिनार सर्किट (टीपीएससी) कार्यक्रम के अंतर्गत पश्चिम बंगाल के साथ-साथ पूर्वोत्तर राज्यों के कॉलेज/विश्वविद्यालयों में निम्नलिखित आउटरीच गतिविधियों को प्रायोजित और सह-आयोजित करेगा।

1. "भौतिकी में प्रगति: सिद्धांत और अनुप्रयोग (एपीटीए-2023)" पर 12वीं विद्यासागर सत्येन्द्र नाथ बसु राष्ट्रीय कार्यशाला" स्थान: विद्यासागर विश्वविद्यालय, मिदनापुर, पश्चिम बंगाल

दिनांक: 28.02.2023 से 02.03.2023 तक

2. "क्वांटम फाउंडेशन और क्वांटम सूचना 2023" पर सामयिक अनुसंधान विद्यालय "

स्थान: ए बी एन सील कॉलेज, कूच बिहार, पश्चिम बंगाल

दिनांक: 14.03.2023 से 16.03.2023 तक

3. "सैद्धांतिक और प्रायोगिक भौतिकी में वर्तमान रुझान" पर सामयिक अनुसंधान विद्यालय

स्थान: गुरुचरण कॉलेज, सिलचर, असम **दिनांक:** 20.03.2023 से 23.03.2023 तक

संयोजक, सैद्धांतिक भौतिकी सेमिनार सर्किट

Marish Barish

Science enthusiasts from schools and colleges participated in the 'Open Day' on $2^{\rm nd}$ January 2023

Centre celebrated Bose Fest 2023 during 1-3 March, 2023

Talk by Prof. Sibaji Raha, Bose Institute, Kolkata on Jagadis Chandra Bose in the lecture series: 'Illustrious Indian Scientists in Pre-independence Era' on 1st April, 2022.

Centre's participation in the "9th Indian National Exhibition Cum-Fair 2022" at Patuli, Kolkata during 4-8 August, 2022.

Academic visit by the students and teachers of Department of Electronics, Dhanamanjuri University, Manipur during 10-11 October, 2022.

Talk by Prof. Christian Maes, KU Leuven, Belgium on 10th November, 2022

APCTP -IACS-SNBNCBS Workshop held during 17-25 November 2022.

Talk by Prof. Ashutosh Sharma, Indian Institute of Technology Kanpur & Former DST Secretary, Chairman of SERB & TDB on 1st December 2022.

Prof. Sir Anthony K. Cheetham, FRS, Materials Research Laboratory, University of California delivered the 16th C. K. Majumdar Memorial Lecture on 8th December 2022.

Bose Colloquium lecture delivered by Prof. Kalachand Sain, Director, Wadia Institute of Himalayan Geology on 30th January 2023.

Public Lecture by Prof. Dipankar Bhattacharya, Head of the Department, Physics, Ashoka University on Dec 12, 2022.

National Science Day 2023 was celebrated at SNBNCBS, Kolkata on 28 February 2023.

SNBNCBS is one of the participants of DST Pavilion at ISC-2023, Nagpur during 3-7 January 2023).

SNBNCBS has participated in the "West Bengal State Science and Technology Congress, 2023" at Science City, Kolkata from 28th February to 1st March 2023.

Students of Kendriya Vidyalaya visited Centre on Jan 17, 2023 for Curtain Raiser Ceremony of the '8th India International Science Festival (IISF)-2022'.

12th Vidyasagar Satyendra Nath Bose National Workshop on Advances in Physics: Theories & Applications-2023 held at Vidyasagar University, Midnapore during 28 February to 2nd March 2023.

कुलसचिव

प्रशासनिक मामलों से संबंधित प्रतिवेदन

केंद्र ने अपने प्रशासनिक एवं तकनीकी कर्मचारी सदस्यों के माध्यम से अपने शैक्षणिक क्रियाकलापों को प्रशासनिक सहयोग प्रदान किया है, जिन्होंने अत्यंत पेशेवर तरीके तथा गंभीरता के साथ वर्ष 2022-2023 में केंद्र के विभिन्न क्रियाकलापों को सफल बनाने हेत् अपने कर्तव्यों का निर्वाह किया है। 31 मार्च, 2023 तक 23 स्थायी, 09 अस्थायी तथा 29 संविदात्मक श्रेणी के कर्मचारी सदस्यों ने निदेशक और कुलसचिव के योग्य मार्गदर्शन में अपने कर्तव्यों का कुशलतापूर्वक निर्वाह किया है। दिन-प्रतिदिन के कार्यों, जिनमें शामिल है अतिथि गृह (भागीरथी), शिश्सदन (किसलय), स्रक्षा, ईपीएबीएक्स, परिवहन, भोजनालय, इलेक्ट्रिकल रखरखाव, एसी रखरखाव, परिसर रखरखाव तथा अन्य विभिन्न सुविधाओं को सुचारू रूप से विभिन्न सेवा एजेंसियों द्वारा प्रदत्त प्रोफ़ेशनल सेवाओं द्वारा चलाया जाता है तथा ये प्रशासनिक अनुभाग के साथ कार्य करते हैं। केंद्र ने विज्ञान और प्रौद्योगिकी विभाग तथा अन्य मंत्रालयों के साथ घनिष्ठ संपर्क कायम रखते हुए उनके विभिन्न प्रश्नों के उत्तर दिए। डीएसटी द्वारा मांगी गई सभी संसदीय सूचना/ रिपोर्ट, अनुपालन रिपोर्ट, ऑडिट पैरा से संबंधित प्रश्न, जीईएम, एलआईबीएमएस आदि से संबंधित विभिन्न प्रकार की रिपोर्ट समय पर प्रस्तुत की गई। केंद्र ने सीएजी ऑडिट टीम और ऑडिट प्रश्नों को सफलतापूर्वक संचालन किया है। केंद्र का हिंदी प्रकोष्ठ प्रभावी रूप से कार्य कर रहा है। केंद्र में राजभाषा

अधिनियम/नियम के प्रावधानों को लागू करने और उसका पालन करने हेतु ईमानदरीपूर्वक प्रयत्न के साथ पर्याप्त मात्रा में प्रशासनिक कार्य हिंदी में किया जाता है।

वर्ष 2022-2023 की अवधि के दौरान सतर्कता से संबंधित कोई भी मामला दर्ज नहीं किया गया है। केंद्र, सूचना का अधिकार अधिनियम के नियमों का पालन करता है तथा अभी तक पिछले वित्तीय वर्ष में इस अधिनियम के अंतर्गत 10 (दस) मामले प्राप्त हुए, जिनका निर्धारित समय के भीतर सफलतापूर्वक निपटान किया गया। राजभाषा हिंदी, सतर्कता और आरटीआई से संबंधित सभी त्रैमासिक। वार्षिक रिपोर्ट संबंधित प्राधिकारी(यों) को समय पर प्रस्तुत की गई हैं।

31 अक्टूबर, 2022 से 06 नवंबर, 2022 के दैरान 'सतर्कता जागरूकता सप्ताह, 2022' के भाग के रूप में, केंद्र ने सतर्कता प्रतिज्ञा और एक विशिष्ट आमंत्रित वार्ता (अतिथि वक्ता- डॉ. एस.के.सादंगी, आईआरएसएस, प्रधान मुख्य सामग्री प्रबंधक, चितरंजन लोकोमोटिव वर्क्स) के अतिरिक्त निबंध लेखन प्रतियोगिता (विषय: "विकसित राष्ट्र के लिए भ्रष्टाचार मुक्त भारत") का आयोजन किया। प्रतियोगिता में प्रथम पुरस्कार के रूप में रु. 5,000/-, द्वितीय पुरस्कार के रूप में रु. 3,000/-, तृतीय पुरस्कार के रूप में रु. 1,000/- था। विजेता इस प्रकार थे -

- प्रथम पुरस्कार सुश्री अन्वेषा चक्रवर्ती, वरिष्ठ अनुसंधान अध्येता
- द्वितीय पुरस्कार श्री स्दीप चक्रवर्ती, कनिष्ठ अनुसंधान अध्येता
- तृतीय पुरस्कार श्री श्रेयन भौमिक, कनिष्ठ अनुसंधान अध्येता

केंद्र में 1 मई 2022 से 15 मई 2022 तक 'स्वच्छता पखवाड़ा' मनाया गया। दिनांक 02.05.2022 को पखवाड़े के एक भाग के रूप में केंद्र ने सामूहिक स्वच्छता शपथ ग्रहण समारोह का आयोजन किया गया, मुख्य कार्यालय भवन, अतिथि-गृह, छात्रावास आदि की व्यापक रूप से सफाई की गई। केंद्र परिसर में अपशिष्ट प्रबंधन एवं जागरूकता रैली निकाली गई साथ ही प्लास्टिक का उपयोग न करने को लेकर जागरूकता अभियान चलाया गया। केंद्र के सभी नोटिस बोर्डों और सभी प्रमुख स्थानों पर "जीरो प्लास्टिक, ग्रीन कैंपस" शीर्षक वाले पोस्टर चिपकाए गए थे। पुराने अभिलेखों की सफाई की गई। केंद्र के वरिष्ठ प्रोफेसर प्रो. एस.के.पाल द्वारा "ठोस एवं तरल अपशिष्ट प्रबंधन" शीर्षक से एक प्रेरक वार्ता/व्याख्यान दिया गया। 'हम स्वच्छ और स्वस्थ भारत कैसे बना सकते हैं' विषय पर एक निबंध प्रतियोगिता का भी आयोजन किया गया था, साथ ही 'विश्व प्रौद्योगिकी दिवस' के अवसर पर पर्यावरण और शिक्षा केंद्र (पूर्व) की कार्यक्रम निदेशक सुश्री रीमा बनर्जी द्वारा एक आमंत्रित व्याख्यान भी प्रदत्त किया गया था। केंद्र के कार्मिक सदस्यों और छात्रों द्वारा "कार्यस्थल में स्वच्छता" नामक एक लघु नाटक का भी आयोजन किया गया।

केंद्र में दिनांक 21 जून 2022 को बस्ंधरा के डाइनिंग हॉल में अंतरराष्ट्रीय योग दिवस भी मनाया गया, इसके उपरांत केंद्र के कार्मिक सदस्यों और छात्रों की उत्साहपूर्ण भागीदारी के साथ एक योग प्रतियोगिता हुई।

केंद्र में 4 और 5 अगस्त 2022 को संगठनात्मक व्यवहार और पारस्परिक प्रभावशीलता पर प्रशासनिक कार्मिक सदस्यों के लिए दो दिवसीय आंतरिक प्रशिक्षण कार्यक्रम आयोजित किया गया था। सचिवालय प्रशिक्षण एवं प्रबंधन संस्थान, कार्मिक एवं प्रशिक्षण विभाग, नई दिल्ली के संकाय ने प्रशिक्षण कार्यक्रम का संचालन किया।

वित्त वर्ष 2022-23 के दौरान आयोजित केंद्र की सांविधिक समितियों की बैठकें:

- केंद्र की शाशी निकाय (जीबी) की 65वीं बैठक दिनांक 09.09.2022 को हाइब्रिड मोड में आयोजित की गई थी।
- केंद्र की वित्त समिति (एफसी) की 43वीं बैठक दिनांक 07.09.2022 को आयोजित की गई थी।
- iii. केंद्र की शैक्षणिक एवं अनुसंधान कार्यक्रम सलाहकार समिति (एआरपीएसी) की 31वीं बैठक 06.03.2022 को आयोजित की गई थी।

सुविधाएँ

केंद्र के पास अंशदायी चिकित्सा योजना (सीएमएस) है जिसके अंतर्गत कंद्र, इसके सभी कर्मचारी सदस्यों तथा उनके आश्रितों (स्थायी कर्मचारी सदस्य के मामले में) तथा छात्रों एवं संविदात्मक कर्मचारी सदस्यों (व्यक्ति विशेष) को चिकित्सा सुविधा (इंडोर तथा आउटडोर दोनों) प्रदान करता है तथा सीजीएचएस दरों के अनुसार चिकित्सा बील को प्रतिपूर्ति करता है। केंद्र के पास कर्मचारी सदस्यों की जरूरतों को पूरा करने के लिए चिकित्सा इकाई है जो एलोपैथी, होमियोपैथी तथा आयुर्वेदिक डॉक्टर परामर्श हेत् नियमित रूप से उपलब्ध होते हैं। प्राथमिक चिकित्सा उपचार के अतिरिक्त ऑक्सीजन, व्हीलचेयर, स्ट्रेचर, रेस्ट बेड जैसी सुविधाएँ हर वक्त उपलब्ध रहती है। केंद्र ने कोलकाता के कुछ प्रमुख अस्पतालों जैसे बीएम बिड़ला हार्ट रिसर्च सेंटर, मेडिका सुपरस्पेसलिटी अस्पताल, पीयरलेस हॉस्पिटेक्स अस्पताल तथा अनुसंधान केंद्र लिमिटेड, डेसन अस्पताल एवं हार्ट इंस्टीट्यूट, आमरी अस्पताल, अपोलो ग्लेनीगल्स हॉस्पिटल लिमिटेड, इंस्टीट्युट ऑफ न्यूरोसाइंसेज, कोलकाता इत्यादी के साथ पारस्परिक व्यवस्था किया गया है जो अस्पताल में भर्ती होने पर नकदीरहित स्विधा प्रदान करता है। सीजीएचएस दरों के अनुसार बाह्य उपचार भी उपलब्ध है।

केंद्र में 'भागीरथी' नामक एक आधुनिक अतिथि गृह है, जिसमे 57 वातानुकूलित कमरे (एकल बिस्तर, दो बिस्तर तथा ट्रांजिट कमरे सहित), 5 वातानुकूलित सूट तथा एक पूर्णतः वातानुकूलित भोजनालय एवं रसोईघर है और एक सेमिनार कक्ष जो आधुनिक सुविधाओं से युक्त है। 'भागीरथी' में उपकरणों से युक्त एक डॉक्टर चेंबर भी है जहां से चिकित्सा कक्ष संचालित होता है। केंद्र में 'राधाचुड़ा' एवं 'कृष्णचुड़ा' नामक दो छात्रावास तथा एक आवश्यक कर्मचारी निवास (सुवर्णरेखा) भी है जो क्रमशः 32 एवं 122 विद्यार्थियों को आवासीय सुविधाएँ प्रदान किए जाते हैं। केंद्र में रहने वाले विद्यार्थी स्वयं अपना मेस चलाते हैं और छात्रावास में भोजनालय एवं कॉमन रूम आदि की व्यवस्था है। केंद्र में पोस्ट-डॉक्टोरल फेलो को निवेदन के आधर पर आवास की स्विधा प्रदान किए जाते हैं। केंद्र में वस्ंधरा नाम से एकीकृत छात्रावास भवन तथा ट्रांजिट क्वार्टर है जिसके डाइनिंग हॉल सुविधओं को कुछ संकाय सदस्यों और ग्रीष्मकालीन छात्रों के द्वारा उपयोग में लाया जा रहा है। 'बस्ंधरा' में बस् प्रालेख भी है जिसमें प्रोफेसर एस.एन. बस् की व्यक्तिगत कलाकृतियाँ और संग्रह हैं जो एस.एन.बस् के परिवार द्वारा दान दिया गया है। यह प्रोफेसर बस् की जीवन कहानी को भी प्रदर्शित करता है।

केंद्र में आधुनिक रूप से सुसज्जित व्याखान कक्षा/ सेमिनार कक्ष है जिनके नाम सिल्वर जुबली हॉल (120 व्यक्तियों के बैठने की क्षमता), बोसॉन (60 व्यक्तियों के बैठने की क्षमता) तथा फर्मिऑन (80 व्यक्तियों के बैठने की क्षमता) है, जिनमें अद्यतन व्याख्यान देने की स्विधाएँ है ताकि आयोजित किए जाने वाले विभिन्न प्रकार के कार्यक्रमों, जैसे व्याख्यान, सेमिनार, संगोष्ठी, विद्वतगोष्ठी, प्रशिक्षण कार्यक्रम सांस्कृतिक कार्यक्रम आदि की आवश्यकताओं की पूर्ति की जा सके। ये स्विधाएं बाह्य उपयोगकर्ताओं के लिए किराये के आधार पर भी उपलब्ध हैं।

समापन करने के पूर्व, मैं केंद्र के प्रशासन, वित्त तथा शैक्षणिक अनुभागों के तीन उप-कुलसचिवों, सभी अनुभाग प्रभारी और प्रशासनिक तथा शैक्षणिक अनुभाग के सभी कर्मचारी सदस्यों के प्रति हार्दिक धन्यवाद ज्ञापित करना चाहती हूँ, जिनका आंतरिक सहयोग एवं समर्थन मुझे प्राप्त हुआ, जिससे केंद्र का कार्य सहजता से संचालित हो सका। मैं मूल्यवान मार्गदर्शन एवं सुझाव प्रदान करने हेत् प्रो. तनुश्री साहा दाशगुप्ता, निदेशक के प्रति भी कृतज्ञता ज्ञापित करती हूँ।

> सोहिनी मज्मदार कुलसचिव

केंद्र में हिंदी (राजभाषा) कार्यान्वयन

हिंदी प्रकोष्ठ की गतिविधियाँ

वर्ष 2022-23 के दौरान केंद्र में राजभाषा संबंधी भारतीय संविधान में किए गए प्रावधानों/ राजभाषा अधिनियम/ नियमों को सफलतापूर्वक कार्यान्वित किया गया। राजभाषा नियम 5 के अनुसार, हिंदी में प्राप्त पत्रादि के उत्तर हिंदी में दिए गए। केंद्र के सभी कार्यालयीन पंजिकाएँ. प्रपत्र, विजिटिंग कार्ड, लेटर हेड और मुहर द्विभाषी प्रारूप में हैं। विज्ञापन, निविदा सूचनाएँ, कार्यालय आदेश और सूचनाएँ, हिंदी में भी परिचालित की जाती है और केंद्र की वेबसाइट पर अपलोड किए गए हैं। कई आंतरिक टिप्पणियाँ हिंदी में लिखी जाती है तथा उपस्थित पंजिका में हस्ताक्षर हिंदी में में किए जाते हैं। केंद्र की आधिकारिक वेबसाइट हिंदी में है तथा केंद्र के कुछ महत्वपूर्ण नीति दस्तावेजों को हिंदी में अनूदित किया गया है तथा केंद्र की वेबसाइट पर अपलोड किया गया है। केंद्र मंत्रालय तथा अन्य संस्थानों के साथ कुछ पत्राचार हिंदी में करता है तथा अपने नियमित कई प्रशासनिक कार्य जैसे कि टिप्पण/ पत्र आदि हिंदी में करता है। हिंदी के प्रगामी विकास संबंधी तिमाही प्रगति रिपोर्ट नियमित रूप से राजभाषा विभाग को ऑनलाइन प्रस्तुत कर इसकी कागजी प्रति डीएसटी को भेजी जाती है। केंद्र नगर राजभाषा कार्यान्वयन समिति, कोलकाता (कार्यालय- 2) का सदस्य है। केंद्र में सुचारु रूप से राजभाषा कार्यान्वयन हेत् राजभाषा कार्यान्वयन समिति का गठन किया गया है जिसकी बैठकें नियमित रूप से होती है। केंद्र के सभी प्रशासनिक तथा शैक्षणिक कर्मचारी सदस्यों में से कई के पास हिंदी का कार्यसाधक ज्ञान है। कई प्रशासनिक कार्मिक सदस्यों को हिंदी शिक्षण योजना, राजभाषा विभाग, भारत सरकार के अंतर्गत प्रवीण तथा प्राज्ञ पाठ्यक्रम में सफलतापूर्वक प्रशिक्षण दिलवाया गया है। केंद्र ने अपने कार्मिक सदस्यों को पारंगत पाठ्यक्रम का प्रशिक्षण दिलाने की भी शुरुआत की है।

वर्ष 2022 के सितंबर महीने में केंद्र में हिंदी पखवाड़ा-2022 के अंतर्गत हिंदी निबंध लेखन प्रतियोगिता और हिंदी प्रश्नोत्तरी प्रतियोगिता के आयोजन के साथ 14 सितंबर, 2022 को 'हिंदी दिवस समारोह' मनाया गया। प्रतियोगिता के समस्त प्रतिभागियों को प्रमाण-पत्र के साथ सांत्वना पुरस्कार प्रदान किया गया एवं विजेताओं को प्रमाण-पत्र के

साथ पुरस्कार राशि प्रदान किया गया। हिंदी निबंध लेखन प्रतियोगिता के विजेता एवं पुरस्कार राशि निम्नानुसार थे :

हिंदी निबंध लेखन प्रतियोगिता:

- प्रथम पुरस्कार-श्री शीवम मिश्रा, वरिष्ठ अनुसंधान फेलो रु. 3,000/-
- द्वितीय पुरस्कार- श्री सब्यसाची मंडल, परिचारक रु. 2,000/-
- तृतीय पुरस्कार- श्री शशांक शेखर पांडे, कनि. अनु. फेलो रु. 1,000/-

दिनांक 14 सितम्बर 2022 को "हिन्दी दिवस समारोह" के सुअवसर पर; अतिथि वक्ता के रूप में उपस्थित श्री एम.के.सिंह, आईपीएस अधिकारी एवं प्रख्यात हिंदी लेखक, कोलकाता, डॉ. श्रीपर्णा तरफदार, सहायक प्रोफेसर, हिंदी विभाग, बंगबासी मॉर्निंग कॉलेज, कोलकाता और श्री एल.के.सिंह, प्राध्यापक, हिंदी शिक्षण योजना, राजभाषा विभाग, कोलकाता ने व्याख्यान दिए।

केंद्र ने 2022-2023 के दौरान प्रत्येक तिमाही से संबंधित चार 'हिंदी कार्यशालाएं' भी आयोजित कीं: i) दिनांक 29.06.2022 को आयोजित कार्यशाला में श्री जीतेंद्र प्रसाद, उप निदेशक, हिंदी शिक्षण योजना, राजभाषा विभाग, कोलकाता द्वारा "हिंदी टंकण के विविध रूप और कार्यालीन पत्राचार में हिंदी का सहज प्रयोग" विषय पर प्रदत्त वार्ता; ii) दिनांक 26.09.2022 को आयोजित कार्यशाला में डॉ. राजीव कुमार रावत, वरिष्ठ हिंदी अधिकारी, आईआईटी, खड़गपुर द्वारा "वर्तमान परिप्रेक्षय में हिंदी और भारतीय भाषाओं का विज्ञान और प्रौद्योगिकी की भाषा बनाने संबंधी चुनौतियाँ और समाधान" विषय पर व्याख्यान; iii) दिनांक 06.12.2022 को आयोजित कार्यशाला में श्री अजय कुमार प्रसाद, राजभाषा प्रबंधक, भारतीय रिज़र्व बैंक, कोलकाता द्वारा "राजभाषा हिंदी के विकास में पारिभाषिक शब्दाबली का महत्व" विषय पर व्याख्यान; iv) दिनांक 17.03.2023 को आयोजित कार्यशाला में श्री राजेश कुमार साव, मुख्य प्रबंधक (राजभाषा), कोल इंडिया लिमिटेड, कोलकाता द्वारा "राजभाषा हिंदी: पारंपरिक ज्ञान से आर्टिफिशियल इंटेलिजेंस और उसकी व्यवहारिकता" विषय पर प्रदत्त वार्ता।

90

सोहिनी मजुमदार कुलसचिव

समितियाँ (31.03.2023 तक)

शासी निकाय	
प्रो. बी एन जगताप	अध्यक्ष
, प्रोफेसर	
भौतिकी विभाग	
आई आई टी बॉम्बे, मुंबई	
डॉ श्रीवरी चन्द्रशेखर	 सदस्य
सचिव	
विज्ञान एवं प्रौद्योगिकी विभाग	
भारत सरकार, नई दिल्ली	
प्रो. प्रशांत के पाणिग्रही	 सदस्य
भौतिक विज्ञान विभाग	
भारतीय विज्ञान शिक्षा एवं अनुसंधान संस्थान, कोलकाता	
प्रो. पल्लब बनर्जी	 सदस्य
प्रोफेसर	
भौतिक विज्ञान केंद्र, आई आई टी, खड़गपुर	
डॉ. डी एस रमेश	सदस्य
निदेशक	
आई आई जी, नवी मुंबई	
प्रो. मनोज कुमार हरबोला	—————————————————————————————————————
प्रोफेसर	
भौतिकी विभाग, आई आई टी, कानपुर	
श्री विश्वजीत सहाय	सदस्य
अतिरिक्त सचिव एवं वित्तीय सलाहकार	
विज्ञान एवं प्रौद्योगिकी विभाग	
भारत सरकार, नई दिल्ली	
श्री एच.के. द्विवेदी, आईएएस	सदस्य
मुख्य सचिव, पश्चिम बंगाल सरकार	
प्रोफेसर तनुश्री साहा-दासगुप्ता	सदस्य
निदेशक	
स.ना. बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
प्रो. (डॉ.) उदय बंद्योपाध्याय	सदस्य
निदेशक	
बसु संस्थान, कोलकाता	
प्रोफेसर तापस चक्रवर्ती	सदस्य
निदेशक (अतिरिक्त प्रभार)	
इंडियन असोशिएशन फॉर कल्टीवेशन ऑफ साइंस	
कोलकाता कोलकाता	
सुश्री सोहिनी मजूमदार	गैर-सदस्य सचिव
कुलसचिव कुलसचिव	
ु सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र	
कोलकाता	

वित्त समिति	
	OTD TTO
प्रोफेसर तनुश्री साहा-दासगुप्ता निदेशक	अध्यक्ष
स.ना. बसु राष्ट्रीय मौलिक विज्ञान केंद्र, कोलकाता	
कालकात। श्री विश्वजीत सहाय	Датт
श्रा विश्वजात सहाय अतिरिक्त सचिव एवं वित्तीय सलाहकार	सदस्य
आतारक्त साचव एव विक्ताय सलाहकार विज्ञान एवं प्रौद्योगिकी विभाग	
विज्ञान एवं प्राधार्गका विभाग भारत सरकार, नई दिल्ली	
प्रोफेसर सोमक रायचौधरी	 ਘਟਹਾ
प्राफ्सर सामक रायचाचरा कुलपति, अशोका विश्वविद्यालय	सदस्य
कुलपात, अशाका विश्वावधालय शैक्षणिक एवं अनुसंधान का एक नामांकित व्यक्ति	
राबाजिक एवं अनुसर्वान का एक नानाकित प्याक्त कार्यक्रम सलाहकार समिति	
प्रो. पल्लब बनर्जी	सदस्य
प्रोफेसर	1147.4
प्रतिपत्तर पदार्थ विज्ञान केंद्र, आई आई टी, खड़गपुर	
सुश्री सोहिनी मजूमदार	 सदस्य सचिव
कुलसचिव कुलसचिव	रायरच साम्य
सुरसायप सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र	
कोलकाता	
PISTERNI	
शैक्षिक एवं अनुसंधान कार्यक्रम सलाहकार समिति	
प्रो. प्रवीण चड्ढा	अध्यक्ष
पूर्व निदेशक	
यू जी सी-डी ए ई कन्सोर्टियम फॉर साइंटिफिक रिसर्च	
इंदौर	
प्रो. सोमक रायचौधरी	 सदस्य
कुलपति, अशोका विश्वविद्यालय	
प्रो. संजय पुरी	सदस्य
प्रोफेसर, जे एन यू, नई दिल्ली	
प्रो. अमिताभ रायचौधरी	 सदस्य
प्रोफेसर अवकाशप्राप्त, कलकत्ता विश्वविद्यालय, कोलकाता	VI 7 V 71
प्रांत अपयोशात, प्रांचिता विद्यापद्यालय, प्रांलपगता	 सदस्य
प्रोफेसर, आई ए सी एस, कोलकाता	(14/3
प्रो. गौतम बस्	सदस्य
गा. नारान बर्जु पूर्व वरिष्ठ प्रोफेसर, बसु संस्थान, कोलकाता	(14/3
पूर्व पारठ प्रावस्तर, बसु संस्थान, कालकाता प्रो. एस एम युसुफ	सदस्य
न्ना. ९५१ ९५ पुरुष वैज्ञानिक अधिकारी (एच+) बी आर सी, मुंबई	(14/4
प्रोफेसर तनुश्री साहा-दासगुप्ता	ਪਟਨ ਸ
प्राफसर तनुत्रा साहा-दासंगुप्ता निदेशक	सदस्य
स.ना. बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता प्रोफेसर अंजन बर्मन	
	सदस्य
अधिष्ठाता (संकाय)	सदस्य
	सदस्य

वार्षिक प्रतिवेदन 2022-2023

प्रोफेसर अमिताभ लाहिड़ी	सदस्य
अधिष्ठाता (शैक्षणिक कार्यक्रम)	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र	
कोलकाता	
सुश्री सोहिनी मजूमदार	गैर-सदस्य सचिव
कुलसचिव कुलसचिव	
स.ना. बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
डॉ. सुनंदन गंगोपाध्याय	स्थायी आमंत्रिती
विभागाध्यक्ष, खगोल भौतिकी और ब्रह्मांड विज्ञान विभाग,	
स.ना. बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
प्रो. पुण्यव्रत प्रधान	स्थायी आमंत्रिती
विभागाध्यक्ष, सैद्धान्तिक विज्ञान विभाग,	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
प्रो. प्रिया महादेवन	स्थायी आमंत्रिती
विभागाध्यक्ष, संघनित पदार्थ भौतिकी एवं पदार्थ विज्ञान विभाग,	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
प्रो राजीव के मित्रा	स्थायी आमंत्रिती
विभागाध्यक्ष, रासायनिक, जैविक और मैक्रो आणविक विज्ञान विभाग,	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	

भवन समिति	
प्रोफेसर तनुश्री साहा-दासगुप्ता	अध्यक्ष
निदेशक	जञ्च
स.ना. बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
श्री असीम सिन्हा	सदस्य
मुख्य अभियंता (सेवानिवृत्त), विद्युत, सीपीडब्ल्यूडी	
डॉ. आर.के.जोशी	सदस्य
वैज्ञानिक 'एफ'	
स्वायत्त संस्था प्रभाग	
विज्ञान एवं प्रौद्योगिकी विभाग, नई दिल्ली	
डॉ. तापस कुमार रॉय	सदस्य
एसोसिएट प्रोफेसर, सिविल इंजीनियरिंग विभाग	
एवं अधीक्षण अभियंता (कार्यवाहक),	
भारतीय इंजीनियरिंग विज्ञान और प्रौद्योगिकी संस्थान	
शिबपुर	
सुश्री सोहिनी मजूमदार	सदस्य सचिव
कुलसचिव	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र, कोलकाता	

श्री मिथिलेश पांडे	विशेष आमंत्रिती
कैम्पस इंजीनियर सह संपदा अधिकारी,	
एसएनबीएनसीबीएस, कोलकाता	
श्री सुमन साहा	विशेष आमंत्रिती
उप कुलसचिव (वित्त)	
एसएनबीएनसीबीएस, कोलकाता	

परामर्शी सलाहकार समिति	
प्रोफेसर तनुश्री साहा-दासगुप्ता	अध्यक्ष
निदेशक	
स.ना. बसु राष्ट्रीय मौलिक विज्ञान केंद्र, कोलकाता	
प्रोफेसर अंजन बर्मन	सदस्य
अधिष्ठाता (संकाय)	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र	
कोलकाता	
प्रोफेसर अमिताभ लाहिड़ी	सदस्य
अधिष्ठाता (शेक्षणिक कार्यक्रम)	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र	
कोलकाता	
प्रो. पुण्यव्रत प्रधान	सदस्य
विभागाध्यक्ष, सैद्धान्तिक विज्ञान विभाग,	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
डॉ. सुनंदन गंगोपाध्याय	सदस्य
विभागाध्यक्ष, खगोल भौतिकी और ब्रह्मांड विज्ञान विभाग,	
स.ना. बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
प्रो राजीव के मित्रा	सदस्य
विभागाध्यक्ष, रासायनिक, जैविक और मैक्रो आणविक विज्ञान विभाग,	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
प्रो. प्रिया महादेवन	सदस्य
विभागाध्यक्ष, संघनित पदार्थ भौतिकी एवं पदार्थ विज्ञान विभाग,	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
सुश्री सोहिनी मजूमदार	सदस्य
कुलसचिव	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
श्री देबाशीष भट्टाचार्य	सदस्य
उप-कुलसचिव (प्रशासन)	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	

वार्षिक प्रतिवेदन 2022-2023

श्री सुमन साहा	सदस्य
उप-कुलसचिव (वित्त)	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
सुश्री निवेदिता कोनार	सदस्य-सचिव
- उप-कुलसचिव (शैक्षिक)	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	

राजभाषा कार्यान्वयन समिति	
प्रोफेसर तनुश्री साहा-दासगुप्ता	अध्यक्ष
निदेशक	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
सुश्री सोहिनी मजूमदार	सदस्य
कुलसचिव	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
डॉ. मनोरंजन कुमार	सदस्य
एसोसिएट प्रोफेसर	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
डॉ नितेश कुमार	सदस्य
सहायक प्रोफेसर	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र,	
कोलकाता	
श्री देबाशीष भट्टाचार्य	सदस्य
उप-कुलसचिव (प्रशासन)	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र, कोलकाता	
सुश्री निवेदिता कोनार	सदस्य
उप-कुलसचिव (शैक्षिक)	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र, कोलकाता	
श्री सुमन साहा	सदस्य
उप-कुलसचिव (वित्त)	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र, कोलकाता	
श्री मिथिलेश कुमार पांडे	सदस्य
परिसर अभियंता सह एस्टेट अधिकारी	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र	
कोलकाता - १९ २ १ ४ - १ ४ -	
श्री शीर्षेन्दु घोष	सदस्य
प्रभारी, हिन्दी प्रकोष्ठ	
सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र, कोलकाता	

शैक्षिक सदस्य 2022-23

शैक्षिक सदस्य (स्थायी संकाय): 2022-23

क्र. सं.	संकाय का नाम	पद	
1	तनुश्री साहा दासगुप्ता	निदेशक एवं वरिष्ठ प्रोफेसर : सी एम एम पी	
2	अर्चन एस. मजूमदार	वरिष्ठ प्रोफेसर : ए एच ई पी	
3	कल्याण मण्डल	वरिष्ठ प्रोफेसर : सी एम एम पी	
4	अमिताभ लाहिड़ी	वरिष्ठ प्रोफेसर : ए एच ई पी	
5	प्रिया महादेवन	वरिष्ठ प्रोफेसर : सी एम एम पी	
6	रंजीत विश्वास	वरिष्ठ प्रोफेसर : सी बी एस	
7	समीर कुमार पाल	वरिष्ठ प्रोफेसर : सी बी एस	
8	अंजन बर्मन	वरिष्ठ प्रोफेसर : सी एम एम पी	
9	गौतम गंगोपाध्याय	वरिष्ठ प्रोफेसर : सी बी एस	
10	जयदेव चक्रवर्ती	वरिष्ठ प्रोफेसर : पी सी एस	
11	प्रोसेंजीत सिंह देव	प्रोफेसर : पी सी एस	
12	सौमेन मण्डल	प्रोफेसर : ए एच ई पी	
13	राजीव कुमार मित्रा	प्रोफेसर : सी बी एस	
14	माणिक प्रधान	प्रोफेसर : सी बी एस	
15	पुण्यब्रत प्रधान	प्रोफेसर : पी सी एस	
16	बर्णाली घोष (साहा)	वैज्ञानिक-एफ	
17	मनोरंजन कुमार	प्रोफेसर : सी एम एम पी	
18	शकुंतला चटर्जी	एसोसिएट प्रोफेसर : पी सी एस	
19	रामकृष्ण दास	एसोसिएट प्रोफेसर : ए एच ई पी	
20	सुनंदन गंगोपाध्याय	एसोसिएट प्रोफेसर : ए एच ई पी	
21	सुमन चक्रवर्ती	एसोसिएट प्रोफेसर : सी बी एस	
22	अतिन्द्र नाथ पाल	एसोसिएट प्रोफेसर : सी एम एम पी	
23	तिरुपथैय्या सेट्टी	एसोसिएट प्रोफेसर : सी एम एम पी	
24	माणिक बणिक [13.06.2022 से]	एसोसिएट प्रोफेसर : पी सी एस	
25	संजय चौधरी	वैज्ञानिक-डी	
26	ऊर्णा बसु	सहायक प्रोफेसर : पी सी एस	
27	तापस बाग	सहायक प्रोफेसर : ए एच ई पी	
28	नितेश कुमार	सहायक प्रोफेसर : सी एम एम पी	
29	अभिजीत चौधरी	सहायक प्रोफेसर : सी एम एम पी	
30	प्रदीप एस पचफूले	सहायक प्रोफेसर : सी बी एस	
31	अरिजित हालदार [05.09.2022 से]	सहायक प्रोफेसर : पी सी एस	
32	साकिब शमीम [06.10.2022 से]	सहायक प्रोफेसर : सी एम एम पी	

वार्षिक प्रतिवेदन 2022-2023

एडवांस्ड पोस्ट-डॉकटोरल रिसर्च प्रोग्राम (APRP):

2022-23 [31.03.2023 तक]

क्र. सं.	नाम	पद	विभाग	मेंटर
1	अजित कुमार साहू	PDRA –I (21.11.2022 से)	सी एम एम पी	प्रोफ. अंजन बर्मन
2	अख़्तर आलम	PDRA –I (15.11.2022 से)	सी बी एस	डॉ पी एस पचफूले
3	अलिक पाँजा	Bridge Fellow (15.09.2022 से)	ए एच ई पी	डॉ तापस बाग
4	अरविंदन वी	PDRA –I (09.03.2023 से)	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता
5	अरिजित मण्डल	PDRA –II (01.03.2023 से)	पी सी एस	प्रोफ. जयदेव चक्रवर्ती
6	अर्पण भट्टाचार्य	PDRA – I (10.12.2022 तक)	सी एम एम पी	प्रोफ. अंजन बर्मन
7	अरुण कुमार मौर्य	PDRA –I (01.12.2022 से)	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता
8	अशादुल हालदार	PDRA – I (18.05.2022 से)	ए एच ई पी	प्रोफ. अर्चन एस मजूमदार
9	अशमिता दास	PDRA – III (11.05.2022 से)	ए एच ई पी	डॉ सुनंदन गंगोपाध्याय
10	बिजॉय एन	PDRA –I (28.11.2022 से)	सी एम एम पी	प्रोफ. प्रिया महादेवन
11	बुद्धदेब पाल	PDRA – I (19.08.2022 तक)	सी एम एम पी	डॉ अतीन्द्र नाथ पाल
12	दीधिति भट्टाचार्य	Bridge Fellow (27.09.2022 से)	सी एम एम पी	डॉ अभिजीत चौधरी
13	धर्मेश जैन	PDRA –III (01.04.2022 तक)	पी सी एस	डॉ सुनंदन गंगोपाध्याय
14	धृमाद्री खाटा	Bridge Fellow (28.09.2022 तक)	ए एच ई पी	प्रोफ. सौमेन मण्डल
15	दुष्मंत पात्र	PDRA –I (26.04.2021 से)	ए एच ई पी	प्रोफ. सौमेन मण्डल
16	गार्गी भट्टाचार्य	PDRA –II (05.01.2023 तक)	सी एम एम पी	प्रोफ. प्रिया महादेवन
17	इप्सिता बसु	PDRA –II (27.05.2022 तक)	सी बी एस	डॉ सुमन चक्रवर्ती
18	इंद्राणी भट्टाचार्य	PDRA –I (27.12.2022 तक)	सी बी एस	प्रोफ. राजीव मित्रा
19	जयेता बनर्जी	PDRA –II (01.02.2023 से)	सी बी एस	प्रोफ. रंजीत विश्वास
20	कौशिक मण्डल	PDRA –I (30.10.2022 से)	सी बी एस	प्रोफ. माणिक प्रधान
21	महिमा सिंह	PDRA – I (20.07.2022 से)	सी एम एम पी	डॉ नितेश कुमार
22	मयूख के राय	PDRA –III (28.02.2023 तक)	सी एम एम पी	डॉ नितेश कुमार
23	मिलन सील	PDRA –I (06.05.2022 से)	ए एच ई पी	डॉ रामकृष्ण दास
24	मिली कुंडु	PDRA – I (03.02.2023 से)	सी एम एम पी	प्रोफ. कल्याण मण्डल
25	मुश्ताक़ अली खान	PDRA – I (12.07.2021 से)	सी एम एम पी	डॉ बर्णाली घोष (साहा)
26	पार्थ पाइन	Bridge Fellow (18.01.2023 तक)	सी बी एस	डॉ पी एस पचफूले
27	पियाली साहा	PDRA – I (15.09.2022 तक)	ए एच ई पी	डॉ तापस बाग
28	प्रियंका गर्ग	PDRA – I (30.06.2022 तक)	सी एम एम पी	प्रोफ. प्रिया महादेवन
29	प्रशांत कुंडु	PDRA –II (26.04.2021 से)	सी बी एस	प्रोफ. गौतम गंगोपाध्याय
30	पुष्पेंदु बारीक	PDRA –III (10.05.2022 से)	सी बी एस	प्रोफ. माणिक प्रधान
31	ऋत्मय भूनिया	PDRA –III (09.02.2023 से)	सी एम एम पी	डॉ अभिजीत चौधरी
32	ऋतुपर्णा मण्डल	Bridge Fellow (09.01.2023 से)	सी बी एस	प्रोफ. गौतम गंगोपाध्याय
33	रुचि पांडे	Bridge Fellow (23.12.2022 तक)	ए एच ई पी	डॉ रामकृष्ण दास
34	सहेली सामंत	Bridge Fellow (13.03.2023 से)	सी एम एम पी	प्रोफ. मनोरंजन कुमार
35	सम्राट घोष	Bridge Fellow (25.08.2022 से)	ए एच ई पी	प्रोफ. सौमेन मण्डल
36	शंभुनाथ दास	PDRA – I (20.03.2023 तक)	सी एम एम पी	प्रोफ. मनोरंजन कुमार
37	शेख़ मोहम्मद ओबईदुल्ला	PDRA – II (01.12.2022 से)	सी एम एम पी	डॉ अतीन्द्र नाथ पाल

क्र. सं.	नाम	पद	विभाग	मेंटर
38	शेख़ समीर अहमद	PDRA – I (01.02.2023 से)	सी बी एस	डॉ सुमन चक्रवर्ती
39	शिवेंदु गुप्ता चौधरी	PDRA – I (14.02.2023 से)	ए एच ई पी	प्रोफ. अमिताभ लाहिड़ी
40	श्रेया दास	Bridge Fellow (25.11.2022 तक)	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता
41	रनेहमयी हाजरा	Bridge Fellow (27.02.2023 से)	सी एम एम पी	डॉ बर्णाली घोष (साहा)
42	शुभदीप चक्रवर्ती	PDRA –I (23.01.2023 तक)	सी बी एस	प्रोफ. राजीव मित्रा
43	सौमी दास	PDRA – I (20.06.2022 से)	पी सी एस	प्रोफ. जयदेव चक्रवर्ती
44	सौम्य चक्रवर्ती	PDRA –II (28.10.2022 तक)	पी सी एस	प्रोफ. अमिताभ लाहिड़ी
45	सुदीप कुमार साहा	Bridge Fellow (27.09.2022 तक)	सी एम एम पी	प्रोफ. मनोरंजन कुमार
46	सुमंती पात्र	Bridge Fellow (28.02.2023 तक)	सी एम एम पी	प्रोफ. प्रिया महादेवन
47	सुतपा साहा	PDRA – I (01.03.2023 से)	ए एच ई पी	प्रोफ. अर्चन एस मजूमदार
48	तन्मय पाल	PDRA –III (01.08.2022 तक)	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता
49	तापस साहू	PDRA –III (10.05.2022 से)	सी बी एस	प्रोफ. गौतम गंगोपाध्याय
50	तनिमा नंदी	PDRA –I (06.05.2022 से)	सी बी एस	प्रोफ. रंजीत विश्वास
51	तिथेंदु सिन्हा	PDRA – I (01.11.2022 से)	ए एच ई पी	तापस बाग
52	त्रिदीब रॉय	PDRA – I (17.01.2023 से)	ए एच ई पी	डॉ रामकृष्ण दास
53	तुषार कान्ति भौमिक	PDRA – I (02.02.2023 से)	सी एम एम पी	डॉ टी सेट्टी
54	विशाल के अगरवाल	Bridge Fellow (20.10.2022 বক)	सी एम एम पी	प्रोफ. मनोरंजन कुमार

एनपीडीएफ / रिसर्च एसोसिएट (बाहरी कोष) : 2022-2023

क्र. सं.	नाम	पद	कार्यकाल	विभाग	मेंटर
1	अनुभव बनर्जी	रिसर्च असोसिएट-।	14.11.2022 तक	ए एच ई पी	डॉ देबांजन बोस
2	डॉ अस्मिता कुमारी	रिसर्च असोसिएट-। (ऍडहॉक)	20.03.2022 तक	ए एच ई पी	प्रोफ. अर्चन एस मजूमदार
3	डॉ देबाशीष साहा	एनपीडीएफ	12.08.2022 तक	ए एच ई पी	प्रोफ. अर्चन एस मजूमदार
4	डॉ दिपायन सेन	रिसर्च असोसिएट-॥।	31.01.2023 तक	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता
5	डॉ इंद्राणी भट्टाचार्य	एनपीडीएफ	28.12.2022 से	सी बी एस	प्रोफ. राजीव मित्रा
6	डॉ गार्गी भट्टाचार्य	एनपीडीएफ	06.01.2023 से	सी एम एम पी	प्रोफ. प्रिया महादेवन
7	डॉ जयेता बनर्जी	एनपीडीएफ	30.12.2022 तक	सी बी एस	प्रोफ. माणिक प्रधान
8	डॉ मीर अलिमुद्दीन	चाणक्य पीडीएफ	13.06.2022 से	पी सी एस	डॉ माणिक बणिक
9	डॉ पार्थ नंदी	रिसर्च असोसिएट-। (ऍडहॉक)	30.11.2022 तक	ए एच ई पी	प्रोफ. अर्चन एस मजूमदार
10	डॉ संजुक्ता पॉल	रिसर्च असोसिएट-।	06.12.2022 तक	सी एम एम पी	प्रोफ. प्रिया महादेवन
11	डॉ सौमेंदु दत्ता	रिसर्च असोसिएट-॥।	25.08.2021 से	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता
12	डॉ सौम्य भट्टाचार्य	रिसर्च असोसिएट-।	04.04.2022 से	ए एच ई पी	प्रोफ. रबीन बनर्जी
13	डॉ सौरव चक्रवर्ती	रिसर्च असोसिएट-। (ऍडहॉक)	05.12.2022 से	सी एम एम पी	प्रोफ. मनोरंजन कुमार
14	डॉ सुमित नंदी	रिसर्च असोसिएट-।	04.07.2022 तक	ए एच ई पी	प्रोफ. अर्चन एस मजूमदार
15	डॉ सुमित हालदार	रिसर्च असोसिएट-।	02.12.2022 तक	सी एम एम पी	प्रोफ. मनोरंजन कुमार
16	श्रेया दास	रिसर्च असोसिएट-। (ऍडहॉक)	09.07.2022 तक	सी एम एम पी	प्रोफ. तनुश्री साहा दासगुप्ता
17	डॉ उपासना दास	एनपीडीएफ	26.12.2022 से	सी बी एस	डॉ पी एस पचफूले

वार्षिक प्रतिवेदन २०२२-२०२३

अवकाशप्राप्त / अन्य संविदात्मक संकाय/ डीएसटी (इंस्पायर) / रामानुजन फ़ेलो : 2022-2023

क्र. सं.	नाम	पद	विभाग
1	प्रोफ. रबीन बनर्जी	राजा रमन्ना फ़ेलो	ए एच ई पी
2	प्रोफ. गीतम दे	एमेरिटस प्रोफेसर, 15.01.2023 तक विजिटिंग प्रोफेसर, 16.01.2023 से	सी बी एस
3	प्रोफ. प्रभात मण्डल एमेरिटस प्रोफेसर		सी एम एम पी
4	प्रोफ. सुभ्रांग्शु शेखर मन्ना	विजिटिंग (ओनोररी) फ़ेलो, 31.01.2023 तक	पी सी एस
5	प्रोफ. रंजन चौधरी	विजिटिंग (ओनोररी) फ़ेलो, 31.12.2022 तक	सी एम एम पी
6	प्रोफ. पी के मुखोपध्याय	विजिटिंग (ओनोररी) फ़ेलो, 31.12.2022 तक	सी एम एम पी
7	प्रोफ. एम संजय कुमार	विजिटिंग (ओनोररी) फ़ेलो, 01.08.2022 तक	पी सी एस
8	प्रोफ. समित कुमार राय	ऍडजंक्ट फैकल्टी	सी एम एम पी
9	प्रोफ. पार्थ गुहा	ऍडजंक्ट फैकल्टी	पी सी एस
10	डॉ गौतम शीट ऍडजंक्ट फैकल्टी		सी एम एम पी
11	डॉ शुभ्र भट्टाचार्जी	ऍडजंक्ट फैकल्टी	सी एम एम पी
12	डॉ इंद्रनील सरकार	ऍडजंक्ट फैकल्टी	सी एम एम पी
13	डॉ अनूप घोष	डीएसटी इंस्पायर फैकल्टी	सी एम एम पी
14	डॉ दीपांविता मजूमदार	डीएसटी इंस्पायर फैकल्टी	सी एम एम पी
15	डॉ सुमन चौधरी	डीएसटी इंस्पायर फैकल्टी, 10.10.2022 से	सी एम एम पी
16	डॉ सुजय कुमार घोष	डीएसटी इंस्पायर फैकल्टी, 09.03.2023 से	सी एम एम पी
17	डॉ देबांजन बोस	रामानुजन फ़ेलो, 14.11.2022 तक	ए एच ई पी
18	डॉ अली हुसैन खान	रामानुजन फ़ेलो	सी बी एस
19	डॉ मनोज मण्डल	रामालिंगस्वामी रि-एंट्री फ़ेलो	सी बी एस

: खगोल भौतिकी और उच्च ऊर्जा भौतिकी विभाग ए एच ई पी

: जटिल प्रणालियों का भौतिकी विभाग पी सी एस

: रासायनिक और जैविक विज्ञान विभाग सी बी एस

सी एम एम पी : संघनित पदार्थ एवं पदार्थ भौतिकी विभाग

प्रशासनिक एवं तकनीकी स्टाफ सदस्य

सोहिनी मजूमदार कुलसचिव कल्याण मण्डल सतर्कता अधिकारी देबाशीष भट्टाचार्य लोक सूचना अधिकारी

अन्य सदस्य

निवेदिता कोनार उप-कुलसचिव (शैक्षिक) देबाशीष भट्टाचार्य उप-कृलसचिव (प्रशासन) उप-कुलसचिव (वित्त) सुमन साहा

सौमेन अधिकारी पुस्तकालयाध्यक्ष सह सूचना अधिकारी मिथिलेश कुमार पांडे परिसर अभियंता सह एस्टेट अधिकारी

संतोष कुमार सिंह सहायक कुलसचिव (क्रय) शीर्षेंद् घोष कार्यक्रम समन्वयक अधिकारी निदेशक के निजी सहायक अच्युत साहा

स्वप्नमय दत्ता आशुलिपिक संचारी दासगुप्ता सहायक (सामान्य) जयदीप कर कार्यक्रम सहायक प्रसेंजीत तालुकदार कार्यक्रम सहायक

शुभम पॉल पम्प परिचालक [02.05.2022 से] बिजय कुमार प्रमाणिक कनिष्ठ सहायक (अतिथि गृह) भूपति नस्कर पुस्तकालय स्टैक सहायक सिद्धार्थ चटर्जी उच्च श्रेणी लिपिक स्वरूप दत्ता परियोजना सहायक

स्शांत कुमार विश्वास चालक (ड्राइवर)[28.02.2023 तक] पार्थ मित्रा ऐटेंडेंट [31.07.2022 तक]

अमित घोष ऐटेंडेंट [01.06.2022 से]

स्वपन घोष ऐटेंडेंट ऐटेंडेंट राजर्षी बर्मन सव्यसाची मण्डल ऐटेंडेंट

स्प्रभात नस्कर ऐटेंडेंट [17.02.2023 से]

अस्थायी स्थिति वाले कार्मिक

दुलाल चटर्जी ऐटेंडेंट (रखरखाव)

ऐटेंडेंट (लेखा)[30.04.2022 तक] सोमनाथ राय

ऐटेंडेंट (तकनीकी कक्ष) स्धांश् चक्रवर्ती

हीरालाल दास सफाई कर्मी कार्तिक दास सफाई कर्मी सफाई कर्मी मोतीलाल दास सफाई कर्मी प्रकाश दास रामचन्द्र दास सफाई कर्मी विश्वनाथ दास माली निमाई नस्कर माली

संविदात्मक नियुक्ति वाले कार्मिक

ए. के. सरकार परामर्शदाता (वित्त) वी. एस. पांडा परामर्शदाता (विधिक)

सहायक अभियंता (इलेक्ट्रिकल) अयन देब सुतपा बसु कुलसचिव के निजी सहायक अभिजीत घोष कनिष्ठ कम्प्यूटर अभियंता सागर सम्राट दे कनिष्ठ कम्प्युटर अभियंता देबलीना मुखर्जी कनिष्ठ कम्प्युटर अभियंता अमित राय तकनीकी सहायक (पुर-तकालय) तकनीकी सहायक (पुर-तकालय) गुरुदास घोष अनन्या सरकार तकनीकी सहायक (पुस्तकालय)

शक्तिनाथ दास तकनीकी सहायक उर्मि चक्रवर्ती तकनीकी सहायक अमित कुमार चंद तकनीकी सहायक जय बंदोपाध्याय तकनीकी सहायक

गणेश गुप्ता कनिष्ठ अभियंता (इलेक्ट्रिकल) सुप्रियो गांगुली कनिष्ठ अभियंता (इलेक्ट्रिकल) अमिताभ पालित कनिष्ठ अभियंता (सिविल) लक्ष्मी चट्टोपाध्याय कनिष्ठ अभियंता (सिविल) चंद्रकणा चटर्जी कार्यालय सहायक रूपम पोरेल कार्यालय सहायक मिताली बोस कार्यालय सहायक शुभोदीप मुखर्जी कार्यालय सहायक शुभेंदु दत्त कार्यालय सहायक सोनाली सेन कार्यालय सहायक लीना मुखर्जी कनिष्ठ कार्यालय सहायक देबाशीष मित्रा टेलीफोन परिचालक

सनी अहमद अली मोल्ला तकनीशियन (एसी एवं रेफ्रीजरेशन)

सुरंजन देव टेलीफोन तकनीशियन हिषकेश नंदी ग्लास ब्लोअर (अंशकालिक)

प्रशासन में कार्यरत आउटसोर्स एजेंसी के कर्मचारी

श्री कृश्रेंदु पात्र - लिपिक (लेखा)

श्रीमति संचारी चैटर्जी - लिपिक (लेखा)

श्री अजय कुमार साव - कार्यालय सहायक (हिंदी)

श्री देवार्घ्य घोष - तकनीकी सहायक

श्री सौरव सिन्हा - तकनीकी सहायक

श्री आदित्य मैत्र - तकनीकी सहायक

श्री श्भव्रत दास – मैकेनिक

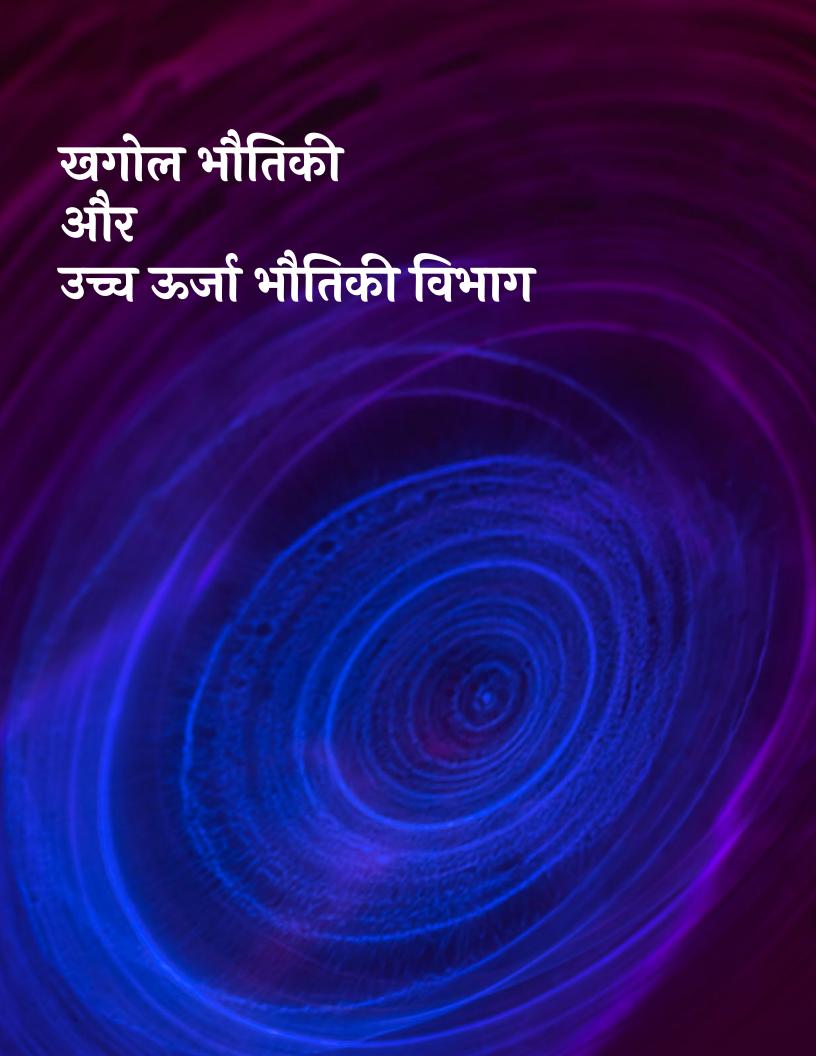
श्री गोविंद दास – चालक

श्री पिंटू साहा – चालक

चिकित्सा कक्ष (परामर्शी चिकित्सक)

डॉ. चयन भट्टाचार्य प्राधिकृत चिकित्सा अधिकारी डॉ. शर्वाणी भट्टाचार्य चिकित्सा अधिकारी होमियोपैथी चिकित्सक डॉ. त्रिदिव कुमार सरकार

Staff members of the Centre


Staff members, Administrative Section

Staff members, Purchase Section

Staff members, Computer Services Cell

खगोल भौतिकी और उच्च ऊर्जा भौतिकी विभाग

सुनंदन गंगोपाध्याय

विभाग प्रोफाइल संकेतक

तालिका क: जनशक्ति और संसाधन

संकाय सदस्यों की संख्या	6
पोस्ट-डॉक्टोरल रिसर्च एसोसिएट की संख्या (केंद्र+परियोजना)	14
पीएचडी छात्रों की संख्या	49
अन्य परियोजना कर्मचारियों की संख्या	0
ग्रीष्मकालीन विद्यार्थियों की संख्या	14
परियोजनाएं (चालू)	4

तालिका ख: अनुसंधान गतिविधियाँ संकेतक

ज़र्नल में शोध पत्रों की संख्या	47
पुस्तक-अध्यायों/पुस्तकों की संख्या	0
अन्य प्रकाशनों की संख्या	1
उपाधि प्राप्त पीएचडी छात्र (थीसिस प्रस्तुत+उपाधि प्रदान की गई)	11+5=16
एम.टेक/एम.एससी परियोजनाओं की संख्या	5

तालिका ग: शैक्षणिक गतिविधियाँ और इसके सदृश कार्य

संकाय सदस्यों द्वारा पढ़ाए जाने वाले पाठ्यक्रमों की संख्या	15		
आगंतुकों की संख्या (गैर-एसोसिएट्स)	0		
एसोसिएट्स की संख्या		0	
आयोजित सेमिनारों की संख्या		20	
आयोजित सम्मेलन/ संगोष्ठी/ उन्नत स्कूल की संख्या		5	
सम्मेलनों/ संगोष्ठियों में विभाग के सदस्यों द्वारा दिए गए वक्तव्य की संख्या	राष्ट्रीय	18	
	अंतरराष्ट्रीय	2	

सर्वाधिक महत्वपूर्ण शोधकार्य

- टेट्रांड और स्पिन कनेक्शन का उपयोग करके गुरुत्वाकर्षण के पहले क्रम के फॉर्मूलेशन का उपयोग करके घुमावदार स्पेसटाइम पर फर्मियन की गतिशीलता का पता लगाया गया है।
- जब सिस्टम की फ्रिडम की डिग्री 2-डी सतह तक सीमित होती है तो फर्मियन और वॉर्टेक्स के बीच पारस्परिक क्रिया के कुछ परिणामों की जांच की गई है। यह कार्य न्यूक्लियर फिजिक्स बी, 986, 116050, 2023 में प्रकाशित हुआ था।
- फ्रीडमैन-लेमैत्रे-रॉबर्टसन-वॉकर ब्रह्मांड के लेट टाइम ब्रह्मांड विज्ञान को क्वांटम गुरुत्वाकर्षण के पुनर्सामान्यीकरण समूह प्रवाह दृष्टिकोण में क्वांटम गुरुत्वाकर्षण प्रभावों को ध्यान में रखते हुए देखा गया है। यह कार्य यूरोपियन फिजिकल जर्नल प्लस, 137, 1110, 2022 में प्रकाशित हुआ था।
- संरचना की उपस्थिति के साथ लेट टाइम ब्रह्मांड में गुरुत्वाकर्षण तरंगों के प्रसार की जांच की गई है। विशेष रूप से, बुचर्ट के औसत ढांचे का उपयोग करते हुए, गुरुत्वाकर्षण तरंग स्रोतों से जुड़े अवलोकनों पर अमानवीयताओं के प्रभाव का अध्ययन किया गया है। यह कार्य जर्नल ऑफ कॉस्मोलॉजी एंड एस्ट्रोपार्टिकल फिजिक्स, 6, 021, 2022 में प्रकाशित हुआ था।
- चिपचिपी डार्क एनर्जी मॉडल के संदर्भ में वैश्विक 21-सेमी चमक तापमान की जांच की गई है। यह कार्य जर्नल ऑफ कॉस्मोलॉजी एंड एस्ट्रोपार्टिकल फिजिक्स, 2022, 049, 2022 में प्रकाशित हुआ था।
- अनुक्रम में दो मापों के बाद एक प्रिपैरेशन से युक्त सेटअप में आर्बिट्रेरी डी-आउटकम क्वांटम माप के प्रमाणीकरण के लिए एक प्रोटोकॉल स्थापित किया गया है।
- पूरी तरह से प्रतिबिंबित सीमा की उपस्थित में शास्त्रीय ओटो इंजन के सापेक्ष क्वांटम एनालॉग का एक नया मॉडल पेश किया गया है। यह दिखाया गया है कि कम कार्य आउटपुट के बावजूद, सीमा की उपस्थिति में भी इंजन की दक्षता अपरिवर्तित रहती है। यह कार्य जर्नल ऑफ हाई एनर्जी फिजिक्स, 2022, 105, 2022 में प्रकाशित हुआ।
- एक सर्किट क्वांटम इलेक्ट्रोडायनामिकल सेट-अप में डायनेमिक कासिमिर विकिरण द्वारा बेल की असमानता का उल्लंघन दिखाया गया है। यह कार्य फिजिकल रिव्यू ए, 106, 042224, 2022 में प्रकाशित हुआ।
- क्वांटम सुधारित श्वार्ज़िस्चल्ड ब्लैक होल में फॉलिंग परमाणु द्वारा प्रदर्शित त्वरण विकिरण की घटना का पता लगाया गया

- है। इस क्वांटम सुधारित ब्लैक होल ज्यामिति के लिए क्षितिज उज्ज्वल त्वरण विकिरण एन्ट्रॉपी (HBAR) प्राप्त की जाती है। एचबीएआर एन्ट्रॉपी का रूप सार्वभौमिक क्वांटम गुरुत्व सुधार के साथ बेकेंस्टीन-हॉकिंग ब्लैक होल एन्ट्रॉपी के समान है। यह कार्य फिजिकल रिव्यू डी 105, 085007, 2022 में प्रकाशित हुआ।
- दो अदिश फोटॉनों के एक साथ उत्सर्जन के साथ एक परमाणु-दर्पण प्रणाली के आभासी संक्रमण की जांच की गई है, जहां परमाणु और दर्पण उनके बीच एक सापेक्ष त्वरण स्वीकार करते हैं।
- दोहरी सीमा क्षेत्र सिद्धांत से इनपुट का उपयोग करके बोर्न-इन्फेल्ड एडीएस ब्लैक होल के थर्मोडायनामिक्स का विस्तृत रूप से अध्ययन किया गया है। यह कृति पीआरडी 106, 026005, 2022 में प्रकाशित हुई।
- विभिन्न खगोलीय पिंडों का स्पेक्ट्रोस्कोपिक अध्ययन, उदा. नोवे,
 ग्रह नीहारिका, विशाल तारे आदि की जांच की गई है। विभिन्न खगोलीय कोडों का उपयोग करके डेटा का विश्लेषण और मॉडलिंग किया जाता है।
- आरएस ओफ़िउची के सबसे हालिया (2021) आउटबर्स्ट के बाद एक महीने में इसके ऑप्टिकल स्पेक्ट्रा के विकास का अध्ययन किया गया है।
- विभिन्न अलग-अलग मापदंडों के साथ एक ग्रिड मॉडल का निर्माण करके ग्रहीय नीहारिकाओं के आसपास फोटोडिसोसिएशन क्षेत्र की जांच की गई है, जैसे कि प्रभावी तापमान, सोर्स ल्युमिनोसिटी; नीहारिका का घनत्व।
- सुपरफ्लेयर घटनाओं को उत्पन्न करने के लिए, आवश्यक चुंबकीय क्षेत्र की ताकत, जो कुछ 100 जी के क्रम में निकल रही है, की गणना की गई है। ऐसे सुपरफ्लेयर्स का एम-ड्वाफ्र्स के आसपास ग्रहों की रहने की क्षमता पर गहरा प्रभाव पड़ता है।
- विशाल ओबी सितारों द्वारा विकसित एलडीएन 1616 धूमकेतु बादल के ऑप्टिकल आर-बैंड (700 एनएम) ध्रुवीकरण अवलोकनों का विश्लेषण किया गया है।

अनुसंधान गतिविधियों का सारांश

सैद्धांतिक भौतिकी के क्षेत्र में की गई अन्वेषण:

यह पहले दिखाया गया है कि 3+1-डी बोसॉन-फर्मियन प्रणाली को दोहरा करने से फर्मियन और वॉर्टेक्स एक गैर-स्थानीय टर्म के माध्यम से उच्च गेज क्षेत्र के माध्यम से पारस्परिक क्रिया करते हैं। जब सिस्टम की फ्रिडम की डिग्री 2-डी सतह तक सीमित होती है तो उस इंटरैक्शन के कुछ परिणामों का पता लगाया गया है। यह दिखाया गया है कि वॉर्टिसेस अब अपने स्पिन चुंबकीय क्षण के माध्यम से फर्मिअन से जुड़े हुए हैं, चेर्न-साइमन्स गेज सिद्धांत में फ्लक्स लगाव की घटना पदार्थ से जुड़ी है।

टेट्राड और स्पिन कनेक्शन का उपयोग करके गुरुत्वाकर्षण के पहले क्रम के फॉर्मूलेशन का उपयोग करके घुमावदार स्पेसटाइम पर फर्मियन की गतिशीलता पर विचार किया गया है। पहले यह दिखाया गया है कि इसके परिणामस्वरूप सामान्य आइंस्टीन गुरुत्वाकर्षण होता है, लेकिन एक प्रभावी चार-फर्मियन इंटरैक्शन के साथ, जब स्पिन कनेक्शन का मरोड़ वाला भाग समाप्त हो जाता है। हमारे विभाग के समूह ने दिखाया है कि पदार्थ की थर्मल पृष्ठभूमि से गुजरते समय, इस इंटरैक्शन के सामान्य रूप ने प्रभावी न्यूट्रिनो द्रव्यमान में योगदान दिया, जो न्यूट्रिनो दोलन मापदंडों को प्रभावित करेगा।

विभाग के समूह ने क्वांटम गुरुत्व के पुनर्सामान्यीकरण समूह प्रवाह दृष्टिकोण में क्वांटम गुरुत्वाकर्षण प्रभावों को ध्यान में रखते हुए, एफएलआरडब्ल्यू ब्रह्मांड के लेट टाइम के ब्रह्मांड विज्ञान का भी अध्ययन किया है। क्वांटम सही पैमाने के कारक, ऊर्जा घनत्व और लेट टाइम में एन्ट्रापी उत्पादन की गणना की गई और यह पाया गया कि कट-ऑफ कार्यों के विभिन्न विकल्पों के परिणामस्वरूप अलग-अलग लेट टाइम के ब्रह्मांड विज्ञान हुए। एक अन्य कार्य में, क्वांटम सही दो-शरीर न्यूटोनियन गुरुत्वाकर्षण क्षमता को एक अनंत द्रव्यमान के लिए गतिज ऊर्जा और संभावित ऊर्जा के गैर-सापेक्षवादी संरक्षण से शुरू होने वाले संशोधित फ्रीडमैन समीकरणों को प्राप्त करने के लिए माना गया था। यह पाया गया कि स्केल फैक्टर धूल और विकिरण के लिए शास्त्रीय कारक की तरह व्यवहार करता है, लेकिन ब्रह्माण्ड संबंधी स्थिरांक प्रभुत्व वाले ब्रह्मांड के मामले में स्पष्ट रूप से भिन्न होता है।

हमारे लेट टाइम के ब्रह्मांड में संरचना की उपस्थिति के साथ गुरुत्वाकर्षण तरंगों के प्रसार पर विचार किया गया। बुचर्ट के औसत ढांचे का उपयोग करते हुए, गुरुत्वाकर्षण तरंग स्रोतों से जुड़े अवलोकनों पर अमानवीयताओं के प्रभाव की जांच की गई। यह दिखाया गया है कि लाल बदलाव के संबंध में गुरुत्वाकर्षण तरंग आयाम की भिन्नता मानक ब्रह्माण्ड संबंधी मॉडल की तुलना में काफी भिन्न हो सकती है। परिणाम गुरुत्वाकर्षण तरंग स्रोतों के मापदंडों के सटीक माप पर स्थानीय असमानताओं के महत्व को दर्शाता है।

चिपचिपी डार्क एनर्जी (VDE) मॉडल के संदर्भ में वैश्विक 21-सेमी चमक तापमान की जांच पर विचार किया गया। डार्क एनर्जी की थोक चिपचिपाहट ब्रह्मांड के हबल विकास को बाधित करती है जो बेरियन को

तेजी से ठंडा कर सकती है, और इसलिए, 21-सेमी चमक तापमान को बदल सकती है। VDE मॉडल मापदंडों पर सीमाएँ जो EDGES प्रयोग के अवलोकन संबंधी अतिरिक्त के लिए जिम्मेदार हो सकती हैं, समूह के सदस्यों द्वारा प्राप्त की गईं।

किसी भी सूचना प्रसंस्करण कार्य के लिए उपकरणों का उपयोग करने से पहले अज्ञात प्रदाताओं से प्राप्त क्वांटम उपकरणों का प्रमाणीकरण एक प्राथमिक आवश्यकता है। इस संदर्भ में एक सेटअप में मनमाने ढंग से डी-परिणाम क्वांटम माप के प्रमाणीकरण के लिए एक प्रोटोकॉल दिया गया था जिसमें अनुक्रम में दो मापों के बाद एक तैयारी शामिल थी।

पूरी तरह से प्रतिबिंबित सीमा की उपस्थित में शास्त्रीय ओटो इंजन के सापेक्ष क्वांटम एनालॉग का एक नया मॉडल पेश किया गया था। यह दिखाया गया है कि कम कार्य आउटपुट के बावजूद, सीमा की उपस्थिति में भी इंजन की दक्षता अपरिवर्तित रहती है।

क्वांटम सुधारित श्वार्ज़िस्चल्ड ब्लैक होल में गिरने वाले परमाणु द्वारा प्रदर्शित त्वरण विकिरण की घटना की जांच की गई। एक फोटॉन के एक साथ उत्सर्जन के साथ एक परमाण् की उत्तेजना संभावना एक परमाण् के संबंध में तेजी लाने वाले दर्पण की उत्तेजना संभावना की तुलना में त्ल्यता सिद्धांत को संतुष्ट करती है। सामान्य ब्लैक होल ज्यामिति के लिए तुल्यता सिद्धांत की वैधता का प्रदर्शन किया गया। इस क्वांटम स्धारित ब्लैक होल ज्यामिति के लिए क्षितिज उज्ज्वल त्वरण विकिरण एन्ट्रॉपी (HBAR) प्राप्त किया गया था। एचबीएआर एन्ट्रॉपी का रूप सार्वभौमिक क्वांटम गुरुत्व सुधार के साथ बेकेंस्टीन-हॉकिंग ब्लैक होल एन्ट्रॉपी के समान है।

स्थिर गोलाकार सममित ब्लैक होल के एक बड़े वर्ग से संबंधित ब्लैक होल मीट्रिक के निकट क्षितिज पहलुओं (और उससे आगे) की जांच की गई। निकट क्षितिज सन्निकटन समस्या में अनुरूप समरूपता की ओर ले जाता है। अध्ययन में, निकट क्षितिज सन्निकटन से आगे जाने को लागू किया गया, जो ब्लैक होल ज्यामिति के निकट क्षितिज भौतिकी से जुड़ी अनुरूप समरूपता को तोड़ता है। यह देखा गया कि अनुरूप समरूपता पर विचार किए बिना भी, संशोधित तुल्यता संबंध कायम रहता है। आभासी ट्रांजिशन की संभावना क्षितिज सन्निकटन से परे के कारण संशोधित होने वाले आयाम के साथ अपने प्लैंक-जैसे स्वरूप को बरकरार रखती है।

दोहरी सीमा क्षेत्र सिद्धांत से इनपुट का उपयोग करके बोर्न-इन्फेल्ड एडीएस ब्लैक होल के थर्मोडायनामिक्स की जांच की गई। यहां, ब्रह्माण्ड संबंधी स्थिरांक और न्यूटन का गुरुत्वाकर्षण स्थिरांक बड़े पैमाने पर बोर्न-इन्फेल्ड पैरामीटर के साथ भिन्न थे।

प्रेक्षण संबंधी खगोल भौतिकी के क्षेत्र में की गई अन्वेषण:

आरएस ओफ़िउची (आरएस ओफ़) के 2021 विस्फोट का अध्ययन: आरएस ओफ़ एक प्रसिद्ध गैलेक्टिक आवर्तक नोवा है जिसका औसत पुनरावृत्ति समय-पैमाने लगभग 15 वर्ष है। सिस्टम में सीओ-प्रकार का सफेद ड्वार्फ (डब्ल्यूडी) है जिसका द्रव्यमान 1.2 - 1.4 गुना सौर द्रव्यमान की सीमा में है। इसकी सतह पर संचित पदार्थ के एक अंश के जमा होने के कारण WD के द्रव्यमान में वृद्धि होने की सबसे अधिक संभावना है। अंततः, यह चन्द्रशेखर सीमा तक पहुंच सकता है और टाइप la सुपरनोवा के रूप में विस्फोट कर सकता है। हमने आरएस ओफ़ के ऑप्टिकल स्पेक्ट्रा के विकास का अध्ययन किया है, इसके सबसे हालिया (2021) विस्फोट के एक महीने से अधिक समय बाद। रेखा की चौडाई के विकास से लाल जायंट साथी की हवाओं में एक विस्तारित चौंकाने वाली सामग्री का पता चला था। यह 4 दिनों तक स्वतंत्र रूप से फैलता है, और उसके बाद, समय के साथ झटके का वेग नीरस रूप से कम हो जाता है। स्पेक्ट्रा को फोटोआयनाइजेशन कोड CLOUDY का उपयोग करके तैयार किया गया था।

तारे विशाल आणविक बादलों के भीतर गुच्छित वातावरण में बनते हैं। आंतरिक गुरुत्वाकर्षण गतिशीलता बादल के विखंडन को प्रेरित करती है, जिसके बाद प्रत्येक टुकड़ा ढह जाता है और प्रीस्टेलर कोर गठन की शुरुआत होती है। वैकल्पिक रूप से, बड़े तारों से आयनीकरण या विस्फोटक झटके का प्रसार पडोसी बादलों को संपीडित कर सकता है. जिससे अगली पीढ़ी के तारे का निर्माण शुरू हो सकता है। आणविक बादल जटिल ज्यामिति प्रदर्शित करते हैं, जिनमें शीट और फिलामेंट्स से लेकर लंबे नेटवर्क तक की उप-संरचनाएं शामिल हैं। फिलामेंटरी आणविक बादल के पास एच ॥ क्षेत्रों के विस्तार से होने वाली अशांति. एच ॥ क्षेत्र के दोनों ओर फिलामेंट की लंबी धुरी के साथ स्टार-गठन

कोर की अनुक्रमिक तरंगें उत्पन्न कर सकती है, युवा प्रोटोस्टार को प्राथमिकता से फिलामेंटरी अक्ष के साथ संरेखित किया जाता है. जिस पर पैरेंटल बादल के विखंडन की छाप होती है। हम H II क्षेत्र Sh2-112 के आसपास तारा निर्माण गतिविधि का अध्ययन करते हैं. जो विशाल तारे (O8 V)BD+45 3216 द्वारा प्रकाशित होता है। संबंधित आणविक बादल 2°.0 × 0°.83 के कोणीय पैमाने में फैला हुआ है, जो गैलेक्टिक देशांतर के साथ 73 पीसी x 30 पीसी के रैखिक आकार के अनुरूप है। उच्च-रिज़ॉल्यूशन (30") विलुप्त होने का नक्शा एवी~2.78 मैग के औसत विलुप्त होने के साथ फिलामेंट जैसी संरचना के साथ संरेखित धूल के गुच्छों की एक श्रृंखला को दर्शाता है, जो अधिकतम~17 मैग तक भिन्न होता है। हमारे विश्लेषण से युवा तारों की एक समृद्ध आबादी (\sim 500) (\sim 1 Myr की औसत आयु) के साथ-साथ Hlpha उत्सर्जकों की एक बड़ी संख्या (~350) की पहचान हुई, जो स्थानिक रूप से फिलामेंटरी बादलों के साथ सहसंबद्ध हैं। बादल के किनारे के पास स्थित, चमकदार तारा BD+45 3216 ने एक चाप जैसा पैटर्न बनाया है क्योंकि आयनीकृत विकिरण घने गैस का सामना करता है, जिससे एक छाले के आकार की आकृति बनती है। तीन अलग-अलग युवा तारकीय समूह पाए गए, जो सभी बादल परिसर के अपेक्षाकृत घने हिस्सों के साथ मेल खाते हैं. जो चल रहे तारा निर्माण को दर्शाते हैं।

बड़े पैमाने पर ओबी तारों द्वारा विकसित एलडीएन 1616 धूमकेतु बादल के ऑप्टिकल आर-बैंड (700 एनएम) ध्रवीकरण अवलोकनों का विश्लेषण किया गया। व्यक्तिगत समतल-आकाश स्थिति कोण कोई पसंदीदा संरेखण नहीं दिखाते हैं। हालाँकि, 5x5 वर्ग-चाप-मिनट के घेरे के लिए उनका औसत मान बड़े पैमाने पर बादल संरचना का अनुसरण करता है। ऐसा संरेखण आयनकारी विकिरण की दिशा के लंबवत चुंबकीय क्षेत्र रेखाओं की प्रारंभिक दिशा के लिए एक संभावित परिदृश्य को इंगित करता है और बाद में ड्रैग कर लिया गया हो सकता है।

Sunandan Gangopadhyay.

सुनंदन गंगोपाध्याय

विभागाध्यक्ष. खगोल भौतिकी और उच्च ऊर्जा भौतिकी विभाग

अमिताभ लाहिडी वरिष्ठ प्रोफेसर खगोल भौतिकी और उच्च ऊर्जा भौतिकी amitabha@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएच.डी. छात्र

- 1. शांतोनु मुखर्जी; सुपरकंडिक्टंग सिस्टम हेत् क्वांटम फिल्ड सैद्धांतिक द्विधिक के कुछ अनुप्रयोग; थीसिस प्रस्तुत की गई
- 2. इंद्रजीत घोष; फ़र्मियन गतिकी पर स्पेस-टाइम टॉर्शन का प्रभाव: शोधकार्य जारी
- 3. रिया बारिक; टॉर्सनल फोर-फ़र्मी इंटरेक्शन के माध्यम से न्यूट्रिनो मिश्रण और ऑसिलेशन; शोधकार्य जारी
- 4. अर्नब चक्रवर्ती; स्पेसटाइम ज्यामिति, क्वांटम क्षेत्र और असतत समरूपताएँ; शोधकार्य जारी
- 5. सौरव कांथा; संघनित पदार्थ भौतिकी में क्वांटम फिल्ड सिद्धांत के कुछ अनुप्रयोग (अस्थायी); शोधकार्य जारी
- 6. सागर मैती; आइस्टीन-कार्टन गुरुत्वाकर्षण में पतन और विलक्षणताः शोधकार्य जारी

ख) पोस्ट-डॉक्स

- 1. सौम्या चक्रवर्ती; गुरुत्वाकर्षण और ब्रह्मांड विज्ञान
- 2. शिबेंद् गुप्ता चौधरी; गुरुत्वाकर्षण और ब्रह्मांड विज्ञान

प्रशिक्षण

1. ऑटम सत्र; क्वांटम यांत्रिकी I; एकीकृत पीएचडी; 11 छात्र

प्रकाशन

क) ज़र्नल में

- 1. सैकत चटर्जी, **अमिताभ लाहिड़ी** और अंबर एन. सेनगुप्ता, पृशफर्वर्ड्स एंड गेज ट्रांशपॉर्मेशन फॉर कैटेगोरिकल कनेक्शंस, थ्योरी एप्पलीकेशन कैटेगरिज़, 38(25), 1015, 2022
- 2. ऋतूपर्णा मंडल, सुनंदन गंगोपाध्याय और **अमिताभ लाहिड़ी**, कॉस्मोलॉजी विथ मोडिफाइड कंटीन्युटी इक्वेशन इन एसिम्पटोटिकली सेफ ग्रेविटी, द यूरोपियन फिज़िकल ज़र्नल प्लस, 137, 1110, 2022
- 3. सौम्या चक्रवर्ती और अमिताभ लाहिडी, स्कैलर-फर्मियन इंट्रैक्शन ऐज द ड्राइवर ऑफ़ कॉस्मिक एक्सिलिरेशन, फिजिक्स ऑफ द डार्क यूनिवर्स, 37, 101121, 2022
- 4. शांतोनु मुखर्जी और **अमिताभ लाहिड़ी**, स्पिन-फ्लक्स अटैचमेंट बाई डायमेंशनल रिडक्शन ऑफ़ वॉर्टिक्स, न्यूक्लियर फिजिक्स बी, 986, 116050, 2023
- 5. ऋतुपर्णा मंडल, सुनंदन गंगोपाध्याय, अमिताभ लाहिड़ी, न्युटनीयन कॉरमेलटजी फ्रॉम क्वांटम करेक्टेड न्यटनीयन पोटेंशियल, फिजिक्स लेटर्स बी, 839, 137807, 2023
- 6. इंद्रजीत घोष, रिया बारिक और **अमिताभ लाहिड़ी**, न्यूट्रिनो ऑसिलेशन कॉज्ड बाइ स्पेसटाइम ज्योमेट्री, लेटर्स इन हाई इनर्जी फिजिक्स, 2023, 349, 2023

प्रतिष्ठित सम्मेलनों/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. चिरल टोरसन से बियॉन्ड मानक मॉडल भौतिकी, एचएसएफ-भारत बैठक; जनवरी 17, 2023; एसएनबीएनसीबीएस; बीस मिनट
- 2. द्विविधता, वॉर्टेटेक्स स्ट्रिंगर, और फर्मियन युग्मन; अगस्त 30, 2022; आईएफडब्ल्यू, ड्रेसडेन; 40 मिनट

प्रशासनिक कर्तव्य

- 1. अधिष्ठाता (शैक्षणिक कार्यक्रम)
- 2. अध्यक्ष, शिकायत निवारण समिति, एसएनबीएनसीबीएस

आयोजित सम्मेलन/संगोष्ठी/स्कूल

1. एचएसएफ-इंडिया पर दो दिवसीय बैठक; जनवरी 16, 2023; एसएनबीएनसीबीएस; 16-17 जनवरी, 2023

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. आईआईएसईआर तिरुवनंतपुरम; क्र.सं. 1; राष्ट्रीय
- 2. कनेक्टिकट विश्वविद्यालय; क्र.सं. 1; अंतरराष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/प्रतिभागिता

- सी.के. मजूमदार मेमोरियल समर वर्कशॉप में "गेज इनवेरिएंस इन क्वांटम मैकेनिक्स" पर व्याख्यान, 13 जुलाई 2022, एसएनबीएनसीबीएस
- 2. कॉलेज शिक्षकों के लिए "भौतिकी में समकालीन मुद्दे" पुनश्चर्या पाठ्यक्रम कार्यशाला में "क्वार्क कॉन्फाइनमेंट और अतिचालकता" पर व्याख्यान, 24 फरवरी, 2023, जादवपुर विश्वविद्यालय

अनुसंधान क्षेत्र

क्वांटम फिल्ड सिद्धांत, गुरुत्वाकर्षण, गणितीय भौतिकी

क्वांटम फिल्ड सिद्धांत: हमने पहले दिखाया था कि 3+1-डी बोसोन-फर्मियन प्रणाली को दोहरा करने से फर्मियन और भंवर एक गैर-स्थानीय शब्द के माध्यम से उच्च गेज क्षेत्र के माध्यम से बातचीत करते हैं। अब हमने उस अंतः क्रिया के कुछ परिणामों का पता लगाया जब सिस्टम की स्वतंत्रता की डिग्री 2-डी सतह तक ही सीमित होती है। हमने दिखाया कि वॉर्टेक्स अब अपने स्पिन चुंबकीय क्षण के माध्यम से फ़र्मियन से जुड़े हुए हैं, उसी तरह से चेर्न-साइमन्स गेज सिद्धांत में पदार्थ के साथ फलक्स लगाव की घटना के समान। हम यह भी दिखाते हैं कि ऐसे फलक्स संलग्न कण किसी अन्य की तरह भिन्नात्मक सांख्यिकीय व्यवहार प्रदर्शित करते हैं। इस प्रकार हमारा मॉडल चेर्न-साइमन्स सिद्धांत के बिना किसी को भी बोध प्रदान करता है।

एक अन्य कार्य में, हमने टेट्राड और स्पिन कनेक्शन का उपयोग करके गुरुत्वाकर्षण के पहले क्रम के फॉर्मूलेशन का उपयोग करके घुमावदार स्पेसटाइम पर फर्मियन की गतिशीलता पर विचार किया। हमने पहले दिखाया था कि इसके परिणामस्वरूप सामान्य आइंस्टीन गुरुत्वाकर्षण होता है, लेकिन एक प्रभावी चार-फर्मियन इंटरैक्शन के साथ, जब स्पिन कनेक्शन का मरोड़ वाला हिस्सा समाप्त हो जाता है। यहां हमने दिखाया कि पदार्थ की थर्मल पृष्ठभूमि से गुजरते समय, इस इंटरैक्शन का सामान्य रूप प्रभावी न्यूट्रिनो द्रव्यमान में योगदान देता है, जो न्यूट्रिनो दोलन मापदंडों को प्रभावित करेगा।

गुरुत्वाकर्षण और ब्रह्मांड विज्ञान: हमने क्वांटम गुरुत्व के पुनर्सामान्यीकरण समूह प्रवाह दृष्टिकोण में क्वांटम गुरुत्वाकर्षण प्रभावों को ध्यान में रखते हुए, फ्रीडमैन-लेमैन्ने-रॉबर्टसन-वॉकर ब्रह्मांड के अंतिम समय के ब्रह्मांड विज्ञान का अध्ययन किया। हमने देर के समय में क्वांटम सही पैमाने के कारक, ऊर्जा घनत्व और एन्ट्रापी उत्पादन की गणना की और पाया कि कट-ऑफ कार्यों के विभिन्न विकल्पों के परिणामस्वरूप अलग-अलग देर के समय के ब्रह्मांड विज्ञान होते हैं। एक अन्य कार्य में, हमने क्वांटम संशोधित दो-शरीर न्यूटोनियन गुरुत्वाकर्षण क्षमता पर विचार किया और एक अनंत द्रव्यमान के लिए गतिज ऊर्जा और संभावित ऊर्जा के गैर-सापेक्षवादी संरक्षण से शुरू करके संशोधित फ्रीडमैन समीकरण प्राप्त किए। हमने पाया कि स्केल फैक्टर धूल और विकिरण के लिए शास्त्रीय कारक की तरह व्यवहार करता है, लेकिन ब्रह्माण्ड संबंधी स्थिरांक प्रभुत्व वाले ब्रह्मांड के मामले में स्पष्ट रूप से भिन्न होता है।

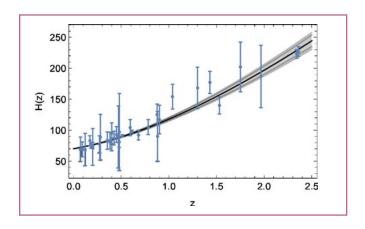


Fig. Plot of the reconstructed Hubble parameter H(z) as a function of redshift along with observational data points. The thick black line is for best fit parameter values and the gray regions are for associated 2\circ and 3\circ sigma confidence regions.

हमने एक स्केलर के साथ युकावा-प्रकार की बातचीत के साथ-साथ स्वयं की बातचीत के साथ एक फर्मिओनिक क्षेत्र के ब्रह्मांड विज्ञान पर प्रभाव का भी अध्ययन किया। हमने पाया कि ब्रह्मांडीय समय के साथ फर्मियन घनत्व कम हो जाता है। हमने विभिन्न ब्रह्माण्ड संबंधी मापदंडों के व्यवहार की गणना की और उनकी तुलना अवलोकन डेटा के साथ की, जिसके परिणामस्वरूप स्केलर-फर्मियन इंटरैक्शन प्रोफाइल और समग्र ब्रह्माण्ड संबंधी गतिशीलता पर कुछ बाधाएं आई। गणितीय भौतिकी: मैनिफोल्ड पर निर्देशित पथों के स्थान पर फाइबर बंडलों के आधार पर श्रेणीबद्ध गेज सिद्धांतों का अध्ययन करने के एक लंबे समय से चल रहे कार्यक्रम के हिस्से के रूप में, हमने एक बंडल से दूसरे तक श्रेणीबद्ध कनेक्शन के पुशफॉरवर्ड की जांच की। प्रमुख बंडलों में सजाए गए पथ स्थानों से उत्पन्न होने वाले श्रेणीबद्ध बंडलों के मामले में, हमने पाया कि पृशफॉरवर्ड एक पारंपरिक गेज परिवर्तन और एक एफ़िन अनुवाद के बराबर था।

परियोजना सहित भविष्यत् कार्य की योजना

- 1. क्वांटम फिल्ड सिद्धांत: मैं इंटरैक्टिंग इलेक्ट्रॉन वॉर्टेक्स प्रणाली पर काम करना जारी रखने की योजना बना रहा हूं। विशेष रूप से, हम यह जांचने की योजना बना रहे हैं कि ऐसे सिस्टम के इंटरफेस पर क्या होता है जब एक फ्लक्स ट्यूब इंटरफ़ेस पर समाप्त होता है, या जब इंटरफ़ेस तक सीमित इलेक्ट्रॉन और वॉर्टेक्स परस्पर क्रिया करते हैं। हम मौजूदा समस्या के आधार पर, पहले पाए गए सिस्टम के दोहरे संस्करण के साथ-साथ अप्रकाशित संस्करण का उपयोग करने की योजना बना रहे हैं।
- 2. 2. हम चार-फ़र्मियन इंटरैक्शन के आगे के परिणामों की जांच करने की योजना बना रहे हैं जो घुमावदार स्पेसटाइम पर फ़र्मियन की गतिशीलता की हमारी जांच में दिखाई दिए। हम न्यूट्रिनो दोलनों और उच्च ऊर्जा कण भौतिकी में समता-उल्लंघन प्रक्रियाओं पर इसके प्रभाव की गणना करने की योजना बना रहे हैं।
- 3. गुरुत्वाकर्षण: हम कॉलैप्स के मॉडल पर स्पेसटाइम टोरसन और संबंधित चार-फर्मियन इंटरैक्शन के प्रभाव की जांच करने की

- योजना बना रहे हैं। ऐसा लगता है कि फर्मिओनिक गैस के पतन की जांच पहले नहीं की गई है, जिसमें कण डिराक समीकरण का पालन करते हैं।
- 4. गणितीय भौतिकी: हम श्रेणीगत ज्यामिति और श्रेणीबद्ध गेज सिद्धांत में इसके अनुप्रयोग पर अपना काम जारी रखने और इसे अन्य भौतिक सिद्धांतों में अनुप्रयोगों तक विस्तारित करने की योजना बना रहे हैं।

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

1. मौलिक विज्ञान के सभी शोधों की तरह, मेरा कार्य ब्रह्मांड के बारे में हम जो कुछ जानते हैं और इसका वर्णन करने वाले सिद्धांतों को और आगे बढ़ाता है। इससे उन सवालों के जवाब मिलते हैं कि आधे-पूर्णांक स्पिन वाले कण, जैसे इलेक्ट्रॉन और न्युट्रिनो, घुमावदार अंतरिक्ष समय से कैसे प्रभावित होते हैं। यह उन सुधारों का सुझाव देगा जिन्हें उच्च ऊर्जा कणों के बिखरने वाले क्रॉस-सेक्शन की भविष्यवाणियों में जोडा जाना है और ब्रह्मांड में देखे गए पदार्थ-एंटीमैटर विषमता के लिए नए स्पष्टीकरण प्रदान करेगा। मेरा काम क्वांटम क्षेत्र सिद्धांत द्वारा वर्णित इलेक्ट्रॉनों और फोटॉन की मौलिक भौतिकी से लेकर स्परकंडिकटंग सिस्टम की कम ऊर्जा क्वांटम भौतिकी तक का रास्ता सुझाता है। वे ब्रह्माण्ड संबंधी मॉडलों में क्वांटम गुरुत्व के सिद्धांतों का उपयोग करने के बारे में कुछ विचार भी प्रदान करते हैं। गणित में मेरा काम आवेशित तारों जैसी विस्तारित वस्तुओं के विवरण और गतिशीलता की ज्यामितीय समझ में योगदान देता है। इसके अलावा, मेरे शोध के दौरान, कई नए छात्रों को प्रशिक्षित किया जाता है जो भविष्य में और अधिक छात्रों को प्रशिक्षित करेंगे और देश में वैज्ञानिक अनुसंधान को आगे बढ़ाएंगे।

अर्चन सुभ्र मजुमदार

वरिष्ठ प्रोफेसर खगोल भौतिकी और उच्च ऊर्जा भौतिकी archan@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. आनंद गोपाल माइती; क्वांटम सूचना; उपाधि प्रदान
- 2. शशांक गुप्ता; क्वांटम सूचना; पु उपाधि प्रदान की गई
- 3. रिद्धि चटर्जी; सापेक्षवादी क्वांटम यांत्रिकी; थीसिस प्रस्तुत की गई
- 4. शौनक दत्ता; क्वांटम फ़ाउंडेशन; थीसिस प्रस्तुत की गई
- 5. अर्नब सरकार; गुरुत्वाकर्षण और ब्रह्माण्ड विज्ञान; थीसिस प्रस्तुत की गई; के. आर. नायक, आईआईएसईआर कोलकाता (सह-पर्यवेक्षक)
- 6. बिहालन भट्टाचार्य; क्वांटम फ़ाउंडेशन; थीसिस प्रस्तृत की गई
- 7. अरुण कुमार दास; क्वांटम सूचना; शोधकार्य जारी
- 8. शुभंकर बेरा; क्वांटम सूचना; शोधकार्य जारी

- 9. शशांक शेखर पांडे; गुरुत्वाकर्षण और ब्रह्माण्ड विज्ञान; शोधकार्य जारी
- 10. बिवस मल्लिक; क्वांटम सूचना; शोधकार्य जारी
- 11. सहेली मुखर्जी; क्वांटम फ़ाउंडेशन; शोधकार्य जारी
- 12. अर्नब मुखोपाध्याय; सापेक्षतावादी क्वांटम सिद्धांत; शोधकार्य
- 13. प्रीतम रॉय; क्वांटम सूचना; शोधकार्य जारी
- 14. सुदीप चक्रवर्ती; क्वांटम सूचना; शोधकार्य जारी

ख) पोस्ट डॉक्स

- 1. देबाशीष साहा; क्वांटम फ़ाउंडेशन
- 2. देबर्षि दास; क्वांटम सूचना
- 3. अशदुल हलदरः, गुरुत्वाकर्षण और ब्रह्मांड विज्ञान
- 4. स्मित नंदी; क्वांटम फ़ाउंडेशन
- 5. स्तापा साहा; क्वांटम सूचना

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. सौमित रॉय; क्वांटम सूचना सिद्धांत पर एक अध्ययन
- 2. नंदिता देबनाथ; मैग्नेट्क फील्ड इंड्युस्ड श्रीडिंगर कैट स्टेट्स इन क्वांटम हॉल सिस्टम

शिक्षण/ अध्यापन

- 1. ऑट्म सत्र; परियोजना अनुसंधान PHY 691; पीएचडी; 2 छात्र
- 2. वसंत सत्र; परियोजना अनुसंधान III पीएचवाई 502; एकीकृत पीएचडी; 1 छात्र

प्रकाशन

क) ज़र्नल में

- 1. देवर्षि दास, आनंद जी. मैती, देबाशीष साहा, और **ए.एस.** मज्मदार, रोबस्ट सर्टिफिकेशन ऑफ़ अर्बिट्रेरी आउटकम क्वांटम मेजरमेंट्स फ्रॉम टेम्पोरल कोरिलेशन, क्वांटम, 6 716, 2022
- 2. शशांक शेखर पांडे, अर्नब सरकार, आमना अली और ए.एस. मजूमदार, इफेक्ट ऑफ़ इनहोमोजेनाइटिज़ ऑन द प्रोपगेशन ऑफ़ ग्रेविटेशनल वेब्स फ्रॉम बाइनरीज ऑफ़ कॉम्पैक्ट ऑब्जेक्टस, जर्नल ऑफ कॉस्मोलॉजी एंड एस्ट्रोपार्टिकल फिजिक्स, 6, 021, 2022

- 3. अर्नब मुखर्जी, सुनंदन गंगोपाध्याय और ए.एस. मजूमदार, अनरूह क्वांटम ओटो एन्जाइम इन द प्रिजेंस ऑफ़ अ फ्लॅंक्टिंग बाउंडरी, जर्नल ऑफ हाई एनर्जी फिजिक्स, 2022, 105, 2022
- 4. अशद्ल हलदर, शशांक शेखर पांडे और **ए.एस. मजूमदार**, ग्लेबल 21-cm ब्राइटनेस टेंपरेचर इन विस्कोअस डार्क इनर्जी मॉडल्स, जर्नल ऑफ कॉरमोलॉजी एंड एस्ट्रोपार्टिकल फिजिक्स, 2022, 049, 2022
- रिद्धि चटर्जी और ए.एस. मजूमदार, बेल-इनइक्वलिटी बाई डायनेमिक कासिमिर फोटॉन इन अ परकंडिक्टंग माइक्रोवेव सर्कि, फिजिकल रिव्यू, 106, 042224, 2022
- शुभंकर बेरा, आनंद जी. मैती, शिलादित्य मल, और ए.एस. मजूमदार, रोल ऑफ़ नॉनक्लासिकल टेंपोरल कोरिलेशन इन पॉवरिंग क्वांटम रैंडम एक्सेस कोड, फिजिकल रिव्यू ए, 106, 042439, 2022
- 7. अरुण कुमार दास, देबर्षि दास, शिलादित्य मल, दीपांकर होम और ए.एस. मजूमदार, रिसॉर्स-थ्योरेटिक इफिकेसी ऑफ़ द सिंगल कॉपी ऑफ़ अ टू-क्यूबिट इनटैंगल्ड स्टेट इन अ सिक्वेंशियल नेटवर्क, क्वांटम इंफॉर्मेशन प्रोसेसिंग, 21, 381, 2022
- 8. स्मित नंदी, देबाशीष साहा, दीपांकर होम, और ए.एस. मजूमदार, विग्नर एप्रोच इनेबल्ड डिटेक्शन ऑफ़ मल्टीपर्टाइट नॉनलोकलिटी यूजिंग ऑल डिफरिएंट बाइपार्टिशंस, फिजिकल रिव्यू ए, 106, 062203, 2022
- 9. ए. चंदा, ए. हलदर, **ए.एस. मजूमदार** और बी. सी. पॉल, लेट टाइम कॉरमोलॉजी इन एफ(आर,जी) ग्रैविटी विद एक्सपोनेंशियल इंटरेक्शन, द यूरोपियन फिजिकल जर्नल सी, 83, 23, 2023
- 10. शुभंकर बेरा, शशांक गुप्ता और ए.एस. मजूमदार, डिवाइस इंडिपेंडेंट क्वांटम की डिस्ट्रीब्यूशन यूजिंग रैंडम स्टेट्स, क्वांटम इनफॉर्मेशन प्रोसेसिंग, 22, 109, 2023
- 11. शशांक गुप्ता, देबाशीष साहा, जेन-पेंग जू, अदन कैबेलो, और ए. एस. मजूमदार, क्वांटम कंटेक्स्ट्युअलिटी प्रोवाइड्स कम्यूनिकेशन कंप्लेक्सिटी एडवांटेज, फिजिकल रिव्यू लेटर्स, 130, 080802, 2023

ख) छात्रों का स्वतंत्र प्रकाशन

1. शुभायन सरकार और देबाशीष साहा, क्वांटम सहसंबंधों का प्रदर्शन जो माप की निरपेक्षता के साथ असंगत हैं, फिजिकल

- रिव्यू ए, 107, 022226, 2023
- 2. शशांक गुप्ता, जेनुइन थ्री क्विबिट आइंस्टीन-पोडॉल्स्की-रोसेन स्टीयरिंग अंडर डिकोहरेंस: रिवीलिंग हिडन जेनुइन स्टेयरेबिलिटी वाया प्री-प्रोसेसिंग, क्वांटम इंफॉर्मेशन प्रोसेसिंग, 22, 49 2023
- 3. यश वाथ, एम. हरिप्रसाद, फ्रेया शाह और शशांक गुप्ता, अनुक्रमिक क्वांटम अनशार्प माप हमलों का उपयोग करके एक क्वांटम कुंजी वितरण नेटवर्क का इवेर-ड्रॉप करना, द यूरोपियन फिजिकल जर्नल प्लस, 138, 54, 2023
- 4. देबर्षि दास और सोमशुभ्रो बंद्योपाध्याय, क्वांटम स्विच के क्वांटम स्विच का उपयोग करके क्वांटम संचार, रॉयल सोसाइटी ए की कार्यवाही: गणितीय, भौतिक और इंजीनियरिंग विज्ञान, 478, 2266, 2022
- 5. प्रतापादित्य बेज, अर्कप्रभा घोषाल, अरूप रॉय, शिलादित्य मल, और देबर्षि दास, सामान्यीकृत उलझाव स्वैपिंग में क्वांटम सहसंबंध बनाना, फिजिकल रिव्यू ए, 106, 022428, 2022

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. क्वेस्ट थीम- । कार्यशाला; अप्रैल २, २०२२; आईआईएसईआर मोहाली: 60 मिनट
- 2. क्वांटम कंप्यूटिंग, क्वांटम सूचना विज्ञान और क्वांटम प्रौद्योगिकी पर राष्ट्रीय संगोष्ठी; 12 अप्रैल, 2022; आईआईआईटी हैदराबाद; 60 ਸਿਜਟ
- 3. क्वांटम कंप्यूटिंग पर प्रशिक्षण कार्यक्रम; 25 मई, 2022; प्रौद्योगिकी संस्थान, अहमदाबाद; 120 मिनट
- 4. क्वांटम सूचना और क्वांटम प्रौद्योगिकी पर अंतर्राष्ट्रीय सम्मेलन; 24 जून, 2022; आईआईएसईआर कोलकाता; 60
- 5. क्वांटम मेट्रोलॉजी और क्वांटम सूचना प्रसंस्करण पर कार्यशाला; अगस्त 25, 2022; सीडीएसी कोलकाता; 45 मिनट
- 6. क्वांटम विज्ञान और प्रौद्योगिकियों पर विचार-मंथन सत्र; 11 नवंबर, 2022; आरआरआई बैंगलोर; 25 मिनट
- 7. आईआईटीबी-एसएनबीएनसीबीएस सहयोगात्मक बैठक; 9 जनवरी, 2023; आईआईटी बॉम्बे; तीस मिनट
- 8. क्वांटम सूचना विज्ञान में हाल के विकास पर विशिष्ट व्याख्यान; मार्च 3, 2023; एडमास विश्वविद्यालय; 60 मिनट

9. गुरुत्वाकर्षण के 12वें क्षेत्र सैद्धांतिक पहलू (एफटीएजी) सम्मेलन; मार्च 17, 2023; बीआईटी मेसरा; 45 मिनट

प्रशासनिक कर्तव्य

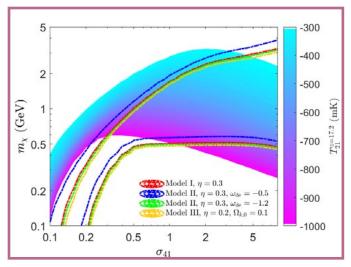
1. विभागाध्यक्ष, डीएएचईपी, 28 फरवरी 2023 तक

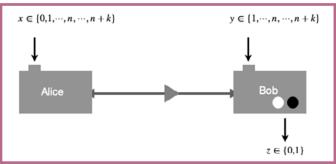
बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

- 1. क्वांटम सूचना के अनुप्रयोग; डीएसटी; 3 वर्ष बढ़ाया गया; पीआई
- मुक्त स्थान क्वांटम संचार; डीएसटी; 3 वर्ष बढ़ाया गया; सह पीआई
- 3. क्वांटम ताप इंजन; डीएसटी; 3 वर्ष बढ़ाया गया; सह पीआई

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. जादवपुर विश्वविद्यालय; क्र.सं. नंबर 2; राष्ट्रीय
- राष्ट्रीय सैद्धांतिक विज्ञान केंद्र, ताइवान; क्र.सं. क्रमांक 6, 7; अंतरराष्ट्रीय
- 3. बोस संस्थान, कोलकाता; क्र.सं. क्रमांक ७,८,१५,१६; राष्ट्रीय
- उत्तर बंगाल विश्वविद्यालय; क्र.सं. नंबर 9; राष्ट्रीय
- क्यू नु लैब्स, बैंगलोर; क्र.सं. नंबर 10; राष्ट्रीय
- यूनिवर्सिटैट सीजेन, जर्मनी; क्र.सं. नंबर 11; अंतरराष्ट्रीय
- यूनिवर्सिडाडा डी सेविला, स्पेन; क्र.सं. नंबर 11; अंतरराष्ट्रीय
- सैद्धांतिक भौतिकी केंद्र, पोलैंड; क्र.सं. नंबर 12; अंतरराष्ट्रीय
- आईआईएसईआर तिरूपति; क्र.सं. नंबर 14; राष्ट्रीय


आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता


1. क्वांटम फाउंडेशन और सूचना पर टॉपिकल रिसर्च स्कूल, एबीएन सील कॉलेज, कूच बिहार, 14-16 मार्च, 2023

अनुसंधान क्षेत्र

गुरुत्वाकर्षण और ब्रह्माण्ड विज्ञान; क्वांटम सूचना और फाउंडेशन

हम संरचना की उपस्थिति के साथ हमारे अंतिम समय के ब्रह्मांड में गुरुत्वाकर्षण तरंगों के प्रसार पर विचार करते हैं। हम बुचर्ट के औसत ढांचे का उपयोग करते हुए, गुरुत्वाकर्षण तरंग स्रोतों से जुड़े अवलोकनों

पर अमानवीयताओं के प्रभाव की जांच करते हैं। हम दिखाते हैं कि रेडशिफ्ट के संबंध में गुरुत्वाकर्षण तरंग आयाम की भिन्नता मानक ब्रह्माण्ड संबंधी मॉडल की तुलना में काफी भिन्न हो सकती है। हमारा परिणाम गुरुत्वाकर्षण तरंग स्रोतों के मापदंडों के सटीक माप पर स्थानीय असमानताओं के महत्व को दर्शाता है।

हम चिपचिपी डार्क एनर्जी (VDE) मॉडल के संदर्भ में वैश्विक 21-सेमी चमक तापमान की जांच करते हैं। डार्क एनर्जी की थोक चिपचिपाहट ब्रह्मांड के हबल विकास को बाधित करती है जो बेरियन को तेजी से ठंडा कर सकती है, और इसलिए, 21-सेमी चमक तापमान को बदल सकती है। हम VDE मॉडल मापदंडों पर सीमाएं प्राप्त करते हैं जो EDGES प्रयोग के अवलोकन संबंधी अतिरिक्त के लिए जिम्मेदार हो सकते हैं।

किसी भी सूचना प्रसंस्करण कार्य के लिए उपकरणों का उपयोग करने से पहले अज्ञात प्रदाताओं से प्राप्त क्वांटम उपकरणों का प्रमाणीकरण एक प्राथमिक आवश्यकता है। हम एक सेटअप में मनमाने ढंग से डी-परिणाम क्वांटम माप के प्रमाणीकरण के लिए एक प्रोटोकॉल स्थापित करते हैं जिसमें अनुक्रम में दो मापों के बाद एक तैयारी शामिल होती है। हम गैर-आक्रामक-यथार्थवादी मॉडल के साथ संगत नई अस्थायी असमानताओं का प्रस्ताव करते हैं और दिखाते हैं कि 'एन-टू-1' रैंडम एक्सेस कोड का कोई भी गैर-शून्य क्वांटम लाभ संबंधित अस्थायी

वार्षिक प्रतिवेदन 2022-2023

असमानता के उल्लंघन के बराबर है। हम दिखाते हैं कि किसी भी क्वांटम स्थिति और प्रासंगिकता उत्पन्न करने वाली वेधशालाओं के लिए, क्वांटम लाभ के साथ एक संचार कार्य मौजूद है। हम दिखाते हैं कि इनमें से प्रत्येक संचार कार्य को क्वांटम कुंजी वितरण के लिए अर्ध-डिवाइस स्वतंत्र प्रोटोकॉल में कैसे परिवर्तित किया जाए।.

हम पूरी तरह से प्रतिबिंबित सीमा की उपस्थिति में शास्त्रीय ओटो इंजन के सापेक्ष क्वांटम एनालॉग का एक नया मॉडल पेश करते हैं। हम दिखाते हैं कि कम कार्य आउटपुट के बावजूद, सीमा की उपस्थिति में भी इंजन की दक्षता अपरिवर्तित रहती है। हम एक सर्किट क्वांटम इलेक्टोडायनामिकल सेट-अप में डायनेमिक कासिमिर विकिरण द्वारा बेल की असमानता के उल्लंघन का अध्ययन करते हैं। हम दिखाते हैं कि इस सेट-अप में 40 एमके तापमान के साथ-साथ 65% सिग्नल हानि तक बेल उल्लंघन देखा जा सकता है।

परियोजना सहित भविष्य के कार्य की योजना

1. हम कई डोमेन में अमानवीय पदार्थ वितरण के साथ स्पेसटाइम का एक मॉडल तैयार करते हैं। बुचर्ट की औसत प्रक्रिया का उपयोग करते ह्ए बैकरिएक्शन ढांचे के संदर्भ में, हम ब्रह्मांड के अंतिम समय के वैश्विक विकास पर असमानताओं के कारण बैकरिएक्शन के प्रभाव का मूल्यांकन करते हैं। इस ब्रह्मांड के भविष्य के विकास की जांच करते हुए, हम पाते हैं कि यह वर्तमान में तेजी लाने वाले चरण से भविष्य में मंदी से गुजर सकता है। भविष्य की मंदी हमारे मॉडल मापदंडों द्वारा नियंत्रित होती है। हम मार्कोव चेन मोंटे कार्लो पद्धति का उपयोग करके यूनियन 2.1 सुपरनोवा आईए डेटा के अवलोकन विश्लेषण का उपयोग करके मॉडल मापदंडों को सीमित करते हैं।

- 2. मापन असंगति क्वांटम माप के अस्तित्व को निर्धारित करती है जिसे एकल प्रणालियों पर एक साथ नहीं किया जा सकता है। हम दिखाते हैं कि साझा यादृच्छिकता के साथ सहायता प्राप्त डी-आयामी शास्त्रीय प्रणालियों से प्राप्त इनपुट-आउटपुट संभावनाओं का सेट किसी भी संचार परिदृश्य में साझा यादृच्छिकता के साथ संगत माप तक सीमित डी-आयामी क्वांटम रणनीतियों से प्राप्त सेट के समान है। इस प्रकार, संचार में क्वांटम लाभ के लिए माप असंगतता आवश्यक है, और संचार में कोई भी क्वांटम लाभ अर्ध-डिवाइस-स्वतंत्र तरीके से रिसीवर के अंत में माप की असंगतता के गवाह के रूप में कार्य करता है। हम संचार कार्यों का एक वर्ग पेश करते हैं - यादृच्छिक एक्सेस कोड का एक सामान्य संस्करण - डी-आयामी प्रणालियों पर कार्य करने वाले मनमाने परिणामों के साथ क्वांटम माप की एक मनमानी संख्या की असंगतता को देखने के लिए, और संगतता माप के लिए इन कार्यों की सफलता मीट्रिक पर सामान्य ऊपरी सीमा प्रदान करते हैं।
- 3. हम खाली स्थान के साथ-साथ एक गुहा के अंदर समान रूप से त्वरित दो-स्तरीय एकल और उलझे हुए परमाणु प्रणालियों की संक्रमण दर की जांच करते हैं। हम क्रमशः तात्कालिक जड़त्वीय पर्यवेक्षक और सह-त्वरित पर्यवेक्षक के दृष्टिकोण से सिस्टम और द्रव्यमान रहित अदिश क्षेत्र के बीच की बातचीत को ध्यान में रखते हैं। हमारा विश्लेषण व्यापक रूप से एक जड़त्वीय पर्यवेक्षक के लिए समान त्वरण के प्रभाव और एक सह-त्वरित पर्यवेक्षक के लिए थर्मल बाथ के प्रभाव के बीच समानता को मान्य करता है, मुक्त बाथ के साथ-साथ एक गुहा के अंदर, यदि थर्मल बाथ का तापमान उरुह तापमान के बराबर है।

रबिन बनर्जी

राजा रमन्ना फेलो खगोल भौतिकी और उच्च ऊर्जा भौतिकी rabin@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पोस्ट डॉक्स

1. सौम्या भट्टाचार्यः; गेज सिद्धांतों और गुरुत्वाकर्षण में गैलीलियन समरूपता

ख) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. अनीश चौधरी; आधुनिक परिप्रेक्ष्य में नोएथर के प्रमेय के अनुप्रयोग (जुलाई-सितंबर 2022) और सटीक रूप से हल करने योग्य स्पिन मॉडल से लेकर टेन्सर गेज सिद्धांतों तक फ्रैक्टन (सितंबर-दिसंबर 2022)

शिक्षण/ अध्यापन

- 1. प्रथम सेमेस्टर पीएच.डी.; अनुसंधान क्रियाविधि; पीएच.डी.; 28 छात्र; पी.के. मुखोपाध्याय (सह-शिक्षक)
- 2. चतुर्थ सेमेस्टर आईपीएच.डी.; उन्नत क्वांटम क्षेत्र सिद्धांत; एम.एससी.; 4 छात्र; सुनंदन गंगोपाध्याय (सह-शिक्षक)

प्रकाशन

क) ज़र्नल में

1. राबिन बनर्जी, ड्युअल डिसक्रिप्शन ऑफ़ गेज थ्योरिज़ फ्रॉम ऐन इंटरेटिव नोएदर एप्रोच, न्युक्लियर फिजिक्स बी, 981, 115875, 2022

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

1. प्रोफेसर बी. मुथुकुमार और उनके समूह के साथ चर्चा। "गैर-सापेक्षतावादी क्षेत्र सिद्धांतों का शैक्षणिक परिचय" विषय पर एक सेमिनार दिया; 15 फरवरी 2023; भौतिकी विभाग, पांडिचेरी विश्वविद्यालय: 11-16 फरवरी 2023

अनुसंधान क्षेत्र

गेज सिद्धांत और गुरुत्वाकर्षण में गैर-सापेक्षतावादी समरूपता

यहां हमने अंतरिक्ष पर निर्भर शिफ्ट सममित सिद्धांतों में सभी संरक्षित धाराओं और उनके संरक्षण नियमों को निकालने के लिए एक सामान्यीकृत नोएदर के नुस्खे का उपयोग किया है। स्केलर फ़ील्ड को गेज फ़ील्ड के साथ जोड़कर, हमने धाराओं के बीच कई पहचान स्थापित की हैं जो संपूर्ण इंटरैक्शन सिद्धांत को ध्यान में रखने पर दोहरी छवि दिखाती हैं। एक संशोधित न्यूनतम नुस्खे का पालन करके जो कि पुनरावृत्त नोएदर विधि द्वारा भी समर्थित है, युग्मन वेक्टर फ़ील्ड के संदर्भ में पूरा किया जाता है। यह दृष्टिकोण यह भी दर्शाता है कि उच्च रैंक टेंसर गेज फ़ील्ड का उपयोग करके कपलिंग बनाई जा सकती है. जिसका उल्लेख हाल ही में फ्रैक्टन के संबंध में किया गया है। विशेष द्वैत मानचित्रों के माध्यम से जो दो परिदृश्यों में विभिन्न क्षेत्रों (गेज, विद्युत और चुंबकीय) को जोड़ते हैं, हम इन विवरणों (वेक्टर या टेंसर क्षेत्रों का उपयोग करके) के बीच समानता प्रदर्शित करने में सक्षम हैं। यह स्थापित किया गया है कि गॉस कानून, फैराडे कानून और एम्पीयर कानून दोनों परिदृश्यों के लिए एक से एक पत्राचार में हैं। रैखिक और द्विघात शिफ्ट समरूपता वाले लैग्रेंजियों के लिए. स्पष्ट गणनाएँ दी गई हैं।

अपने शोध के अगले भाग में. हम गैलीलियन सापेक्षतावादी मैक्सवेल सिद्धांत का एक नया सूत्रीकरण प्रदान करते हैं। हमने पहले व्यवस्थित रूप से व्युत्पन्न मैपिंग संबंधों का एक सेट सामने रखा, जो लोरेंत्ज़ सापेक्षतावादी और गैलिलियन सापेक्षतावादी फॉर्मूलेशन में सहसंयोजक और विरोधाभासी वैक्टर को जोड़ता है। इस मानचित्र का उपयोग करते हुए, हम सामान्य मैक्सवेल के सिद्धांत से गैलिलियन

सापेक्षतावादी मैक्सवेल सिद्धांत की दो सीमाओं का निर्माण करते हैं, जो कि विरोधाभासी और सहसंयोजक वैक्टर दोनों के लिए संभावित औपचारिकता में हैं, जो अब अलग-अलग संस्थाएं हैं। फ़ील्ड समीकरण व्युत्पन्न किए जाते हैं और उनकी आंतरिक स्थिरता दिखाई जाती है। संपूर्ण विश्लेषण तब सहसंयोजक और प्रतिपरिवर्ती दोनों घटकों के लिए विद्युत और चुंबकीय क्षेत्रों के संदर्भ में किया जाता है। सहसंयोजक और विरोधाभासी सूचकांकों के बीच परस्पर क्रिया जो सिद्धांत की विद्युत और चुंबकीय सीमाओं के आदान-प्रदान की ओर ले जाती है, यहां देखी गई एक नई विशेषता है। द्वंद्व परिवर्तनों और बुस्ट समरूपता के साथ उनके संबंध पर चर्चा की गई है जो एक समृद्ध संरचना को प्रकट करता है। मुड़े हुए द्वेत की धारणा, जिसे हमने पहली बार गैलिलियन सिद्धांत में देखा था, प्रस्तुत की गई है। इसके बाद हम गेज समरूपता पर विचार करते हैं, नोथर धाराओं का निर्माण करते हैं और उनके ऑन-शेल संरक्षण को दर्शाते हैं। हम शिफ्ट समरूपता पर भी चर्चा करते हैं जिसके तहत लैग्रेंजियन अपरिवर्तनीय है, जहां संबंधित धाराएं अब शेल पर संरक्षित हैं। अंत में हम विरोधाभासी और सहसंयोजक दोनों क्षेत्रों के स्रोतों को शामिल करके सिद्धांत का विश्लेषण करते हैं। हम दिखाते हैं कि स्रोत अब ऑफ-शेल संरक्षित हैं।

परियोजना सहित भविष्यत् कार्य की योजना

हमारे पिछले शोध के अगले भाग के रूप में, हम गैलिलियन सापेक्षतावादी प्रोका सिद्धांत पर विचार करेंगे। गैलिलियन सापेक्षतावादी मैक्सवेल सिद्धांत के लिए हमने जो मैपिंग संबंध प्राप्त किया है, उसका उपयोग करते हुए, हम सामान्य प्रोका सिद्धांत से गैलिलियन सापेक्षतावादी प्रोका सिद्धांत की दो सीमाओं का निर्माण करने की उम्मीद करते हैं, जो कि कंट्रावेरिएंट और सहसंयोजक वैक्टर दोनों के लिए संभावित औपचारिकता में हैं, जो अब अलग-अलग संस्थाएं हैं। एक क्रिया औपचारिकता प्राप्त की जाएगी जिससे क्षेत्र समीकरण प्राप्त किए जाते हैं और उनकी आंतरिक स्थिरता दिखाई जाती है। इसके बाद हम नोएदर धाराओं का निर्माण करना और उनके ऑन-शेल संरक्षण को दिखाना चाहते हैं। इन क्षेत्रों के संदर्भ में संपूर्ण विश्लेषण को प्नर्गठित करने के लिए मैक्सवेल के विद्युत और चुंबकीय क्षेत्रों के एनालॉग पेश किए जाएंगे। अंत में हम गैलीलियन ढांचे में स्टकेलबर्ग एम्बेडेड प्रोका मॉडल पर चर्चा करने की उम्मीद करते हैं।

रामकृष्ण दास

एसोसिएट प्रोफेसर खगोल भौतिकी और उच्च ऊर्जा भौतिकी ramkrishna.das@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. राहुल बंद्योपाध्याय; ग्रहीय नीहारिकाओं का बहु तरंगदैर्घ्य अध्ययन; उपाधि प्रदान की गई
- 2. रुचि पांडे; नोवे गुणों का अध्ययन; थीसिस प्रस्तुत की गई
- 3. धृमाद्रि खाता; एम-ड्वार्फ के भौतिक गुणों को समझना; थीसिस प्रस्तुत की गई; प्रो. सौमेन मंडल (सह-पर्यवेक्षक)
- 4. गेरोरोव एच. रेटा; नोवे फेनोमेना को समझना; शोधकार्य
- 5. सुभजीत कर; विशाल तारों का अध्ययन; शोधकार्य जारी
- 6. अभिजीत मंडल; ग्रह नीहारिकाएं; शोधकार्य जारी
- 7. मोहम्मद साहिल; विशाल तारों का अध्ययन; शोधकार्य जारी

ख) पोस्ट-डॉक्स

- 1. मिलन सिल; नोवे इजेक्टा में अणुओं का निर्माण
- 2. त्रिदीब रॉय; सघन वस्तुएँ और संबंधित घटनाएँ

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. शौविक मंडल; तारकीय स्पेक्ट्रोस्कोपी
- 2. आरुषि कुमार; क्षणिक घटना
- 3. समसूर रहमान; खगोलीय टेलीस्कोप और डिटेक्टर

शिक्षण/ अध्यापन

- 1. ऑट्म सत्र; परमाण् एवं कण भौतिकी (PHY 305); एकीकृत पीएचडी; 10 छात्र; प्रोफेसर सुभेंद्र मोहंती (सह-शिक्षक) के साथ
- 2. वसंत सत्र; उन्नत प्रयोगशाला विधि (PHY 491); एकीकृत पीएचडी; 10 छात्र; डॉ. नितेश कुमार, डॉ. प्रदीप पचफुले (सह-शिक्षक) के साथ
- 3. वसंत सत्र; खगोल विज्ञान एवं खगोल भौतिकी (पीएचवाई 403); एकीकृत पीएचडी; 10 छात्र; प्रोफेसर सौमेन मंडल (सह-शिक्षक) के साथ
- 4. वसंत सत्र; खगोल भौतिकी (PHY 604); पीएचडी; 6 छात्र; प्रोफेसर सौमेन मंडल (सह-शिक्षक) के साथ
- 5. वसंत सत्र; खगोलीय अवलोकन तकनीक (PHY 616); पीएचडी; 9 छात्र; डॉ. तापस बाग (सह-शिक्षक) के साथ

प्रकाशन

क) ज़र्नल में

1. रुचि पांडे, गेसेसेव आर हब्टी, राहुल बंद्योपाध्याय, **रामकृष्ण** दास, फ्रांकोइस टेयसियर, जीन ग्वारी फ़्ली, स्टडी ऑफ़ 2021 आउटबर्स्ट ऑफ़ द रिकरेंट नोवा आरएस ओफ़िउची: फोटोआयनाइज़ेशन और मॉर्फोकिनेमेटिक मॉडलिंग. मंथली नोटीसेस ऑफ़ द रॉयल एस्ट्रोनॉमिकल सोसाइटी, 515, 4655, 2022

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

1. 1. "टेलीस्कोप क्या बताता है?" विषय पर आमंत्रित वार्ता, सी.के. मजूमदार मेमोरियल वर्कशॉप इन फिजिक्स 2022; जुलाई 19, 2022; एसएनबीएनसीबीएस; 1 घंटा

प्रशासनिक कर्तव्य

- संपर्क अधिकारी एवं अध्यक्ष, आरक्षण प्रकोष्ठ, एसएनबीएनसीबीएस
- अध्यक्ष, एससी/एसटी समुदाय के छात्रों के लिए आउटरीच कार्यक्रम, एसएनबीएनसीबीएस
- सदस्य, सम्मेलन कार्यशाला और विस्तार कार्यक्रम (सीडब्ल्यूईपी), एसएनबीएनसीबीएस
- 4. सदस्य, न्यूजलैटर समिति, एसएनबीएनसीबीएस
- सदस्य, मीडिया सेल, एसएनबीएनसीबीएस
- सदस्य, पुस्तकालय समिति, एसएनबीएनसीबीएस
- सदस्य, जेस्ट 2023 की एसएनबीएनसीबीएस आयोजन समिति

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

- 1. सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र (एस.एन. बोस एस्ट्रोनॉमिकल ऑब्जर्वेटरी) के तहत एक नई खगोलीय वेधशाला (प्रस्तुत); डीएसटी; 5 साल; सह पीआई
- 2. पंचेत पहाड़ी, पुरुलिया के आसपास जनजातीय लोगों के सामाजिक आर्थिक उत्थान के लिए खगोल-पर्यटन और सतत जैव विविधता प्रबंधन" (प्रक्रिया के तहत): डीएसटी एसईईडी: 3 वर्ष: सह-पीआई

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. फ्रांकोइस टेयसियर, एआरएएस इरप्टिव स्टार्स ग्रुप; क्र.सं. नंबर 1; अंतरराष्ट्रीय
- 2. जोन ग्वारो फ़्लो, एआरएएस इरप्टिव स्टार्स ग्रुप; क्र.सं. नंबर 1; अंतरराष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

- 1. स्काई वॉचिंग कार्यक्रम, भौतिकी में सी के मजूमदार मेमोरियल कार्यशाला, एसएनबीएनसीबीएस का आयोजन
- 2. जनवरी 2023 को "ओपन डे" पर स्काई वॉचिंग कार्यक्रम का आयोजन, एसएनबीएनसीबीएस

अनुसंधान क्षेत्र

नोवा और परिवर्तनशील सितारों, ग्रहीय नीहारिकाओं, विशाल सितारों, मॉडलिंग स्पेक्ट्रा, एस एन बोस सेंटर की टेलीस्कोप परियोजना का अवलोकन अध्ययन

में विभिन्न खगोलीय पिंडों के स्पेक्ट्रोस्कोपिक अध्ययन पर काम कर रहा हूं, जैसे नोवे, ग्रह नीहारिका, विशाल तारे आदि। विभिन्न खगोलीय कोडों का उपयोग करके डेटा का विश्लेषण और मॉडलिंग किया जाता है। यहां, मैं पिछले वर्ष के दौरान प्राप्त दो परिणामों पर चर्चा करता हं।

1. आरएस ओफ़िउची (आरएस ओफ़) के 2021 प्रक्षोभ का अध्ययन: आरएस ओफ़ एक प्रसिद्ध गैलेक्टिक आवर्ती नोवा है जिसका औसत पुनरावृत्ति समय-पैमाना लगभग 15 वर्ष है। सिस्टम में सीओ-प्रकार का सफेद ड्वार्फ (डब्ल्यूडी) है जिसका द्रव्यमान 1.2 - 1.4 गुना सौर द्रव्यमान की सीमा में है। इसकी सतह पर संचित पदार्थ के एक अंश के जमा होने के कारण WD के द्रव्यमान में वृद्धि होने की सबसे अधिक संभावना है। अंततः, यह चन्द्रशेखर सीमा तक पहुंच सकता है और टाइप la सुपरनोवा के रूप में विस्फोट कर सकता है। हमने आरएस ओफ़ के ऑप्टिकल स्पेक्ट्रा के विकास का अध्ययन किया है, इसके सबसे हालिया (2021) विस्फोट के एक महीने से अधिक समय बाद। लाइन की चौड़ाई के विकास से हम लाल विशाल साथी की हवाओं में एक विस्तारित चौंकाने वाली सामग्री का पता लगाते हैं। जो ~4 दिनों तक स्वतंत्र रूप से फैलता है, और उसके बाद, झटके का वेग समय के साथ $v \propto t^{-1}$ (-0.6) के रूप में कम हो जाता है। स्पेक्ट्रा को फोटोआयनाइजेशन कोड CLOUDY का उपयोग करके तैयार किया गया था। सर्वोत्तम-फिटिंग मॉडल से हमने कई मापदंडों और मौलिक प्रचुरता के मूल्यों का अनुमान लगाया है। 3डी

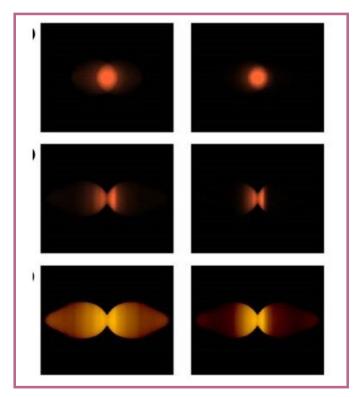


Figure 1. The model images of the ejecta of RS Oph (2021) obtained from the best-fitted 3D morpho-kinematic studies (see Pandey et al. 2022 fro more details).

- मॉर्फोकिनेमेटिक मॉडलिंग आरएस ओफ़ सिस्टम के लिए द्विध्रुवी आकारिकी और i=30 का झुकाव कोण दिखाता है (चित्र 1)।
- 2. ग्रहीय नीहारिका में एक फोटोडिसोसिएशन क्षेत्र (पीडीआर) मॉडल ग्रिड: पीडीआर अंतरतारकीय माध्यम के भीतर तटस्थ नीहारिका क्षेत्रों को संदर्भित करते हैं। पीडीआर इंटरस्टेलर माध्यम में इन्फ्रारेड (आईआर) उत्सर्जन का एक प्रमुख स्रोत हैं जो आम तौर पर PNe के बीच दिए गए प्रतिमान और भौतिक मापदंडों पर विचार करते हैं। हमने अलग-अलग मापदंडों के साथ एक ग्रिड मॉडल का निर्माण करके ग्रहीय निहारिका के आसपास के पीडीआर क्षेत्रों का अध्ययन किया है, उदाहरण के लिए प्रभावी तापमान, स्रोत प्रकीर्णन; नीहारिका का घनत्व; पीडीआर गहराई; और पीएएच

अणुओं और अनाकार कार्बन (एसी) धूल का घनत्व। हम ताप और शीतलन दरों और पीडीआर गहराई के साथ गैस गतिज तापमान की भिन्नता का अध्ययन करते हैं। हम बारीक संरचना रेखाओं के फ्लक्स का मूल्यांकन करते हैं: [O i] 63 µm; [C ii] 158 µm; [O i] 609 µm और फ्लक्स अनुपात: [O i] 146/63 µm, [O i] 63/[C ii] 158 µm, और [C i] 609/370 µm, और पैरामीटर स्पेस में उनकी भिन्नता का अध्ययन करते हैं। हम सत्यापित करते हैं कि वास्तविक PNe में देखे गए [O i] 146/63 µm और [O i] 63/[C ii] 158 µm अनुपात के बीच पाया गया सहसंबंध हमारे PN मॉडल ग्रिड से पाए गए सहसंबंध के समान है (चित्र 2)।

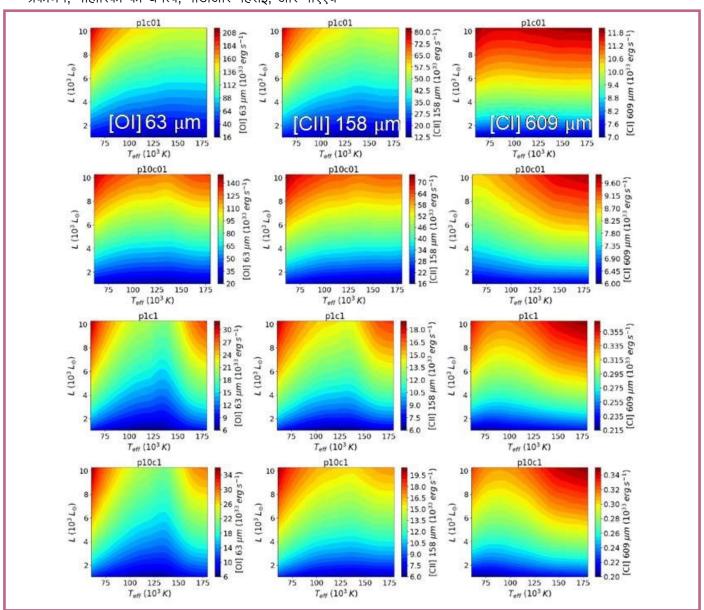


Figure 2: Line intensities under different physical conditions in the PDR region (see Bandyopadhyay & Das, 2023 for more details).

वार्षिक प्रतिवेदन 2022-2023

केंद्र ने पुरुलिया के पंचेत हिलटॉप में एस.एन. बोस वेधशाला बनाने की पहल की है। पिछले वर्ष में काफी प्रगति हुई है। हमने एक छोटे से देखने वाले मॉनिटर के साथ साइट के खगोलीय दृश्य को मापा है। अधिक सटीक खगोलीय दृश्य और वायुमंडलीय मापदंडों को मापने के लिए साइट पर एक मौसम स्टेशन और एक मोबाइल वेधशाला स्थापित की गई है।

परियोजना सहित भविष्यत् कार्य की योजना

- हम कुछ विशिष्ट नोवा, ग्रहीय नोवा और विशाल तारों का अध्ययन कर रहे हैं। हमने पहले ही उन वस्तुओं का अवलोकन और स्पेक्ट्रोस्कोपिक डेटा एकत्र कर लिया है। वर्तमान में, हम सिस्टम और संबंधित घटनाओं को समझने के लिए स्पेक्ट्रा का मॉडलिंग कर रहे हैं। हम विश्लेषण पूरा करने और पेपर जल्द ही प्रकाशित करने की उम्मीद कर रहे हैं।
- 2. केंद्र ने पुरुलिया के पंचेत हिलटॉप में एस.एन. बोस वेधशाला बनाने की पहल की है और इसमें पहले ही काफी प्रगति हो चुकी है।

विज्ञान और प्रौद्योगिकी विभाग को एक फंडिंग प्रस्ताव भी प्रस्तृत किया गया है। साइट पर एक मौसम स्टेशन और एक मोबाइल वेधशाला स्थापित की गई है। हम साइट प्रोजेक्ट को चिह्नित करने के लिए विभिन्न मापदंडों को मापने के लिए काम कर रहे हैं।

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

- 1. सदस्य, पीएचडी समिति, प्रेसीडेंसी विश्वविद्यालय
- सामाजिक प्रभाव: i. हमारे आसपास की दुनिया की समस्याओं को समझने और उनका समाधान करने के लिए बुनियादी विज्ञान में प्रगति की आवश्यकता है। ii. मौलिक वैज्ञानिक प्रश्नों को हल करने से मौलिक ज्ञान में सुधार और संवर्धन होता है। iii. पीएचडी छात्रों को पढ़ाने और पर्यवेक्षण के माध्यम से मानव संसाधन का विकास, राष्ट्र के निर्माण में मदद करता है। iv. अवलोकन संबंधी खगोल विज्ञान में अनुसंधान करने से विश्वव्यापी खगोलीय परियोजनाओं के लिए जनशक्ति उत्पन्न होती है।.

सौमेन मंडल

प्रोफ़ेसर खगोल भौतिकी और उच्च ऊर्जा भौतिकी soumen.mondal@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. आलिक पांजा; गैलेक्टिक स्टारफॉर्मिंग क्षेत्रों का एक बह्तरंगदैध्यं अध्ययन; थीसिस प्रस्तुत की गई
- 2. सम्राट घोष; भूरे बौनों और कम द्रव्यमान वाले सितारों के वातावरण को समझना; थीसिस प्रस्तृत की गई
- 3. धृमाद्रि खाता; एम-ड्वाफ्स के भौतिक गुणों की समझ: ऑप्टिकल और निकट-आईआर स्पेक्ट्रोस्कोपिक अध्ययन; थीसिस प्रस्त्त की गई; डॉ रामकृष्ण दास (सह पर्यवेक्षक)
- 4. सिद्धार्थ बिस्वास; गैलेक्टिक स्टार-गठन प्रक्रियाओं में पूर्व-मुख्य अनुक्रम सितारों का अध्ययन; शोधकार्य जारी
- 5. दिया राम; एम ड्वाफ्र्स में तारकीय गतिविधि को समझना; शोधकार्य जारी
- 6. राजीब कुंभकार; भूरे बौनों और कम द्रव्यमान वाले तारों के वाय्मंडलीय गुणों का अध्ययन; शोधकार्य जारी

- 7. सुदीप परमाणिक; ब्राउन ड्वाफ्स और एक्स्टा-सौर ग्रहों के वायुमंडलीय गुण; शोधकार्य जारी
- 8. अमन दास; भूरे बौनों और एक्सटा-सौर ग्रहों के वायुमंडलीय गुण; शोधकार्य जारी
- 9. सौमिता चक्रवर्ती; मल्टीवेवलेंथ डेटा के साथ गैलेक्टिक स्टार बनाने वाले क्षेत्र की समझ; शोधकार्य जारी
- 10. डोरोथी म्यूजियो म्वान्जिया; भूरे बौनों और कम द्रव्यमान वाले सितारों के वायुमंडलीय गुणों को समझना; शोधकार्य जारी; डॉ. जेफ्री ओकेन्गो और डॉ. जॉन ब्यूर्स, नैरोबी विश्वविद्यालय और डॉ. स्नेहलता, एरीज़ (सह-पर्यवेक्षक)

ख) पोस्ट-डॉक्स

1. दुष्मंता पात्र; एम द्वारों, रेडियो आकाशगंगाओं, एजीएन का रेडियो तरंग दैर्ध्य अध्ययन

ग) बाहरी परियोजना छात्र/ग्रीष्मकालीन प्रशिक्षण

- 1. मौसम माइती; बहुत कम द्रव्यमान वाले सितारों, भूरे बौनों और एक्सोप्लैनेट की परिवर्तनशीलता और वायुमंडलीय गुणों को समझना (एम.एससी. प्रोजेक्ट)
- 2. दिबाकर भौमिक; गांगेय सितारा-गठन क्षेत्र W5 में युवा तारकीय जनसंख्या की जनगणना (M.Sc. परियोजना)
- 3. कृतार्थ डे; DAMIT (ग्रीष्मकालीन परियोजना) का उपयोग करके क्षुद्रग्रह के आकार के आकलन के लिए प्रकाश वक्र विश्लेषण

शिक्षण/ अध्यापन

- 1. ऑट्म सत्र; बुनियादी प्रयोगशाला-I (PHY 191); एकीकृत पीएचडी; 12 छात्र; प्रोफेसर एस.के. पाल (सह-शिक्षक) के साथ)
- 2. वसंत सत्र; खगोल भौतिकी (PHY 403); एकीकृत पीएचडी; 12 छात्र; डॉ. रामकृष्ण दास (सह-शिक्षक) के साथ
- 3. वसंत सत्र; खगोल भौतिकी (PHY 604); पीएचडी; 6 छात्र; डॉ. रामकृष्ण दास (सह-शिक्षक) के साथ

प्रकाशन

क) ज़र्नल में

1. एलिक पांजा, यान सन, वेन पिंग चेन, और **सौमेन मंडल**, स्टार एंड क्लस्टर फॉर्मेशन इन द Sh2-112 फिलामेंटरी क्लाउड कॉम्प्लेक्स, द एस्ट्रोफिजिकल जर्नल, 939, 46, 2022

वार्षिक प्रतिवेदन 2022-2023

- 2. नेह लता, डब्ल्यू पी चेन, जे सी पांडे, अथुल दिलीप, झोंग-हान ऐ, अलीशेर एस होजेव, नीलम पनवार, संतोष जोशी, सौमेन मंडल, सिद्धार्थ बिस्वास, बी सी भट्ट, फोटोमेट्रीक वेरिएबल स्टार्स इन द यंग ओपन क्लस्टर NGC 6823, मंथली नोटीसेस ऑफ़ द रोयल एस्ट्रोनोमिकल सोसाइटी, 520, 1092, 2023
- पियाली साहा, अर्चना सोम, तापस बाग, महेश्वर गोपीनाथन, सौमेन मंडल, तुहिन घोष, धूमकेतु बादल L1616 में चुंबकीय क्षेत्र और युवा तारकीय वस्तुएं, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 513, 2039, 2022

ख) सम्मेलन की कार्यवाही/ रिपोर्ट/ मोनोग्राफ/ पुस्तकें

1. सौमेन मंडल, रामकृष्ण दास, तापस बाग, और मिथिलेश पांडे - "एस.एन. बोस खगोलीय वेधशाला: भारत के पूर्वी हिस्से में एक नई पहल", अवलोकन सुविधाओं पर एस्ट्रोनॉमिकल सोसाइटी ऑफ इंडिया (एएसआई) विजन दस्तावेज़, दिसंबर 2022

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. 4-7 मई 2022 के दौरान एरीज़, नैनीताल में तीसरी तारा निर्माण बैठक में "गैलेक्टिक स्टार-गठन क्षेत्रों में पूर्व-मुख्य अनुक्रम तारों की समझ" पर एक आमंत्रित वार्ता; 6 मई, 2022; 4-7 मई 2022 के दौरान एरीज़, नैनीताल में तीसरी सितारा निर्माण बैठक में "गैलेक्टिक स्टार-गठन क्षेत्रों में पूर्व-मुख्य अनुक्रम सितारों की समझ" पर एक आमंत्रित वार्ता; 20 मिनट
- "तारा-निर्माण, पूर्व-मुख्य अनुक्रम तारे और बहुत कम द्रव्यमान वाले तारे से भूरे बौने: भौतिक अंतर्दृष्टि" पर एक संगोष्ठी वार्ता; 24 अगस्त, 2022; प्रेसीडेंसी विश्वविद्यालय, कोलकाता; 1 घंटा
- एक पोस्टर प्रस्तुति "गैलेक्टिक फील्ड और स्टार-फॉर्मिंग रीजन में युवा और सक्रिय कम द्रव्यमान वाले सितारे", सौमेन मोंडल, और अन्य; मार्च 22, 2023; ग्राफिक हिल यूनिवर्सिटी, एरीज़, नैनीताल: 22 - 23 मार्च 2023

प्रशासनिक कर्तव्य

- 1. नोडल अधिकारी, तकनीकी अनुसंधान केंद्र (टीआरसी), एसएनबीएनसीबीएस
- 2. बाह्य समितियाँ: (i) शैक्षणिक समिति (अध्ययन बोर्ड), स्कूल ऑफ एस्ट्रोफिजिक्स, प्रेसीडेंसी यूनिवर्सिटी, कोलकाता के सदस्य; (ii)

- सिद्धो-कान्हो-बिरशा विश्वविद्यालय, पुरुलिया के यूजी फिजिक्स बोर्ड ऑफ स्टडीज (बीओएस) के सदस्य; बोर्ड ऑफ स्टडीज (बीओएस), इंटीग्रेटेड पीएच.डी., एसएनबीएनसीबीएस
- 3. आंतरिक समितियाँ: अध्ययन बोर्ड (बीओएस), एकीकृत पीएच. डी.; आंतरिक स्थायी तकनीकी समिति (आईएसटीसी); परियोजना और पेटेंट सेल के सदस्य; पुस्तकालय के सदस्य, कंप्यूटर सेल की सलाहकार समिति, संकाय खोज समिति, आदि।

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

- 1. तकनीकी अनुसंधान केंद्र (टीआरसी); डीएसटी; जनवरी 2016 से अब तक: सह पीआई
- 2. एस.एन.बोस नेशनल सेंटर फॉर बेसिक साइंसेज (एस.एन.बोस खगोलीय वेधशाला) के तहत एक नई खगोलीय वेधशाला; डीएसटी को प्रस्तुत; 5 साल; पीआई
- 3. पंचेत पहाड़ी, पुरुलिया के आसपास जनजातीय लोगों के सामाजिक आर्थिक उत्थान के लिए खगोल-पर्यटन और सतत जैव विविधता प्रबंधन; बीज, डीएसटी को प्रस्तुत; 3 वर्ष; पीआई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

1. आईआईएसईआर, कोलकाता के साथ राष्ट्रीय अंतरिक्ष विज्ञान प्रदर्शनी; दिसम्बर 5, 2022; साइंस सिटी, कोलकाता; 5 -11 दिसंबर 2022

राष्ट्रीय/अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. वेन-पिंग चेन, खगोल विज्ञान संस्थान, राष्ट्रीय केंद्रीय विश्वविद्यालय, ताइवान; क्र.सं. नंबर 1, 2; अंतरराष्ट्रीय
- 2. यान सन, पर्पल माउंटेन वेधशाला, चीनी विज्ञान अकादमी, चीन; क्र.सं. नंबर 1; अंतरराष्ट्रीय
- 3. संतोष जोशी, आर्यभट्ट रिसर्च इंस्टीट्यूट ऑफ ऑब्जर्वेशनल साइंसेज (ARIES), नैनीताल, भारत; क्र.सं. नंबर 2; राष्ट्रीय
- 4. स्नेह लता, आर्यभट्ट रिसर्च इंस्टीट्यूट ऑफ ऑब्जर्वेशनल साइंसेज (ARIES), नैनीताल, भारत; क्र.सं. नंबर 2; राष्ट्रीय
- 5. जीवन सी. पांडे, आर्यभट्ट रिसर्च इंस्टीट्यूट ऑफ ऑब्जर्वेशनल साइंसेज (ARIES), नैनीताल, भारत; क्र.सं. नंबर 2; राष्ट्रीय

6. बी. सी. भट्ट, भारतीय खगोल भौतिकी संस्थान, कोरमंगला, बैंगलोर, भारत; क्र.सं. नंबर 2; राष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

- आईआईएसईआर, कोलकाता के साथ 5-11 दिसंबर 2022 के दौरान साइंस सिटी, कोलकाता में राष्ट्रीय अंतरिक्ष विज्ञान प्रदर्शनी
- 30वीं पश्चिम बंगाल विज्ञान एवं प्रौद्योगिकी कांग्रेस, 2023 में विज्ञान प्रदर्शनी, 28 फरवरी 2023 और 1 मार्च 2023 को साइंस सिटी, कोलाटा में आयोजित की गई।

अनुसंधान क्षेत्र

गांगेय तारा-निर्माण क्षेत्रों और पूर्व मुख्य-अनुक्रम तारों का बहु-तरंगदैर्घ्य अध्ययन; (ii) बहुत कम द्रव्यमान वाले सितारों (वीएलएम) और भूरे बौनों की फोटोमेट्रिक परिवर्तनशीलता; (iii) एम बौनों और दानवों का स्पेक्ट्रोस्कोपिक अध्ययन; (iv) खगोलीय यंत्रीकरण

क. Sh2-112 फिलामेंटरी क्लाउड कॉम्प्लेक्स में स्टार और क्लस्टर निर्माण

तारे विशाल आणविक बादलों के भीतर गुच्छित वातावरण में बनते हैं। आंतरिक गुरुत्वाकर्षण गतिशीलता बादल के विखंडन को प्रेरित करती है, जिसके बाद प्रत्येक टुकड़ा ढह जाता है और प्रीस्टेलर कोर गठन की शुरुआत होती है। वैकल्पिक रूप से, बड़े सितारों से आयनीकरण या विस्फोटक झटके का प्रसार पड़ोसी बादलों को संपीड़ित कर सकता है, जिससे अगली पीढ़ी के तारे का निर्माण शुरू हो सकता है। आणविक बादल जटिल ज्यामिति प्रदर्शित करते हैं, जिनमें शीट और फिलामेंट्स से लेकर लंबे नेटवर्क तक की उप-संरचनाएं शामिल हैं। फिलामेंटरी आणविक बादल के पास एच ॥ क्षेत्रों के विस्तार से होने वाली अशांति, एच ॥ क्षेत्र के दोनों ओर फिलामेंट की लंबी धुरी के साथ तारा बनाने वाले कोर की अनुक्रमिक तरंगें उत्पन्न कर सकती है। युवा प्रोटोस्टार को प्राथमिकता से फिलामेंटरी अक्ष के साथ संरेखित किया जाता है, जिस पर पैरंटल बादल के विखंडन की छाप होती है। हम H II क्षेत्र Sh2-112 के आसपास तारा निर्माण गतिविधि का अध्ययन करते हैं, जो विशाल तारे (O8 V)BD+45 3216 द्वारा प्रकाशित होता है। संबंधित आणविक बादल 2°.0 × 0°.83 के कोणीय पैमाने में फैला हुआ है, जो कि गैलेक्टिक देशांतर के साथ 73 पीसी x 30 पीसी के रैखिक आकार संगत है। उच्च-रिज़ॉल्यूशन (30") विलुप्त होने का नक्शा एवी~2.78 मैग के औसत विलुप्त होने के साथ फिलामेंट जैसी संरचना के साथ संरेखित धूल के गुच्छों की एक श्रृंखला को दर्शाता है, जो अधिकतम~17 मैग तक भिन्न होता है। हमारे विश्लेषण से युवा तारों की एक समृद्ध आबादी (~ 500) ($\sim 1~{
m Myr}$ की

औसत आयू) के साथ-साथ Ηα उत्सर्जकों की एक बड़ी संख्या (~350) की पहचान हुई, जो स्थानिक रूप से फिलामेंटरी बादलों के साथ सहसंबद्ध हैं। बादल के किनारे के पास स्थित, चमकदार तारा BD+45 3216 ने एक चाप जैसा पैटर्न बनाया है क्योंकि आयनीकृत विकिरण घने गैस का सामना करता है, जिससे एक छाले के आकार की आकृति बनती है। हमें तीन अलग-अलग युवा तारकीय समूह मिले, जो बादल परिसर के अपेक्षाकृत घने हिस्सों के साथ मेल खाते हैं, जो चल रहे तारा निर्माण को दर्शाते हैं। इसके अलावा, क्लाउड फिलामेंट (उत्तेजना तापमान~10 K) CO आइसोटोपोलॉग्स द्वारा पता लगाया गया है और लगभग~80 पीसी तक फैला हुआ है, घने कोर (उत्तेजना तापमान~28–32 K) को छोड़कर आयनित गैस से रहित है, जिसमें ओबी सितारों द्वारा महत्वपूर्ण आयनित उत्सर्जन होता है। (गतिशील आयु~0.18–1.0 Myr)संबंधित है। रेडियल वेग मुख्य फिलामेंट के साथ गतिशील (माध्यिका~-3.65 किमी/सेकेंड) है, जो गैलेक्टिक पूर्व से पश्चिम तक बढ़ रहा है, जो केंद्रीय केंद्रों पर विशाल सितारों/समूहों के निर्माण के लिए बड़े पैमाने पर प्रवाह का संकेत देता है (एलिक पांजा व अन्य 2022, एपीजे)। .

ख. वृषभ तारा-निर्माण क्षेत्र में यंग ब्राउन ड्वार्फ की TESS फोटोमेट्रिक विविधता

ब्राउन ड्वार्फ (बीडी) को पारंपरिक रूप से उप-तारकीय वस्तुओं के रूप में परिभाषित किया जाता है, जिनका द्रव्यमान उनके कोर के अंदर ड्यूटेरियम जलने को बनाए रखने के लिए पर्याप्त होता है, लेकिन हाइड्रोजन जलने के लिए पर्याप्त नहीं होता है। इन युवा वस्तुओं के गतिशील वायुमंडलीय गुणों और सतह की विशेषताओं को समझने के लिए हाल के वर्षों में बीडीएस अनुसंधान की फोटोमेट्रिक परिवर्तनशीलता पर बहुत ध्यान दिया गया है। हम टॉरस आणविक बादल में युवा (~ 2 - 3 Myr) भूरे बौनों के कुछ नमूनों के ट्रांजिटिंग एक्सोप्लैनेट सर्वे सैटेलाइट (TESS) उच्च गुणवत्ता वाले प्रकाश वक्रों का एक व्यापक विश्लेषण प्रस्तुत करते हैं। हमारा लक्ष्य भूरे बौनों के तेज़ घूर्णन की खोज करना और उनके गतिशील वातावरण और सतह की विशेषताओं को चित्रित करना है। 11 युवा बीडी में से, हमने पाया कि 8 72% की अवधि 1 से 7 दिन की होती है; उनमें से, 3 बीडी की अवधि <1.5 डी है और 2 वस्तुओं की अवधि पहली बार अनुमानित की गई है। साइनसोइडल आवधिक विविधताएं एक बड़े खेल या वस्तुओं के साथ घूमने वाले छोटे धब्बों के समूह से संबंधित हैं। दिलचस्प बात यह है कि हमने 3 युवा बीडी में 4 भड़कने वाली घटनाओं का पता लगाया है, और एक वस्तु, एमएचओ 4, दो अलग-अलग क्षेत्रों में दो भड़कीली घटनाएं दिखाती है। फ्लेयर्ड प्रकाश वक्रों से, हमने 1034 से 1035 अर्ग की सीमा में कुल बॉयोमीट्रिक भड़की

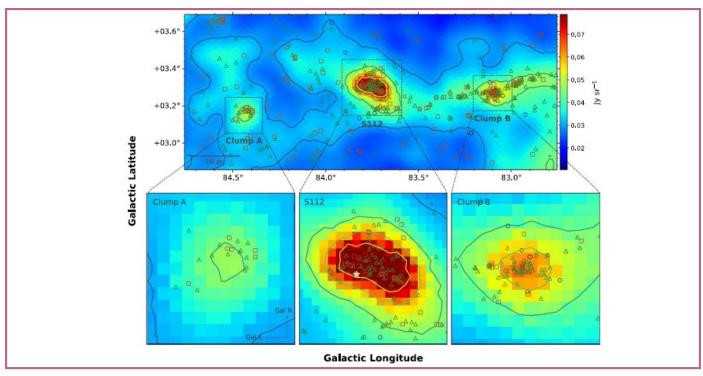


Figure 1: Top: spatial distribution of the YSOs (Class I: red square; Class II: green triangle; transition disk: blue circle) overlaid on the Planck 353 GHz map. The stellar density peaks at three subregions (Clump A, S112, and Clump B) and coincides well with the high-intensity regions. The contour levels are at 0.028, 0.040,0.052, and 0.064 Jy sr-1. Bottom: zoomed-in maps of the three subregions. The main ionizing source BD+45 3216 is represented by a white asterisk symbol.

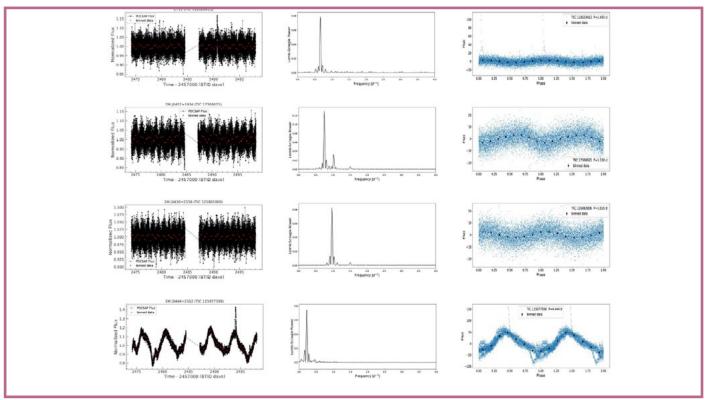


Figure 2: The TESS light curves of Taurus young Brown Dwarfs are shown. Left column: a full light curve in black and red dots representing the binned light curve with binning point 500 min; middle column: Lomb-Scragle periodogram; right column: Phase folded light curve, with most significant peak obtained from the LS periodogram.

हुई ऊर्जा का अनुमान लगाया है, जो सुपरफ्लेयर ऊर्जा सीमा के करीब है। इस प्रकार की सुपरफ्लेयर घटनाओं को उत्पन्न करने के लिए, हमने आवश्यक चुंबकीय क्षेत्र की ताकत की गणना की है, जो कुछ 100 जी के क्रम में सामने आ रही है। ऐसे सुपरफ्लेयर्स का एम-ड्वाफ्स के आसपास ग्रहों की रहने की क्षमता पर एक मजबूत प्रभाव पड़ता है (राजीब कुंभकर व अन्य, 2023)।

परियोजना सहित भविष्यत् कार्य की योजना

- अवलोकन संबंधी खगोल विज्ञान में वैज्ञानिक कार्यक्रम: (i) कम द्रव्यमान वाले तारे, ब्राउन ड्वार्फ और अतिरिक्त-सौर ग्रह: कम द्रव्यमान वाले तारे तारकीय विकास, संरचना और वायुमंडल के सैद्धांतिक मॉडल के एक महत्वपूर्ण परीक्षण का प्रतिनिधित्व करते हैं। टाइम-डोमेन खगोल विज्ञान और इन वर्ग की वस्तुओं का ऑप्टिकल/निकट-आईआर स्पेक्ट्रोस्कोपिक अध्ययन उनके वायुमंडल, एक्सोप्लैनेट और पल्सेशन को समझने के लिए किया जाता है। (ii) गैलेक्टिक स्टार-गठन क्षेत्रों के बहु-तरंगदैर्ध्य अध्ययन: ऐसे क्षेत्रों के बहु-तरंगदैर्ध्य अध्ययन युवा तारकीय वस्तुओं, उनके मौलिक मापदंडों और सितारा-गठन की जनगणना प्रदान करते हैं। युवा अति कम द्रव्यमान (वीएलएम) वस्तुओं और भूरे बौनों में परिवर्तनशीलता उनके वायुमंडल के बारे में जानकारी प्रदान करती है। (iii) खगोलीय इंस्ट्रमेंटेशन: ऑप्टिकल/आईआर उपकरण डिजाइन और विकास में हमारी विशेषज्ञता के साथ, हम दूरबीनों के लिए अत्याधुनिक बैकएंड उपकरणों के निर्माण के लिए एक खगोलीय इंस्ट्रमेंटेशन प्रयोगशाला स्थापित करने के लिए काम कर रहे हैं।.
- पंचेत हिलटॉप, पुरुलिया में एस.एन. बोस खगोलीय वेधशाला की स्थापना: एस.एन. बोस खगोलीय वेधशाला परियोजना, भारत के पूर्वी हिस्से में एक नई खगोलीय दूरबीन अवलोकन सुविधा, पश्चिम बंगाल के पंचेत पहाड़ी पर 1.5-मीटर दूरबीन स्थापित करने की योजना बनाई गई है, इसके लिए, इस वेधशाला स्थल के लिए पंचेत पहाड़ी की चोटी पर भारत सरकार के वन विभाग और पश्चिम बंगाल राज्य सरकार से दो हेक्टेयर भूमि का अधिग्रहण किया गया है। नई वेधशाला के लिए एक परियोजना प्रस्ताव अनुमोदन और

वित्त पोषण के लिए भारत सरकार के विज्ञान और प्रौद्योगिकी विभाग (डीएसटी) में रखा गया है। स्थल-चित्रण का कार्य पहाड़ी की चोटी पर किया जा रहा है। साइट पर एक स्वचालित मौसम प्रणाली स्थापित की गई है, और नियमित आधार पर डेटा एकत्र किया जा रहा है। टेलीस्कोप नियंत्रण केबिन सहित रोल-ऑफ-छत वाली एक छोटी वेधशाला पहले से ही साइट पर स्थापित की गई है, और 12-इंच टेलीस्कोप के साथ डीआईएमएम प्रणाली की स्थापना प्रक्रियाधीन है।

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

- 1. पीएच.डी./एकीकृत पीएच.डी. के प्रशिक्षण के माध्यम से उन्नत जनशक्ति उत्पादन (मानव संसाधन विकास)। छात्रों को शैक्षिक क्षेत्रों में राष्ट्रीय आवश्यकता के साथ-साथ राष्ट्रीय/अंतरराष्ट्रीय मेगा परियोजनाओं (जैसे टीएमटी, एलआईजीओ, एसकेए-इंडिया आदि) की आवश्यकता है।
- 2. 2. सिद्धो-कान्हो-बिरशा विश्वविद्यालय और कृषि विज्ञान केंद्र, पुरुलिया के सहयोग से "पंचेत पहाड़ी, पुरुलिया के आसपास जनजातीय लोगों के सामाजिक आर्थिक उत्थान के लिए खगोल-पर्यटन और सतत जैव विविधता प्रबंधन" पर एक सामाजिक उत्थान परियोजना तैयार की गई थी और वित्त पोषण के लिए SEED, DST को प्रस्तुत की गई थी।
- 3. राष्ट्रीय अंतरिक्ष विज्ञान प्रदर्शनी जैसे वैज्ञानिक जागरूकता कार्यक्रम कॉलेज, स्कूली छात्रों और जनता के लिए आयोजित किए जाते हैं।
- 4. दूध में मिलावट का पता लगाने के लिए तकनीकी अनुसंधान केंद्र (TRC), SNBNCBS के तहत एक स्पेक्ट्रोस्कोपिक-आधारित कम लागत वाला उपकरण "मिल-क्यू-वे" विकसित किया जा रहा है। केंद्र में एक प्रोटोटाइप उपकरण पहले से ही विकसित किया गया है, जो संभावित प्रौद्योगिकी लेने वालों की तलाश कर रहा है। इस तरह की परियोजना का उद्देश्य सामाजिक लाभ और खाद्य क्षेत्र और स्रक्षा के लिए मूल्यवान ज्ञान संसाधन है।

सुनंदन गंगोपाध्याय

एसोसिएट प्रोफेसर खगोल भौतिकी और उच्च ऊर्जा भौतिकी sunandan.gangopadhyay@bose.res.in

छात्रों/पोस्ट-डॉक्ट्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. सौरव करार; ऐस्पेक्ट्स ऑफ़ होलोग्राफिक इंटैंगलमेंट एंट्रोपी एंड कंप्लेक्जिटी; उपाधि प्रदान की गई; प्रो. अर्चन एस मजूमदार (सह-पर्यवेक्षक)
- 2. ऋत्पर्णा मंडल; ब्रह्मांड विज्ञान और ब्लैक होल ऊष्मप्रवैगिकी में कार्यात्मक पुनर्सामान्यीकरण समूह के अनुप्रयोग; थीसिस प्रस्तुत।
- 3. अंकुर श्रीवास्तव; प्रबल रूप से युग्मित प्रणालियों में गेज/ गुरुत्वाकर्षण द्विविधता का अनुप्रयोग; शोध कार्य जारी
- 4. अनीश दास; ब्लैक होल की जियोडेसिक और छाया का अध्ययन: शोध कार्य जारी
- 5. नीरज कुमार; ब्लैक होल की ऊष्मप्रवैगिकी; शोध कार्य जारी
- 6. मंजरी दत्ता; नॉनकम्यूटेटिव क्वांटम यांत्रिकी; शोध कार्य जारी

- 7. अनिर्बान रॉय चौधरी; गेज/गुरुत्वाकर्षण समन्वय से सूचना सेद्धांतिक मात्राएँ: शोध कार्य जारी
- 8. सोहम सेन; क्वांटम गुरुत्विय वृत्तिकी; शोध कार्य जारी
- 9. सुचेतना पाल; होलोग्राफिक सुपरकंडक्टर्स की विशेषताएं; उपाधि प्रदान की गई; प्रो. प्रशांत पाणिग्रही (सह-पर्यवेक्षक

ख) पोस्ट-डॉक्स

1. अश्मिता दास; अनरुह-डेविट डिटेक्टर, ब्लैक होल की भौतिकी

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. संप्रीति रॉय; सापेक्षता का सामान्य सिद्धांत
- 2. सौविक पॉल; सुपरसिमेट्रिक क्वांटम यांत्रिकी

प्रशिक्षण

- 1. ऑट्म सत्र; गणितीय प्रविधि (PHY 102); एकीकृत पीएचडी; 11
- 2. वसंत सत्र; उन्नत क्वांटम फिल्ड सिद्धांत (PHY 407); एकीकृत पीएचडी; 4 छात्र

प्रकाशन

क) ज़र्नल में

- 1. सोहम सेन, ऋतुपर्णा मंडल, और सुनंदन गंगोपाध्याय, एक्विवेलेंस प्रिंसिपल एंड एपबीएआर एंट्रॉपी ऑफ़ एन एटॉम फॉलिंग इंट्र अ क्वांटम करेक्टेड ब्लैक पोल, फिजिकल रिव्यू डी, 105, 085007, 2022
- 2. आशीष साहा, **स्नंदन गंगोपाध्याय** और ज्योति प्रसाद साहा, म्युच्युअल इंफॉर्मेशन, आईलैंड्स इन ब्लैक होल एंड द पेज कर्व, द यूरोपियन फिजिकल जर्नल सी, 82, 476, 2022
- 3. सोहम सेन, ऋतुपर्णा मंडल, और **सुनंदन गंगोपाध्याय**, नियर हॉरिजॉन ऐस्पेक्ट्स ऑफ़ एक्सिलिरेशन रोडिएशन ऑफ़ एन एटॉम फॉलिंग इंट्र अ क्लास ऑफञ स्टेटिक स्फेरिकल्ली सिम्मेट्रिक ब्लैक होल ज्योमेट्रिज, फिजिकल रिव्यू डी, 106, 025004, 2022
- 4. नीरज कुमार, सोहम सेन, और सुनंदन गंगोपाध्याय, फेज़ ट्रांजिशन स्ट्रक्चर एंड ब्रेकिंग ऑफ़ यूनिवर्सल नेचर ऑफ़ सेंट्रल चार्ज क्रिटिकल्ली इन अ बॉर्न-इंफिल्ड एड्स ब्लैक होल, फिजिकल रिव्यू डी, 106, 026005, 2022

- अर्नब मुखर्जी, **सुनंदन गंगोपाध्याय** और ए.एस. मजूमदार, अनरुह क्वांटम ओटो इंजन इन द प्रिसेंस ऑफ़ अ रेफ्लेक्टिंग बाउंड्री, जर्नल ऑफ हाई एनर्जी फिजिक्स, 2022, 105, 2022
- 6. अनिर्बान रॉय चौधरी, आशीष साहा, और सुनंदन गंगोपाध्याय, रोल ऑफ़ नेचरल इंफॉर्मेशन इन द पेज कर्व, फिजिकल रिव्यू डी, 106, 086019, 2022
- 7. सोहम सेन, सुकांत भट्टाचार्य और **सुनंदन गंगोपाध्याय**, पाथ इंटीग्रल एक्शन फॉर अ रेसोनेंट डिटेक्टर ऑफ़ ग्रेविटेशनल वेन्स इन द जेनरलाइज्ड अनसटेंटी प्रिंसिपल फ्रेमवर्क, यूनिवर्स, 8, 450, 2022
- 8. मंजरी दत्ता, श्रीमोयी गांगुली और **सुनंदन गंगोपाध्याय**, एक्सप्लिसिट फ्रॉम ऑफ़ बेरी फेज़ फॉर टाइम डिपेंडेंट हार्मोनिक ऑसिलेटर्स इन नॉन कम्यूटेटिव, फिजिका स्क्रिप्टा, 97, 105204, 2022
- 9. ऋतुपर्णा मंडल, **सुनंदन गंगोपाध्याय** और अमिताभ लाहिड़ी, कॉरमोलॉज़ी विथ मॉडिफाइड कंटिन्यूटी इक्वेशन इन एसिम्प्टोटिकली इन सेफ ग्रेविटी, द यूरोपियन फिजिकल जर्नल प्लस, 137, 1110, 2022
- 10. ऋतुपर्णा मंडल और सुनंदन गंगोपाध्याय, ब्लैक होल थर्मोडायनामिक्स इन एसिमप्टोटिकली सेफ ग्रेविटी, जेनरल रिलेटिविटी एंड ग्रेविटेशन, 54, 159, 2022
- 11. अनीश दास, आशीष साहा और सुनंदन गंगोपाध्याय, शैडो ऑफ़ कॉड्टलर ब्लैक होल इन द प्रिसेंस ऑफ़ प्लाज्मा फॉर अ को-मुविंग ऑब्जर्वर, क्लासिकल एंड क्वांटम ग्रेविटी, 40, 015008, 2023
- 12. अश्मिता दास, सोहम सेन, और **सुनंदन गंगोपाध्याय**, वर्चु अल ट्रांजिशन इन ऐन एटॉम-मिरर सिस्टम इन द प्रिसेंस ऑफ़ टू स्कैलर फोटॉन, फिजिकल रिव्यू डी, 107, 025009, 2023
- 13. नीरज कुमार, सोहम सेन, और सुनंदन गंगोपाध्याय, ब्रेकिंग ऑफ़ द यूनिवर्सल नेचर ऑफ़ द सेंट्रल चार्ज क्रिट्रकली इन एड्स ब्लैक होल इन गॉस-बोन्नेट ग्रेविटी, फिजिकल रिव्यू डी, 107, 046005, 2023
- 14. सुनंदन गंगोपाध्याय, सोहम सेन और ऋत्पर्णा मंडल, इंटरिफरेंस एंड रेफ्लेक्शन फ्रॉम द इवेंट होरिजॉन ऑफ़ अ क्वांटम करेक्टेड ब्लैक होल, यूरोफिजिक्स लेटर्स, 141, 49001, 2023

- 15. अनिर्बान रॉय चौधरी, आशीष साहा और **सुनंदन गंगोपाध्याय**, मिक्स स्टेट इंफॉर्मेशन थ्योरेटिक मेजर्स इन ब्रूस्टेड ब्लैक ब्रैन, एनल्स ऑफ फिजिक्स, 452, 169270, 2023
- 16. ऋत्पर्णा मंडल, **स्नंदन गंगोपाध्याय**, अमिताभ लाहिड़ी, न्यूटनियन कॉस्मोलॉजी फ्रॉम क्वांटम कर्क्टेंड न्यूटनीयन पोटेंशियल, फिजिक्स लेटर्स बी, 839, 137807, 2023

प्रतिष्ठित सम्मेलनों/संस्थानों में आयोजित वार्ता/ सेमिनार

1. गुरुत्वाकर्षण के फिल्ड सैद्धांतिक पहलू (एफटीएजी) 2023, आमंत्रित वार्ता; मार्च 17, 2023; बिड़ला इंस्टीट्यूट ऑफ टेक्नोलॉजी, मेसरा; 3 दिन

प्रशासनिक कर्तव्य

- 1. 1 मार्च, 2023 से विभागाध्यक्ष, खगोल भौतिकी और उच्च ऊर्जा भौतिकी विभाग
- 2. एससीओएलपी समिति, विभागीय सेमिनार आयोजन के सदस्य,
- कैंटीन समिति के सदस्य

अनुसंधान क्षेत्र

क्वांटम गुरुत्व घटना विज्ञान, गेज/गुरुत्वाकर्षण समन्वयक के अनुप्रयोग, ब्लैक होल थर्मोडायनामिक्स, ब्रह्मांड विज्ञान के लिए स्पर्शोन्मुख रूप से सेफ ग्रेविटी का अनुप्रयोग

इस मूल्यांकन वर्ष के दौरान मेरा शोध कार्य मुख्य रूप से निम्नलिखित क्षेत्रों में रहा है:

1. हमने क्वांटम सुधारित श्वार्ज़िस्चल्ड ब्लैक होल में फॉलिंग परमाण् द्वारा प्रदर्शित त्वरण विकिरण की घटना की जांच की है। एक फोटॉन के एक साथ उत्सर्जन के साथ एक परमाणु की उत्तेजना संभावना तुल्यता सिद्धांत को संतुष्ट करती है जब हम इसकी तुलना एक परमाणु के संबंध में तेज होने वाले दर्पण की उत्तेजना संभावना से करते हैं। सामान्य ब्लैक होल ज्यामिति के लिए तुल्यता सिद्धांत की वैधता प्रदर्शित की गई है। इस क्वांटम सुधारित ब्लैक होल ज्यामिति के लिए क्षितिज उज्ज्वल त्वरण विकिरण एन्ट्रॉपी (HBAR) प्राप्त की जाती है। एचबीएआर एन्ट्रॉपी का रूप सार्वभौमिक क्वांटम गुरुत्व सुधार के साथ बेकेंस्टीन-हॉकिंग ब्लैक होल एन्ट्रॉपी के समान है। यह कृति पीआरडी डी 105, 085007, 2022 में प्रकाशित हुई।

- 2. हमने स्थिर गोलाकार सममित ब्लैक होल के एक बड़े वर्ग से संबंधित ब्लैक होल मीट्रिक के निकट क्षितिज पहलुओं (और उससे परे) की जांच की है। निकट क्षितिज सन्निकटन समस्या में अनुरूप समरूपता की ओर ले जाता है। हमारे अध्ययन में, हम निकट क्षितिज सन्निकटन से आगे जाते हैं, जो ब्लैक होल ज्यामिति के निकट क्षितिज भौतिकी से जुड़ी अनुरूप समरूपता को तोड़ता है। हमने देखा कि अनुरूप समरूपता पर विचार किए बिना भी, संशोधित त्ल्यता संबंध कायम है। आभासी संक्रमण की संभावना क्षितिज सन्निकटन से परे के कारण आयाम संशोधित होने के साथ अपने प्लैंक-जैसे स्वरूप को बरकरार रखती है। इसके बाद हमने गारफिंकल-होरोविट्ज़-स्ट्रोमिंगर ब्लैक होल के लिए एचबीएआर का अवलोकन किया। हमने देखा कि अनुरूप मामले पर विचार करते समय एचबीएआर एन्ट्रॉपी क्वांटम गुरुत्व जैसे सुधारों से चूक जाती है। हालाँकि, ऐसे सुधार तब सामने आते हैं जब क्षितिज के निकट विश्लेषण में अनुरूप समरूपता टूट जाती है। यह कृति पीआरडी डी 106, 025004, 2022 में प्रकाशित हुई।
- 3. हमने दो अदिश फोटॉनों के एक साथ उत्सर्जन के साथ परमाण्-दर्पण प्रणाली के आभासी संक्रमण की भी जांच की है, जहां परमाण् और दर्पण उनके बीच एक सापेक्ष त्वरण स्वीकार करते हैं। एकल फोटॉन उत्सर्जन के लिए, साहित्य निर्देश देता है कि दो अलग-अलग प्रणालियों की संक्रमण संभावनाएं, जैसे कि दर्पण और उसके विपरीत के संबंध में एक परमाणु का त्वरण, परमाणु और क्षेत्र की आवृत्तियों के आदान-प्रदान के तहत समतुल्य हो जाता है। ऐसी उत्तेजना प्रक्रिया के अवलोकन संबंधी गुण को संबोधित करते हुए, उपरोक्त लिटरेचर में एक पता लगाने योग्य संभावना की भी सूचना दी गई है। हमारी खोज बताती है कि एक के बजाय दोहरे फोटॉन का एक साथ उत्सर्जन, संक्रमण संभावनाओं के बीच समानता को नष्ट कर देता है। यह कृति पीआरडी डी 107, 025009, 2023 में प्रकाशित हुई।

4. हमने दोहरी सीमा क्षेत्र सिद्धांत से इनपुट का उपयोग करके बोर्न-इन्फ़ेल्ड एडीएस ब्लैक होल के थर्मोडायनामिक्स पर भी विचार किया है। यहां, हमने ब्रह्माण्ड संबंधी स्थिरांक और न्यूटन के गुरुत्वाकर्षण स्थिरांक के साथ-साथ बोर्न-इन्फेल्ड पैरामीटर को बड़े पैमाने पर अलग-अलग किया है। चार्ज किए गए ब्लैक होल के लिए विस्तारित ब्लैक होल थर्मोडायनामिक्स में केंद्रीय चार्ज (सीमा अनुरूप क्षेत्र सिद्धांत में होने वाला) का एक नया सार्वभौमिक महत्वपूर्ण व्यवहार हाल ही में देखा गया है, और हमने इस अध्ययन को बोर्न-इन्फेल्ड एडीएस ब्लैक होल तक बढ़ाया है। यह कृति पीआरडी डी 106, 026005, 2022 में प्रकाशित हुई।

परियोजना सहित भविष्यत कार्य की योजना

भविष्य में हम अपने चल रहे अध्ययन को और आगे बढाना चाहेंगे। विशेष रूप से, हम घूर्णनशील ब्लैक होल पृष्ठभूमि के लिए अपने अध्ययन का विस्तार करना चाहेंगे। हम गुरुत्वाकर्षण तरंग डिटेक्टर प्रणालियों में रैखिककृत क्वांटम गुरुत्व द्वारा निभाई गई भूमिका को भी समझना चाहेंगे।

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

1. अनुसंधान के जिन क्षेत्रों में हम लगे हुए हैं, वे सैद्धांतिक भौतिकी के मूलभूत पहलुओं में कुछ नई अंतर्दृष्टि प्रदान करेंगे। विशेष रूप से, हमारा मानना है कि ये अध्ययन क्वांटम गुरुत्व के बारे में कुछ रहस्य उजागर करेंगे। इतिहास ने यह भी दिखाया है कि मौलिक जांच आमतौर पर प्रौद्योगिकी क्षेत्र में अनुप्रयोग ढूंढती है। सैद्धांतिक भौतिकी में अनुसंधान से मानव शक्ति का विकास भी होगा।

तापस बाग

सहायक प्रोफेसर खगोल भौतिकी और उच्च ऊर्जा भौतिकी tapasbaug@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. अरिफुल हक; गैलेक्टिक तारा-निर्माण क्षेत्रों में प्रोटोस्टेलर का बहिर्वाह; शोधकार्य जारी
- 2. निशांत गर्ग; तारे के निर्माण में चुंबकीय क्षेत्र की भूमिका; शोधकार्य जारी
- 3. मुहम्मद उस्मान शेहू; स्टार-फॉर्मिंग फिलामेंट्स का अध्ययन: शोधकार्य जारी

ख) पोस्ट-डॉक्स

- 1. तीर्थेंद् सिन्हा; युवा तारकीय वस्तुएँ
- 2. पियाली साहा: गैलेक्टिक तारा निर्माण और प्रतिक्रिया प्रभाव
- 3. अलीक पांजा (ब्रिज फेलो); हब-फिलामेंट संरचनाओं का अध्ययन

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. देबलीना कर; बीआरसी 38 में रॉकेट प्रभाव की खोज (ग्रीष्मकालीन परियोजना)

- 2. स्भ्रदीप कर्माकर; बरनार्ड 223 में चुंबकीय क्षेत्र ज्यामिति (ग्रीष्मकालीन परियोजना)
- 3. सयारी भट्टाचार्य; गेलेक्टिक स्टार निर्माण क्षेत्रों में प्रारंभिक सामूहिक समारोह (ग्रीष्मकालीन परियोजना)
- 4. सम्राट रॉय; विशाल तारों का उनके परिवेश पर प्रभाव (एम. एससी. परियोजना)

शिक्षण/ अध्यापन

- 1. ऑट्म सत्र; शास्त्रीय गतिशीलता; एकीकृत पीएचडी; 11 छात्र
- 2. वसंत सत्र; खगोल विज्ञान में अवलोकन तकनीकें; पीएचडी; 8 छात्र; डॉ. रामकृष्ण दास (सह-शिक्षक) के साथ

प्रकाशन

क) जर्नल में

- 1. एल. के. देवांगन, एन. के. भदारी, ए. मेन्शिकोव, ई. जे. चुंग, आर. देवराज, सी. डब्ल्यू. ली, ए. के. मैती, और टी. बाग, आईसी 5146 डार्क स्ट्रीमर: द फर्स्ट रिलाएबल कैंडिडेंट ऑफ़ एज कोलैप्स, हब-फिलामेंट सिस्टम, एंड इंटरट्वाइंड सब-फिलामेंट्स, द एस्ट्रोफिजिकल जर्नल, 946, 22, 2023
- 2. वेन्यू जिओ, के वांग, तुषारा जी.एस. पिल्लई, तापस बाग, सिजू झांग, और फेंगवेई जू, फ्रेम्मेंटेशन ऑफ़ द हाई-मास "स्टारलेस" कोर G10.21-0.31: अ कोहियरेंट इवॉल्यूशनरी पिक्चर फॉर स्टार फॉर्मेशन, द एस्ट्रोफिजिकल जर्नल, 945, 81, 2023
- 3. क्षितिज के. मल्लिक, लोकेश के. देवांगन, देवेन्द्र के. ओझा, तापस बाग, और इगोर आई. ज़िनचेंको, स्ट्रक्चर एंड किनेमेटिक्स ऑफ़ Sh2-138-_ए डिस्टेंट हब-फिलामेंट सिस्टम इन द आउटर गैलेक्टिक प्लेन, द एस्ट्रोफिजिकल जर्नल, 944, 228, 2023
- 4. अनिंद्य साहा, आनंदमयी तेज, होंग-ली लियू, टाई लियू, निमता इसाक, चांग वोन ली, गुइडो गारे, पॉल एफ गोल्डरिमथ, मिका जुवेला, शेंग-ली किन, अमेलिया स्टुट्ज, शांघुओ ली, के वांग, तापस बाग, लियोनार्डी ब्रोंफमैन , फेंग-वेई ज्, योंग झांग, चाकली ईश्वरैया, एटीओएमएस: एएलएमए थ्री-मिलीमीटर ऑब्जर्वेशन ऑफ़ मैसिव स्टार-फॉर्मिंग रिजंस – XII: फ्रेग्मेंटेशन एंड मल्टीर-केल गैस कायनेटिक्स इन प्रोटोक्लस्टर्स G12.42+0.50 एंड G19.88-0.53, मंथली नोटिसेस ऑफ़ द रोयल ऐस्ट्रोनोमिकल सोसायटी, 516, 1983, 2022

- 5. एस्ट्रेला गुज़मैन कोल्क, मैनुअल फर्नांडीज-लोपेज़, लुइस ए. ज़पाटा, और **तापस बाग**, *पॉसिबल एक्सप्लोसिबल डिसपर्शल* आउटफ्लो इन आईआरएएस 16076-5134 रिवर्स्ड विथ एएलएमए, द एस्ट्रोफिजिकल ज़र्नल, 937, 51, 2022
- पियाली साहा, जी महेश्वर, डी के ओझा, **तापस बाग,** शर्मा नेहा, इंवेस्टिगेशन ऑफ़ रॉकेट इफेक्ट इन ब्राइट-रिम्मड क्लाउड्स युजिंग गैया ईडीआर, मंथली नोटीसेस ऑफ़ द रोयल एस्ट्रोनॉमिकल सोसायटी: लेटर्स, 515, L67-L71, 2022
- 7. जियान-वेन झोउ, टाई लियू, तापस बाग व अन्य, एटीओएमएस: एएलएमए थ्री-मिलीमीटर ऑब्जर्वेशन ऑफ़ मैसिव स्टार-फॉर्मिंग रिजंस – XI. फ्रॉम इनफ्लो टू इनफॉल इन हब-फिलामेंट सिस्टम्स, मंथली नोटीसेस ऑफ़ द रोयल एस्ट्रोनॉमिकल सोसायटी, 514, 6038, 2022
- 8. पियाली साहा, अर्चना सोम, **तापस बाग**, महेश्वर गोपीनाथन, सौमेन मंडल, तुहिन घोष, मैग्नेटिक फिल्ड्स एंड यंग स्टेलर ऑब्डेक्ट्स इन कॉमेट्री क्लाउड L1616, मंथली नोटीसेस ऑफ़ द रोयल एस्ट्रोनॉमिकल सोसायटी, 513, 2039, 2022
- 9. ए. गिन्सबर्ग, टी. सेसेन्गेरी, **टी. बाग** व अन्य, एएलएमए-आईएमएफ ॥. इंवेस्टीगेटिंग द ऑरिजिन ऑफ़ स्टेलर मासेस: कॉन्टीनम इमेजेज एंड डेटा प्रोसेसिंग, ऐस्ट्रोनॉमी एंड एस्ट्रोफिजिक्स, 662, A9, 2022
- 10. एफ. मोट्टे, एस. बोंटेम्प्स, **टी. बाग** व अन्य, *अल्मा-आईएमएफ* II. इवेस्टीगेटिंग द ऑरिजिन ऑफ़ स्टेलर मासेस: इट्रोडक्शन ऑफ़ द लार्ज प्रोग्राम एंड फर्स्ट रिजल्ट्स, ऐस्ट्रोनॉमी एंड एस्ट्रोफिजिक्स, 662, A8, 2022
- 11. यापिंग पेंग, टाई लियू, शेंग-ली किन, तापस बाग, होंग-ली लियू, के वांग, गुइडो गारे, चाओ झांग, लॉन्ग-फी चेन, चांग वोन ली, मिका जुवेला, डेलि ली, केनिची तातेमात्सु, जून-चुआन लियू, जियोंग-इउन ली, गान लुओ, लोकेश देवांगन, यू-फैंग वू, ली झांग, लियोनार्डो ब्रोंफमैन, जिक्सिंग जीई, मेंग्याओ तांग, योंग झांग, फेंग-वेई जू, याओ वांग, बिंग झोउ , एटटम्स: एएलएमए थ्री-मिलिमीटरऑब्जर्वेशन ऑफ़ मैसिव स्टार-फॉर्मिंग रिजन्स – X. केमिकल डिफ्रिएंटेशन एमॉन्ग द मैसिव कोर इन G9.62+0.19, मंथली नोटीसेस ऑफ़ द रोयल एस्ट्रोनॉमिकल सोसायटी, 512, 4419, 2022
- 12. होंग-ली लियू, आनंदमयी तेज, टाई लियू, पॉल एफ गोल्डिस्मथ, अमेलिया स्टुट्ज़, मिका जुवेला, शेंग-ली किन, फेंग-वेई जू, लियोनार्डो ब्रोंफमैन, नील जे इवांस, अनिंद्य साहा, निमता इसाक, केनिची तातेमात्स्, के वांग, शांघुओ

- ली, सिजू झांग, **तापस बाग**, लोकेश देवांगन, यू-फैंग वू, योंग झांग, चांग वोन ली, ज़ुन-चुआन लियू, जियानवेन झोउ, अर्चना सोम, एटटम्स: एएलएमए थ्री-मिलिमीटरऑब्जर्वेशन ऑफ़ मैसिव स्टार-फॉर्मिंग रिजन्स – IX. अ पायलट स्टडी ट्वार्ड्स आईआरडीसी G034.43+00.24 ऑन मल्टी-स्केल स्ट्रक्चर्स एंड गैस कायनेटिक्स, मंथली नोटीसेस ऑफ़ द रोयल एस्ट्रोनॉमिकल सोसायटी, 511, 4480, 2022
- 13. रोंग लियू, टाई लियू, गैंग चेन, होंग-ली लियू, के वांग, जिन-ज़ेंग ली, चांग वोन ली, जुंचुआन लियू, मिका जुवेला, गुइडो गारे, लोकेश देवांगन, अर्चना सोम, लियोनार्डी ब्रोंफमैन, जिंहुआ हे, चाकली ईश्वरैया, सी-जू झांग, योंग झांग, फेंग-वेई जू, एल विक्टर टोथ, झी-कियांग शेन, शांघुओ ली, यू-फैंग वू, शेंग-ली किन, झियुआन रेन, गुओइन झांग, आनंदमयी तेज, पॉल एफ गोल्डिसमथ, तापस बाग, किउयी लुओ, जियानवेन झोउ, चांग झांग, एटटम्स: एएलएमए थ्री-मिलिमीटरऑब्जर्वेशन ऑफ़ मैसिव स्टार-फॉर्मिंग रिजन्स – VII. अ कैटलॉग ऑफ़ SiO क्लम्स फ्रॉम एसीए ऑब्जर्वेशंस एसीए, मंथली नोटीसेस ऑफ़ द रोयल एस्ट्रोनॉमिकल सोसायटी, 511, 3618, 2022
- 14. शेंग-ली किन, टाई लियू, जुंचुआन लियू, पॉल एफ गोल्डस्मिथ, डि ली, किझोउ झांग, होंग-ली लियू, यूफेंग वू, लियोनार्डी ब्रॉन्फ़मैन, मिका जुवेला, चांग वोन ली, गुइडो गारे, योंग झांग, जिंहुआ हे, शिह- यिंग सू, ज़ी-कियांग शेन, जियोंग-यून ली, के वांग, निंग्यु तांग, मेंग्याओ तांग, चाओ झांग, यिंगहुआ यू, क़ियाओवेई ज़ू, शांगहुओ ली, यापिंग पेंग, सोमनाथ दत्ता, जिक्सिंग जीई, फेंगवेई जू, लॉन्ग-फ़ेई चेन , तापस बाग, लोकेश देवांगन, आनंदमयी तेज, एटीओएमएस: एएलएमए थ्री-मिलिमीटरऑब्जर्वेशन ऑफ़ मैसिव स्टार-फॉर्मिंग रिजन्स – VIII. अ सर्च फॉर हॉट कोर बाई युजिंग C,H,CN, СН ОСНО, एंड СН ОН लाइन्स, मंथली नोटीसेस ऑफ़ द रोयल एस्ट्रोनॉमिकल सोसायटी, 511, 3463, 2022

प्रतिष्ठित सम्मेलन/संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. स्टार फॉर्मेशन सम्मेलन; 4 मई, 2022; एआरआईईएस, नैनीताल; 20 मिनट
- 2. सी.के. मजूमदार मेमोरियल वर्कशॉप इन फिजिक्स 2022; जुलाई 19, 2022; एसएनबीएनसीबीएस; 1.5 घंटा
- 3. ALMA-IMF लार्ज कंसोर्टियम मीटिंग; 1 सितंबर, 2022; फ्रांस (ऑनलाइन); 20 मिनट
- 4. स्कूल ऑफ एस्ट्रोफिजिक्स, प्रेसीडेंसी यूनिवर्सिटी में संगोष्ठी; 21 सितंबर, 2022; प्रेसीडेंसी यूनिवर्सिटी, कोलकाता; 1 घंटा

प्रशासनिक कर्तव्य

- सीएससी-डब्ल्यूजी की समिति के सदस्य
- नई वेबसाइट डिज़ाइन समिति के सदस्य
- 3 साक्षात्कार पैनल के सदस्य (पीएचडी, आईपीएचडी, और उम्मीदवारी परीक्षण)
- एस.एन. बोस खगोलीय वेधशाला की सिमिति के सदस्य और सह-पीआई, और कई गतिविधियों में भाग लिया

लर्निड सोसायटी की सदस्यता

1. एस्ट्रोनॉमिकल सोसायटी ऑफ इंडिया के आजीवन सदस्य

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

1. पंचेत पहाड़ी, पुरुलिया के आसपास जनजातीय लोगों के सामाजिक-आर्थिक उत्थान के लिए खगोल-पर्यटन और सतत जैव विविधता प्रबंधन; डीएसटी-सीड; 3 वर्ष; सह-पीआई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

- 1. बोस उत्सव 2022; 27 अप्रैल, 2022; एसएनबीएनसीबीएस; 3 दिन
- 2. वैज्ञानिक आयोजन समिति के सदस्य, तीसरी बीना कार्यशाला, एरीज़, नैनीताल द्वारा आयोजित; 22 मार्च, 2023; वैज्ञानिक आयोजन समिति के सदस्य, तीसरी बीना कार्यशाला, एरीज़, नैनीताल द्वारा आयोजित; 3 दिन

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. एल.के. देवांगन (भौतिक अनुसंधान प्रयोगशाला, अहमदाबाद, भारत); क्रमांक 1, 3, 5, 7, 11, 12, 13, 14; राष्ट्रीय
- 2. आनंदमयी तेज (भारतीय अंतरिक्ष विज्ञान और प्रौद्योगिकी संस्थान, तिरुवनंतपुरम, भारत); क्रम संख्या 4, 7, 12, 13, 14; राष्ट्रीय
- 3. देवेन्द्र के. ओझा (टाटा इंस्टीट्यूट ऑफ फंडामेंटल रिसर्च, मुंबई, भारत); क्रम संख्या 3, 5, 6; राष्ट्रीय
- 4. महेश्वर गोपीनाथन (भारतीय खगोल भौतिकी संस्थान, बेंगलुरु, भारत); क्रम संख्या 6, 8; राष्ट्रीय
- 5. सौरभ शर्मा (आर्यभट्ट रिसर्च इंस्टीट्यूट ऑफ ऑब्जर्वेशनल साइंसेज, नैनीताल, भारत); क्रम संख्या 5; राष्ट्रीय

- 6. के वांग (केवली इंस्टीट्यूट फॉर एस्ट्रोनॉमी एंड एस्ट्रोफिजिक्स, बीजिंग, चीन); क्रम संख्या 2, 4, 7, 11, 12, 13,14; अंतर्राष्ट्रीय
- 7. टाई लियू (शंघाई खगोलीय वेधशाला, शंघाई, चीन); क्रम संख्या 4, 7, 11, 12, 13, 14; अंतर्राष्ट्रीय
- 8. मैन्अल फर्नांडीज लोपेज़ (इंस्टीट्यूटो अर्जेंटीनो डी रेडियोएस्ट्रोनोमिया, ब्यूनस आयर्स, अर्जेंटीना); क्रम संख्या 4, 6, 5, 9, 10; अंतर्राष्ट्रीय
- 9. फ्रैडरिक मोट्टे (विश्वविद्यालय ग्रेनोबल आल्प्स, सीएनआरएस, ग्रेनोबल, फ्रांस); क्रम संख्या ४, ६, ९, १०; अंतर्राष्ट्रीय
- 10. एडम गिन्सबर्ग (फ्लोरिडा विश्वविद्यालय, यूएसए); क्रम संख्या 4, 6, 9, 10; अंतरराष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

- 1. 17 सितंबर, 2022 को हिन्दया में स्वच्छ-सागर-सुरक्षित-सागर अभियान में भाग लिया।
- 2. धनमंजरी विश्वविद्यालय, इंफाल के एमएससी इलेक्ट्रॉनिक्स के दूसरे सेमेस्टर के छात्रों की शैक्षणिक यात्रा के दौरान स्काई-वॉचिंग कार्यक्रम का आयोजन, 10-11 अक्टूबर, 2022
- 3. राष्ट्रीय अंतरिक्ष विज्ञान संगोष्ठी प्रदर्शनी, साइंस सिटी, कोलकाता, 6-11 दिसंबर 2022 का आयोजन और भाग लिया
- 4. 12-21 जुलाई, 2022 को सीकेएम मेमोरियल वर्कशॉप, एसएनबीएनसीबीएस के दौरान "स्काई वॉचिंग कार्यक्रम" में भाग लिया

अनुसंधान क्षेत्र

गैलेक्टिक तारा निर्माण

विशाल ओबी तारे (द्रव्यमान> 8 सौर द्रव्यमान) आसपास के बादलों को बहुत प्रभावित कर सकते हैं। एक विशाल तारे से मजबूत पराबैंगनी विकिरण आसपास की गैस को आयनित करता है जो फिर एक शॉक-फ्रंट विकसित करता है जो मूल आणविक बादल में फैल जाता है। गैर-यूनी फॉर्म के कारण बादल संरचनाएं, यह अंततः चमकीले किनारे वाले बादलों, कॉमेट्री ग्लोब्यूल्स आदि के निर्माण की ओर ले जाती हैं (विलियम्स, 1999, एमएनआरएएस, 310, 789)। इन संरचनाओं में तारे के निर्माण को परिवेशीय चुंबकीय क्षेत्रों के अभिविन्यास और शक्ति द्वारा नियंत्रित किया जा सकता है (हेनेबेले और फ्रोमांग, 2008, ए एड ए, 477, 9)। मैग्नेटोहाइड्रोडायनामिक सिमुलेशन (हेनी व अन्य, 2009, एमएनआरएएस, 398, 15 7) ने दिखाया कमजोर और मध्यम शक्तियों के प्रारंभिक लंबवत चुंबकीय क्षेत्र को ग्लोब्यूल्स के गतिशील विकास के दौरान बादल संरचना के साथ खींचा और उन्मुख किया जा सकता है। चुंबकीय क्षेत्र की प्लेन-ऑफ-स्काई आकृति का अध्ययन पृष्ठभूमि स्टारलाइट के ध्रवीकरण अवलोकनों द्वारा किया जा सकता है। अनिसोट्रोपिक धूल के कण, टीएच ई इंटरसेलर चुंबकीय दायर रेखाओं के साथ संरेखित होते हैं. वर्तमान में प्रकाश को अवशोषित या संचारित करते हैं और परिणामस्वरूप एक नेटवर्क बनता है।

हमने बडे पैमाने पर ओबी सितारों द्वारा विकसित एलडीएन 1616 धूमकेत् बादल के ऑप्टिकल आर-बैंड (700 एनएम) ध्रवीकरण अवलोकनों का विश्लेषण किया। व्यक्तिगत विमान-आकाश स्थिति कोण कोई पसंदीदा संरेखण नहीं दिखाते हैं। हालांकि. 5x5 वर्ग के लिए उनके औसत मूल्य- एआर सी- मिनट ग्रिड बड़े पैमाने पर बादल संरचना का अनुसरण करता है (चित्र 1 देखें)। ऐसा संरेखण आयनकारी विकिरण की दिशा के लंबवत चुंबकीय क्षेत्र रेखाओं की प्रारंभिक दिशा के लिए एक संभावित परिदृश्य को इंगित करता है और बाद में खींच लिया गया हो सकता है। संरेखित चुंबकीय फ़ील्ड धूमकेतु बादल में तारों के निर्माण में और सहायता कर सकते हैं (देखें साहाव अन्य, 2022, एमएनआरएएस, 513, 2039)1

एसएनबीएनसीबीएस 1.5-मीटर ऑप्टिकल टेलीस्कोप से सुसज्जित भारत के पूर्वी क्षेत्र में पहली खगोलीय वेधशाला (एस.एन. बोस खगोलीय वेधशाला) के निर्माण की प्रक्रिया में है। मैं परियोजना के सह-पीआई के रूप में शामिल हुआ और हमने इस वेधशाला हेत् विज्ञान और प्रौद्योगिकी विभाग, भारत सरकार को एक बजटीय प्रस्ताव प्रस्तुत किया है। मैंने दुनिया भर के निर्माताओं के साथ टेलीस्कोप और बैकएंड उपकरणों के डिजाइन और मापदंडों पर चर्चा में भी भाग लिया। वर्तमान में, हम प्रस्तावित वेधशाला स्थल पंचेत हिलटॉप, पुरुलिया में आवश्यक वायुमंडलीय और एस्ट्रोमेट्रिक मापदंडों को चिह्नित करने की प्रक्रिया में हैं। हाल ही में, हमने परियोजना स्थल पर सफलतापूर्वक एक कॉम्पैक्ट मौसम स्टेशन (नवंबर 2022 में) स्थापित किया है और एक मोबाइल वेधशाला (मार्च 2023 में) स्थापित की है। पिछले 4-5 महीनों के दौरान पहाड़ी की चोटी पर हमने जो खगोलीय अवलोकन मूल्य प्राप्त किए हैं, वे उत्साहजनक हैं (माध्य 1.5 आर्कसेकंड और सर्वोत्तम 1.1 आर्कसेकंड) और साबित करते हैं कि साइट खगोलीय अवलोकनों को आगे बढ़ाने के लिए पर्याप्त है। अब हम देखने के मूल्यों के और अधिक मजबूत माप के लिए एक डिफरेंशियल इमेज मोशन मॉनिटर (डीआईएमएम) प्रणाली स्थापित करने की प्रक्रिया में हैं।

परियोजना सहित भविष्यत् कार्य की योजना

1. 1. हर्शेल अवलोकन ने गैलेक्टिक आणविक बादलों में सर्वव्यापी लम्बी फिलामेंटरी संरचनाओं का खुलासा किया। हालांकि माना जाता है कि फिलामेंट्स तारे के निर्माण में महत्वपूर्ण भूमिका निभाते हैं, गैस परिवहन में फिलामेंट्स की संपत्ति उनकी लंबाई-पैमाने के साथ भिन्न होती है (हैकर एट अला, 20 22)। गैस का प्रवाह उप-पारसेक पैमाने पर फिलामेंट्स अधिक स्व्यवस्थित और तीव्र हो जाते हैं। सटीक लंबाई-पैमाने और फिलामेंट्स के ऐसे व्यवहार की उत्पत्ति को विस्तार से सत्यापित किया जाना

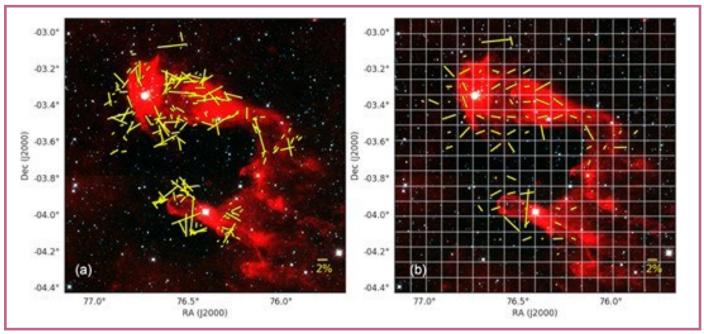


Figure 1: Left: Optical R-band polarization vectors (yellow lines) over-plotted on the color-composite image of LDN 1616 (Red: 12 🗆 m, Green: 4.6 🗆 m, and Blue: 3.5 🗆 m). Right: The mean polarization vectors are over-plotted on the same image as it is shown in the Left. The grids over which the mean values were taken are shown using white colored boxes (Saha et al., 2022).

चाहिए। इस प्रकार, मैं अटाकामा लार्ज मिलीमीटर/सबमिलीमीटर ऐरे (एएलएमए) से मिमी/उप-मिमी डेटा का उपयोग करके उप-पारसेक पैमाने पर फिलामेंट्स की भूमिका का अध्ययन करना चाहूंगा। आणविक बादलों में फिलामेंट्स की पहचान मामूली नहीं है। मैं एक विधि विकसित कर रहा हूं गैलेक्टिक आणविक बादल के FITS क्यूब डेटा से फिलामेंट्स की पहचान करना।

- केंद्र ने पंचेत हिलटॉप, पुरुलिया में एस.एन. बोस खगोलीय वेधशाला के निर्माण के लिए प्रारंभिक नींव श्रू कर दी है। हाल ही में, पहाड़ी की चोटी पर एक मौसम स्टेशन और एक मोबाइल वेधशाला स्थापित की गई है। हमने पहले से ही खगोलीय देखने के माप के लिए अवलोकन संबंधी डेटा एकत्र कर लिया है। एक वित्त पोषण प्रस्ताव विज्ञान और प्रौद्योगिकी विभाग को भी प्रस्तुत किया गया है। मैं इस दूरबीन परियोजना के विकास में योगदान देना जारी रखना चाह्ंगा।
- 3. तारे के निर्माण के शुरुआती चरण में बहिर्वाह सर्वव्यापी घटनाएं हैं, भले ही उनका द्रव्यमान कुछ भी हो। इन बहिर्प्रवाहों की जांच से हमें बहिर्प्रवाह मापदंडों और उनके लॉन्चिंग तंत्र के बारीक विवरण को समझने में मदद मिल सकती है। इसके अतिरिक्त, निकट-अवरक्त

बैंड में अवलोकन हमें प्राप्त करने में मदद कर सकते हैं बहिर्प्रवाह के गर्म हिस्से (>1000 K) जबिक मिमी बैंड में समान बहिर्प्रवाह का अवलोकन हमें कम तापमान शासन (20-100 K) पर जानकारी प्राप्त करने में मदद करता है। मैं एएलएमए (मिमी बैंड डेटा) और 3.6-एम देवस्थल ऑप्टिकल टेलीस्कोप (ऑप्टिकल/निकट-अवरक्त डेटा) से डेटा का उपयोग करके कई गैलेक्टिक स्टार-गठन क्षेत्रों का अध्ययन करना चाहता हूं।

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

- 1. जर्नल ऑफ एस्ट्रोफिजिक्स एंड एस्ट्रोनॉमी में लेखों के समीक्षक: इस शैक्षणिक वर्ष में चार लेखों की समीक्षा की।
- 2. 3.6-मीटर देवस्थल ऑप्टिकल टेलीस्कोप और विशाल मीटरवेव रेडियो टेलीस्कोप के अवलोकन प्रस्तावों के समीक्षक।
- एस्ट्रोनॉमिकल सोसाइटी ऑफ इंडिया के विजन डॉक्यूमेंट में योगदान दिया, जिसका उद्देश्य अगले दो दशकों के लिए भारतीय खगोल विज्ञान समुदाय के सामूहिक दृष्टिकोण को प्रस्तुत करना था।

View of Panchet Hill, Purulia, West Bengal

Mobile Observator

Night sky observation

Weather Station on Panchet Hill top

Scientists on visi

जटिल प्रणाली भौतिकी विभाग

पुण्यब्रत प्रधान

विभाग प्रोफाइल संकेतक

तालिका क: जनशक्ति और संसा धन

संकाय सदस्यों की संख्या	7
पोस्ट-डॉक्टोरल रिसर्च एसोसिएट की संख्या (केंद्र+परियोजना)	4
पीएचडी छात्रों की संख्या	29
अन्य परियोजना कर्मचारियों की संख्या	0
ग्रीष्मकालीन विद्यार्थियों की संख्या	6
परियोजनाएं (चालू)	5

तालिका बी: अनुसंधान गतिविधि संकेतक

ज़र्नल में प्रकाशित शोध पत्रों की संख्या	23
पुस्तक-अध्यायों/पुस्तकों की संख्या	0
अन्य प्रकाशनों की संख्या	0
स्नातक किए गए पीएचडी छात्रों की संख्या (प्रस्तुत + डिग्री प्रदान की गई)	4+4=8
एम.टेक/एम.एससी परियोजनाओं की संख्या	0

तालिका ग: शैक्षणिक गतिविधियाँ और इसके सदृश कार्य

संकाय सदस्यों द्वारा पढ़ाए जाने वाले पाठ्यक्रमों की संख्या	12	
आगंतुकों की संख्या (नॉन-एसोसिएट)	10	
एसोसिएट की संख्या	0	
आयोजित सेमिनारों की संख्या	10	
आयोजित सम्मेलन/संगोष्ठी/उन्नत स्कूल की संख्या	4	
सम्मेलनों/संगोष्ठियों में विभाग के सदस्यों द्वारा दिए गए भाषणों की संख्या	राष्ट्रीय	9
	अंतरराष्ट्रीय	14

सर्वाधिक महत्वपूर्ण शोधकार्य

- हमने दिखाया है कि गैर-फ़र्मी तरल पदार्थ (इलेक्ट्रॉन जैसे अर्ध-कणों के बिना धातु) नेमैटिक चरणों का उत्पादन कर सकते हैं जो स्वचालित रूप से घूर्णी समरूपता को तोड़ देते हैं। हमारा शोध प्रोसीडिंग्स ऑफ द नेशनल एकेडमी ऑफ साइंसेज (पीएनएएस) में प्रकाशित हुआ था।
- हमने प्रदर्शित किया है कि कैसे कागोम लैटिस का चिरल स्पिन-तरल चरण (कई-शरीर प्रभावों द्वारा संचालित टोपोलॉजिकल गुणों के साथ पदार्थ का एक रहस्यमय चरण) अनायास समरूपता को तोड़ने से गुजर सकता है जिससे गैर-कोप्लानर चुंबकीय आदेश हो सकते हैं। हमारे निष्कर्ष फिजिकल रिव्यू बी में एक पत्र के रूप में प्रकाशित किए गए थे।

- हमने कुछ त्रि-आयामी एंटीफेरोमैग्नेट्स में देखे गए स्पिन-पुनर्विन्यास संक्रमण की सैद्धांतिक समझ प्रदान करने के लिए प्रयोगात्मक भौतिकविदों के साथ भी सहयोग किया है। यह कार्य फिजिकल रिव्यू बी में एक लेख के रूप में प्रकाशित हुआ था।
- हम थर्मोडायनामिक मात्राओं का प्रस्ताव करते हैं जो बहुपक्षीय उलझी हुई स्थितियों में वास्तविकता के हस्ताक्षर पकड़ती हैं [पीआरएल 129, 070601 (2022)]। एन्ट्रापी के बजाय, इन मात्राओं को ऊर्जा के संदर्भ में परिभाषित किया जाता है - वैश्विक और स्थानीय निष्कर्षण कार्यों के बीच का अंतर जिसे क्वांटम बैटरी में संग्रहीत किया जा सकता है।
- हम दिखाते हैं कि सूचना कारणता का सिद्धांत बिना सिग्नलिंग सिद्धांत का सामान्यीकरण - समग्र क्वांटम सिस्टम के लिए स्टेट और प्रभाव शंकु की स्व-दोहरी संरचना के लिए एक सूचना सैद्धांतिक तर्कसंगतता प्रदान करता है [पीआरएल 130, 110202 (2023)]।
- एक आयामी हार्मोनिक श्रृंखलाओं में गतिविधि संचालित ऊर्जा परिवहन की खोज जो गैर-मोनोटोनिक विभेदक गतिविधि और वर्तमान उत्क्रमण जैसी अनुठी विशेषताओं को दर्शाती है। (साईपोस्ट फिजिक्स 2022, फिजिकल रिव्यू ई 2023)
- सक्रिय कणों की सार्वभौमिक दीर्घकालिक गतिशीलता का अध्ययन करने के लिए एक एकीकृत औपचारिकता विकसित करना। (ज़र्नल ऑफ़ फिजिक्स ए 2022, जर्नल ऑफ़ स्टेटिसक्टिकल मेकनिक्स 2023)
- गॉसियन क्षेत्र से जुड़े कोलाइडल कण की गतिशीलता का अध्ययन जो एक आकरिमक कॉन्फाइनमेंट-निर्भर मिमोरी की ओर ले जाता है। (साईपोस्ट फिजिक्स 2022)
- हम दिखाते हैं कि, थर्मोडायनामिक सीमा में, एक समय T तक संचयी बंधन धारा का विचरण पावर-लॉ एक्सपोनेंट के साथ घनत्व रिजाइम के आधार पर उप-विस्तारित रूप से बढता है और इसी तरह, कम आवृत्ति पर धारा और द्रव्यमान का पावर स्पेक्ट्रा असामान्य रूप से भिन्न होता है। क्रिटीकलिटी के निकट फलक्च्युएशन के एनामलस सप्रेशन "डायनामिक हायपरयुनिफॉर्मिटी"का प्रतिक है।

अनुसंधान गतिविधियों का सारांश

हम नॉइज़ क्वांटम चैनलों की सुसंगत जानकारी की सुपर-एडिटिविटी का पता लगाने के लिए आनुवंशिक एल्गोरिदम का उपयोग करते हैं [पीआरए 106, 012432 (2022)]। हम क्वबिट पाउली चैनलों के तीन-पैरामीटर स्थान में ऐसे क्षेत्र पाते हैं जहां सुसंगत जानकारी इस सुपर-एडिटिविटी सुविधा को प्रदर्शित करती है। एक अन्य कार्य में, हम थर्मोडायनामिक मात्राओं का प्रस्ताव करते हैं जो बह्पक्षीय जटिल अवस्थाओं में वास्तविकता के प्रभागांक को कैप्चर करती है [पीआरएल 129, 070601 (2022)]। एन्ट्रापी के बजाय, इन मात्राओं को ऊर्जा के संदर्भ में परिभाषित किया जाता है - वैश्विक और स्थानीय एक्सट्रैक्टेबल कार्यों के बीच का अंतर जिसे क्वांटम बैटरी में संग्रहीत किया जा सकता है। हम दिखाते हैं कि स्थानीय स्तर पर क्वांटम नो-सिग्नलिंग सिद्धांतों के क्वांटम प्रभागांक से परे परीक्षण के लिए एक सामान्यीकृत बेल प्रकार में प्रकट किया जा सकता है [पीआरए 106, एल040201 (2022), पत्र]। तदनुसार, यह क्वांटम सहसंबंधों को अलग करने के लिए स्थानीय क्वांटम संरचना और नो-सिग्नलिंग सिद्धांत के साथ अतिरिक्त सूचना सिद्धांतों की आवश्यकता का सुझाव देता है। इससे भी महत्वपूर्ण बात यह है कि हमारा काम यह स्थापित करता है कि ये अतिरिक्त सिद्धांत स्थानीय इनपुट के क्वांटम प्रभागांक के प्रति संवेदनशील होने चाहिए।

एक मूलभूत कार्य में, हम स्थानीय क्वांटम सिस्टम से युक्त विभिन्न मिश्रित मॉडलों की संचार उपयोगिताओं का विश्लेषण करते हैं और दिखाते हैं कि वे दो प्लेयर्स को शामिल करते हुए एक सरल संचार गेम में विशिष्ट उपयोगिताओं को व्युत्पन्न कर सकते हैं [पीआरए 106, 062406 (2022)]। हमारा विश्लेषण स्थापित करता है कि एक परे क्वांटम समग्र संरचना समय-समान परिदृश्य में क्वांटम सहसंबंधों से परे का नेतृत्व कर सकती है और इसलिए क्वांटम सहसंबंधों को क्वांटम से परे अलग करने के लिए नए सिद्धांतों का स्वागत करती है। अंत में, हम सूचना कारणता के सिद्धांत का भी अध्ययन करते हैं जिसे बिना सिग्नलिंग सिद्धांत के सामान्यीकरण के रूप में प्रस्तावित किया गया था [पीआरएल 130, 110202 (2023)]। जबिक इस सिद्धांत को क्वांटम सहसंबंधों से परे अभौतिक के रूप में लागू करने के लिए कुशलतापूर्वक लागू किया जाता है, हम दिखाते हैं कि जब ठीक से उपयोग किया जाता है तो यह बहुपक्षीय क्वांटम प्रणालियों की संरचनात्मक व्युत्पत्ति के लिए भौतिक तर्क भी प्रदान कर सकता है।

"मल्टीऑर्बिटल नॉन-फ़र्मी लिक्विड से नेमैटिक चरण और इलास्टोरेसिस्टिविटी।" पीएनएएस, 120 (2), ई2207903120, 2022। हम बडी-एन सीमा में सचदेव-ये-किताएव मॉडल के दो-कक्षीय लैट्टिस विस्तार का प्रस्ताव और अध्ययन करते हैं। इस मॉडल के चरण आरेख में एक उच्च तापमान वाले आइसोट्रोपिक गैर-फर्मी तरल को दिखाया गया है जो एक नेमैटिक इन्सुलेटर में पहले क्रम के थर्मल संक्रमण से गुजरता है या एक ट्यूनेबल ट्राइक्रिटिकल बिंद् द्वारा अलग किए गए नेमैटिक धात् चरण में निरंतर थर्मल ट्रांजिशन से गुजरता है। ये चरण मल्टीऑर्बिटल गैर-फ़र्मी तरल के सहज आंशिक कक्षीय ध्रुवीकरण से उत्पन्न होते हैं। हम इस मॉडल के वर्णक्रमीय और परिवहन गुणों का पता लगाते हैं, जिसमें डी.सी. भी शामिल है। इलास्टोरेसिस्टिविटी, जो नेमैटिक संक्रमण के निकट एक शिखर, साथ ही गैर-शून्य आवृत्ति इलास्टोकंडिकटविटी प्रदर्शित करती है। हमारा काम सहसंबद्ध मल्टीऑर्बिटल सिस्टम में नेमैटिक चरणों और परिवहन पर एक उपयोगी परिप्रेक्ष्य प्रदान करता है।

"चिरल टूटी हुई समरूपता कागोम लैड्डिस चिरल स्पिन तरल के संतित।" पीआरबी पत्र, 107(2), एल02041, 2023। चिरल और टाइम-रिवर्सल समरूपता का टूटना विदेशी क्वांटम घटना और टोपोलॉजिकल चरणों के लिए एक मार्ग प्रदान करता है। हाल के काम ने कागोम जाली पर चिरल चार्ज ऑर्डर और चिरल स्पिन तरल पदार्थ (सीएसएल) के परिणामी उद्भव का व्यापक रूप से पता लगाया है। ऐसे सीएसएल एनीओनिक क्वासिपार्टिकल्स के साथ बोसोनिक फ्रैक्शनल क्वांटम हॉल स्टेट्स से निकटता से जुड़े हुए हैं; हालाँकि, निकटवर्ती स्टेट्स से उनका संबंध एक रहस्य बना हुआ है। यहां, हम स्पिन-वेव सिद्धांत, पार्टन गुत्जविलर तरंग फंक्शंस और सटीक विकर्णीकरण का उपयोग यह दिखाने के लिए करते हैं कि समान स्केलर चिरलिटी के साथ दो अलग-अलग चुंबकीय आदेश - XYZ अम्ब्रेला स्टेट और ऑक्टाहेड्रल स्पिन क्रिस्टल - सीएसएल के पास प्रतिस्पर्धी आदेशों के रूप में उभरते हैं। इस पत्र में, हम गैर-तुच्छ वास्तविक-अंतिरक्ष टोपोलॉजी के साथ टोपोलॉजिकल रूप से आदेशित तरल और टूटी हुई समरूपता वाले राज्यों के बीच घनिष्ठ संबंध पर प्रकाश डालते हैं।

सक्रिय कण गतिशीलता: सक्रिय कण स्व-चालित एजेंट होते हैं जो पर्यावरण से ऊर्जा का उपभोग करते हैं और इसे निर्देशित गति में परिवर्तित करते हैं। मेरी मुख्य शोध रुचियों में से एक सरल, विश्लेषणात्मक रूप से ट्रैक करने योग्य मॉडल का उपयोग करके एकल सक्रिय कणों के गुणों का अध्ययन और निरूपन करना है। हाल के कार्यों के एक सेट में (संतरा, बस् और सभापंडित, जे. फिज. ए 2022; जे. स्टेट. मैक्. 2023) हमने सामान्य सक्रिय कणों के दीर्घकालिक व्यवहार में कुछ सार्वभौमिक विशेषताओं का पता लगाया है। हमने इस शासन में गैर-अंतःक्रियात्मक सक्रिय कणों की स्थिति वितरण की गणना करने के लिए एक व्यवस्थित सूत्रीकरण विकसित किया है। एक अन्य हालिया कार्य (दास और बसु, जे. स्टेट. मैक्. 2023) में हमने सक्रिय ब्राउनियन कण को उलटने वाली चिरैलिटी की गतिशीलता का अध्ययन किया है, जो कई सुक्ष्मजीवों और माइक्रोस्विमर्स में आम तौर पर सक्रिय गति को रिवर्स करने वाली चिरैलिटी का मॉडल तैयार करता है। हम दिखाते हैं कि, दो आयामों में ऐसी गति के लिए, घूर्णी प्रसार स्थिरांक और चिरैलिटी रिवर्सल दर द्वारा निर्धारित दो समय-पैमानों की उपस्थित अलग-अलग व्यवहार दिखाने वाले चार अलग-अलग गतिशील रिजाइम को जन्म देती है, जिन्हें हम विश्लेषणात्मक रूप से चित्रित करते हैं।

गतिविधि संचालित ट्रांसपोर्ट: सिक्रय जलाशयों द्वारा संचालित एक विस्तारित प्रणाली के परिवहन गुण सर्वोपिर महत्व का मुद्दा है, जो वस्तुतः अज्ञात है। हम इस मुद्दे को पहली बार, हार्मोनिक ऑसिलेटर्स की श्रृंखला से जुड़े दो सिक्रय जलाशयों के बीच ऊर्जा परिवहन के संदर्भ में चिह्नित करते हैं। सिक्रय जलाशयों के युग्मन, जो सीमा दोलक पर सहसंबद्ध स्टोकेस्टिक बल लगाते हैं, इस रैखिक प्रणाली के लिए भी ऊर्जा प्रवाह और गतिज तापमान प्रोफ़ाइल के आकर्षक व्यवहार को जन्म देते हैं। हम विश्लेषणात्मक रूप से दिखाते हैं कि स्थिर सिक्रय धारा (i) जलाशयों की गतिविधि में बदलाव के कारण गैर-नीरस रूप से बदलती है, जिससे एक नकारात्मक अंतर चालकता (एनडीसी) होती है, और (ii) ड्राइव गतिविधि के कुछ सीमित मान पर एक अप्रत्याशित दिशा रिवर्स प्रदर्शित करती है। इस एनडीसी की उत्पत्ति सिक्रय जलाशयों के

लोरेंदिजयन आवृत्ति स्पेक्ट्रम में खोजी गई है। हम द्विभाजित सिक्रय बल के उदाहरण के लिए नोइक्विलिब्रियम रैखिक प्रतिक्रिया औपचारिकता का उपयोग करके एनडीसी को एक और भौतिक अंतर्दृष्टि प्रदान करते हैं। हम दो सिरों पर सिक्रय बलों द्वारा संचालित हार्मोनिक ऑसिलेटर्स की श्रृंखला की स्थिर अवस्थाओं की सार्वभौमिक विशेषताओं का भी पता लगाते हैं। हम सिक्रय बल के लिए तीन सबसे प्रसिद्ध गतिशीलता पर विचार करते हैं, अर्थात्, सिक्रय ऑर्नस्टीन-उहलेनबेक प्रक्रिया, रन-एंड-टम्बल प्रक्रिया और सिक्रय ब्राउनियन प्रक्रिया, जिनमें से सभी में दो-बिंदु अस्थायी सहसंबंध तेजी से घट रहे हैं लेकिन बहुत अलग उच्च क्रम के उतार-चढ़ाव हैं। हम दिखाते हैं कि ड्राइव की विशिष्ट गतिशीलता के बावजूद, स्थिर वेग में उतार-चढ़ाव एक गतिज तापमान के साथ गौसियन प्रकृति का होता है जो थोक में एक समान रहता है। इसके अलावा, हम सिस्टम के बड़े हिस्से में 'ऊर्जा के समविभाजन' का उद्भव पाते हैं - थोक गतिज तापमान थर्मोडायनामिक सीमा में थोक संभावित तापमान के बराबर होता है।

"स्पिन हॉल मैग्नेटोरेसिस्टेंस का उपयोग करके त्रि-आयामी एंटीफेरोमैग्नेट Ho0.5Dy0.5FeO3|Pt में चुंबकीय अनिसोट्रॉपी और स्पिन-पूनर्अभिविन्यास संक्रमण की जांच करना।" पीआरबी, 106 (10), 104426, 2022। दूर्लभ-पृथ्वी (आर) तत्वों से युक्त ऑर्थोफेराइट्स (आरएफईओ3) 3डी एंटीफेरोमैग्नेट हैं जो स्पिन क्षणों की थोड़ी सी कमी के कारण उत्पन्न होने वाले विशिष्ट कमजोर फेरोमैग्नेटिज्म को प्रदर्शित करते हैं और चुंबकीय क्षेत्र (एच) -तापमान (टी) पैरामीटर स्पेस में स्पिन-पुनर्विन्यास संक्रमणों की एक समृद्ध विविधता प्रदर्शित करते हैं। हम विभिन्न टी पर क्रिस्टलीय Ho0.5Dy0.5FeO3|Pt हाइब्रिड की एबी प्लेट (एसी प्लेन) पर स्पिन हॉल मैग्नेटोरेसिस्टेंस (एसएमआर) अध्ययन प्रस्तुत करते हैं। कमरे के तापमान Γ 4 चरण में, दो पतित डोमेन के बीच स्विचिंग एक महत्वपूर्ण मान, Hc≈713 Oe से ऊपर के क्षेत्रों में होता है। H>Hc के अंतर्गत, एसएमआर (a स्कैन) की कोणीय निर्भरता ने साइन-रिवर्सल और ए-अक्ष के चारों ओर घुर्णी हिस्टैरिसीस के साथ एक अत्यधिक तिरछा वक्र उत्पन्न किया। H<Hc के लिए, एकल पतित डोमेन पर α -स्कैन माप ने आवधिकता 360 \circ का एक विषम साइनसॉइडल संकेत प्रदर्शित किया। एसएमआर वक्रों का निम्न-टी विकास संभवतः Fe-R विनिमय युग्मन के टी विकास के कारण अनिसोट्रॉपी के कमजोर होने का सुझाव देता है। 25K से नीचे, SMR मॉड्यूलेशन ने सी-अक्ष के चारों ओर अचानक परिवर्तन दिखाया, जो Γ 2 चरण की उपस्थित को दर्शाता है। हमने देखे गए तिरछे एसएमआर मॉड्यलेशन की जांच करने के लिए एक सरल हैमिल्टनियन और गणना की गई एसएमआर को नियोजित किया है। संक्षेप में, एसएमआर को चुंबकीय अनिसोट्रॉपी के साथ-साथ स्पिन पुनर्संरचना की जांच के लिए एक प्रभावी उपकरण पाया गया है। हमारा रिपन-ट्रांसपोर्ट अध्ययन भविष्य के एएफएम स्पिनट्रोनिक उपकरणों के लिए Ho0.5Dy0.5FeO3 की क्षमता पर प्रकाश डालता है।

ZnO में ग्लूकोज का सतही विशिष्ट अधिशोषण: ZnO जैव-सुरक्षित

है और इसलिए, ग्लूकोज सेंसर के रूप में सीधे उपयोग के लिए एक संभावित कैंडिडेट हो सकता है। इसके लिए चार सामान्य सतहों, (0001) और ZnO के साथ ग्लूकोज की अंतः क्रिया को समझने की आवश्यकता है। हम एक हाइड्रेटेड ZnO स्लैब पर एक विलायक में ग्लूकोज अणु के छत्र नमूने द्वारा बढ़ाया आणविक गतिशीलता (एमडी) सिम्लेशन करते हैं। स्लैब क्वांटम मैकेनिकल अनुकूलन द्वारा प्राप्त किया जाता है। हम देखते हैं कि सतहों के ऊपर बनी जलयोजन परतें ग्लूकोज के सतहों तक पहुंचने को प्रभावित करती हैं। माध्य बल की क्षमता (पीएमएफ) गणना से पता चलता है कि सतह ग्लूकोज के प्रति सोखना मुक्त ऊर्जा -6.81 केजे/मोल का सबसे मजबूत सोखना दिखाती है। इस प्रकार, हम ग्लूकोज और ZnO सतहों के नैनो-जैव जंक्शन पर बातचीत पर एक सैद्धांतिक समझ प्रदान करते हैं। हमारे अध्ययन से पता चलता है कि () सतह का उपयोग प्रत्यक्ष ग्लूकोज सेंसर बनाने के लिए किया जा सकता है। (भौतिकी. रसायन. रसायन. भौतिक., 25, 7805 (2023)।

फेस मास्क के माध्यम से संचालित श्वसन बुंदों की गति पर मॉडल अध्ययन: वायु-जनित बीमारियों को फैलने से रोकने के लिए श्वसन बूंदों को रोकने के लिए फेस मास्क का उपयोग किया जाता है। बेहतर दक्षता वाले फेस मास्क को डिजाइन करने के लिए सुक्ष्म समझ की आवश्यकता होती है कि श्वसन बूंदें मास्क के माध्यम से कैसे चलती हैं। यहां हम फेस मास्क द्वारा बूंदों को रोकने पर एक सरल मॉडल का अध्ययन करते हैं। मास्क को एक असममित कॉन्फाइनमेंट में एक बहुलक नेटवर्क के रूप में माना जाता है, जबकि बूंद को एक माइक्रोमीटर आकार के ट्रेसर कोलाइडल कण के रूप में लिया जाता है, जो श्वास की नकल करने वाले प्रेरक बल के अधीन होता है। हम पॉलिमरिक नेटवर्क के माध्यम से ट्रेसर कण के प्रवेश, लैंग्विन गतिशीलता का उपयोग करके संख्यात्मक रूप से अध्ययन करते हैं। हम दिखाते हैं कि तापमान पर अरहेनियस निर्भरता के बाद पारगमन एक सक्रिय प्रक्रिया है। सक्रियण प्रक्रिया के लिए जिम्मेदार संभावित ऊर्जा प्रोफ़ाइल ट्रेसर आकार, ट्रेसर बीड इंटरैक्शन, नेटवर्क कठोरता के साथ बढ़ती है और ड्राइविंग बल और कॉन्पाइनमेंट की लंबाई के साथ घटती है। एक गहरे ऊर्जा अवरोध के कारण रुम टेंपरेचर पर ड्राइविंग बल की उपस्थिति में किसी दिए गए आकार के ट्रेसर कणों को रोकने की बेहतर दक्षता प्राप्त हुई। हमारा अध्ययन बेहतर दक्षता के साथ मास्क डिजाइन करने में मदद कर सकता है। (ईपीएल 141 27001, 2023)

हायल्यूरोनन-कोटेड एक्स्ट्रासेल्युलर वेसिकल्स मैकेनोइलास्टिक झलक: कैंसर कोशिकाएं एक कार्बोहाइड्रेट पॉलिमर, हयालूरोनन (एचए) से ढके बाह्यकोशिकीय पृटिकाओं (ईवी) का स्राव करती हैं, जो ट्यूमर घातकता से जुड़ा होता है। इसमें, हमने एकल-अणु बल स्पेक्ट्रोस्कोपी (एसएमएफएस) का उपयोग करके एकल कैंसर कोशिका-व्युत्पन्न ईवी सतह पर एचए की समोच्च लंबाई को उजागर किया है, जो कम आणविक भार एचए (एलएमडब्ल्यू-एचए < 200 केडीए) की उपस्थिति को प्रकट करता है। हमने यह भी पाया कि ये LMW-HA-EVs सामान्य सेल-व्युत्पन्न EVs की तुलना में काफी

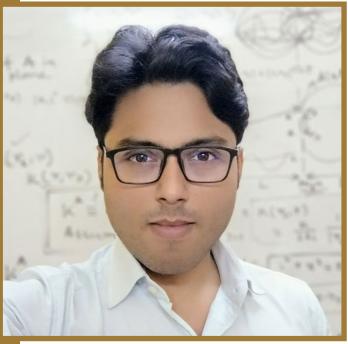
अधिक लचीले हैं। कैंसर ईवी की यह आंतरिक लोच सीधे तौर पर एलएमडब्ल्यू-एचए प्रचुरता और ईवी सतह पर संबंधित प्रयोगशाला जल नेटवर्क से जुड़ी हो सकती है, जैसा कि सहसंबंधी एसएमएफएस, प्रतिदीप्ति स्पेक्ट्रोस्कोपी के साथ हाइड्रेशन गतिशीलता और आणविक गतिशीलता सिम्लेशन द्वारा पता चला है। यह विधि कैंसर सूक्ष्म वातावरण के आणविक बायोसेंसर के रूप में उभरती है। (जे. भौतिक रसायन. लेट. 13, 8564, 2022)

एक चरणीय उत्तेजना के अनुप्रयोग के बाद ई.कोली कोशिका की रिसेप्टर गतिविधि चरम मूल्य तक पहुंचने के लिए तेजी से बदलती है और कोशिका इस समय अनुकूलन से बहुत दूर है। आश्चर्यजनक रूप से, हमारे सिम्लेशन से पता चलता है कि चरम गतिविधि बोल्ट्ज़मान वितरण के माध्यम से मुक्त ऊर्जा से संबंधित है, जो केवल अनुकूलित स्टेट्स के लिए अपेक्षित है। इस आश्चर्यजनक प्रभाव को समझाने के लिए हम सटीक गणना करते हैं। हम प्रयोगात्मक रूप से सत्यापन योग्य भविष्यवाणी भी करते हैं कि चरण उत्तेजना का एक इष्टतम आकार है जिस पर चरम प्रतिक्रिया कम से कम संभव समय में पहुंच जाती है।

केमोटैक्सिस एक रासायनिक संकेत के जवाब में निर्देशित गति को संदर्भित करता है। एक ई.कोली कोशिका रासायनिक वातावरण को समझने के लिए अपने ट्रांसमेम्ब्रेन रिसेप्टर्स का उपयोग करती है और नेविगेट करने के लिए इसकी रन-एंड-टम्बल गतिशीलता को नियंत्रित करती है। हम इंट्रासेल्युलर सिग्नलिंग नेटवर्क और सेल के रन-एंड-टम्बल गति का वर्णन करने के लिए एक सैद्धांतिक मॉडल का उपयोग करते हैं। व्यापक संख्यात्मक सिमुलेशन का उपयोग करके हम एक कदम उत्तेजना के अनुप्रयोग के बाद रिसेप्टर गतिविधि और टम्बलिंग पूर्वाग्रह की अस्थायी भिन्नता को मापते हैं। हम आकर्षित करने वाले को चरणबद्ध तरीके से जोड़ने (हटाने) के मामले पर विचार करते हैं, यानी जब पर्यावरण में आकर्षण का स्तर अचानक बढ़ (घट) जाता है और फिर उस ऊंचे (कम) स्तर पर बना रहता है। उत्तेजना-पूर्व स्थिति में और उत्तेजना लागू होने के लंबे समय बाद, कोशिका से अपने पर्यावरण के साथ अनुकृलित स्थिति में होने की उम्मीद की जाती है और गतिविधि और टम्बलिंग पूर्वाग्रह दोनों स्थिर मान ग्रहण करते हैं। हालाँकि, ये मात्राएँ प्रोत्साहन दिए जाने के तुरंत बाद समय के साथ तेजी से बदलाव दिखाती हैं और थोड़े समय में चरम मूल्यों तक पहुँच जाती हैं। हम इन मात्राओं के लिए चरम स्थितियों को प्राप्त करने के लिए सटीक गणना करते हैं और सिमुलेशन के साथ अच्छा समझौता पाते हैं। दिलचस्प बात यह है कि ये चरम स्थितियाँ अनुकूलित अवस्था के साथ कुछ समानता दिखाती हैं, हालाँकि यहाँ प्रणाली अनुकूलन से बहुत दूर है।

इसके अलावा, चरम प्रतिक्रिया तक पहुंचने का समय भी गतिविधि और झुकाव पूर्वाग्रह दोनों के लिए दिलचस्प व्यवहार दिखाता है। कीमोरिसेप्टर्स आपस में सहयोगात्मक अंतःक्रिया करते हैं जो रिसेप्टर क्लस्टरिंग को जन्म देता है। यह सहयोगात्मकता इनपुट सिग्नल को बढ़ाती है और सिग्नलिंग नेटवर्क द्वारा दिखाई गई उच्च संवेदनशीलता के पीछे का कारण है। हमारे सिमुलेशन से पता चलता है कि रिसेप्टर क्लस्टर का एक इष्टतम आकार होता है जिस पर कोशिका कम से कम समय में अपनी चरम प्रतिक्रिया तक पहुंच जाती है। हम इस दिलचस्प प्रभाव के पीछे का कारण बताते हैं और हम आगे तर्क देते हैं कि वही तंत्र उत्तेजना का एक इष्टतम चरण आकार भी उत्पन्न करता है, जिस पर रिसेप्टर क्लस्टर आकार को स्थिर रखने पर चरम प्रतिक्रिया सबसे तेजी से पहुंचती है। हमारे संख्यात्मक सिमुलेशन इस भविष्यवाणी की पुष्टि करते हैं। हम अपने सिद्धांत का परीक्षण करने के लिए सरल प्रयोग भी प्रस्तावित करते हैं।

हम एक-आयामी संरक्षित मन्ना सैंडपाइल में धारा और द्रव्यमान के साथ-साथ संबंधित पावर स्पेक्ट्रा के लिए गतिशील सहसंबंधों का अध्ययन करते हैं। हम दिखाते हैं कि, धर्मोडायनामिक सीमा में, एक समय टी तक संचयी बंधन धारा का विचरण पावर-लॉ एक्सपोनेंट के साथ घनत्व शासन के आधार पर उप-विस्तारित रूप से बढ़ता है और इसी तरह, कम आवृत्ति पर वर्तमान और द्रव्यमान का पावर स्पेक्ट्रा असामान्य रूप से भिन्न होता है। आलोचनात्मकता के निकट उतारचढ़ाव का असामान्य दमन एक "गतिशील अतिसमानता" का प्रतीक है,


जो उतार-चढ़ाव संबंधों के एक सेट द्वारा निरुपित है, जिसमें वर्तमान, द्रव्यमान और टैग-कण विस्थापन उतार-चढ़ाव को घनत्व-निर्भर गतिविधि (या इसका व्युत्पन्न) के साथ एक सटीक मात्रात्मक संबंध दिखाया गया है। विशेष रूप से, स्व-प्रसार गुणांक, गतिविधि और घनत्व के बीच का संबंध पिछले सिमुलेशन अवलोकन [यूरो. भौतिक. जे. बी 72, 441 (2009)] जो, क्रिटिकलिटी के निकट, मन्ना सैंडपाइल में स्व-प्रसार गुणांक का गतिविधि के समान स्केलिंग व्यवहार होता है।

पृण्यब्रत प्रधान

विभागाध्यक्ष,

जटिल प्रणाली भौतिकी विभाग

Tungahet. Dradhan

अरिजीत हालदार

सहायक प्रोफेसर जटिल प्रणाली भौतिकी arijit.haldar@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. अनीश चौधरी; छात्र ने आईपीएचडी पाठ्यक्रम PHY 401 के एक भाग के रूप में "विभिन्न क्वांटम और शास्त्रीय प्रणालियों में फ्रैक्टन का अध्ययन" शीर्षक से अपना इनकोर्स प्रोजेक्ट पुरा किया।

शिक्षण/ अध्यापन

- 1. ऑट्म सत्र; उन्नत क्वांटम यांत्रिकी एवं अनुप्रयोग (पीएचवाई 303); एकीकृत पीएचडी; 9 छात्र; प्रोफेसर मनोरंजन कुमार (सह-शिक्षक) के साथ
- 2. ऑट्म सत्र; आईपीएचडी पाठ्यक्रम PHY 303 के साथ आंशिक रूप से संचालित; पीएचडी; 1 छात्र; प्रोफेसर मनोरंजन कुमार (सह-शिक्षक) के साथ
- 3. वसंत सत्र; क्वांटम यांत्रिकी 2 (PHY 406); एकीकृत पीएचडी; 11 छात्र
- 4. वसंत सेमेस्टर; परियोजना अनुसंधान III (पीएचवाई 401); एकीकृत पीएचडी; 1 छात्र

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. डीपीएस दिवस समारोह के अवसर पर आईआईएसईआर-कोलकाता में एक आमंत्रित व्याख्यान दिया; मार्च 18, 2023; आईआईएसईआर कोलकाता: 1 दिन
- 2. एसएनबीएनसीबीएस और आईआईटी-बॉम्बे के बीच एक समझौता ज्ञापन के हिस्से के रूप में आईआईटी बॉम्बे में एक परिचयात्मक वार्ता प्रस्तृत की गई; मार्च 8, 2023; आईआईटी बॉम्बे; 3 दिन
- "एपीसीटीपी आईएसीएस एसएनबीएनसीबीएस इंटरनेशनल वर्कशॉप ऑन कम्प्यूटेशनल मेथड्स फॉर इमर्जेंट क्वांटम मैटर: फ्रॉम थियोरेटिकल कॉन्सेप्ट्स टू एक्सपेरिमेंटल रियलाइजेशन" में एक आमंत्रित भाषण दिया; 17 नवंबर, 2022; एसएनबीएनसीबीएस; नौ दिन

प्रशासनिक कर्तव्य

- 1. केंद्र के लिए खेल समन्वयक। 1. क्रिकेट 2. फुटबॉल 3. बैडमिंटन (मिश्रित एवं एकल) 4. अंतर संस्थान शतरंज 5. टेबल टेनिस 6. कैरम सहित कई खेल प्रतियोगिताओं का सफल आयोजन जारी
- 2. बोस-फेस्ट 2023 में दी गई मौखिक प्रस्तुतियों के लिए जज। बोस-फेस्ट एक बहु-दिवसीय कार्यक्रम है जो केंद्र के सभी छात्रों और संकाय के शोध कार्यों को प्रदर्शित करता है।
- "वीएएसपी के तहत एससी/एसटी समुदायों के छात्रों के लिए आउटरीच कार्यक्रम" आयोजित करने के लिए आयोजक।

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

- 1. "एपीसीटीपी आईएसीएस एसएनबीएनसीबीएस इंटरनेशनल वर्कशॉप ऑन कम्प्यूटेशनल मेथड्स फॉर इमर्जेंट क्वांटम मैटर: फ्रॉम थियोरेटिकल कॉन्सेप्ट्स टू एक्सपेरिमेंटल रियलाइजेशन 2022" के लिए स्थानीय आयोजक: 17 नवंबर, 2022; एसएनबीएनसीबीएस; नौ दिन
- 2. विद्यासागर विश्वविद्यालय, मिदनापुर में आयोजित "भौतिकी में प्रगति पर 12वीं विद्यासागर सत्येन्द्र नाथ बोस राष्ट्रीय कार्यशाला: सिद्धांत और अनुप्रयोग-2023" के आयोजन समिति के सदस्य; फरवरी 28, 2023; विद्यासागर विश्वविद्यालय, मिदनापुर, पश्चिम बंगाल: 3 दिन

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

1. "वीएएसपी के तहत एससी/एसटी समुदायों के छात्रों के लिए आउटरीच कार्यक्रम" आयोजित करने के लिए आयोजक"

अनुसंधान क्षेत्र

सैद्धांतिक संघनित पदार्थ भौतिकी. उप-क्षेत्र: क्वांटम मेनी-बॉडी सिद्धांत, अव्यवस्थित प्रणालियों की भौतिकी, क्वांटम उलझाव, परिवहन, और टोपोलॉजिकल चरण

मैं क्वांटम मल्टी-बॉडी थ्योरी, चरण संक्रमण, क्वांटम गैर-संतूलन घटना और टोपोलॉजिकल चरण जैसे विषयों में प्रशिक्षण प्राप्त करके एक सैद्धांतिक संघनित पदार्थ भौतिक विज्ञानी हूं। मेरी रुचि के वर्तमान अनुसंधान क्षेत्र में क्वांटम उलझाव, टोपोलॉजी और संघनित पदार्थ प्रणालियों में मजबूत सहसंबंधों की परस्पर क्रिया की खोज करना शामिल है। मैं 5 सितंबर 2022 को एसएनबीएनसीबीएस टीम में शामिल हुआ। हाल ही में, हमने संघनित-पदार्थ भौतिकी के विभिन्न पहलुओं को कवर करते हुए मूल विचार प्रकाशित किए हैं। विशेष रूप से, हमने दिखाया है कि गैर-फ़र्मी तरल पदार्थ, जो इलेक्ट्रॉन जैसे अर्ध-कणों के बिना धातु हैं, नेमैटिक चरणों का उत्पादन कर सकते हैं जो स्वचालित रूप से घूर्णी समरूपता को तोड़ देते हैं। हमारा शोध प्रोसीडिंग्स ऑफ द नेशनल एकेडमी ऑफ साइंसेज (पीएनएएस) में प्रकाशित हुआ था। एक अन्य कार्य में, हमने प्रदर्शित किया है कि कैसे कागोम जाली का चिरल स्पिन-तरल चरण (कई-शरीर प्रभावों द्वारा संचालित टोपोलॉजिकल गुणों के साथ पदार्थ का एक रहस्यमय चरण) अनायास समरूपता को तोड़ने से गुजर सकता है जिससे गैर-कॉपलनार चुंबकीय आदेश हो सकते हैं। हमारे निष्कर्षों को फिजिकल रिव्यू बी में एक पत्र के रूप में प्रकाशित किया गया था। हमने कुछ त्रि-आयामी एंटी-फेरोमैग्नेट में देखे गए स्पिन-पुनर्विन्यास संक्रमण की सैद्धांतिक समझ प्रदान करने के लिए प्रयोगात्मक भौतिकविदों के साथ भी सहयोग किया है। यह कार्य फिजिकल रिव्यू बी में एक लेख के रूप में प्रकाशित हुआ था।

परियोजना सहित भविष्यत् कार्य की योजना

1. (ए) मौलिक स्तर पर क्वांटम-उलझन और मजबूत सहसंबंधों को समझना और क्वांटम उपकरणों के रूप में संभावित अनुप्रयोगों की खोज करना। (बी) मजबूत इलेक्ट्रॉन-इलेक्ट्रॉन इंटरैक्शन के

- साथ संघनित पदार्थ प्रणालियों में उलझाव जैसे क्वांटम गुणों को चिह्नित करने के लिए विश्लेषणात्मक और कम्प्यूटेशनल तरीकों का विकास करना। .
- 2. क्वांटम प्रणालियों में टोपोलॉजी की भूमिका और विभिन्न संघनित पदार्थ प्रणालियों में मजबूत अंतः क्रियाओं के साथ इसकी परस्पर क्रिया की खोज करना।
- 3. क्वांटम स्पिन सिस्टम और संबंधित प्लेटफार्मों में मैग्नन और अन्य उपन्यास-क्वासिपार्टिकल्स की भूमिका को समझना।

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

- 1. "मल्टीऑर्बिटल नॉन-फ़र्मी लिक्विड से नेमैटिक चरण और इलास्टोरेसिस्टिविटी" पर हमारा शोधा टोरंटो विश्वविद्यालय के हालिया समाचार पृष्ठ पर प्रकाश डाला गया था, "https:// www.artsci.utoronto.ca/news/condensed-और विभिन्न matter-physicists-strange-metals" समाचार पोर्टलों द्वारा कवर किया गया, जिनमें शामिल हैं "https://www.miragenews.com/new-insight-intoenigmatic-strange-metals-984584/", "https://www. photonicsonline.com/doc/researchers-developnew-insight-into-the-enigmatic-realm-of-strangemetals-0001"
- 2. एसईआरबी-डीएसटी के तहत स्टार्टअप रिसर्च ग्रांट (एसआरजी) के लिए आवेदन किया
- 3. वर्ष 2024 में आयोजित होने वाले आगामी "बोस सांख्यिकी शताब्दी समारोह" के लिए आयोजन समिति के सदस्य
- 4. 5 सितंबर 2022 को एसएनबीएनसीबीएस में शामिल हुए। (05.09.2022)

जयदेव चक्रवर्ती

वरिष्ठ प्रोफेसर जटिल प्रणाली भौतिकी jaydeb@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. षष्ठी चरण मंडल; जैव-आण्विक प्रणाली; उपाधि प्रदान की गई
- 2. एडविन टेंडोंग; नरम पदार्थ प्रणाली; थीसिस प्रस्तृत की गई; प्रो. तनुश्री साहा दासगुप्ता (सह-पर्यवेक्षक)
- 3. अभिक घोष मौलिक; जैव-आणविक प्रणाली; थीसिस प्रस्तुत की गई
- 4. राहुल कर्माकर; नरम पदार्थ प्रणाली; थीसिस प्रस्तुत की
- 5. अनिर्बान पाल; जैव-आणविक प्रणाली; शोधकार्य जारी
- स्रवी पाल; नरम पदार्थ प्रणाली; शोधकार्य जारी
- कनिका कोले; जैव-आणविक प्रणाली; शोधकार्य जारी
- अविक सासमल: नरम पदार्थ प्रणाली: शोधकार्य जारी

- 9. अनुश्री सेन; जैव-आणविक प्रणाली; शोधकार्य जारी; प्रो. राजीव क्मार मित्रा (सह-पर्यवेक्षक)
- 10. सबुज मंडल; नरम पदार्थ प्रणाली; शोधकार्य जारी

ख) पोस्ट-डॉक्स

- 1. अयाति गुप्ता मलिक; जैव आणविक प्रणाली
- 2. सौमी दास; जैव आणविक प्रणाली

शिक्षण/ अध्यापन

1. वसंत सत्र; भौतिकी 416 और 630; एकीकृत पीएचडी; 12 छात्र

प्रकाशन

क) ज़र्नल में

- 1. अभिक घोष मौलिक और **जे. चक्रवर्ती**, कोरिलेटेड डाइपोलर एंड डाईहेड्रल फलक्च्युएशन इन अ प्रोटीन, केमिकल फिजिकल लेटर्स, 797, 139574, 2022
- 2. जय प्रकाश सिंह, स्दीप्त पटनायक, श्रद्धा मिश्रा, जयदेव चक्रवर्ती, इफेक्टिव सिंगल कंपोनेंट डिस्क्रिप्शन ऑफ़ स्टीडी स्टेट स्ट्रक्चर्स ऑफ़ पैसिव पार्टिकल्स इन ऐन एक्टिव बाथ, द जर्नल ऑफ केमिकल फिजिक्स, 156, 214112, 2022
- 3. पिया पात्रा, राजा बनर्जी, जयदेव चक्रवर्ती, इफेक्ट ऑफ़ बाइपॉस्फेट सॉल्ट ऑन डिपाल्मिटॉयलफॉस्फेटिडिलकोलाइन बाइलेयर डिफॉर्मेशन बाई टाट पॉलीपेप्टाइड, बॉयोपॉलिमर्स, 113, e23518, 2022
- 4. अभिक घोष मौलिक और जे. चक्रवर्ती, कॉन्फॉर्मेशनल फलक्च्युएशन इन द मॉल्टेन ग्लोबल स्टेट ऑफ़ **a**-लैक्टलब्यूमिन, फिजिकल केमेस्ट्री केमिकल फिजिक्स, 24, 21348, 2022
- 5. देबाशीष पॉल, अनिर्बान पॉल, दीपांजन मुखर्जी, सरोज सरोज, मनोरमा घोषाल, सुचेतन पाल, दुलाल सेनापति, जयदेव चक्रवर्ती, समीर कुमार पाल, और तातिनी रक्षित, ए मैकेनोइलास्टिक ग्लिम्पसे ऑन हयालूरोनन-कोटेड एक्स्ट्रासेल्युलर वेसिकल्स, द जर्नल ऑफ फिजिकल केमिस्ट्री लेटर्स, 13, 8564, 2022
- 6. राहुल कर्माकर, ऐशानी घोषाल और जे. चक्रवर्ती, मॉडल स्टडीज ऑन मोशन ऑफ़ रेसपायरेटरी ड्रॉप्लेट्स ड्राइवेन थ्रू अ फेस मास्क, यूरोफिजिक्स लेटर्स, 141, 27001, 2023

- 7. षष्ठी चरण मंडल और जयदेव चक्रवर्ती, सर्फेस स्पेसिफिक एडसॉर्प्शन ऑफ़ ग्लुकोज़ टू ZnO, फिजिकल केमिस्ट्री केमिकल फिजिक्स, 25, 7805, 2023
- 8. मानस मंडल, सरबानी चक्रवर्ती, यी किन गाओ, धनंजय भट्टाचार्य, जयदेव चक्रवर्ती, माइक्रोस्कोपिक मॉडल ऑन इनडोर प्रोपगेशन ऑफ़ रेसपायर्टरी ड्रॉप्लेट्स, कम्प्यूटेशनल बॉयोलॉजी एंड केमेर-ट्री, 102, 107806, 2023

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. थर्मल संचालित थर्मो-रेस्पॉन्सिव कोलाइड्स में ऑर्डरिंग; 2 नवंबर, 2022; प्रेसीडेंसी विश्वविद्यालय
- असममित रूप से सीमित तरल पदार्थ की विस्कोइलास्टिक प्रतिक्रिया; फ़रवरी 1, 2023; आईएसपीसीएम, आईसीटीएस, बैंगलोर
- अभिक घोष मौलिक (छात्र) द्वारा बातचीत: संरचनात्मक जानकारी के साथ प्रोटीन का मोटे दाने वाला मॉडल; मार्च 16, 2023; शीतल पदार्थ, सक्रिय और जैविक प्रणालियों में स्थिर अवस्था घटना, एसएनबीएनसीबीएस
- अभिक घोष मौलिक (छात्र) द्वारा व्याख्यान: डेटा मॉडलिंग और संगणना: बायोमोलेक्यूलर प्रक्रियाओं को कैप्चर करना; 31 अक्टूबर, 2022; सीईसीएएम, लॉज़ेन स्विट्जरलैंड
- अभिक घोष मौलिक (छात्र) द्वारा पोस्टर: पिघले हुए ग्लोब्यूल अवस्था में अल्फा-लैक्टलबुमिन के साथ फैटी एसिड बंधन की सूक्ष्म समझ; 23 जनवरी 2023; एमबीयू@50, आईआईएससी, बैंगलोर
- 6. राहुल करमाकर (छात्र) द्वारा व्याख्यान: तापमान अंतर की उपस्थिति में थर्मोरेस्पॉन्सिव कणों द्वारा संरचना निर्माण की स्थिति; मार्च 16, 2023; शीतल पदार्थ, सक्रिय और जैविक प्रणालियों में स्थिर अवस्था घटना, एसएनबीएनसीबीएस
- 7. राहुल करमाकर (छात्र) द्वारा पोस्टर: फेस मास्क के माध्यम से संचालित श्वसन बूंदों की गति पर अध्ययन; 19 दिसंबर, 2022; कॉम्पफ्लू 2022, आईआईटी खड़गपुर रिसर्च पार्क, न्यू टाउन, राजारहाट, कोलकाता
- 8. राहुल करमाकर (छात्र) द्वारा पोस्टर: तापमान प्रवणता की उपस्थित में थर्मोरेस्पॉन्सिव कणों का उपयोग करके गर्म क्षेत्र में लंबी दूरी के क्रम का निर्माण; फ़रवरी 1, 2023; आईएसपीसीएम, आईसीटीएस, बैंगलोर

9. सुरवी पाल (छात्र) द्वारा पोस्टर: डीमिक्स्ड बाइनरी कोलाइड्स का बाह्य संभावित प्रेरित मिश्रण; सितम्बर 22, 2022; सैद्धांतिक रसायन विज्ञान (CTTC) 2023 में वर्तमान रुझान, BARC, मुंबई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

1. शीतल पदार्थ, सक्रिय और जैविक प्रणालियों में स्थिर अवस्था की घटना; मार्च 16, 2023; एसएनबीएनसीबीएस; 03 दिन

राष्ट्रीय/अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

1. निष्क्रिय-सक्रिय कोलाइड मिश्रण के प्रभावी इंटरेक्शन मैपिंग पर सिमुलेशन; क्र.सं. नंबर 2; राष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

- 1. आरकेएमवीईआरआई के स्नातकोत्तर छात्रों के लिए "संघनित चरण गुणों का अध्ययन करने के लिए उपकरण के रूप में आणविक गतिशीलता" पर परिचर्चा, 07 दिसंबर, 2022
- 2. रसायन विज्ञान विभाग, दुर्गापुर सरकारी कॉलेज, दुर्गापुर में यूजी छात्रों के लिए "परमाणू से प्रोटीन तक: एक उपकरण के रूप में आणविक गतिशीलता" पर परिचर्चा और कार्यशाला, 12 दिसंबर, 2022

अनुसंधान क्षेत्र

नम पदार्थ और जैव-आणविक प्रणालियों के सांख्यिकीय यांत्रिकी

में नम पदार्थ और जैव-आणविक प्रणालियों के गुणों को समझने के लिए सांख्यिकीय यांत्रिकी उपकरणों के अनुप्रयोग के क्षेत्र में काम करता हूं। इस प्रयास का एक प्रमुख उपकरण आणविक सिमुलेशन है जिसमें आणविक गतिशीलता, मोंटे कार्ली, ब्राउनियन गतिशीलता और विभिन्न रमार्ट सिमुलेशन तकनीकें शामिल हैं। जिन प्रणालियों की हम जांच करते हैं उनमें पॉलिमर नेटवर्क के माध्यम से कोलाइड्स की गति, लगभग विकृत प्रोटीन हयालूरोनिक एसिड की मेटास्टेबिलिटी से लेकर झिल्ली लोच में परिवर्तन आदि शामिल हैं। यहां हम कुछ कार्यों पर प्रकाश डालते हैं।

पॉलिमर नेटवर्क के माध्यम से कोलाइडल कणों की गति: वायु-जनित बीमारियों को फैलने से रोकने के लिए श्वसन बूंदों को रोकने के लिए फेस मास्क का उपयोग किया जाता है। बेहतर दक्षता वाले फेस मास्क को डिजाइन करने के लिए सूक्ष्म समझ की आवश्यकता होती है कि श्वसन बूंदें मास्क के माध्यम से कैसे चलती हैं। यहां हम फेस मास्क द्वारा बूंदों को रोकने पर एक सरल मॉडल का अध्ययन करते हैं। मास्क को एक असममित कॉन्फाइनमेंट में एक बहुलक नेटवर्क के रूप में माना जाता है, जबकि बूंद को एक माइक्रोमीटर आकार के ट्रेसर कोलाइडल कण के रूप में लिया जाता है, जो श्वास की नकल करने वाले प्रेरक बल के अधीन होता है। हम पॉलिमरिक नेटवर्क के माध्यम से ट्रेसर कण के प्रवेश, लैंग्विन गतिशीलता का उपयोग करके संख्यात्मक रूप से अध्ययन करते हैं। हम दिखाते हैं कि तापमान पर अरहेनियस निर्भरता के बाद पारगमन एक सक्रिय प्रक्रिया है। सक्रियण प्रक्रिया के लिए जिम्मेदार संभावित ऊर्जा प्रोफ़ाइल ट्रेसर आकार, ट्रेसर बीड इंटरैक्शन, नेटवर्क कठोरता के साथ बढ़ती है और ड्राइविंग बल और कॉन्फाइनमेंट की लंबाई के साथ घटती है। एक गहरे ऊर्जा अवरोध के कारण रूम टेंपरेचर पर ड्राइविंग बल की उपस्थिति में किसी दिए गए आकार के ट्रेसर कणों को रोकने की बेहतर दक्षता प्राप्त हुई। हमारा अध्ययन बेहतर दक्षता के साथ मास्क डिजाइन करने में मदद कर सकता है। संदर्भ: ईपीएल. 141. 27001. 2023

प्रोटीन की पिघली हुई ग्लोब्यूल अवस्था: पिघला हुआ ग्लोब्यूल (एमजी) अवस्था एक प्रोटीन की मध्यवर्ती अवस्था है जो मूल संरचना के प्रकट होने के दौरान देखी जाती है। प्रोटीन की एमजी अवस्था विभिन्न विकृतीकरण एजेंटों (जैसे यूरिया), अत्यधिक पीएच, दबाव और गर्मी से प्रेरित होती है। प्रयोगों से पता चलता है कि कुछ प्रोटीनों की एमजी अवस्था कार्यात्मक रूप से प्रासंगिक है, भले ही कोई अच्छी तरह से परिभाषित तृतीयक संरचना न हो। पहले के प्रायोगिक और सैद्धांतिक अध्ययनों से पता चलता है कि प्रोटीन की एमजी अवस्था प्रकृति में गतिशील होती है, जहां गठनात्मक अवस्थाएं नैनोसेकंड समय के पैमाने पर परस्पर रूपांतरित होती हैं। ये अवलोकन हमें एमजी राज्य के गठनात्मक उतार-चढाव का अध्ययन करने और आंतरिक अव्यवस्थित प्रोटीन (आईडीपी) से तुलना करने के लिए प्रेरित करते हैं। हम एक द्ध प्रोटीन, α-लैक्टलब्यूमीन (aLA) पर विचार करते हैं, जो कैल्शियम (Ca2+) आयन को हटाने पर कम pH पर एमजी अवस्था दिखाता है। हम सिमुलेशन के दौरान कम पीएच पर टाइ्ट्रेटेबल अवशेषों की प्रोटोनेशन स्थिति को बनाए रखने के लिए निरंतर पीएच आणविक गतिशीलता (सीपीएचएमडी) सिम्लेशन का उपयोग करते हैं। हम गठन संबंधी उतार-चढ़ाव की पहचान करने के लिए डायहेडूल प्रमुख घटक विश्लेषण, घनत्व आधारित क्लस्टरिंग विधि और मशीन लर्निंग तकनीक का उपयोग करते हैं। हम एमजी अवस्था में मेटास्टेबल अवस्थाओं का निरीक्षण करते हैं। मेटास्टेबिलिटी के लिए जिम्मेदार आवश्यक निर्देशांक वाले अवशेष क्रिस्टल संरचना में एक स्थिर हेलिक्स से संबंधित हैं, लेकिन उनमें से अधिकांश एमजी राज्य में असंरचित या मुझे हुए गठन को पसंद करते हैं। ये अवशेष फैटी एसिड के लिए कल्पित बंधन अवशेषों के जोखिम को नियंत्रित करते हैं। इस प्रकार, प्रोटीन की एमजी अवस्था एक आंतरिक विकार प्रोटीन के रूप में व्यवहार करती है, हालांकि यहां विकार बाहरी स्थितियों से प्रेरित होता है। पीसीसीपी, 24, 21348 (2023)

परियोजना सहित भविष्यत् कार्य की योजना

- कॉन्फाइनमेंट के तहत एक बहुलक प्रणाली की चिपचिपाहट
- नैनोकणों की उपस्थिति में अव्यवस्थित प्रोटीन की संरचना को समझना
- 3. प्रोटीन फ़ंक्शन के लिए मोटे दाने वाला मॉडल
- जटिल विलायक स्थितियों में प्रोटीन का जलयोजन
- स्थानिक-अस्थायी पूर्वाग्रह में कोलाइड्स का स्थिर अवस्था व्यवहार

माणिक बनिक एसोसिएट प्रोफेसर जटिल प्रणाली भौतिकी manik.banik@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. राम कृष्ण पात्रा; उन्नत संचार प्रोटोकॉल तैयार करने के लिए क्वांटम संसाधनों का अध्ययन; शोधकार्य जारी
- 2. सम्राट सेन; विभिन्न विभेद कार्यों और क्वांटम सूचना प्रसंस्करण में उनके निहितार्थ पर एक अध्ययन: शोधकार्य जारी
- 3. साहिल गोपालकृष्ण नाइक; क्वांटम फ़ाउंडेशन और क्वांटम सूचना सिद्धांत; शोधकार्य जारी
- 4. गोविंद लाल सिद्धार्थ; क्वांटम संचार सिद्धांत; शोधकार्य जारी
- 5. अनन्या चक्रवर्ती; क्वांटम सूचना सिद्धांत और क्वांटम फाउंडेशन; शोधकार्य जारी
- 6. स्नेहाशीष रॉय चौधरी; क्वांटम सूचना सिद्धांत, क्वांटम थर्मोडायनामिक्स; शोधकार्य जारी; प्रो. गुरुप्रसाद कर, भारतीय सांख्यिकी संस्थान, कोलकाता (सह-पर्यवेक्षक)

ख) पोस्ट-डॉक्स

- 1. मीर अलीमुद्दीन; क्वांटम थर्मोडायनामिक्स, क्वांटम उलझन, क्वांटम सूचना सिद्धांत, क्वांटम फाउंडेशन
- 2. अमित मुखर्जी; क्वांटम फ़ाउंडेशन, क्वांटम उलझाव, क्वांटम सूचना सिद्धांत

शिक्षण/ अध्यापन

- 1. वसंत सत्र; क्वांटम सूचना सिद्धांत; पीएचडी; 10 छात्र
- 2. वसंत सत्र; क्वांटम सूचना सिद्धांत; एकीकृत पीएचडी; 3 छात्र

प्रकाशन

क) ज़र्नल में

- 1. गोविंद लाल सिद्धार्थ, मीर अलीमुद्दीन, और माणिक बनिक, एक्सप्लोरिंग सुपरएडिटीविटी ऑफ़ कोपियरेंट इंफॉर्मेशन ऑफ़ नोइजी क्वांटम चैनल्स थ्रू जेनेटिक एल्गोरिथ्म, फिजिकल रिव्यू ए, 106, 012432, 2022
- 2. समगीथ पुलियिल, माणिक बनिक, और मीर अलीमुद्दीन, थर्मोडायनेमिक सिग्नेचर ऑफ़ जेनियनली मल्टिपर्टाइट इंटैंगलमेंट, फिजिकल रिव्यू लेटर्स, 129, 070601, 2022
- 3. एडविन पीटर लोबो, साहिल गोपालकृष्ण नाइक, सम्राट सेन, राम कृष्ण पात्रा, माणिक बनिक, और मीर अलीमुद्दीन, सर्टिफाइंग बियांड क्वांटमनेस ऑफ़ लोकली क्वांटम नो-सिंगलिंग थ्योरिज थ्रू अ क्वांटम-इनपुट बेल टेस्ट, फिजिकल रिव्यू ए, 106, L040201, 2022
- 4. सम्राट सेन, एडविन पीटर लोबो, राम कृष्ण पात्रा, साहिल गोपालकृष्ण नाइक, आनंदमय दास भौमिक, मीर अलीमुद्दीन, और माणिक बानिक, टाइमलाइक कोरिलेशन एंड क्वांटम टेंशर प्रेडक्ट स्ट्रकचर, फिजिकल रिव्यू ए, 106, 062406, 2022
- 5. राम कृष्ण पात्रा, साहिल गोपालकृष्ण नाइक, एडविन पीटर लोबो, सम्राट सेन, गोविंद लाल सिद्धार्थ, मीर अलीमुद्दीन, और **माणिक बनिक**, प्रिंसिपल ऑफ़ इंफॉर्मेशन कैज्यूअलिटी रेशनलाइज़ क्वांटम कंपोजिशन, फिजिकल रिव्यू लेटर्स, 130, 110202, 2023

प्रतिष्ठित सम्मेलनों/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. "क्वांटम मेट्रोलॉजी और क्वांटम सूचना प्रसंस्करण" पर दो दिवसीय कार्यशाला में आमंत्रित व्याख्यान; अगस्त 26, 2022; सीडीएसी, कोलकाता प्लॉट - ई-2/1, ब्लॉक-जीपी, सेक्टर-वी; 60 मिनट
- 2. एनआईटी दुर्गापुर (गणित विभाग) में आमंत्रित वार्ता; 7 नवंबर, 2022; एनआईटी दुर्गापुर (गणित विभाग) में आमंत्रित वार्ता; 60 मिनट
- 3. आईआईआईटी हैदराबाद में व्याख्यान श्रृंखला; 15 नवंबर, 2022; आईआईआईटी हैदराबाद में व्याख्यान श्रृंखला; 5*60 मिनट
- आईआईटी तिरूपति (भौतिकी विभाग) में आमंत्रित वार्ता; 20 अक्टूबर, 2022; ऑनलाइन; 60 मिनट
- भौतिकी विभाग, प्रेसीडेंसी विश्वविद्यालय में कोलोक्वियम टॉक; फ़रवरी 1, 2023; प्रेसीडेंसी विश्वविद्यालय; 60 मिनट
- आईआईटी मद्रास में आयोजित प्रोग्रेस इन क्वांटम साइंस एंड टेक्नोलॉजी (पीआईक्युएसटी) पर आमंत्रित टॉक; 27 जनवरी 2023; आईआईटी मद्रास में आयोजित प्रोग्रेस इन क्वांटम साइंस एंड टेक्नोलॉजी (पीआईक्यूएसटी) पर आमंत्रित टॉक; 45 मिनट
- 7. एप्लाइड गणित विभाग, कलकत्ता विश्वविद्यालय द्वारा आयोजित "विज्ञान और प्रौद्योगिकी में एप्लाइड गणित" पर राष्ट्रीय सेमिनार में आमंत्रित व्याख्यान; मार्च 23, 2023; राजाबाजार साइंस कॉलेज; 60 मिनट
- 8. आईआईटी मंडी में आमंत्रित वार्ता; 22 नवंबर, 2022; ऑनलाइन; 60 मिनट

प्रशासनिक कर्तव्य

- सैद्धांतिक भौतिकी सेमिनार सर्किट (टीपीएससी) और विज्ञान ज्योति के समन्वयक और संयोजक (19 सितंबर, 2022 से)
- केंद्र के मीडिया सेल के सदस्य (23 दिसंबर, 2022 से)
- वीएएसपी के तहत एससी/एसटी समुदायों के छात्रों के लिए आउटरीच कार्यक्रम आयोजित करने के लिए समिति के संयोजक (6 दिसंबर, 2022 से)
- बोस सांख्यिकी के शताब्दी अवलोकन की योजना के लिए गठित समिति के सदस्य

बाह्य परियोजना (डीएसटी, सीएसआईआर, डीएई, यूएनडीपीआदि)

1. इंस्पायर संकाय अनुसंधान अनुदान; डीएसटी, एसईआरबी; 1 वर्ष; पीआई

2. चाणक्य पीडीएफ; आई-हब, आईआईएसईआर पुणे; 2 साल; अनुकरणीय

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

1. ए बी एन सील कॉलेज, कूच बिहार और एसएनबीएनसीबीएस द्वारा संयुक्त रूप से "क्वांटम फाउंडेशन और क्वांटम सूचना 2023" पर टॉपिकल रिसर्च स्कूल का आयोजन; मार्च 15, 2023; ए बी एन सील कॉलेज, कूच बिहार, पश्चिम बंगाल; तीन दिन

अनुसंधान क्षेत्र

क्वांटम सूचना सिद्धांत, क्वांटम संचार, क्वांटम नींव, पुनर्निर्माण कार्यक्रम

पिछले एक वर्ष के दौरान मेरे समूह की अनुसंधान गतिविधियों में से एक समग्र क्वांटम प्रणालियों की गणितीय संरचना को समझना है। एक समग्र क्वांटम प्रणाली के लिए राज्य-अंतरिक्ष और प्रभाव-स्थान संरचना को कई गणितीय सुसंगत संभावनाओं के बीच रखा गया है जो स्थानीय क्वांटम विवरण के साथ संगत हैं। हम क्वांटम संरचना की विशेषता को समझने के लिए समय-सदृश परिदृश्य में सहसंबंधों का अध्ययन करते हैं। हम विभिन्न समग्र मॉडलों की संचार उपयोगिताओं का विश्लेषण करते हैं और दिखाते हैं कि वे दो खिलाड़ियों को शामिल करते हुए एक सरल संचार गेम में अलग-अलग उपयोगिताओं को जन्म दे सकते हैं। इस प्रकार हमारा विश्लेषण यह स्थापित करता है कि क्वांटम मिश्रित संरचना से परे समय-समान परिदृश्य में क्वांटम सहसंबंधों से परे का नेतृत्व कर सकता है और इसलिए क्वांटम सहसंबंधों को क्वांटम सहसंबंधों से परे अलग करने के लिए नए सिद्धांतों का स्वागत करता है।

एक अलग कार्य में, हमने क्वांटम स्थिति और प्रभाव स्थानों की स्व-दोहरी संरचना को समझने के लिए 'सूचना कारणता' के सिद्धांत को लागू किया है। सूचना कारणता के सिद्धांत को बिना सिग्नलिंग सिद्धांत के सामान्यीकरण के रूप में प्रस्तावित किया गया था, और इसे क्वांटम सहसंबंधों से परे अभौतिक रूप से खारिज करने के लिए कुशलतापूर्वक लागू किया गया है। अपने काम में, हम दिखाते हैं कि यह सिद्धांत, जब उचित रूप से उपयोग किया जाता है, बहुपक्षीय क्वांटम प्रणालियों की संरचनात्मक व्युत्पत्ति के लिए भौतिक तर्क प्रदान कर सकता है। इसलिए सूचना कारणता राज्य के आत्म द्वंद्व और समग्र क्वांटम प्रणालियों के लिए प्रभाव शंक् की सूचना-सैद्धांतिक व्युत्पत्ति का वादा करती है।

एक अन्य समस्या में हमने बहुपक्षीय क्वांटम प्रणालियों में वास्तविक उलझाव को मापने के लिए थर्मोडायनामिक उपायों का प्रस्ताव दिया है। एन्ट्रापी के बजाय, इन मात्राओं को ऊर्जा के संदर्भ में परिभाषित किया

जाता है - विशेष रूप से वैश्विक और स्थानीय निकालने योग्य कार्यों (एर्गोट्रॉपी) के बीच का अंतर जिसे क्वांटम बैटरी में संग्रहीत किया जा सकता है। इनमें से कुछ मात्राएँ वास्तविकता के विश्वसनीय माप के रूप में पर्याप्त हैं और कुछ हद तक वास्तविक रूप से उलझी हुई अवस्थाओं के विभिन्न वर्गों को अलग करती हैं।

एक अन्य समस्या में हमने दिखाया है कि स्थानीय स्तर पर क्वांटम नो-सिग्नलिंग सिद्धांतों की क्वांटम विशेषता से परे क्वांटम-इनपुट बेल परीक्षण के माध्यम से प्रमाणित किया जा सकता है। हमारा काम क्वांटम सहसंबंधों को अलग करने के लिए स्थानीय क्वांटम संरचना और नो-सिग्नलिंग सिद्धांत के साथ-साथ अतिरिक्त सूचना सिद्धांतों की आवश्यकता का सुझाव देता है। यह यह भी स्थापित करता है कि अतिरिक्त सिद्धांत स्थानीय इनपुट के क्वांटम हस्ताक्षर के प्रति संवेदनशील होना चाहिए। हम स्थानीय स्तर पर क्वांटम नो-सिग्नलिंग सिद्धांतों को बहुपक्षीय करने के लिए अपने परिणामों को सामान्यीकृत करते हैं और कुछ दिलचस्प निहितार्थों का विश्लेषण करते हैं।

एक अलग काम में हमने आनुवंशिक एल्गोरिदम के माध्यम से पाउली चैनलों की सुसंगत जानकारी की सुपरएडिटिविटी का पता लगाया है। हमने क्वांटम कोड की विशेषता बताई है जो उच्च स्संगत जानकारी प्राप्त करते हैं, कई गैर-तुच्छ क्वांटम कोड ढूंढते हैं जो कुछ पाउली चैनलों के लिए दोहराव कोड से बेहतर प्रदर्शन करते हैं। कुछ पाउली चैनलों के लिए, ये कोड बहुत अधिक सुपरएडिटिविटी प्रदर्शित करते हैं। हमने आगे तंत्रिका नेटवर्क Ansatz के सीखने के प्रदर्शन की तुलना कच्चे Ansatz के साथ की और पाया कि तीन-शॉट मामले में, तंत्रिका नेटवर्क Ansatz उच्च सुसंगत जानकारी के क्वांटम कोड खोजने में कच्चे प्रतिनिधित्व से बेहतर प्रदर्शन करता है। हमने एक साधारण कण झुंड अनुकूलन योजना के साथ विकासवादी एल्गोरिदम के सीखने के प्रदर्शन की तुलना भी की है, और हम तुलनीय प्रदर्शन का संकेत देने वाले अनुभवजन्य परिणाम दिखाते हैं, यह सुझाव देते हुए कि विकासवादी योजना के साथ मिलकर तंत्रिका नेटवर्क Ansatz वास्तव में उच्च सुसंगत जानकारी के गैर-तुच्छ क्वांटम कोड खोजने के लिए एक आशाजनक दृष्टिकोण है।

प्रोसेनजीत सिंह देव

प्रोफेसर जटिल प्रणाली भौतिकी deo@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

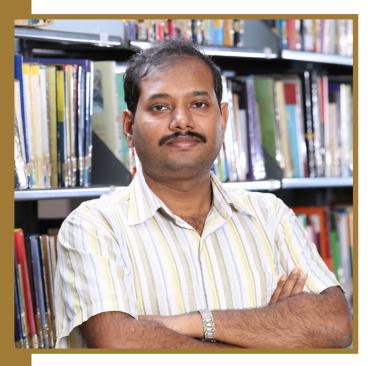
क) पीएच.डी. छात्र

- 1. सायन राउथ; अतिचालकता; शोध कार्य जारी; थिरुपथैया शेट्टी (सह-पर्यवेक्षक)
- 2. के. मीना; मेसोस्कोपिक भौतिकी; शोध कार्य जारी

ख) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. संपेश्वर; मेसोस्कोपिक भौतिकी

प्रकाशन


क) ज़र्नल में

- 1. कंचन मीना और पी. **सिंह देव**, अ मेकनिज़्म टू अट्रैक्ट इलेक्ट्रॉन्स, एडवांसेज इन थ्योरेटिकल एंड कंप्यूटेशनल फिज़िक्स, 5(2), 458, 2022
- 2. कंचन मीना और पी. सिंह देव, टाइम रिवर्स्ड स्टेट्स इन बैरियर टनलिंग, फिजिका ई: लो-डायमेंशनल सिस्टम एंड नैनोस्ट्रक्चर, 149, 115680, 2023

अनुसंधान क्षेत्र

मेसोस्कोपिक भौतिकी

हमने समय यात्रा की प्रयोगात्मक जांच के लिए कई प्रत्यक्ष और अप्रत्यक्ष तरीके दिखाए हैं। उनमें से एक यह दिखाने पर निर्भर करता है कि समय में पीछे जाने वाले इलेक्ट्रॉन, इलेक्ट्रॉन-इलेक्ट्रॉन आकर्षण का कारण बन सकते हैं।

पुण्यव्रत प्रधान

प्रोफ़ेसर जटिल प्रणाली भौतिकी punyabrata.pradhan@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. अनिर्बान मुखर्जी; सैंडपाइल्स में हाइड्रोडायनामिक्स और फलक्च्युएशन का अध्ययन; शोधकार्य जारी
- 2. तन्मय चक्रवर्ती; सक्रिय पदार्थ प्रणालियों में उतार-चढ़ाव और परिवहन का अध्ययन; शोधकार्य जारी
- 3. अनिमेष हाजरा; जन परिवहन प्रक्रियाओं के गतिशील गुणों का अध्ययन; शोधकार्य जारी
- 4. रूपायन साहा; स्व-चालित कणों की परस्पर क्रिया के समय-निर्भर गुण; शोधकार्य जारी
- 5. दीपशिखा दास; समय-निर्भर ड्राइव के साथ कई-कण प्रणालियों में परिवहन; शोधकार्य जारी; शकुंतला चटर्जी (सह-पर्यवेक्षक)

प्रकाशन

क) ज़र्नल में

1. अनिर्बान मुखर्जी और पुण्यव्रत प्रधान, डायनामिक्स कोरिलेशंस इन द कंजर्व्ड मन्न सैंडपाइल्स, फिजिकल रिव्यू **ई**, 107, 024109, 2023

प्रतिष्ठित सम्मेलन/संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. आईसीटीएस, बेंगल्रु में अंतर्राष्ट्रीय सम्मेलन "जटिल प्रणालियों के सांख्यिकीय भौतिकी" में आमंत्रित वार्ता: 19 दिसंबर, 2022: आईसीटीएस बेंगलुरु; 40 मिनट
- 2. भौतिक विज्ञान विभाग, आईआईएसईआर मोहाली में आमंत्रित वार्ता: 31 जनवरी 2023: आईआईएसईआर मोहाली: 1 घंटा

प्रशासनिक कर्तव्य

- 1. विभागाध्यक्ष, पीसीएस (पूर्व डीटीएस)
- 2. संकाय खोज समिति के सदस्य
- न्यूज़लैटर समिति के अध्यक्ष
- 4. पुस्तकालय समिति
- 5. मीडिया सेल
- 6. विभिन्न साक्षात्कार समितियाँ

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

1. स्व-नोदित कणों के मॉडल में फलक्च्युएशन और परिवहन; एसईआरबी (डीएसटी); 3 वर्ष; पीआई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

1. नम पदार्थ, सक्रिय और जैविक प्रणालियों में स्थिर अवस्था की परिघटना; मार्च 16, 2023; एसएन बोस सेंटर, कोलकाता; 3 दिन

अनुसंधान क्षेत्र

बड़े पैमाने पर परिवहन प्रक्रियाओं में विश्रांति परिघटनाएं, संतुलन से द्र उतार-चढ़ाव संबंध, और एकल-फ़ाइल प्रसरण, आदि।

सजीव से लेकर निर्जीव पदार्थ तक, संरक्षित-द्रव्यमान परिवहन प्रक्रियाओं के समय-निर्भर गुणों की सैद्धांतिक समझ, संतुलन से बाहर संचालित प्रणालियों को चिह्नित करने में महत्वपूर्ण भूमिका निभाती है और अभी भी इसका अभाव है। संतुलन के विपरीत, संचालित प्रणालियाँ विस्तृत संतुलन को तोड़ती हैं और आमतौर पर परिचित संतुलन बोल्ट्जमैन-गिब्स वितरण द्वारा वर्णित नहीं होती हैं। हालाँकि, बड़े पैमाने पर, इन प्रणालियों के परिवहन गुण, संतुलन की तरह, दो प्रमुख मात्राओं की विशेषता रखते हैं - थोक-प्रसार गुणांक और गतिशीलता (या, समकक्ष, चालकता)। वास्तव में, ड्राइव और अपव्यय के बीच आकर्षक परस्पर क्रिया के कारण, संचालित सिस्टम क्लस्टरिंग, "विशाल" संख्या में उतार-चढ़ाव और असामान्य परिवहन जैसे आकर्षक सामूहिक और प्रति-सहज व्यवहार प्रदर्शित कर सकते हैं। दरअसल, हाल के वर्षों में, बड़े पैमाने पर एकत्रीकरण प्रक्रियाओं, सैंडपाइल मॉडल और रन-एंड-टम्बल कण (आरटीपी) आदि जैसे प्रतिमान मॉडल का अध्ययन करके ऐसे उभरते गुणों को समझने के लिए बहुत प्रयास किया गया है। ये मॉडल प्रणालियाँ सैद्धांतिक गणनाओं के लिए उत्तरदायी हैं, लेकिन फिर भी प्रकृति में पाए जाने वाले अधिक यथार्थवादी प्रणालियों की विभिन्न गैर-तुच्छ विशेषताओं को पकड़ती हैं। जैसा कि ऊपर बताया गया है,

हम मुख्य रूप से विभिन्न संचालित इंटरैक्टिंग-कण प्रणालियों में घनत्व और करेंट के बड़े पैमाने पर (हाइड्रोडायनामिक) विश्राम और उतार-चढ़ाव गुणों की जांच करते हैं।

परियोजना सहित भविष्यत् कार्य की योजना

- 1. संचालित प्रसार प्रणालियों में लंबी दूरी के सहसंबंधों (उदाहरण के लिए, द्रव्यमान और करंट फलक्च्युएशन में) की विशेषता।
- 2. पदार्थ की अति-समान अवस्था का गतिशील निरुपण,
- सातत्य प्रणालियों के लिए विश्राम और उतार-चढाव की घटनाओं का अध्ययन
- 4. कठोर दीवारों और अव्यवस्थित क्षमता आदि की उपस्थिति में स्व-चालित कणों से युक्त प्रणालियों के उतार-चढ़ाव गुण।

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

1. स्नातक छात्रों के शिक्षण एवं प्रशिक्षण के माध्यम से जनशक्ति विकास

शक्तला चटर्जी एसोसिएट प्रोफ़ेसर जटिल प्रणाली भौतिकी sakuntala.chatterjee@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. शोभन देव मंडल; शोर भरे वातावरण में बैक्टीरियल केमोटैक्सिस: शोधकार्य जारी
- 2. दीपशिखा दास; आवधिक संचालित प्रणालियों में परिवहन; शोधकार्य जारी; पुण्यब्रत प्रधान (सह-पर्यवेक्षक)
- 3. चंद्रदीप खामराई; युग्मित चालित प्रणालियाँ; शोधकार्य
- 4. रमेश प्रमाणिक; स्थानिक-अस्थायी भिन्नता के साथ लिगैंड वातावरण में ई.कोली केमोटैक्सिस; शोधकार्य जारी
- 5. पल्लबी रॉय; कुछ खुले रासायनिक और जैविक प्रणालियों की गतिशीलता और ऊर्जावानता: शोधकार्य जारी: गौतम गंगोपाध्याय (सह-पर्यवेक्षक)

ख) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. प्रेरक गुप्ता; हेलफ्रिच हैमिल्टनियन द्वारा वर्णित फ्लकच्युएटिंग मेम्ब्रेन का अध्ययन

शिक्षण/ अध्यापन

- 1. वसंत सत्र; सांख्यिकीय यांत्रिकी; एकीकृत पीएचडी; 11 छात्र
- 2. ऑट्म सत्र; परियोजना अनुसंधान II; एकीकृत पीएचडी; 1 छात्र

प्रकाशन

क) ज़र्नल में

1. शकुंतला चटर्जी, शॉर्ट टाइम एक्सटर्नल रिस्पॉन्स टू स्टेप स्टिम्लस फॉर अ सिंगल सेल ई. कोली, ज़र्नल ऑफ स्टैटिस्टिकल मैकेनिक्स: थ्योरी एंड एक्सपेरिमेंट, 2022, 123503, 2022

प्रतिष्ठित सम्मेलन/संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. "बैक्टीरियल केमोटैक्सिस में सेंसिंग बनाम अनुकूलन" राष्ट्रीय सम्मेलन "NARIPHY" में आमंत्रित वार्ता; अगस्त 25, 2022; आईआईएसईआर भोपाल; 30 मिनट
- 2. अंतर्राष्ट्रीय सम्मेलन "सांख्यिकीय जैविक भौतिकी: एकल अणु से कोशिका तक" में "बैक्टीरियल केमोटैक्सिस में सिग्नलिंग शोर" पर व्याख्यान देने के लिए आमंत्रित किया गया; 19 अक्टूबर, 2022; आईसीटीएस बैंगलोर; 1 घंटा
- 3. टीआईएफआर-हैदराबाद में एक संस्थान संगोष्ठी "बैक्टीरिया केमोटैक्सिस में ध्विन" देने के लिए आमंत्रित किया गया; 21 नवंबर, 2022; टीआईएफआर-हैदराबाद; 1 घंटा
- 4. "8वीं भारतीय सांख्यिकीय भौतिकी समुदाय बैठक" में "एकल कोशिका ई.कोली के लिए कदम उत्तेजना के लिए लघु समय चरम प्रतिक्रिया" पर एक वार्ता प्रस्त्त की; 3 फ़रवरी 2023 आईसीटीएस बैंगलोर: 12 मिनट

प्रशासनिक कर्तव्य

1. केंद्र की कई आंतरिक समितियों में कार्य किया

पुरस्कार/ मान्यताएँ

- 1. यूरोपियन फिजिकल सोसाइटी द्वारा जर्नल यूरोफिजिक्स लेटर्स के सह-संपादक के रूप में कार्य करने के लिए आमंत्रित किया गया
- 2. यूरोपियन फिजिकल सोसाइटी में सदस्य के रूप में शामिल होने के लिए आमंत्रित किया गया

लर्निड सोसायटी की सदस्यता

1. यूरोपियन फिजिकल सोसाइटी का सदस्य बनने के लिए आमंत्रित किया गया

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

1. शोरगुल वाले वातावरण में रन एंड टम्बल गति की सैद्धांतिक जांच डीएसटी एसईआरबी (मैट्रिक्स); फ़रवरी 2020-फ़रवरी 2023; अनुकरणीय

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

1. नम पदार्थ, सक्रिय और जैविक प्रणालियों में स्थिर अवस्था की घटनाएँ मार्च 16, 2023; एसएनबीएनसीबीएस; 3 दिन

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

1. पूर्वी मिदनापुर के स्कूलों की युवा छात्राओं को अपने भविष्य के करियर में एसटीईएम क्षेत्र चुनने के लिए प्रोत्साहित करने के लिए वर्च्अल लेब विजिट और ऑनलाइन बातचीत का आयोजन किया गया। यह पहल डीएसटी की विज्ञान ज्योति योजना के तहत थी।

अनुसंधान क्षेत्र

नॉनइक्विलिब्रियम सांख्यिकीय भौतिकी और जैविक प्रणाली

1. एकल कोशिका ई.कोली के लिए स्टेम स्टिमुलस के लिए कम समय की चरम प्रतिक्रिया

एक स्टेम स्टिम्लस के आवेदन के बाद, आकर्षक वातावरण में अचानक परिवर्तन के रूप में, ई. कोली कोशिका की रिसेप्टर गतिविधि और टम्बलिंग पूर्वाग्रह अपने चरम मूल्यों तक पहुंचने के लिए तेजी से बदलते हैं, इससे पहले कि वे धीरे-धीरे उत्तेजना के बाद अनुकूलित स्तरों में आराम करते हैं। लंबी समय सीमा. हम सेल की कम समय की प्रतिक्रिया की जांच करने के लिए संख्यात्मक सिमुलेशन और सटीक गणना करते हैं। गतिविधि और टंबलिंग पूर्वाग्रह दोनों के लिए, हम चरम प्रतिक्रिया के लिए सटीक स्थिति प्राप्त करते हैं और सिमुलेशन के साथ अच्छा समझौता पाते हैं। हम प्रयोगात्मक रूप से सत्यापन योग्य भविष्यवाणी भी करते हैं कि चरण उत्तेजना का एक इष्टतम आकार है जिस पर चरम प्रतिक्रिया कम से कम संभव समय में पहुंच जाती है। कई प्रयोगात्मक और सैद्धांतिक अध्ययनों के विपरीत, जहां उत्तेजना के बाद पुनर्प्राप्ति की लंबी समय सीमा पर विचार किया जाता है, हमारा काम सेल की कम समय की प्रतिक्रिया को समझने के महत्व पर प्रकाश डालता है। उदाहरण के लिए, कई प्रयोग उस समय-पैमाने को मापते हैं जिस पर रिसेप्टर गतिविधि या मोटर पूर्वाग्रह आधी-अध्री रिकवरी दिखाते हैं, लेकिन हम यहां दिखाते हैं कि

रिकवरी शुरू होने से पहले भी कम समय की अधिकतम प्रतिक्रिया की भिन्नता को ध्यान में रखना महत्वपूर्ण है, और उपयोगी अंतर्दृष्टि अनुकूलन गतिकी के बारे में वहां से प्राप्त किया जा सकता है। हमारे कई निष्कर्षों को प्रयोगों में सत्यापित किया जा सकता है। उत्तेजना के एक इष्टतम चरण आकार की उपस्थिति जो सबसे तेज़ चरम प्रतिक्रिया उत्पन्न करती है, काफी दिलचस्प है और इसे एक बंधे हुए परख और प्रतिदीप्ति अनुनाद ऊर्जा हस्तांतरण (एफआरईटी) आधारित सेटअप का उपयोग करके सीधे परीक्षण किया जा सकता है। प्रयोगात्मक रूप से रिसेप्टर्स के बीच सहकारी बातचीत की ताकत को अलग करना भी संभव हो गया है जो अंततः रिसेप्टर समूहों के आकार को नियंत्रित करता है। इसलिए यह जांचना संभव होना चाहिए कि क्या कोई इष्टतम इंटरैक्शन ताकत है जिस पर गतिविधि या सीडब्ल्यू पूर्वाग्रह कम से कम समय में अपने चरम मुल्यों पर पहुंच जाता है।

2. कम दूरी की अंतःक्रियाओं के साथ आवधिक संचालित प्रणालियों में इष्टतम ट्रांसपोर्ट

हम समय-आवधिक बाहरी क्षमता की उपस्थिति में निकटतम पड़ोसी संपर्क के साथ कट्टर कणों के एक आयामी जाली गैस मॉडल का अध्ययन करते हैं। संख्यात्मक सिमुलेशन और माध्य-क्षेत्र गणनाओं का उपयोग करके हम इष्टतम परिवहन के लिए स्थितियां प्राप्त करते हैं, यानी सिस्टम में अधिकतम कण प्रवाह और अध्ययन करते हैं कि कणों के बीच आकर्षक या प्रतिकारक बातचीत इन स्थितियों को कैसे प्रभावित करती है। आवधिक बाह्य ड्राइव द्वारा प्रेरित धारा का सिस्टम में मौजूद विसरित धारा द्वारा विरोध किया जाता है और इस परस्पर क्रिया के परिणामस्वरूप सिस्टम धारा में उलटफेर दिखा सकता है। निकटतम पडोसी के संपर्क की उपस्थिति वर्तमान को गंभीर रूप से प्रभावित करती है। हम पाते हैं कि प्रतिकारक अंतःक्रिया आम तौर पर वर्तमान को बढाती है, जबकि आकर्षक अंतः क्रिया इसे दबा देती है। कणों के कम घनत्व के लिए, प्रतिकारक अंतःक्रिया की ताकत के साथ धारा बढ़ती है और सबसे मजबूत संभावित प्रतिकर्षण के लिए अधिकतम धारा प्राप्त होती है, अर्थात निकटतम पडोसी बहिष्करण की सीमा में। हालाँकि, कणों के उच्च घनत्व के लिए, बहुत मजबूत प्रतिकर्षण भीड़ भरे वातावरण में कणों की गति को कठिन बना देता है और इस मामले में कुछ हद तक कमजोर प्रतिकारक अंतःक्रिया के लिए अधिकतम धारा प्राप्त होती है।

परियोजना सहित भविष्यत् कार्य की योजना

- 1. स्थानिक-अस्थायी रूप से भिन्न वातावरण में ई.कोली केमोटैक्सिस का अध्ययन
- 2. युग्मित संचालित प्रणालियों के क्रमबद्ध और अव्यवस्थित चरणों का अध्ययन

ऊर्णा बस् सहायक प्रोफेसर जटिल प्रणाली भौतिकी urna@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पी.एचडी. छात्र

1. ऋत्विक सरकार; गतिविधि संचालित परिवहन; प्रगति मे

ख) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. नीलाचल चक्रवर्ती: स्टोकेस्टिक सक्रिय कण गतिशीलता
- 2. श्राबस्ती बनर्जी; द्विभाजित तापमान के साथ आइसिंग मॉडल
- 3. देबराज दत्ता; स्टोकेस्टिक टम्बलिंग दर के साथ रन-एंड-टम्बल गति

शिक्षण/ अध्यापन

- 1. ऑट्म सत्र; पीएचवाई 292; एकीकृत पीएचडी; 1 छात्र
- वसंत सत्र; पीएचवाई 304; एकीकृत पीएचडी; 1 छात्र
- 3. वसंत सत्र; पीएचवाई 401; एकीकृत पीएचडी; 1 छात्र

प्रकाशन

क) ज़र्नल में

- 1. आयन सैंट्रा, **ऊर्णा बसु** और संजीब सभापंडित, *लॉन्ग* टाइम बिहैवियर ऑफ़ रन-एंड-टम्बल पार्टिकल्स इन टू डायमेंशंस. ज़र्नल ऑफ स्टैटिस्टिकल मैकेनिक्स: थ्योरी एंड एक्सपेरिमेंट, 2023, 033203, 2023
- 2. ऋत्विक सरकार, आयन सैंट्रा, और **ऊर्णा बस्**, स्टेशनरी स्टेट्स ऑफ़ एक्टिविटी-ड्राइवेन हार्मोनिक चैंस, फिजिकल रिव्यू ई, 107, 014123, 2023
- 3. आयन सैंट्रा, **ऊर्णा बस्** और संजीब सभापंडित, *इफेक्ट* ऑफ़ स्टोकेस्टिक रिसेट्रिंग ऑन ब्राउनियन मोशन विथ स्टोकेस्टिक डिफ्यूजन कोएफिसिएंट, ज़र्नल ऑफ़ फिजिक्स ए: मैथेमैटिकल एंड थ्योरेटिक, 55, 414002, 2022
- 4. ऊर्णा बसु, विंसेंट डेमेरी, एंड्रिया गंबासी, डायनामिक ऑफ़ अ कोलाइडल पार्टिकल कपल्ड टू अ गउसियन फील्ड: फ्रॉम अ कंफाइनमेंट-डिपेंडेंट टू अ नॉन-लाइनियर मिमोरी, साइपोस्ट फिजिक्स, 13, 078, 2022
- 5. आयन सैंट्रा, **ऊर्णा बस्** और संजीब सभापंडित, यूनिवर्सल फ्रेमवर्क फॉर द लॉन्ग-टाइम पोजिशन ड्स्ट्रब्युशन ऑफ़ फ्री एक्टीव पार्टीकल्स, जर्नल ऑफ फिजिक्स ए: मैथेमैटिकल एंड थ्योरेटिकल, 55, 385002, 2022
- 6. आयन सैंट्रा, **ऊर्णा बस्**, एक्टीविटी ड्राइवेन ट्रांशपोर्ट इन हार्मोनिक चैन्स, साइपोस्ट फिजिक्स, 13, 041, 2022

प्रतिष्ठित सम्मेलन/संस्थानों में प्रदत्त वार्ता/ संगोष्ठी

- 1. अंतर्राष्ट्रीय कार्यक्रम "जटिल प्रणालियों के सांख्यिकीय भौतिकी" में आमंत्रित वार्ता; 19 दिसंबर, 2022; आईसीटीएस-टीआईएफआर, बेंगलुरु; 1 सप्ताह
- 2. सम्मेलन में आमंत्रित वार्ता सांख्यिकीय क्षेत्र सिद्धांत (हाइब्रिड) के कई पहलू; 17 अक्टूबर, 2022; सिस्सा, इटली; 3 दिन
- 3. विषयगत कार्यक्रम "बड़े विचलन, चरम सीमाएँ और गैर-संतुलन प्रणालियों में विषम परिवहन" पर आमंत्रित वार्ता; सितम्बर 19, 2022; ईएसआई, वियना विश्वविद्यालय, ऑस्ट्रिया; 2 सप्ताह
- 4. आईसीटीपी हाइब्रिड मीटिंग में आमंत्रित वार्ता (ऑनलाइन) नॉन-मार्कोवियन डायनेमिक्स फार फ्रॉम इक्विलिब्रियम; 4 मई, 2022; आईसीटीपी, इटली; 3 दिन
- 5. सेमिनार जिसका शीर्षक था "गतिविधि संचालित ऊर्जा परिवहन": जनवरी 19, 2023; आईओपी, भुवनेश्वर, भारत; 1 दिन

प्रशासनिक कर्तव्य

- 1. SCOLP के सदस्य
- सीडब्ल्यूईपी के सदस्य
- मीडिया सेल के सदस्य
- मुख्य भवन हाउसकीपिंग निविदा समिति के अध्यक्ष
- इक्विटी समिति के सदस्य
- छात्रावास वार्डन
- प्रवेश समिति के सदस्य 7.
- वीएएसपी के अंतर्गत सांख्यिकीय भौतिकी सेमिनार श्रृंखला की आयोजन समिति के सदस्य

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

1. रामानुजन अनुसंधान अनुदान; एसईआरबी; 5 साल; पीआई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

- 1. सत्या एन. मजूमदार द्वारा वीएएसपी सांख्यिकीय यांत्रिकी सेमिनार; 26 दिसंबर, 2022; एसएनबीएनसीबीएस; 1 दिन
- "नरम पदार्थ, सक्रिय और जैविक प्रणालियों में स्थिर स्थिति घटना" पर राष्ट्रीय सम्मेलन; मार्च 16, 2023; एसएनबीएनसीबीएस; 3 दिन

राष्ट्रीय/अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. एंड्रिया गंबासी, SISSA, इटली और विंसेंट डेमरी, ESPCI, पेरिस, फ्रांस; क्र.सं. नंबर 4; अंतरराष्ट्रीय
- 2. संजीब सभापंडित, रमन रिसर्च इंस्टीट्यूट, भारत; क्र.सं. नंबर 1, 3, 5; राष्ट्रीय

अनुसंधान रक्षेत्र

सांख्यिकीय भौतिकी

मैं निम्नलिखित क्षेत्रों में वर्तमान फोकस के साथ सामान्य क्षेत्र में नॉनिकवलिब्रियम सांख्यिकीय भौतिकी पर काम करती हूं।

सक्रिय कण गतिशीलता: सक्रिय कण स्व-चालित एजेंट होते हैं जो पर्यावरण से ऊर्जा का उपभोग करते हैं और इसे निर्देशित गति में परिवर्तित करते हैं। मेरी मुख्य शोध रुचियों में से एक सरल, विश्लेषणात्मक रूप से ट्रैक करने योग्य मॉडल का उपयोग करके एकल सक्रिय कणों के गुणों का अध्ययन और लक्षण वर्णन करना है। हाल ही के एक कार्य में हमने सक्रिय ब्राउनियन कण को उलटने वाली चिरलिटी की गतिशीलता का अध्ययन किया है, जो कई सूक्ष्मजीवों और माइक्रोस्विमर्स में आम तौर पर सक्रिय गति को उलटने वाली चिरलिटी का मॉडल बनाता है। हम दिखाते हैं कि, दो आयामों में ऐसी गति के लिए, घूर्णी प्रसार स्थिरांक और चिरैलिटी रिवर्सल दर द्वारा निर्धारित दो समय-पैमानों की उपस्थिति अलग-अलग व्यवहार दिखाने वाले चार अलग-अलग गतिशील शासनों को जन्म देती है। हम विचरण और स्थिति वितरण की विश्लेषणात्मक गणना करके इन व्यवहारों को चिह्नित करते हैं।

गतिविधि संचालित परिवहन: सक्रिय जलाशयों द्वारा संचालित एक विस्तारित प्रणाली के परिवहन गुण सर्वोपरि महत्व का मुद्दा है, जो वस्तुतः अज्ञात है। यहां हम हार्मोनिक ऑसिलेटर्स की श्रृंखला से जुड़े दो सक्रिय जलाशयों के बीच ऊर्जा परिवहन के संदर्भ में पहली बार इस मुद्दे को संबोधित करते हैं। सक्रिय जलाशयों के युग्मन, जो सीमा दोलक पर सहसंबद्ध स्टोकेस्टिक बल लगाते हैं, इस रैखिक प्रणाली के लिए भी ऊर्जा प्रवाह और गतिज तापमान प्रोफ़ाइल के आकर्षक व्यवहार को जन्म देते हैं। हम विश्लेषणात्मक रूप से दिखाते हैं कि स्थिर सक्रिय धारा (i) जलाशयों की गतिविधि में बदलाव के कारण गैर-नीरस रूप से बदलती है, जिससे एक नकारात्मक अंतर चालकता (एनडीसी) होती है, और (ii) गतिविधि के कुछ सीमित मूल्य पर एक अप्रत्याशित दिशा उलट प्रदर्शित करती है। गाड़ी चलाना। इस एनडीसी की उत्पत्ति सक्रिय जलाशयों के लोरेंत्ज़ियन आवृत्ति स्पेक्ट्रम में खोजी गई है। हम द्विभाजित सक्रिय बल के उदाहरण के लिए नोइक्विलिब्रियम रैखिक प्रतिक्रिया औपचारिकता का उपयोग करके एनडीसी को एक और भौतिक अंतर्दृष्टि प्रदान करते हैं। एक अन्य हालिया कार्य में, हम दो सिरों पर सक्रिय बलों द्वारा संचालित हार्मोनिक ऑसिलेटर्स की श्रृंखला की स्थिर अवस्थाओं की सार्वभौमिक विशेषताओं का पता लगाते हैं। हम सक्रिय बल के लिए तीन सबसे प्रसिद्ध गतिशीलता पर विचार करते हैं, अर्थात् सक्रिय ऑर्नस्टीन-उहलेनबेक प्रक्रिया, रन-एंड-टम्बल प्रक्रिया (आरटीपी) और सक्रिय ब्राउनियन प्रक्रिया (एबीपी), जिनमें से सभी में दो-बिंदू अस्थायी सहसंबंध तेजी से घट रहे हैं लेकिन बहुत विभिन्न उच्च क्रम के उतार-चढ़ाव। हम दिखाते हैं कि ड्राइव की विशिष्ट गतिशीलता के बावजूद, स्थिर वेग में उतार-चढ़ाव एक गतिज तापमान के साथ गौसियन प्रकृति का होता है जो थोक में एक समान रहता है। इसके अलावा, हम सिस्टम के बड़े हिस्से में 'ऊर्जा के समविभाजन' का उद्भव पाते हैं - थोक गतिज तापमान थर्मोडायनामिक सीमा में थोक संभावित तापमान के बराबर होता है।

परियोजना सहित भविष्यत् कार्य की योजना

1. वर्तमान में, अपने पीएचडी छात्र के साथ, मैं सक्रिय जलाशयों द्वारा संचालित विस्तारित प्रणालियों के परिवहन गुणों का सक्रिय रूप से अध्ययन कर रहा हूं। हम ऐसे सक्रिय जलाशयों के सरल मॉडल विकसित कर रहे हैं, और यह पता लगा रहे हैं कि उतार-चढ़ाव-अपव्यय प्रमेय का टूटना परिवहन घटना को कैसे प्रभावित करता है, और क्या कोई उन्हें गैर-संतुलन प्रतिक्रिया औपचारिकता का उपयोग करके एकजुट कर सकता है। मैंने मैट्रिक्स अनुदान के लिए भी आवेदन किया है जो इन मुद्दों का पता लगाने का प्रस्ताव करता है। मैं विभिन्न परियोजनाओं पर भी काम कर रहा हूं जो सक्रिय कणों के व्यवहार का पता लगाना जारी रखती हैं। विशेष रूप से, मैं जड़त्वीय सक्रिय कणों और कई समय-पैमाने वाले सक्रिय कणों के व्यवहार की खोज कर रही हं।

रासायनिक और जैविक विज्ञान विभाग

राजीव कुमार मित्रा

विभाग प्रोफाइल संकेतक

तालिका कः जनशक्ति और संसाधन

संकाय सदस्यों की संख्या	नयिमति = 7
	संवदात्मक = 3
पोस्ट-डॉक्टोरल रर्सिच एसोसिएट (केंड्र+परियोजना) की संख्या	सेंटर = 12
	प्रोजेक्ट = 2
पीएचडी छात्रों की संख्या	
अन्य परियोजना र्कमचारियों की संख्या	
ग्रीष्मकालीन परयोजना के छात्रों की संख्या	11
परियोजनाएँ (चालू)	15
लिका ख : अनुसंधान गतिविधियाँ संकेतक ज़र्नल में शोध पत्रों की संख्या	65
पुस्तक-अध्यायों / पुस्तकों की संख्या	1
अन्य प्रकाशनों की संख्या	0
उपाधि प्राप्त पीएच.डी. छात्रों की संख्या (प्रस्तुत + डिग्री से सम्मानित) एम.टेक / एम.एससी परियोजनाओं की संख्या	4+7

तालिका ग: शैक्षणिक गतिविधियाँ और इसके सदृश कार्य

संकाय सदस्यों द्वारा पढ़ाए जाने वाले पाठ्यक्रमों की संख्या	9		
आगंतुकों की संख्या (असंबद्ध)			
एसोसिएट्स की संख्या			
आयोजित संगोष्ठियों की संख्या	15	15	
आयोजित सम्मेलन / संगोष्ठी / एडवान्स्ड स्कूलों की संख्या	2		
सम्मेलनों / संगोष्ठियों में विभाग के सदस्यों द्वारा प्रदत्त वार्ताओं की संख्या	राष्ट्रीय	31	
	अंतरराष्ट्रीय	4	

सर्वाधिक महत्वपूर्ण शोधकार्य

- एंजाइम लैकेस में सब्सट्रेट प्रॉमिस्युटी की आणविक थर्मोडायनामिक उत्पत्ति
- एकल-अणु बल स्पेक्ट्रोस्कोपी (एसएमएफएस) का उपयोग करके एकल कैंसर कोशिका-व्युत्पन्न बाह्यकोशिकीय वाहन (ईवी) सतह पर हयालूरोनन (एचए) की समोच्च लंबाई को उजागर करना, जो कम आणविक भार एचए (एलएमडब्ल्यू-एचए <200 केडीए) की उपस्थित को प्रकट करता है। . हमने यह भी पाया कि ये LMW-

HA-EVs सामान्य सेल-व्युत्पन्न EVs की तुलना में काफी अधिक लचीले हैं.

- स्व-इकट्ठे कार्बनिक ल्यूमिनसेंट नैनोट्यूब में कुशल प्रकाश संचयन
- स्थानिक डोमेन पर अमानवीय नियंत्रण पैरामीटर को फैलाने से संबंधित अस्थायी व्यवहार का चित्रण किया गया है.
- ध्रुवीकरण-मल्टीप्लेक्सिंग (पीएम) के साथ तरंग दैध्य पूछताछ तकनीक के संयोजन वाले एक असंगत ब्रॉडबैंड (आईबीबी)-एसपीआर जांच के विकास पर नई रिपोर्ट। यह एक नई पीढ़ी की

विश्लेषणात्मक तकनीक है जिसका उद्देश्य इंटरफेस पर होने वाले विभिन्न वास्तविक समय के रासायनिक और जैविक आणविक इंटरैक्शन को ट्रैक करना है।

- कमजोर माप के माध्यम से मोनोलेयर MoS2 में फोटोनिक स्पिन हॉल प्रभाव के हस्ताक्षर पर रिपोर्ट
- वांटम मैकेनिकल/आण्विक यांत्रिक दृष्टिकोण का उपयोग करके अन्य क्षारीय पृथ्वी धातुओं के साथ Ca2+ के प्रतिस्थापन पर एच-बॉन्ड नेटवर्क और उत्प्रेरक क्लस्टर में संरचनात्मक परिवर्तन
- त्रिसंयोजक आयन प्रेरित और आयन पर निर्भर सूक्ष्म प्रोटीन-समृद्ध चरणों का थर्मो-प्रतिरोधी चरण व्यवहार
- सर्फ़ेक्टेंट/कोलेस्ट्रॉल वेसिकल्स में आंतरिक जलयोजन बाहरी जलयोजन से भिन्न होता है
- जलीय ऑक्टेनॉल मिश्रण में पानी के प्रभाव और संरचना का अध्ययन करने के लिए एक संयुक्त हर्ट्ज-गीगाहर्ट्ज ढांकता हुआ विश्राम माप और कंप्यूटर सिमुलेशन
- सीसा (पीबी) की स्पेक्ट्रोस्कोपिक जांच की रिपोर्ट; साइ्ट्रेट कार्यात्मक सोने के नैनोकणों (एयू एनपी) की मदद से जहरीले भारी धातु प्रदूषकों में से एक, जिसके बाद कम लागत वाले प्रोटोटाइप डिवाइस का विकास हुआ।
- दानेदार मैट्रिक्स की जैवउपलब्ध जल सामग्री को समझना
- मूत्राशय कैंसर के अदृश्य वाष्पशील कार्बनिक यौगिक (वीओसी) मार्कर को "देखना": बेंच से बेडसाइड तक प्रोटोटाइप स्पेक्ट्रोस्कोपिक डिवाइस का विकास
- एस्चेरिचिया कोली टॉक्सिन हिपा का फॉस्फोराइलेशन-सक्षम मेटास्टेबल राज्य

अनुसंधान गतिविधियों का सारांश

रसायन और जैविक विज्ञान विभाग रसायन विज्ञान, जीव विज्ञान और भौतिकी के मौलिक और व्यावहारिक दोनों पहलुओं पर विभिन्न रुचियों वाले वैज्ञानिकों की मेजबानी करता है। विभाग की प्रमुख ताकत इसकी बहु-विषयक प्रकृति पर निर्भर करती है क्योंकि यह कई अत्याधुनिक वाद्ययंत्र (ज्यादातर स्पेक्ट्रोस्कोपिक) सुविधाओं की मेजबानी करता है (कुछ का उल्लेख करने के लिए: कैविटी रिंग-डाउन स्पेक्ट्रोस्कोपी, अल्ट्राफास्ट फ्लोरोसेंस स्पेक्ट्रोस्कोपी, टीएचजेड टाइम डोमेन स्पेक्ट्रोस्कोपी, ढांकता हुआ माप आदि।) साथ ही उच्च शक्ति कम्प्यूटेशनल सुविधाएं। विभाग के कुछ संकाय सदस्य व्यावसायिक अनुप्रयोगों के लिए प्रोटोटाइप विकसित करने में भी सक्रिय रूप से शामिल रहे हैं। विभाग के संकाय सदस्य निम्नलिखित विषयों पर काम कर रहे हैं:

प्रो. गौतम गंगोपाध्याय इस पर काम करते हैं: रासायनिक और जैविक प्रणालियों में नॉनलाइनियर गैर-संतुलन गतिशीलता, जटिल प्रणालियों में स्टोकेस्टिक प्रक्रियाएं, आणविक और जैविक प्रक्रियाओं में क्वांटम परिवहन। इस समूह ने हाल ही में एक सरल प्रतिक्रिया प्रसार प्रणाली में ग्लाइकोलाइटिक वेव पैटर्न पर सैद्धांतिक अंतर्दृष्टि की सूचना दी है जिसमें अमानवीय प्रवाह और ऊर्जा, अपव्यय और गतिज प्रूफरीडिंग में त्रुटि की परस्पर क्रिया है।

प्रोफेसर रंजीत बिस्वास विभिन्न जटिल मीडिया की संरचना और गतिशीलता और उनमें होने वाली सरल रासायनिक घटनाओं के साथ उनके संबंधों की आणविक स्तर की समझ का पता लगाने के लिए प्रयोग, सिमुलेशन और सिद्धांत के आधार पर एक एकीकृत दृष्टिकोण बनाते हैं। इस समूह ने जलीय ऑक्टेनॉल मिश्रण में पानी के प्रभाव और संरचना का अध्ययन करने के लिए एक संयुक्त हर्ट्ज-गीगाहर्ट्ज ढांकता हुआ विश्राम माप और कंप्यूटर सिमुलेशन को आगे बढ़ाया है। वे रिलाइन के कम आवृत्ति स्पेक्ट्रा और पानी के साथ इसके मिश्रण का पता लगाने के लिए फेमटोसेकंड रमन-प्रेरित केर प्रभाव स्पेक्ट्रोस्कोपी और आणविक गतिशीलता को जोड़ते हैं। इस समूह का एक सिमुलेशन अध्ययन (एसिटामाइड + Na/KSCN) डीप यूटेक्टिक्स के बीच "सुपरकूलिंग" एफ़िनिटी में अंतर को दर्शाता है।

प्रोफेसर समीर कुमार पाल का ध्यान प्रायोगिक अल्ट्राफास्ट स्पेक्ट्रोस्कोपी और बायोफिजिक्स, नैनोटेक्नोलॉजी, बायो-मिमेटिक्स, बायो-नैनो दवाओं, डाई-सेंसिटाइज्ड सोलर सेल आदि के विशेष संदर्भ में बायोमेडिकल इंस्ट्र्मेंटेशन पर है। उन्होंने कई नैनो-डिवाइस और प्रोटोटाइप विकसित किए हैं: लंबे समय से स्थायी बंध्याकरण प्रभाव, नवीन लाइनज़ोलिड-आधारित ऑक्साज़ोलिडिनोन्स, भारी धातु का पता लगाने के लिए प्रोटोटाइप विकास, दानेदार मैट्रिक्स की जैवउपलब्ध जल सामग्री को समझना, नवजात शिशुओं के हीमोग्लोबिन, बिलीरुबिन और ऑक्सीजन संतृप्ति का गैर-आक्रामक अनुमान, अदृश्य वाष्पशील कार्बनिक यौगिक (वीओसी) मार्कर को समझने के लिए प्रोटोटाइप मूत्राशय कैंसर, तीव्र जल विषाकता आदि की बहुसंकेतन निगरानी के लिए पोर्टेबल स्पेक्ट्रोस्कोपिक उपकरणा

प्रो राजीव कुमार मित्रा टीएचजेड और अल्ट्राफास्ट स्पेक्ट्रोस्कोपी, बायोमोलेक्युलस (प्रोटीन) और बायो-मिमेटिक सिस्टम के विशेष संदर्भ में प्रायोगिक बायोफिजिकल रसायन विज्ञान और स्पेक्ट्रोस्कोपी पर काम करते हैं। उनके समूह ने प्रोटीन में त्रिसंयोजक धनायन-प्रेरित चरण पृथक्करण, जलयोजन में उनके आयन विशिष्ट योगदान और उनके धर्मों प्रतिरोधक चरण व्यवहार की सूचना दी है, सर्फेक्टेंट/कोलेस्ट्रॉल वेसिकल्स में आंतरिक जलयोजन बाहरी जलयोजन से भिन्न होता है और कोलेस्ट्रॉल के जुड़ने से सतह पर जलयोजन बदल जाता है। मॉडल लिपिड का. उन्होंने यह निष्कर्ष निकालने के लिए एक संयुक्त

प्रायोगिक और सिमुलेशन अध्ययन प्रस्तुत किया कि हाइड्रोफिलिक और हाइड्रोफोबिक हाइड्रेशन के बीच एक सूक्ष्म परस्पर क्रिया पानी में ब्यूटेनॉल (डी) के मिश्रण को नियंत्रित करती है।

प्रोफेसर माणिक प्रधान लेजर स्पेक्ट्रोस्कोपी और बायोमेडिकल साइंस पर काम करते हैं, जिसमें कैविटी रिंग-डाउन स्पेक्ट्रोस्कोपी (सीआरडीएस), कैविटी एन्हांस्ड एब्जॉर्प्शन स्पेक्ट्रोस्कोपी (सीईएएस) और वेवलेंथ मॉड्यूलेशन स्पेक्ट्रोस्कोपी (डब्ल्यूएमएस), इवेनसेंट-वेव कैविटी रिंग सहित नैनो-बायो-फोटोनिक्स पर विशेष जोर दिया जाता है। -डाउन स्पेक्ट्रोस्कोपी (ईडब्ल्यू-सीआरडीएस) और सरफेस प्लास्मोन रेजोनेंस (एसपीआर)। उनके समूह ने ध्रुवीकरण-मल्टीप्लेक्सिंग (पीएम) के साथ तरंग दैर्ध्य पूछताछ तकनीक के संयोजन से एक असंगत ब्रॉडबैंड (आईबीबी) -एसपीआर जांच के विकास की सूचना दी है। यह एक नई पीढी की विश्लेषणात्मक तकनीक है जिसका उद्देश्य इंटरफेस पर होने वाले विभिन्न वास्तविक समय के रासायनिक और जैविक आणविक इंटरैक्शन को ट्रैक करना है। वायुमंडलीय निगरानी और सांस निदान के एक साथ अनुप्रयोगों के लिए मध्य-आईआर क्षेत्र में 7.8 माइक्रोन पर ईसीक्यूसीएल आधारित दोहरी-प्रजाति (सीएच ४/एन २ ओ) का पता लगाने की विधि, कमजोर माप के माध्यम से मोनोलेयर एमओएस 2 में फोटोनिक स्पिन हॉल प्रभाव का हस्ताक्षर, 2 डी-टीएमडीसी-संवर्धित पानी के आइसोटोपोलॉग्स पर जांच के लिए सतह प्लास्मोन अनुनाद के साथ संघनित चरण गृहा रिंग-डाउन स्पेक्ट्रोस्कोपी।

डॉ. सुमन चक्रवर्ती कम्प्यूटेशनल आणविक बायोफिज़िक्स और सैद्धांतिक भौतिक रसायन विज्ञान पर काम करते हैं, जिसमें (जैव) आणविक मान्यता और सिग्नलिंग एलोस्टेरी, जीव विज्ञान और रसायन विज्ञान में जल-मध्यस्थ अंतःक्रियाओं की भूमिका, हाइड्रोफोबिक

अंतःक्रियाएं, स्व-संयोजन संदर्भ इंटरफेशियल और सीमित पानी के निर्भर गुण शामिल हैं। चरण संक्रमण जैसी घटना के संदर्भ में प्रोटीन मिसफोल्डिंग और एकत्रीकरण, न्यूक्लियेशन और वृद्धि। उनके समूह ने एंजाइम लैकेस में सब्सट्रेट प्रॉमिस्युइटी की आणविक थर्मोडायनामिक उत्पत्ति. एस्चेरिचिया कोली टॉक्सिन हिपा के फॉस्फोराइलेशन-सक्षम मेटास्टेबल राज्य, स्व-इकड्ठे कार्बनिक ल्यूमिनसेंट नैनोट्यूब में कुशल प्रकाश संचयन, दवा बाइंडिंग क्षमता का मॉड्यूलेशन और लाइसोजाइम की संवर्धित एंजाइमेटिक गतिविधि की रिपोर्ट की है। सतह-सक्रिय आयनिक तरल पदार्थों की उपस्थिति।

डॉ. सुभासिस हलदर विशेष रुचि के साथ एकल अण् बायोफिज़िक्स पर काम करते हैं: चैपरोन-असिस्टेड प्रोटीन फोल्डिंग की मैकेनिकल भूमिकाएँ, फोकल आसंजन-मध्यस्थता सेलूलर प्रक्रियाओं में मैकेनोसेंसिटिव प्रोटीन की भूमिका, न्यूरोडीजेनेरेटिव पैथोलॉजी में मैकेनोकेमिकल सिग्नलिंग।

डॉ. प्रदीप पचफुले की शोध रुचि में नवीन सहसंयोजक कार्बनिक ढांचे (सीओएफ), छिद्रित बहुलक नेटवर्क, धातु कार्बनिक ढांचे, उत्प्रेरक, जल विभाजन. ऊर्जा संचयन आदि का संश्लेषण शामिल है।

> ib Umer Mim राजीव कुमार मित्रा

विभागाध्यक्ष, रासायनिक और जैविक विज्ञान विभाग

अली हुसैन खान

रामानुजन फेलो रासायनिक और जैविक विज्ञान alikhan@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

1. रुद्र चौधरी; ऑप्टोइलेक्ट्रॉनिक उपकरणों में 2डी नैनोप्लेटलेट्स का अनुप्रयोग; शोधकार्य जारी; प्रो. अभिजीत विश्वास (प्रोफेसर और विभागाध्यक्ष, रेडियो भौतिकी और इलेक्ट्रॉनिक्स विभाग, कलकत्ता विश्वविद्यालय) (सह-पर्यवेक्षक)

ख) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. सौम्यदीप डे (प्रोजेक्ट छात्र); CdSe नैनोप्लेटलेट्स में सह-डोपिंग
- 2. अवंती चक्रवर्ती (प्रोजेक्ट स्टूडेंट); हेटरोस्ट्रक्चर्ड और डोप्ड 2डी नैनोप्लेटलेट्स
- 3. राजश्री मैत्रा (ग्रीष्मकालीन प्रशिक्षण 2022); कोलाइडल 2डी नैनोक्रिस्टल का उपयोग करते हुए फोटोडिटेक्टर और फोटोट्रांजिस्टर
- 4. उषासी दत्ता (ग्रीष्मकालीन प्रशिक्षण 2022); कोलाइडल 2डी नैनोक्रिस्टल में अशुद्धता सम्मिलन

शिक्षण/ अध्यापन

1. वसंत सत्र 2023; "सतहंं और इंटरफ़ेस" (कोड: सीबी 641); पीएचडी कोर्सवर्क; 4 छात्र; डॉ. प्रदीप एस. पचफुले (सह-शिक्षक)

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

1. वार्ता का शीर्षक: ऑप्टो-इलेक्ट्रॉनिक अनुप्रयोगों के लिए द्वि-आयामी कोलाइडल नैनोक्रिस्टल डिजाइन करना; विभागीय संगोष्ठी, रसायन एवं जैविक विज्ञान, एसएनबीएनसीबीएस, कोलकाता; जुलाई, 12, 2022; बोसोन और ऑनलाइन; 1 घंटा

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

- 1. फोटोनिक अनुप्रयोगों के लिए डोप्ड 2डी नैनोक्रिस्टल; रामानुजन फैलोशिप, एसईआरबी, भारत; 5 वर्ष (01-04-2021 - 31-03-2026); पीआई
- 2. हेवी-मेटल-मुक्त फोटोनिक कोलाइडल 2डी नैनोक्रिस्टल; सीआरजी, एसईआरबी, भारत; 3 वर्ष (08-02-2023 - 07-02-2026); पीआई

अनुसंधान क्षेत्र

हम फोटोनिक अनुप्रयोगों के लिए डोप्ड 2डी नैनोक्रिस्टल को संश्लेषित करने का लक्ष्य बना रहे हैं। इस उद्देश्य के लिए, हमने मेजबान के रूप में कैडमियम सेलेनाइड (सीडीएसई) के 2डी नैनोक्रिस्टल को चूना है, जिन्हें अक्सर CdSe नैनोप्लेटलेट्स (एनपीएल) के रूप में जाना जाता है। हमने दो अलग-अलग धातु परमाणुओं को क्रमिक रूप से या एक साथ डोप करने की योजना बनाई है। इसका उद्देश्य एनआईआर क्षेत्र (चित्रा 1 ए) की ओर डोपेंट उत्सर्जन स्पेक्ट्रम को ट्यून करने के लिए सीडीएसई बैंडगैप के भीतर एक स्थानीयकृत दाता और एक स्वीकर्ता स्टेट को पेश करना है। इस प्रयोजन के लिए, हमने डोपेंट के रूप में दो प्रकार के हेटेरोवैलेंट धातु आयनों In3+ और Ag+ को चुना है, हेटरोवैलेंट सह-डोपेंट द्वारा चार्ज कंपेंशेसन मेजबान के अंदर डोपेंट की स्थिरता को भी बढा सकता है। सबसे पहले, हमने 4.5 मोनोलेयर (एमएल) मोटी सीडीएसई नैनोप्लेटलेट्स तैयार की हैं। नैनोकणों की मोनोडिस्पर्सिटी अवशोषण और फोटोल्यूमिनेसेंस स्पेक्ट्रा (चित्रा 1 बी) से स्पष्ट है और टीईएम विश्लेषण (चित्रा 1 बी इनसेट) से इसकी पृष्टि की गई है। सीडीएसई एनपीएल में In3+ डोपिंग ग्रोथ डोपिंग प्रक्रिया के माध्यम से किया गया है, जो बैंडेज उत्सर्जन शिखर (चित्रा 1 सी) के साथ 550 एनएम से 650 एनएम के बीच अतिरिक्त उत्सर्जन देता है। सीडीएसई का पीएल उत्तेजना स्पेक्ट्रा: एनपीएल में, विभिन्न डोपेंट उत्सर्जन तरंग दैर्ध्य पर एकत्र किया जाता है, बड़े पैमाने पर

वार्षिक प्रतिवेदन 2022-2023

सीडीएसई एनपीएल (चित्रा 1 डी) के अवशोषण स्पेक्ट्रम के साथ स्परपोज्ड किया जाता है, यह दर्शाता है कि डोपेंट उत्सर्जन एनपीएल में अवशोषण से उत्पन्न होता है और एनपीएल में इंडियम के समावेश की पृष्टि करता है।

हमने कोलाइडल 2डी एनपीएल पर आधारित फोटोट्रांजिस्टर पर भी काम करना शुरू कर दिया है। यहां हमने सोल-जेल प्रक्रिया द्वारा विभिन्न डायलेक्ट्रिकल सामग्रियों की अत्यंत थीन फिल्में बनाने पर भी ध्यान केंद्रित किया, जो एक सस्ता, आसान और नियंत्रणीय तरीका है।

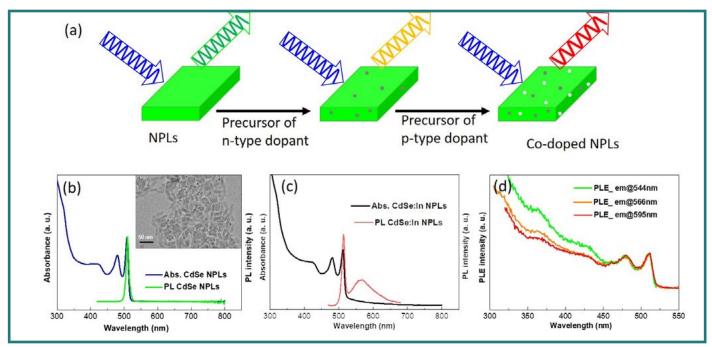


Figure1: (a) Schematic representation of the co-doping strategies. (b) The absorbance and PL spectra of pure 4.5 ML CdSe NPLs. Inset: TEM images of those NPLs. (c) The absorbance and PL of indium-doped CdSe NPLs. The absorbance (black line) spectrum remains the same as the undoped CdSe NPLs. The PL shows a peak at 510 nm due to undoped NPLs, while an additional peak appears at around 570 nm. (d) The PLE spectrum of the CdSe:In NPLs, measured over a range of emission wavelengths, showing the signature of CdSe NPLs. Hence the n-type dopant, indium could be incorporated into the CdSe NPLs.

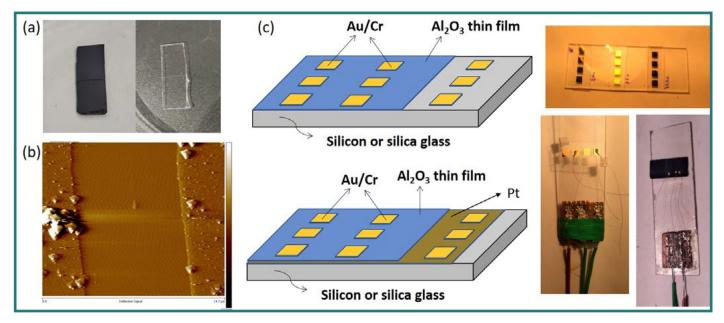


Figure 2. (a) Al₂O₃ thin films on a silicon wafer and silica glass substrate respectively. (b) AFM image of the Al₂O₃ thin films showing the scratch portion and smooth section, used for the thickness measurements. (c) Various device architectures used (in-plane and out-of-plane) for dielectric constant measurements.

उदाहरण के लिए, हमने डिप कोटिंग विधि द्वारा सिलिकॉन सब्सट्रेट और सिलिका ग्लास सब्सट्रेट पर एल्यूमिना (Al2O3) थीन फिल्म बनाई और फिर उन्हें 1000°C तक गर्म किया (चित्र 2a)। फिल्म की सतह आकृति विज्ञान और मोटाई का विश्लेषण परमाणु बल माइक्रोस्कोपी (एएफएम) और स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी (एसईएम) द्वारा किया गया था। हम मोटाई को 10 एनएम - 50 एनएम के बीच भिन्न-भिन्न कर सकते हैं। टीईएम और एक्सआरडी का उपयोग करके संरचनात्मक लक्षण वर्णन और रासायनिक संरचना विश्लेषण किया गया। अब हम विभिन्न उपकरण संरचनाओं के साथ इलेक्ट्रोड के विभिन्न संयोजनों का उपयोग करके विद्युत माप पर काम कर रहे हैं।

परियोजना सहित भविष्यत् कार्य की योजना

हमने सीडीएसई एनपीएल में In3+ (एन-टाइप डोपेंट) की डोपिंग स्थापित की है। Ag+ जैसे पी-प्रकार के डोपेंट को अब शामिल करने की

आवश्यकता है। तो, अगली योजना इन आयनों को एक साथ या एक ही मेजबान में क्रमिक रूप से डोपिंग करने की है। हमें सह-डोपिंग रणनीतियों पर काम करने की जरूरत है। एक बार सह-डोपिंग विधि स्थापित हो जाने के बाद, हम अन्य संभावित धात् आयनों जैसे Ag+/Cu+ के साथ In3+/Ga3+/Al3+ के संयोजन का पता लगाएंगे। पीएल क्यूवाई और ऑप्टिकल स्थिरता में सुधार के लिए सह-डोप्ड सिस्टम पर क्राउन या शेल जमाव को नियोजित किया जाएगा। वाहक गतिशीलता की बारीकी से जांच करने और डोपेंट अवस्थाओं की पहचान करने के लिए. हम क्षणिक अवशोषण स्पेक्ट्रोस्कोपी का उपयोग करके उन सह-डोप्ड एनपीएल की इलेक्ट्रॉन और छेद विश्राम प्रक्रिया की जांच करेंगे। अंत में, उन परिणामों की गणना की गई एनपीएल बैंड संरचना के साथ पुष्टि की जाएगी जो हमें विभिन्न उत्तेजित-अवस्था परिवर्तनों की विस्तार से पहचान करने की अनुमित देगी। डिवाइस से संबंधित कार्य भी साथ-साथ किया जाएगा।

गौतम गंगोपाध्याय वरिष्ठ प्रोफेसर रासायनिक और जैविक विज्ञान

gautam@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पी.एचडी. छात्र

- 1. प्रेमाशीष कुमार; कुछ गैर-रेखीय गतिशील प्रणालियों के नोइक्विलिब्रियम थर्मोडायनामिक्स; प्रगति मे
- 2. जयर्षि भट्टाचार्य; क्वांटम ओपन सिस्टम और क्वांटम ट्रांसपोर्ट; प्रगति मे; स्आनन्दन गंगोपाध्याय (सह-पर्यवेक्षक)
- 3. पल्लबी रॉय: जैव रासायनिक प्रणालियों में अति संवेदनशीलता और प्रारंभिक चेतावनी संकेत; प्रगति मे; शकुंतला चटर्जी (सह-पर्यवेक्षक)

ख) पोस्ट-डॉक्स

1. तापस साहू; कुछ अणुओं की अवस्था के क्वांटम समीकरण के लिए पथ समाकलित दृष्टिकोण

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. अमित रॉय; विकिरण-पदार्थ अंतःक्रिया के क्वांटम सांख्यिकीय गुण

शिक्षण/ अध्यापन

1. वसंत सत्र; भौतिकी और रसायन विज्ञान में स्टोकेस्टिक प्रक्रियाएं, सीबी-628; एकीकृत पीएचडी; 3 छात्र

प्रकाशन

क) ज़र्नल में

- 1. प्रेमाशीष कुमार और गौतम गंगोपाध्याय, ग्लाकोलाइटिक वेव पैटर्न्स इन अ सिंपल रिएक्शन-डिफ्यूजन सिस्टम विथ इनहोमोजेनियस इनफ्लक्स: डायनामिक ट्रांजिशन, केम. फिज.केम., 24, e202200643, 2023
- 2. प्रेमाशीष कुमार, किंशुक बनर्जी और गौतम गंगोपाध्याय, इंटरप्ले ऑफ़ इनर्जी, डिसीपेशन एंड एरर इन कायनेटिक प्रफरिडिंग: कंट्रोल वाया कंसेंट्रेशन एंड बाइंडिंग इनर्जी, फिजिका: स्टेटिस्टिकल मेकनिज्म एंड इट्स एप्पलीकेशन, 603, 127735, 2022

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. सैद्धांतिक रसायन विज्ञान बैठक पर एक अंतरराष्ट्रीय सम्मेलन: संरचना और गतिशीलता (TCMSD-2022) 26 - 29 मई, 2022 IACS, कोलकाता, भारत; 29 मई, 2022; सैद्धांतिक रसायन विज्ञान बैठक पर एक अंतर्राष्ट्रीय सम्मेलन: संरचना और गतिशीलता (टीसीएमएसडी-2022) 26 - 29 मई, 2022 आईएसीएस, कोलकाता, भारत; 26 - 29 मई, 2022 आईएसीएस, कोलकाता, भारत
- 2. ओपन केमिकल रिएक्शन नेटवर्क का नोइक्विलिब्रियम थर्मोडायनामिक्स: पैटर्न, अस्थिरताएं और कल्पना; 6 दिसंबर, 2022; गणित विभाग, भारतीदासन विश्वविद्यालय, ऑनलाइन; 6 दिसंबर 2022
- 3. नरम पदार्थ सक्रिय और जैविक प्रणालियों में स्थिर अवस्था घटना पर रासायनिक तरंगों के प्रतिक्रिया नेटवर्क के गैर संतुलन स्थिर अवस्था थर्मोडायनामिक्स, एसएनबीएनसीबीएस में 16-18 मार्च 2023; मार्च 16, 2023; नरम पदार्थ सक्रिय और जैविक

- प्रणालियों में स्थिर अवस्था घटना पर रासायनिक तरंगों के प्रतिक्रिया नेटवर्क के गैर संतुलन स्थिर अवस्था थर्मीडायनामिक्स, एसएनबीएनसीबीएस में 16-18 मार्च 2023: 16-18 मार्च 2023
- ओपन केमिकल रिएक्शन नेटवर्क के थर्मोडायनामिक्स, नॉनलाइनियर डायनामिकल सिस्टम पर एक दिवसीय सेमिनार: सितम्बर 22, 2022; सेंट जेवियर्स कॉलेज, गणित विभाग, कोलकाताः २२ सितंबर'२०२२

प्रशासनिक कर्तव्य

- 1. संयोजक. चिकित्सा प्रकोष्ठ
- सदस्य. परियोजना एवं पेटेंट सेल

लर्निड सोसायटी की सदस्यता

- आजीवन सदस्य, इंडियन फिजिकल सोसायटी, कोलकाता
- आजीवन सदस्य, इंडियन एसोसिएशन फॉर द कल्टीवेशन ऑफ साइंस, कोलकाता

राष्ट्रीय/अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. राष्ट्रीय/अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)
- 2. डॉ. अनिर्बान कर्माकर, तलडी कॉलेज, कोलकाता पश्चिम बंगाल; प्रकाश संश्लेषक जटिल डिमर्स में एक्साइटन ट्रांसपोर्ट, ए कर्माकर, जी गंगोपाध्याय जर्नल ऑफ केमिकल साइंसेज 135 (2), 44 2023; राष्ट्रीय
- 3. डॉ. सोमा साहा, प्रेसीडेंसी विश्वविद्यालय; एकल एंजाइम अणुओं में जटिल उत्प्रेरक की व्याख्या के लिए एक न्यूनतम गतिज मॉडल पर प्रशांत कुंडू, सोमा साहा, *बी और गौतम गंगोपाध्याय ने काम प्रस्तुत किया; राष्ट्रीय

अनुसंधान क्षेत्र

सैद्धांतिक रसायन विज्ञान

मेरी व्यापक शोध रुचि सैद्धांतिक रसायन विज्ञान में है, जिसमें निम्नलिखित विषयों पर विशेष जोर दिया गया है:

रासायनिक और जैविक प्रणालियों में स्टोकेस्टिक प्रक्रियाएं: विषम एंजाइम कटैलिसीस और आयन-चैनल समस्याएं।

- आणविक प्रणालियों में क्वांटम गतिशीलता और क्वांटम परिवहन प्रक्रियाओं पर अध्ययन।
- iii. रसायन विज्ञान और जीवविज्ञान में नॉनलाइनियर गतिशीलता और प्रतिक्रिया-प्रसार प्रणाली।

रासायनिक तरंग के थर्मोडायनामिक्स पर हमारे काम में हम जीवविज्ञान में रासायनिक तरंग में अधिक रुचि रखते हैं जो जैविक घटनाओं को सिंक्रनाइज़ और समन्वयित करने के लिए तेजी से जानकारी फैलाने में महत्वपूर्ण है। फिर से हमने दिखाया है कि समय पर निर्भर मुक्त ऊर्जा और एन्ट्रापी उत्पादन या अपव्यय संरचना का अध्ययन करने के लिए खुली प्रतिक्रिया-प्रसार सेटिंग में स्थानीय गतिशीलता को कैसे औपचारिक रूप दिया जा सकता है। वर्तमान संदर्भ में हमारा कार्य थर्मीडायनामिक परिप्रेक्ष्य का अध्ययन करने के लिए तरंग प्रसार को बनाए रखने के लिए मुक्त ऊर्जा, अपव्यय और खर्च किए गए कार्य की पहचान करना है: (i) गैर-संतुलन की रासायनिक प्रक्रिया, स्थिर अवस्था की गतिशीलता, विशेष रूप से अस्थिरता, पैटर्न और चिमेरा गठन और (ii) गैर-रूढ़िवादी बल केमोस्टैट्स द्वारा उत्पन्न।

परियोजना सहित भविष्यत् कार्य की योजना

- 1. हम बड़े विचलन सिद्धांत और गतिशील चरण संक्रमणों से रासायनिक प्रतिक्रिया नेटवर्क की नोक्विलिब्रियम स्थिर स्थिति का अध्ययन करेंगे, जिसमें विशेष जोर दिया जाएगा (i) फॉस्फोराइलेशन-डीफॉस्फोराइलेशन कैनेटीक्स में अल्ट्रासेंसिटिविटी: गंभीर धीमापन और प्रारंभिक चेतावनी संकेत (पीआर, एससी, जीजी) (ii) गतिशील विषम ग्लाइकोलिसिस प्रतिक्रिया-प्रसार प्रणालियों (पीके, जीजी) में संक्रमण और अराजकता (iii) एकल और बिरदिमक ग्लाइकोलाइटिक दोलनों में गतिशील चरण संक्रमण (पीआर, पीके, एससी, जीजी)
- 2. हम इलेक्ट्रॉन परिवहन समस्या में इलेक्ट्रॉन कंपन अंतःक्रिया में क्वांटम एन्ट्रॉपी पर अपना अध्ययन जारी रख रहे हैं: (i) क्वांटम एन्ट्रॉपी और क्वांटम आसमाटिक बल (जेबी, एसजी, जीजी) (ii) क्वांटम आणविक बैटरी: चार्जिंग और डिस्चार्जिंग पर विशेष महत्व वाले आणविक सिस्टम इलेक्ट्रॉन-कंपन उलझाव (एके,जीजी)
- 3. हमारी अगली योजना जैव-रासायनिक लय में गैर-रेखीय गतिशील महत्वपूर्ण बिंदुओं के कारण गतिशील विकार पर अध्ययन करना है, विशेष रूप से (i) सहकारी गतिज तंत्र के माध्यम से गतिशील विकार का अनुमान (पीकुंडू, एसएस, जीजी)

गौतम दे विजिटिंग प्रोफेसर रासायनिक और जैविक विज्ञान g.de@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) बाह्य परियोजना छात्र/ग्रीष्मकालीन प्रशिक्षण

1. भावना कुली; सोने के नैनोकण का ग्लास पर एल्युमिना-टिटानिया फिल्मों को डोप किया जाना

शिक्षण/ अध्यापन

- 1. समर इंटर्न को थीन फिल्म और थोक सिरेमिक तैयार करने के लिए बुनियादी सोल-जेल रसायन विज्ञान (सैद्धांतिक और प्रयोगात्मक दोनों) सिखाया गया।
- 2. डिप-कोटिंग प्रक्रिया का उपयोग करके सॉल के संश्लेषण और थीन डायलेक्ट्रिक फिल्मों की तैयारी पर एक पीएचडी छात्र को व्यावहारिक प्रशिक्षण दिया गया था।

प्रकाशन

क) ज़र्नल में

1. अतिन प्रमाणिक, श्रेयसी चट्टोपाध्याय, **गौतम डे** और सौरिन्द्र महंती, डिजाइन ऑफ़ क्यूबॉयडल FeNi2S4rGO-MWCNTs कंपोजिट फॉर लिथियम-आयन बैटरी एनोड शोविंग एक्सिलेंट हाल्फ एंड फूल सेल पर्फॉर्मेंसेस, बैटरीज, 8(12), 261, 2022

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. विज्ञान एवं प्रौद्योगिकी संस्थान, सत्यबामा विश्वविद्यालय, चेन्नई में आयोजित "कण विशेषता तकनीक पर कार्यशाला (पीसीटी-2022)" के उद्घाटन समारोह में मुख्य अतिथि के रूप में उद्घाटन और वैज्ञानिक व्याख्यान दिया। व्याख्यान का शीर्षक: "सुपरहाइड्रोफोबिक सतहें"; 30/05/2022; ऑनलाइन, 1 घंटा
- 2. 01-03 अगस्त. 2022 के दौरान उन्नत प्रौद्योगिकी के लिए अल्ट्रासोनिक्स और सामग्री विज्ञान पर अंतर्राष्ट्रीय सम्मेलन (आईसीयूएमएसएटी-2022) में आमंत्रित व्याख्यान दिया गया। व्याख्यान शीर्षक: "सुपरहाइड्रोफोबिक सतहें: बुनियादी अवधारणाएं और अनुप्रयोग"; 02/08/2022; तेलंगाना विश्वविद्यालय: तीस मिनट
- 3. एस.एन. बोस नेशनल सेंटर फॉर बेसिक साइंसेज, कोलकाता में व्याख्यान दिया गया: व्याख्यान का शीर्षक: "जर्नल ऑफ़ मैटेरियल्स केमिस्ट्री ए के एसोसिएट एडिटर के रूप में अपना अनुभव साझा करना"; 27/09/2022; ऑनलाइन; 1 घंटा
- 4. सत्यबामा इंस्टीट्यूट ऑफ साइंस एंड टेक्नोलॉजी और सीएसआईआर - एनएमएल मद्रास सेंटर, चेन्नई द्वारा संयुक्त रूप से आयोजित "इंस्ट्रमेंटल मेथड्स की व्याख्या पर कार्यशाला (डब्ल्यूआईएमआई-2023)" में एक व्याख्यान दिया। 6 जनवरी 2023 को व्याख्यान शीर्षक: "वैज्ञानिक अनुसंधान में सामग्री लक्षण वर्णन का महत्व"; 06/01/2023; ऑनलाइन; 45 मिनट
- 5. जर्नल ऑफ मैटेरियल्स केमिस्ट्री ए के एसोसिएटेड एडिटर के रूप में, 16-20 जनवरी, 2023 के दौरान विभिन्न भारतीय संस्थानों (आईआईटी बॉम्बे, आईआईएससी बैंगलोर, आईआईटी इंदौर) में आयोजित रॉयल सोसाइटी ऑफ केमिस्ट्री (आरएससी) संगोष्ठी में 3 व्याख्यान दिए। संगोष्ठियाँ आरएससी और संबंधित संस्थानों द्वारा संयुक्त रूप से आयोजित की गईं। व्याख्यान का शीर्षक: 'गीले रसायन विज्ञान द्वारा नैनोमटेरियल्स'; 16/01/2023, आईआईटी बॉम्बे, 30 मिनट; 17/01/2023, एसएससीयू, आईआईएससी., 30 मिनट; 20/01/2023, आईआईटी इंदौर, 30 मिनट

प्रस्कार/ मान्यताएँ

- 1. इंडियन सिरेमिक सोसाइटी से "गणपुले पुरस्कार 2022" प्राप्त हुआ
- 2. सीआरएनएन (कलकत्ता विश्वविद्यालय) पीएचडी समिति के बाह्य सदस्य (जारी)

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

1. सीएसआईआर-सेंट्रल ग्लास एंड सिरेमिक रिसर्च इंस्टीट्यूट, कोलकाता; क्र.सं. नंबर 1; राष्ट्रीय

2. भारतीय प्रौद्योगिकी संस्थान, रूड़की; क्र.सं. 1; राष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

1. कई वेबिनार में भाग लिया

अनुसंधान क्षेत्र

कार्यात्मक नैनोमटेरियल और कोटिंग्स का संश्लेषण और मूल्यांकन

- (i) नियंत्रित जल संपर्क कोणों के साथ सूती कपड़ों पर SiO2-ZnO नैनोकणों पर आधारित धोने योग्य सुपर-हाइड्रोफिलिक/ हाइड्रोफोबिक कोटिंग्स के निर्माण पर हमारे सहयोगात्मक कार्य का डेटा विश्लेषण।
- (ii) आईआईटी रूडकी के सहयोग से "फोटोवोल्टिक उपकरणों में सीसा रहित हैलाइड पेरोव्स्काइट्स की डिजाइन क्षमता और भविष्य की संभावनाएं" पर काम की समीक्षा करना।
- (iii) एक पेपर की पांडुलिपि तैयार करना "उत्कृष्ट आधे और पूर्ण सेल प्रदर्शन दिखाने वाले लिथियम-आयन बैटरी एनोड के लिए क्यूबॉइडल FeNi2S4-rGO-MWCNTs का डिज़ाइन" (सीएसआईआर-सीजीसीआरआई के साथ)।
- (iv) "कांच पर एल्युमिना-टिटानिया फिल्मों में डोप किए गए सोने के नैनोकण" कार्य के तहत सोल-जेल प्रक्रिया द्वारा कई सोल और फिल्में तैयार की गई। डिप-कोटिंग तकनीक का उपयोग करके Al2O3-TiO2 और Au डोप्ड Al2O3-TiO2 फिल्में ग्लास सब्सट्रेट पर तैयार की गई। गर्मी से उपचारित फिल्मों की विशेषता यूवी-दृश्यमान स्पेक्ट्रोस्कोपी, चराई घटना एक्स-रे विवर्तन और इलिप्सोमेटी थी।
- (v) रिपोर्टिंग अवधि में ग्लास और सिलिकॉन वेफर्स पर 20 30 एनएम मोटाई की बहुत पतली एल्यूमिना फिल्मों के विकास पर काम किया गया है क्योंकि ऐसी ढांकता हुआ पतली फिल्मों को सूक्ष्म और ऑप्टोइलेक्ट्रॉनिक उपकरणों के लिए ढांकता हुआ गेट के रूप में अनुप्रयोग मिल सकता है। Al2O3 अपनी कई उपयोगी विशेषताओं जैसे उच्च यांत्रिक शक्ति, तापीय और रासायनिक स्थिरता, विस्तृत बैंड गैप, उच्च विद्युत प्रतिरोधकता, अच्छी तापीय चालकता और ऑप्टिकल पारदर्शिता (यूवी, दृश्य और निकट-अवरक्त क्षेत्र), कम अपवर्तक सूचकांक के कारण बहुत ही आशाजनक ढांकता हुआ पदार्थ है। , उच्च विद्युत क्षेत्र की तांकत, अर्धचालक सब्सट्रेट्स के लिए विश्वसनीय चालन बैंड ऑफसेट, और शानदार डायलेक्ट्रिक गुण। Al2O3 की ये विशेषताएं इसे तकनीकी रूप से अधिक प्रभावशाली बनाती हैं। हालाँकि, हमने महसूस किया कि कम बिजली अपव्यय और कम रिसाव धारा वाले ढांकता हुआ गेट के रूप में उपयोग के लिए उपयुक्त मोटाई 20 - 30 एनएम के क्रम की होनी चाहिए। हालाँकि, पारंपरिक गीली रसायन (सोल-जेल) विधि द्वारा इतनी कम मोटाई की एक समान एल्यूमिना फिल्म तैयार करना मुश्किल है। इस कार्य में हमने सोल

चरण में हाइड्रोलिसिस-संक्षेपण दर को नियंत्रित करके अग्रदूत के रूप में एल्यूमीनियम ट्राई-सेक ब्यूटॉक्साइड का उपयोग करके वांछित मोटाई मूल्यों (यानी 20 - 30 एनएम) की बहुत पतली समान अल 2 ओ 3 फिल्में सफलतापूर्वक तैयार की हैं। आकृति विज्ञान विकास का अध्ययन करने के लिए तैयार की गई फिल्मों को कई तापमानों (500, 800, 1000 डिग्री सेल्सियस) पर गर्म किया गया। फ़िल्मों की विशेषता यूवी-विज़िबल और एफटीआईआर स्पेक्ट्रोमेट्री, एएफएम, एक्सआरडी, एसईएम और टीईएम थी।

परियोजना सहित भविष्यत कार्य की योजना

- 1. परियोजना सहित भविष्यत कार्य की योजना
- 2. . 'सोलर कवर ग्लास पर स्व-सफाई एंटीरिफ्लेक्टिंग कोटिंग्स' पर एक पांडुलिपि प्रस्तुत करना
- 3. माइक्रोइलेक्ट्रॉनिक्स के लिए ढांकता हुआ गेट के रूप में संभावित अनुप्रयोग के लिए 20 - 30 एनएम मोटाई की बहुत पतली एल्यूमिना फिल्मों के विकास से संबंधित कार्य

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

- 1. एक बाहरी सदस्य के रूप में सीआरएनएन (कलकत्ता विश्वविद्यालय) पीएचडी समिति की बैठकों में भाग लिया।
- 2. 22/06/2022 (ऑनलाइन) को बोर्ड सदस्य के रूप में आरएससी पत्रिकाओं 'जर्नल ऑफ मैटेरियल्स केमिस्ट्री ए' और 'मैटेरियल्स एडवांसेज' की संपादकीय बोर्ड बैठक में भाग लिया।
- 3. एसोसिएट एडिटर के रूप में रॉयल सोसाइटी ऑफ केमिस्ट्री (आरएससी) जर्नल्स, जर्नल ऑफ मैटेरियल्स केमिस्ट्री ए और मैटेरियल्स एडवांसेज की पांडुलिपि संभालना।
- 4. भारतीय शोधकर्ताओं (एसएनबीएनसीबीएस सहित) के कई नामों को आरएससी जर्नल (जर्नल ऑफ मैटेरियल्स केमिस्ट्री) में 'उभरते जांचकर्ताओं' के रूप में नामांकित किया गया।
- 5. आईएनएसटी मोहाली में किए गए मेरे काम से रिपोर्टिंग अवधि के दौरान 2 पेपर प्रकाशित हुए: (i) के. जस्टिस बाबू, जी. कौर, ए. शुक्ला, ए. कौर, एच. भट्ट, एन. घोराई, जी. डे, एच. एन. घोष , इलेक्ट्रोस्पून फाइबर और इसके अल्ट्राफास्ट चार्ज ट्रांसफर डायनेमिक्स में इंजीनियर सीटू CsPbBr3 आर्किटेक्चर, सामग्री अग्रिम 3, 6566-6576, 2022; (ii) एन. घोराई, जी. डी., एच.एन. घोष, प्लास्मोन मीडिएटेड इलेक्ट्रॉन ट्रांसफर और टेम्परेचर डिपेंडेंट इलेक्ट्रॉन-फोनन स्कैटरिंग इन गोल्ड नैनोपार्टिकल्स एंबेडेड इन डाइइलेक्ट्रिक फिल्म्स, केमफिजकेम, 23, ई202200181, 2022।

माणिक प्रधान प्रोफेसर रासायनिक और जैविक विज्ञान manik.pradhan@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. आकाश दास; क्वांटम वीक माप; उपाधि प्रदान की गई
- 2. विश्वजीत पांडा; उच्च-रिज़ॉल्यूशन आणविक स्पेक्ट्रोस्कोपी; शोधकार्य जारी
- 3. अर्धेंद् पाल; कैविटी रिंग-डाउन स्पेक्ट्रोस्कोपी; शोधकार्य जारी
- 4. सौमेन मंडल; ऑप्टिकल बीम शिफ्ट; शोधकार्य जारी
- 5. सौम्यदीप्त चक्रवर्ती; कैविटी रिंग-डाउन स्पेक्ट्रोस्कोपी; शोधकार्य जारी
- 6. इन्द्रायणी पात्र; उच्च-रिज़ॉल्यूशन आणविक स्पेक्ट्रोर-कोपी; शोधकार्य जारी
- 7. विशाल अग्रवाल; नैनो सामग्री; थीसिस प्रस्तृत की गई; प्रो. अरूप कुमार रायचौधरी (सह-पर्यवेक्षक)

ख) पोस्ट डॉक्स

- 1. जयेता बनर्जी; सतह प्लासमॉन अनुनाद
- 2. पृष्पेंद् बारिक; इवेनसेंट-वेव कैविटी रिंग-डाउन स्पेक्ट्रोस्कोपी
- 3. कौशिक विश्वासः; गृहा-संवर्धित अवशोषण स्पेक्ट्रोस्कोपी

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. सौविक प्रमाणिक; गृहा-संवर्धित अवशोषण स्पेक्ट्रोस्कोपी

शिक्षण/ अध्यापन

1. वसंत सत्र; परियोजना अनुसंधान III (पीएचवाई 401); एकीकृत पीएचडी: 1 छात्र

प्रकाशन

क) ज़र्नल में

- 1. अधेंदु पाल, सौम्यदिप्त चक्रवर्ती, विश्वजीत पांडा, **माणिक** प्रधान, एल्यूसिडेटिंग Λ -डाउटलेट स्प्लिटंग्स एंड रोटेशनल क्वांटम नंबर-डिपेंडेंट कॉलिजनल बॉडिनंग्स इन $^2\prod_{1/2}$ एंड $^2\prod_{3/2}$ स्पिन-स्प्लिट सब बैंड्स ऑफ़ NO ऐट $5.2~\mu m$, ज़र्नल ऑफ़ मॉलिक्यूलर स्पेक्ट्रॉस्कोपिक, 391, 111719, 2023
- 2. जयता बनर्जी और माणिक प्रधान, 2डी-टीएमडीसी-एन्हांस्ड कंडेंस्ड फेज़ कैविटी रिंग-डाउन स्पेक्ट्रोस्कोपी कपल्ड विथ सर्पेस प्लासमॉन फॉर इंवेस्टिगेशन ऑन वाटर आइसोटोपोलॉग्स, ऑप्टिक्स कम्युनिकेशंस, 527, 128956, 2023
- 3. बिस्वजीत पांडा, अर्धेंद् पाल, सौम्यदिप्त चक्रवर्ती और माणिक प्रधान, ऐन ईसी-क्यूसीएल बेस्ड ड्युअल स्पीसीज (CH/N₂O) डिटेक्शन मेथड ऐट 7.8 µm इन मीड-आईआर रिजन फॉर सायमलटेनिअस ऐपलीकेशन ऑफ़ ऐटमोसफेरिक मॉनिटरिंग ऐंड ब्रिथ डायग्नोस्टिक्स, इफ्रारेड फिजिक्स एंड टेक्नोलॉजी , 125, 104261, 2022
- 4. आकाश दास, सौमेन मंडल, और **माणिक प्रधान**, सिग्नेचर ऑफ़ द फोटोनिक स्पिन हॉल इफेक्ट इन मोनोलेयर MoS्र वाया विक मेजरमेंट, जर्नल ऑफ़ द ऑप्टिकल सोसाइटी ऑफ़ अमेरिका बी, 39(7), 1822, 2022
- 5. देवदास कर्माकर, स्जॉय कुमार मंडल, सुमना पॉल, सप्तर्षि पाल, माणिक प्रधान, सृजॉय दत्ता और देबनारायण जाना, वन-स्टेप हायड्रोथर्मल सिंथेसिस ऑफ़ Sb2WO6 नैनोपार्टिकल टूवार्ड्स

- एक्सीलेंट एलईडी लाइट ड्राइवेन फोटोकैटलिटिक डाय डिग्रेडेशन, एप्लाइड फिजिक्स ए, 128, 689, 2022
- 6. जयता बनर्जी, स्दीप मंडल, और माणिक प्रधान, पोलरायजेशन-मल्टीप्लेक्स्ड इनकोहियरेंट ब्रॉडबैंड सर्फेस प्लासमीन रेसोनेंस: अ न्यू एनालिटिकल स्ट्रेटजी फॉर प्लासमोनिक सेंसिंग, एनालिटिकल केमेस्ट्री, 94, 6689, 2022

ख) सम्मेलन कार्यवाही/ रिपोर्ट/ मोनोग्राफ/ पुस्तकें

1. पी. बारिक और एम. प्रधान (2022)। ऑल-ऑप्टिकल डिटेक्शन ऑफ़ बायोकम्पैटिबल क्वांटम डॉटस इन: बारिक. पी., मंडल, एस. (संस्करण) जीव विज्ञान और चिकित्सा में क्वांटम डॉट्स का अनुप्रयोग। स्प्रिंगर, सिंगापुर (2022)

प्रतिष्ठित सम्मेलन/संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. केमिकल रिसर्च सोसाइटी ऑफ इंडिया (सीआरएसआई) और कल्याणी विश्वविद्यालय द्वारा रासायनिक विज्ञान में उभरते आयामों पर राष्ट्रीय सम्मेलन (ईडीसीएस-23); मार्च 28, 2023; कल्याणी विश्वविद्यालय; 28-29 मार्च, 2023
- 2. बिट्स पिलानी, गोवा, भारत में इंडियन सोसाइटी फॉर रेडिएशन एंड फोटोकैमिकल साइंसेज (आईएसआरएपीएस) द्वारा विकिरण और फोटोकैमिर-ट्री पर 15वीं राष्ट्रीय संगोष्ठी (एनएसआरपी-2023); 5 जनवरी 2023; बिट्स पिलानी, गोवा; 5-7 जनवरी, 2023
- 3. टीआरएल 6 और उससे ऊपर की प्रौद्योगिकियों के तकनीकी-वाणिज्यिक मुल्यांकन पर टीआईएफएसी-डीएसआईआर-आईआईसीबी संयुक्त कार्यशाला, 2023, आईआईसीबी कोलकाता, भारत; सितम्बर 23, 2022; आईआईसीबी, कोलकाता; 23 सितंबर, 2022
- 4. इंडियन एसोसिएशन फॉर द कल्टीवेशन ऑफ साइंसेज (आईएसीएस) और केमिकल रिसर्च सोसाइटी ऑफ इंडिया (सीआरएसआई), कोलकाता, भारत द्वारा रासायनिक विज्ञान पर एक दिवसीय संगोष्ठी; जून 4, 2022; आईएसीएस, कोलकाता; 04 जून, 2022
- 5. सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र, कोलकाता, भारत में भौतिकी में सी.के. मजूमदार मेमोरियल कार्यशाला 2022 (सीकेएमएमडब्ल्यूपी 2022); जुलाई 12, 2022; एसएनबीएनसीबीएस; 12-21 जुलाई, 2022

प्रशासनिक कर्तव्य

- कार्य समिति के सदस्य
- आरक्षण प्रकोष्ठ के सदस्य

3. विभिन्न साक्षात्कार एवं थीसिस समिति के सदस्य

पेटेंट प्राप्त किया और इस प्रक्रिया में हुई प्रगति संबंधी विवरण

- 1. "(नाइट्रिक ऑक्साइड) की कोई गैस नहीं होने का चयनात्मक पता लगाने के लिए एक गैस-सेंसिंग प्रणाली और इसे बनाने की एक विधि।" पेटेंट हियरिंग रिपोर्ट प्रस्तुत करना और 23/03/2023 को नए रूप से दर्ज की गई; ई-154/730/2023/केओएल; अनुप्रयुक्त
- "किसी विषय की हेमोडायलिसिस प्रभावकारिता की निगरानी के लिए एक प्रणाली"। पेटेंट स्नवाई रिपोर्ट प्रस्तुत करना और 16/02/2023 को नए रूप से दर्ज की गई; ई-46/272/2023/ केओएल; अनुप्रयुक्त

लर्निड सोसायटी की सदस्यता

- 1. रॉयल सोसाइटी ऑफ केमिस्ट्री (एफआरएससी), लंदन, यूके के फेलो
- 2. इंस्टीट्यूट ऑफ फिजिक्स (FInstP), लंदन, यूके के फेलो
- लिनियन सोसाइटी ऑफ लंदन (एफएलएस), यूके के फेलो
- 4. केमिकल रिसर्च सोसायटी ऑफ इंडिया के सदस्य
- 5. भारतीय भौतिकी संघ के सदस्य
- इंडियन लेजर एसोसिएशन के सदस्य
- 7. इंडियन सोसाइटी ऑफ केमिस्ट्स एंड बायोलॉजिस्ट के सदस्य
- भारत में मध्मेह के अध्ययन के लिए रिसर्च सोसायटी के सदस्य
- 9. अमेरिकन एसोसिएशन फॉर द एडवांसमेंट ऑफ साइंस के सदस्य

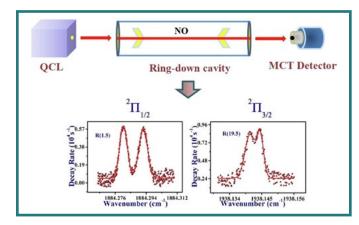
बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

1. ऊर्ध्वाधर रूप से संरेखित नैनोवायरों या बाइनरी ऑक्साइड के नैनोट्यूब की वृद्धि और उनके द्वारा गैसों के समस्थानिक विभाजन की भौतिकी को समझना; सर्ब; 2018-2022; सह पीआई

राष्ट्रीय/अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

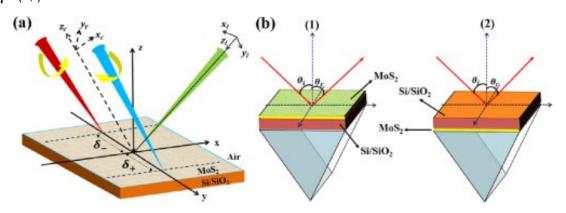
1. डी. करमाकर, एस. मंडल, एस. पॉल, एस. पाल, एम. प्रधान, एस. दत्ता, डी. जाना, "उत्कृष्ट एलईडी प्रकाश संचालित फोटोकैटलिटिक डाई डिग्रेडेशन की दिशा में Sb2WO6 नैनोकण का एक-चरण हाइड्रोथर्मल संश्लेषण": एप्लाइड फिजिक्स ए, 128, 777 (2022); क्र.सं. पाँच; राष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/प्रतिभागिता


टीआरएल 6 और उससे ऊपर की प्रौद्योगिकियों के तकनीकी-वाणिज्यिक मूल्यांकन पर टीआईएफएसी-डीएसआईआर-आईआईसीबी संयुक्त कार्यशाला, 23 सितंबर, 2023, आईआईसीबी कोलकाता, भारत

अनुसंधान क्षेत्र

प्रायोगिक लेजर स्पेक्ट्रोस्कोपी, प्रकाशिकी और फोटोनिक्स, विश्लेषणात्मक और भौतिक रसायन विज्ञान


1. नाइट्रिक ऑक्साइड के Λ -डबल स्प्लिटिंग की उच्च-रिज़ॉल्यूशन स्पेक्ट्रोस्कोपिक जांच:

नाइट्रिक ऑक्साइड (NO) की उच्च-रिज़ॉल्यूशन वाली रो-वाइब्रेशनल स्पेक्ट्रोस्कोपिक विशेषताएं नाइट्रोजन परमाणु के अयुग्मित इलेक्ट्रॉन और गैर-शून्य परमाणु स्पिन के कारण विशेष रूप से दिलचस्प हैं। यहां, बाह्य-गुहा क्वांटम कैस्केड लेजर (ईसी-क्यूसीएल) विकिरण स्रोत के साथ मिलकर अल्ट्रा-सेंसिटिव कैविटी रिंग-डाउन स्पेक्ट्रोस्कोपी (सीआरडीएस) को (2∏1/2 - 2∏1/2) और (2∏3/2 - 2∏3/2) में ई और एफ घटक जो 5.2 μ m के करीब NO अणु के ν = 1 ← 0 मौलिक कंपन बैंड के उप-बैंड की अनुमित देते हैं के पैरिटी डबलट के बीच घूर्णी रूप से हल की गई बारीक संरचना Λ -डबल विभाजन को मापने के लिए नीचे दिए गए चित्र के अनुसार नियोजित किया गया था। इसके बाद, हमने स्पिन-ऑर्बिट इंटरैक्शन से जुड़े NO के अध्ययन किए गए स्पिन-स्प्लिट उप-बैंड के विभिन्न आर-शाखा घूर्णी रेखाओं (जे = 0.5 से 23.5) की जांच करके ई और एफ दोनों Λ -डबल घटकों के लिए Λ -दोहरीकरण स्थिरांक, कंपन संक्रमण द्विध्र्व क्षण और हरमन-वालिस गुणांक जैसे कई प्रमुख स्पेक्ट्रोस्कोपिक पैरामीटर निर्धारित किए। इसके अलावा, हमने कमरे के तापमान (296 K) पर तीन महत्वपूर्ण गड़बड़ी गैसों के साथ टकराव में Λ -डबल विभाजन पर दबाव बढ़ाने वाले प्रभाव का प्रदर्शन किया और दबाव विस्तार गुणांक, γi (e,f) को सेमी-1atm-1 में सटीक रूप से निर्धारित किया [(i = He, Ar और शून्य हवा (मुख्य रूप से N2 + O2)] घूर्णी क्वांटम संख्या (J) पर उनकी निर्भरता के साथ। हमने स्पष्ट टकराव-प्रेरित घूर्णी क्वांटम प्रभाव और घूर्णी इनल के परिणाम को देखा। प्रत्येक टकराव भागीदार के लिए सिस्टम में एस्टिक टकराव। ईसी-क्यूसीएल आधारित सीआरडीएस विधि के माध्यम से 33 आरओ-कंपन संक्रमणों पर इन सभी मापे गए उच्च-रिज़ॉल्यूशन वाले नए स्पेक्ट्रोस्कोपिक पैरामीटर इस डायटोमिक एनओ अणु के मौलिक आणविक गुणों की व्याख्या करने में महत्वपूर्ण रूप से मदद करेंगे।

2. क्वांटम कमजोर माप के माध्यम से फोटोनिक स्पिन हॉल प्रभाव:

हमने एक वीक माप योजना के माध्यम से मौलिक गॉसियन बीम के लिए मोनोलेयर MoS2 में फोटोनिक स्पिन हॉल शिफ्ट (PSHS) के प्रत्यक्ष प्रयोगात्मक साक्ष्य का अवलोकन किया, जिसमें निश्चित पूर्व-चयन और चयन-पश्चात स्पिन अवस्थाएं शामिल हैं जैसा कि नीचे दिए गए चित्र में दिखाया गया है। हमने पाया कि PSHS काफी हद तक घटना के कोण, चयन के बाद के कोण और ध्रवीकरण की स्थिति के साथ-साथ MoS2 सतह के साथ प्रकाश की बातचीत के विशिष्ट तरीकों पर निर्भर है। हमारे निष्कर्षों से कोणीय स्थितियों को जोड़ने वाले एक अद्वितीय हस्ताक्षर का पता चलता है, जिस पर स्पिन हॉल शिफ्ट (एसएचएस) (शून्य क्रॉसिंग) प्रतिबिंब गुणांक

के चरण अंतर में असंतोष के साथ प्रकाश के ज्यामितीय चरणों के साथ पीएसएचएस का कनेक्शन स्थापित करता है। प्रयोगात्मक माप की पृष्टि के लिए एक प्रभावी सैद्धांतिक मॉडल लागू किया जाता है। यह मोनोलेयर MoS2 में छोटे स्पिन-निर्भर विभाजन के बारे में हमारी समझ को गहरा करता है. जो फोटोनिक स्पिन हॉल प्रभाव के व्यावहारिक अनुप्रयोगों के लिए एक नया मार्ग खोलता है।

परियोजना सहित भविष्यत कार्य की योजना

1. 1. विभिन्न 2डी-सामग्रियों में कोणीय गति पर निर्भर ऑप्टिकल बीम शिफ्ट का अध्ययन करने के लिए एक नई क्वांटम वीक माप (क्यूडब्ल्यूएम) तकनीक का विकास

2. उच्च-रिज़ॉल्यूशन आणविक स्पेक्ट्रोस्कोपी के माध्यम से गैस-चरण में परमाणु स्पिन-आइसोमर्स और स्पिन-रसायन विज्ञान की मौलिक समझ

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

1. विभिन्न गैस्ट्रिक विकारों के गैर-आक्रामक निदान और वर्गीकरण के लिए एक पैटर्न-पहचान आधारित क्लस्टरिंग दृष्टिकोण विकसित किया गया है।

मनोज मंडल

रामलिंगास्वामी री-एंट्री फेलो रासायनिक और जैविक विज्ञान m.mandal@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. श्वेता शिवकुमार; मानव ACE2 के प्रति SARSCovid रिसेप्टर बाइंडिंग डोमेन की बाइंडिंग एफिनिटी पर उत्परिवर्तन का प्रभाव: एक आणविक सिमुलेशन दृष्टिकोण
- 2. नीरव्र चक्रवर्ती: प्रोटीन संरचना और कार्य की पहचान करने के लिए मशीन लर्निंग का अनुप्रयोग

शिक्षण/ अध्यापन

- 1. वसंत सत्र 2023; जैविक भौतिकी; आईपीएचडी; 3 छात्र
- 2. वसंत सत्र 2023; बायोफिज़िक्स के मूल सिद्धांत; पीएचडी; 2 छাत्र

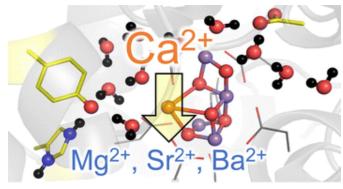
प्रकाशन

क) ज़र्नल में

- 1. मनोज मंडल, कीस्के सैटो और हिरोशी इशिता, सब्सिटिट्युशन ऑफ़ Ca²+ एंड चेंजेज इन द एच-बॉन्ड नटवर्क नियर द ऑक्सिजन-इवॉल्विंग कॉम्प्लेक्स ऑफ़ फोटोसिस्टम II, फिजिकल केमेस्ट्री केमिकल फिजिक्स, 25, 6473, 2023
- 2. **मनोज मंडल**, कीसुके सैटो, और हिरोशी इशिता, रिलिज ऑफ़ अ प्रोटॉन एंड फॉर्मेशन ऑफ़ अ लो-बैरियर हायड्रोजन बॉन्ड बीटवीन टायरोसिन डी एंड डी2-His189 इन फोटोसिस्टम II. एसीएस फिजिकल केमिस्ट्री एयू, 2, 423, 2022
- 3. मनोज मंडल, कीस्के सैटो और हिरोशी इशिता, रिलीज ऑफ़ इलेक्ट्रॉन एंड फोटॉन फ्रॉम सब्स्ट्रेट वाटर मॉलिक्युल्स ऐट द ऑक्सिजन-इवॉल्लिंग कंप्लेक्स इन फोटोसिस्टम II, जर्नल ऑफ द फिजिकल सोसाइटी ऑफ जापान, 91, 091012, 2022

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. एक ट्रॉपिकल अनुसंधान विद्यालय में "सैद्धांतिक और प्रयोगात्मक भौतिकी में अनुसंधान के हालिया रुझान" पर आमंत्रित वार्ता; शीर्षक: जीव विज्ञान में भौतिकी और रसायन विज्ञान के अनुप्रयोग; 21 मार्च, 2023; गुरुचरण कॉलेज, सिलचर, असम; 20-23 मार्च, 2023
- 2. 16 जनवरी, 2023 को आईआईएससी बैंगलोर में आमंत्रित वार्ता; शीर्षकः फोटोसिस्टम् ॥ में जल ऑक्सीकरण तंत्र और प्रोटॉन युग्मित इलेक्ट्रॉन स्थानांतरण प्रतिक्रियाएं; 16 जनवरी, 2023; आईआईएससी बैंगलोर: 16 जनवरी 2023
- 3. एनआईटी मेघालय और एनईएचयू, शिलांग द्वारा संयुक्त रूप से आयोजित "रसायन विज्ञान में हालिया प्रगति: सैद्धांतिक और कम्प्यूटेशनल पहलू 2022" पर एक सम्मेलन में आमंत्रित वार्ता; शीर्षक: प्रोटॉन युग्मित इलेक्ट्रॉन स्थानांतरण प्रतिक्रियाओं में निम्न-अवरोधक एच-बॉन्ड की भूमिका; 20 नवंबर, 2022; नेहू, शिलांग; 18-20 नवंबर, 2022


अनुसंधान क्षेत्र

- (i) क्वांटम यांत्रिकी/आण्विक यांत्रिकी (क्यूएम/एमएम)
- (ii) प्रोटॉन-युग्मित इलेक्ट्रॉन स्थानांतरण

- (iii) जल ऑक्सीकरण उत्प्रेरण
- (iv) प्रोटीन संरचना, कार्य और गतिशीलता
- (v) मशीन लर्निंग

ऑक्सीजन का विकास फोटोसिस्टम II (PSII) में Mn4CaO5 क्लस्टर के उत्प्रेरक केंद्र पर होता है। Mn4CaO5 क्लस्टर में पाँच O परमाणु हैं, O1 से O5; Mn4 साइट पर दो लिगैंड जल अण्, W1 और W2; और Ca साइट पर दो अतिरिक्त पानी के अण्, W3 और W4। दो सब्सट्रेट पानी के अणुओं को O2 में परिवर्तित करने के लिए, चार इलेक्ट्रॉनों और चार प्रोटॉन को हटाया जाना चाहिए। जैसे-जैसे इलेक्ट्रॉन स्थानांतरण होता है, ऑक्सीजन विकसित करने वाले कॉम्प्लेक्स, एसएन की ऑक्सीकरण अवस्था बढ़ जाती है। S0 ightarrow S1 ightarrow S2 ightarrow S3 ightarrowSO के लिए प्रोटॉन का उत्सर्जन 1:0:1:2 की विशिष्ट स्टोइकोमेट्री के साथ देखी जाती है, और O2 S3 से S0 ट्रांजिशन में विकसित होता है। S0 से S1 संक्रमण में इलेक्ट्रॉन रिलीज़ दर-सीमित चरण है, जबकि प्रोटॉन रिलीज S2 से S3 संक्रमण में दर-सीमित चरण है।

Ca2+, जो Mn4CaO5 क्लस्टर में लिगैंड जल अणुओं W3 और W4 के लिए बाइंडिंग साइट प्रदान करता है, फोटोसिस्टम II (PSII) में O2 विकास के लिए एक शर्त है। Ca2+-क्षीण PSII में S2 से S3 ट्रांजिशन बाधित होता है। Ca2+ की कमी न केवल Mn4O5 और TyrZ मोइटीज़ पर H-बॉन्ड नेटवर्क में परिवर्तन का कारण बनती है, बल्कि H-बॉन्ड नेटवर्क में पानी के अण्ओं के पुनर्संरचना के कारण TyrZ की रेडॉक्स क्षमता (Em) में भी काफी कमी आती है, जिससे इलेक्ट्रॉन Mn4CaO5 क्लस्टर से TyrZ ऊपर की ओर स्थानांतरण होता है। Sr2+ को छोड़कर किसी भी धातु के साथ Ca2+ का प्रतिस्थापन O2 विकास को रोकता है, हालांकि निषेध तंत्र धातुओं पर निर्भर हो सकता है। फुरियर ट्रांसफॉर्म इंफ्रारेड (एफटीआईआर) अध्ययनों से पता चला है कि सीए2+ को एमजी2+ और एसआर2+ के साथ प्रतिस्थापित करने पर दोहरा अंतर एस2/एस1 स्पेक्ट्रम महत्वपूर्ण रूप से प्रभावित नहीं हुआ, जबिक कार्बीक्जलेट लिगैंड अवशेषों के कंपन मोड बीए2+ के साथ प्रतिस्थापन पर गायब हो गए। Mg2+ और Ba2+ के Ca2 के साथ प्रतिस्पर्धात्मक रूप से जुड़ने की संभावना नहीं है। यद्यपि Ca2+ की त्रिज्या प्रमुख कारकों में से एक है, यह स्पष्ट नहीं है कि क्षारीय पृथ्वी धात्ओं के बीच O2-विकसित गतिविधि के लिए Ca2+ की कौन सी गुण विशेष रूप से आवश्यक है। Ca2+-PSII की विशिष्टता और Mg2+-PSII और Ba2+-PSII की अप्रासंगिकता को समझने के लिए, हमने ओपन-क्यूबेन S2 फॉर्म में धातु-प्रतिस्थापित Mn4MO5 क्लस्टर (M = Mg2+, Sr2+, और Ba2+) की स्थानीय ज्यामिति की जांच की। देशी Ca2+-PSII क्रिस्टल संरचना के आधार पर क्वांटम मैकेनिकल/ आणविक मैकेनिकल (QM/MM) दृष्टिकोण अपनाना।

Mg2+ की छोटी त्रिज्या W3 को Mg2+-PSII में W4 को H-बॉन्ड डोनेट करती है। यदि एक अतिरिक्त पानी का अण् Ba2+ की बड़ी सतह पर बंधता है, तो यह D1-Glu189 के साथ H-बॉन्ड और लटकते Mn पर लिगैंड पानी के अण् को डोनेट करता है, जिससे H-बॉन्ड नेटवर्क बदल जाता है। उल्लेखनीय रूप से, O5...Ca2+ की दूरी सभी O5... धात् दूरियों में सबसे कम है, भले ही त्रिज्या Mg2+ से बड़ी हो। इसके अलावा, Ca2+ एकमात्र क्षारीय पृथ्वी धातु है जो O5...धातु और O2...धात् की दूरी को बराबर करती है और सममित क्यूबेन संरचना के निर्माण की स्विधा प्रदान करती है।

परियोजना सहित भविष्यत् कार्य की योजना

Mn4CaO5 क्लस्टर की हाल ही में बेहतर हुई समझ एक अधिक जटिल तस्वीर बनाती है और PSII में पानी के ऑक्सीकरण और प्रोटॉन युग्मित इलेक्ट्रॉन स्थानांतरण की यंत्रवत समझ के बारे में कोई आम सहमति नहीं है। क्या ओईसी से प्रोटॉन का विमोचन इलेक्ट्रॉन स्थानांतरण से पहले होता है या एक साथ होता है, इस पर बहस चल रही है। उतार-चढ़ाव वाले जैविक पाड़ द्वारा इलेक्ट्रॉन और प्रोटॉन स्थानांतरण को कैसे समर्थित किया जाता है? प्रोटॉन और इलेक्ट्रॉन स्थानांतरण में विशिष्ट अवशेषों की क्या भूमिका है? क्या इलेक्ट्रॉन प्रवाह स्थिर एक-आयामी पथ या गतिशील त्रि-आयामी नेटवर्क का अनुसरण करता है? संरचना, एम मूल्यों को ध्यान में रखते हुए और प्रयोगात्मक परिणामों के साथ उनकी तुलना करने पर, ओईसी के एस 2, एस 3 और एस 4 राज्यों की सटीक संरचना की उम्मीद की जा सकती है, जिन्हें बहुत कम समझा जाता है। S से S संक्रमण तंत्र और S अवस्था के निष्कर्षों का S और S के बींच अवंलोकित मध्यवर्ती <u>अवस्थाओं के संभावित समाधान पर सीधा प्रभाव पड़ेगा।</u> TryZ और PD1 एक दूसरे से बहुत दूर हैं और इलेक्ट्रॉनिक रूप से युग्मित नहीं होते हैं, OEC और TyrZ के लिए भी यही सच है लेकिन मध्यवर्ती इलेक्ट्रॉन वाहक (मार्ग) और तंत्र अभी भी अज्ञात हैं। क्या सुपरएक्सचेंज इलेक्ट्रॉन स्थानांतरण है? दो शाखाओं के बीच छद्म-सी2 समरूपता के बावजूद, इलेक्ट्रॉन स्थानांतरण मुख्य रूप से डी1-शाखाओं के साथ क्यों होता है, डी2-शाखाओं के साथ नहीं? हम निकट भविष्य में इन सवालों का जवाब देने की पूरी कोशिश करना चाहेंगे।

प्रदीप एस पचफुले सहायक प्रोफेसर रासायनिक और जैविक विज्ञान ps.pachfule@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पीएच.डी. छात्र

- 1. विकास चंद्र मिश्रा; दृश्यमान प्रकाश प्रेरित फोटोकैटलिसिस के लिए कार्यात्मक सहसंयोजक कार्बनिक फ्रेमवर्क (सीओएफ); शोधकार्य जारी
- 2. विधान कुम्भकार; जल विभाजन के लिए धातू युक्त सहसंयोजक कार्बनिक ढाँचे: शोधकार्य जारी

ख) पोस्ट-डॉक्स

- 1. अख्तर आलम; टेट्राहेड्रल सिलसेक्विओक्सेन फोटोकैटलिटिक हाइड्रोजन उत्पादन के लिए एकीकृत तीन आयामी सहसंयोजक कार्बनिक फ्रेमवर्क
- 2. उपासना दास; स्तन कैंसर स्टेम कोशिकाओं को लक्षित करने के लिए थेरानोस्टिक्स के रूप में क्रिस्टलीय फ्रेमवर्क-आधारित चुंबकीय नैनोकम्पोजिट्स के एक समूह का विकास

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. इशिता घोष; जल-विभाजन के लिए ओलेफिन-लिंक्ड सहसंयोजक कार्बनिक फ्रेमवर्क (सीओएफ)

शिक्षण/ अध्यापन

- 1. वसंत सत्र; सीबी 641: सतहें और इंटरफेस; पीएचडी; 04 छात्र; डॉ. अली हुसैन खान (सह-शिक्षक) के साथ
- 2. वसंत सत्र; PHY 491: प्रायोगिक भौतिकी के तरीके; एकीकृत पीएचडी; 09 छात्र; प्रोफेसर कल्याण मंडल, डॉ. रामकृष्ण दास और डॉ. नितेश कुमार (सह-शिक्षक) के साथ

प्रकाशन

क) ज़र्नल में

- 1. माइकल ट्रैक्सलर, सेबेस्टियन गिस्बर्ट्ज, प्रदीप पचफुले, जोहान्स श्मिट, जेरोम रोसेर, स्ज़ैन रीस्चौएर, जाबोर रबिया, बार्थोलोमस पीबर, अर्ने थॉमस, एक्रिडिन-फंक्शनलाइज कोवेलेंट ऑर्गेनिकफ्रेमवर्क (COFs) ऐज फोटोकैटलिस्ट फॉर मेटलाफोटोकैटलिटिक सी-एन क्रॉस-कपलिंग. एंजवेन्टे केमी. 61. e202117738, 2022
- 2. ज़ियाओजिया झाओ, कुन ली, प्रदीप पचफुले, ज़िया वांग, शियिन लियू, वीजियन वू, मिंगिक्संग वू, अर्ने थॉमस, कंस्ट्रक्शन ऑफ़ कोवेलेंट ऑर्गेनिक फ्रेमवर्क नैनोफाइबर मेम्ब्रेन्स फॉर एफिसिएंटएडसॉप्शन ऑफ़ एंटीबॉयोटिक्स, स्मॉल, 2301200, 2023

प्रतिष्ठित सम्मेलन/ संस्थानों में आयोजित वार्ता/ सेमिनार

- 1. मेटल-ऑर्गेनिक फ्रेमवर्क और ओपन फ्रेमवर्क कंपाउंड पर 8वां अंतर्राष्ट्रीय सम्मेलन; सितम्बर 6, 2022; ड्रेसडेन, जर्मनी; 20 मिनट
- 2. उन्नत सामग्री: उभरती प्रवृत्ति और भविष्य की संभावनाएँ; 9 जनवरी, 2023; पंडित दीनदयाल ऊर्जा विश्वविद्यालय, गांधीनगर, गुजरात; 45 मिनटों
- 3. एडवांस्ड इंस्ट्रमेंटेशन (एमडी) में ऑनलाइन रिफ्रेशर कोर्स; सितम्बर 22, 2022; डॉ. बाबासाहेब अम्बेडकर मराठवाड़ा विश्वविद्यालय, औरंगाबाद, महाराष्ट्र; 60 मिनट

प्रशासनिक कर्तव्य

- 1. विभिन्न प्रयोगशालाओं में प्रयुक्त रसायनों के निपटान पर विचार करने के लिए गठित 'खतरनाक रसायन निपटान समिति' के सदस्य
- 2. प्रत्येक अनुसंधान समूह की गतिविधियों को अनुसंधान समूह का नेतृत्व करने वाले संकाय के कार्यालय से सटे दीवार पर प्रदर्शित किए जाने वाले पोस्टर के रूप में प्रस्तुत करने के लिए स्थापित 'पोस्टर समिति' के सदस्य

प्रस्कार/ मान्यताएँ

1. रसायन विज्ञान और सामग्री विज्ञान में दुनिया के शीर्ष 2% वैज्ञानिकों की स्टैनफोर्ड यूनिवर्सिटी की वैश्विक सूची में सूचीबद्ध (2022)

लर्निड सोसायटी की सदस्यता

1. महाराष्ट्र एकेडमी ऑफ साइंसेज के यंग एसोसिएट: रासायनिक विज्ञान के क्षेत्र में महत्वपूर्ण योगदान के लिए, महाराष्ट्र एकेडमी ऑफ साइंसेज के यंग एसोसिएट के रूप में सम्मानित किया गया, जो विज्ञान और प्रौद्योगिकी को बढ़ावा देने के विशिष्ट उद्देश्य के साथ 1976 में स्थापित एक प्रमुख वैज्ञानिक समाज है। 'यंग एसोसिएट' का चयन एक कठीन प्रक्रिया है जिसके लिए आवेदक के पास संबंधित अनुसंधान क्षेत्र में महत्वपूर्ण योगदान और प्रकाशन रिकॉर्ड होना चाहिए।

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

1. एसईआरबी-एसआरजी अनुदान: हाइड्रोजन उत्पादन के लिए फोटोकैटलिटिक जल विभाजन के लिए ओलेफिन-लिंक्ड सहसंयोजक कार्बनिक फ्रेमवर्क (सीओएफ); विज्ञान एवं इंजीनियरिंग अनुसंधान बोर्ड (एसईआरबी); 24 माह; पीआई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

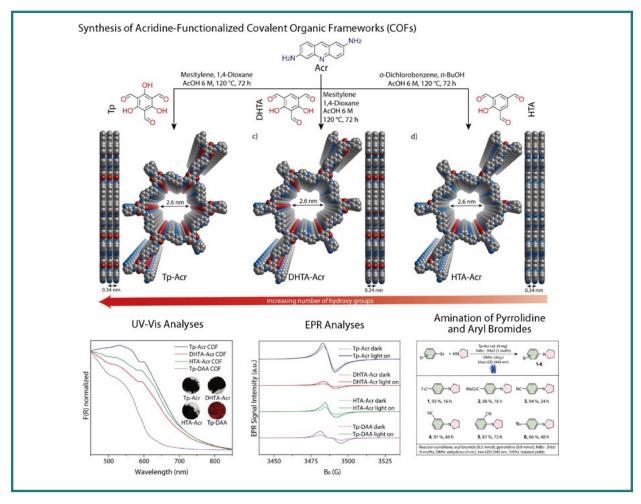
1. MOF-2022 युवा अन्वेषक संगोष्ठी (YIS); सितम्बर 2, 2022; ड्रेसडेन, जर्मनी; दो दिन

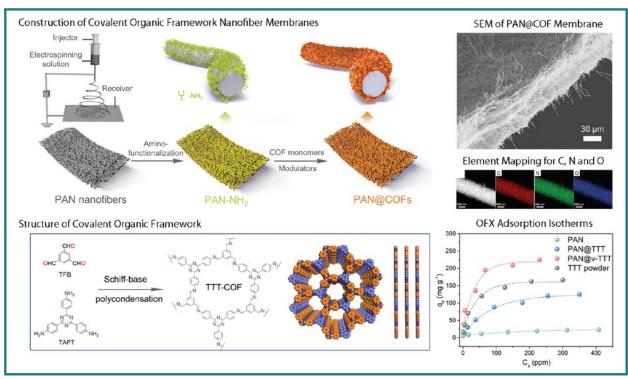
राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

1. प्रो. अर्ने थॉमस, तकनीकी विश्वविद्यालय बर्लिन, जर्मनी; सहयोग का प्रकार: फोटोकैटलिटिक जल विभाजन और सामग्रियों का निरूपण; क्र.सं. नंबर 1, 2; अंतरराष्ट्रीय

- 2. डॉ. बार्थीलोमस पीबर, मैक्स प्लैंक इंस्टीट्यूट ऑफ कोलॉइड्स एंड इंटरफेसेस, पॉट्सडैम, जर्मनी; सहयोग का प्रकार: फोटोकैटलिटिक जैविक परिवर्तन; क्र.सं. नंबर 1; अंतरराष्ट्रीय
- डॉ. जिओजिया झाओ, हेबेई नॉर्मल यूनिवर्सिटी, शिजियाझुआंग, चीन; सहयोग का प्रकार: सामग्रियों का संश्लेषण और जल विभाजन प्रयोग; क्र.सं. नंबर 2; अंतरराष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता


1. एससी/एसटी समुदायों के छात्रों के लिए आउटरीच कार्यक्रम संचालित करने के लिए गठित 'वीएएसपी के तहत एससी/एसटी समुदायों के छात्रों के लिए आउटरीच कार्यक्रम' समिति के सदस्य


अनुसंधान क्षेत्र

सहसंयोजक कार्बनिक फ्रेमवर्क (सीओएफ), छिद्रित कार्बन, ऊर्जा भंडारण, जल विभाजन, विषम उत्प्रेरण, फोटोकैटलिसिस

सहसंयोजक कार्बनिक ढांचे (सीओएफ) संरचनात्मक रूप से ट्यून करने योग्य, छिद्रपूर्ण और क्रिस्टलीय सामग्री हैं जो प्राथमिक इकाइयों के रूप में छोटे कार्बनिक भवन ब्लॉकों के सहसंयोजक लगाव द्वारा बनाई जाती हैं। ऐसे असंख्य बिल्डिंग ब्लॉक्स का उपयोग करते हुए, विभिन्न प्रकार के अनुप्रयोगों के लिए सीओएफ संश्लेषण में कार्यात्मकताओं की एक विस्तृत श्रृंखला लागू की गई है, जिसमें विषम कटैलिसीस भी शामिल है। धातु-फोटोकैटलिटिक सी-एन क्रॉस-कपलिंग के लिए सीओएफ के अनुप्रयोगों का पता लगाने के लिए - दवाओं के संश्लेषण के लिए एक महत्वपूर्ण प्रतिक्रिया - हमने एक उपन्यास एक्रिडीन लिंकर और बेंजीन-1,3 का उपयोग करके छिद्रपूर्ण और क्रिस्टलीय सीओएफ के एक नए परिवार के संश्लेषण की जांच की है। 5-ट्राइकार्बाल्डिहाइड डेरिवेटिव जिसमें हाइड्रॉक्सी समूहों की एक चर संख्या होती है (चित्र 1)। दृश्य क्षेत्र में व्यापक अवशोषण और प्रकाश विकिरण पर कट्टरपंथी पीढ़ी के साथ, सीओएफ को धात्-फोटोकैटलिटिक सी-एन क्रॉस-कपलिंग में फोटोकैटलिस्ट के रूप में आगे लागू किया गया था। विकिरण पर बढ़े हुए चार्ज पृथक्करण के कारण पूरी तरह से β-कीटोएनामाइन-लिंक्ड सीओएफ ने उच्चतम गतिविधि दिखाई। सीओएफ ने कई एरिल ब्रोमाइड्स के लिए अच्छी से उत्कृष्ट पैदावार, अच्छी पुनर्चक्रण क्षमता दिखाई और यहां तक कि ऊर्जा स्रोत के रूप में हरी रोशनी की उपस्थित में कार्बनिक परिवर्तन को उत्प्रेरित किया।

सहसंयोजक कार्बनिक ढांचे (सीओएफ) का उत्पादन करने और उन्नत अनुप्रयोगों के लिए उनका पता लगाने के लिए क्रिस्टल इंजीनियरिंग से परे तकनीकें आवश्यक हैं। हालाँकि, COF आमतौर पर अघुलनशील, बिना पिघलने योग्य और इस प्रकार गैर-प्रक्रिया योग्य माइक्रोक्रिस्टलाइन पाउडर के रूप में प्राप्त होते हैं। इसलिए, बडे आर्किटेक्चर में सीओएफ

का कार्यान्वयन और विभिन्न लंबाई के पैमाने पर संरचनात्मक नियंत्रण एक बड़ी चुनौती है। इन मुद्दों को संबोधित करने के लिए, एक प्रतिवर्ती पॉलीकंडेनसेशन समाप्ति दृष्टिकोण (चित्र 2) के माध्यम से पॉलीएक्रिलोनिट्राइल (पैन) नैनोफाइबर सबस्ट्रेट्स पर सीओएफ की इन-सीटू वृद्धि द्वारा लचीली सीओएफ नैनोफाइबर झिल्ली (PAN@ COF) तैयार करने के लिए एक आसान रणनीति का प्रदर्शन किया गया है। ऊर्ध्वाधर रूप से संरेखित COF नैनोप्लेट्स के साथ परिणामी PAN@COF नैनोफाइबर झिल्ली एक बड़े कार्यात्मक सतह क्षेत्र को कुशल जन परिवहन के साथ जोड़ती है, जिससे वे जल शोधन उदाहरण के लिए एक आशाजनक अवशोषक बन जाते हैं। एंटीबायोटिक प्रदूषक ओफ़्लॉक्सासिन (ओएफएक्स) को ~236 मिलीग्राम जी-1 की बेहतर अवशोषण क्षमता और 98% तक की निष्कासन दक्षता के साथ पानी से हटा दिया जाता है। नैनोफाइबर झिल्लियों पर सीओएफ की इन-सीटू वृद्धि को विभिन्न रचनाओं के साथ विभिन्न शिफ बेस-व्युत्पन्न सीओएफ सामग्रियों तक बढ़ाया गया, जिससे विभिन्न अनुप्रयोगों के लिए लचीली सीओएफ-आधारित झिल्लियों के निर्माण का अत्यधिक कुशल तरीका प्रदान किया गया।.

इसके अलावा, हमने CO, से CO में कमी के लिए एक कुशल उत्प्रेरक के रूप में निकल-नाइट्रोजन डोप्ड कार्बन (Ni-N-C) के अनुप्रयोगों का पता लगाया है, जहां एकल-साइट Ni-Nx रूपांकन को सक्रिय साइट माना जाता है। वर्तमान में, समूह लिथियम-सल्फर बैटरी, सुपरकैपेसिटर और फोटोकैटलिटिक जल विभाजन के लिए सहसंयोजक कार्बनिक ढांचे के अनुप्रयोगों की भी जांच कर रहा है।

परियोजना सहित भविष्यत् कार्य की योजना

1. लिथियम-सल्फर बैटरी के लिए सहसंयोजक कार्बनिक ढांचे का संश्लेषण: लिथियम-सल्फर (Li-S) बैटरियां एक आशाजनक वैकल्पिक ऊर्जा स्रोत हैं क्योंकि वे वर्तमान लिथियम-आयन बैटरियों की तुलना में अधिक ऊर्जा घनत्व प्रदान कर सकती हैं। छिद्रपूर्ण सामग्री का उपयोग अक्सर कैथोड सामग्री के रूप में किया जाता है क्योंकि वे ऐसी बैटरियों में सल्फर के लिए मेजबान के रूप में कार्य कर सकते हैं। हाल ही में, सहसंयोजक कार्बनिक ढांचे (सीओएफ) का भी उपयोग किया गया है, लेकिन वे आम तौर पर स्थिरता के मुद्दों से ग्रस्त हैं, जिसके परिणामस्वरूप व्यावहारिक परिस्थितियों और अनुप्रयोगों के तहत सीमित और इस प्रकार अपर्याप्त स्थायित्व होता है। इन सीमाओं को दूर करने के लिए, हम उच्च घनत्व वाले रेडॉक्स साइट के साथ क्रिस्टलीय और झरझरा इमाइन-लिंक्ड ट्राइजीन-आधारित डाइमेथॉक्सीबेंजीन-फंक्शनल सीओएफ के संश्लेषण का प्रस्ताव करते हैं। आवश्यकतानुसार,

क्रिस्टलीयता और सरंध्रता को बनाए रखते हुए, सल्फर-सहायता रासायनिक परिवर्तन विधि का उपयोग करके एक मजबूत थियाज़ोल-लिंक्ड सीओएफ प्राप्त करने के लिए इमाइन लिंकेज को आगे सिंथेटिक रूप से परिवर्तित किया जाएगा। हमारा मानना है कि इसकी उच्च क्रिस्टलीयता, सरंध्रता और रेडॉक्स सक्रिय अंशों की उपस्थिति के सहक्रियात्मक प्रभाव के रूप में, ली-एस बैटरी में कैथोड सामग्री के रूप में लागू होने पर थियाज़ोल-लिंक्ड सीओएफ उच्च क्षमता और दीर्घकालिक स्थिरता प्रदर्शित करेगा।

- 2. स्परकैपेसिटिव ऊर्जा भंडारण के लिए सहसंयोजक कार्बनिक ढांचे का संश्लेषण: सहसंयोजक कार्बनिक ढांचे (सीओएफ) ने हाल ही में अपने दिलचस्प गुणों जैसे कम घनत्व, उच्च सरंध्रता, अच्छी क्रिस्टलीयता और रासायनिक रूप से स्थिर ढांचे में कार्बनिक कार्यात्मक समुहों की एक श्रृंखला को पेश करने की क्षमता के कारण बढ़ती रुचि को आकर्षित किया है। इन गुणों के कारण, विभिन्न कार्यात्मकताओं वाले सीओएफ का विभिन्न अनुप्रयोगों जैसे (फोटो- और इलेक्ट्रो-) कटैलिसीस, पृथक्करण, ऊर्जा भंडारण या दवा वितरण के लिए परीक्षण किया गया है। इस संदर्भ में, हम एक क्रिस्टलीय और छिद्रपूर्ण डाइ्थियोफेनेडियोन-आधारित सीओएफ के संश्लेषण का प्रस्ताव करते हैं, जिसे सुपरकैपेसिटर में इलेक्ट्रोड सामग्री के रूप में लागू किया जाएगा। हमारा मानना है कि सीओएफ बैकबोन में उच्च सरंध्रता, क्रिस्टलीयता और रेडॉक्स-सक्रिय डाइथियोफेनेडियोन मोइटीज़ के संयुक्त प्रभाव के रूप में, लंबे जीवनकाल के साथ उच्च समाई प्राप्त की जा सकती है।
- फोटोकैटलिटिक जल विभाजन के लिए सहसंयोजक कार्बनिक ढांचे का डिजाइन और संश्लेषण: हाइड्रोजन उत्पादन के लिए फोटोकैटलिटिक जल विभाजन को स्वच्छ ऊर्जा की दिशा में ड्राइव के लिए महत्वपूर्ण माना जाता है, लेकिन वर्तमान सामग्रियों की अक्षमताओं के कारण बेहतर फोटोकैटलिस्ट के विकास की आवश्यकता होती है। दक्षताओं में सुधार करने के लिए, हमारा लक्ष्य ऑर्डर किए गए कार्बनिक नेटवर्क सामग्रियों को संश्लेषित करना है - जैसे कि माइक्रोपोरस और पदानुक्रमित रूप से संरचित सहसंयोजक कार्बनिक ढांचे (सीओएफ) - फोटोकैटलिटिक जल विभाजन के लिए विशेष उपयुक्तता के साथ। हमारा मानना है कि ये उन्नत अर्धचालक सामग्रियां दृश्य प्रकाश अवशोषण को बढ़ाएंगी और सब्सट्रेट प्रसार के मुद्दों को दूर करेंगी जो जल विभाजन के प्रदर्शन को सीमित करती हैं, जो जल विभाजन की प्रक्रिया में सीओएफ के नए अनुप्रयोगों की दिशा में एक महत्वपूर्ण कदम का प्रतिनिधित्व करती हैं।

राजीव कुमार मित्रा

प्रोफ़ेसर रासायनिक और जैविक विज्ञान rajib@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. पार्थ पायने; अल्ट्राफास्ट स्पेक्ट्रोस्कोपिक तकनीकों का उपयोग करके कुछ बायोफिजिकल प्रक्रियाओं का अध्ययन; उपाधि प्रदान की गई
- 2. दिधिति भट्टाचार्यः; दो आयामी सामग्रियों का ऑप्टो-इलेक्ट्रॉनिक, इलेक्ट्रिकल और स्पेक्ट्रोस्कोपिक अध्ययन; थीसिस प्रस्तुत की गई; प्रो समित कु. राय (सह-पर्यवेक्षक)
- 3. सुमना पायने; जैविक प्रणालियों में अल्ट्राफास्ट स्पेक्ट्रोस्कोपी का अनुप्रयोग; शोधकार्य जारी
- 4. रिया साहा; प्रोटीन फोल्डिंग अनफोल्डिंग प्रक्रिया और इसकी कैनेटीक्स के साथ-साथ गतिविधि पर विभिन्न क्राउडिंग एजेंटों के प्रभावों पर अध्ययन; शोधकार्य जारी
- 5. सुदीप मजूमदार; नैनोचुम्बकत्व; शोधकार्य जारी; प्रो अंजन बर्मन (सह-पर्यवेक्षक)

- 6. अरित्रा मारिक: विलेय की उपस्थिति में जैव आणविक जलयोजन: शोधकार्य जारी
- 7. शाह इम्ताजुल हक; मेम्ब्रेन हायड्रेशन; शोधकार्य जारी

ख) पोस्ट-डॉक्स

- 1. इंद्राणी भट्टाचार्य: द्विआण्विक जलयोजन
- 2. सुभाष चंद्र मैखल; सीमित वातावरण में अल्ट्राफार-ट प्रक्रियाएं

शिक्षण/ अध्यापन

- 1. ऑट्म सत्र; पीएचवाई 301 (परमाणु और आणविक भौतिकी); एकीकृत पीएचडी; 10 छात्र; प्रोफेसर अंजन बर्मन (सह-शिक्षक) के साथ
- 2. ऑट्म सत्र; सीबी 527 (आण्विक भौतिकी और स्पेक्ट्रोस्कोपी); पीएचडी; 6 छात्र; प्रोफेसर अंजन बर्मन (सह-शिक्षक) के साथ

प्रकाशन

क) ज़र्नल में

- 1. सोनाली मोंडल, सुमना पाइन, पार्थ पाइन, अनिमेष पात्रा, राजीव कुमार मित्रा और सौमेन घोष, इंटरफेशियल स्ट्रक्चर एंड इलेक्ट्रॉस्टेटिस्टिक्स रिलेटेड टू सॉल्यूट एक्टिविटी इन अ मॉडल एनआयनिक-सर्फेंक्टैंट/ पॉलिमर सेल्फ-एसेम्बली, लैंगमुइर, 39, 2850, 2023
- 2. रिया साहा और **राजीव कुमार मित्रा**, थर्मो-रेसिस्टिव फेज़ बिहैवियर ऑफ़ ट्राईवैलेंट आयन-इंड्यूर-ड माइक्रेस्कोपिक प्रोटीन-रीच फेजेज: कोरिलेटिंग विथ आयन स्पेसिफिक प्रोटीन हायड्रेशन, लैंगमुइर, 39, 4601, 2023
- 3. सुमना पायने, पार्थ पायने और **राजीव कुमार मित्रा**, एडिशन ऑफ़ कोलेस्ट्रॉल एल्टर्स द हायड्रेशन ऐट द सर्फेस ऑफ़ मॉडल लिपिड्स: अ स्पेक्ट्रोस्कोपिक इनवेस्टिगेशन, फिजिकल केमेस्ट्री केमिकल फिजिक्स, 24, 20381, 2022
- 4. सुमना पायने, पार्थ पायने, **राजीव कुमार मित्रा**, द इनर हायड्रेशन इन सर्फेक्टेंट/कोलेस्ट्रोल वेसिकल्स डिफर्स फ्रॉम द आउटर वन: अ स्पेक्ट्रोस्कोपिक इनवेस्टीगेशन, केमफिजकेम, 23, e202200337, 2022
- 5. रिया साहा और **राजीव कुमार मित्रा**, ट्राइवैलेंट केशन-इंड्युस्ड फेज सेपरेशन इन प्रोटीन्स: आयन स्पेसिफिक कंट्रीब्युशन इन हायड्रेशन एल्सो काउंट्स, फिजिकल केमेस्ट्री केमिकल फिजिकल, 24, 23661, 2022
- 6. सुभादीप चक्रवर्ती, पार्थ पायने, राजीव कुमार मित्रा और देबाशीष दास महंत, अ सब्टल इंटरप्ले बिटवीन

- हाइड्रोफिलिक एंड हाइड्रोबिक हायड्रेशन गोवर्न्स बुटानॉल (de) मिक्सिंग इन वाटर, केमिकल फिजिक्स लेटर्स, 807, 140080, 2022
- 7. सैकत पाल और **राजीव कुमार मित्रा**, नॉनपोलर हायड्रोफोबिक एमिनो एसिड्स ट्यून द एन्ज़ीमेटिक एक्टिविटी ऑफ़ लिसोजाइम, बायोफिजिकल केमेस्ट्री, 288, 106842, 2022
- 8. दिधीति भट्टाचार्य, शुभ्राशीष मुखर्जी, अतींद्र नाथ पाल, राजीव कुमार मित्रा, समित कुमार राय, टू-डायमेंशनल Mo W_S एलॉयज़ फॉर नैनोजेनरेटर्स प्रोड्युसिंग रिकॉर्ड पीजो आउटपुट एंड कपल्ड फोटोडीटेक्टर्स फॉर सेल्फ-पावर्ड यूवी सेंसर, एडवांस्ड ऑप्टिकल मैटेरियल्स, 10, 2200353, 2022

प्रतिष्ठित सम्मेलन/संस्थानों में प्रदत्त वार्ता/ सेमिनार

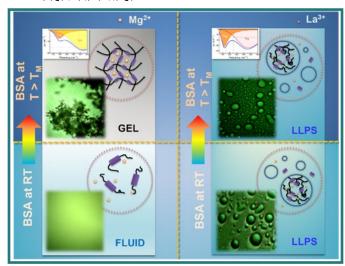
- 1. 8 मार्च, 2023 को फुकुई विश्वविद्यालय, फार-इन्फ्रारेड रिसर्च सेंटर, फुकुई, जापान में चौथे ब्रॉडबैंड एक्सट्रीम इलेक्ट्रोमैग्नेटिक लाइफ साइंस एंड टेक्नोलॉजी सहयोगात्मक अध्ययन समृह में "हाइड्रेशन गतिशीलता और जैविक प्रणाली में इसका प्रभाव"; मार्च 8, 2023; ऑनलाइन; 30 मिनट
- 2. "THZ स्पेक्ट्रोस्कोपी का उपयोग करके नरम सामग्री में सामूहिक कंपन गतिशीलता की जांच" कोलोक्वियम व्याख्यान: फ़रवरी 20. 2023; फुकुई विश्वविद्यालय, फुकुई, जापान; 1 घंटा

प्रशासनिक कर्तव्य

- प्रमुख, सीबीएस विभाग
- अध्यक्ष, कोविड टास्क फोर्स, एसएनबीएनसीबीएस
- संकाय प्रभारी, छात्र मामले 3.
- अध्यक्ष, SCOLP समिति
- सदस्य, प्रवेश समिति
- सदस्य, छात्र पाठ्यक्रम एवं अनुसंधान मूल्यांकन (एससीआरईसी) समिति

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

1. टेराहॉर्ज़ टाइम डोमेन और ऑप्टिकल टाइम रिजॉल्व्ड स्पेक्ट्रोस्कोपी द्वारा क्रउडेड वातावरण में एकत्रीकरण के दौरान प्रोटीन हाइड्रेशन में परिवर्तन पर जांच; एसईआरबी-डीएसटी; 2020-2023; अनुकरणीय


राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. एस. घोष, जादवपुर विश्वविद्यालय; क्र.सं. नंबर 1; राष्ट्रीय
- 2. डी दास महंत, टेक्सास विश्वविद्यालय, ऑस्टिन; क्र.सं. नंबर 6; अंतरराष्ट्रीय

अनुसंधान क्षेत्र

टेराहर्ट्ज़ स्पेक्ट्रोस्कोपी, प्रोटीन संघनन, थर्मोडायनामिक्स, स्व-एकत्रित प्रणाली

1. हम विभिन्न आवेश प्रकार के धनायनों की उपस्थिति में प्रोटीन संघनन प्रक्रिया की जांच करते हैं। हमने पाया कि त्रिसंयोजक धनायन त्रिसंयोजक धनायनों की उपस्थिति में एक दिलचस्प सूक्ष्म चरण पृथक्करण (एलएलपीएस) प्रदान करते हैं, जबकि ऐसी घटना द्विसंयोजक आयनों में अनुपस्थित है। हमने प्रोटीन सॉल्वेशन पर एक विस्तृत प्रयोगात्मक विश्लेषण किया है और हमने पाया है कि प्रोटीन मूल चरण की तुलना में एलएलपीएस चरण में यह काफी भिन्न होता है। इसके अलावा, हम देखते हैं कि ये एलएलपीएस चरण द्विसंयोजक आयनों की उपस्थिति में देखे गए थर्मो-रेस्पॉन्सिव व्यवहार की तुलना में असामान्य थर्मो-प्रतिरोधक व्यवहार पेश करते हैं।

2. हम THz स्पेक्ट्रोस्कोपी का उपयोग करके लिपिड झिल्ली के आसपास जलयोजन गतिशीलता की जांच करते हैं। हम देखते हैं कि लिपिड के मुख्य समूह के आधार पर, गतिशीलता व्यवस्थित रूप से बदलती है। हमने झिल्ली की गतिशीलता में कोलेस्ट्रॉल के प्रभाव की भी जांच की। अंततः हम कोलेस्ट्रॉल की अनुपस्थिति और उपस्थिति में झिल्ली की गतिशीलता पर अल्कोहल के प्रभाव की जांच करते हैं।

वार्षिक प्रतिवेदन 2022-2023

- 3. पानी के साथ अल्कोहल (विभिन्न कार्बन श्रृंखला लंबाई और शाखा) के (डी) मिश्रण का प्रयोग और सिमुलेशन दोनों का उपयोग करके बड़े पैमाने पर अध्ययन किया गया है। हमारी टिप्पणियों से पता चलता है कि पानी के साथ अल्कोहल की मात्रा के बीच हाइड्रोफोबिक और हाइड्रोफिलिक इंटरैक्शन के बीच नाजुक संतुलन ऐसी घटना में महत्वपूर्ण भूमिका निभाता है।
- 4. हमारे अध्ययन से पता चलता है कि शरीर में क्रिएटिनिन के ऊंचे स्तर को एंटी-ऑक्सीडेंट के अतिरिक्त द्वारा हटाया जा सकता है। प्रयोगों और गणना से पता चलता है कि पानी से क्रिएटिनिन (एंटीऑक्सीडेंट की उपस्थित में) में बाधा रहित प्रोटॉन स्थानांतरण क्रिएटिनिन की बढ़ी हुई जल घुलनशीलता के लिए प्रमुख तंत्र है।
- 5. हमने गनीडिनियम मध्यस्थता प्रोटीन विकृतीकरण प्रक्रिया के आणविक तंत्र को समझने के लिए एक विस्तृत प्रयोगात्मक और सैद्धांतिक जांच की है।

परियोजना सहित भविष्यत कार्य की योजना

1. 1. हम यह समझने के लिए अपना अध्ययन जारी रखेंगे कि आणविक सह-विलेय (लवण, आयन, छोटे कार्बनिक अणु आदि) और आणविक क्राउडर (पीईजी, फिकोल आदि) जैव अण्ओं के साथ कैसे संपर्क करते हैं और उनकी जैविक गतिविधि को प्रभावित करते हैं। ऐसे आणविक क्राउडर अक्सर वास्तविक सेलुलर वातावरण की नकल करते हैं। हम प्रोटीन स्थिरता पर विभिन्न आयनिक तरल पदार्थों के प्रभाव का विशेष संदर्भ देते हैं। हम ऐसी जटिल प्रणालियों के जलयोजन व्यवहार को रेखांकित करने के लिए एक विस्तृत स्पेक्ट्रोस्कोपिक जांच करेंगे)। हम विभेदक स्कैनिंग कैलोरीमेट्री माप का उपयोग करके शामिल प्रक्रियाओं का थर्मोडायनामिक विश्लेषण करने का प्रयास करेंगे।

- 2. हम विभिन्न चरणों की झिल्लियों और पुटिकाओं में जलयोजन गतिशीलता पर कोलेस्ट्रॉल और उसके जैवसंश्लेषक अग्रद्तों के प्रभाव का पता लगाने की योजना बना रहे हैं और समय-समाधान प्रतिदीप्ति दृष्टिकोणों द्वारा पूरक THz स्पेक्ट्रोस्कोपी का उपयोग करके झिल्लियों और पुटिकाओं में कोलेस्ट्रॉल के जटिल, क्रमिक रूप से सुव्यवस्थित जीव विज्ञान में इसके निहितार्थ का पता लगाने की योजना बना रहे हैं। प्रस्तावित प्रयोगों से प्राप्त अंतर्दृष्टि झिल्ली जलयोजन गतिशीलता में मौलिक ज्ञान प्रदान करेगी जो विभिन्न झिल्ली घटनाओं जैसे झिल्ली संलयन और झिल्ली परिवेश में लिपिड-प्रोटीन इंटरैक्शन के विनियमन के संदर्भ में प्रासंगिक हो सकती है। हम इंटरफ़ेस के लोचदार गुणों को रेखांकित करने के लिए अनुपस्थिति में और कोलेस्ट्रॉल की उपस्थिति में पुटिकाओं (लिपिड और सर्फेक्टेंट द्वारा निर्मित) पर परमाणु बल माइक्रोस्कोपी माप करने की भी योजना बना रहे हैं।
- 3. हम स्व-एकत्रीकरण के दौरान प्रोटीन के समग्र जलयोजन में अपेक्षित परिवर्तन की निगरानी के लिए दो प्रयोगात्मक दृष्टिकोणों अर्थात् टीएचजेड टाइम डोमेन स्पेक्ट्रोस्कोपी और अल्ट्राफास्ट फ्लोरेसेंस स्पेक्ट्रोस्कोपी को संयोजित करने की योजना बना रहे हैं। इस प्रस्तावित कार्य के परिणाम प्रोटीन-एकत्रीकरण आधारित न्यूरोडीजेनेरेटिव रोगों पर अनुसंधान में प्रगति के लिए सकारात्मक प्रेरणा प्रदान करेंगे। स्व-एकत्रित प्रणालियों के बीच हम प्रोटीन एकत्रीकरण (प्रोटीन में तरल-तरल चरण पृथक्करण के विशेष संदर्भ में), फाइब्रिल गठन और मिसेल, वेसिकल्स, लिपोसोम्स आदि जैसे एम्फीफिलिक स्व-समृच्चय पर अध्ययन करेंगे। हम इस विचार को आंतरिक रूप से अव्यवस्थित प्रोटीन (आईडीपी) के क्षेत्र में भी आगे बढ़ाने की भी योजना बना रहे हैं।

रंजीत विश्वास वरिष्ठ प्रोफेसर रासायनिक और जैविक विज्ञान ranjit@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. नारायण माइती: मेटास्टेबल और स्व-संगठित प्रणालियों का प्रायोगिक अध्ययन; शोधकार्य जारी
- 2. जयंत मंडल; आयनिक और न्यूट्रल डीप यूटेक्टिक्स का प्रायोगिक अध्ययन; शोधकार्य जारी
- 3. ध्रुबज्योति माजी; डीप यूटेक्टिक्स के कंप्यूटर सिमुलेशन; शोधकार्य जारी
- 4. अमृता मंडल; जटिल रासायनिक प्रणालियों का प्रायोगिक अध्ययन; शोधकार्य जारी
- 5. सुदीप्त मित्रा; संघनित चरणों में विश्राम गतिशीलता का कंप्यूटर सिम्लेशन; शोधकार्य जारी
- 6. रिक एन मुखर्जी; आयनिक डीप यूटेक्टिक और अन्य प्रणालियों के कंप्यूटर सिमुलेशन; शोधकार्य जारी; प्रदीप के घोराई, आईआईएसईआर के (सह-पर्यवेक्षक)

ख) पोस्ट-डॉक्स

- 1. टोनिमा नंदी; अमाइलॉइडोसिस का छोटा अणु निषेध
- 2. जयेता बनर्जी; मल्टीकंपोनेंट मिश्रण को समझने के लिए सरफेस प्लास्मोन रेज़ोनेंस स्पेक्ट्रोस्कोपिक तकनीक का अनुप्रयोग

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. मुस्कान शर्मा; आण्विक चिकित्सा एवं कैंसर जीवविज्ञान

प्रशिक्षण

1. वसंत सत्र; भौतिक रसायन विज्ञान: सिद्धांत एवं प्रयोग; पीएचडी; 4 छात्र

प्रकाशन

प्रकाशन

- 1. सुदीप्त मित्रा, अर्नब सिल, रंजीत बिस्वास और सुमन चक्रवर्ती, मॉलिक्यूलर थर्मोडायनामिक ऑरिजिन ऑफ़ सब्सट्रेट प्रोमिस्क्यूटि इन द एनजाइम लैकेस: टूवार्ड अ ब्रॉड-स्पेक्ट्रम डिग्रेडर ऑफ़ डाई इफ्लुएंट्स, द जर्नल ऑफ फिजिकल केमिस्ट्री लेटर्स, 14, 1892, 2023
- 2. नारायण चंद्र मैती, अतनु बक्सी, काजल कुंभकार और **रंजीत** बिस्वास, इंपैक्ट ऐंड स्ट्रक्चर ऑफ़ वाटर इन एक्यूअस ऑक्टानॉल मिक्सचर: Hz-GHz डायलेक्ट्रिक रिलैक्सेशन मेजरमेंट ऐंड कंप्यूटर सिमुलेशन, जर्नल ऑफ फोटोकैमिस्ट्री और फोटोबायोलॉजी ए: केमेस्ट्री, 439, 114600, 2023
- 3. दिबाकर सरकार, नारायण चंद्र मैती, गौरव शोम, किरियाकोस गेब्रियल वर्नावा, विजयालेक्समी सरोजिनी, स्ब्रमण्यम विवेकानन्दन, निराकर साहू, सौरव कुमार, अतिन कुमार मंडल, रंजीत बिस्वास और अनिर्बान भूनिया, मेकनिस्टिक इनसाइट इंट्र फंक्शनली डिफरिएंट ह्यूमन आईलेट पॉलीपेप्टिक (hIAPP) एमिलॉइड: द इनट्रिन्सिक रोल ऑफ़ द सी-टर्मिनल स्ट्रक्चर, फिजिकल केमेस्ट्री केमिकल फिजिक्स, 24, 22250, 2022
- 4. हिदेकी शिरोटा, जुरिटी राजबंग्शी, महारूफ कोयक्कट, अतन् बक्सी, मेंगजुन काओ और रंजीत बिस्वास, लो-फ्रिक्वेंसी स्पेक्ट्रा ऑफ़ रिलाइन एंड इट्स मिक्सचर विथ वाटर: अ कॉम्परेटिव स्टडी बेस्ड ऑन फेमटोसेकेंड रमन-इंड्यूस्ड केर्र इफेक्ट स्पेक्ट्रोस्कोपी एंड मॉलिक्यूलर डायनामिक्स

सिमुलेशंस, जर्नल ऑफ फोटोकैमिस्ट्री एंड फोटोबायोलॉजी ए: केमेस्ट्री, 437, 114504, 2023

- 5. स्वरूप बनर्जी, प्रदीप क्र. घोराई, ध्रुबज्योति माजी, और रंजीत बिस्वास, डिफरिएंस इन सुपरकुलिंग एफिनिटी बिटविन (एसिटामाइड + Na/KSCN) डीप यूटेक्टिक्स: रेफलेक्शन इन द सिमपलेटेड एनोमलस मोशन ऑफ़ द कंस्टिच्एंट्स एंड सॉल्युशन माइक्रोहेटेरोजेनिटी फीचर्स, द जर्नल ऑफ़ फिजिकल केमिस्ट्री बी, 126, 10146, 2022
- कल्लोल मुखर्जी, काजल कुंभकार और रंजीत बिस्वास, डायनामिक्स ऑफ़ अ PEG बेर-ड पॉलिमर जेल इलेक्ट्रोलाइट: अ कंबाइंड फ्रिक्वेंसीडिपेंडेंट डायलेक्ट्रिक रिलैकेशेसन ऐंड टाइम रिजॉल्व्ड फ्लूओरेसेंस स्पेक्ट्रोस्कोपिक, जर्नल ऑफ मॉलिक्यूलर लिक्विड्स, 360, 119491, 2022
- 7. अतानु बक्सी और रंजीत बिस्वास, वाई डू सम रिएक्शन पोजेज सिमिलर रिएक्शन रेट इन वाइडली डिफरिएंट विस्कॉस मीडिया? अ पॉसिबल एक्सप्लानेशन वाया फ्रिक्वेंसी-डिपेंडेंट फ्रिक्शन, जर्नल ऑफ केमिकल साइंसेज, 134, 51, 2022

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता /सेमिनार

- 1. सत्येन्द्रनाथ: विज्ञान से परे; जुलाई 22, 2022; सिल्वर जुबली हॉल, एसएनबी सेंटर: 60 मिनट
- विज्ञान में अनुसंधान पद्धति; जून 21, 2022; बरहामपुर गर्ल्स कॉलेज, मुर्शिदाबाद; 90 मिनट।
- 3. डीप यूटेक्टिक्स, और एज़ोट्रोप्स: दिलचस्प पहलू और नई खोजें; 9 दिसंबर, 2022; कलकत्ता विश्वविद्यालय; 90 मिनट (ऑनलाइन)।
- डीप यूटेक्टिक्स, और एज़ोट्रोप्स: हमारे कुछ हालिया परिणाम; 18 नवंबर, 2022; नेह्, शिलांग; 30 मिनट।
- आयनिक एसिटामाइड डीप यूटेक्टिक्स में डाइइलेक्ट्रिक रिलैक्सेशन: सिमुलेशन पूर्वानुमान और तापमान पर निर्भर माप के साथ तुलना; 6 मई, 2022; ईट कानपुर; 60 मिनट।

प्रशासनिक कर्तव्य

1. संयोजक/अध्यक्ष, एडवांरुड पोस्टडॉक्टोरल रिसर्च प्रोग्राम (एपीआरपी), एसएनबीएनसीबीएस

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

1. डीप यूटेक्टिक गठन के पूर्वानुमान करने हेत् एक सैद्धांतिक दृष्टिकोण: सबसे कम पिघलने बिंदू का पता लगाना (मार्च 2023 में प्रस्तुत); डीएसटी(मैट्रिक्स_एसईआरबी); 3 वर्ष; परि.प्र.

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. जर्नल ऑफ फिजिकल केमिस्ट्री बी, 2022, 126, 10146 -10155; क्र.सं. पाँच; राष्ट्रीय
- 2. भौतिक रसायन विज्ञान रासायनिक भौतिकी, 2022, 24, 22250 - 22262; क्र.सं. ३; राष्ट्रीय
- 3. जर्नल ऑफ फोटोकैमिस्ट्री एंड फोटोबायोलॉजी, ए: केमिस्ट्री, 2022, 437, 114504(1-9); क्र.सं. ४; अंतरराष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/प्रतिभागिता

1. बरहामपुर गर्ल्स कॉलेज में अनुसंधान पद्धति पर व्याख्यान (जून, 2022)

अनुसंधान क्षेत्र

भौतिक रसायन विज्ञान और रासायनिक भौतिकी, सिद्धांत-प्रयोग-सिम्लेशन; डीप यूटेक्टिक सॉल्वैंट्स, आयनिक तरल पदार्थ, एज़ियोट्रोप्स, बाइनरी मिश्रण, क्रायोप्रोटेक्टेंट्स

इस वर्ष हमारा एक मुख्य लक्ष्य द्विध्रवीय, आयनिक और क्रॉस (आयन-द्विध्रवीय) की भूमिकाओं को समझने के लिए कुछ सामान्य आयनिक गहरे यूटेक्टिक सॉल्वैंट्स (डीईएस) की कुल आवृत्ति-निर्भर ढांकता हुआ विश्राम (डीआर) स्पेक्ट्रा को विघटित करना था। प्रयोगात्मक रूप से मापी गई डीआर प्रतिक्रिया में योगदान। चुने गए डीईएस (एसिटामाइड+LiClO4/NO3/Br) थे और उनके डीआर की जांच आणविक गतिशीलता (एमडी) सिमुलेशन के माध्यम से तापमान रंज, 329≤T/K≤358 में की गई। जैसा कि अपेक्षित था, द्विध्रवीय योगदान संपूर्ण आवृत्ति शासन पर सभी आवृत्ति-निर्भर ढांकता हुआ स्पेक्ट्रा पर हावी पाया गया, जबिक अन्य दो घटकों ने मिलकर केवल छोटा योगदान दिया। हमारे सिमुलेशन ने प्रयोगों के साथ समझौते में, स्थैतिक ढांकता हुआ स्थिरांक के एक आयन-निर्भर गिरावट की भविष्यवाणी की, कुंठित ओरिएंटेशनल संरचना को एसिटामाइड एच-बॉन्ड नेटवर्क के

आयनों-निर्भर क्षति से जुड़ा हुआ पाया गया (जेसीपी, 2023, वी.158, 174503(1-16)|

हमने क्रायोप्रोटेक्टेंट माध्यम में निहित अनुपात-अस्थायी विविधता और इसकी क्रायोप्रोटेक्शन क्षमता के बीच संभावित संबंध की खोज के लिए शोध शुरू किया। इस प्रयोजन के लिए, ग्लूकोज (जीएल) और एथिलीन ग्लाइकॉल (ईजी) के विभिन्न वजन प्रतिशत पर ग्लूकोज-आधारित क्रायोप्रोटेक्टेंट मिश्रण के संरचनात्मक और गतिशील गूणों की जांच आणविक गतिशीलता (एमडी) सिमुलेशन के माध्यम से की गई थी। हमने देखा कि ग्लूकोज की मात्रा बढ़ने के साथ, ईजी का हाइड्रोजन बॉन्ड (एच-बॉन्ड) नेटवर्क आंशिक रूप से क्षतिग्रस्त हो जाता है, जिससे समाधान में ग्लूकोज अणुओं के बीच हाइड्रोजन बॉन्ड (एच-बॉन्ड) नेटवर्क बढ़ जाता है। प्रति अण् एच-बॉन्ड की औसत संख्या से ईजी की पड़ोसी ईजी के बजाय ग्लूकोज के साथ एच-बॉन्ड बनाने की प्रवृत्ति का पता चला। सिम्युलेटेड फर्स्ट-रैंक रीओरिएंटेशनल टाइम सहसंबंध फ़ंक्शन (C_1 (t)) और संरचनात्मक हाइड्रोजन बॉन्ड ऑटोसहसंबंध फ़ंक्शन (C_HB (t)) बहु-घातांकीय विश्राम दिखाते हैं। हमारे सिमुलेशन इंट्रास्पेसिस एच-बॉन्डिंग के माध्यम से ग्लूकोज डोमेन के गठन का भी संकेत देते हैं। यह इन मिश्रणों की क्रायोप्रोटेक्शन क्षमता के लिए एक प्रमुख विशेषता हो सकती है और क्रायोप्रोटेक्शन (TCA, 2023, 142, 43(1-15)) के साथ स्थानिक-अस्थायी विविधता को जोड़ने का एक तरीका दिखा सकती है।

हमने थर्मोडायनामिक उत्पत्ति की जांच की कि क्यों एंजाइम लैकेस विभिन्न प्रकार के कार्बनिक अणुओं को नष्ट करने में सक्षम है जो पर्यावरण पर प्रतिकूल प्रभाव डाल सकते हैं। इस क्षमता को सब्सट्रेट प्रोमिस्युटी कहा जाता है और इस घटना का पता स्पेक्ट्रोस्कोपिक प्रयोगों, आणविक डॉकिंग और आणविक गतिशीलता (एमडी) सिमुलेशन के संयोजन के माध्यम से लगाया गया था। सिम्लेशन और विभिन्न इंटरैक्शन ट्कड़ों के बाद के लेखांकन ने सुझाव दिया कि लैकेस द्वारा डाई अणुओं के विविध चयन विभिन्न थर्मोडायनामिक कारकों को रद्द करने के कारण आश्चर्यजनक रूप से समान बाध्यकारी संबंध प्रदर्शित कर सकते हैं। हमारे परिणाम औद्योगिक डाई अपशिष्टों के लिए बहुउद्देश्यीय डिग्रेडर के रूप में लैकेस की क्षमता को उजागर करते हैं (जेपीसीएल, 2023,14, 1892 - 1898)|

हमने आयनिक गहरे यूटेक्टिक सॉल्वैंट्स में अनाकार वर्णों के अलग-अलग हस्ताक्षर प्रदर्शित करने में क्षार धातु आयनों की विभिन्न क्षमताओं की सुक्ष्म उत्पत्ति का पता लगाया। इस कार्य का फोकस कण छलांग के संदर्भ में प्रयोगात्मक रूप से देखे गए इन मैक्रोस्कोपिक सिस्टम गुणों की सूक्ष्म व्याख्या प्रदान करना है। इस प्रयोजन के लिए, (एसिटामाइड + Na/KSCN) गहरे यूटेक्टिक्स का उपयोग करके व्यापक आणविक गतिशीलता सिम्लेशन का प्रदर्शन किया गया है। Na^+ के लिए द्रव्यमान के केंद्र की गति K^+ की तुलना में अधिक विसंगतिपूर्ण पाई गई है। संक्षेप में, इस अध्ययन ने समय-समाधान प्रतिदीप्ति माप (जेपीसी बी 2022, 126, 10146 - 10155) में देखी गई धनायन निर्भरता की सूक्ष्म उत्पत्ति पर प्रकाश डाला।

परियोजना सहित भविष्यत कार्य की योजना

1. (i) डायलेक्ट्रिक रिलैक्सेशन माप, समय-समाधान प्रतिदीप्ति माप और सिमुलेशन के माध्यम से क्रायोप्रोटेक्टेंट्स की संरचना और गतिशीलता को समझना (ii) सिमुलेशन और प्रयोगों के माध्यम से एज़ियोट्रोप्स की सहभागिता और गतिशीलता की खोज (iii) सिद्धांत और सिमुलेशन के माध्यम से संभावित गहरे यूटेक्टिक मिश्रण के सबसे कम पिघलने बिंदु का पूर्वानुमान (iv) कॉपोलिमर के जलीय समाधान में जल गतिशीलता को समझना (v) सिमुलेशन और प्रयोगों के माध्यम से कैनेटीक्स की जांच करके एंजाइम संकीर्णता को समझना

समीर कुमार पाल वरिष्ठ प्रोफेसर रासायनिक और जैविक विज्ञान skpal@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. दीपांजन मुखर्जी; शारीरिक रूप से प्रासंगिक इंजीनियर वातावरण में बायोमोलेक्यूलर मान्यता पर माइक्रोफ्लुइडिक-असिस्टेड ऑप्टिकल स्पेक्ट्रोस्कोपिक अध्ययन; पुरस्कृत; प्रो. रंजन दास (सह-पर्यवेक्षक)
- 2. अर्पण बेरा; कार्यात्मक नैनोहाइब्रिड्स और उनके संभावित जैविक अनुप्रयोग पर स्पेक्ट्रोस्कोपिक अध्ययन; थीसिस प्रस्तुत की गई
- 3. सुष्मिता मंडल; प्रीक्लिनिकल डिजीज मॉडल में रेडॉक्स मॉड्यूलेटरी थेरानोस्टिक नैनोमटेरियल्स के जैव रासायनिक और आणविक पहल्ओं पर अध्ययन; शोधकार्य जारी
- 4. मोहम्मद नूर हसन; उनके संभावित बायोमेडिकल और पर्यावरणीय अनुप्रयोगों के लिए बायोकंपैटिबल नैनोहाइब्रिड्स पर ऑप्टिकल स्पेक्ट्रोस्कोपी और एब-इनिटियो अध्ययन; शोधकार्य जारी

- 5. निवेदिता पान; मैनिफोल्ड अनुप्रयोगों के लिए हाइब्रिड नैनोमटेरियल्स पर फोटोफिजिकल अध्ययन: शोधकार्य जारी
- 6. अर्नब सामंत; कैटेलिसिस में संभावित अनुप्रयोग के लिए नैनोस्केल मिश्र और धात् ऑक्साइड का संश्लेषण और निरूपण; उपाधि प्रदान की गई; डॉ. सुभ्रा जाना (सह-पर्यवेक्षक)
- 7. लोपामुद्रा रॉय; वास्तविक दुनिया के अनुप्रयोगों में प्रोटोटाइप के विकास के लिए ऑप्टिकल पद्धतियों की खोज: प्रगति मे: प्रो. कल्लोल भट्टाचार्य (सह-पर्यवेक्षक)
- 8. अमृता बनर्जी; जैव-चिकित्सा विसंगतियों, खाद्य मिलावट और पर्यावरण प्रदूषण की निगरानी और नियंत्रण के लिए ऑप्टिकल स्पेक्ट्रोस्कोपी का उपयोग करके बह्-पैरामीटर जांच; प्रगति मे; प्रो स्भादीप्त मुखोपाध्याय (सह-पर्यवेक्षक)
- 9. प्रीतम विश्वास: शारीरिक रूप से प्रासंगिक वातावरण के तहत बायोमोलेक्युलस की संरचना, कार्य और गतिशीलता पर बायोफिजिकल और बायोकेमिकल जांच; पुरस्कृत; डॉ. स्देशना श्याम चौधरी (सह-पर्यवेक्षक)

ख) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. नेहा भट्टाचार्य; बायोमेडिकल निदान और चिकित्सीय रणनीति में संभावित अनुप्रयोग के लिए बायोमटेरियल्स और छोटे स्पेक्ट्रोस्कोपी-आधारित उपकरणों के विकास पर स्पेक्ट्रोस्कोपिक अध्ययन
- 2. रिया घोष; उनकी संभावित दवा वितरण गतिविधि के लिए स्व-संगठित असेंबली पर इन विट्रो और विवो जांच

शिक्षण/ अध्यापन

1. वसंत सत्र; PHY491; एकीकृत पीएचडी; 11 छात्र; प्रो सौमेन मंडल (सह-शिक्षक)

प्रकाशन

क) ज़र्नल में

1. रिया घोष, सौमेंद्र सिंह, अनिरुद्ध अधिकारी, सुस्मिता मंडल, दीपांजन मुखर्जी, नेहा भट्टाचार्य, अनिमेष हलदर, मैत्री भट्टाचार्य और समीर कुमार पाल, सिंथेसिस एंड कैरेकराइजेशन ऑफ़ अ नैनो-फॉर्मुलेशन फॉर लॉन्ग लास्टिंग स्टेरिलायजेशन इफेक्ट, मैटेरियल्स टुडे : प्रोसिडिंग्स, 80, 1846, 2023

- 2. एम. शाहीर मलिक, शेख फाजिल, मेशारी ए. अलशरीफ, काजी मोहम्मद साजिद जमाल, जाबिर एच. अल-फाहेमी, अमृता बनर्जी, अर्पिता चट्टोपाध्याय, समीर कुमार पाल, अहमद कमाल और सालेह ए. अहमद, एंटाबैक्टेरियल प्रोपर्टीज एंड कंप्यूटेशनल इनसाइट्स ऑफ़ पोटेंट नॉवेल लाइजोलिड-बोर्स्ड ऑक्साज़ोलिडिनोन्स, फार्मास्यूटिकल्स, 16(4), 516, 2023
- रिया घोष, दीपांजन मुखर्जी, गौरब घोष, एमडी नूर हसन, अर्पिता चट्टोपाध्याय, रंजन दास और समीर कुमार पाल, मिमिकिंग सेल्युलर प्यूजन इन अ माइक्रोफ्लुइडिक चैनल वाया टाइम रिजॉल्ब्ड केमिलुमिनसेंस, ज़र्नल ऑफ़ फोटोकेमेस्ट्री एंड फोटोबॉयोलॉजी ए: केमेस्ट्री, 441, 114731, 2023
- 4. निवेदिता पान, रिया घोष, देबदत्ता मुखर्जी, नेहा भट्टाचार्य, लोपामुद्रा रॉय, अमृता बनर्जी, सौमेंद्र सिंह, राधा तमल गोस्वामी, माला मित्रा, अर्पिता चट्टोपाध्याय और समीर कुमार पाल, अ नैनोसेंसर-बेर-ड प्रोटोटाइप डेवलपमेंट फॉर हैवी मेटल डिटेक्शन: अ कंबाइंड स्पेकट्रोस्कोपिक एंड थ्योरेटिकल स्टडी, आईईईई सेंसर लेटर्स, 7(2), 1500304, 2023
- 5. अनिरुद्ध अधिकारी, विनोद के. भूटानी, सुरिमता मंडल, मोनोजीत दास, सौमेंद्र दरबार, रिया घोष, नबारुन पोली, अंजन कुमार दास, सिद्धार्थ शंकर भट्टाचार्य, देबाशीष पाल, असीम कुमार मल्लिक और **समीर कुमार पाल**, कीमोप्रिवेंशन ऑफ़ बिलिरुबिन एन्सेफैलोपैथी विथ अ नैनोस्युटिकल एजेंट, पेडियाट्रिक रिसर्च, 93, 827, 2023
- 6. रिया घोष, नेहा भट्टाचार्य, अमृता बनर्जी, लोपामुद्रा रॉय, देबदत्त मुखर्जी, सौमेंद्र सिंह, अर्पिता चट्टोपाध्याय, तपन अधिकारी और समीर कुमार पाल, सेंसिंग बॉयोअवेलेबल वाटर कंटेंट ऑफ़ ग्रेन्युलेटेड मैट्रिसेस: अ कंबाइंड एक्सपेरिमेंटलएंड कंप्यूटेशनल, बायोसेंसर, 13, 185, 2023
- 7. अमृता बनर्जी, रिया घोष, तपन अधिकारी, सुभादिप्त मुखोपाध्याय, अर्पिता चट्टोपाध्याय और समीर कुमार पाल, डेवलपमेंट ऑफ़ नैनोमेडिसिन कॉपर माइन टेलिंग वेस्ट: अ पेवमेंट टूवार्ड्स सर्कुलर इकोनॉमी विथ एडवांस्ड रेडॉक्स नैनोटेक्नोलॉजी, कैटलिस्ट, 13, 369, 2023
- 8. अमृता बनर्जी, नेहा भट्टाचार्य, रिया घोष, सौमेंद्र सिंह, अनिरुद्ध अधिकारी, सुरिमता मंडल, लोपामुद्रा रॉय, एनी बजाज, नीलांजना घोष, अमन भूषण, महाश्वेता गोस्वामी,

- अहमद एस ए अहमद, ज़ियाद मौसा, पुलक मंडल, सुभादिप्त मुखोपाध्याय, देबासिस भट्टाचार्य, अर्पिता चट्टोपाध्याय, सालेह ए अहमद, असीम कुमार मल्लिक और समीर कुमार पाल, नॉन-इनवेसिव एस्टीमेशन ऑफ़ हिमोग्लोबिन, बिलीरुबिन एंड ऑक्सीजन सेट्रेशन ऑफ़ न्योनेट्स साइमलटेनियसली युजिंग होल ऑप्टिकल स्पेक्ट्रम एनालिसिस ऐट प्याइंट ऑफ़ केयर, साइंटिफिक रिपोर्ट्स, 13, 2370, 2023
- 9. अमृता बनर्जी, रिया घोष, अर्पण बेरा, सुभादिप्त मुखोपाध्याय, मुनिराह एम अल-रूकी, इस्माइल आई अल्थागफी, अब्देलरहमान एस खदर, सालेह ए. अहमद, अर्पिता चड्डोपाध्याय, समीर कुमार पाल, "नैनो-कॉपर": अ पोटेंशियल रिमेडिएशन ऑफ़ एंटीबायोटिक-रेसिसटैंट इंफेंक्शन, जर्नल ऑफ़ नैनोमेडिसिन, 6(1), 1058, 2023
- 10. गौरव घोष, दीपांजन मुखर्जी, रिया घोष, प्रिया सिंह, उत्तम पाल, अर्पिता चट्टोपाध्याय, मिथुन संतरा, क्यो हान अहं, पी. मोसे सेल्वाकुमार, रंजन दास और समीर कुमार पाल, अ नॉवेल मॉलिक्युलर रिपोर्टर फॉर प्रोबिंग प्रोटीन डीएनए रिकग्निशनः ऐन ऑप्टिकल स्पेक्ट्रोस्कोपिक एंड मॉलिक्युलर मॉडलिंग स्टडी, स्पेक्ट्रोचिमिका एक्टा पार्ट ए: मॉलिक्युलर एंड बॉयोमॉलिक्युलर स्पेक्ट्रोस्कोपी, 291, 122313, 2023
- 11. प्रीतम विश्वास, अनिरुद्ध अधिकारी, उत्तम पाल, सुरिमता मंडल, दीपांजन मुखर्जी, रिया घोष, रामी जे. ओबैद, ज़ियाद मौसा, स्देशना श्याम चौधरी, सालेह ए. अहमद, रंजन दास और समीर कुमार पाल, अ कंबाइंड स्पेक्ट्रोस्कोपिक एंड मॉलिक्यूलर मॉडलिंग स्टडी ऑन स्ट्रक्चर-फंक्शन-डायनामिक्स अंडर केमिकल मॉडिफिकेशन: अल्फा-काइमोट्रिप्सिन विथ फॉर्मिलिन प्रिजर्वेटिव, फ्रंटियर्स इन केमिस्ट्री, 10, 1-13, 2022
- 12. मोहम्मद नूर हसन, फेलिक्स सोर्गेनफ्रेई, निवेदिता पैन, दिब्या फुयाल, महमूद अब्देल-हाफ़िज़, समीर कुमार पाल, अन्ना डेलिन, पैट्रिक थुनस्ट्रॉम, डी. डी. सरमा, ओले एरिकसन, देबजानी करमाकर, री-डिचल्कोजेनाइड्स: रिजॉल्विंग कॉन्फिलिक्ट ऑफ़ देयर स्ट्रक्चर-प्रोपर्टी रिलेशनशिप, एडवांरेड फिजिक्स रिसर्च, 1(1), 2200010, 2022
- 13. स्रिमता मंडल, मोनोजीत दास, रिया घोष, सौमेंद्र सिंह, सौमेंद्र दरबार, नेहा भट्टाचार्य, अनिरुद्ध अधिकारी, अंजन कुमार दास, सिद्धार्थ शंकर भट्टाचार्य, देबाशीष पाल, असीम कुमार मल्लिक और समीर कुमार पाल, ऑर्गन-स्पेसिफिक थेराप्यूटिक नैनोपार्टिकल्स जेनरेट्स रेडियोलुसेंट रिएक्टिव स्पेसिज फॉर पोटेंशियल नैनोथेरानॉस्टिक्स यूजिंग कंवेंशनल

- एक्स रे टेकनीक इन मम्मल्स, अप्लाइड नैनोसाइंस, 12, 3851, 2022
- 14. अमृता बनर्जी, दीपांजन मुखर्जी, अर्पण बेरा, रिया घोष, सुरिमता मंडल, सुभादिप्त मुखोपाध्याय, रंजन दास, हातेम एम. अल्तास, समीर. एस. ए. नट्टो, ज़ियाद मौसा, सालेह ए. अहमद, अर्पिता चट्टोपाध्याय और **समीर कुमार पाल**, मॉलिक्यूलर के-लोकलाइजेशन ऑफ़ मल्टिपल ड्रग्स इन अ नैनोस्कोपिक डेलिवरी वेहिकल फॉर पोटेंसियल सिनर्जिस्टिक रिमेडिएशन ऑफ़ मल्टि-ड्ग्स रेसिसटैंट *बैक्टेरिया*, साइंटिफिक रिपोर्ट्स, 12, 18881, 2022
- 15. नेहा भट्टाचार्य, दीपांजन मुखर्जी, सौमेंद्र सिंह, रिया घोष, सौरव कर्माकर, अंकिता मल्लिक, अर्पिता चट्टोपाध्याय, पुलक मंडल, तपन मंडल, देबासिस भट्टाचार्य, असीम कुमार मल्लिक, गुलाम नबी, समीर कुमार पाल, "सिइंग" इनविजिवल वोलाटाइल ऑर्गेनिक कंपाउंड (VOC) मेकर ऑफ़ यूरिनरी ब्लैंडर कैंसर: अ डेवलपमेंट फ्रॉम बेंच टू बेडसाइड प्रोटोटाइप स्पेक्ट्रोस्कोपिक डिवाइस, बॉयोसेंसर्स एंड बॉयोइलेट्रोनिक्स, 218, 114764, 2022
- 16. अमृता बनर्जी, सौमेंद्र सिंह, रिया घोष, मोहम्मद नूर हसन, अर्पण बेरा, लोपामुद्रा रॉय, नेहा भट्टाचार्य, अनिमेष हलदर, अर्पिता चट्टोपाध्याय, सुभादिप्त मुखोपाध्याय, अमिताव दास, हातेम एम. अल्तास, ज़ियाद मौसा, सालेह ए. अहमद, समीर कुमार पाल, अ पोर्टेबल स्पेक्ट्रोस्कोपिक इंस्ट्रमेंट फॉ मिल्टप्लेक्स्ड मॉनिटरिंग ऑफ़ एक्यूट वाटर टॉक्सिसिटी: डिजाइन, टेस्टिंग, एंड इवेल्युएशन, रिव्यू ऑफ़ साइंटिपिक इंस्ट्रुमेट्स, 93, 115105, 2022
- 17. देबाशीष पॉल, अनिर्बान पॉल, दीपांजन मुखर्जी, सरोज सरोज, मनोरमा घोषाल, सुचेतन पाल, दुलाल सेनापति, जयदेब चक्रवर्ती, समीर कुमार पाल, और तातिनी रक्षित, ए मैकेनोइलास्टिक ग्लिम्पसे ऑन हयालूरोनन-कोटेड एक्स्ट्रासेल्युलर वेसिकल्स, द जर्नल ऑफ फिजिकल केमिस्ट्री लेटर्स, 13, 8564, 2022
- 18. मोनोजीत दास, सुस्मिता मंडल, रिया घोष, प्रीतम विश्वास, ज़ियाद मौसा, सौमेंद्र दरबार, सालेह ए. अहमद, अंजन कुमार दास, सिद्धार्थ शंकर भट्टाचार्य, देबाशीष पाल, असीम कुमार मल्लिक, प्रांत चक्रवर्ती, जयंत कुमार कुडू, अनिरुद्ध अधिकारी और समीर कुमार पाल, अ नैनो एरिथ्रोपोएसिस स्टिमुलेटिंग एजेंट फॉर द ट्रिटमेंट ऑफ़ अनेमिया एंड एसोसिएटेड *डिसऑर्ड्स*र, आईसाइंस, 25, 105021, 2022

- 19. शेख सलीम पाशा, अमृता बनर्जी, श्रीजेश श्रीधरन, सौमेंद्र सिंह, नौफल कंदोथ, कैथरीन ए वालिस, समीर कुमार पाल, सुमित कुमार प्रमाणिक और अमिताव दास, अल्ट्रासेंसिटिव रिजेंट फॉर रेशियोमेट्रिक डिटेक्शन एंड डिटॉक्सिफिकेशन ऑफ़ iAsIII इन वाटर एंड मिटोकॉड्रिया, इनऑर्गेनिक केमेस्ट्री, 61, 13115, 2022
- 20. रिया घोष, सुरिमता मंडल, दीपांजन मुखर्जी, अनिरुद्ध अधिकारी, मैत्री भट्टाचार्य और समीर कुमार पाल, इनऑर्गेनिक-ऑर्गेनिक सिनर्जी इन नैनो-हाइब्रिड्स मेक्स अ न्यू क्लास ऑफ़ ड्रग विथ टारगेटेड डेलिवरी: ग्लुटामेट फंक्शनलायजेशन ऑफ़ आयरन नैनोपार्टिकल्स फॉर पोटेंशियल बोन मैरो डेलिवरी एंड एक्स-रे डायनामिक थेरेपी, करेंट ड्रग डेलीवरी, 19(10), 991, 2022
- 21. निवेदिता पान, संगीता घोष, मोहम्मद नूर हसन, सालेह ए. अहमद, अर्का चटर्जी, जयिता पटवारी, चिन्मय भट्टाचार्य, जिहान कुर्बान, अब्देलरहमान एस. खदर, और समीर कुमार पाल, प्लारमोन-कपल्ड डोनर-ऐक्सेप्टर टाइप ऑर्गेनिक सेंसिटाइज़र-बेर-ड फोटोएनोड्स फॉर एनहेंर-ड फोटोवोल्टेइक एक्टिविटी: कि इंफॉर्मेशन फ्रॉम अल्ट्राफास्ट डायनामिकल स्टडी, इनर्जी एंड फ्यूल्स, 36, 9272, 2022
- 22. सुरिमता मंडल, निवेदिता पान, रिया घोष, अर्पण बेरा, दीपांजन मुखर्जी, तुहिन कुमार माजी, अनिरुद्ध अधिकारी, संगीता घोष, चिन्मय भट्टाचार्य, समीर कुमार पाल, इंट्रैक्शन ऑफ़ अ जॉन्डिस मेकर मॉलिक्यूल विथ अ रेडॉक्स-मॉड्यूलेटरी नैनो-हायब्रिड: अ कंबाइंड इलेक्ट्रोकेमिकल एंड स्पेक्ट्रोस्कोपिक स्टडी टूवार्ड द डेवलपमेंट ऑफ़ अ थेरानॉस्टिक टूल, केममेडकेम, 17, e202100660, 2022
- 23. लोपामुद्रा रॉय, दीपांजन मुखर्जी, सौमेंद्र सिंह, अमृता बनर्जी, नेहा भट्टाचार्य, अनिमेष हलदर, प्रिया सिंह, सुभादिप्त मुखोपाध्याय, कल्लोल भट्टाचार्य, रंजन दास और समीर कुमार पाल, पिको-सेकेंड रेजोल्यूशन फोर्स्टर रेजोनेंस एनर्जी ट्रांसफर (एफआरईटी) डिफरिएंसिएंट्स सेल्फ-एसेंबल्ड बॉयोलॉजिकल मैक्रोमोलेक्यूल्स इन एक्यूअस मेडियम, केमिकल फिजिक्स इंपैक्ट, 4, 100081, 2022
- 24. अर्नब सामंत, समीर कुमार पाल और सुभ्रा जाना, एक्सप्लोरिंग फ्लोवरी MnO_//Ag नैनोकंपोजिट ऐज ऐन एफिसिएंट सोलर-लाइट-ड्राइवेन फोटोकैटलिस्ट, न्यू ज़र्नल ऑफ़ केमेस्ट्री, 46, 4189-4197, 2022

- 25. अर्पण बेरा, मोहम्मद नूर हसन, निवेदिता पान, रिया घोष, रीम ए. अलसंताली, हातेम एम. अल्तास, रामी जे. ओबैद, सालेह ए. अहमद और समीर कुमार पाल, इंप्लीमेंटेशन ऑफ़ सर्फेस फंक्शनलाइजेशन ऑफ़ MnS नैनोपार्टिकल्स फॉर एचिविंग नॉवेल ऑप्टिकल प्रोपर्टिज़ एंड इंप्रविंग थेराप्यूटिंग पोटंसियल. आरएससी एडवांसेस, 12, 20728, 2022
- 26. सूरिमता मंडल, सायन बायन, रिया घोष, मोनोजीत दास, अनिरुद्ध अधिकारी, दीपांजन मुखर्जी, असीम कुमार मलिक, समित कुमार रे और समीर कुमार पाल, फंक्शनलाइज टू-डायमेंशनल कार्बन नाइट्राइड नैनोडॉट्स डिटेक्ट एंड रिवर्स लिड टॉक्सिसटी इन द फिजियोलॉजिकल मिलिएउ, एसीएस एप्लाइड मैटेरियल्स एंड इंटरफेसेस, 14, 27002, 2022
- 27. रिया घोष, सुस्मिता मंडल, दीपांजन मुखर्जी, अनिरुद्ध अधिकारी, सालेह ए. अहमद, रीम आई. अलसंताली, अब्देलरहमान एस. खदर, हातेम एम. अल्तास, ज़ियाद मौसा, रंजन दास, मैत्री भट्टाचार्य और समीर कुमार पाल, ओरल ड्रग डेलिवरी यूजिंग अ पॉलिमेरिक नैनोकैरियर: चिटोसन नैनोपार्टिकल्स इन द डेलिवरी ऑफ़ रिफैमपिसिन. मैटेरियल्स एडवांसेस. 3. 4622. 2022
- 28. अर्पण बेरा, मोहम्मद नूर हसन, अर्का चटर्जी, दीपांजन मुखर्जी, और समीर कुमार पाल, ड्यूअल सेंसिटायजेशन वाया इलेक्ट्रॉन एंड इनर्जी हार्वेस्टिंग इन अ नैनोहायब्रिड फॉर इंप्रूवमेंट ऑफ़ थेराप्यूटिक एफिकेसी, एसीएस फिजिकल केमिस्ट्री Au, 2, 171, 2022

प्रतिष्ठित सम्मेलन/संस्थानों में प्रदत्त वार्ता/सेमिनार

- उभरती बायोमेडिकल कार्यप्रणाली के लिए नैनोहाइब्रिड्स की महत्वपूर्ण इंटरफेशियल गतिशीलता की जांच; जून 19, 2022; जादवपुर विश्वविद्यालय साल्टलेक परिसर; 30 मिनट
- पिछले 75 वर्षों में भारत में तांबे की खोज, खनन, धातुकर्म और उपयोग का विकास और भविष्य की राहें; जुलाई 16, 2022; घाटशिला, झारखंड; 1 घंटा
- नैनोहाइब्रिड्स में ऑप्टिकल स्पेक्ट्रोस्कोपी: स्वास्थ्य देखभाल में उभरते क्रॉस-डिसिप्लिनरी रिसर्च के लिए आशा की एक किरण; फ़रवरी 23, 2023; असम डाउन टाउन विश्वविद्यालय; 1 घंटा
- बायो-फोटोनिक्स प्रौद्योगिकी के माध्यम से व्यवसाय में परिवर्तन: स्वास्थ्य सेवा में नवाचार, चुनौतियाँ और डिजिटल नवीनीकरण; फ़रवरी 24, 2023; असम डॉन बॉस्को विश्वविद्यालय; 1 घंटा

- 5. नैनो-विज्ञान और नैनो-प्रौद्योगिकी के समसामयिक मुद्दे; 9 जनवरी, 2023; जादवपुर विश्वविद्यालय साल्टलेक परिसर; 45 मिनट
- 6. ऑप्टिकल स्पेक्ट्रोस्कोपी स्वास्थ्य देखभाल अनुसंधान में नैनोथेरानोस्टिक्स अनुप्रयोग के लिए नैनोहाइब्रिड्स का अन्वेषण; मार्च 24, 2023; कल्याणी विश्वविद्यालय, कल्याणी, पश्चिम बंगाल; 30 ਸਿਜਟ
- 7. बायो-फोटोनिक्स प्रौद्योगिकी के माध्यम से व्यवसाय में परिवर्तन: स्वास्थ्य सेवा में नवाचार, चुनौतियाँ और डिजिटल नवीनीकरण; मार्च 20, 2023; टेक्नो इंटरनेशनल न्यू टाउन, कोलकाता, पश्चिम बंगाल; 1 घंटा
- 8. मिट्टी और पौधों की वास्तविक समय पर सिंचाई के लिए क्लाउड-आधारित नेटवर्क के माध्यम से नैनो-सेंसर और उसके अनुप्रयोग का विकास; 20 जनवरी, 2023; भारतीय कृषि अनुसंधान परिषद (आईसीएआर), भोपाल; 45 मिनट

प्रशासनिक कर्तव्य

- 1. अध्यक्ष, तकनीकी प्रकोष्ठ
- 2. अध्यक्ष, कीट नियंत्रण समिति
- 3. अध्यक्ष, सुरक्षा निगरानी समिति
- 4. अध्यक्ष, आंतरिक तकनीकी समिति

पेटेंट प्राप्त किए और इस प्रक्रिया में हुई प्रगति संबंधी विवरण

- मूत्र मूत्राशय कैंसर के अदृश्य वाष्पशील कार्बनिक यौगिक (वीओसी) मार्कर को पहचानना: एक बेंच टू बेडसाइड प्रोटोटाइप स्पेक्ट्रोस्कोपिक डिवाइस, इंडियन पेटेंट अनुप्रयुक्त. (2022); एफए/234/केओएल/2022; अनुप्रयुक्त
- 2. मैटिक्स में जल क्षमता का गैर-संपर्क संवेदन, भारतीय पेटेंट. अनु. (2023); 202311021215/2023; अनुप्रयुक्त

पुरस्कार/ मान्यताएँ

- 1. अब्दुल कलाम टेक्नोलॉजी इनोवेशन नेशनल फ़ेलोशिप 2018 (इंडियन नेशनल एकेडमी ऑफ़ इंजीनियरिंग: INAE) अगले दो वर्षों के लिए विस्तार
- 2. ग्लोबल इनोवेशन एंड टेक्नोलॉजी एलायंस (जीआईटीए) की विशेषज्ञ समिति के अध्यक्ष

लर्निड सोसाइटी की सदस्यता

1. इंडियन एसोसिएशन फॉर द कल्टिवेशन ऑफ साइंस, आजीवन सदस्य

वार्षिक प्रतिवेदन 2022-2023

- भारतीय भौतिक सोसायटी
- भारतीय राष्ट्रीय इंजीनियरिंग अकादमी के गवर्निंग काउंसिल के सदस्य: INAE
- कार्यक्रम सलाहकार समिति (पीएसी): विज्ञान और इंजीनियरिंग अनुसंधान बोर्ड (एसईआरबी) के इलेक्ट्रिकल, इलेक्ट्रॉनिक्स और कंप्यूटर इंजीनियरिंग में 2021-2024 तक
- इंडियन नेशनल एकेडमी ऑफ इंजीनियरिंग (FNAE) के फेलो

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

- 1. डिस्प्ले लेबल में संभावित अनुप्रयोगों के लिए रेट्रो रिफ्लेक्टिव सामग्री के बड़े पैमाने पर उत्पादन के लिए एक औद्योगिक प्रक्रिया का विकास; होलोफ्लेक्स लिमिटेड; 2 साल; पीआई
- 2. मिट्टी और पौधों की वास्तविक समय सिंचाई के लिए क्लाउड आधारित नेटवर्क के माध्यम से नैनो सेंसर और उसके अनुप्रयोग का विकास; भारतीय कृषि विज्ञान परिषद कोष (आईसीएआर); 3 वर्ष; सह पीआई
- 3. 2डी हेटरोस्ट्रक्चर में उभरती घटनाएं; डीएसटी इंडिया; 5 साल; सह पीआई
- 4. वास्तविक विश्व अनुप्रयोग के लिए प्लारमोनिक्स आधारित कम लागत, अल्ट्रासेंसिटिव सेंसर का विकास और अनुकूलन: क्षेत्रीय पर्यावरण प्रदूषण निगरानी के क्षेत्र में संभावना; पश्चिम बंगाल प्रदूषण नियंत्रण बोर्ड; 2 साल; सह पीआई

राष्ट्रीय/अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. प्रोफेसर समित कुमार रे, भौतिकी विभाग, भारतीय प्रौद्योगिकी संस्थान, खड़गपुर; क्र.सं. नंबर 26; राष्ट्रीय
- प्रोफेसर रंजन दास, रसायन विज्ञान विभाग, पश्चिम बंगाल राज्य विश्वविद्यालय; क्र.सं. क्रमांक 3, 11, 23, 27; राष्ट्रीय
- डॉ. देबजानी कर्माकर, भाभा परमाणु अनुसंधान केंद्र, ट्रॉम्बे, मुंबई, भारत; क्र.सं. नंबर 12; राष्ट्रीय
- 4. डॉ. सुदेशना श्याम चौधरी (भट्टाचार्य) विभाग: माइक्रोबायोलॉजी एवं पर्यावरण, सेंट जेवियर्स कॉलेज, 30 पार्क स्ट्रीट, कोलकाता 700 016; क्र.सं. नंबर 11; राष्ट्रीय

- 5. प्रोफेसर असीम कुमार मलिक, एनआरएस मेडिकल कॉलेज, कोलकाता, 700014, भारत; क्र.सं. क्रमांक 13, 26; राष्ट्रीय
- 6. दीपांकर दास सरमा (डी डी सरमा), सॉलिड स्टेट एंड स्ट्रक्चरल केमिस्ट्री यूनिट, इंडियन इंस्टीट्यूट ऑफ साइंस बैंगलोर, भारत; क्र.सं. नंबर 12; राष्ट्रीय
- 7. ओले एरिक्सन, भौतिकी और खगोल विज्ञान विभाग, सामग्री सिद्धांत, उप्साला विश्वविद्यालय, स्वीडन में प्रोफेसर; क्र.सं. नंबर 12; अंतरराष्ट्रीय
- 8. प्रोफेसर सालेह अहमद, उम्म अल-कुरा विश्वविद्यालय रसायन विज्ञान विभाग, सऊदी अरब; क्र.सं. क्रमांक 2, 8, 9, 11, 14, 16, 18, 21, 25, 27; अंतरराष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

- 1. 21 और 23 जून 2022 को जगदीस बोस राष्ट्रीय विज्ञान प्रतिभा खोज (जेबीएनएसटीएस) में वैज्ञानिक रचनात्मकता, प्रेरणादायक वार्ता
- 2. 27 मार्च 2023 को जगदीस बोस राष्ट्रीय विज्ञान प्रतिभा खोज (जेबीएनएसटीएस) में वैज्ञानिक रचनात्मकता, प्रेरणादायक वार्ता

अनुसंधान क्षेत्र

बायोफिजिक्स, नैनोटेक्नोलॉजी, बायोमेडिकल इंस्ट्रमेंटेशन, बायोमिमेटिक्स, डाई-सेंसिटाइज्ड सोलर सेल, ट्रांसलेशनल मेडिसिन, क्लिनिकल ट्रायल, नैनोमेडिसिन, प्री-क्लिनिकल स्टडीज

परियोजना सहित भविष्यत् कार्य की योजना

- 1. राष्ट्र के लिए कम लागत वाले उपकरणों का विकास।
- 2. देखभाल निदान बिंदू का विकास।
- 3. विभिन्न रोगों के उपचार के लिए जैव-संगत नैनोहाइब्रिड का विकास।
- 4. पर्यावरणीय अनुप्रयोगों के लिए कम लागत वाले सेंसर का विकास।
- 5. बायो-मिमेटिक सिस्टम पर मौलिक प्रयोगात्मक फोटोफिजिकल अध्ययन।
- 6. ऊर्जा संचयन सामग्री पर मौलिक अध्ययन।
- 7. मानव विषय में नैनोमेडिसिन का नैदानिक परीक्षण
- 8. पश् मॉडल में नैनोमेडिसिन का पूर्व-नैदानिक अध्ययन

सुमन चक्रवर्ती एसोसिएट प्रोफेसर रासायनिक और जैविक विज्ञान sumanc@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पी.एचडी. छात्र

- 1. अभिनंदन दास; एसिटाइलकोलिनेस्टरेज़ के लिए अवरोधकों की कार्रवाई का तर्कसंगत डिजाइन और तंत्र; शोधकार्य जारी
- 2. कृष्णेंद् सिन्हा; RhoGDI विनियमन के तहत फॉर-फोराइलेशन कोड; शोधकार्य जारी
- 3. दिब्येंदु मैती; भौतिकी में मशीन लर्निंग: भविष्यवाणी, पहचान और उन्नत नमूनाकरण; शोधकार्य जारी
- 4. श्रेयान भौमिक; प्रोटीन में एलोस्टेरिक विनियमन की कम्प्यूटेशनल जांच; प्रगति मे
- 5. सुतनु मुखोपाध्याय; औषधि खोज की दिशा में कम्प्यूटेशनल दृष्टिकोण; शोधकार्य जारी

ख) पोस्ट-डॉक्स

1. एसके. समीर अहमद; आयनिक तरल पदार्थों का क्वांटम रासायनिक अध्ययन

ग) बाहरी परियोजना छात्र/ग्रीष्मकालीन प्रशिक्षण

- 1. अदवे मजूमदार; प्रोटीन-लिगैंड अंतःक्रिया का तंत्र
- 2. टीशा डैश; उभयचर अणुओं का स्व-संयोजन
- 3. उमा गांगुली; क्रिस्टलीकरण के दौरान न्यूक्लियेशन और वृद्धि

शिक्षण/ अध्यापन

- 1. ऑट्म सत्र; सीबी 631: उन्नत संख्यात्मक तरीके और सिमुलेशन; पीएचडी: 14 छात्र
- 2. ऑट्म सत्र; PHY 304: परियोजना अनुसंधान II; एकीकृत पीएचडी; 2 छात्र
- 3. वसंत सत्र; PHY 401: परियोजना अनुसंधान III; एकीकृत पीएचडी; 1 छात्र
- 4. ऑट्म सत्र; पीएचवाई 292: ग्रीष्मकालीन परियोजना अनुसंधान I; एकीकृत पीएचडी; 1 छात्र

प्रकाशन

क) ज़र्नल में

- 1. प्रयासी बरुआ, धीमान रे, इबेम्हनबी कोनथौजम, अभिनंदन दास, सुमन चक्रवर्ती, कृपामोय अगुआनब और शिवप्रसाद मित्रा, थेराप्यूटिक अपर्चुनिटीज ऑफ़ सर्फेस-एक्टिव आयनिक लिक्विड्स: अ केस स्टडी ऑन एसिटाइलकोलिनेस्टरेज़, साइट्रेट सिंथेज़ ऐंड हेला सेल लाइन्स, न्यू जर्नल ऑफ केमिस्ट्री, 46, 20419, 2022
- 2. धीमान रे, इमोचा राजकुमार सिंह, अनिंदिता भट्टा, अभिनंदन दास, सुमन चक्रवर्ती, शिवप्रसाद मित्रा, मॉड्युलेशन ऑफ़ ड्रग बाइंडिंग एबिलिटी एंड ऑग्मेंटेड एंजीमेटिक एक्टिविटी ऑफ़ लायसेजाइम स्टेब्लाइज्ड इन प्रिसेंस ऑफ़ सफेंस-एक्टिव आयनिक लिक्विड्स, जर्नल ऑफ मॉलिक्यूलर लिक्विड्स, 367, 120356, 2022
- 3. एसके इमाद्ल इस्लाम, पार्थ पायने, दीपक कुमार दास, शौनक मुखर्जी, सुमन चक्रवर्ती, और राजीव कुमार मित्रा, मॉलिक्यूलर इनसाइट इंट्र डाय-सर्फेक्टेंट इंट्रैक्शन: अ कंबाइंड टू-फोटॉन

- एब्सॉप्शन एंड मॉलिक्यूलर डायनामिक सिमुलेशन स्टडी, लैंगमुइर, 38, 3105-3112, 2022
- 4. नीलेश सी. रेड्डी, राजीब मोल्ला, प्रल्हाद नामदेव जोशी, सजीव टी.के., इप्सिता बस्, ज्योत्सना कवाडकर, नीतू कालरा, राम कुमार मिश्रा, सुमन चक्रवर्ती, संजीव शुक्ला और विशाल राय, ट्रेसलेस सिस्टीन-लिंचपिन इनेबल्स प्रिसिजन इंजिनियरिंग ऑफ़ लायसिन इन नेटिव प्रोटिन्स, नेचर कंम्युकेशन, 13, 6038, 2022
- 5. राजलक्ष्मी साहू, दिब्येंदु माइती, डी.एस. शंकर राव, **सुमन चक्रवर्ती**, सी.वी. येलमग्गड, और एस. कृष्णा प्रसाद, डायमर-पेरिटी-डिपेंडेंट ऑड-इवेन इफेक्ट्स इन फोटोइंड्युस्ड ट्रांजिशंस टू कोलेस्ट्रेटिक एंड ट्विस्ट ग्रेन बाउंड्री स्मेक्टिक-सी* मेसोफेज : एक्सपेरीमेंट एंड सिमुलेशन, फिजिकल रिव्यू ई, 106, 044702, 2022
- 6. काव्या मृद्ला ताडेपल्ली, सुमन चक्रवर्ती, प्रमोद पाटिल, और रजनीश कुमार, डिजाइन ऑफ़ CO थीकनर्स एंड रोल ऑफ़ एरोमेटिक रिंग्स इन इन्हेन्स्ड ऑयल रिकवरी यूजिंग मॉलिक्यूलर डायनामिक्स, लैंगमुइर, 39, 989, 2023
- 7. सुदीप्त मित्रा, अर्नब सिल, रंजीत बिस्वास और सुमन चक्रवर्ती, मॉलिक्यूलर थर्मोडायनामिक्स ऑरिजिन ऑफ़ सब्स्ट्रेट प्रोमिसक्यूटी इन द एन्जाइम लैकेस: टूवार्ड अ ब्रॉड-स्पेक्ट्रम डिग्रेडर ऑफ़ डाय एफ्ल्एंट्स, द ज़र्नल ऑफ़ फिजिकल केमेस्ट्री लेटर्स, 14, 1892, 2023
- भावना पांडे, कृष्णेंदु सिन्हा, आदित्य देव, हिमाल के. गांगुली, रमरजीत पोली, **स्मन चक्रवर्ती** और गौतम बस्, *फॉर-फोराइलेशन-*कंपिटेंट मेटास्टेबल स्टेट ऑफ एस्चेरिचिया कोली टॉक्सिन हिपा, बायोकैमिर-ट्री,, 62, 989, 2023
- शुभा कांति भौमिक, दिब्येंदु माइती, इप्सिता बसु, सुमन चक्रवर्ती और सुप्रतिम बनर्जी, एफिसिएंट लाइट हार्वेस्टिंग इन सेल्फ-एसेम्बल्ड ऑर्गेनिक ल्यूमिनसेंट नैनोट्यूब्स, केमिकल साइंस, 14, 4363, 2023

प्रतिष्ठित सम्मेलन/संस्थानों में प्रदत्त वार्ता/ सेमिनार

- जटिल प्रणालियों में रासायनिक गतिशीलता (सीडीसीएस-2022); 6 मई, 2022; ऑनलाइन; 3 दिन
- 2. रसायन विज्ञान में हालिया प्रगति: सैद्धांतिक और कम्प्यूटेशनल पहलू 2022; 18 नवंबर, 2022; नेहू, शिलांग; 3 दिन
- आणविक अनुकरण: विधि पर ध्यान दें; 13 दिसंबर, 2022; टीआईएफआर, हैदराबाद; दो दिन

- 4. जैविक विज्ञान के अंतःविषय दृष्टिकोण पर अंतर्राष्ट्रीय सम्मेलन (IABS 2023); फ़रवरी 1, 2023; आईएसीएस, कोलकाता; 3 दिन
- 5. एशिया पैसिफिक एसोसिएशन ऑफ थियोरेटिकल एंड कम्प्यूटेशनल केमिस्ट्स (APATCC-10) की 10वीं बैठक; फ़रवरी 19, 2023; क्यू न्होन, वियतनाम; पांच दिन
- 6. बहुरूपदर्शक: रसायन विज्ञान में एक चर्चा बैठक; जुलाई 28, 2022; उदयपुर; चार दिन
- 7. रसायन विज्ञान में सिद्धांत और संगणना का प्रतिच्छेदन (आईटीसीसी - 2022); जुलाई 1, 2022; आईआईएसईआर कोलकाताः 1 दिन
- 8. सैद्धांतिक रसायन विज्ञान बैठक: संरचना और गतिशीलता (टीसीएमएसडी-2022); 26 मई, 2022; आईएसीएस, कोलकाता; चार दिन
- 9. जेएनसीएएसआर, बेंगलुरु में आमंत्रित व्याख्यान; फरवरी 16, 2023; जेएनसीएएसआर, बेंगलुरु में आमंत्रित व्याख्यान; 1 दिन

प्रशासनिक कर्तव्य

- 1. अध्यक्ष, पुस्तकालय समिति
- अध्यक्ष, मीडिया सेल
- सदस्य, सेमिनार एवं बोलचाल कार्यक्रम (एससीओएलपी)
- 4. सदस्य, कंप्यूटर सेवा सेल सलाहकार समिति (सीएससी-एसी)
- 5. सदस्य, वेबसाइट डिजाइन एवं रखरखाव समिति
- सदस्य, आंतरिक स्थायी तकनीकी समिति
- 7. संकाय प्रभारी एवं समन्वयक: एनएसएम (राष्ट्रीय सुपरकंप्यूटिंग मिशन) के तहत स्परकंप्यूटिंग स्विधा का कार्यान्वयन।

पुरस्कार/ मान्यताएँ

- 1. भारतीय विज्ञान अकादमी, बेंगलुरु द्वारा प्रकाशित डायलॉग: साइंस, साइंटिस्ट्स एंड सोसाइटी के संपादकीय बोर्ड के सदस्य
- 2. बायोफिज़िक्स के संपादकीय बोर्ड पर समीक्षा संपादक (भौतिकी में फ्रंटियर्स, फिजियोलॉजी में फ्रंटियर्स और आणविक बायोसाइंसेज में फ्रंटियर्स का विशेष अनुभाग)

लर्निड सोसायटी की सदस्यता

- 1. बायोफिजिकल सोसायटी, यूएसए
- 2. अमेरिकन केमिकल सोसायटी (एसीएस), यूएसए

3. केमिकल रिसर्च सोसाइटी ऑफ इंडिया (सीआरएसआई), भारत

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यएनडीपी, आदि)

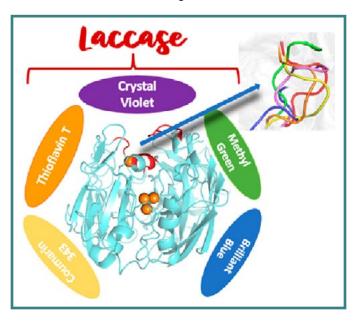
- 1. दवा जैसे अण्ओं के भौतिक रासायनिक गुणों की तीव्र भविष्यवाणी के लिए कृत्रिम तंत्रिका नेटवर्क (एएनएन) आधारित मॉडल का विकास; एसईआरबी, भारत; 3 वर्ष; पीआई
- 2. RhoGDI के फॉर्स्फोराइलेशन के माध्यम से Rho GTPases के नियमन का आणविक तंत्र: "फॉस्फोराइलेशन कोड" को उजागर करने की दिशा में; एसईआरबी, भारत; 3 वर्ष; पीआई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

1. कंप्यूटर पर उत्प्रेरक डिज़ाइन करना (DCC22); 2 दिसंबर, 2022: आईएसीएस, कोलकाता; दो दिन

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. एंजाइमों पर सतह-सक्रिय आयनिक तरल पदार्थों के प्रभाव पर एनईएचयू, शिलांग के प्रोफेसर शिवप्रसाद मित्रा के साथ सहभागिता; क्र.सं. नंबर 1, 2; राष्ट्रीय
- 2. नेटीव प्रोटीन में लाइसिन की सटीक इंजीनियरिंग पर आईआईएसईआर भोपाल के प्रोफेसर विशाल राय के साथ सहभागिता; क्र.सं. नंबर 4; राष्ट्रीय
- 3. लिक्विड क्रिस्टल में फोटोप्रेरित संक्रमणों में डिमर-समता-निर्भर विषम-सम प्रभावों पर सेंटर फॉर नैनो एंड सॉफ्ट मैटर साइंसेज (सीईएनएस), बेंगलुरु के प्रोफेसर एस. के. प्रसाद और डी. एस. शंकर राव के साथ सहभागिता; क्र.सं. पाँच नंबर; राष्ट्रीय
- 4. उन्नत तेल पुनर्प्राप्ति पर आईआईटी मद्रास के प्रोफेसर रजनीश कुमार के साथ सहभागिता; क्र.सं. नंबर 6; राष्ट्रीय
- एस्चेरिचिया कोली टॉक्सिन प्रोटीन हिपा की फॉस्फोराइलेशन-सक्षम मेटास्टेबल स्थिति पर बोस इंस्टीट्यूट, कोलकाता के प्रोफेसर गौतम बस् के साथ सहभागिता; क्र.सं. नंबर 8; राष्ट्रीय
- स्व-संयोजित कार्बनिक ल्यूमिनसेंट नैनोट्यूब में कुशल प्रकाश संचयन पर आईआईएसईआर कोलकाता के प्रोफेसर सुप्रतिम बनर्जी के साथ सहभागिता; क्र.सं. नंबर 9; राष्ट्रीय

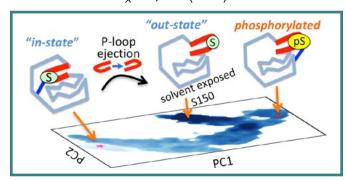

अनुसंधान क्षेत्र

सैद्धांतिक और कम्प्यूटेशनल भौतिक रसायन विज्ञान, कम्प्यूटेशनल आणविक बायोफिजिक्स

हम जटिल (जैव) आणविक प्रणालियों की संरचना, अंतःक्रिया, गतिशीलता और कार्य और नरम संघनित पदार्थ प्रणालियों में चरण संक्रमण से संबंधित घटनाओं के बीच संबंध को समझने के लिए शास्त्रीय आणविक गतिशीलता (एमडी) सिमुलेशन और उन्नत नमूनाकरण विधियों के संयोजन का उपयोग करते हैं। हम अपने सैद्धांतिक/ कम्प्यूटेशनल कार्य को प्रमाणित करने और/या प्रयोगात्मक अवलोकनों के पीछे एक आणविक तंत्र प्रदान करने के लिए कई प्रयोगात्मक अनुसंधान समूहों के साथ सहयोग करते हैं। कुछ महत्वपूर्ण उदाहरण जहां हमने हाल ही में महत्वपूर्ण योगदान दिया है:

1. एंजाइम लैकेस में सब्सट्रेट संकीर्णता की आणविक थर्मोडायनामिक उत्पत्ति: डाई अपशिष्टों के एक व्यापक-स्पेक्ट्रम डिग्रेडर की ओर

प्रोफेसर रंजीत बिस्वास (एसएनबीएनसीबीएस, कोलकाता) के सहयोग से, हमने स्थिर-अवस्था यूवी-दृश्य अवशोषण स्पेक्ट्रोस्कोपी, आणविक डॉकिंग और आणविक गतिशीलता (एमडी) सिम्लेशन के संयोजन का उपयोग करके एंजाइम लैकेस में सब्सट्रेट प्रॉमिसिटी की आणविक थर्मोडायनामिक उत्पत्ति को स्पष्ट किया है। हमने अलग-अलग चार्ज, आकार और आकृति वाले पांच डाई अणुओं के साथ लैकेस की परस्पर क्रिया पर विचार किया है। स्पेक्ट्रोस्कोपिक अध्ययन इस बात की पृष्टि करते हैं कि इन सभी रंगों को लैकेस द्वारा निम्नीकृत किया जा सकता है। एमडी सिमुलेशन का उपयोग करके, हमने प्रोटीन सक्रिय साइट में एक लूप के विभिन्न विशिष्ट अनुरूपताओं की उपस्थित का प्रदर्शन किया है जो डाई अणुओं की विस्तृत श्रृंखला को समायोजित कर सकता है। हमने यह भी दिखाया है कि विभिन्न थर्मोडायनामिक कारकों के रद्द होने के कारण डाई अणुओं का विविध चयन आश्चर्यजनक


रूप से समान बंधन संबंध प्रदर्शित कर सकता है। हमारे परिणाम औद्योगिक डाई अपशिष्टों के लिए बहुउद्देशीय डिग्रेडर के रूप में लैकेस की क्षमता को उजागर करते हैं।

संदर्भ: द जर्नल ऑफ़ फिजिकल केमिस्ट्री लेटर्स 14, 1892 (2023)

टॉक्सिन 2. एस्चेरिचिया कोली फॉस्फोराडलेशन-सक्षम मेटास्टेबल स्थिति

फॉस्फोराइलेशन एक पोस्ट-ट्रांसलेशनल संशोधन तंत्र है जो कई प्रोटीनों की कार्यात्मक स्थिति को बदल देता है। एस्चेरिचिया कोली टॉक्सिन हिपा, सेर150 के ऑटोफॉस्फोराइलेशन पर निष्क्रिय हो जाता है। दिलचस्प बात यह है कि, हिपा की क्रिस्टल संरचना में सेर150 फॉस्फोराइलेशन-अक्षम है क्योंकि यह गहराई से दबा हुआ है ("इन-स्टेट"), हालांकि फॉस्फोराइलेटेड अवस्था में यह विलायक के संपर्क में आता है ("आउट-स्टेट")। फॉस्फोराइलेटेड होने के लिए, हिपा की एक छोटी आबादी फॉस्फोराइलेशन-सक्षम "आउट-स्टेट" (विलायक-उजागर सेर 150) में मौजूद होनी चाहिए, जो अनफॉस्फोराइलेटेड हिपा की क्रिस्टल संरचना में नहीं पाई जाती है। प्रोफेसर गौतम बसु (बोस इंस्टीट्यूट, कोलकाता) के सहयोग से, हमने हिपा प्रोटीन के कुछ फॉस्फोराइलेशन सक्षम मेटास्टेबल कन्फॉर्मेशन राज्यों की उपस्थिति स्थापित की है जो आंशिक रूप से विलायक के संपर्क में हैं। हमारे परिणाम न केवल हिपा ऑटोफॉस्फोराइलेशन के एक तंत्र का सुझाव देते हैं, बल्कि असंबद्ध प्रोटीन प्रणालियों पर कई हालिया रिपोर्टों को भी जोड़ते हैं, जहां दफन अवशेषों के फॉस्फोराइलेशन के लिए सामान्य प्रस्तावित तंत्र फॉस्फोराइलेशन के बिना भी उनका क्षणिक जोखिम है।

संदर्भ: बॉयोकोमोर-ट्री 62, 989 (2023)

3. स्व-संयोजित कार्बनिक ल्यूमिनेसेंट नैनोट्यूब में कुशल प्रकाश संचयन

प्रोफेसर सुप्रतिम बनर्जी (आईआईएसईआर कोलकाता) के समूह के सहयोग से हमने सायनोस्टिलबीन (सीएस) आधारित धनायनित स्परमॉलेक्यूलर पॉलिमर और बायो-पोलियानियन हेपरिन के सह-संयोजन से प्राप्त ल्यूमिनसेंट कार्बनिक नैनोट्यूब के गठन और संरचनात्मक पहलुओं के आणविक तंत्र का अध्ययन किया है। ज्ञात थक्कारोधी. हमारे एमडी सिम्लेशन इन स्परमॉलेक्यूलर पॉलिमर की आणविक स्तर की संरचनात्मक जानकारी प्रदान करते हैं।

संदर्भ: केमिकल साइंस 14, 4363 (2023)

परियोजना सहित भविष्यत कार्य की योजना

- 1. रासायनिक भौतिकी और बायोफिज़िक्स में मशीन लर्निंग: हमारा समूह सक्रिय रूप से समस्याओं के लिए मशीन लर्निंग एल्गोरिदम के विकास और अनुप्रयोग के क्षेत्र में काम कर रहा है: (i) उनके 2 डी / 3 डी संरचनाओं से अणुओं के भौतिक रासायनिक गुणों की भविष्यवाणी (यह परियोजना मैट्रिक्स द्वारा प्रायोजित है) एसईआरबी, भारत की योजना), (ii) समाधान से क्रिस्टल के न्युक्लियेशन के संदर्भ में एक मेटास्टेबल अनाकार चरण (उदाहरण के लिए स्परकूल्ड तरल) में स्थानीय क्रिस्टलीय क्रम (विशिष्ट चरण) का तुरंत पता लगाना, और (iii) दुर्लभ घटनाओं के उन्नत नमूने के लिए सामूहिक चर (प्रतिक्रिया निर्देशांक) की पहचान।
- 2. RhoGDI और Rho GTPases के बीच प्रोटीन-प्रोटीन इंटरैक्शन में सक्रिय फॉस्फोराइलेशन कोड का आणविक तंत्र: इस परियोजना को SERB, भारत की ECR योजना द्वारा प्रायोजित किया गया है। हमने इस परियोजना पर प्रोफेसर रूथ नुसिनोव (एनसीआई, यूएसए) के साथ सहयोग भी शुरू किया है।
- 3. रोटीन-प्रोटीन इंटरफेस/इंटरैक्शन (पीपीआई) सहित चुनौतीपूर्ण दवा लक्ष्यों के लिए एलोस्टेरिक हॉटस्पॉट और अवरोधकों की पहचान करने के लिए एक कम्प्यूटेशनल प्रोटोकॉल/रणनीति का विकास

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

1. (i) एंजाइम लेकेस में सब्सट्रेट प्रॉमिसिटी, और (ii) स्व-संयोजित कार्बनिक ल्यूमिनसेंट नैनोट्यूब में कुशल प्रकाश संचयन पर हमारे सहयोगात्मक शोध को डीएसटी मीडिया सेल के साथ-साथ कुछ लोकप्रिय मीडिया द्वारा वैज्ञानिक कहानियों के रूप में उजागर किया गया है।

संघनित पदार्थ एवं पदार्थ भौतिकी विभाग

प्रिया महादेवन

विभाग प्रोफाइल संकेतक

तालिका कः जनशक्ति और संसाधन

संकाय सदस्यों की संख्या	नियमित = 12
	संविदात्मक = 4
पोस्ट-डॉक्टोरल रिसर्च एसोसिएट (केंद्र+परियोजना) की संख्या	28
पीएचडी छात्रों की संख्या	77
अन्य परियोजना कर्मचारियों की संख्या	1
ग्रीष्मकालीन परियोजना के छात्रों की संख्या	14 (बाहरी)
परियोजनाएँ (चालू)	18

तालिका ख: अनुसंधान गतिविधियाँ संकेतक

ज़र्नल में शोध पत्रों की संख्या	86	
पुस्तक-अध्यायों / पुस्तकों की संख्या	1	
अन्य प्रकाशनों की संख्या	6	
उपाधि प्राप्त पीएच.डी. छात्रों की संख्या (प्रस्तुत + डिग्री से सम्मानित)	8(थीसिस प्रस्तुत)+8(पीएच.डी. डिग्री	
	प्रदान की गई)	
एम.टेक / एम.एससी परियोजनाओं की संख्या	1	

तालिका ग : शैक्षणिक गतिविधियाँ और इसके सदृश कार्य

संकाय सदस्यों द्वारा पढ़ाए जाने वाले पाठ्यक्रमों की संख्या	15	
आगंतुकों की संख्या (असंबद्ध)		
एसोसिएट्स की संख्या		
आयोजित संगोष्ठियों की संख्या	34	
आयोजित सम्मेलन / संगोष्ठी / एडवान्स्ड स्कूलों की संख्या	10	
सम्मेलनों / संगोष्ठियों में विभाग के सदस्यों द्वारा प्रदत्त वार्ताओं की संख्या	राष्ट्रीय	38
	अंतरराष्ट्रीय	6

सर्वाधिक महत्वपूर्ण शोधकार्य

- अंजन बर्मन के समूह ने Ta/Co20Fe60B20/SiO2 की पतली फिल्म हेटरोस्ट्रक्चर में अल्ट्राफास्ट डिमैग्नेटाइजेशन की जांच की है और डिमैग्नेटाइजेशन की भिन्नता और गिल्बर्ट डंपिंग के बीच सीधा संबंध पाया है, जो इंटरफ़ेस स्पिन-ट्रांसपोर्ट को प्रमुख तंत्र के रूप में दर्शाता है।
- अतींद्रनाथ पाल के समूह ने फेरोसिन के माध्यम से परिवहन की जांच की और गुंजयमान परिवहन से उत्पन्न होने वाले कमरे के तापमान पर काफी उच्च चालकता पाई।
- अविजीत चौधरी के समूह ने संपूर्ण यूवी, दृश्यमान और स्पेक्ट्रम के निकट अवरक्त भाग का उपयोग करके फोटोकैटलिटिक प्रदर्शन को बढ़ाते हुए फोटोजेनरेटेड वाहक पुनर्संयोजन को दबाने के लिए कार्यात्मक स्तरित सामग्रियों के दर्नरी नैनोकम्पोजिट का प्रस्ताव दिया है।
- बरनाली घोष के समूह ने CH3NH3PbBr3 के एकल क्रिस्टल के साथ दृश्य तरंग दैर्ध्य में काम करने वाला एक गेटेड ऑप्टिकल डिटेक्टर बनाया है।

वार्षिक प्रतिवेदन 2022-2023

- कल्याण मंडल के समूह ने विभिन्न सह आधारित टोपोलॉजिकल हेर-लर यौगिकों में विसंगतिपूर्ण हॉल प्रभाव की जांच की है और पाया है कि वे आंतरिक बेरी चरण तंत्र पर हावी हैं।
- मनोरंजन कुमार के समूह ने पाया है कि फेरोमैग्नेटिक निकटतम पड़ोसी एक्सचेंज और एंटीफेरोमैग्नेटिक दूसरे पड़ोसी एक्सचेंज के साथ स्पिन-1/2 श्रृंखला निराशा के आधार पर दो स्पिन-पीयरल्स अस्थिरताओं का समर्थन करती पाई गई है।
- नितेश कुमार के समूह ने द्वि-आयामी लौहचुंबक Cr5Te8 का अध्ययन किया है और लोरेंत्ज़ माइक्रोस्कोपी के माध्यम से नील-प्रकार के स्किर्मियन पाए हैं।
- प्रिया महादेवन के समूह ने ट्विस्टेड बाइलेयर WSe2 की इलेक्ट्रॉनिक संरचना की विद्युत क्षेत्र ट्यूनेबिलिटी की व्याख्या की है।
- तन्श्री साहा-दासगुप्ता के समूह ने LaCoO3/SrIrO3 की हेटरोस्ट्रक्चर की इलेक्ट्रॉनिक संरचना में अपरंपरागत टोपोलॉजी पाई है।
- टी. सेट्टी के समूह ने दिखाया है कि Mn3Sn के टोपोलॉजिकल गुणों को Fe डोपिंग द्वारा ट्यून किया जा सकता है।

अनुसंधान गतिविधियों का सारांश

अंजन बर्मन का समूह गैर-चुंबकीय सामग्री और CoFeB से युक्त हेटरोस्ट्रक्चर में चुंबकीयकरण गतिशीलता की खोज कर रहा है। अलग-अलग स्पिन-ऑर्बिट इंटरैक्शन ताकत के साथ गैर-चूंबकीय सामग्रियों का उपयोग करके, वे स्पिन-ऑर्बिट इंटरेक्शन ताकत के साथ अल्ट्राफास्ट डीमैग्नेटाइजेशन समय, रीमैग्नेटाइजेशन टाइम और गिल्बर्ट डंपिंग की एक व्यवस्थित भिन्नता पाते हैं।

अतींद्रनाथ पाल का समूह फोटोडिटेक्टर के रूप में ग्राफीन और MoS2xSe2(1-x) मिश्र धातुओं के हेटरोस्ट्रक्चर की खोज कर रहा है और दिखाया है कि गहरे स्तर के दोष फोटोडिटेक्टर प्रदर्शन पर एक भूमिका निभाते हैं।

अविजीत चौधरी का समूह फोटोकैटलिसिस के लिए टर्नरी नैनोकम्पोजिट की खोज कर रहा है। वे एक बेहतर प्रदर्शन पाते हैं जो बडी संख्या में सक्रिय साइटों, ब्रॉडबैंड अवशोषण क्षमताओं, धातुओं के उपयोग से जुड़ा है जो तेजी से इलेक्ट्रॉन प्रवासन, कम इंटरफेशियल प्रतिरोध और लंबे इलेक्ट्रॉन जीवनकाल की अनुमति देता है।

कल्याण मंडल के समूह ने Ni37-xCo13+xMn34.5Ti15.5 में कमरे के तापमान के पास एक बड़ा प्रतिवर्ती मैग्नेटोकलोरिक प्रभाव और मैग्नेटोरेसिस्टेंस पाया है, एक ऐसी सामग्री जो फेरोमैग्नेटिक ऑस्टेनाइट

चरण और एंटीफेरोमैग्नेटिक के बीच एक बड़े मैग्नेटाइजेशन परिवर्तन के साथ प्रथम-क्रम मैग्नेटोस्ट्रक्चरल परिवर्तन से गुजरती है। मार्टेंसाइट चरण। क्रिस्टलोग्राफिक संगतता को अनुकूलित करने से उत्क्रमणीयता सुनिश्चित करने में मदद मिलती है।

मनोरंजन कुमार के समूह ने सटीक विकर्णीकरण और घनत्व मैट्रिक्स पुनर्सामान्यीकरण समूह अध्ययनों के संयोजन का उपयोग करके रिपन-1/2 श्रृंखलाओं के थर्मोडायनामिक्स की जांच की है जिसमें एक फेरोमैग्नेटिक निकटतम पडोसी एक्सचेंज और एक एंटीफेरोमैग्नेटिक अगला पडोसी एक्सचेंज है।

नितेश कुमार के समूह ने एक स्तरित लौहचुम्बक ZnMnSb में एक असामान्य हॉल प्रभाव पाया है। हालाँकि, इसके लिए तंत्र अब तक चर्चा की गई बातों से मेल नहीं खाता है, परिवहन एक अर्धचालक प्रकृति का सुझाव देता है, जबिक इलेक्ट्रॉनिक संरचना गणना प्रणाली के धारिवक होने की भविष्यवाणी करती है।

प्रिया महादेवन के समूह ने छोटे मोड़ वाले कोणों पर WSe2 की मुड़ी हुई बाइलेयर्स में फ्लैट बैंड निर्माण की व्याख्या की है। बड़े मोड़ कोणों पर समान आकार की मोइर कोशिकाओं में फ्लैट बैंड का गठन नहीं होता है, और यह इस तथ्य का पता लगाता है कि मोइर क्षमता के प्रमुख फूरियर घटक आदिम कोशिका से जुड़े हुए हैं। इसके परिणामस्वरूप छोटे मोड़ कोणों के लिए मजबूत क्षेत्र सीमा बिखराव होता है, जबकि बड़े मोड़ कोणों पर इलेक्ट्रॉनिक संरचना अप्रभावित सीमा के समान होती है।

तन्श्री साहा-दासगृप्ता के समूह ने विभिन्न बाइनरी मिश्रधात् नैनोकणों की खोज की है और सैद्धांतिक रूप से यह निर्धारित करने के लिए एकल परमाणु क्लस्टर पृथक्करण ऊर्जा की गणना की है कि कोर-शेल संरचनाएं बनेंगी या नहीं। उनके विश्लेषण से पता चलता है कि, घटकों की एकजुट ऊर्जा के बहुत छोटे और बहुत बड़े अंतर के लिए, कोर-शेल संरचना के बजाय, मिश्रित और जानूस संरचनाएं क्रमशः स्थिर होती हैं।

टी. सेट्टी के समूह ने Mn2.94Ge एकल क्रिस्टल के एकल क्रिस्टल विकसित किए हैं और चुंबकीय गुणों में से 353 K के नील तापमान के नीचे स्पिन-पुनर्विन्यास और लौहचुंबकीय जैसे संक्रमण जैसे अतिरिक्त चुंबकीय संक्रमणों का पता चलता है। हॉल डेटा भी असामान्य दिखाता है स्पिन पुनर्अभिविन्यास संक्रमण के आसपास का व्यवहार, इस यौगिक यौगिक के Mn3Ge के बहुत भिन्न गुणों को दर्शाता है।

Pruja Mahadaan

विभागाध्यक्ष, संघनित पदार्थ एवं पदार्थ भौतिकी विभाग

अंजन बर्मन वरिष्ठ प्रोफेसर संघनित पदार्थ एवं पदार्थ भौतिकी abarman@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का नदेशन

क) पी.एचडी. छात्र

- 1. अमृत कुमार मंडल; सतत और सीमित चुंबकीय पतली फिल्म में अल्ट्राफास्ट स्पिन डायनेमिक्स; थीसिस प्रस्तुत की गई
- 2. कौरतुव दत्ता; निम्न आयामी चुंबकीय संरचनाओं की फेम्टो और पिकोसेकंड स्पिन गतिशीलता: थीसिस प्रस्तुत की गई
- 3. सुदीप मजूमदार; लौहचुंबकीय पतली फिल्म और नैनोस्ट्क्चर में स्पिन वेव गतिशीलता; शोधकार्य जारी; राजीब कुमार मित्रा (सह पर्यवेक्षक)
- 4. अरुंधति अधिकारी; फेरोमैग्नेटिक नैनोस्ट्रक्चर में क्वासिस्टैटिक और अल्ट्राफास्ट मैग्नेटाइजेशन डायनेमिक्स; शोधकार्य जारी
- 5. प्रताप कुमार पाल; फेरोमैग्नेटिक नैनोस्ट्रक्चर और हेटरोस्ट्रक्चर में स्पिन वेव डायनेमिक्स; शोधकार्य जारी

- 6. श्रेया पाल; फेरोमैग्नेटिक थिन फिल्म्स, हेटेरोस्ट्रक्चर और नैनोर-टुक्चर की स्पिन डायनेमिक्स; शोधकार्य जारी
- 7. सोमा दत्ता; स्पिंट्रोनिक्स में अनुप्रयोगों के लिए उन्नत चुंबकीय संरचनाओं में अल्ट्राफास्ट स्पिन डायनेमिक्स; शोधकार्य जारी
- 8. स्चेतना मुखोपाध्याय; टोपोलॉजिकल इंसुलेटर में स्पिंट्रोनिक्स; प्रगति मे; प्रो चिरंजीब मित्रा, आईआईएसईआर कोलकाता (सह-पर्यवेक्षक)
- 9. चंदन कुमार; उभरती चुंबकीय सामग्रियों में स्पिन डायनेमिक्स; प्रगति मे
- 10. स्रंजना चकवर्ती; अणुओं का स्पेक्ट्रोस्कोपिक अध्ययन; प्रगति में; अनुप कुमार घोष (सह पर्यवेक्षक)

ख) पोस्ट-डॉक्स

- 1. अर्पण भट्टाचार्य; मैग्नोनिक्स में स्पिन-ऑर्बिट प्रभाव
- 2. अजीत कुमार साहु; फेरिमैग्नेटिक सामग्रियों में स्पिन डायनेमिक्स

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. महिमा एन पॉल; लंबवत चुंबकीय नैनोडॉट्स में डेज्यालोशिंस्की-मोरिया इंटरेक्शन

शिक्षण/ अध्यापन

- 1. ऑट्म सत्र; PHY301: परमाणु और आणविक भौतिकी; एकीकृत पीएचडी; 10 छात्र; प्रोफेसर राजीब कुमार मित्रा (सह-शिक्षक) के साथ
- 2. ऑट्म सत्र; सीबी 527: आणविक भौतिकी और स्पेक्ट्रोस्कोपी; पीएचडी; 6 छात्र; प्रोफेसर राजीब कुमार मित्रा (सह-शिक्षक) के साथ
- 3. वसंत सत्र; PHY292: प्रोजेक्ट कोर्स I; एकीकृत पीएचडी; 1 छात्र
- ऑट्म सत्र; PHY304: प्रोजेक्ट कोर्स II; एकीकृत पीएचडी; 1 छात्र
- 5. वसंत सत्र; PHY401: परियोजना अनुसंधान III; एकीकृत पीएचडी: 2 छात्र

प्रकाशन

क) ज़र्नल में

1. स्चेतना मुखोपाध्याय, सुदीप मजूमदार, सूर्य नारायण पांडा और **अंजन बर्मन**, इंवेस्टीगेशन ऑफ़ अल्ट्राफास्ट डिमैग्नेटाइजेशन एंड गिलबर्ट डैंपिंग एंड देयर कोरिलेशन इन

- डिफ्रिएंट फेरोमैग्नेटिक थीन फिल्म ग्रोन अंडर आइडेंटिकल *कंडीशन*, नैनोटेक्नोलॉजी, 34, 235702, 2023
- 2. अमृत कुमार मंडल, सुदीप मजूमदार, बिपुल कुमार महतो, सास्वती बर्मन, योशिका ओटानी और अंजन बर्मन, बियास फिल्ड ओरिएंटेशन ड्राइवेनरिकंफिग्रेबल मैग्नोनिक्स एंड मैग्नोन-मैग्नोन कप्लिंग इन ट्राएंगुलर शेप्ड Ni 80 Fe 20 नैनोडॉट अरेज़, नैनोटेक्नोलॉजी, 34, 135701, 2023
- 3. सोमा दत्ता, सूर्य नारायण पांडा, जयवर्धन सिन्हा, समीरन चौधरी, और अंजन बर्मन, रोल ऑफ़ स्पिन ट्रांशपोर्ट थ्रू द β -Ta/Co $_{20}$ Fe $_{00}$ B $_{20}$ इंटरफेस ऑन इट्स अल्ट्राफास्ट डिमैग्नेटाइजेशन: इंप्लीकेशन फॉर अल्ट्रा-हाई-स्पीड स्पिन-ऑर्बिट्रोनिक डिवाइसेस, एसीएस एप्लाइड नैनो मैटेरियल्स, 5, 17995, 2022
- 4. सौरव साहू, सुचेता मंडल, समीरन चौधरी, जयवर्धन सिन्हा, अंजन बर्मन, ऑल-ऑप्टिकल स्टडी ऑफ़ गिल्बर्ट डैंपिंग एंड स्पिन ऑर्बीट टॉक्यू इन Ta/CoFeB/SiO, हेटरोस्ट्रक्चर, मैरेरियल्स साइंस एंड इंजीनियरिंग: B, 287 116131, 2023
- 5. निर्माण चक्रवर्ती, सूर्य नारायण पांडा, अजय के. मिश्रा, अंजन **बर्मन**, और स्वास्तिक मंडल, फेरोमैग्नेटिक $Ni_{1-1}V_{1}O_{1-1}$ नैनो-क्लस्टर फॉर नो डिटेक्शन ऐट रूम टेंपरेचर: अ केस ऑफ़ मैग्नेटिक फील्ड-इंड्युस्ड केमिरेसिस्टिव सेंसिंग, एसीएस अप्लाइड मैटेरियल्स एंड इंटरफेसेस, 14, 52301, 2022
- 6. प्रताप कुमार पाल, सौरव साहू, कौस्तुव दत्ता, अंजन बर्मन, सास्वती बर्मन, योशीचिका ओटानी, थिकनेस-डिपेंडेड रिकंफिग्रेशन स्पिन-वेव डायनामिक्स इन Ni Fe नैनोस्ट्राइप अरेज, एडवांस्ड मैटेरियल्स इंटरफेस, 9, 2201333, 2022
- 7. सूर्य नारायण पांडा, बिवस राणा, योशीचिका ओटानी, अंजन बर्मन, रोल ऑफ स्पिन-ऑर्बिट कप्लिंग ऑन अल्ट्राफास्ट रिपन डायनामिक्स इन नैनोमैग्नेट/फेरोमैग्नेट हेटरोर-ट्रक्चर्स, एडवांस्ड क्वांटम टेक्नोलॉजी, 5, 2200016, 2022
- 8. सुरंजना चक्रवर्ती, अंजन बर्मन और अनुप घोष, एनोमलस इंफ्रारेड ऐब्सॉर्बेस ऑफ़ S=O: अ पर्टर्बेशन स्टडी ऑफ़ α -C-H/D, द ज़र्नल ऑफ़ फिजिकल केमेस्ट्री बी, 126, 5490, 2022
- 9. सुरंजना चक्रवर्ती, समाधान एच. देशमुख, अंजन बर्मन, सयान बागची और अनुप घोष, ऑन-ऑफ़ इंफ्रारेड एब्सॉर्प्शन ऑफ़ द S=O वायब्रेशनल प्रोब ऑफ़ डिमिथाइल सल्फोक्साइड, द ज़र्नल ऑफ़ फिजिकल केमेस्ट्री बी, 126, 4501, 2022

- 10. कौस्तुव दत्ता, सूर्या एन पांडा, ताकेशी सेकी, सांतनु पैन, कोकी ताकानाशी, अंजन बर्मन, ऑल ऑप्टिकल डिटेक्शन ऑफ़ स्पिनपंपिंग एंड जायंट इंटरफेशियल स्पिन ट्रांशपेरेंसी इन Co¸Fe¸₄Mn¸¸Si/Pt हेटरोस्ट्रक्चर, एडवांस्ड क्वांटम टेक्नोलॉजी, 5, 2200033, 2022
- 11. जयशंकर नाथ, अलेक्जेंड्र व्लादिमीर ट्रिफ्, मिहाई सेबेस्टियन गैबोर, अली हलाल, स्टीफन औफ्रेट, सेबेस्टियन लाबाउ, आयमेन महजौब, एडमंड चान, अविनाश कुमार चौरसिया, अमृत कुमार मोंडल, हाओझे यांग, ईवा श्मोरानजेरोवा, मोहम्मद अली एनसीबी, इसाबेल जौमार्ड, अंजन बर्मन, बर्नार्ड पेलिसिएर, मैरबेक च्शिव, गाइल्स गौडिन, इओन मिहाई मिरोन, मेकन्ज्म स्पिन-ऑर्बिट टॉर्क इन प्लैटिनम ऑक्साइड सिस्टम, एडवांस्ड इलेक्ट्रोनिक मैटेरियल्स, 2101335, 2022

ख) सम्मेलन की कार्यवाही/रिपोर्ट/मोनोग्राफ/पुस्तकें

1. अध्याय एक - पुस्तक श्रृंखला "सॉलिड स्टेट फिजिक्स" में माटुरुज़ ज़ेलेंट, पावेल ग्रुरुज़ेकी, मैथ्यू मोआलिक, ओलाव हेलविग, अंजन बर्मन, मैसीज क्राव्ज़िक द्वारा "लंबवत चुंबकीय अनिसोट्रॉपी के साथ पैटर्न वाले चुंबकीय मल्टीलेयर में स्पिन गतिशीलता"। खंड -73, पी-1-51, 2022

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. इंजीनियर्ड फेरोमैग्नेटिक मैटेरियल्स में स्पिन डायनेमिक्स, ए. बर्मन, RCPHYS22-23; फ़रवरी 15, 2023; जादवपुर विश्वविद्यालय; 60 मिनट
- 2. फेरोमैग्नेटिक नैनोस्ट्रक्चर में हाइब्रिड मैग्निक्स, ए. बर्मन, नैनोमैग्नेटिज्म और स्पिंट्रोनिक्स में फ्रंटियर समस्याओं पर सेमिनार: फ़रवरी 9, 2023: आईआईटी गांधीनगर: 60 मिनट
- 3. हाई-स्पीड स्पिट्रोनिक्स और मैग्नॉनिक्स में अनुप्रयोगों के लिए इंजीनियर्ड फेरोमैग्नेटिक सिस्टम में स्पिन डायनेमिक्स, ए. बर्मन, ईटीएच ज्यूरिख में सेमिनार; फ़रवरी 6, 2023; ईटीएच ज्यूरिख; 60 मिनट
- 4. स्पिट्रोनिक्स और मैग्नॉनिक्स में अनुप्रयोगों के लिए सीमित फेरोमैग्नेटिक सिस्टम में अल्ट्राफास्ट स्पिन डायनेमिक्स, ए. बर्मन, इंफोसिस कंडेंस्ड मैटर सेमिनार, टाटा इंस्टीट्यूट ऑफ फंडामेंटल रिसर्च मुंबई; 17 अक्टूबर, 2022; टीआईएफटी मुंबई; 60 मिनट
- 5. स्पिन-ऑर्बिट प्रभाव: स्पिंट्रोनिक्स का एक नया विंग, ए. बर्मन, नैनोमटेरियल्स पर समर स्कूल: अवधारणाएं और अनुप्रयोग; 22 अगस्त, 2022; सीआरएनएन, कलकत्ता विश्वविद्यालय; 60 मिनट

- फेरोमैग्नेटिक थिन फिल्म्स और हेटेरोस्ट्रक्चर में फेमटोसेकंड लेजर प्रेरित स्पिन डायनेमिक्स: अल्ट्राहाई स्पीड स्पिट्रोनिक्स की ओर, ए. बर्मन, उन्नत चुंबकीय सामग्री और अनुप्रयोग; जुलाई 29, 2022; आईआईटी हैदराबाद; 45 मिनट
- 7. 2डी सामग्री/फेरोमैग्नेट हेटेरोस्ट्रक्चर में फेम्टो- और पिकोसेकंड स्पिन डायनेमिक्स, सामग्री विज्ञान और इंजीनियरिंग में वर्तमान रुझानों पर चौथा अंतर्राष्ट्रीय सम्मेलन; जुलाई 28, 2022; आईईएम कोलकाता; 45 मिनट

प्रशासनिक कर्तव्य

- अधिष्ठाता संकाय
- सीएसी के सदस्य
- एआरपीएसी के सदस्य
- कार्य समिति के अध्यक्ष
- वार्षिक क्रय समिति के अध्यक्ष
- कार्यस्थल समिति के अध्यक्ष

पुरस्कार/ मान्यताएं

1. 2022 में स्टैनफोर्ड यूनिवर्सिटी द्वारा जारी शीर्ष 2% सर्वाधिक प्रभावशील वैज्ञानिकों की सूची में शामिल

लर्निड सोसायटी की सदस्यता

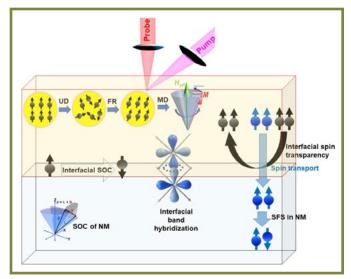
- अमेरिकन फिजिकल सोसायटी (एपीएस) के सदस्य
- इंस्टीट्यूट ऑफ फिजिक्स (आईओपी) यूके के सदस्य
- मैटेरियल्स रिसर्च सोसाइटी ऑफ इंडिया (एमआरएसआई) के आजीवन सदस्य

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

- 1. ऊर्जा कुशल कंप्यूटिंग, संचार और डेटा भंडारण के लिए नैनोमैग्नेटिक्स केंद्र; भारत-अमेरिका वर्च्अल नेटवर्क सेंटर; 2019-23; पीआई
- 2. स्पिंट्रोनिक अनुप्रयोग के लिए दृढ़ता से स्पिन कक्षा युग्मित टोपोलॉजिकल क्वांटम हेटेरो-संरचनाओं का विकास; डीएसटी, नैनो मिशन; 2021-2026; पीआई

सम्मेलन/ संगोष्ठी/ स्कूल का आयोजन

1. आईआईटी बॉम्बे और एसएनबीएनसीबीएस के बीच अनुसंधान सहयोग की किकऑफ़ बैठक जून 6, 2022; एस.एन. बोस राष्ट्रीय बुनियादी विज्ञान केंद्र; 3 दिन


राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. योशिचिका ओटानी, रिकेन और टोक्यो विश्वविद्यालय, जापान; क्र. सं. क्रमांक २, ६, ७; अंतरराष्ट्रीय
- 2. टी. सेकी और के. ताकानाशी, तोहोकू विश्वविद्यालय, जापान; क्र.सं. नंबर 10; अंतरराष्ट्रीय
- 3. आई. मिहाई मिरॉन, स्पिनटेक, फ्रांस; क्र.सं. नंबर 11; अंतरराष्ट्रीय
- 4. स्वास्तिक मंडल, सीजीसीआरआई, कोलकाता, भारत; क्र.सं. पाँच नंबर: राष्ट्रीय

अनुसंधान क्षेत्र

प्रायोगिक संघनित पदार्थ भौतिकी; नैनोचुम्बकत्व; स्पिंट्रोनिक्स; मैग्नोनिक्स; अल्ट्राफास्ट और THz स्पेक्ट्रोस्कोपी; सूक्ष्मचुंबकीय सिमुलेशन

स्पिन-ऑर्बिट्रोनिक्स: विभिन्न हमने गैर-चुंबक Co20Fe60B20 हेटरोस्ट्रक्चर में चुंबकत्व गतिशीलता की जांच की है, जहां NM परत Cu, Ta, W, Pt, Ta/Ru/Ta, और Si/ SiO2 के रूप में भिन्न होती है जो SOC ताकत में भिन्न होती है। हमने अंडरलेयर की एसओसी ताकत के साथ अल्ट्राफास्ट डीमैग्नेटाइजेशन टाइम (Tm), फास्ट रीमैग्नेटाइजेशन टाइम (Tr) और गिल्बर्ट डंपिंग पैरामीटर (व) में एक व्यवस्थित बदलाव देखा है और अल्ट्राफास्ट डीमैग्नेटाइजेशन और फास्ट रीमैग्नेटाइजेशन प्रक्रियाओं में स्पिन करंट ट्रांसपोर्ट के प्रमुख योगदान के कारण α और Tm, Tr के बीच एक व्युत्क्रम संबंध स्थापित किया है। स्पिन पंपिंग औपचारिकता विभिन्न इंटरफेस के लिए प्रभावी स्पिन-मिश्रण चालन (गेफ) का अनुमान लगाती है, जो दर्शाता है कि अंडरलेयर की उच्च एसओसी ताकत के परिणामस्वरूप उच्च गेफ इसके माध्यम से स्पिन वर्तमान के अधिक कुशल परिवहन का संकेत देता है (चित्र 1)। हमने आगे फेरोमैग्नेटिक हेस्लर कंपाउंड (Co2Fe0.4Mn0.6Si)/Pt हेटरोस्ट्रक्चर में स्पिन पंपिंग की जांच की है। गिल्बर्ट डंपिंग के मोटाई-निर्भर विकास को आंतरिक स्पिन-मिश्रण चालन और स्पिन-प्रसार लंबाई निकालने के लिए बैलिस्टिक और डिफ्यूसिव स्पिन ट्रांसपोर्ट ढांचे का उपयोग करके तैयार किया गया है। अंत में, 0.87 ± 0.02 तक इंटरफेशियल स्पिन पारदर्शिता का एक विशाल मूल्य 0.0039 ± 0.0004 की छोटी आंतरिक अवमंदन के साथ मिलकर उन्नत स्पिन-ऑर्बिट्रोनिक उपकरणों के विकास के लिए एक चैंपियन सामग्री के रूप में सीएफएमएस/पीटी हेटरोस्ट्रक्चर को बढ़ावा देता है।

मेरनोनिक्स: हमने लकीर की मोटाई और बाहरी चूंबकीय क्षेत्र की ताकत और अभिविन्यास द्वारा फेरोमैग्नेटिक नैनोस्ट्रिप्स के सरणियों में पुन: कॉन्फ़िगर करने योग्य स्पिन-वेव गतिशीलता का एक संयुक्त प्रयोगात्मक और संख्यात्मक अध्ययन किया है। हमने नैनोस्ट्रिप्स में विभिन्न समान, स्थानीयकृत और स्थायी स्पिन तरंगों और उनके मोनोटोनिक और गैर-मोनोटोनिक भिन्नता को देखा है, जिसमें इन मापदंडों के साथ मोड विलय भी शामिल है। देखी गई विविधताओं की व्याख्या सृक्ष्मचूंबकीय सिम्लेशन का उपयोग करके की गई थी। आगे के संख्यात्मक अध्ययन से विभिन्न मोटाई के लिए नैनोस्ट्रिप्स में अनिसोट्रोपिक स्पिन-वेव प्रसार का पता चला और विभिन्न पूर्वाग्रह-क्षेत्र ज्यामिति में मैग्नोनिक सर्किट घटकों जैसे कि पून: कॉन्फ़िगर करने योग्य मैग्नोनिक वेवगाइड और सर्वदिशात्मक स्पिन-वेव उत्सर्जक में संभावित अनुप्रयोग खुल गए। हमने आगे दो अलग-अलग सामग्रियों Co50Fe50 और Ni80Fe20 के बीच स्पिन डायनेमिक्स के जटिल परस्पर क्रिया का अध्ययन किया है, जिससे एक द्वि-घटक मैग्नोनिक क्रिस्टल (BMC) बनता है। इष्टतम रूप से इंजीनियर किया गया इंटरफ़ेस लंबी दूरी के द्विध्रुवीय युग्मन के साथ संयुक्त अंतर-तत्व विनिमय युग्मन की ओर ले जाता है, जैसा कि सूक्ष्म चुंबकीय सिमुलेशन द्वारा पृष्टि की गई है। इन कपलिंगों को बीएमसी में Co50Fe50 और Ni80Fe20 के भरने वाले अंश की व्यवस्थित भिन्नता द्वारा आगे ट्यून किया गया था। इसके अलावा, स्पिन-वेव स्पेक्ट्रा के विशिष्ट गुण पूर्वाग्रह-क्षेत्र की ताकत के प्रति अत्यधिक संवेदनशील हैं। इसके अलावा संख्यात्मक सिम्लेशन ऐसे बीएमसी में लंबी द्री और उच्च गति वाले स्पिन-वेव प्रसार को प्रदर्शित करते हैं और लागू चुंबकीय क्षेत्र की ताकत द्वारा निर्धारित डायोड-जैसे चालू/बंद तंत्र की पेशकश करते हैं।

अल्ट्राफास्ट डीमैग्नेटाइजेशन: हमने Ta और Co20Fe60B20 दोनों मोटाई को व्यवस्थित रूप से भिन्न करके $oldsymbol{eta}$ -Ta(t nm)/ Co20Fe60B20(d nm)/SiO2(2 nm) पतली फिल्म हेटरोस्ट्रक्चर में अल्ट्राफास्ट डीमैग्नेटाइजेशन, रीमैग्नेटाइजेशन और डंपिंग की जांच की है। प्रायोगिक परिणामों के आधार पर हमने विचुंबकीकरण दर की भिन्नता और गिल्बर्ट अवमंदन स्थिरांक के बीच एक सीधा संबंध स्थापित किया है, जो अल्ट्राफास्ट विचूंबकीकरण और अवमंदन दोनों के लिए प्रचलित तंत्र के रूप में इंटरफ़ेस स्पिन-ट्रांसपोर्ट को दर्शाता है। β-Ta की उच्च मोटाई (t ≥ 7 nm) पर, स्पिन संचय गुणांक ~ 0.24 eV पाया जाता है, जो कम मोटाई वाले शासन (t <7 nm) में इसके मान से लगभग 1.8 गुना कम है। इन परिणामों का अल्ट्रा-हाई-स्पीड स्पिन-ऑर्बिट्रोनिक उपकरणों के विकास पर महत्वपूर्ण प्रभाव पड़ेगा।

परियोजना सहित भविष्यत् कार्य की योजना

- 1. हम नैनोमैग्नेटिक प्रणालियों में मैग्नॉन-मैग्नन युग्मन का अध्ययन करेंगे जो अनुनाद स्पिन-वेव (एसडब्ल्यू) मोड के लिए एक छोटी गृहा के रूप में कार्य करता है जो ऊर्जा के पारस्परिक हस्तांतरण के कारण संकरण करता है। हम माइक्रोवेव उत्तेजना शक्ति और पूर्वाग्रह चुंबकीय क्षेत्र की ज्यामिति द्वारा युग्मन को ट्यून करने का प्रयास करेंगे जो अंतर-तत्व द्विध्रुवीय युग्मन और आगामी सहकारी गतिशीलता को नियंत्रित करते हैं।
- 2. हम आगे नैनोमैग्नेट सरणी में सतह ध्वनिक तरंग (एसएडब्ल्यू) संचालित त्रिपक्षीय मैग्नॉन-फोनन-मैग्नन युग्मन और एसएडब्ल्यू से हाइब्रिड बाइनरी मैग्नॉन पोलरॉन बनाने वाले मैग्नॉन में ऊर्जा के हस्तांतरण का अध्ययन करेंगे। इस युग्मन के लिए चरण मिलान रिश्वित का भी अध्ययन किया जाएगा।
- हम हाइब्रिड मैग्नॉनिक्स में एक नई घटना की जांच करेंगे जिसमें एसडब्ल्यू और हाइब्रिडाइज्ड फोनन-प्लारमोन तरंगों (मैग्नॉन, फोनन और प्लारमोन का त्रिपक्षीय मिश्रण) के बीच युग्मन शामिल है। इस एकोस्टो-प्लाज्मो-मैग्नोनिक्स का अध्ययन एक कृत्रिम मैग्नोनिक क्रिस्टल में किया जाएगा, जिसमें एल्युमीनियम की एक पतली फिल्म के साथ सिलिकॉन सब्सट्रेट पर जमा मैग्नेटोस्ट्रिक्टव नैनोमैग्नेट्स की दो-आयामी आवधिक सरणी शामिल है जो सतह प्लारमों के स्रोत के रूप में कार्य करती है। हम इस प्रणाली में पैरामीट्रिक प्रवर्धन की उपस्थिति का भी अध्ययन करेंगे, जिसमें बाद वाले को बढ़ाने के लिए हाइब्रिडाइज्ड फोनन-प्लारमोन मोड से एकॉस्टो-प्लाज्मो-स्पिन वेव मोड में ऊर्जा हर-तांतरण शामिल है।
- 4. विभिन्न स्पिन-ऑर्बिट प्रभावों के अवलोकन और नियंत्रण के लिए एक विशिष्ट आकर्षक खेल के मैदान के रूप में त्रि-आयामी टोपोलॉजिकल इंस्लेटर (टीआई) के उदय ने टोपोलॉजिकल स्पिंट्रोनिक्स के आशाजनक क्षेत्र की शुरुआत की है। कुशल स्पिन-ऑर्बिट टॉर्क जनरेटर के रूप में उनकी क्षमता का पूरी तरह से दोहन करने के लिए, विभिन्न टोपोलॉजिकल इंस्लेटर/फेरोमैग्नेट इंटरफेस पर स्पिन इंजेक्शन और परिवहन की दक्षता की जांच

करना और उनके अनुकूलन के लिए प्रमुख मापदंडों की पहचान करना महत्वपूर्ण है। हम विभिन्न टीआई/फेरोमैग्नेट पतली फिल्म हेटरोस्ट्रक्चर में स्पिन पंपिंग की दक्षता की जांच करेंगे। हम ऐसे हेटरोस्ट्रक्चर में स्पिन-मिक्सिंग चालन, स्पिन प्रसार लंबाई, स्पिन-फिल संभावना और स्पिन पारदर्शिता सहित विभिन्न पैरामीटर निकालेंगे और इंटरफ़ेस गुणवत्ता और भौतिक गुणों के आधार पर परिणामों को समझेंगे।

5. दो आयामी (2डी) वैन डेर वॉल (वीडीडब्ल्यू) मैग्नेट अभूतपूर्व अवसरों के साथ स्पिंट्रोनिक्स अनुसंधान के नए युग के लिए प्रोत्साहन हैं। अब तक, वीडीडब्ल्यू मैग्नेट पर अधिकांश शोध कमरे के तापमान पर लंबी दूरी के चुंबकीय क्रम को बनाए रखने

में असमर्थता के कारण क्रायोजेनिक तापमान द्वारा प्रतिबंधित हैं। हम समय-समाधान मैग्नेटो-ऑप्टिकल केर प्रभाव माइक्रोस्कोप का उपयोग करके FexGeTe2 (x=3,4,5) फ्लेक्स में कमरे के तापमान पर फोनन गतिशीलता के साथ स्पिन गतिशीलता के उद्भव की जांच करेंगे। ऐसी प्रणालियों में चुंबकीय क्रम स्थापित करने के लिए उच्च तीव्र फेमटोसेकंड लेजर पल्स का अनुमान लगाया गया है। फोटोप्रेरित मैग्नेटाइजेशन को अल्ट्राफास्ट डीमैग्नेटाइजेशन और गीगाहर्ट्ज फ्रीक्वेंसी प्रीसेशनल डायनामिक्स में महसूस और संशोधित किया जाएगा। इसके अलावा, हम ऑप्टिकल शासन और स्पिन-फोनन युग्मन पर सुसंगत फोनन उत्तेजना की जांच करेंगे।

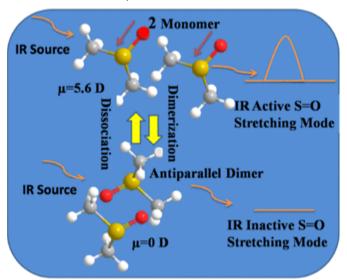
अनुप घोष डीएसटी इंस्पायर फैकल्टी संघनित पदार्थ एवं पदार्थ भौतिकी anup.ghosh@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

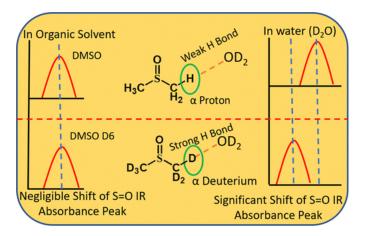
1. स्रंजना चक्रवर्ती; अणुओं का स्पेक्ट्रोस्कोपिक अध्ययन; शोधकार्य जारी; प्रो. अंजन बर्मन (सह-पर्यवेक्षक)

प्रकाशन

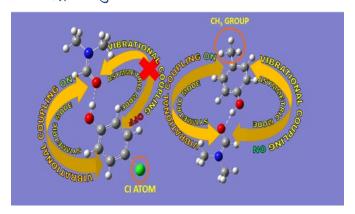

क) ज़र्नल में

- 1. स्रंजना चक्रवर्ती, समाधान एच. देशमुख, अंजन बर्मन, सायन बागची और अनुप घोष, ऑन-ऑफ़ इंफ्रारेड एब्सॉर्प्शन ऑफ़ द S=O वायब्रेशनल प्रोब ऑफ़ डाइमिथाइल सल्फोऑक्साइड, द जर्नल ऑफ फिजिकल केमिस्ट्री बी, 126, 4501, 2022
- 2. सुरंजना चक्रवर्ती, अंजन बर्मन और अनुप घोष, एनोमलस इंफ्रारेड ऐब्सॉर्बेंस ऑफ़ S=0: अ पर्टर्बेशन स्टडी ऑफ़ **a**-c-H/D, द जर्नल ऑफ फिजिकल केमिस्ट्री बी, 126, 5490, 2022
- 3. 3. सुरंजना चक्रवर्ती और अनुप घोष, इंकंसिसटेंट हायड्रोजन बॉन्ड-मेडिएटेड वायब्रेशनल कप्लिंग ऑफ़ एमाइड आई. आरएससी एडवांसेस, 13, 1295, 2023

अनिसंधान क्षेत्र


एमाइड का असंगत हाइड्रोजन बांड-मध्यस्थता कंपन युग्मन

1. डाइमिथाइल सल्फ़ोक्साइड की S=O कंपन जांच का ऑन-ऑफ इन्फ्रारेड अवशोषण


डाइमिथाइल सल्फ़ोक्साइड (डीएमएसओ), एक ध्रुवीय विलायक अण्, का उपयोग चिकित्सीय और औषधीय अनुप्रयोगों की एक विस्तृत श्रृंखला में किया जाता है। अनुप्रयोगों में डीएमएसओ की भूमिका को समझने के लिए विभिन्न अंतर-आणविक इंटरैक्शन, जैसे डिमराइजेशन और पानी के साथ हाइड्रोजन बॉन्डिंग महत्वपूर्ण हैं। इसमें, हम पर्यावरण-निर्भर डिमराइजेशन और हाइड्रोजन-बॉन्डिंग प्रवृत्ति को समझने के लिए विभिन्न सॉल्वेशन वातावरण में डीएमएसओ का अध्ययन करते हैं। हम अपने निष्कर्षों तक पहुंचने के लिए इन्फ्रारेड स्पेक्ट्रोस्कोपी, क्वांटम मैकेनिकल गणना और आणविक गतिशीलता सिमुलेशन के संयोजन का उपयोग करते हैं। यद्यपि डीएमएसओ मोनोमर्स और डिमर्स के बीच एक गतिशील संतुलन में मौजूद हो सकता है, हमारे परिणाम बताते हैं कि S=O खिंचाव और CH3 रॉकिंग मोड की सापेक्ष तीव्रता समाधान में डीएमएसओ डिमराइजेशन की सीमा का एक स्पेक्ट्रोस्कोपिक संकेतक है। स्वच्छ डीएमएसओ में डिमराइजेशन (स्व-संबद्धता) अधिकतम देखा जाता है। विभिन्न सॉल्वैंट्स में घुलने पर, सॉल्वेंट ध्रुवता बढ़ने के साथ डिमराइजेशन प्रवृत्ति कम हो जाती है। पानी जैसे प्रोटिक विलायक की उपस्थित में, डीएमएसओ विलायक अणुओं के साथ एक हाइड्रोजन बंधन बनाता है, जिससे डिमराइजेशन की सीमा कम हो जाती है। इसके अलावा, हम डीएमएसओ के हाइ्ड्रोजन-बॉन्ड अधिभोग का अनुमान लगाते हैं। हमारे नतीजे बताते हैं कि डीएमएसओ मुख्य रूप से पानी में दोगुने हाइड्रोजन-बंधित के रूप में मौजूद है।

2. S=O/C=O का असामान्य इन्फ्रारेड अवशोषण: αC-H/D का एक पर्टर्बेशन अध्ययन

S=O कंपन जांच के सॉल्वैटोक्रोमिक बदलाव आसपास के विद्युत क्षेत्रों की ताकत और हाइड्रोजन बॉन्डिंग स्थिति का वर्णन करते हैं। इसमें, हमने दिखाया कि कैसे सॉल्वैंट्स S=O कंपन मोड के इन्फ्रारेड (IR) स्पेक्ट्रा को बदल देते हैं। विभिन्न सॉल्वैंट्स के साथ α-H/D समस्थानिक इंटरैक्शन की भागीदारी और कंपन जांच के आईआर अवशोषण स्पेक्ट्रा पर उनके प्रभावों का प्रायोगिक माप रूपेक्ट्रा में ओवरलैपिंग बैंड की जटिलता के बावजूद माइक्रोसॉल्वेशन वातावरण का विस्तृत ज्ञान प्रदान करता है। यहां, हमें पता चलता है कि कैसे सॉल्वेंट्स इलेक्ट्रॉनिक और संरचनात्मक रूप से समान होते हुए भी डीएमएसओ और डीएमएसओ-डी6 के साथ अलग-अलग तरीके से बातचीत करते हैं। दिलचस्प बात यह है कि S=O मोड का आईआर स्पेक्ट्रम एप्रोटिक सॉल्वैंट्स (एसीटोन, एसीटोनिट्राइल और डाइक्लोरोमेथेन) की उपस्थिति में α-आइसोटोपिक प्रतिस्थापन के दौरान अपरिवर्तित रहता है, लेकिन दृढ़ता से समन्वयित ध्रुवीय सॉल्वैंट्स (डी2ओ) में, यह उल्लेखनीय रूप से बदल जाता है। साहित्य में कंपन जांच पर lpha-H परमाणु या lpha-आइसोटोपिक प्रतिस्थापन के प्रभाव के बारे में मात्रात्मक जानकारी का अभाव है। हमारे प्रयोग डीएमएसओ-विलायक बाइनरी मिश्रण में डीएमएसओ की संरचना की विस्तृत आणविक समझ प्रदान करते हैं। चूंकि डीएमएसओ रसायन विज्ञान और जीव विज्ञान के लगभग सभी उप-विषयों में एक महत्वपूर्ण भूमिका निभाता है, हमारा मानना है कि हमारा काम इन क्षेत्रों में अध्ययन की एक बड़ी विविधता के लिए दिलचस्प होगा।

3. एमाइड बॉन्ड मध्यस्थता कंपन I का असंगत हाइड्रोजन युग्मन

इन्फ्रारेड स्पेक्ट्रोस्कोपी और घनत्व कार्यात्मक सिद्धांत (डीएफटी) गणनाओं का उपयोग करते हुए, हमने विभिन्न फिनोल डेरिवेटिव (पैरा-क्लोरोफेनोल (पीसीपी) और पैरा-क्रेसोल (सीपी)) के साथ एमाइड 1 की बातचीत की व्याख्या करने के लिए एक "मॉडल" यौगिक के रूप में एक एमाइड (डाइमिथाइलफोर्माइड) की जांच की।) "मॉडल अतिथि अण्" के रूप में। हमने विभिन्न फेनोलिक डेरिवेटिव के सममित और असममित सी = सी मोड के साथ कंपन युग्मन में एमाइड । की भागीदारी और उनका युग्मन विभिन्न गेस्ट एरोमेटिक फेनोलिक यौगिकों पर कैसे निर्भर था की स्थापना की। दिलचस्प बात यह है कि फिनोल के प्रतिस्थापन ने एमाइड । के साथ कंपन युग्मन के पैटर्न को बिगाड़ दिया है। पीसी के सममित और असममित सी = सी मोड को एमाइड 1 के साथ महत्वपूर्ण रूप से जोड़ा गया था। पीसीपी के लिए, सममित C=C मोड़ महत्वपूर्ण रूप से युग्मित होता है, लेकिन असममित मोड एमाइड । के साथ नगण्य रूप से युग्मित होता है। यहां, हम एमाइड । के साथ हाइड्रोजन-बंधित अतिथि अणु की संरचना के आधार पर कंपन युग्मन की प्रकृति को प्रकट करते हैं। हमारे निष्कर्ष युग्मित एमाइड-। मोड की असामान्य गतिशीलता के साथ-साथ परिवर्तित कारकों पर कंपन युग्मन की निर्भरता के चित्रण के लिए मूल्यवान हो सकते हैं।

परियोजना सहित भविष्यत् कार्य की योजना

1. मुख्य रूप से लीनियर इंफ्रारेड (आईआर) और नॉनलीनियर टू-डायमेंशनल इंफ्रारेड (2डी आईआर) स्पेक्ट्रोस्कोपी का उपयोग करके ड्रग बाइंडिंग से पहले और बाद में जी क्वाड्रप्लेक्स/डीएनए का संरचनात्मक विश्लेषण।

अतींद्र नाथ पाल

एसोसिएट प्रोफेसर संघनित पदार्थ एवं पदार्थ भौतिकी atin@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. शुभदीप मौलिक; हाइब्रिड दो आयामी नैनोडिवाइसेस में चार्ज और स्पिन परिवहन; शोधकार्य जारी
- 2. विश्वजीत पाबी; एकल आणविक जंक्शन में यांत्रिक ट्यूनेबिलिटी की जांच; शोधकार्य जारी
- 3. शुभ्राशीष मुखर्जी; 2डी अर्धचालकों और उनकी हेटरोस्ट्रक्चर में इलेक्ट्रॉनिक और ऑप्टिकल गुणों की जांच; शोधकार्य जारी; प्रो. एस. के. रे (सह-पर्यवेक्षक)
- 4. रफीकुल आलम; टोपोलॉजिकल सामग्रियों में परिवहन घटना की जांच; शोधकार्य जारी
- 5. रिज् पाल; स्तरित सामग्रियों के साथ स्पिंट्रोनिक्स; शोधकार्य जारी
- 6. शुभंकर दे; एकल आणविक जंक्शन में परिवहन; शोधकार्य जारी

ख) पोस्ट-डॉक्स

- 1. बुद्धदेब पाल; चुंबकीय 2डी सामग्रियों में परिवहन
- 2. एसके एमडी ओबैदुल्ला; विकास और लक्षण वर्णन बड़े क्षेत्र 2डी चुंबकीय और अर्धचालक सामग्री

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. गौरव सामंत ग्रीष्मकालीन प्रशिक्षु; सीवीडी तकनीक से बड़े क्षेत्र वाले 2डी सेमीकंडक्टर बनाना
- 2. कौस्तव पांडा-ग्रीष्मकालीन प्रशिक्षु; ड्राई ट्रांसफर तकनीक का उपयोग करके 2डी हेटरोस्ट्रक्चर बनाना
- 3. गौरव सामंत मास्टर थीसिस; वैन डेर वाल हेटरोस्ट्रक्चर का अनुकूलन और निरूपण

शिक्षण/ अध्यापन

1. वसंत सत्र; PHY628- मेसोस्कोपिक भौतिकी; पीएचडी; 8 छात्र; डॉ. साकिब शमीम (सह-शिक्षक)

प्रकाशन

क) ज़र्नल में

- 1. दिधीति भट्टाचार्य, शुभ्राशीष मुखर्जी, अतींद्र नाथ पाल, राजीब कुमार मित्रा, समित कुमार राय, टू-डायमेंशनल Mo W, S एलॉयज़ फॉर नैनोजेनरेटर्स प्रोड्युसिमग रेकॉर्ड पीज-आउटपूट एंड कपल्ड फोटोडिटेक्टर्स फॉर सेल्फ-पॉवर्ड यूवी सेंसर, एडवांस्ड ऑप्टिकल मैटेरियल्स, 10, 2200353. 2022
- 2. बिस्वजीत पाबी और अतींद्र नाथ पाल, ऐन एक्सपेरीमेंटल सेट-अप टू प्रोब द क्वांटम ट्रांशपोर्ट थ्रू अ सिंगल टॉमिक/ मॉलिक्यूलर जंक्शन ऐट रूम टेंपरेचर, प्रमाण, 97, 8, 2023
- 3. श्भ्राशीष मुखर्जी, दिधिति भट्टाचार्य, समित कुमार राय, और अतींद्र नाथ पाल, हाई-परफॉर्मेंस ब्रॉड-बैंड फोटोडिटेक्शन बेस्ड ऑन ग्राफीन-MoSू, Se ्रान्स एलॉय इंजिनियर्ड फोटोट्रांजिस्टर्स, एसीएस एप्लाइड मैटेरियल्स एंड इंटरफेस. 14. 34875. 2022
- 4. श्भदीप मौलिक, रफीकुल आलम, और अतींद्र नाथ पाल, सेंसिंग रिमोट बल्क डिफेक्ट्स थ्रू रेसिसटेंस नॉइज़ इन अ लार्ज-एरिया ग्राफीन फील्ड-इफेक्ट ट्रांजिस्टर, एसीएस एप्लाइड मैटेरियल्स एंड इंटरफेस, 14, 51105, 2022

5. सत्यब्रत बेरा, सुमन कल्याण प्रधान, मोहम्मद सलमान खान, रिजु पाल, बुद्धदेब पाल, एसके कलीमुद्दीन, अर्नब बेरा, विश्वजीत दास, अतींद्र नाथ पाल, मिंटू मंडल, अनरेवलिंग द नेचर ऑफ़ स्पिन रिओरिएंटेशन ट्रांजिशन इन कासी-2D vdW मैग्नेटिक मैटेरियल, Fe₄GeTe₂, जर्नल ऑफ मैग्नेटिज्म एंड मैग्नेटिक मैटेरियल्स, 565, 170257, 2023

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

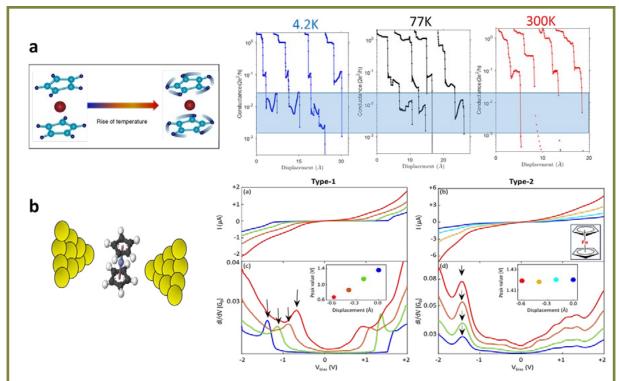
- 1. क्यूएमएटी 3, आईआईटीके (2022) में आमंत्रित वार्ता; सितम्बर 18, 2022; ईट कानपुर; पांच दिन
- 2. 'आणविक चुंबकत्व में आधुनिक रुझान- MTMM3' पर आमंत्रित वार्ता; 11 दिसंबर, 2022; आईआईटी खड़गपुर; 3 दिन
- IISER TVM में 'FS PHY-2023' पर आमंत्रित वार्ता; फरवरी 24, 2023; आईआईएसईआर टीवीएम में 'एफएस पीएचवाई-2023' में आमंत्रित वार्ता; 3 दिन
- आईआईएससी, भौतिकी विभाग में आमंत्रित सेमिनार; मार्च 13, 2023; आईआईएससी, भौतिकी विभाग में आमंत्रित सेमिनार; 1 दिन

प्रशासनिक कर्तव्य

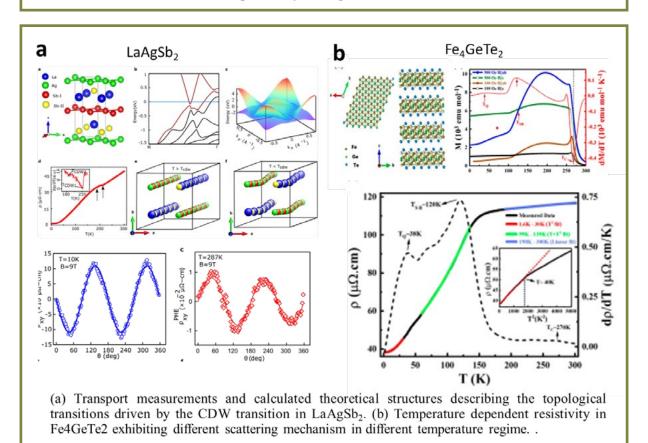
- 1. एलिप्सोमेट्री प्रणाली, हीलियम संयंत्र, ऑक्सफोर्ड प्रणाली, 3K माप प्रणाली के प्रभारी और क्लीन रूम के संयुक्त प्रभारी
- 2. परियोजना एवं पेटेंट सेल के सदस्य, खरीद उप समिति के सदस्य और समय-समय पर कई अन्य समितियों के सदस्य।

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

1. डीएसटी/एनएम/टीयूई/क्यूएम-10/2019; डीएसटी-नैनोमिशन; 5 वर्ष (मार्च 2023 से); पीआई


राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. प्रो. एस.के. राय (आईआईटी केजीपी) और प्रो. आर. के. मित्रा (एसएनबीएनसीबीएस); क्र.सं. नंबर 1; राष्ट्रीय
- 2. प्रो. एस.के. रे (आईआईटीकेजीपी); क्र.सं. नंबर 3; राष्ट्रीय
- 3. मिंटू मंडल (IACS); क्र.सं. पाँच नंबर; राष्ट्रीय


अनुसंधान क्षेत्र

प्रायोगिक संघनित पदार्थ भौतिकी

- क. एकल आणविक जंक्शन के माध्यम से ट्रांसपोर्ट: हमने इस वर्ष कई नए परिणामों के साथ उल्लेखनीय प्रगति की है। फेरोसीन आधारित ऑर्गेनो-मेटालिक अणु का उपयोग करते हुए, हमने रूम टेंपरेचर पर गुंजयमान परिवहन (समीक्षा के तहत, नैनोस्केल) का प्रदर्शन करते हुए काफी उच्च चालकता देखी। फिर हमने देखा कि जंक्शन के अंदर अणु का अभिविन्यास यांत्रिक गेटिंग निर्धारित करता है (नैनो लेटर में समीक्षा के तहत)। सहयोग में एक अन्य प्रयोग में, हमने सोने में परमाणु श्रृंखला निर्माण के लिए इष्टतम स्थिति का पूर्वानुमान लगाया (समीक्षा के तहत, नैनोस्केल)। हमने कस्टम-डिज़ाइन तकनीक पर आधारित एक पेपर भी प्रकाशित किया (प्रमाण, 97, 8 (2022))। एक पीएचडी छात्र, श्री विश्वजीत पाबी अपनी थीसिस जमा करने के लिए तैयार थे और एक और नया पीएचडी छात्र टीम में शामिल हो गया है।
- ख. 2डी मैटेरियल्स के साथ ऑप्टोइलेक्ट्रॉनिक्स: हमने MoS2xSe2(1-x) के मिश्रधातुओं का उपयोग करके ग्राफीन/ TMD आधारित फोटोडिटेक्टर में नए प्रयोगात्मक परिणाम प्रकाशित किए हैं, जो फोटोडिटेक्टर प्रदर्शन (ACSAMI, 2022) पर गहरे स्तर के दोषों की भूमिका दर्शाते हैं। इसके अलावा, हम बेहतर फोटोरिस्पॉन्स (arXiv:2303.06692) प्रदान करने वाले 2डी हाइब्रिड फोटोट्रांसिस्टर्स में एक्सिटॉन-प्लारमोन कपलिंग कैन को ट्यून करने में सक्षम हैं। श्री शुभ्रशीष मुखर्जी इस क्षेत्र में कार्य करते हुए अपनी थीसिस प्रस्तुत करने के लिए तैयार थे।
- ग. 2डी लौहचुम्बक के माध्यम से ट्रांसपोर्ट: हमने वैन डेर वाल फेरोमैग्नेट के परिवहन गुणों की खोज शुरू कर दी है। दो चुंबकीय संक्रमण वाले Fe4GeTe2 सिस्टम में मैग्नेटोट्रांसपोर्ट व्यवहार, असामान्य इलेक्ट्रॉनिक संक्रमण प्रदर्शित करता है जिससे अलग परिवहन व्यवहार होता है (arXiv:2303.07440)।
- घ. उभरती हुई क्वांटम सामग्रियों के माध्यम से ट्रांसपोर्ट: एक अन्य अध्ययन में, हमने चार्ज घनत्व तरंग वाले अर्ध-डिराक धातु, LaAgSb2 में महत्वपूर्ण प्लेनर हॉल प्रभाव देखा है। आगे की सैद्धांतिक गणना से पता चलता है कि संकेत परिवर्तन एक गैर-तुच्छ टोपोलॉजिकल संक्रमण (प्रस्तुत) से जुड़ा हो सकता है।

(a) Unusual temperature dependent conductance in Au/Ferrocene/Au junction, arising due to temperature induced ring rotation effect in Ferrocene. (b) Sensitivity of mechanical Gating effect on the orientation of the molecule, probed by the high bias differential conductance measurement.

परियोजना सहित भविष्यत कार्य की योजना

- एकल आणविक जंक्शन के माध्यम से परिवहन: हम पहले ही दिखा चुके हैं कि फेरोसीन एकल आणविक जंक्शन के लिए एक आशाजनक ऑर्गेनोमेटेलिक अणु है। इसलिए, आणविक जंक्शन में धातु-धातु संपर्क को समझने के लिए अधिक कार्यात्मक अणु का अध्ययन करना हमारे भविष्य के लक्ष्यों में से एक होगा। हम चालन चैनलों की संख्या को समझने के लिए शॉट शोर माप विकसित करने की प्रक्रिया में हैं। एसईआरबी सीआरजी परियोजना के अनुसार, हम इस अत्यधिक प्रवाहकीय आणविक जंक्शन के इलेक्ट्रॉनिक परिवहन गुणों पर अणु की विषमता और अणु के साथ एक द्विध्रवीय क्षण की उपस्थिति के प्रभाव की जांच करने की योजना बना रहे हैं। हम दो आइसोमेरिक अणुओं, सममित और असममित अणुओं के संचालन की तुलना अणुओं को बिना किसी एंकरिंग साइड समूहों के सीधे धात् इलेक्ट्रोड से जोड़कर करेंगे। संरचना और चालन के बीच निर्भरता को समझने से हमें यह सीखने में मदद मिलेगी कि परमाणु पैमाने पर चालन को कैसे नियंत्रित किया जाए।
- वैन डेर वाल हाइब्रिड के साथ ऑप्टोइलेक्ट्रॉनिक्स: हमने बेहतर फोटो-प्रतिक्रिया प्राप्त करने के लिए टीएमडी नैनोस्ट्क्चर में प्रकाश पदार्थ के संपर्क की ट्यूनेबिलिटी पहले ही दिखा दी है। हम अलग-अलग हाइब्रिड में प्रकाश पदार्थ की अंतःक्रिया को ट्यून करने

- पर और ध्यान केंद्रित करना चाहेंगे। इसके अलावा, हम फोटो-प्रतिक्रिया पर स्पिन और चुंबकीय अनिसोट्रॉपी के प्रभाव को देखने के लिए चुंबकीय 2डी हेटरोस्ट्रक्चर पर ध्यान केंद्रित करेंगे।
- अर्ध-दो आयामी हेटरोस्ट्रक्चर में निकटता प्रेरित प्रभाव: हमें उत्कृष्टता की विषयगत इकाई - क्वांटम सामग्री, नैनोमिशन, डीएसटी: टोपोलॉजी (अवधारणा) में सामूहिक और इंजीनियर्ड फेनोमेना के लिए कंसोर्टियम के लिए अनुदान प्राप्त हुआ है। इस प्रस्ताव में हम स्पिंट्रोनिक अनुप्रयोग के लिए 2डी चूंबकीय सामग्री पर आधारित द्वि-आयामी हेटरोस्ट्रक्चर का पता लगाना चाहते हैं। इसके अलावा, हम विभिन्न प्रकार के सुपरकंडक्टर-फेरोमैग्नेट (एस-एफ) हाइब्रिड सिस्टम में ट्रिपल कूपर जोड़ी निकटता प्रभावों की जांच करने की योजना बना रहे हैं। सुपरकंडक्टर्स (एस) और फेरोमैग्नेट्स (एफ) के बीच इंटरफेस स्परकंडिक्टंग स्पिंट्रोनिक उपकरणों की एक नई श्रेणी खोजने का अवसर प्रदान कर सकता है। हमने पहले ही हेटरोस्ट्रक्चर निर्माण का अनुकूलन शुरू कर दिया है। इस उद्देश्य के लिए एक ऑप्टिकल क्रायोस्टेट खरीदा
- 4. नए क्वांटम चरणों को समझना: हम TaS2, 2D टेल्यूरीन और 2D फेरोमैग्नेट्स (F4GT) जैसी उभरती क्वांटम सामग्रियों के क्वांटम चरणों की अधिक विस्तार से जांच करने की योजना बना रहे हैं।

अभिजीत चौधरी सहायक प्रोफेसर संघनित पदार्थ एवं पदार्थ भौतिकी avijitc@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएच.डी. छात्र

- 1. अनुप्रिया न्यायबन; फोटोवोल्टिक अनुप्रयोगों के लिए आरबी-आधारित सभी अकार्बनिक हैलाइडों पर सैद्धांतिक अध्ययन; उपाधि प्रदान की गई; सुभाशीष पांडा, भौतिकी विभाग, एनआईटी सिलचर, असम (सह-पर्यवेक्षक)
- निपोम शेखर दास; द्विध्रुवी एनालॉग मेमरिस्टर्स के लिए कार्बनिक-अकार्बनिक स्तरित नैनोहाइब्रिड प्रकीर्ण फेरोइलेक्ट्रिक पॉलिमर ब्लेंड; शोध कार्य जारी; असीम रॉय, भौतिकी विभाग, एनआईटी सिलचर, असम (सह-पर्यवेक्षक)
- 3. सुमा दास; फोटोकैटलिसिस अनुप्रयोगों के लिए जी-सी3एन4-आधारित चुंबकीय नैनोमटेरियल का विकास; शोध कार्य जारी; रंजीत जी. नायर, भौतिकी विभाग, एनआईटी सिलचर, असम (सह-पर्यवेक्षक)
- 4. सैकत मित्रा; ऑप्टोइलेक्ट्रॉनिक अनुप्रयोगों के लिए हॉलिडे पेरोव्स्काइट; शोध कार्य जारी; बर्णाली घोष (साहा) (सह-पर्यवेक्षक)

- 5. स्वप्नमय परमाणिक; डाई क्षरण और H2 विकास के लिए सौर फोटोकैटलिसिस: शोध कार्य जारी
- 6. राजेश जाना; ऑप्टोइलेक्ट्रॉनिक सिनैप्टिक उपकरणों के लिए 2डी सामग्री; शोध कार्य जारी
- 7. मुकुल विश्वास; 2डी सामग्री आधारित ट्राइबोइलेक्ट्रिक नैनोजेनरेटर: शोध कार्य जारी

ख) पोस्ट-डॉक्स

- 1. रितामय भुनिया (पीडीआरए III); विभिन्न रंगों की लंबे समय तक अवगम के लिए कृत्रिम ऑप्टिक-सिनैप्टिक ऑरगन
- 2. दिधिति भट्टाचार्य (ब्रिज फेलो); ट्राइबोइलेक्ट्रिक और पीजोइलेक्ट्रिक नैनोजेनरेटर

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. साग्निक घोष; ऑप्टोइलेक्ट्रॉनिक सिनैप्स के लिए 2डी सामग्री-आधारित उपकरण: एक समीक्षा
- 2. गौरव सामंत: रासायनिक वाष्प जमाव द्वारा दो आयामी संक्रमण धातु डाइक्लोजेनाइड्स का संश्लेषण और निरूपण

प्रशिक्षण

- 1. वसंत सत्र; इलेक्ट्रॉनिक्स एवं इंस्ट्रमेंटेशन (PHY408); एकीकृत पीएचडी; 11 छात्र; कल्याण मंडल (सह-शिक्षक)
- 2. वसंत सत्र; मौलिक प्रयोगशाला II (PHY492); एकीकृत पीएचडी; 11 छात्र; कल्याण मंडल (सह-शिक्षक)

प्रकाशन

क) ज़र्नल में

- 1. सुमा दास, त्रिनयाना डेका, पूजिता निंगथौखंगजम, अभिजीत चौधरी, रंजीत जी. नायर, अ क्रिटिकल ऑन प्रॉस्पेक्ट्स एंड चैलेंजेज ऑफ़ मेटल -ऑक्साइड एम्बेडेड जी-सी 3एन4-बेस्ड डायरेक्ट Z-स्किम फोटोकैटेलिसिस फॉर वाटर स्प्लिटिंग एंड एनवायरमेंट रिमिडिएशन, एप्लाइड सर्फेस साइंस एडवांसेज, 11, 100273, 2022
- 2. निपोम शेखर दास, सैकत मित्रा, अभिजीत चौधरी,और असीम रॉय, नॉनवोलेटाइल मेमरिस्टिव डिवाइसेज बेस्ड ऑन इन सीटू फंक्शनलाइज्ड लेयर्ड आरजीओ-एमओएस2 नैनोकम्पोजिट्स, ईसीएस जर्नल ऑफ सॉलिड स्टेट साइंस एंड टेक्नोलॉजी, 11, 071003, 2022

- 3. अनुप्रिया न्यायबन, सुभासिस पांडा, अभिजीत चौधरी, द इफेक्ट ऑफ़ बी-साइट एलॉयिंग ऑन द इलेक्ट्रॉनिक एंड ऑप्टो-इलेक्ट्रॉनिक प्रोपर्टीज़ ऑफ़ RbPbI; अ डीएफटी स्टडी, फिजिका बी: कंडेंस्ड मैटर, 649, 414384, 2023
- 4. सुमा दास, सौमिक दास, रंजीत जी. नायर, अभिजीत चौधरी, मैग्नेटिकली सेपरेबल ZnFe O grafted g-C N/ rGO टर्नरी नैनोकम्पोजिट फॉर इंहेंस्ड फोटो-फेनटन कैटलिटिक एक्टिविटी अंडर विजिबल लाइट, मटेरियल टूडे सस्टेनेबिलिटी, 21, 100263, 2023
- 5. अनुप्रिया न्यायबन, सुभासिस पांडा और अभिजीत चौधरी, थ्योरेटिकल स्टडी ऑफ़ ब्रोमाइड मिक्स्ड-RbPbl ृ टूवार्ड्स ऑप्टोइलेक्ट्रॉनिक अप्लिकेशन, ज़र्नल ऑफ़ इलेक्ट्रॉनिक मैटेरियल्स. 52. 3146. 2023

ख) सम्मेलन कार्यवाही/ रिपोर्ट/ मोनोग्राफ/ पुस्तकें

- 1. एन एस दास, के के गोगोई, ए चौधरी, ए रॉय, संश्लेषित ग्राफीन ऑक्साइड और थर्मल रूप से कम किए गए ग्राफीन ऑक्साइड के ऑप्टिकल और संरचनात्मक गुणों की जांच, सामग्री आज: कार्यवाही 76 (2023) 160-165
- ्रप्न एस दास, एन के दास, ए चौधरी, ए रॉय, थर्मली एनील्ड रिड्यूरड ग्राफीन ऑक्साइड पॉलिमर नैनोकम्पोजिट्स का विद्युत अध्ययन, सामग्री आज: कार्यवाही 74 (2023) 329-333

प्रतिष्ठित सम्मेलनों/ संस्थानों में आयोजित वार्ता/सेमिनार

मेमरिस्टिव अनुप्रयोगों के लिए स्तरित नैनोहाइब्रिड एंबेडेड पॉलिमर कंपोजिट; मार्च 20, 2023; गुरुचरण कॉलेज सिलचर; 1 घंटा

प्रशासनिक कर्तव्य

- सैद्धांतिक भौतिकी सेमिनार सर्किट: सदस्य
- परिचारक भर्ती: अध्यक्ष
- 3. बोस उत्सव (27-29 अप्रैल 2022): छात्रों द्वारा प्रदत्त/ या प्रस्तुत 40 लघु वार्ताओं और 30 पोस्टरों का मूल्यांकन
- 4. अनुसंधान/ शिक्षण प्रयोगशालाओं के संकाय प्रभारी: i. सीकेएम प्रयोगशाला: संयुक्त. प्रभारी ii. परमाणु परत जमाव और रैपिड थर्मल एनीलिंग: प्रभारी iii। टीआरसी रासायनिक प्रयोगशाला: प्रभारी

पेटेंट प्राप्त किए और इस प्रक्रिया में हुई प्रगति संबंधी विवरण

1. अदृश तापीय ऊर्जा भंडारण के लिए पैराफिन-आधारित पीसीएम कंपोजिट के निर्माण के लिए एक प्रणाली, बर्मन प्रांजन, भागवत वीरेंद्र विष्णु, चौधरी अविजीत, दास बिप्लब, दास निपोम शेखर, देबबर्मा सुमिता; जर्मन पेटेंट, फ़ाइल संख्या DE: 20 2022 101 525.2; स्वीकृत

पुरस्कार/ मान्यताएँ, यदि कोई हो

- 1. उत्कृष्ट समीक्षक पुरस्कार (2022), पदार्थ अनुसंधान एक्सप्रेस, आईओपी विज्ञान
- 2. उत्कृष्ट समीक्षक पुरस्कार (2022), प्रिंट योग्य और लचीले इलेक्ट्रॉनिक्स, आईओपी विज्ञान

प्रतिष्ठित सोसाइटी

- 1. एमआरएसआई के आजीवन सदस्य
- 2. इंडियन एसोसिएशन फॉर द कल्टिवेशन ऑफ़ साइंस के आजीवन सदस्य

बाह्य परियोजना (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

1. फेरोइलेक्ट्रिक/फोटोइलेक्ट्रिक 2डी सिस्टम का उपयोग करने वाले ब्रॉडबैंड ऑप्टोइलेक्ट्रॉनिक सिनैप्टिक उपकरणों का विकास और परीक्षण (फाइल संख्या: सीआरजी/2022/001145); डीएसटी-एसईआरबी; 3 वर्ष (मार्च 09, 2023- से आज तक); परियोजना प्रभारी

आयोजित सम्मेलन/संगोष्ठी/स्कुल

1. सैद्धांतिक और प्रायोगिक भौतिकी में वर्तमान रुझानों पर सामयिक अनुसंधान स्कूल; मार्च 20, 2023; भौतिकी विभाग, जी.सी. कॉलेज, सिलचर: 04 दिन

अन्य राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभगिता (संयुक्त प्रकाशनों पर आधारित)

- 1. डॉ. सुभाशीष पांडा, एनआईटी सिलचर, असम, भारत; क्र.सं. नंबर 3, 5; राष्ट्रीय
- 2. प्रो. असीम रॉय, एनआईटी सिलचर, असम, भारत; क्र.सं. नंबर 2; राष्ट्रीय
- 3. डॉ. आर जी नायर, एनआईटी सिलचर, असम, भारत; क्र.सं. नंबर 1, 4; राष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/प्रतिभागिता

1. नाम: धनमंज्री विश्वविद्यालय, इंफाल के एमएससी छात्रों द्वारा शैक्षणिक दौरा अवधि: 02 दिन, 10-11 अक्टूबर 2022 भूमिका: एमएससी छात्र प्रतिभागियों के समन्वयक सदस्य: 16 संकाय: 03 गतिविधियां: शैक्षणिक दौरे में अनुसंधान अध्योताओं द्वारा वैज्ञानिक वार्ता, ग्रहों और तारों के अवलोकन हेत् एक दुरबीन शामिल थी, एस.एन. बोस पर एक वृत्तचित्र फिल्म की स्क्रीनिंग, प्रायोगिक प्रयोगशालाओं का दौरा, और एस.एन. बोस प्रालेख, आदि का सफलतापूर्वक संचालित किया गया।

अनुसंधान क्षेत्र

प्रायोगिक संघनित पदार्थ भौतिकी और पदार्थ विज्ञान

हम फोटोजेनरेटेड वाहक प्नर्संयोजन को दबाने और संपूर्ण यूवी-दृश्य-निकट अवरक्त ब्रॉडबैंड स्पेक्ट्रम (चित्र 1) का उपयोग करके फोटोकैटलिटिक प्रदर्शन को बढ़ाने के लिए अनुकूल बैंड किनारे की स्थिति के साथ स्तरित कार्यात्मक सामग्रियों से युक्त टर्नरी नैनोकम्पोजिट्स (टीएनसी) का प्रस्ताव करते हैं। आसानी से अलग करने योग्य और पुनर्चक्रण योग्य g-C੍रN¸/rGO/ZnFe¸O¸ (CNGZF) TNCs की एक श्रृंखला g-C3N4 द्रव्यमान अंश को संशोधित करके विकसित की गई थी। टीएनसी के विषम फोटो-फेंटन प्रदर्शन का मूल्यांकन दृश्य प्रकाश के तहत एच2ओ2 के साथ/या उसके बिना मेथिलीन नीले रंग के मलिनकिरण में किया गया था। 2:1:1 (यानी, 2-CNGZF) के द्रव्यमान अनुपात के साथ TNCs की फोटोकैटलिटिक प्रभावकारिता उनके समकक्षों, g-C੍रN₁ और ZnFe₂O₂ की व्यक्तिगत खूबियों से क्रमशः 11.08 और 2.91 गुना और बाइनरी कंपोजिट CNZF (g-) से अधिक है। (g-C₂N₄/ZnFe₂O₄) डाई क्षरण में 2.34 गुना। बढ़ी हुई फोटोकैटलिटिक प्रदर्शनों की पृष्टि बड़ी संख्या में प्रेरित सक्रिय साइटों द्वारा की जाती है, जो स्तरित नैनोशीट्स के विशेष आयाम प्रभावों, सह-उत्प्रेरक की ब्रॉडबैंड अवशोषण क्षमताओं और धातू समकक्षों के माध्यम से त्वरित इलेक्ट्रॉन प्रवासन के परिणामस्वरूप होती है। इलेक्ट्रोकेमिकल प्रतिबाधा स्पेक्ट्रोस्कोपी माप टीएनसी में कम इंटरफेशियल चार्ज ट्रांसफर प्रतिरोध और इलेक्ट्रॉनों के लंबे जीवनकाल की पृष्टि करते हैं। इसके अलावा, सह-उत्प्रेरक के मध्यम चुंबकीय गुण उत्प्रेरक पुनर्प्राप्ति प्रक्रिया को आसान बनाते हैं, लगातार चार रनों तक पुनर्चक्रण के बाद भी उत्कृष्ट स्थिरता और स्थायित्व प्रदर्शित करते हैं।

द्भि-आयामी (2डी) स्तरित सामग्रियों की हेटरोस्ट्रक्चर, दो या दो से अधिक बिल्डिंग ब्लॉकों को पूरक समकक्षों के साथ एकीकृत करते हुए, रिक्ति-प्रेरित दोष और इंटरफेशियल राज्यों के माध्यम से चार्ज वाहक के कारावास और परिवहन को नियंत्रित कर सकते हैं। मेटल-इन्स्लेटर-मेटल कॉन्फ़िगरेशन में प्रतिरोधी मेमोरी गुणों का अध्ययन करने के

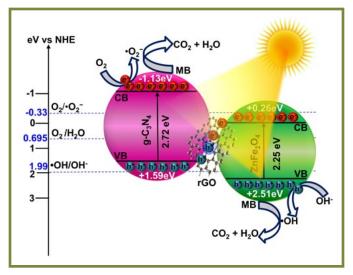


Figure 1 Schematic illustration of the photocatalytic degradation of methylene blue through Z-scheme charge transfer mechanism over the g-C $_{_{3}}N_{_{A}}/rGO/$ ZnFe₂O₄ TNCs upon visible-light illumination.

लिए कम ग्राफीन ऑक्साइड-मोलिब्डेनम डाइसल्फ़ाइड (आरजीओ-एमओएस 2) नैनोहाइब्रिड को विभिन्न पॉलिमर [पीएमएमए, पीवीडीएफ, और पीएमएमए-पीवीडीएफ (20:80) मिश्रण] के साथ निर्मित और स्दूढ़ किया गया था। (आकृति 2)। एसईएम विश्लेषण आरजीओ नैनोशीट्स के साथ अंतःस्थापित एक पदानुक्रमित 3डी फूल जैसा एमओएस2 प्रस्तुत करता है। टीईएम छवि एमओएस2 नैनोफ्लेक्स को अच्छी तरह से आपस में जुड़े हुए दिखाती है और स्तरित आरजीओ शीट पर ग्राफ्टेड होती है, जिससे सैंडविच हेटरोस्ट्रक्चर बनता है। रमन विश्लेषण आरजीओ की तुलना में आरजीओ-एमओएस2 के लिए उच्च आईडी/आईजी अनुपात दिखाता है, जो आरजीओ में कई दोष स्थितियों को प्रदर्शित करता है। RGO-MoS2 युक्त पॉलिमर मिश्रण का XRD विश्लेषण ध्रुवीयता-निर्भर आंतरिक विद्युत क्षेत्र (ई-फील्ड) के साथ बी-क्रिस्टल चरणों को प्रदर्शित करता है। शुद्ध MoS2-पॉलीमर फिल्मों की J-V विशेषताएँ दोहराए

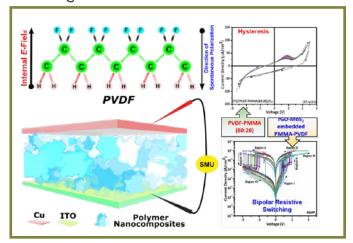


Figure 2 Chemical structure of PVDF showing ferroelectric effect, schematic device structure, and (c) J-V characteristics of polymer blend with or without nanofillers.

जाने योग्य विद्युत हिस्टैरिसीस प्रदर्शित करने वाली प्राचीन पॉलिमर फिल्मों के विपरीत, ~102-103 के वर्तमान ION/IOFF अनुपात के साथ एक WORM व्यवहार प्रदर्शित करती हैं। इसके बजाय, rGO-MoS2-आधारित डिवाइस प्रवाहकीय कार्बन सब्सट्रेट के साथ चार्ज ट्रांसफर इंटरैक्शन के कारण द्विध्नवी विशेषताओं (~103-104 का ION/IOFF अनुपात) प्रदर्शित करते हैं। फेरोइलेक्ट्रिक ध्रुवीकरण-प्रेरित ई-क्षेत्र बाहरी पूर्वाग्रह के साथ मिलकर बेहतर यादगार प्रदर्शन के लिए जिम्मेदार है। उपकरणों के माध्यम से वाहक परिवहन पर चर्चा करने के लिए एक प्रशंसनीय संचालन तंत्र प्रस्तावित है।

परियोजना सहित भविष्यत् कार्य की योजना

1. मेमरिस्टिव सिनैप्टिक डिवाइस कई किमयों से ग्रस्त हैं: संकेतों के भंडारण और प्रसंस्करण में सीमित बैंडविड्थ संचार, खराब डेटा संचालन गति, कम सह-एकीकरण घनत्व और उच्च बिजली की खपता इसलिए, कॉम्पैक्ट फ़ुटप्रिंट, उच्च बैंडविड्थ

और कम संचार ऊर्जा का समग्र लाभ उठाते हुए, विद्युत और ऑप्टिकल डोमेन के बीच तालमेल, ऊर्जा-कुशल कंप्यूटिंग नेटवर्क विकसित करने का एकमात्र तरीका है। हमारी भविष्य की योजना विद्युत और ऑप्टिकल क्षेत्रों के पदचिह्नों का समग्र लाभ उठाने के लिए फेरोइलेक्ट्रिक पॉलिमर मिश्रण/फोटोइलेक्ट्रिक 2डी सामग्री हाइब्रिड सिस्टम से युक्त नवीन सक्रिय परत-आधारित मेमट्रांजिस्टर बनाना है। इलेक्ट्रॉनिक और फोटोनिक पल्स के संयोजन के माध्यम से उत्तेजित, मेमट्रांसिस्टर्स की एनालॉग चालन प्रतिक्रिया का उपयोग करके सिनेप्स और न्यूरॉन्स की प्रमुख कार्यक्षमता का अनुकरण किया जाएगा। अंततः, इलेक्ट्रिकल (कॉम्पैक्ट फ़्टप्रिंट, उच्च घनत्व) और ऑप्टिकल (उच्च बैंडविड्थ, कम संचार ऊर्जा) डोमेन के बीच तालमेल बेहतर ऊर्जा दक्षता और अधिक ट्यूनेबिलिटी के साथ ऑप्टोइलेक्ट्रॉनिक सिनैप्स का अनुकरण करेगा।

बर्णाली घोष (साहा)

वैज्ञानिक-एफ संघनित पदार्थ एवं पदार्थ भौतिकी barnali@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. अविषेक माइती; "संश्लेषण, निरूपण, भौतिक गुण अध्ययन और पेरोव्स्काइट हैलाइड के अनुप्रयोग"; थीसिस प्रस्तुत की गई
- 2. पुरूषोत्तम माझी; "स्ट्रेन्ड मेटल ऑक्साइड फिल्म्स की संरचना और भौतिक गुण"; थीसिस प्रस्तुत की गई; प्रो. ए.के.रायचौधरी (सह-पर्यवेक्षक)
- 3. स्नेहमयी हाजरा, टीआरसी प्रोजेक्ट, अगस्त, 2019 से इंस्टीट्यूट फेलोशिप; नैनोस्ट्रक्चर्ड पीजोइलेक्ट्रिक और फेरोइलेक्ट्रिक सामग्री पर जांच"; थीसिस प्रस्त्त की गई
- 4. सुदीप्त चटर्जी, एसईआरबी प्रोजेक्ट, मार्च 2021 से इंस्टीट्यूट फेलो; ट्रांज़िशन धातु आधारित ऑक्साइड और मिश्र धातुओं के ट्रांसोर्ट और मैग्नेटो-ट्रांसपोर्ट गुणों पर जांच; शोधकार्य जारी; प्रो. कल्याण मंडल (सह-पर्यवेक्षक)

- 5. सैकत मित्रा, एसईआरबी परियोजना, जनवरी 2022 से संस्थान फ़ेलोशिप; पेरोव्स्काइट हैलाइड्स की वृद्धि और भौतिक गुणों का अध्ययन; शोधकार्य जारी; डॉ. अविजीत चौधरी (सह-पर्यवेक्षक)
- 6. चंदन सामंत; "धात् ऑक्साइड सेमीकंडक्टर नैनोस्ट्रक्चर और पतली फिल्मों का संश्लेषण, भौतिक गुण और अनुप्रयोग"; उपाधि प्रदान की गई

ख) पोस्ट-डॉक्स

1. मुस्ताक अली खान; 2डी सामग्री आधारित उन्नत फोटोडिटेक्टर और डिवाइस के प्रदर्शन पर एएलडी ग्रोन डाइइलेक्ट्रिक गेट ऑक्साइड का प्रभाव

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. हरेशभाई राजुभाई जादव; ला (लैंथेनम) के विकास, निरूपण और परिवहन गुण का अध्ययन, NdNiO नैनोस्ट्रक्चर को डोप किया गया
- 2. देबलीना दास; 1डी बेरियम टाइटेनेट नैनोस्ट्रक्चर का नियंत्रित विकास और उनके भौतिक गुणों का अध्ययन

शिक्षण/ अध्यापन

1. वसंत सत्र; आईपीएचडी सेमेस्टर-IV, वसंत 2023, पीएचवाई 401: परियोजना अनुसंधान III; एकीकृत पीएचडी; 1 छात्र

प्रकाशन

क) ज़र्नल में

- 1. स्नेहमयी हाजरा, अंकिता घटक, अर्नब घोष, सूभिमता सेनगुप्ता, ए के रायचौधरी और बर्णाली घोष, इनहेन्स्ड पीज़ोइलेक्ट्रीक रिसपॉन्स इन बीटीओ एन डब्ल्यू-पीवीडीएफ कम्पोजिट थ्रू ट्यूनिंग ऑफ़ पोलर फेज़ कंटेंट, नैनोटेक्नोलॉज़ी, 34, 045405, 2022
- 2. अविषेक माइती, सुदीप्त चटर्जी, अरूप कुमार रायचौधरी, और **बर्णाली** घोष, गेटेड फोटोडिटेक्टर विथ अ बाइपोलर रिस्पॉन्स फ्रॉम सिंगल-क्रिस्टल हैलाइड पेरोव्स्काइट यूजिंग अ पॉलिमरिक इलेक्ट्रोलाइट ऐज द गेट डाइइलेक्ट्रिक, एसीएस एप्लाइड इलेक्ट्रॉनिक मैटेरियल्स, 4, 4298, 2022
- 3. चंदन सामंत, अंकिता घटक, अरूप कुमार रायचौधुरी, और **बर्णाली** घोष, सर्फेस/ इंटरफेस डिफेक्ट इंजिनियरिंग ऑन चार्ज कैरियर ट्रांपोर्ट टूवार्ड ब्रॉडबैंड (UV-NIR) फोटोरिस्पॉन्स इन द हेटरोस्ट्रक्चर ऐरे ऑफ़ p-Si NWs/ZnO फोटोडिटेक्टर, एसीएस एप्लाइड इलेक्ट्रॉनिक मैटेरियल्स, 5, 865, 2023

- अविषेक माइती, सोहेल सिराज, ए के रायचौधुरी, अभिजीत साहा और बर्णाली घोष, लो पॉवर पोपर इलेक्ट्रॉनिक्स बेस्ड वियरेबल रेडिएशन डिटेक्टर यूजिंग हाइब्रिड हेलाइड पेरोव्स्काइट (MAPbBr): अ रियल टाइम मॉनिटरिंग ऑफ़ गामा रे, फ्लेक्सिबल एंड प्रिंटेड इलेक्ट्रॉनिक्स, 8, 015010, 2023
- सुदीप्त चटर्जी, ज्योतिर्मय साव, सुब्रत घोष, सहेली सामंत, बर्णाली घोष, मनोरंजन कुमार और कल्याण मंडल, एनोमलस हॉल इफेक्ट इन टोपोलॉजिकल वेइल एंड नोडल-लाइन सेमीमेटल हेस्लर कंपाउंडCo Val, जर्नल ऑफ फिजिक्स: कंडेंस्ड मैटर, 35, 035601, 2022
- 6. स्दीप्त चटर्जी, ज्योतिर्मय साव, सहेली सामंत, **बर्णाली घोष**, नितेश कुमार, मनोरंजन कुमार, और कल्याण मंडल, नोडल-लाइन एंड ट्रिपल पॉइंट फर्मियन इंड्यूस्ड एनोमलस हॉल इफेक्ट इन द टोपोलॉजिकल हेस्लर कंपाउंड Co CrGa, फिजिकल रिव्यू बी, 107, 125138, 2023

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- "डीडी ट्रांज़िशन: सामग्री की इलेक्ट्रॉनिक संरचना पर एक चर्चा बैठक" में आमंत्रित व्याख्यान, 5-7 अगस्त 2022; 5 अगस्त, 2022; लॉन्गहुइनोस बीच रिज़ॉर्ट, कोलवा, गोवा, भारत 5-7 अगस्त. 3 दिन
- 2. 23 सितंबर 2022 को टीआईएफएसी, डीएसआईआर और सीएसआईआर-आईआईसीबी द्वारा संयुक्त रूप से आयोजित "टीआरएल6 और उससे ऊपर की प्रौद्योगिकियों के तकनीकी-वाणिज्यिक मूल्यांकन" पर कार्यशाला में आमंत्रित व्याख्यान; सितम्बर 23, 2022; सीएसआईआर-आईआईसीबी, कोलकाता; 23 सितंबर. एक दिन

प्रशासनिक कर्तव्य

- 1. टीआरसी के तहत सामान्य स्विधा उपकरणों की खरीद, उन्नयन स्थल की तैयारी और स्थापना
- वैज्ञानिक टीआरसी के तहत कुछ केंद्रीय उपकरण सुविधाओं के प्रभारी
- 3. तकनीकी सेल के अंतर्गत सामान्य सुविधा उपकरणों के प्रभारी के रूप में खरीद/उन्नयन/रखरखाव
- उद्यान और पाइपलाइन
- विभिन्न थीसिस समिति
- क्रय समिति.
- टीआरसी से संबंधित समितियाँ

- विभिन्न मूल्यांकन समितियाँ
- 9. साक्षात्कार समिति
- 10. केंद्र की शिकायत समिति के सदस्य

पेटेंट प्राप्त किए और इस प्रक्रिया में हुई प्रगति संबंधी विवरण

- 1. एसएनबीएनसीबीएस, कोलकाता द्वारा विकसित "अमोनिया गैस सेंसर (दृश्य रंग परिवर्तन प्रकार)" पर तकनीकी जानकारी के विलेख का असाइनमेंट 2 मार्च 2023 को विधिवत निष्पादित किया गया है। पेटेंट विवरण: "हमने अमोनिया का पता लगाने के लिए एक नई सरल तकनीक का आविष्कार किया है दृश्य रंग परिवर्तन जो डिस्पोजेबल आधार पर पीएच पेपर की तरह काम करता है। लागत प्रभावी तरीके से स्केलेबिलिटी बढाने के लिए बड़े क्षेत्र में भी कागज जैसे लचीले सब्सट्रेट में इसे उगाना आसान हैइसके अलावा यह कमरे के तापमान पर बहुत उच्च चयनात्मकता, संवेदनशीलता के साथ काम करने योग्य है और ~10पीपीएम तक बहुत कम पहचान सीमा प्रदर्शित करता है। यह कार्यस्थलों में खतरनाक गैसों का पता लगाने के लिए एक त्वरित और आसान विधि के रूप में कार्य करता है। किसी परिवेश में NH3 की उपस्थिति के खतरे की तत्काल सीमा का आकलन करने के लिए एक दृश्य सेंसर के रूप में, यह एक वांछनीय विशेषता है। यदि सांद्रता कम है तो सेंसर को प्रतिक्रिया देने में लगभग 10 सेकंड लगते हैं और इससे हानिकारक जोखिम नहीं होगा। दूसरी ओर, जब सांद्रता अपेक्षाकृत अधिक (~20-25पीपीएम) होती है और यह खतरे के स्तर तक पहुंच जाती है, तो सीनेटर 5 सेकंड के भीतर तुरंत रंग बदल देता है और एक दृश्य चेतावनी देता है। खतरनाक वातावरण में किसी भी ऑपरेटर के लिए यह तत्काल खतरे का संकेत देगा।"; फ़ाइल संख्या: 201731000270, अनुदान संख्या: 316234; स्वीकृत
- 2. 2. "कमरे के तापमान पर नाइट्रिक ऑक्साइड (एनओ) गैस का चयनात्मक पता लगाने के लिए एक गैस सेंसिंग सिस्टम": वर्तमान आविष्कार एक कमरे के तापमान पर संचालित होने योग्य, हाथ से पकड़ने योग्य ZnO/p-Si NWs नाइट्रिक ऑक्साइड (NO) गैस सेंसिंग प्रणाली और ZnO/p-Si NWs हेटेरोजंक्शन के सरल उपयोग के लिए एक विधि का खुलासा करता है। वर्तमान आविष्कार कार्यस्थलों में खतरनाक गैसों का पता लगाने के लिए त्वरित और सस्ते तरीकों से संबंधित है। वर्तमान आविष्कार को विशेष रूप से लंबे समय तक चलने वाली पुन: प्रयोज्यता, स्थिरता प्रदर्शित करने और कमरे के तापमान पर और यहां तक कि कम से कम 500 पीपीबी तक अत्यधिक उच्च संवेदनशीलता वाले खुले वातावरण में एनओ गैस का पता लगाने के लिए अनुकूलित किया गया है। इस आविष्कार में दिसयों पीपीबी तक शोर सीमित संवेदन संकल्प, वास्तव में अस्थमा, ब्रोंकाइटिस, वायु प्रवाह सीमा

अग्रणी और क्रोनिक प्रतिरोधी फुफ्फुसीय जैसे कुछ फुफ्फुसीय रोगों के गैर-आक्रामक निदान के लिए निकाली गई सांस के विश्लेषण में सेंसर के उपयोग की दिशा में एक बड़ी प्रगति है। रोग (सीओपीडी)। एफईआर प्राप्त हुआ और मार्च 2023 में सुनवाई की गई; 201731038036; अनुप्रयुक्त

पुरस्कार/ मान्यताएँ

- 4 मार्च 2023 को वीनस इंटरनेशनल फाउंडेशन, भारत, महिला विकास केंद्र द्वारा संघनित पदार्थ भौतिकी और सामग्री VIWA 2023 में "उत्कृष्ट महिला शोधकर्ता" प्राप्त किया।
- इंजीनियरिंग, विज्ञान और चिकित्सा आईएनएसओ 2023, पांडिचेरी, भारत में पुरस्कार विजेताओं के लिए अंतर्राष्ट्रीय सम्मेलन में "उत्कृष्ट वैज्ञानिक पुरस्कार" प्राप्त किया।
- मान्यता और प्रशंसा का 2022 एसीएस प्रकाशन सहकर्मी समीक्षक प्रमाणपत्र प्राप्त हुआ।

लर्निड सोसायटी की सदस्यता

- भारतीय भौतिकी संघ के आजीवन सदस्य
- इंडियन एसोसिएशन फॉर द कल्टीवेशन ऑफ साइंस के आजीवन सदस्य
- 3. अमेरिकन फिजिकल सोसायटी
- 4. अमेरिकन केमिकल सोसायटी
- आईआईपी (इटरेटिव इंटरनेशनल पब्लिशर्स) के संपादक ने "रासायनिक सामग्री विज्ञान और नैनो प्रौद्योगिकी में भविष्य के रुझान" नामक पुस्तक श्रृंखला का संपादन किया।

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

- बाइनरी ऑक्साइड के ऊर्ध्वाधर रूप से संरेखित नैनोवायर या नैनोट्यूब की वृद्धि और उनके द्वारा गैसों के समस्थानिक विभाजन के भौतिकी को समझना; एसईआरबी-डीएसटी; 6/7/2018-5/4/2022; पीआई
- 2. तकनीकी अनुसंधान केंद्र (टीआरसी), केंद्र परियोजना, अन्य गतिविधि प्रनेता में से एक; डीएसटी; 01/1/2016- 30/6/2022; पीआई

राष्ट्रीय/अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. सीजीसीआरआई, कोलकाता; क्र.सं. नंबर 1, 2, 3, 4; राष्ट्रीय
- 2. यूजीसी-डीएई-सीएसआर कोलकाता; क्र.सं. नंबर 4; राष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

- 1. भारत में महिलाओं के अधिकार, कानून और नीतियां, IMPRI एक व्यापक कानूनी जागरूकता और प्रमाणपत्र प्रशिक्षण पाठ्यक्रम दिनांक: 1-3 सितंबर, 2022, नीति शिक्षण, जूम प्लेटफ़ॉर्म
- 2. आईईईई सेंसर्स काउंसिल स्टूडेंट ब्रांच चैप्टर II, आईआईटी इंदौर द्वारा 16 दिसंबर 2022 को हाइब्रिड मोड में सेंसर (वाईएसई) में महिलाओं के सहयोग से "सेंसर प्रौद्योगिकी में महिलाओं को सशक्त बनाना, ईडब्ल्यूएसटी 22" का आयोजन किया गया।

अनुसंधान क्षेत्र

- बाइनरी ऑक्साइड हेटरो जंक्शन सिस्टम में फोटोरेस्पॉन्स और गैस सेंसिंग प्रॉपर्टी का अध्ययन। पेरोव्स्काइट लेड हैलाइड की वृद्धि और भौतिक संपत्ति का अध्ययन जटिल ऑक्साइड में सिंक्रोट्रॉन एक्स-रे और न्यूट्रॉन विवर्तन अध्ययन। पेरोव्स्काइट हैलाइड्स की गैस सेंसिंग गतिविधि के लिए पेपर इलेक्ट्रॉनिक आधारित उपकरण पेरोव्स्काइट हैलाइड्स के पेपर इलेक्ट्रॉनिक आधारित फोटो डिटेक्टर पर अध्ययन विभिन्न तकनीकों का उपयोग करके बाइनरी और जटिल ऑक्साइड नैनोवायर और पतली फिल्मों का विकास; नम रसायन विज्ञान और स्पंदित लेजर जमाव विधियां और परमाणु परत जमावा एकल नैनोवायर पर विभिन्न लिथोग्राफिक तकनीकों और परिवहन माप का उपयोग करके जटिल ऑक्साइड प्रणालियों के एकल नैनोवायर डिवाइस का निर्माण। बाइनरी और जटिल ऑक्साइड नैनोवायर, नैनोक्रिस्टल और पतली फिल्मों में क्रॉस-सेक्शनल टीईएम अध्ययन उच्च प्रदर्शन थीन फिल्म ट्रांजिस्टर (टीएफटी) का विकास और भौतिक संपत्ति अध्ययन
- गेट डाइइलेक्ट्रिक के रूप में पॉलीमेरिक इलेक्ट्रोलाइट का उपयोग करके सिंगल क्रिस्टल हैलाइड पेरोव्स्काइट से द्वि-ध्रुवीय प्रतिक्रिया के साथ गेटेड फोटो डिटेक्टर:

इस कार्य में, हम दिखाते हैं कि दृश्य तरंग दैर्ध्य क्षेत्र में काम करने वाला एक गेटेड ऑप्टिकल डिटेक्टर सिंगल-क्रिस्टल हैलाइड पेरोव्स्काइट मिथाइलमोनियम लेड ब्रोमाइड (CH,NH,PbBr, या MAPB) पर बनाया जा सकता है। एक पॉलिमॉरेक इलेक्ट्रोलाइट (PEO/ LiClO4) का उपयोग गेट डाइइलेक्ट्रिक के रूप में किया जाता है, जो इलेक्ट्रोलाइट/MAPB इंटरफ़ेस पर एक इलेक्ट्रिक डबल लेयर (EDL) बनाता है, जिससे उच्च विशिष्ट गेट कैपेसिटेंस होता है और कम गेट पूर्वाग्रह पर बढ़ाया वाहक प्रेरण सक्षम होता है। डिटेक्टर की फोटोरेस्पॉन्स को 10 वी के पूर्वाग्रह वीजी द्वारा एक बड़े कारक (उदाहरण के लिए, 35 के कारक द्वारा) द्वारा काफी बढ़ाया जा सकता है। कोर गेट ऑपरेशन फ़ील्ड प्रभाव के कारण होता है, और डिटेक्टर एक फ़ील्ड की विशेषताओं को दिखाता है प्रभाव ट्रांजिस्टर (FET) द्विध्रुवी प्रकृति के साथ, जिससे गेट पूर्वाग्रह के दोनों ध्रुवों के साथ काम होता है। यह हैलाइड पेरोव्स्काइट्स की विशेष विशेषता द्वारा सक्षम है, अर्थात, उनमें दोनों प्रकार के वाहकों के लिए सराहनीय गतिशीलता है। यह स्थापित किया गया है कि डिटेक्टर की वर्तमान प्रतिक्रिया में वृद्धि रोशनी के साथ-साथ गेट द्वारा बनाए गए वाहकों के तालमेल के कारण होती है जब वे एक साथ मौजूद होते हैं, जो वैलेंस बैंड मैक्सिमा (वीबीएम) के करीब बैंड-एज ट्रैप राज्यों को संशोधित करता है। और कंडक्शन बैंड मिनिमा (सीबीएम) और वाहक गतिशीलता को बढ़ाता है। प्रस्तावित तालमेल तंत्र को फोटोल्यूमिनेसेंस (पीएल) उत्सर्जन की तीव्रता में गेट-प्रेरित वृद्धि और उत्सर्जन रेखा के संकुचन द्वारा मान्य किया गया है। एसीएस अप्लाइड इलेक्ट्रॉनिक मैटेरियल्स में एक पेपर प्रकाशित 9, 4298, 2022.

2. ध्रुवीय चरण सामग्री की ट्यूनिंग के माध्यम से बीटीओ एनडब्ल्य-पीवीडीएफ समग्र में उन्नत पीजोइलेक्ट्रिक प्रतिक्रियाः

हमने पीजोइलेक्ट्रिक गुणांक d33=308 pmV-1 के बेरियम टाइटेनेट (BaTiO3) नैनोवायर (NWs) के साथ शामिल फेरोइलेक्ट्रिक पॉलीविनाइलिडीन फ्लोराइड (PVDF) कंपोजिट पर आधारित एक लचीला, पर्यावरण अनुकूल पीजोइलेक्ट्रिक नैनोजेनरेटर (PENG) बनाया है। सिंगल-लेयर्ड PENG 10 µWcm-2 की आउटपुट पावर घनत्व और 1 kPa के नाममात्र यांत्रिक भार के साथ 2 V का आउटपूट वोल्टेज प्रदान कर सकता है। ध्रुवीय चरण सामग्री, आंतरिक प्रतिरोध को ट्यून करने और आउटपुट पावर को अनुकूलित करने के लिए विभिन्न सांद्रता के BaTiO3 (BTO) NW को PVDF में शामिल किया गया था। हम दिखाते हैं कि बीटीओ एनडब्ल्यू लोडिंग का एक महत्वपूर्ण मुल्य 15 wt% है, जिसके आगे पीवीडीएफ नैनोकम्पोजिट की पीजोइलेक्ट्रिक ऊर्जा संचयन विशेषताएं कम हो जाती हैं। बीटीओ एनडब्ल्यू सतह में मौजूद ऑक्सीजन रिक्तियां पीवीडीएफ श्रृंखला के फ्लोरीन आयनों को आकर्षित करती हैं और β चरण के गठन का पक्ष लेती हैं। कम आवृत्ति क्षेत्र में बीटीओ-पीवीडीएफ नमुनों के ढांकता हुआ स्थिरांक और ढांकता हुआ नुकसान का बढ़ा हुआ मूल्य समग्र प्रणाली में मजबूत इंटरफेशियल ध्रुवीकरण का सुझाव देता है। निर्मित PENG एक सुपर-कैपेसिटर को 35 सेकंड के भीतर 4 V तक चार्ज कर सकता है। बीटीओ (15 डब्ल्यूटी%)-पीवीडीएफ कंपोजिट से उच्च बिजली उत्पादन की उत्पत्ति को बढ़ी हुई ध्रुवीय चरण सामग्री, मजबूत इंटरफेशियल ध्रुवीकरण और कम आंतरिक प्रतिरोध के संयुक्त प्रभाव के लिए जिम्मेदार ठहराया जाता है। यह अध्ययन बीटीओ-पीवीडीएफ आधारित पीजोइलेक्ट्रिक ऊर्जा हार्वेस्टर के प्रदर्शन को बढाने में एक प्रभावी मार्ग प्रदान करता है। नैनोटेक्नोलॉजी में एक पेपर प्रकाशित 34, 045405, 2023

परियोजना सहित भविष्यत् कार्य की योजना

भाग क: मौलिक अनुसंधान: i)) पेरोव्स्काइट हैलाइड सिस्टम पर संश्लेषण और ऑप्टिकल गूण, क्रिस्टलोग्राफिक संरचना माइक्रोस्ट्रक्चरल अध्ययन ii) पेरोव्स्काइट ऑक्साइड की भौतिकी: विकास, क्रिस्टलोग्राफिक और कम तापमान परिवहन और मैग्नेटो परिवहन संपत्ति की समझ

iii) सेमीकंडक्टर्स पर ऑप्टोइलेक्ट्रॉनिक्स संपत्ति का अध्ययन iv) पीजोइलेक्ट्रिक नैनोस्ट्रक्चर पर विकास और भौतिक संपत्ति का अध्ययन iii) जटिल और बाइनरी ऑक्साइड पतली फिल्मों और मल्टीलेयर्स के इंटरफ़ेस भौतिकी का अध्ययन ख) प्रौद्योगिकी संचालित अनुसंधान: टीआरसी परियोजना के तहत 1) गैस सेंसर और ऊर्जा उपकरण: प्रौद्योगिकी का व्यावसायीकरण पूरा किया जाना है i) खतरों वाले गैस सेंसर का विकास: यह दृश्य के साथ-साथ विद्युत संवेदन मोड के रूप में भी काम करता है। इसमें वास्तविक समय के लिए उप पीपीएम क्षमता का पता लगाने की क्षमता हो सकती है, व्यावहारिक उपयोग उपयोगी होगा। यह पर्यावरण संरक्षण के साथ-साथ स्वास्थ्य देखभाल क्षेत्र के लिए बेहद उपयोगी है। प्रोटोटाइप का संशोधन प्रक्रियाधीन है। ii) ऊर्जा उपकरणों का विकास: पीजोइलेक्ट्रिक नैनोस्ट्रक्चर का उपयोग करके नैनोजेनरेटर के रूप में पोर्टेबल बिजली उत्पादन प्रणाली: प्रकाशन: नैनोटेक्नोलॉजी 34 045405, 2023। iii) विकिरण डिटेक्टरों का विकास: कार्यस्थलों के साथ-साथ चिकित्सा विज्ञान में गामा विकिरण की वास्तविक समय त्वरित निगरानी के लिए एक डिटेक्टर।

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

1) रेडिएशन डिटेक्टर, 2) हजार्डस (अमोनिया) गैस डिटेक्टर, 3) नैनोजेनरेटर 1) रेडिएशन डिटेक्टर: गामा विकिरण की वास्तविक समय त्वरित निगरानी के लिए एक डिटेक्टर हमारे आविष्कार, अनुप्रयोग क्षेत्रों और सामाजिक प्रभाव की नवीनता: परमाणु इमेजिंग जैसे कई क्षेत्र हैं; कैंसर चिकित्सा; सुरक्षा जाँच, जहाँ गामा विकिरण की उपस्थिति का त्वरित पता लगाने वाले के रूप में विकिरण डिटेक्टर की आवश्यकता होती है। पारंपरिक तकनीकों का उपयोग करना आसान नहीं है। गामा विकिरण के त्वरित मार्कर के रूप में इस नवीन ठोस अवस्था विकिरण डिटेक्टर का उपयोग करके कमरे के तापमान पर विद्युत रीड आउट विधि के माध्यम से ऊर्जा रिज़ॉल्यूशन द्वारा नहीं बल्कि गामा किरण का पता लगाने के लिए एक विचलित दृष्टिकोण। यह जांच तकनीक विकिरण प्रवण क्षेत्रों में त्वरित और लागत प्रभावी तरीके से बेहद उपयोगी हो सकती है - जहां सूक्ष्म ऊर्जा समाधान प्राथमिक चिंता का विषय नहीं है। इसके अलावा डिटेक्टर अत्यधिक विकिरण प्रतिरोधी है। 2) गैस सेंसर: हमने कागज पर उगाए गए रंग परिवर्तन के आधार पर एक दृश्य सेंसर विकसित किया। इसमें वास्तविक समय के व्यावहारिक उपयोग के लिए उप पीपीएम क्षमता का पता लगाने की क्षमता हो सकती है। यह पर्यावरण संरक्षण के साथ-साथ स्वास्थ्य देखभाल क्षेत्र के लिए बेहद उपयोगी है। अनुप्रयोग क्षेत्र: प्रशीतन उद्योग, कृषि (उर्वरक) उद्योग, खाद्य पेय और शीत भंडारण उद्योग, चिकित्सा निदान (गुर्दे की बीमारियों के लिए मार्कर के रूप में), क्रोनिक किडनी रोग (सीकेडी), का उपयोग डायलिसिस की प्रभावकारिता की जांच के लिए किया जा सकता है। 3) नैनोजेनरेटर: अपशिष्ट ऊर्जा से बिजली का उत्पादन: अनुप्रयोग 1) मोबाइल, स्मार्ट घड़ी, ब्लूट्थ डिवाइस आदि की चार्जिंग।

कल्याण मंडल

वरिष्ठ प्रोफेसर संघनित पदार्थ एवं पदार्थ भौतिकी kalyan@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. जे श्रीधर मोहंती; मैग्नेटोकलोरिक प्रभाव; शोधकार्य जारी
- 2. इशिता जाना; मल्टीफ़ेरोइक सामग्री; शोधकार्य जारी
- 3. सोहम साहा; विद्युत रासायनिक जल विभाजन; शोधकार्य
- 4. सौरव सरकार; चुंबकीय नैनोस्ट्रक्चर; शोधकार्य जारी
- 5. अनुपम गोराई; फेराइट्स के माइक्रोवेव गुण; शोधकार्य जारी
- 6. स्वर्णाली हैत; मल्टीफ़ेरोइक सामग्री; शोधकार्य जारी
- 7. स्दीप्त चटर्जी; चुंबकीय टोपोलॉजिकल सामग्री; शोधकार्य जारी; डॉ बर्णाली घोष (सह-पर्यवेक्षक)
- 8. सहेली सामंता; मैग्नेटोकलोरिक प्रभाव; थीसिस प्रस्तुत की गई

ख) पोस्ट डॉक्स

- 1. मिली कुंडू; चुंबकीय टोपोलॉजिकल सामग्री
- 2. अलो दत्ता; ऑक्साइड सामग्री के माइक्रोवेव गुण

शिक्षण/ अध्यापन

- 1. वसंत सेमेस्टर; इलेक्ट्रॉनिक्स और इंस्ट्रमेंटेशन (PHY 408); एकीकृत पीएचडी; 11 छात्र; डॉ. अभिजीत चौधरी (सह-शिक्षक)
- 2. वसंत सेमेस्टर; बुनियादी प्रयोगशाला (PHY 492); एकीकृत पीएचडी; 11 छात्र; डॉ. अभिजीत चौधरी (सह-शिक्षक)
- 3. वसंत सेमेस्टर; प्रायोगिक भौतिकी के तरीके (PHY 592); एकीकृत पीएचडी; नितेश कुमार, प्रदीप एस पचुले, और रामकृष्ण दास (सह-शिक्षक)
- 4. वसंत सेमेस्टर; चुंबकत्व और अतिचालकता (PHY 516); एकीकृत पीएचडी; 5 छात्र; रंजन चौधरी (सह-शिक्षक)
- 5. वसंत सेमेस्टर; उन्नत संघनित पदार्थ भौतिकी । (PHY 616); पीएचडी; 4 छात्र; रंजन चौधरी (सह-शिक्षक)

प्रकाशन

क) ज़र्नल में

- 1. स्दीप्त चटर्जी, ज्योतिर्मय साव, स्ब्रत घोष, सहेली सामंत, बरनाली घोष, मनोरंजन कुमार और कल्याण मंडल, एनोमलस हॉल इफेक्ट इन टोपोलॉजिकल वेइल एंड नोडल-लाइन सेमीमेटल हेस्लर कंपाउंड Co, Val, जर्नल ऑफ फिजिक्स: कंडेंस्ड मैटर, 35, 035601, 2022
- 2. स्वर्णाली हाइत और **कल्याण मंडल**, एनहेस्ड फेरोइलेक्ट्रीक, डायलेक्ट्रीक एंड मैग्नेटोडायइलेक्ट्रिक प्रोपर्टीज ऑफ़ Ba एंड Y को-डॉप्टेड बिसमुथ फेर्राइट नैनोपार्टिकल्स, फिजिका बी: कंडेंस्ड मैटर, 645, 414243, 2022
- 3. सहेली सामंत, सुदीप्त चटर्जी, सुब्रत घोष, और कल्याण मंडल, लार्ज रिवर्सिबल मैग्नेटोकैलोरिक इफेक्ट एंड मैग्नटोरेसिसटेंस बाई इम्प्रविगंग क्रिस्टलोग्राफिक कंपेटिबिलिटी कंडीशन इन Ni(Co)-Mn-Ti ऑल-डी-मेटल ह्यूस्लर एलॉयज, फिजिकल रिव्यू मैटेरियल्स, 6, 094411, 2022
- 4. सुब्रत घोष, सहेली सामंत, जे. श्रीधर मोहंती, जयी सिन्हा, कल्याण मंडल. जायंट रूम टेंपरेचर मैग्नेटोकैलोरिक

- रिस्पॉन्स इन अ (MnNiSi) $_{_{1-x}}$ (FeNiGa) $_{_{x}}$ सिस्टम, ज़र्नल ऑफ़ अप्लाइड फिजिक्स, 132, 045001, 2022
- 5. सहेली सामंत, सुब्रत घोष, सुदीप्त चटर्जी, कल्याण मंडल, लार्जमेग्नेटोकैलोरिक इफेक्ट एंड मेग्नेटोरेसिसटेंस इन Fe-Co डॉपेड Ni_{50-x}(FeCo) Mn₃₇Ti₁₃ ऑल-डी-मेटल ह्यूस्लर एलॉयज, जर्नल ऑफ अलॉयज एंड कंपाउंड्स, 910, 164929, 2022
- 6. दीपांजन मैती, देबाशीष पाल, केशब करमाकर, रूपाली रक्षित, गोबिंदा गोपाल खान और कल्याण मंडल, ड्युअल को-कैटलिस्सट्स एक्टिवेटेड हेमाटाइट नैनोरॉड्स विथ लॉ टर्न-ऑन पटेंशियल एंड इंहेंस्ड चार्ज कलेक्शन फॉर एफिसिएंट सोलर वाटर ऑक्सिडेशन, नैनोटेक्नोलॉजी, 33, 265402, 2022
- 7. प्रियंका साहा, रूपाली रक्षित, अनुपम गोराई, दीपिका मंडल और कल्याण मंडल, अनयुजुअल डायलेक्ट्रीक प्रोपर्टीज ऑफ़ हॉलो मैग्नेशियम फेर्राइट नैनोस्फेयर्स: अ पोटेंशियल लाइटवेट म्इक्रोवेव एब्जॉर्वर, ज़र्नल ऑफ़ मैटेरियल्स साइंस, 57, 4569-4582, 2022

ख) सम्मेलन की कार्यवाही/ रिपोर्ट/ मोनोग्राफ/ पुस्तक

1. स्वर्णाली हैट. कल्याण मंडल. "Ga0.8Fe1.2O3-Y3Fe5O12 कम्पोजिट के गठन द्वारा रूम टेंपरेचर से परे गैलियम फेराइट के क्यूरी तापमान में वृद्धि", एआईपी एडीवी 13 (2023)। सम्मेलन का नाम और विवरण: एमएमएम सम्मेलन, 31 अक्टूबर- 04 नवंबर 2022, मिनियापोलिस, यूएसए

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. "ट्रांजिशन मेटल ऑक्साइड नैनोस्ट्रक्चर: नवीन गुण और संभावित अनुप्रयोग"; 23 मई, 2022; माइक्रोवेव डिवीजन, क्रिश्चियन-अल्ब्रेक्ट्स-यूनिवर्सिटीएट ज़ू कील, कील, जर्मनी; 1 घंटा
- "चुंबकत्व और चुंबकीय सामग्री: थोक से नैनो", भौतिकी में सी के मजूमदार मेमोरियल ग्रीष्मकालीन कार्यशाला 2022 में; जुलाई 20, 2022; एसएनबीएनसीबीएस, सॉल्ट लेक, कोलकाता; 1 घंटा **15 ਸਿ**ਜਟ

प्रशासनिक कर्तव्य

1. सतर्कता अधिकारी

पुरस्कार/ मान्यताएं

1. हम्बोल्ट फाउंडेशन से जर्मनी में नवीनीकृत अनुसंधान प्रवास के लिए दो महीने (मई-जून 2022) फ़ेलोशिप

लर्निड सोसायटी की सदस्यता

- 1. मैटेरियल्स रिसर्च सोसायटी ऑफ इंडिया
- मेग्नेटिक्स सोसायटी ऑफ इंडिया
- गैर-विनाशकारी परीक्षण के लिए भारतीय सोसायटी
- भारतीय भौतिक समाज
- 5. इंडियन एसोसिएशन ऑफ फिजिक्स टीचर्स

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

1. इंटरमेटेलिक यौगिकों में मैग्नेटोस्ट्रक्चरल संक्रमण और मेग्नेटोकलोरिक प्रभावों का अध्ययन: सर्ब डीएसटी तारे: 3 वर्ष: सह पीआई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

1. भौतिकी में सी के मजूमदार मेमोरियल ग्रीष्मकालीन कार्यशाला 2022 12 - 21 जुलाई 2022 एसएनबीएनसीबीएस, साल्ट लेक, कोलकाता में; जुलाई 12, 2022; एसएनबीएनसीबीएस, सॉल्ट लेक, कोलकाता; दस दिन

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

1. प्रोफेसर गोबिंदा गोपाल खान, त्रिपुरा सेंट्रल यूनिवर्सिटी, त्रिपुरा, भारत "इलेक्ट्रोकेमिकल वॉटर स्प्लिटिंग" पर; क्र.सं. नंबर 6; राष्ट्रीय

अनुसंधान क्षेत्र

फेराइट्स के माइक्रोवेव गुण, मैग्नेटोकैलोरिक प्रभाव, इलेक्ट्रोकेमिकल जल विभाजन

1. चुंबकीय टोपोलॉजिकल हेस्लर यौगिकों में विसंगतिपूर्ण हॉल प्रभाव:

त्रि-आयामी टोपोलॉजिकल सेमीमेटल्स (टीएसएम), नई गैपलेस क्वांटम अवस्थाओं ने हाल के वर्षों में संघनित पदार्थ भौतिकी में विशेष ध्यान और काफी अनुसंधान गतिविधि को आकर्षित किया है क्योंकि वे संभावित अनुप्रयोगों के साथ मौलिक रूप से नई भौतिक

घटनाएं प्रदर्शित करते हैं। कई चुंबकीय टीएसएम के बीच, Co2-आधारित चुंबकीय हेस्लर यौगिकों ने अपने उच्च क्यूरी तापमान और ट्यून करने योग्य गैर-त्च्छ टोपोलॉजिकल विशेषताओं के कारण शोधकर्ताओं की जिज्ञासा को बढा दिया है। हमारे हाल के कार्यों में (PRB 107, 125138 (2023), JPCM 35, 035601 (2023)), हमने विभिन्न Co2-आधारित टोपोलॉजिकल हेस्लर यौगिकों में विसंगतिपूर्ण हॉल प्रभाव (एएचई) की जांच की है और पाया है कि एएचई आंतरिक बेरी चरण तंत्र पर हावी है। हमने यह भी देखा है कि इन यौगिकों में एएचई का परिमाण काफी हद तक उनकी बैंड संरचना और सिस्टम में मौजूद अर्ध कण (नोडल-लाइन, वेइल या ट्रिपल-पॉइंट फर्मियन) उत्तेजना पर निर्भर करता है। वर्तमान में, हम इन यौगिकों में बड़े एएचई प्राप्त करने के लिए इन विभिन्न गैर-तुच्छ स्थितियों को ट्यून करने पर ध्यान केंद्रित कर रहे हैं।

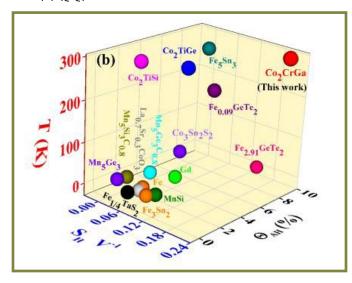


Figure: Anomalous Hall angle (AHA) and anomalous Hall factor (AHF) for Co CrGa are plotted as a function of temperature along with other reported metallic ferromagnets.

2. Ni(Co)-Mn-Ti ऑल-डी-मेटल हेस्लर मिश्रधातु में क्रिस्टलोग्राफिक संगतता स्थिति में सुधार करके बड़े प्रतिवर्ती मैग्नेटोकलोरिक प्रभाव और मैग्नेटोरेसिस्टेंस ऑल-डी-मेटल Ni(Co)-Mn-Ti हेस्लर सिस्टम अपने मैग्नेटोरेस्पॉन्सिव प्रभाव और संभावित अनुप्रयोग के लिए उत्कृष्ट

यांत्रिक गुणों के कारण अनुसंधान हॉटस्पॉट हैं। हालाँकि, बड़े थर्मल हिस्टैरिसीस की उपस्थित इस नवीन सामग्री के चक्रीय संचालन में बाधा के रूप में कार्य करती है। हमारे हालिया कार्य (Phy. Rev. सामग्री 6, 094411 (2022)) में, हमने Ni37xCo13+xMn34.5Ti15.5 ऑल-डी- में कमरे के तापमान के पास एक बड़े प्रतिवर्ती मैग्नेटोकलोरिक प्रभाव (MCE) और मैग्नेटोरेसिस्टेंस (MR) की जांच की। धातु हेस्लर मिश्र धातु जो फेरोमैग्नेटिक ऑस्टेनाइट चरण और एंटीफेरोमैग्नेटिक मार्टेंसाइट चरणों के बीच एक बड़े चूंबकीयकरण परिवर्तन के साथ प्रथम-क्रम मैग्नेटोस्ट्रक्चरल परिवर्तन से गुजरती है। हमने प्रदर्शित किया कि बड़े MCE (चुंबकीय एन्ट्रापी परिवर्तन, ΔSM और रुद्धोष्म तापमान परिवर्तन, ΔTad) क्यूबिक ऑस्टेनाइट और मोनोक्लिनिक मार्टेंसाइट चरणों और माइनर हिस्टैरिसीस लूप के बीच क्रिस्टलोग्राफिक संगतता स्थितियों द्वारा हिस्टैरिसीस को कम करके क्षेत्र चक्रण के तहत प्रतिवर्ती हो जाता है। वर्तमान में हम अपना ध्यान मध्यम चूंबकीय क्षेत्र के तहत प्रतिवर्ती एमसीई और एमआर के व्यावसायिक अनुप्रयोग की ओर केंद्रित कर रहे हैं।

परियोजना सहित भविष्यत् कार्य की योजना

- 1. इन यौगिकों में बड़े विसंगतिपूर्ण हॉल प्रभाव को प्राप्त करने के लिए चुंबकीय टोपोलॉजिकल हेस्लर यौगिकों की गैर-तुच्छ अवस्थाओं को ट्यून किया जाएगा।
- 2. 2. चूँकि जिंक फेराइट (ZnFe2O4 या ZFO) आसानी से उपलब्ध लागत प्रभावी सामग्रियों द्वारा तैयार किया जा सकता है और ZFO नैनोरोडस फोटोएनोड के रूप में बड़े पैमाने पर व्यावहारिक उपयोग के लिए उत्कृष्ट हैं, हमने इस वर्ष उच्च चालकता और वाहक एकाग्रता के साथ घने ZFO नैनोरोड्स के निर्माण के लिए एक सरल डोपिंग तकनीक की योजना बनाई है। इन नैनो रॉड की दक्षता एक इलेक्ट्रोकैटलिस्ट ओवर-लेयर द्वारा और भी बढ़ जाएगी। हम संभावित फोटोएनोड सामग्री के रूप में गैलियम फेराइट (GaFeO3) की पतली फिल्म की जांच करने का भी इरादा रखते हैं। विभिन्न प्रकार के फेराइट नैनो-होलोस्फेयर के साथ ZnO नैनोवायरों का हेटेरोजंक्शन तैयार किया जाएगा, जिसे वर्जिन ZnO से बेहतर प्रदर्शन करना चाहिए।

मनोरंजन कुमार

प्रोफ़ेसर संघनित पदार्थ एवं पदार्थ भौतिकी manoranjan.kumar@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पीएच.डी. छात्र

- 1. एसके सनीउर रहमान; अर्ध-एक आयामी फ्रस्ट्रेटेड स्पिन सिस्टम में क्वांटम चरण; शोधकार्य जारी; एम संजय कुमार (सह पर्यवेक्षक)
- 2. मोनालिसा चटर्जी; फ्रस्ट्रेटेड निम्न आयामी स्पिन सिस्टम का टोपोलॉजिकल पहलु; शोधकार्य जारी
- 3. ज्योतिर्मय साव: सहसंबद्ध प्रणालियों में टोपोलॉजी: शोधकार्य जारी
- 4. मनोदीप राउथ; कम आयामी दृढ़ता से सहसंबद्ध प्रणालियों में थर्मल और क्वांटम उतार-चढ़ाव; शोधकार्य जारी
- 5. सायन घोष: निराशात्मक रूप से सहसंबद्ध निम्न आयामी प्रणालियों में क्वांटम और थर्मल उतार-चढ़ाव की खोज; शोधकार्य जारी
- 6. सौरभ साहा; मल्टी-बैंड सहसंबद्ध प्रणालियों में विदेशी चरणों का अध्ययन; शोधकार्य जारी

7. अनुतोष विश्वास; सीढ़ी ज्यामिति पर स्पिन-3/2 AKLT और सामान्य हाइसेनबर्ग मॉडला सस्ट्री-सदरलैंड स्ट्राइप सीढ़ी पर किताएव-हाइजेनबर्ग बातचीत; प्रगति मे; प्रो. तनुश्री साहा दासगुप्ता (सह-पर्यवेक्षक)

ख) पोस्ट-डॉक्स

- 1. स्मित हलदर; शास्त्रीय मोंटे कार्लो और निर्धारक क्वांटम मोंटे कार्लो विधियों से उत्पन्न डेटा का उपयोग करके कई शास्त्रीय स्पिन मॉडल और क्वांटम सिस्टम में चरण व्यवहार और फेज ट्रांजिशन का अध्ययन करने के लिए प्रमुख घटक विश्लेषण
- 2. संबुनाथ दास; किताएव-हाइजेनबर्ग लैडर पर स्पिन-1 प्रणाली की जमीनी स्थिति और कम-ऊर्जा उत्तेजना
- 3. सौरव चक्रवर्ती: मल्टीऑर्बिटल हबर्ड मॉडल के भीतर विभिन्न लंबी दूरी के चुंबकीय क्रम की जांच

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. सिंचन राज; फ़ुस्ट्रेटेड स्पिन प्रणाली में एक्सोटिक फेज

शिक्षण/ अध्यापन

1. वसंत सत्र; उन्नत क्वांटम यांत्रिकी (PHY 303); एकीकृत पीएचडी; 9 छात्र; डॉ. अरिजीत हलदर (सह-शिक्षक)

प्रकाशन

क) ज़र्नल में

- 1. गौरव के. शुक्ला, ज्योतिर्मय साव, विशाल कुमार, **मनोरंजन** कुमार, और संजय सिंह, बैंड स्प्लिटिंग इंड्यूरड बेरी फ्लक्स एंड इंट्रिन्सिक एनोमलस हॉल कंडिक्टविटी इन द NiCoMnGa क्वाटरनेरी हेस्लर कंपाउंड, फिजिकल रिव्यू बी, 106, 045131, 2022
- 2. विशाल कुमार अग्रवाल, शैली सेट, ज्योतिर्मय साव, अंकिता घटक, मनोरंजन कुमार, अचित्य सिंहा, और ए.के. रायचौध्री, फोनन एंड थर्मल प्रोपर्टीज ऑफ़ Ge नैनोवायर्स: अ रमन स्पेक्ट्रोस्कोपी इंवेस्टीगेशन फोनन सिम्लेशन, द जर्नल ऑफ फिजिकल केमिस्ट्री सी, 126, 15046, 2022
- 3. स्दीप्त चटर्जी, ज्योतिर्मय साव, स्ब्रत घोष, सहेली सामंत, बरनाली घोष, मनोरंजन कुमार और कल्याण मंडल, एनोमलस हॉल इफेक्ट इन टोपोलॉजिकल वेइल एंड नोडल-लाइन सेमीमेटल हेस्लर कंपाउंड Co, Val, जर्नल ऑफ फिजिक्स: कंडेंस्ड मैटर, 35, 035601, 2022

- 4. स्दीप्त चटर्जी, ज्योतिर्मय साव, सहेली सामंत, बरनाली घोष, नितेश कुमार, मनोरंजन कुमार, और कल्याण मंडल, नोडल-लाइन एंड ट्रिपल पॉइंट फर्मियन इंड्युस्ड एनोमलस हॉल इफेक्ट इन द टोपोलॉजिकल हेस्लर कंपाउंड Co CrGa, फिजिकल रिव्यू बी, 107, 125138, 2023
- 5. मनोदीप राउथ, सुदीप कुमार साहा, मनोरंजन कुमार, और ज़ोल्टन जी. सूस, स्पिन-पीयरल्स ट्रांजिशन ऑफ़ J,-J, एंड एक्सटेंडेड मॉडल्स विथ फेरोमैग्नेटिक J: सबलैटिस डिमराइजेशन एंड थर्मोडायनामिक्स ऑफ़ ज़िगज़ैग चैन्स इन $oldsymbol{eta}$ -TeVO $_{J}$, फिजिकल रिव्यू बी, 105, 235109, 2022
- 6. सुदीप कुमार साहा, देबारिमता मैती, **मनोरंजन कुमार** और ज़ोल्टन जी. सूस, डेंसिटी मैट्रिक्स रिनॉर्मलायजेशन ग्रूप एप्रोच टू द लो टेंपरेचर थर्मोडायनामिक्स ऑफ़ केरिलेटेड 1D फर्मीआयनीक मॉडल्स, जर्नल ऑफ मैग्नेटिज्म एंड मैग्नेटिक मैटेरियल्स, 552, 169150, 2022
- 7. नुप कुमार बेरा, एस.एम. युसूफ, सुदीप कुमार साहा, मनोरंजन कुमार, डेविड वोनेशेन, यूरी स्कौर्स्की और सर्गेई ए. ज़िवागिन, इमरजेंट मेनी-बॉडी कम्पोजिट एक्सीटेशन ऑफ़ इंटरैक्टिंग स्पिन-1/2 ट्रिमर्स, नेचर कम्युनिकेशंस, 13, 6888, 2022
- संबुनाथ दास, दयासिंधु डे, एस. रामासेषा और मनोरंजन कुमार, क्वांटम फेज ट्रांजिशन इन स्किड लैडर्स: ऐन इनटैंगलमेंट एंट्रॉपी एंड फिडलिटी स्टडी, द यूरोपियन फिजिकल जर्नल बी, 95, 147, 2022
- 9. मोनालिसा चटर्जी, देबस्मिता मैती, मनोरंजन कुमार, क्वांटम फेज़ डायग्राम ऑफ़ ए फ्रस्ट्रेटेड स्पिन-1/2 फेरो-एंटीफेरोमैग्नेटिक नॉर्मल लैंडर, केमफिजकेम, 24(5), e202200538, 2023
- 10. देबास्मिता मैती, दयासिंधु डे और मनोरंजन कुमार, स्टडी ऑफ इंटरेक्टिंग हाइजेनबर्ग एंटीफेरोमैग्नेट स्पिन-1/2 और 1 चेन, कंडेंस्ड मैटर, 8(1), 17, 2023
- 11. एसके सनीउर रहमान, सुमित हलधर और **मनोरंजन कुमार**, मशीन लर्निंग एप्रोच टू स्टडी क्वांटम फेज मशीन लर्निंग एप्रोच टू स्टडी क्वांटम फेज़ ट्रांजिशन ऑफ़ अ फ्रस्ट्रेटेड वन डायमेंशनल स्पिन -1/2 सिस्टम, जर्नल ऑफ फिजिक्स: कंडेंस्ड मैटर, 35, 115603, 2023

- 12. शोवन दान, बिनीता मंडल, सुदीप कुमार साहा, सुदीप्त मंडल, आर. रंगनाथन, मनोरंजन कुमार, और चंदन मजूमदार, सिमिलर एंड डिससिमिलर प्रोपर्टीज़ ऑफ़ पॉलिमॉर्फिक फेजेज ऑफ़ NdIr, द ज़र्नल ऑफ फिजिकल केमिस्ट्री सी, 126, 16514, 2022
- 13. दयासिधु डे, असलम परवेज, संबुनाथ दास, सुदीप कुमार साहा, मनोरंजन कुमार, एस रामसेशा और ज़ोल्टन जी सूस, डेंसिटी मैट्रीक्स रिनॉर्मलाइजेशन ग्रूप (DMRG) फॉर इंटरैक्टिंग स्पिन चैन एंड लैडर्स, जर्नल ऑफ केमिकल साइंसेज, 135, 25, 2023

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. आणविक प्रणालियों में घूमता है (SIMS 2022); 2 दिसंबर, 2022; आईआईएससी बैंगलोर; 3 दिन
- 2. आणविक चुंबकत्व पर दूसरा एशियाई सम्मेलन (एसीएमएम -2022); 6 दिसंबर, 2022; आईआईएसईआर भोपाल; चार दिन
- 3. आणविक चुंबकत्व में आधुनिक रुझान (एमटीएमएम 2022); 11 दिसंबर, 2022; आईआईटी खड़गपुर; चार दिन
- 4. हुआज़होंग यूनिवर्सिटी ऑफ़ साइंस एंड टेक्नोलॉजी, चीन में आमंत्रित वक्ता; 7 दिसंबर, 2022; हस्ट, चीन; 1 दिन (ऑनलाइन मोड)
- 5. सहसंबंधित और प्रेरित क्वांटम मामले, आईएसीएस, कोलकाता; जनवरी 17, 2023; सहसंबंधित और प्रेरित क्वांटम मामले, आईएसीएस, कोलकाता; 3 दिन
- 6. दृढ़तापूर्वक सहसंबंधित इलेक्ट्रॉन प्रणालियों का भौतिकी (पीएससीईएस) 2023, आईआईएसईआर पुणे; मार्च 15, 2023; दृढ़तापूर्वक सहसंबंधित इलेक्ट्रॉन प्रणालियों का भौतिकी (पीएससीईएस) 2023, आईआईएसईआर पुणे; 3 दिन

प्रशासनिक कर्तव्य

- छात्रावास वार्डन
- 2. कम्प्यूटर सेंटर कार्यसमिति के सदस्य
- 3. पुस्तकालय क्रय समिति के सदस्य 4. वीएएसपी के सदस्य
- 4. एस.एन. बोस नेशनल सेंटर फॉर बेसिक साइंसेज, कोलकाता से जेस्ट समन्वयक

पुरस्कार/ मान्यताएं

1. प्रमाण के लिए सर्वश्रेष्ठ समीक्षक का पुरस्कार

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

1. एक्सप्लोरिंग क्वांटम एंड थर्मल फ्लक्चुएशन इन फ्रस्ट्रेटेड मैग्नेट्स एट लो टेंपरेचर; एसईआरबी, डीएसटी; 30.12.2020-29.12.2023; पीआई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

- 1. संघनित पदार्थ प्रणालियों में टोपोलॉजी पर अंतर्राष्ट्रीय सम्मेलन (आईसीटीसीएमएस - 2022); फ़रवरी 21, 2022; एसएनबीएनसीबीएस, कोलकाता; 3 दिन
- 2. उभरते क्वांटम पदार्थ के लिए कम्प्यूटेशनल तरीकों पर एपीसीटीपी-कार्यशाला: आईएसीएस-एसएनबीएनसीबीएस अवधारणाओं से प्रायोगिक कार्यान्वयन तक; 17 नवंबर, 2022; एसएनबीएनसीबीएस और आईएसीएस, कोलकाता; नौ दिन
- 3. सैद्धांतिक रसायन विज्ञान बैठकें: संरचना और गतिशीलता (टीसीएमएसडी-2022); 26 मई, 2022; एसएनबीएनसीबीएस और आईएसीएस, कोलकाता; चार दिन

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- ज़ोल्टन जी. सूस, प्रिंसटन यूनिवर्सिटी, यूएसए; अंतरराष्ट्रीय
- अरुण परमेकांति, टोरंटो विश्वविद्यालय, यूएसए; अंतरराष्ट्रीय
- होशो कात्स्रा, टोक्यो विश्वविद्यालय, टोक्यो; अंतरराष्ट्रीय
- डॉ. सातोशी निशिमोटो, सैद्धांतिक ठोस अवस्था भौतिकी संस्थान, आईएफडब्ल्यू ड्रेसडेन; अंतरराष्ट्रीय
- अरूप कुमार रायचौधरी, सीएसआईआर- सेंट्रल ग्लास एंड सिरेमिक रिसर्च इंस्टीट्यूट, कोलकाता; राष्ट्रीय
- संजय सिंह, भारतीय प्रौद्योगिकी संस्थान, बी.एच.यू.; राष्ट्रीय
- एसएम यूसुफ, भाभा परमाणु अनुसंधान केंद्र, भारत; राष्ट्रीय
- अनुप कुमार बेरा, भाभा परमाणु अनुसंधान केंद्र, भारत; राष्ट्रीय
- तनुश्री साहा दासगुप्ता, एस.एन. बोस नेशनल सेंटर फॉर बेसिक साइंसेज, कोलकाता; राष्ट्रीय
- 10. नितेश कुमार, एस.एन. बोस नेशनल सेंटर फॉर बेसिक साइसेज, कोलकाता; राष्ट्रीय
- 11. कल्याण मंडल, एस.एन. बोस नेशनल सेंटर फॉर बेसिक साइंसेज, कोलकाता; राष्ट्रीय

- 12. सूर्यनारायणशास्त्री रामसेषा, भारतीय विज्ञान संस्थान, बैंगलोर; राष्ट्रीय
- 13. चंदन मजूमदार, साहा इंस्टीट्यूट ऑफ न्यूक्लियर फिजिक्स, कोलकाता; राष्ट्रीय
- 14. एस आर हसन, गणितीय विज्ञान संस्थान, चेन्नई; राष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

1. द्निया भर के प्रतिष्ठित वैज्ञानिकों द्वारा कोलोक्वियम श्रृंखला ("क्वांटम सामग्री और उपकरण") के आयोजक

परियोजना सहित भविष्यत् कार्य की योजना

- 1. संघनित पदार्थ अनुसंधान में फ्रस्ट्रेटेड चुंबकत्व अनुसंधान का एक अग्रणी क्षेत्र रहा है, और ये सिस्टम विदेशी चरण की किस्मों की मेजबानी करते हैं। पिछले कुछ दशकों से इन प्रणालियों को सैद्धांतिक और प्रायोगिक दोनों मोर्चों पर जबरदस्त बढ़ावा मिला है। स्पिन तरल चरण, डिमर चरण, वेक्टर चिरल चरण, बहुधुवीय चरण जैसे विदेशी क्वांटम चरणों में अनूठी विशेषता है और विभिन्न तकनीकी अनुप्रयोगों के लिए इसका उपयोग किया जा सकता है। हाल ही में, कागोम लैडिस, एक कोने को साझा करने वाली त्रिकोण प्रकार की संरचना, ज्यामितीय रूप से फ्रस्ट्रेशन के साथ एक अत्यधिक आशाजनक सामग्री है, फेरोमैग्नेटिक एक्सचेंज इंटरैक्शन के साथ शास्त्री-शथरलैंड लैहिस एक और दिलचस्प प्रणाली है और कई दिलचस्प क्वांटम चरणों को प्रदर्शित करती है। हमारा समूह निम्न आयामी कुंठित चुंबकीय प्रणालियों के टोपोलॉजिकल पहलू में भी रुचि रखता है। थर्मल और क्वांटम उतार-चढ़ाव के बीच प्रतिस्पर्धा अनुसंधान रुचि का एक अन्य क्षेत्र है।
- 2. किताएव-हाइजेनबर्ग मॉडल क्वांटम चुंबकत्व टोपोलॉजिकल ऑर्डर के बीच परस्पर क्रिया की जांच करने के लिए एक प्रतिमान प्रणाली के रूप में उभरा है। यह मॉडल एक सीढ़ी ज्यामिति में व्यवस्थित स्पिन-1/2 क्षणों से बनी एक जाली का वर्णन करता है, जहां किताएव और हाइजेनबर्ग दोनों विनिमय इंटरैक्शन मौजूद हैं। किताएव शब्द एक टोपोलॉजिकल पहलू का परिचय देता है, जिससे मेजराना फर्मियन और विदेशी उत्तेजनाओं का निर्माण होता है, जबकि हाइजेनबर्ग इंटरैक्शन पारंपरिक चुंबकीय क्रम को नियंत्रित करता है। इस शोध का उद्देश्य किताएव-हाइजेनबर्ग स्पिन सीढ़ी द्वारा प्रदर्शित दिलचस्प गुणों और चरण संक्रमणों का पता लगाना, उनके अद्वितीय क्वांटम व्यवहार पर प्रकाश डालना है।

नितेश कुमार

सहायक प्रोफेसर संघनित पदार्थ एवं पदार्थ भौतिकी nitesh.kumar@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. बनिक राय; स्टफ्ड वैन डेर वाल्स यौगिकों के इलेक्ट्रॉनिक गुण और असामान्य परिवहन गुण; शोधकार्य जारी
- 2. अरुणांशु पांडा; स्तरित लौह चुम्बकों में त्रि आयामी क्वांटम विसंगतिपूर्ण हॉल प्रभाव; शोधकार्य जारी
- 3. अन्येश सरस्वती; चार्ज घनत्व तरंग प्रणालियों में गैर-रेखीय हॉल प्रभाव: शोधकार्य जारी

ख) पोस्ट-डॉक्स

- 1. महिमा सिंह; स्तरित लौह चुम्बकों का एकल क्रिस्टल विकास और उनके परिवहन गुण
- 2. मयूख राय; स्टफ्ड NbSe ्र यौगिकों के विद्युत परिवहन गुण

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

1. अंशुमान साहू; Ni-डॉप्ड Fe Sn एकल क्रिस्टल की एकल क्रिस्टल वृद्धि और इसके चुंबकीय गुण

शिक्षण/ अध्यापन

- 1. ऑट्म सत्र; संघनित पदार्थ भौतिकी, PHY302; एकीकृत पीएचडी; 18 छात्र; प्रभात मंडल (सह-शिक्षक) के साथ
- 2. वसंत सत्र; प्रायोगिक भौतिकी के तरीके, PHY491; एकीकृत पीएचडी; 9 छात्र; कल्याण मंडल, रामकृष्ण दास और प्रदीप एस पचफुले (सह-शिक्षक) के साथ

प्रकाशन

क) ज़र्नल में

- 1. के. मन्ना, **एन. कुमार**, एस. चट्टोपाध्याय, जे. नोकी, एम. याओ, जे. पार्क, टी. फोर्स्टर, एम. उहलर्ज़, टी. चक्रवर्ती, बी. वी. श्वार्ज़, जे. हॉर्न्ग़, वी. एन. स्ट्रोकोव, एच. बोरमैन, सी. शेखर, वाई. सन, जे. वोसनित्ज़ा, सी. फ़ेलसर, और जे. गूथ, थ्री-डायमेशनल क्वासक्वांटाइज्ड हॉल इंसुलेटर फेज इन SrSi, फिजिकल रिव्यू बी, 106, L041113, 2022
- 2. सुदीप्त चटर्जी, ज्योतिर्मय साव, सहेली सामंत, बरनाली घोष, नितेश कुमार, मनोरंजन कुमार, और कल्याण मंडल, नोडल-लाइन एंड ट्रिपल पॉइंट फर्मियन इंड्यूस्ड एनोमलस हॉल इफेक्ट इन द टोपोलॉजिकल हेस्लर कंपाउंड Co CrGa, फिजिकल रिव्यू बी, 107, 125138, 2023

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

1. संघनित पदार्थ भौतिकी 2023 में हालिया रुझान; 12 जनवरी, 2023; आईएसीएस, कोलकाता; 45 मिनट

प्रशासनिक कर्तव्य

- सम्मेलनों, कार्यशालाओं और विस्तार कार्यक्रम के सदस्य
- मीडिया सेल समिति
- वेबसाइट डिजाइन एवं रखरखाव समिति के सदस्य
- खतरनाक रसायन निपटान समिति के सदस्य
- 5. रा.भा.का.समिति के सदस्य
- 6. कैम्पस समिति की अनुसंधान गतिविधियों के लिए पोस्टर के सदस्य

पुरस्कार, मान्यताएँ

1. 100000 यूरो की कुल फंडिंग के साथ 5 वर्षों के लिए मैक्स प्लैंक-इंडिया पार्टनर ग्रुप का नेतृत्व करने के लिए एक प्रनेता के रूप में चुना गया।

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

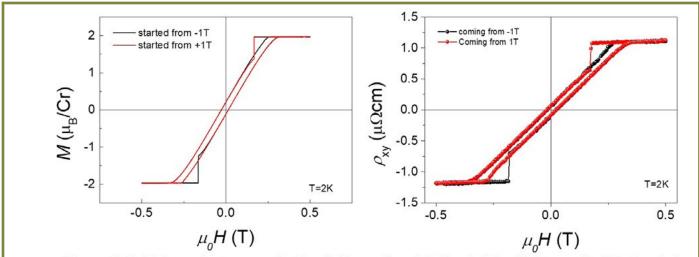
- 1. लौहचुंबकीय टोपोलॉजिकल क्वांटम सामग्रियों में त्रि-आयामी से द्धि-आयामी क्वांटम एनॉमलस हॉल प्रभाव; डीएसटी, एसईआरबी, सीआरजी; 3 वर्ष; पीआई
- 2. अर्ध-एक-आयामी सामग्रियों में नवीन क्वांटम अवस्थाएँ; मैक्स प्लैंक-इंडिया पार्टनर ग्रुप; 5 साल; पीआई
- नवीन चुंबकीय और टोपोलॉजिकल सामग्रियों की खोज; डीएसटी, डीएसटी-आरएसएफ संयुक्त परियोजना; 3 वर्ष; सह पीआई

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- 1. प्रो. क्लाउडिया फेलसर, मैक्स प्लैंक इंस्टीट्यूट फॉर केमिकल फिजिक्स ऑफ सॉलिड्स, ड्रेसडेन, जर्मनी; क्र.सं. नंबर 1; अंतरराष्ट्रीय
- डॉ. कौरन्तुव मन्ना, आईआईटी दिल्ली; क्र.सं. नंबर 1; राष्ट्रीय

अनुसंधान क्षेत्र

क्वांटम सामग्रियों का एकल क्रिस्टल विकास और उनके इलेक्ट्रॉनिक गुणों की जांच


हमारा शोध दिलचस्प टोपोलॉजिकल सामग्रियों की पहचान करने, उनके एकल क्रिस्टल को विकसित करने और इलेक्ट्रॉनिक गुणों को समझने के लिए उनके थोक मैग्नेटोट्रांसपोर्ट गुणों को मापने पर आधारित है। इसके लिए हम सहयोग से विभिन्न स्पेक्ट्रोस्कोपिक तकनीकों, सूक्ष्मदर्शी तकनीकों, न्यूट्रॉन विवर्तन माप और सैद्धांतिक गणनाओं का भी लाभ उठाते हैं।

हमने अर्ध-द्भि-आयामी (2D) लौहचुंबक $\text{tr-Cr}_{\scriptscriptstyle 5}\text{Te}_{\scriptscriptstyle 8}$ के थोक नमूने पर चुंबकीय और परिवहन गुणों का अध्ययन किया है। एकल क्रिस्टल स्व-प्रवाह द्वारा विकसित किए गए हैं। हमने प्रोफेसर स्टुअर्ट पार्किन के सहयोग से लोरेंत्ज़ ट्रांसिमशन इलेक्ट्रॉन माइक्रोस्कोपी (एलटीईएम) प्रयोग किए, जिसमें हमने अपने परिसर में नील-प्रकार के स्किर्मियन देखे। विभिन्न तर्कों के माध्यम से, हमने इस तथ्य को स्थापित किया कि यौगिक पहले बताए गए सेंट्रोसिमेट्रिक P-3m1 के बजाय गैर-सेंट्रोसिमेट्रिक स्पेस समूह P3m1 में क्रिस्टलीकृत होता है। हमने हॉल प्रतिरोधकता वक्र में कूबड़ जैसी विशेषताएं भी देखीं, जिनका इस परिसर में विस्तार से अध्ययन नहीं किया गया है। हमने पाया कि कूबड़ चुंबकीय इतिहास पर अत्यधिक निर्भर है और टोपोलॉजिकल हॉल प्रभाव की उपस्थिति का प्रतिनिधित्व नहीं करता है।

हमने एक स्तरित लौहचुम्बक ZnMnSb के एकल क्रिस्टल के परिवहन गुणों का अध्ययन किया। अंतरिक्ष समूह P4/nmm होने पर, Mn परमाणु ab-प्लेन में चुंबकीय वर्ग जाल बनाते हैं और वे c-दिशा के साथ गैर-चुंबकीय Zn और Sb परतों द्वारा अलग हो जाते हैं। इसमें लगभग 298 K पर लौहचुंबकीय संक्रमण होता है। परिवहन और चुंबकीय माप से संकेत मिलता है कि यद्यपि यह असामान्य हॉल प्रभाव (एएचई) दिखाता है, यह पहले बताए गए किसी भी तंत्र को संतुष्ट नहीं करता है। तापमान-निर्भर प्रतिरोधकता डेटा अर्धचालक प्रकृति को दर्शाता है, जो प्रति-सहज ज्ञान युक्त है जो इस तथ्य के अनुरूप नहीं है कि सिस्टम ने सीमित एएचई दिखाया है। इलेक्ट्रॉनिक बैंड संरचना गणना संचालन प्रकृति को दर्शाती है।

हमने संयुक्त प्रयोगात्मक और सैद्धांतिक अध्ययन (विभाग के सहयोगियों प्रोफेसर कल्याण मंडल और प्रोफेसर मनोरंजन कुमार के सहयोग से) का उपयोग करके लौहचुंबकीय हेस्लर यौगिक Co CrGa में विसंगतिपूर्ण हॉल प्रभाव (एएचई) की एक व्यवस्थित जांच की। विसंगतिपूर्ण हॉल रेसिस्टिवट को अन्देर्ध्य प्रतिरोधकता के साथ लगभग चतुष्कोणीय पैमाने पर देखा जाता है, और आगे के प्रयोगात्मक विश्लेषण से पता चलता है कि Co CrGa में AHE आंतरिक करप्लस-लूटिंगर (KL) बेरी चरण तंत्र पर हावी है। प्रायोगिक परिणामों से यह भी पता चलता है कि विसंगतिपूर्ण हॉल चालकता (एएचसी) ~ 526 एस/सेमी के आंतरिक योगदान के साथ 10 K पर ~ 569 एस/सेमी जितनी बड़ी है और देखा गया एएचसी लगभग तापमान से स्वतंत्र है। बड़े एएचसी के अलावा, हमें कमरे के तापमान पर ~ 8.5% का एक असाधारण बड़ा विसंगतिपूर्ण हॉल कोण और ~ 0.23 वी-1 का एक बड़ा विसंगतिपूर्ण हॉल कारक

प्रोफेसर मनोरंजन कुमार के सहयोग से, हमने प्रथम-सिद्धांत गणनाओं का उपयोग करके उनके टोपोलॉजिकल गुणों और परिवहन गुणों को समझने के लिए FenGeTe2 (n = 3, 4, 5) की इलेक्ट्रॉनिक संरचना का तुलनात्मक अध्ययन किया। सभी तीन प्रणालियाँ लौहचुंबकीय व्यवहार दिखाती हैं और विभिन्न Fe d-ऑर्बिटल्स के योगदान का भी अध्ययन किया जाता है। स्पिन-ऑर्बिट कपलिंग (एसओसी) की उपस्थिति में, टीआरएस ब्रेकिंग अध: पतन को हटा देती है, जिससे एक सीमित बेरी वक्रता (बीसी) हो जाती है। परिमित बेरी वक्रता (बीसी) इन प्रणालियों की आंतरिक विसंगतिपूर्ण हॉल चालकता (एएचसी) और नर्नस्ट चालकता (एएनसी) में योगदान देती है।

Magnetic field dependent magnetization (left panel) and Hall resistivity (right panel) of Cr₅Te₈ single crystal at 2K demonstrating that the hump is not a characteristic of topological Hall effect in this compound.

परियोजना सहित भविष्यत् कार्य की योजना

- 1. क्वांटम सामग्रियों के इलेक्ट्रॉनिक गुणों को बदलने के लिए दबाव एक स्वच्छ ट्यूनिंग पैरामीटर है। यह टोपोलॉजिकल क्वांटम सामग्रियों के लिए विशेष रूप से महत्वपूर्ण है क्योंकि ऐसी कई सामग्रियां टोपोलॉजिकल चरण संक्रमण के कगार पर हैं। हम चुंबकीय और गैर-चुंबकीय टोपोलॉजिकल सामग्रियों के एकल क्रिस्टल पर पहले से ही प्राप्त पिस्टन-आधारित सेल द्वारा हाइड्रोस्टैटिक दबाव लागू करेंगे और मैग्नेटो-ट्रांसपोर्ट माप करेंगे। चुंबकीय प्रणालियों में स्पिन बनावट वाले यौगिक शामिल होंगे जहां टोपोलॉजिकल हॉल प्रभाव, असामान्य हॉल प्रभाव इत्यादि की उपस्थिति या विकास का अध्ययन करने के लिए दबाव को ट्यूनिंग पैरामीटर के रूप में उपयोग किया जा सकता है। हम उपन्यास कमरे के तापमान वैन डेर वाल्स सामग्री और वहां इलेक्ट्रॉनिक ट्युनिंग की भी तलाश में हैं दबाव वाली संपत्तियां भी हमारे भविष्य के अध्ययन का हिस्सा होंगी।
- 2. हमारा लक्ष्य मैग्नेटो-ट्रांसपोर्ट माप, स्पेक्ट्रोस्कोपिक और सैद्धांतिक अध्ययन करके एकल क्रिस्टलीय रूप में अर्ध-एक आयामी प्रणालियों की विभिन्न विशेषताओं का व्यवस्थित रूप से पता लगाना है। इस परियोजना के कुछ महत्वपूर्ण पहलू जो सामने आएंगे, वे हैं सीडीडब्ल्यू सिस्टम में स्लाइडिंग मोड को

- सक्रिय करके नवीन अक्षीय अवस्थाएं, क्यूबिक डायराक फैलाव के स्पेक्ट्रोस्कोपिक साक्ष्य, थोक एकल क्रिस्टल में हॉल चालकता का अर्ध-मात्राकरण और विडेमैन-फ्रांज कानून का उल्लंघन।
- 3. विशेष रूप से स्वच्छ नवीकरणीय स्रोतों से ऊर्जा की बढ़ती मांग, नई सामग्रियों की पहचान करने और उत्प्रेरक प्रतिक्रियाओं के तंत्र से संबंधित बैंड संरचना को समझने के लिए रसायन विज्ञान, सामग्री विज्ञान और भौतिकी जैसे विभिन्न मोर्चों से संयुक्त प्रयास की आवश्यकता है। इलेक्ट्रोकेमिकल और फोटोइलेक्ट्रोकेमिकल जल विभाजन के क्षेत्र को विशेष रूप से बढावा मिल सकता है यदि उनकी बड़ी इलेक्ट्रॉनिक गतिशीलता के कारण टोपोलॉजिकल सिस्टम, विशेष रूप से टोपोलॉजिकल सेमीमेटल्स का व्यवस्थित परीक्षण किया जाता है। इस परियोजना में हम टोपोलॉजिकल सेमीमेटल्स का एकल क्रिस्टल विकास करेंगे, इलेक्ट्रॉनिक गतिशीलता का अनुमान लगाने के लिए परिवहन माप करेंगे और फिर अंततः इलेक्ट्रोकेमिकल और फोटोइलेक्ट्रोकेमिकल जल विभाजन के लिए उनका परीक्षण करेंगे।
- 4. नव स्थापित ब्रिजमैन भट्टी का उपयोग करके हम विभिन्न इंटरमेटेलिक टोपोलॉजिकल प्रणालियों के इलेक्ट्रॉनिक गुणों का पता लगाएंगे, जिनमें से एकल क्रिस्टल को पारंपरिक प्रवाह वृद्धि और सीवीटी विधियों द्वारा विकसित करना संभव नहीं है।

प्रभात मंडल

अवकाश प्राप्त प्रोफेसर संघनित पदार्थ एवं पदार्थ भौतिकी prabhat.mandal@bose.res.in

शिक्षण/ अध्यापन

1. फॉल; PHY302; एकीकृत पीएच.डी.; 18 छात्र; डॉ. नितेश कुमार (सह-शिक्षक)

प्रकाशन

क) ज़र्नल में

- 1. शुभंकर मिश्रा, अदिति साहू, सुचंदा मंडल, प्रभात मंडल, चंदन कुमार घोष, दीप्तेन भट्टाचार्य, इलेक्ट्रिक-फील्ड-ड्राइवेन रेसिस्टिवट्रांजिशन इन मल्टीफेरोइक $SrCo_{_{2}}Fe_{_{16}}O_{_{27}}/Sr_{_{3}}Co_{_{2}}Fe_{_{24}}O_{_{41}}$ कंपोजिट, एप्लाइड फिजिक्स जर्नल, 131, 204101, 2022
- 2. सुदीप मलिक, अरूप घोष, चंचल के. बर्मन, आफताब आलम, जेड. हुसैन, **प्रभात मंडल**, और जे. नायक, *वीक* एंटीलोकलाइजेशन इफेक्ट एंड ट्रिप्लाई डिजेनरेट स्टेट *इन Cu-डोप्ड CaAuAs*, फिजिकल रिव्यू बी, 105, 165105, 2022

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

1. सीजीसीआरआई, कोलकाता के डॉ. दीप्तेन भट्टाचार्य, आईआईटी कानपुर के प्रो. जेड. हुसैन के साथ अकादिमक सहयोग; क्र.सं. नंबर 1 और 2; राष्ट्रीय

अनुसंधान क्षेत्र

क्रिस्टल विकास स्विधाओं आदि की स्थापना में शामिल। हमारे पास पिघला हुआ प्रवाह और रासायनिक वाष्प परिवहन विधि द्वारा क्रिस्टल विकास सुविधा स्थापित करने की योजना है। हमने कई डिराक/वेइल और मेग्नेटिक/सीडीडब्ल्यू वैन डेर वाल्स सिस्टम तैयार किए हैं और सिस्टम के भौतिक गुणों का अध्ययन करने के लिए उनके मैग्नेटोट्रांसपोट गुणों की जांच कर रहे हैं। चुंबकत्व और गैर-तुच्छ इलेक्ट्रॉनिक बैंड संरचना की मजबूत परस्पर क्रिया के परिणामस्वरूप, हम कई दिलचस्प नवीन घटनाएं देखने में सक्षम हुए हैं।

हमने 2.5 GPa तक के दबाव में CrCl3 के चुंबकीय गुणों का अध्ययन किया है। दबाव लगाने पर CrCl3 बल्क सिंगल क्रिस्टल की जमीनी स्थिति 1.1 GPa से ऊपर एंटीफेरोमैग्नेटिक (एएफएम) से फेरोमैग्नेटिक (एफएम) में बदल जाती है। इसके अलावा, आसान चुंबकीयकरण अक्ष एबी प्लेन, $H_{\mathcal{S}}^{ab}$, के साथ संतृप्ति क्षेत्र, परिवेश दबाव मूल्य के आधे तक कम हो जाता है क्योंकि दबाव एक महत्वपूर्ण दबाव Pc~0.9 GPa से अधिक हो जाता है। इसके अलावा, स्पिन फ्लॉप फ़ील्ड, H_{SF}^{as} , लगातार घटती जाती है और पीसी के नीचे गायब हो जाती है, जो पीसी के ऊपर लंबी दूरी के एएफएम ऑर्डर की अनुपस्थिति की पृष्टि करती है। इसके अलावा, हमारे परिणाम CrCl3 के एफएम चरण में एब-प्लेन से सी-अक्ष की ओर Cr3+ स्पिन की एक सीमित कैंटिंग का संकेत देते हैं। ये परिणाम स्पष्ट रूप से सुझाव देते हैं कि इंटरलेयर चुंबकीय युग्मन के संपीडन स्विचिंग के साथ-साथ CrCl3 के समतल स्पिन-कैंटिंग दिशा के नियंत्रण को सी अक्ष के साथ स्टैकिंग ऑर्डर को बदले बिना प्राप्त किया जा सकता है। भ्रमणशील वैन डेर वाल्स (vdW) फेरोमैग्नेट Fe4GeTe2 (FGT4) में, चुंबकीय और मैग्नेटोट्रांसपोर्ट गुणों की जांच तापमान और चुंबकीय क्षेत्र के कार्यों के रूप में की गई है। यह वीडीडब्ल्यू यौगिक = 270.0 K से नीचे एफएम चरण संक्रमण के लिए एक निरंतर पैरामैग्नेटिक और टीएसआर~115 के आसपास एक स्पष्ट स्पिन पुनर्संरचना संक्रमण से गुजरता है, जहां चुंबकत्व की आसान धुरी इन-प्लेन से आउट-ऑफ-प्लेन तक अपनी दिशा बदलती है। एफएम अवस्था में चुंबकत्व का तापमान विकास अत्यधिक विसंगतिपूर्ण है और लागू चुंबकीय क्षेत्र की दिशा और ताकत के प्रति बेहद संवेदनशील है।

वार्षिक प्रतिवेदन 2022-2023

टीसी और टीएसआर के आसपास चुंबकीय एन्ट्रापी परिवर्तन (Δs) का अनुमान लगाया गया है। Δs टीसी के आसपास लगभग आइसोट्रोपिक पाया जाता है जबिक यह बहुत ही असामान्य व्यवहार दिखाता है और टीएसआर के करीब तापमान पर लागू क्षेत्र की दिशा के प्रति संवेदनशील होता है। ये परिणाम FeGT4 की चुंबकीय जमीनी स्थिति की जटिल प्रकृति का सुझाव देते हैं, जो संभवतः कई असमान Fe साइटों की उपस्थिति, उनके क्रम और स्पिन कॉन्फ़िगरेशन की जटिलता के कारण है। हम कई परिवहन गुणांकों जैसे हॉल प्रतिरोधकता, टीएसआर के पास मैग्नेटोरेसिस्टेंस में बहुत तेज बदलाव देखते हैं, जिसे चुंबकत्व और बैंड टोपोलॉजी के बीच परस्पर क्रिया के कारण फर्मी सतह पुनर्निर्माण घटना के लिए जिम्मेदार ठहराया गया है। गैर-तुच्छ स्पिन संरचनाओं वाली चुंबकीय सामग्रियों पर काफी ध्यान दिया गया है क्योंकि वे नई क्वांटम घटनाओं की किस्मों को प्रदर्शित करते हैं। हमने EuAuSb के विस्तृत चुंबकीय और मैग्नेटोट्रांसपोर्ट गुणों का अध्ययन किया है, जो बहुत कम नील तापमान, TN ∼3.5 K के साथ एक भ्रमणशील AFM है। विद्युत प्रतिरोधकता और चुंबकत्व के क्षेत्र निर्भरता में सहवर्ती परिवर्तन से पता चलता है कि टीएन के नीचे और ऊपर चार्ज संचालन तंत्र ईयू के स्पिन कॉन्फ़िगरेशन से दृढ़ता से प्रभावित होता है। टीएन के नीचे, अनुदैर्ध्य मैग्नेटोरेसिस्टेंस (एलएमआर) और अनुप्रस्थ मैग्नेटोरेसिस्टेंस (टीएमआर) दोनों कम क्षेत्रों में बड़े और सकारात्मक हैं, जबिक वे उच्च क्षेत्रों में नकारात्मक हैं। टीएमआर में श्विनकोव-डी हास दोलन से 6 और 12.8×10-3 Å-2 क्षेत्रों वाले दो फर्मी पॉकेट का पता चलता है EuAuSb की फर्मी सतह से जुड़े कई महत्वपूर्ण भौतिक मापदंडों को निर्धारित करने के लिए क्वांटम दोलन का विश्लेषण किया गया है।

प्रिया महादेवन

वरिष्ठ प्रोफेसर संघनित पदार्थ एवं पदार्थ भौतिकी priya@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

- 1. प्रसून बोयाल; सामग्रियों के चुंबकीय और टोपोलॉजिकल गुण; शोधकार्य जारी
- 2. देबायन मंडल; हाइब्रिड पेरोव्स्काइट्स के इलेक्ट्रॉनिक और संरचनात्मक गुण; शोधकार्य जारी
- 3. कृष्णेंद् पात्रा; संक्रमण धातु यौगिकों में इलेक्ट्रॉनिक संरचना और धातु-इन्स्लेटर संक्रमण; शोधकार्य जारी
- 4. शिंजिनी पॉल; मृक्त-स्थायी ऑक्साइड फिल्मों की इलेक्ट्रॉनिक संरचना; शोधकार्य जारी
- 5. सनुजा कुमार खुंटिया; निम्न-आयामी हाइब्रिड पेरोव्स्काइट्स के इलेक्ट्रॉनिक और ऑप्टिकल गुण; शोधकार्य जारी
- 6. शिवम जानी; ग्राफीन और टीएमडीसी के स्परलैटिस की इलेक्ट्रॉनिक संरचना; शोधकार्य जारी

- 7. मधुरिता दास; ग्रेफ़ेम की मुड़ी हुई दोहरी परतों की इलेक्ट्रॉनिक संरचना; शोधकार्य जारी
- 8. शिवम मिश्रा; सेमीकंडक्टर नैनोप्लेटलेट्स के इलेक्ट्रॉनिक और संरचनात्मक गुण; शोधकार्य जारी
- 9. जॉयदीप चटर्जी; सेमीकंडक्टर हेटरोस्ट्रक्चर के इलेक्ट्रॉनिक, संरचनात्मक और ऑप्टिकल गुण; थीसिस प्रस्तुत की गई
- 10. सुमंती पात्रा; ट्विस्टेड ट्रांज़िशन-मेटल डाइक्लोजेनाइड बाइलेयर्स की इलेक्ट्रॉनिक संरचना; उपाधि प्रदान की गई

ख) पोस्ट डॉक्स

- 1. प्रियंका गर्ग; ऊर्जा सामग्री
- 2. संजुक्ता पॉल; ट्विस्टेड ट्रांज़िशन मेटल डाइक्लोकोजेनाइड बाइलेयर्स
- 3. बिजॉय पॉल: ऊर्जा सामग्री
- 4. गार्गी भट्टाचार्य; सीडीडब्ल्यू संक्रमण; टोपोलॉजिकल सामग्री

प्रकाशन

क) ज़र्नल में

- 1. स्मंती पात्रा, प्रस्न बोयाल, और **प्रिया महादेवन**, *इलेक्ट्रिक-*फील्ड-इंड्यूस्ड मेटल-सेमीकंडक्टर ट्रांजिशन इन ट्विस्टेड बाइलेयर्स ऑफ़ WSe, फिजिकल रिव्यू बी, 107, L041104, 2023
- 2. रेजाउल एसके, देबयान मंडल, इमरानखान मुलानी, प्रिया महादेवन, और अपर्णा देशपांडे, इमरजेंट निगेटिव डिफ्रिएंशल रेसिसटेंस विथ ऐन अनडिस्टर्ब्ड टोपोलॉजिकल सफेंस स्टेट, द जर्नल ऑफ फिजिकल केमिस्ट्री सी, 126, 16744, 2022
- 3. रंजन कुमार पटेल, कृष्णेंद् पात्रा, शशांक कुमार ओझा, सिद्धार्थ कुमार, सागर सरकार, आकाश साहा, नंदना भट्टाचार्य, जॉन डब्ल्यू फ्रीलैंड, जोंग-वू किम, फिलिप जे रयान, **प्रिया महादेवन** और श्रीमंत मिडी, *होल डोपिंग इन अ* निगेटिव चार्ज ट्रांसफर इंस्लेटर, कम्यूनिफिकेशन फिजिक्स, 5, 216, 2022
- 4. शिशिर के. पांडे, आशीष के. नंदी, पूनम कुमारी, और **प्रिया** महादेवन, माइक्रोरकोपिक ऑरिजिन ऑफ़ रुम-टेंपरेचर फेरोमैग्नेटिज्म इन द डबल पेरोव्स्काइट Sr FeReO , फजिकल रिव्यू बी, 105, 214422, 2022

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

- नैनोसीरीज़ (2022) में आमंत्रित वार्ता, एक आभासी बैठक; जून 29, 2022; ऑनलाइन; 3 दिन
- इलेक्ट्रॉनिक संरचना पर चर्चा बैठक में आमंत्रित वार्ता; अगस्त 6, 2022; गोवा; 3 दिन
- 3. एशिया प्रशांत भौतिकी सम्मेलन, एपीपीसी15 में आमंत्रित वार्ता; अगस्त 23, 2022; ऑनलाइन; पांच दिन
- 4. एनसीईएस 2022 में आमंत्रित वार्ता; 14 नवंबर, 2022; गोवा विश्वविद्यालय; 3 दिन
- उभरते क्वांटम पदार्थ के लिए कम्प्यूटेशनल तरीकों पर एपीसीटीपी-आईएसीएस-एसएनबीएनसीबीएस कार्यशाला में परिप्रेक्ष्य वार्ता: सैद्धांतिक अवधारणाओं से प्रायोगिक कार्यान्वयन तक; 19 नवंबर, 2022; एसएन बोस केंद्र; नौ दिन
- 6. IUMRS-ICA 2023 में आमंत्रित वार्ता; 21 दिसंबर, 2022; आईआईटी जोधपुर; पांच दिन
- 7. वैन डेर वाल हेटरोस्ट्रक्चर में उभरती घटनाओं पर आमंत्रित बातचीत; जनवरी 11, 2023; टीआईएफआर; चार दिन
- 8. केयर में आमंत्रित वार्ता; फरवरी 2, 2023; एचआरआई; 3 दिन
- सीसीएमपी 2023 में आमंत्रित वार्ता; फ़रवरी 6, 2023; पीआरएल;
 3 दिन
- 10. ICAM 2023 में आमंत्रित वार्ता; फ़रवरी 22, 2023; गोवा विश्वविद्यालय; चार दिन
- 11. पेरोव्स्काइट सोसाइटी ऑफ इंडिया की बैठक में आमंत्रित वार्ता; मार्च 1, 2023; आईआईटी रूड़की; 3 दिन
- 12. दृढ़ता से सहसंबंधित इलेक्ट्रॉन प्रणालियों की भौतिकी बैठक में आमंत्रित वार्ता; मार्च 16, 2023; आईआईएसईआर पुणे; 3 दिन

प्रशासनिक कर्तव्य

- 1. संघनित पदार्थ एवं पदार्थ भौतिकी विभाग के प्रमुख, कंप्यूटर सेवा सलाहकार कक्ष के सदस्य, विभिन्न आंतरिक मूल्यांकन समितियों के सदस्य।
- डीएसटी और एसईआरबी की विभिन्न समीक्षा समितियों के सदस्य

लर्निड सोसायटी की सदस्यता

- 1. सदस्य, अमेरिकन फिजिकल सोसायटी
- 2. फेलो, भारतीय विज्ञान अकादमी
- 3. फेलो, द वर्ल्ड एकेडमी ऑफ साइंसेज

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

- 1. संक्रमण धातु ऑक्साइड की मुक्त खड़ी झिल्लियों की इलेक्ट्रॉनिक संरचना; सर्ब-शक्ति; 2021-2024; पीआई
- 2. ट्रांजिशन धातु डाइक्लोजेनाइड्स के साथ ट्विस्ट्रोनिक्स; सर्ब-इरफा; 2020-2025; पीआई
- 3. टोपोलॉजिकल मॉट इंसुलेटर के लिए प्रारंभिक खोज; डीएसटी आंतरिक प्रभाग; 2021-2024; पीआई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

 क्वांटम सामग्री पर केंद्रित बैठक; 24 जनवरी 2023; एसएन बोस केंद्र; 1 दिन

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

- आईआईएसईआर पुणे की अपर्णा देशपांडे के साथ; क्र.सं. नंबर
 राष्ट्रीय
- 2. श्रीमंत मिडी, आईआईएससी बैंगलोर के साथ; क्र.सं. नंबर 3; राष्ट्रीय

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता

- 1. संघनित पदार्थ भौतिकी में उन्नत विषयों पर भारतीय विज्ञान अकादमी कार्यशाला में आयोजक और वक्ता, कोंगु इंजीनियरिंग कॉलेज, मई (2022)
- 2. जनवरी (2023) में कांजीरापल्ली के सेंट डोमिनिक कॉलेज में चुंबकत्व पर विज्ञान अकादिमयों की कार्यशाला में आयोजक और वक्ता।

अनुसंधान क्षेत्र

इलेक्ट्रॉनिक संरचना, चुंबकत्व, थीन फिल्मों का विकास, ऊर्जा सामग्री छोटे कोणों पर WSe2 के मुड़े हुए बाइलेयर्स पर हाल के अध्ययनों से देखा गया है कि वे वैलेंस बैंड में डोपिंग छिद्रों पर उभरने वाले इन्सुलेटिंग अवस्थाओं के अलावा शून्य प्रतिरोधी अवस्थाओं को बनाए रखते हैं। एक और दिलचस्प पहलू जो सामने आया है वह है संपत्तियों की विद्युत क्षेत्र ट्यूनेबिलिटी। जबिक सेमीकंडक्टर में डोपिंग से आम तौर पर विदेशी जमीनी स्थित नहीं होती है, ऐसी घटनाएं दृढ़ता से सहसंबद्ध प्रणालियों की याद दिलाती हैं जहां चार्ज, स्पिन, कक्षीय और जाली की स्वतंत्रता की डिग्री के बीच परस्पर क्रिया डोप किए गए सिस्टम में

विभिन्न प्रकार के ऑर्डर को जन्म देती है जो हैं अघोषित मूल यौगिक में अनुपस्थित। मुड़ी हुई संरचनाओं से जुड़ी बड़ी इकाई कोशिकाओं के कारण उनमें छोटे-छोटे ब्रिलोइन ज़ोन बन गए हैं, और परिणामस्वरूप लगभग सपाट फैलाव रहित बैंड की अपेक्षा की जाती है, जो डोपिंग पर उनके असामान्य व्यवहार को आसानी से समझाते हैं।

इन मुड़े हुए बाइलेयर्स की इलेक्ट्रॉनिक संरचना को समझाने के लिए, हमने अपने विवरण में यह तथ्य शामिल किया कि ये वैन डेर वाल्स सामग्रियां थीं। इसने हमें इलेक्ट्रॉनिक संरचना का वर्णन करने के लिए अनट्विस्टेड सीमा के लेबल का उपयोग करने के लिए प्रेरित किया, साथ ही साथ ट्विस्टिंग ऑपरेशन द्वारा शुरू की गई गड़बड़ी की जांच की। यह मुड़े हुए मामले के लिए आइजनफंक्शन को अनियंत्रित सीमा पर प्रक्षेपित करके किया गया था। इससे हमें अतिरिक्त मौआ क्षमता की उपस्थिति के कारण विचलन का माप मिलता है। हमने 3.48 डिग्री के मोड कोण पर विचार किया जो उस शासन से संबंधित है जिसमें असामान्य घटनाएं देखी गई हैं। इसके अलावा, हम 19.03 डिग्री पर विचार करते हैं जिसमें समान आकार की इकाई कोशिका थी। यूनिट सेल समान आयामों के होने के बावजूद, हमने पाया कि 19.03 डिग्री पर कम ऊर्जा वाली इलेक्ट्रॉनिक संरचना अनविस्टेड सीमा से थोड़ी परेशान है। 3.48 डिग्री पर, एक लगभग सपाट बैंड होता है जो बिना मुड़ी हुई सीमा के समान, फैलाने वाले बैंड के एक सेट से अलग हो जाता है। ये परिणाम मुड़ी हुई सीमा की गड़बड़ी के रूप में मुड़ी हुई बिलायर्स की इलेक्ट्रॉनिक संरचना के विवरण का समर्थन करते हैं।

इंटरलेयर हॉपिंग इंटरैक्शन का इंटरप्ले जो गामा में प्रमुख रूप से योगदान देता है और स्पिन-ऑर्बिट इंटरैक्शन जो K पर प्रमुख रूप से योगदान देता है, वैलेंस बैंड को WSe2 के लिए समरूपता बिंदु K पर अधिकतम तक ले जाता है। इसके अलावा किसी को पता चलता है कि W d{x^2-y^2}/d{xy} ऑर्बिटल्स गामा बिंदु के विपरीत वैलेंस बैंड में अधिकतम योगदान करते हैं जहां W d{z2} ऑर्बिटल्स का योगदान होता है। इससे

गामा बिंदु की तुलना में परतों के बीच बहुत छोटी इंटरलेयर होपिंग इंटरैक्शन होती है, जिससे जोन सीमा बिखरने से ऊर्जा नियंत्रित होती है। मोइर सेल के लिए आइजनफंक्शन को अनविस्टेड सीमा पर प्रक्षेपित करते हुए, हम क्रॉसिंग करते हुए फ्लैट बैंड की एक जोड़ी पाते हैं, जो बैंड के एक सेट से अलग होते हैं जो अनविस्टेड सीमा के समान होते हैं।

इन दो क्रॉसिंग बेंडों की पहचान चार्ज घनत्व का पालन करने के साथ-साथ प्रत्येक बिंदु पर समान वजन पर विचार करते हुए, आदिम सेल गामा से के दिशा में बैंड को प्लॉट करके की गई है। यह पाया गया है कि जहां एक फ्लैट बैंड निचली परत पर स्थानीयकृत होता है, वहीं दूसरा ऊपरी परत पर स्थानीयकृत होता है। यह इलेक्ट्रॉनिक संरचना को ट्यून करने और फ्लैट बैंड को अलग करने के लिए एक मामूली बाहरी विद्युत क्षेत्र की अनुमति देता है। यह असामान्य विद्युत क्षेत्र पर निर्भर अर्धचालक-धातु-अर्धचालक संक्रमण की व्याख्या कर सकता है जिसे प्रयोगात्मक रूप से देखा गया है।

परियोजना सहित भविष्यत् कार्य की योजना

- 1. हम टोपोलॉजिकल सामग्रियों में सहसंबद्ध घटनाओं की खोज कर रहे हैं क्योंकि विदेशी जमीनी स्थितियों के देखे जाने की भविष्यवाणियां की गई हैं। शुरुआत के तौर पर हमने टोपोलॉजिकल सामग्रियों के परिवारों को एक वर्गाकार शुद्ध संरचना के साथ देखना शुरू किया है और उनके टोपोलॉजिकल गुणों और टोपोलॉजिकल गुणों को निर्धारित करने में उनमें चार्ज घनत्व तरंग की भूमिका की जांच की है।
- 2. संक्रमण धातु डाइक्लोजेनाइड्स के मुड़े हुए होम्बिलेयर्स की इलेक्ट्रॉनिक संरचना पर स्टैकिंग की भूमिका की जांच की जाएगी।
- 3. हम तनाव, विद्युत क्षेत्र और अन्य पैरामीटर उप-स्थानों के तहत फ्रीस्टैंडिंग ऑक्साइड फिल्मों के चरण आरेख की जांच कर रहे हैं।

साकिब शमीम सहायक प्रोफेसर संघनित पदार्थ एवं पदार्थ भौतिकी saquib@bose.res.in

छात्रों/पोस्ट-डॉक्स/वैज्ञानिकों का निदेशन

क) पीएचडी छात्र

1. सुभजीत मंडल; टोपोलॉजिकल सामग्रियों में विद्युत परिवहन: शोधकार्य जारी

शिक्षण/ अध्यापन

1. वसंत सत्र; मेसोस्कोपिक भौतिकी; पीएचडी; 8 छात्र; डॉ. अतींद्र नाथ पाल (सह-शिक्षक) के साथ

प्रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

1. संघनित पदार्थ भौतिकी-2023 में हालिया रुझान; 13 जनवरी, 2023; आईएसीएस, कोलकाता; 45 मिनट

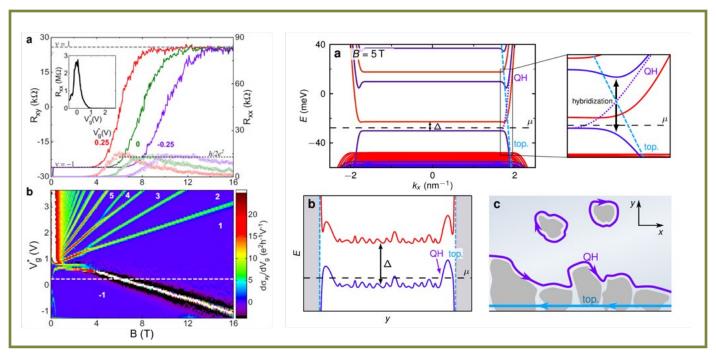
प्रशासनिक कर्तव्य

1. बोस उत्सव 2023 के लिए जज

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

1. उभरते क्वांटम पदार्थ के लिए कम्प्यूटेशनल तरीकों पर एपीसीटीपी-आईएसीएस-एसएनबीएनसीबीएस सैद्धांतिक अवधारणाओं से प्रायोगिक कार्यान्वयन तक; 17 नवंबर, 2022; एस.एन. बोस नेशनल सेंटर फॉर बेसिक साइंसेज, कोलकाताः नौ दिन

आउटरीच कार्यक्रम का आयोजन/ प्रतिभागिता


1. भौतिकी में प्रगति: सिद्धांत और अनुप्रयोग (एपीटीए-2023) पर 12वीं विद्यासागर सत्येन्द्र नाथ बोस राष्ट्रीय कार्यशाला में एक व्याख्यान दिया। प्रतिभागियों में अधिकतर बीएससी और एमएससी के छात्र थे और यह व्याख्यान छात्रों के बीच जिज्ञासा पैदा करने के लिए तैयार किया गया था ताकि उन्हें अपनी डिग्री के बाद शोध करने के लिए प्रेरित किया जा सके। इस कार्यशाला के संयुक्त संयोजक भी था।

अनुसंधान क्षेत्र

प्रायोगिक संघनित पदार्थ भौतिकी

समूह की मुख्य अनुसंधान विशेषज्ञता टोपोलॉजिकल सामग्रियों सहित विभिन्न अर्धचालक सामग्रियों से बने नैनो- और मेसोस्केल उपकरणों में मिलिकेल्विन तापमान पर कम शोर वाले परिवहन माप में है। हम विभिन्न क्वांटम सामग्रियों से मेसोस्कोपिक उपकरण बनाने के लिए लिथोग्राफिक तकनीकों का उपयोग करते हैं। हम इन्हें संघनित पदार्थ भौतिकी में नवीन अवधारणाओं का पता लगाने के लिए उपकरण के रूप में उपयोग करते हैं। समूह की वर्तमान रुचि टोपोलॉजिकल सामग्रियों की भौतिकी में है।

मेरे पिछले काम ने उच्च लंबवत चुंबकीय क्षेत्रों में द्वि-आयामी टोपोलॉजिकल इंस्लेटर की प्रतिक्रिया की जांच की। बैंड संरचना गणना से पता चलता है कि लैंडौ स्तरों का उलटा, जिसके कारण क्वांटम स्पिन हॉल प्रभाव पहली बार देखा गया था, एक महत्वपूर्ण चुंबकीय क्षेत्र में नष्ट हो जाता है, जिससे बैंड गैप के साथ एक तूच्छ इन्स्लेटर बन जाता है। हालाँकि, प्रयोगात्मक रूप से हम HgTe क्वांटम कुओं पर आधारित परिमित आकार के 2D टोपोलॉजिकल इंस्लेटर में एक तुच्छ इंसुलेटिंग गैप की अनुपस्थिति देखते हैं। इसके बजाय, हम देखते हैं कि टोपोलॉजिकल एज चैनल (क्वांटम स्पिन हॉल प्रभाव से) चुंबकीय क्षेत्र में क्वांटम हॉल एज चैनल के साथ सह-अस्तित्व में है, जिस पर टोपोलॉजिकल से ट्रिवियल इंसुलेटर में ट्रांजिशन होने की उम्मीद है। ऐसा चार्ज पुडल द्वारा निर्मित उपयुक्त संभावित परिदृश्य के कारण

होता है। चार्ज पुडल चार्ज के छोटे क्षेत्र होते हैं जिनमें थोक वाहक होते हैं। विभिन्न निर्माण प्रक्रियाओं के कारण विकास दोष, रिक्तियां और विकार एक अमानवीय संभावित परिदृश्य का कारण बनते हैं जिसके परिणामस्वरूप चार्ज पुडल का निर्माण होता है जब गेट वोल्टेज का उपयोग बल्क बैंड गैप में रासायनिक क्षमता को ट्यून करने के लिए किया जाता है जैसा कि योजनाबद्ध रूप से दिखाया गया है। एक नवीन वेट-ईच प्रक्रिया का उपयोग करके निर्मित उपकरण, जिसके परिणामस्वरूप कम चार्ज पुडल होते हैं, टोपोलॉजिकल से एक तुच्छ इन्स्लेट स्थिति में अपेक्षित ट्रांजिशन दिखाते हैं।

परियोजना सहित भविष्यत् कार्य की योजना

1. 1. क्वांटम सामग्रियों की कम-आवृत्ति शोर स्पेक्ट्रोस्कोपी: विद्युत संचालन सामग्री किसी भी उपकरण वास्तुकला या सर्किट के महत्वपूर्ण घटक हैं। इसलिए यह अत्यंत महत्वपूर्ण है कि शोर विशेषताओं की जांच की जाए, जो बदले में सिस्टम में दोषों की गतिशीलता के बारे में महत्वपूर्ण जानकारी देती है। भौतिक घटनाएँ जो कई प्रणालियों में शोर का कारण बनती हैं, वे भी वे हैं जो डिफ़ेज़िंग का कारण बनती हैं (उदाहरण के लिए दो-स्तरीय प्रणालियाँ)। इस प्रकार, यहां हमारा लक्ष्य शोर और डीफ़ेज़िंग के बीच संबंध को समझना होगा, सिस्टम में मौजूद शोर द्वारा शुरू की

- गई सीमाएं, और शोर कम करने वाली रणनीतियों के साथ आना होगा, जिसमें चार्ज वाहक के इलेक्ट्रोस्टैटिक वातावरण में संशोधन शामिल हो सकता है, सामग्रियों की क्रिस्टलीयता, विभिन्न विकास तकनीकों के माध्यम से दोषों में कमी, संपर्कों का अनुकूलन, आदि।
- 2. 2. वैन डेर वाल्स हेटरोस्ट्रक्चर में नवीन भौतिकी: वांछित कार्यात्मकताओं के साथ सिस्टम बनाने के लिए विभिन्न गुणों वाली सामग्रियों को स्टैक करने पर शोध ने पिछले दशक में कई रोमांचक परिणामों के साथ गति पकड़ी है, जैसे कि मैजिक-एंगल ट्विस्टेड बाइलेयर ग्राफीन में स्परकंडिक्टविटी और सहसंबद्ध अवस्थाएं, आदि। हम टीएमडीसी के 1T' चरण के साथ-साथ उच्च स्पिन-ऑर्बिट युग्मित सामग्री के साथ ग्राफीन में नए परमाण् रूप से पतले क्वांटम स्पिन हॉल इंसुलेटर की संभावनाओं का पता लगाने की योजना बना रहे हैं। हम उच्च स्पिन-ऑर्बिट युग्मित सामग्री के समीप मुड़े हुए बाइलेयर ग्राफीन में विद्युत और थर्मल परिवहन का अध्ययन करने की योजना बना रहे हैं, जहां प्रारंभिक जांच से आधे-पूर्णांक बैंड भरने पर टूटी हुई समरूपता का पता चला है। एक और दिलचस्प दिशा जिसे हम आगे बढ़ाना चाहते हैं वह है चेर्न इंस्लेटर और क्वांटम स्पिन तरल पदार्थ का एहसास करने के लिए स्तरित 2डी मैग्नेट के साथ 2डी सामग्रियों को स्टैक करना।

सुमन चौधरी

डीएसटी इंस्पायर फैकल्टी संघनित पदार्थ एवं पदार्थ भौतिकी sumanc88@bose.res.in

प्रकाशन

क) ज़र्नल में

- 1. सुप्रिया घोषाल, नीलाद्रि शेखर मंडल, सुमन चौधरी, देबनारायण जाना, टू नॉवेल फेजेज ऑफ़ जर्मा-ग्राफीन: प्रिडिक्शन, इलेक्ट्रॉनिक एंड ट्रांशपोर्ट एप्पलीकेशन, अप्लाइड सर्फेस साइंस, 614, 156107, 2023
- 2. कृष्णांश् बसाक, मैनाक घोष, सुमन चौधरी और देबनारायण जाना, थ्योरेटिकल स्टडीज़ ऑन इलेक्ट्रॉनिक, मैग्नेटिक एंड ऑप्टिकल प्रोपर्टीज़ ऑफ़ टू डायमेंशनल ट्रांजिशन मेटल ट्राइहैलाइड्स, जर्नल ऑफ फिजिक्स: कंडेंस्ड मैटर, 35, 233001, 2023

रतिष्ठित सम्मेलन/ संस्थानों में प्रदत्त वार्ता/ सेमिनार

1. आमंत्रित वार्ता (ऑनलाइन) "क्वांटम एस्प्रेसो द्वारा सामग्रियों की क्वांटम मैकेनिकल मॉडलिंग (आईडब्ल्यूक्यूएमएमएम-2023)", आईईईई नैनोकाउंसिल पीएसआईटी स्टूडेंट चैप्टर द्वारा आयोजित; 15-19 मार्च 2023; ऑनलाइन: 30 मिनट

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, युएनडीपी, आदि)

1. 2डी संक्रमण-धात् ऑक्साइड में थर्मोक्रोमिज्म की खोज; डीएसटी; 5 साल; अनुकरणीय

राष्ट्रीय/अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

1. राष्ट्रीय/अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

अनुसंधान क्षेत्र

विभिन्न आयामों में विभिन्न आकृतियों में मौजूद रहने की कार्बन की क्षमता ने विश्व स्तर पर शोधकर्ताओं के बीच रुचि जगाई है। रिंगों और बहुभुजों के विविध नेटवर्क वाले कार्बन के विभिन्न द्वि-आयामी एलोट्रोपिक रूप मौजूद हैं। उनमें से कई में दिलचस्प गुण हैं जो विशेष ध्यान देने की मांग करते हैं। ग्राफीन का सफल प्रायोगिक संश्लेषण सामग्री विज्ञान अनुसंधान के क्षेत्र में एक नया क्षितिज बनाने में सक्षम है। बहुत जल्द ही यह उत्तर-सिलिकॉन युग की एक क्रांतिकारी सामग्री बन गई। 2010 में, हड्सपेथ व अन्य द्वारा सैद्धांतिक रूप से एक नए कार्बन एलोट्रोप की भविष्यवाणी की गई है जिसे बाइफेनिलीन नेटवर्क (बीपीएन) के रूप में जाना जाता है। 2021 में इसे फैन व अन्य द्वारा प्रायोगिक तौर पर संश्लेषित किया गया है। यह सामग्री धात्विक प्रकृति की पाई गई है। बीपीएन के इलेक्ट्रॉनिक गुणों को इसका एक आयामी व्युत्पन्न बनाकर समायोजित किया जा सकता है। जब बीपीएन को फ्लोरीन और क्लोरीन के साथ क्रियाशील किया जाता है, तो सिस्टम धात्विक से अर्धचालक बन जाता है। बीपीएन (0.26) का पॉइसन अनुपात ग्राफीन (0.15) से अधिक है। इस शोध परियोजना में, हम नाइट्रोजन से सुसज्जित बीपीएन नैनोशीट की भविष्यवाणी करने की कोशिश कर रहे हैं। हमने नाइट्रोजन को विदेशी तत्व माना है क्योंकि यह आवर्त सारणी में कार्बन का निकटतम तत्व है। इसलिए सिस्टम में नाइट्रोजन परमाणुओं की शुरूआत के कारण लैटिस विरूपण छोटा होने की उम्मीद है। फ़ोनन मोड का विश्लेषण करने के बाद, हमने पाया है कि यह प्रणाली अपने मूल समतल रूप में नहीं रहना चाहती, बल्कि यह नालीदार हो जाती है। हमने पाइराज़िन और पाइरीमिडीन दोनों विन्यासों को आज़माया है, लेकिन पाइराज़िन विन्यास स्थिर विन्यास निकला है।

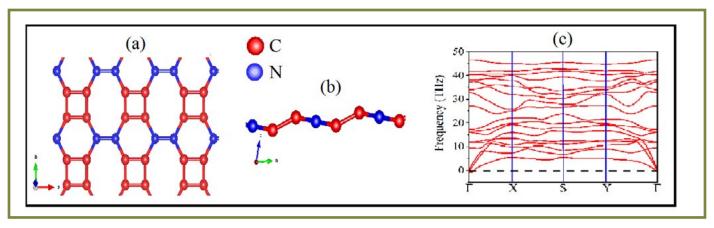


Figure : (a) Top view, (b) side view and (c) phonon band-structure of pyrazine configuration of nitrogen decorated BPN nanosheet.

परियोजना सहित भविष्यत कार्य की योजना

1. 1. हमने साबित कर दिया है कि पाइराज़िन कॉन्फ़िगरेशन में नाइट्रोजन से स्सिज्जित बीपीएन नैनोशीट स्थिर है। अगला कदम इसके इलेक्ट्रॉनिक और थर्मल गुणों का अध्ययन करना है। थर्मल भाग में इलेक्ट्रॉनिक भाग और लैडिस भाग होता है। लैडिस भाग की गणना आमतौर पर कम्प्यूटेशनल रूप से महंगी मानी जाती है।

इस मामले में, हम मशीन लर्निंग इंटरटॉमिक संभावित दृष्टिकोण लागू करेंगे। इस दृष्टिकोण में, प्रशिक्षण डेटा सेट एब-इनिटियो आणविक गतिशीलता सिम्लेशन चलाकर उत्पन्न किया जाएगा। क्षमता प्रशिक्षित होने के बाद, हमारे पास दूसरे क्रम और तीसरे क्रम के बल स्थिरांक होंगे। इन डेटा को इनपुट के रूप में उपयोग करके, हम बोल्ट्ज़मैन ट्रांसपोर्ट समीकरण को हल करके तापीय चालकता के लैडिस भाग की गणना कर सकते हैं।

तनुश्रि साहा दासगुप्ता

संघनित पदार्थ एवं पदार्थ भौतिकी tanusri@bose.res.in

छात्रों / पोस्ट डॉक्टोरल / वैज्ञानिकों का निदेशन

क) पी एच डी छात्र

- 1. शिलादित्य कर्माकर; तकनीकी रूप से स्वदेशी सामग्रियों का प्रथम-सिद्धांत अध्ययन; शोध-कार्य जारी
- 2. समीर रोम; हेटरोस्ट्रक्चर का अध्ययन; शोध-कार्य जारी
- ऐश्वर्य घोष; सामग्री में मशीन लर्निंग का अनुप्रयोग; शोध-कार्य जारी
- 4. मनोज गुप्ता; टोपोलॉजिकल चरणों का अध्ययन; शोध-कार्य जारी
- 5. कौशिक प्रधान; सहसंबंधित इलेक्ट्रॉन प्रणालियाँ; शोध-कार्य जारी
- 6. अर्णव पॉल; आक्साइड; शोध-कार्य जारी
- 7. राजदीप विश्वास; कम्प्यूटेशनल सामग्री भौतिकी, क्वांटम सामग्री, चुंबकत्व, 2डी सामग्री, टोपोलॉजिकल गुण; शोध-कार्य जारी

- 8. प्रशांत सरकार; चरम स्थिति में भौतिकी; शोध-कार्य जारी
- 9. श्रेया दास; ऑक्साइड की इलेक्ट्रॉनिक संरचना; उपाधि प्रदान की गई

ख) पोस्ट डॉक्टोरल

- 1. सौमेन्द्र दत्तः, नेनोसामग्री
- 2. अरुण मौर्य; सहसंबद्ध प्रणालियाँ
- 3. दीपायन सेन; संकर सामग्री
- 4. अरविंदन वी; आक्साइड

ग) बाह्य परियोजना छात्र / ग्रीष्मकालीन प्रशिक्षण

1. प्रियांक त्रिपाठी; कप्रेट्स की इलेक्ट्रॉनिक संरचना

प्रकाशन

क) जर्नल में

- 1. ऐश्वर्या घोष, सौमेंदु दत्ता, और तनुश्री साहा-दासगुप्ता, बाईमेटेलिक नैनोक्लस्टर्स के लिए कोर-शेल प्राथमिकताओं में रुझान को समझना: एक मशीन लर्निंग दृष्टिकोण, द जर्नल ऑफ फ़िज़िकल कैमिस्ट्रि सी, 126, 6847, 2022
- 2. हर्षित बनर्जी, हरमन श्राइत, मार्कस आइचोर्न, और तनुश्री साहा-दासगुप्ता, हंड्स धातुओं के चुंबकत्व पर ज्यामिति का प्रभाव: BaRuO्र का केस अध्ययन, फ़िज़िकल रिविऊ बी, 105, 235106, 2022
- 3. हरमन श्राइत, डैनियल बाउर्नफ़ींड, तनुश्री साहा-दासगुप्ता, और मार्कस आइचोर्न, *डबल पेरोव्स्काइट इरिडेट BaूYIrOू* की शून्य-तापमान जमीनी स्थिति में लंबी दूरी के चुंबकीय क्रम के बिना छोटे क्षण, फ़िज़िकल रिविऊ बी, 106, 035132, 2022
- 4. अन्ना ए. वोरोब्योवा, इगोर एल. डेनिलोविच, इगोर वी. मोरोज़ोव, अलेक्जेंडर एन. वासिलिव, ओल्गा एस. वोल्कोवा, आसिफ इकबाल, बदीउर रहमान और तनुश्री साहा-दासगुप्ता, अर्ध-द्वि-आयामी Co(NO)्र•2H्0 में आइसिंग जैसा चुंबकत्व, मटेरियल्स, 15(20), 7066, 2022022
- 5. तिलक दास, स्वस्तिका चटर्जी और **तनुश्री साहा-दासगुप्ता**, Fe-युक्त वाडर-लेइट में जल समावेशन का प्रथम-सिद्धांत अध्ययन, फ़िज़िक्स ऑफ द अर्थ एंड प्लानेटरी इंटीरीअर्स, 333, 106940, 2022

- 6. ए. वोरोब्योवा, आई. डेनिलोविच, आई. मोरोज़ोव, वाई. ओवचेनकोव, ए. वासिलिव, ओ. वोल्कोवा, ए. इकबाल, बी. रहमान, टी. साहा-दासगुप्ता, वर्गाकार जाली प्रतिलौह चुम्बक (NO)M(NO3)3 (M = Co, Ni): अनिसोट्रॉपी के प्रभाव, जर्नल ऑफ अलोयस एंड कम्पाउण्ड्स, 929, 167197, 2022
- 7. सौमेंदु दत्ता, ऐश्वर्या घोष और तनुश्री साहा-दासगुप्ता, पहले सिद्धांत कोर-शेल, जानूस की सापेक्ष स्थिरता, इलेक्ट्रॉनिक और उत्प्रेरक गुणों और द्विधातु पीडी-एक्स नैनो-मिश्र धातु (X = Co, Ni, Cu, Rh, Ag, Ir, Pt, Au) के लिए मिश्रित संरचनात्मक पैटर्न में अंतर्दृष्टि प्रदान करते हैं, फ़िज़िकल कैमिस्ट्रि केमिकल फ़िज़िक्स, 25, 4667, 2023
- 8. समीर रोम, संतु बैद्य, सुभ्रो भट्टाचार्जी, और तनुश्री साहा-दासगुप्ता, LaCoO /SrIrO बहेटरोस्ट्रक्चर में चुंबकत्व और अपरंपरागत टोपोलॉजी, अप्लाइड फ़िज़िक्स लेटर्स, 122, 021602, 2023
- 9. पायल आइच, श्रेया दास, श्वाजीत हलदर, कार्लो मेनेघिनी, देशेंग फू, वास्त्रेव सिरुगुरी, सोम दत्त कौशिक, मित्स्रु इटोह, तनुश्री साहा-दासगुप्ता और सुगत रे, रिक्ति-आदेशित ब्राउनमिलराइट में फ्लोरिनेशन-प्रेरित विषमता: मल्टीफेरोइक व्यवहार का मार्ग, कैमिस्ट्रि ऑफ मटेरियल्स, 35, 991, 2023
- 10. शिलादित्य कर्माकर, राजदीप विश्वास और तनुश्री साहा-दासगुप्ता, द्वि-आयामी मोलिब्डेनम-आधारित जानूस संरचना में विशाल रशबा प्रभाव और गैर-रेखीय विसंगतिपूर्ण हॉल चालकता, फ़िज़िकल रिविऊ बी, 107, 075403, 2023
- 11. दीपांजन मुखर्जी, गुल्मी चक्रवर्ती, मोहम्मद नूर हसन, उत्तम पाल, प्रिया सिंह, तातिनी रक्षित, रीम आई. अलसंताली, तनुश्री साहा दासगुप्ता, सालेह ए. अहमद, रंजन दास, समीर कुमार पाल, जैव-आणविक इंटरफेस में स्पाइरोपाइरन की प्रतिवर्ती फोटोस्विचंगः एक संयुक्त स्पेक्ट्रोस्कोपी और कम्प्यूटेशनल अध्ययन, जर्नल ऑफ फोटोकैमिस्ट्रि एंड फोटोबयोलॉजी ए: कैमिस्ट्रि, 430, 113958, 2022

ख) सम्मेलन कार्यवाही / रिपोर्ट / मोनोग्राफ / पुस्तक

1. ऊपरी मेंटल पीटी स्थितियों के तहत ओलिवाइन में Fe2+ का ऑर्डर देना जेड घोलमी महमूदाबादी, एस चटर्जी, टी साहा-दासगुप्ता एजीयू फ़ॉल मीटिंग एब्सट्रैक्ट्स 2022, MR22A-0052

प्रतिष्ठित सम्मेलनों / संस्थानों में प्रदत्त वार्ता / सेमिनार

- 1. आईसीएएम, गोवा विश्वविद्यालय; फ़रवरी 20, 2023; आईसीएएम, गोवा विश्वविद्यालय: 40 मिनट
- 2. क्वांटम संघनित पदार्थ सिद्धांत पर युवा जांचकर्ताओं की बैठक; 31 अक्टूबर, 2022; एनआईएसईआर, भुवनेश्वर
- 3. उन्नत सामग्रियों पर अंतर्राष्ट्रीय कार्यशाला; फ़रवरी 18, 2023; आरएके, यूएई
- 4. शीतकालीन विद्यालय; 14 दिसंबर, 2022; जेएनसीएएसआर
- 5. आईएएसएसटी के 44वें स्थापना दिवस पर व्याख्यान; 2 नवंबर, 2022; आईएएसएसटी, गुवाहाटी
- 6. हैदराबाद-एनएएसआई में व्याख्यान; 6 अक्टूबर, 2022; हैदराबाद-एनएएसआई में व्याख्यान

प्रशासनिक कर्तव्य

1. निदेशक

पुरस्कार / मान्यताएँ

1. विज्ञान विदुषी पुस्तक में प्रदर्शित फिजिकल रिव्यू बी के संपादकीय बोर्ड में शामिल हुए

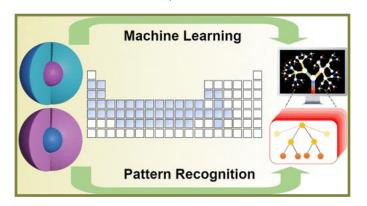
बाह्य परियोजना (DST, CSIR, DAE, UNDP इत्यादि)

1. जे.सी.बोस फ़ेलोशिप; एसईआरबी; 5 साल'; पीआई

अन्य राष्ट्रीय / अंतर्राष्ट्रीय संस्थानों (संयुक्त प्रकाशनों पर आधारित) के साथ वैज्ञानिक सहभागिता

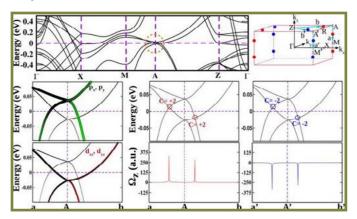
- 1. एम. आइचोर्न, टीयू ग्राज़, ऑस्ट्रिया के साथ सहयोग; क्र. सं. 2, 3; अंतर्राष्ट्रीय
- 2. मॉस्को स्टेट यूनिवर्सिटी के साथ सहयोग; क्र. सं. 4, 6; अंतर्राष्ट्रीय
- 3. एस. चटर्जी, आईआईएसईआर के के साथ सहयोग; क्र. सं. 5;
- 4. एस भट्टाचार्जी, आईसीटीएस के साथ सहयोग; क्र. सं. ८; राष्ट्रीय
- 5. एस रे, आईएसीएस के साथ सहयोग; क्र. सं. 9; राष्ट्रीय
- 6. एस.के.पाल, एसएनबी के साथ सहयोग; क्र. सं. 11; राष्ट्रीय

आयोजित आउट रिच कार्यक्रम / प्रतिभागिता


1. 12वीं विद्यासागर सत्येन्द्र नाथ बोस राष्ट्रीय कार्यशाला "भौतिकी में प्रगति: सिद्धांत और अनुप्रयोग (एपीटीए-2023)" स्थान: विद्यासागर विश्वविद्यालय, मिदनापुर, पश्चिम बंगाल दिनांक: 28.02.2023 से 02.03.2023 तक

अनुसंधान क्षेत्र

कम्प्यूटेशनल सामग्री भौतिकी, क्वांटम सामग्री, चुंबकत्व, 2डी सामग्री, टोपोलॉजिकल गुण


बाईमेटेलिक नैनोक्लस्टर्स लिए प्राथमिकताओं में रुझान को समझना: एक मशीन लर्निंग दृष्टिकोण

कैटेलिसिस से लेकर बायोमेडिकल तक के अनुप्रयोगों में उनकी सर्वव्यापी उपस्थिति के कारण नैनोस्केल बाइनरी धातु मिश्र धातुओं की कोर-शेल प्राथमिकता में ड्राइविंग कारकों का पता लगाना महत्वपूर्ण है। हम क्षार, क्षारीय, मूल, 3डी, 4डी और 5डी संक्रमण धातुओं और पी-ब्लॉक धात्ओं की एक विशाल श्रृंखला को शामिल करने वाले बाइनरी-मिश्र धात् वाले धात् नैनोकणों पर विचार करते हैं और एकल-परमाण् मिश्र धातु समूहों की पृथक्करण ऊर्जा की गणना करके कोर-शेल वरीयता निर्धारित करते हैं। घनत्व कार्यात्मक सिद्धांत द्वारा. घटकों की विशेषताओं पर आधारित इस बड़े डेटाबेस में मशीन लर्निंग के अनुप्रयोग से चार प्रमुख कारकों की पहचान होती है: (i) एकजुट ऊर्जा अंतर, (ii) परमाणु त्रिज्या अंतर, (iii) समन्वय संख्या अंतर, और (iv) चुंबकत्व, किसी दिए गए घटक की कोर-टू-शेल प्राथमिकता प्रदान करता है। दिलचस्प बात यह है कि एक प्रमुख विशेषता का दूसरे की तुलना में सापेक्ष महत्व धात् के प्रकार से तय होता है। हमारा विश्लेषण यह भी भविष्यवाणी करता है कि, घटकों की एकजुट ऊर्जा के बहुत छोटे और बहुत बड़े अंतर के लिए, कोर-शेल संरचना के बजाय, मिश्रित और जानूस संरचनाएं क्रमशः स्थिर होती हैं। हमारा विस्तृत अध्ययन घटक प्रजातियों के विशिष्ट रासायनिक क्रम के साथ द्विधात्विक नैनो मिश्र धातुओं को डिजाइन करने में उपयोगी होगा। (जे. भौतिक रसायन. सी 2022, 126, 15, 6847-6853)

LaCoO₁/SrIrO₁ हेटरोस्ट्रक्चर में चुंबकत्व और अपरंपरागत टोपोलॉजी

प्रथम-सिद्धांत गणनाओं को नियोजित करते हुए, हम LaCoO¸/SrlrO¸ हेटरोस्ट्रक्चर के उत्सुक चुंबकीय और टोपोलॉजिकल गुणों पर सूक्ष्म अंतर्दृष्टि प्रदान करते हैं, जिसे हाल ही में संश्लेषित किया गया है [कुमार जयसवाल एट अला, सलाहकारा मेटर. 34, 2109163 (2022)]। हमारा कम्प्यूटेशनल अध्ययन $SrIrO_{_3}$ से $LaCoO_{_3}$ तक ध्रुवीय आवेश के स्थानांतरण को उजागर करता है, जिससे सहसंयोजकता 3+ से घटकर 2+ हो जाती है, जो प्रयोगात्मक निष्कर्षों का समर्थन करती है। हमारे अध्ययन से हेटरोस्ट्रक्चर के LaCoO बलॉक में सह की मध्यवर्ती स्पिन स्थिति के स्थिरीकरण और मजबूत लौहचुंबकीय सह-सह युग्मन का पता चलता है। यह, बदले में, हेटरोस्ट्रक्चर ज्यामिति में छद्म-टेट्रागोनली संरचित SrIrO3 में लौहचुंबकत्व को प्रेरित करने के लिए पाया जाता है, जो चुंबकत्व की उत्पत्ति की समझ प्रदान करता है, जो कि प्रति-सहज ज्ञान युक्त है क्योंकि $LaCoO_3$ और $SrIrO_3$ दोनों थोक रूप में गैर-चुंबकीय हैं। सबसे दिलचस्प बात यह है कि फेरोमैग्नेटिक, टेट्रागोनल संरचित SrIrO्र की बैंड संरचना अपरंपरागत टोपोलॉजी प्रदर्शित करती है, जो C = 2 डबल वेइल बिंदुओं के रूप में प्रकट होती है, जो देखे गए विसंगतिपूर्ण हॉल प्रभाव की ओर ले जाती है। C = 2 डबल वेइल बिंद्ओं (चित्र देखें) की हमारी खोज, चार्ज-2 डायराक बिंदुओं के वर्ग से संबंधित है, पारंपरिक डायराक और C = 1 वेइल बिंदुओं से परे अपरंपरागत टोपोलॉजिकल गुणों की भौतिक प्राप्ति की संभावना को खोलती है, जो कि मांग करती है भविष्य के प्रयोग. (अनुप्रयोग भौतिकी पत्र 122, 021602 (2023))

परियोजना सहित आगामी कार्य की योजना

1. * मशीन लर्निंग से प्रेरित बल क्षेत्र * रिक्ति के चूंबकत्व ने डबल पेरोव्स्काइट्स का आदेश दिया * डिराक स्पिन तरल पदार्थों की खोज * एमएक्स3 यौगिकों के लिए टोपोलॉजिकल गुण

थिरुपथैया शेट्टी एसोसिएट प्रोफेसर संघनित पदार्थ एवं पदार्थ भौतिकी setti@bose.res.in

छात्रों/ पोस्ट-डॉक्स/ वैज्ञानिकों का मार्गदर्शन

क) पी.एचडी. छात्र

- 1. सुरिमता चांगदार; टोपोलॉजिकल सेमीमेटल्स; शोधकार्य जारी
- 2. अचिन्त्य लो; प्रायोगिक संघनित पदार्थ भौतिकी, टोपोलॉजिकल क्वांटम सामग्री: शोधकार्य जारी
- 3. सायन राजथः; टोपोलॉजिकल सुपरकंडक्टर्सः; शोधकार्य जारी; प्रो. प्रोसेनजीत सिंघा देव (सह-पर्यवेक्षक)
- 4. शुभम पुरवार; 2डी चुंबकीय प्रणाली; शोधकार्य जारी
- 5. स्शांत घोष; प्रायोगिक संघनित पदार्थ भौतिकी, टोपोलॉजिकल क्वांटम सामग्री; शोधकार्य जारी; प्रो. कल्याण मंडल (सह-पर्यवेक्षक)
- 6. सौम्या घोराई; ऑक्साइड डबल पेरोव्स्काइट्स; शोधकार्य जारी

ख) पोस्ट-डॉक्स

1. तुषार कांति भौमिक; उच्च टीसी सुपरकंडक्टर्स और दृढ़ता से सहसंबद्ध सामग्रियों की जांच

ग) बाह्य परियोजना छात्र/ ग्रीष्मकालीन प्रशिक्षण

- 1. रिद्धिमा साधु; एकल क्रिस्टल वृद्धि और संक्रमण-धातु डाइक्लोजेनाइड्स की विशेषता
- 2. अभिनव एम; 2डी सिस्टम पर टाइट-बाइंडिंग मॉडल

शिक्षण/ अध्यापन

1. ऑट्म सत्र; PHY402: विद्युत चुम्बकीय सिद्धांत; एकीकृत पीएचडी: 11 छात्र

प्रकाशन

क) ज़र्नल में

- 1. अचिंत्य लो, सुसांता घोष, सुस्मिता चांगदार, सायन राउथ, शुभम पुरवार, और एस. थिरुपथैया, ट्यूनिंग ऑफ़ टोपोलॉजिकल प्रोपर्टिज़ इन द स्ट्रॉन्गली कोरिलेटेड एंटीफेरोमेंग्नेट Mn Sn वाया Fe डॉपिंग, फिजिकल रिव्यू बी, 106, 144429, 2022
- 2. स्रिमता चांगदार, स्शांत घोष, कृतिका विजय, इंद्राणी कर, सयान राउथ, पी.के. माहेश्वरी, सौम्या घोराई, सोमा बनिक और **एस. थिरुपथैया**, नॉनमैग्नेटिक Sn डोपिंग इफेक्ट ऑन द इलेक्ट्रॉनिक एंड मैग्नेट प्रोपर्टीज ऑफ़ एंटीफेरोमैग्नेटिक टोपोलॉजिकल इंस्लेटर MnBi Te , फिजिका बी: कंडेंस्ड मैटर, 657, 414799, 2023

ख) सम्मेलन की कार्यवाही/ रिपोर्ट/ मोनोग्राफ/ पुस्तक

- 1. एंटीफेरोमैग्नेटिक सीआरएसई के विद्युत और चुंबकीय गुणों पर एमओ डोपिंग का प्रभाव, सायन राउथ, सुशांत घोष, पी.के. माहेश्वरी, पी. सिंघा देव, एस. थिरुपथैया, मैटेरियल्स टुडे: प्रोसीडिंग्स, 65, 342-344 (2022)
- 2. हेक्सागोनल CoSe पर सिंगल क्रिस्टल ग्रोथ, इलेक्ट्रिकल और मैग्नेटिक प्रॉपर्टीज स्टडीज, शुभम पुरवार, सायन राउथ, एस. थिरुपथैया, मैटेरियल्स टुडे: प्रोसीडिंग्स, 65, 332-334 (2022)
- 3. NiTe2 में रैखिक से द्विघात चुंबकत्व तक क्रॉसओवर, इंद्राणी कर और एस. थिरुपथैया, मैटेरियल्स ट्रडे: प्रोसीडिंग्स, 65, 70-73 (2022)

प्रतिष्ठित सम्मेलन/संस्थानों में प्रदत्त वार्ता/ सेमिनार

- 1. कुछ टोपोलॉजिकल सिस्टम के इलेक्ट्रॉनिक गुण; अगस्त 30, 2022; आईएफडब्ल्यू ड्रेसडेन, जर्मनी; 30 अगस्त-1 सितंबर 2022
- 2. कागोम एंटीफेरोमैग्नेट्स में Fe डोपिंग के साथ टोपोलॉजिकल गुण ट्यूनिंग; सितम्बर 19, 2022; ईट कानपुर; 18-22 सितंबर, 2022
- 3. टोपोलॉजिकल सिस्टम के इलेक्ट्रॉनिक गुण अध्ययन; 24 जनवरी 2023; एसएनबीएनसीबीएस; 24 जनवरी 2023

प्रशासनिक कर्तव्य

1. एससीओएलपी सदस्य

बाह्य परियोजनाएं (डीएसटी, सीएसआईआर, डीएई, यूएनडीपी, आदि)

- 1. स्टार्ट-अप अनुसंधान अनुदान; एसईआरबी, डीएसटी; 2020-2022; पीआई
- 2. यूजीसी-डीएई कंसोर्टियम में सीआरएस परियोजना; यूजीसी-डीएई सीएसआर; 2022-2023; पीआई
- भारत-रूसी परियोजना; एसईआरबी, डीएसटी; 2022-2025; सह पीआई

आयोजित सम्मेलन/ संगोष्ठी/ स्कूल

- नवीन च्ंबकीय और टोपोलॉजिकल क्वांटम सामग्री; अगस्त 28, 2022; आईएफडब्ल्यू ड्रेसडेन, जर्मनी; 28 अगस्त-3 सितंबर, 2022
- 2. इलेक्ट्रॉनिक संरचना पर राष्ट्रीय सम्मेलन-2022; 14 नवंबर, 2022; गोवा विश्वविद्यालय, भारत; 14-16 नवंबर, 2022

राष्ट्रीय/ अंतरराष्ट्रीय संस्थानों के साथ वैज्ञानिक सहभागिता (संयुक्त प्रकाशनों पर आधारित)

1. डॉ. सोमा बनिक, आरआरसीएटी, भारत; क्र.सं. नंबर 2; राष्ट्रीय

अनुसंधान क्षेत्र

प्रायोगिक संघनित पदार्थ भौतिकी, टोपोलॉजिकल क्वांटम मैटेरियल्स

1. Fe डोपिंग के माध्यम से दृढ़ता से सहसंबद्ध एंटीफेरोमैग्नेट Mn Sn में टोपोलॉजिकल गुणों की ट्यूनिंग

इस कार्य में, Mn_ Fe Sn (x=0, 0.25, और 0.35) के एकल क्रिस्टल का उनकी विद्युत प्रतिरोधकता, चुंबकीय और टोपोलॉजिकल गुणों के लिए व्यवस्थित रूप से अध्ययन किया गया था। जबिक Mn Sn 260 K पर स्पिन-पुनर्विन्यास संचालित किंक के साथ कमरे के तापमान तक धात्विक प्रकृति का पाया जाता है, Fe डोपिंग के साथ सिस्टम 240 K पर x=0.25 और 150 K पर x=0.35 चुंबकत्व प्रेरित धातु-इन्स्लेटर (MI) ट्रांजिशन दिखाता है। एमआई संक्रमण के अलावा, x=0.35 प्रणाली न्यूनतम Tm=50 K पर विकार प्रेरित प्रतिरोधकता में वृद्धि दिखाती है। जहां तक चुंबकीय गुणों की बात है, Mn Sn 260 K के स्पिन-पुनर्विन्यास संक्रमण तापमान पर चुंबकत्व में अचानक गिरावट दिखाता है। और 40 K से नीचे स्पिन-ग्लास जैसा संक्रमण। दूसरी ओर, Fe डोपिंग के साथ उन्नत चुंबकीय अनिसोट्रॉपी के साथ-साथ फेरोमैग्नेटिक संक्रमण भी पेश किया गया है। इसके अलावा, Fe डोपिंग के साथ कम तापमान पर अनिसोट्रोपिक विसंगतिपूर्ण हॉल प्रतिरोधकता को प्रेरित किया गया है। विशेष रूप से, आउट-ऑफ-प्लेन हॉल प्रतिरोधकता (Pzx) 300 K से उनके संबंधित चुंबकीय संक्रमण तापमान तक सभी रचनाओं के तापमान में कमी के साथ बढ़ती है, जहां हॉल प्रतिरोधकता में अचानक परिवर्तन देखा जाता है। यद्यपि 2 K पर Fe डोपिंग के साथ आउट-ऑफ़-प्लेन हॉल प्रतिरोधकता में बहुत अधिक परिवर्तन नहीं देखा गया है, इन-प्लेन हॉल प्रतिरोधकता (Pxy) x=0 से x=0.35 तक आगे बढ़ते हुए -0.25 $\mu\Omega$ -सेमी से 48 $\mu\Omega$ -सेमी तक काफी बढ़ जाती है। विषम हॉल प्रतिरोधकता के साथ, 2 K पर दोनों Fe डोप्ड प्रणालियों के लिए एक बड़ी टोपोलॉजिकल हॉल प्रतिरोधकता भी देखी जाती है।

2. एंटीफेरोमैग्नेटिक वेइल सेमीमेटल Mn_{2,94}Ge में ऊंचे तापमान पर असामान्य चुंबकीय और असामान्य हॉल गुण देखे गए

इस योगदान में, हम उच्च-गुणवत्ता और लगभग स्टोइकोमेट्रिक Mn ु Ge एकल क्रिस्टल की सफल वृद्धि और चुंबकीय और हॉल गुणों पर गहन अध्ययन पर रिपोर्ट करते हैं। चुंबकीय गुण अध्ययन से 353 K के नील तापमान के नीचे स्पिन-पुनर्विन्यास (TSR) और लौहचुंबकीय जैसे संक्रमण जैसे अतिरिक्त चुंबकीय संक्रमण का पता

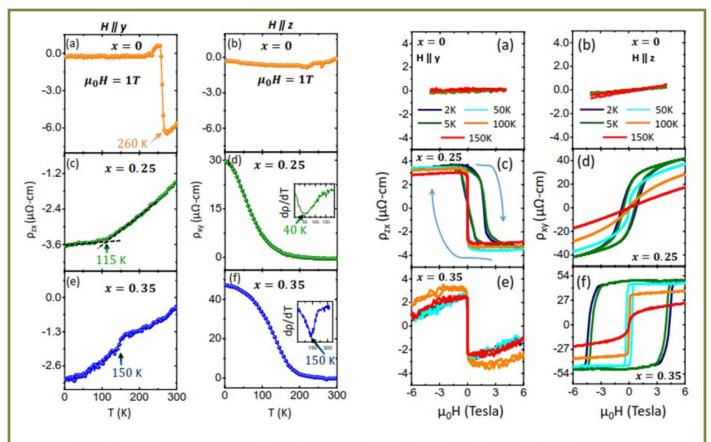


FIG. 5. Out-of plane Hall resistivity (ρ_{zx}) plotted as a function of temperature measured under the field of 1T from (a) x=0, (c) x=0.25, and (e) x=0.35. (b), (d), and (f) show in-plane Hall resistivity (ρ_{xy}) plotted as a function of temperature measured under the field of 1T from x=0, x=0.25, and x=0.35, respectively. Insets of (d) and (f) show the first derivative of their Hall resistivity with respect to temperature.

FIG. 6. Field dependent out-of-plane Hall resistivity ρ_{zx} measured at different temperatures from x=0 (a), x=0.25 (c), and x=0.35(e). Curved blue arrows in (c) indicate field sweeping direction. Similarly, field dependent in-plane Hall resistivity ρ_{xy} measured at different temperatures from x=0 (b), x=0.25 (d), and x=0.35 (f).

चलता है। आइए हम यहां इस बात पर भी जोर दें कि ये चूंबकीय संक्रमण अभी तक Mn अतिरिक्त Mn3+ δ Ge सिस्टम में नहीं देखे गए हैं। इसके अलावा, चुंबकीय माप के अनुरूप, हॉल डेटा टीएसआर के आसपास एक असामान्य व्यवहार दिखाता है। यह अवलोकन इन प्रणालियों पर पिछले अध्ययनों के बिल्कुल विपरीत है, जहां एएचसी बढ़ते तापमान के साथ धीरे-धीरे कम हो जाता है, उच्चतम एएचसी कम तापमान पर पाया जाता है। हमारे अध्ययन से पता चलता है कि लगभग स्टोइकोमेट्रिक Mn3Ge के चुंबकीय और हॉल गुण अतिरिक्त Mn3+ δ Ge सिस्टम से भिन्न हैं।

3. एसएन डोपिंग साथ एंटीफेरोमैग्नेटिक टोपोलॉजिकल इंसुलेटर MnBi, Te के इलेक्ट्रॉनिक और चुंबकीय गुणों पर प्रभाव

हम देखते हैं कि Sn डोपिंग ${\rm MnBi}_{2}{\rm Te}_{4}$ में आउट-ऑफ़-प्लेन एंटीफेरोमैग्नेटिक (AFM) इंटरैक्शन को Sn सांद्रता के 68\%

तक कम कर देता है और सिस्टम के ऊपर पैरामैग्नेटिक पाया जाता है। इस तरह, MnBi¸Te¸ में 7.8 T के बहुत ऊंचे क्षेत्र में देखा गया असामान्य हॉल प्रभाव 68\% Sn डोपिंग के साथ 2 T तक कम हो जाता है। विद्युत परिवहन माप से पता चलता है कि सभी रचनाएँ प्रकृति में धात्विक हैं, जबिक कम तापमान प्रतिरोधकता एएफएम आदेश और डोपिंग-प्रेरित विकार के प्रति संवेदनशील है। हॉल प्रभाव अध्ययन दर्शाता है कि Sn वास्तव में सिस्टम में इलेक्ट्रॉनों को डोप करता है, इस प्रकार, Sn के 68\% पर इलेक्ट्रॉन वाहक घनत्व लगभग दो ऑर्डर तक बढ़ जाता है। इसके विपरीत, SnBi, Te, एक पी-प्रकार प्रणाली पाई जाती है। कोण-समाधान फोटो उत्सर्जन स्पेक्ट्रोस्कोपी (ARPES) अध्ययनों से पता चलता है कि टोपोलॉजिकल गुण Sn के कम से कम 55% तक बरकरार हैं क्योंकि डायराक सतह राज्य वैलेंस बैंड में मौजूद हैं, लेकिन $SnBi_{_{2}}^{2}Te_{_{4}}^{2}$ में हम टोपोलॉजिकल राज्यों का पता लगाने में असमर्थ हैं भारी छेद डोपिंग. कुल मिलाकर, Sn डोपिंग

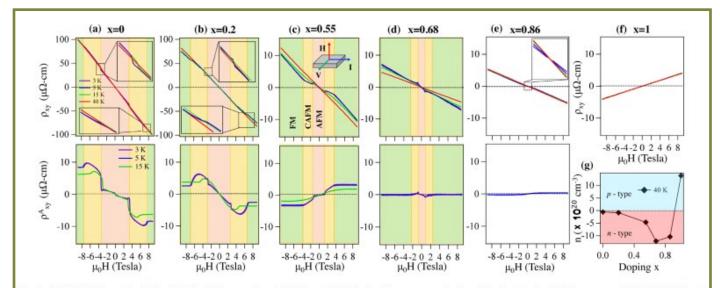
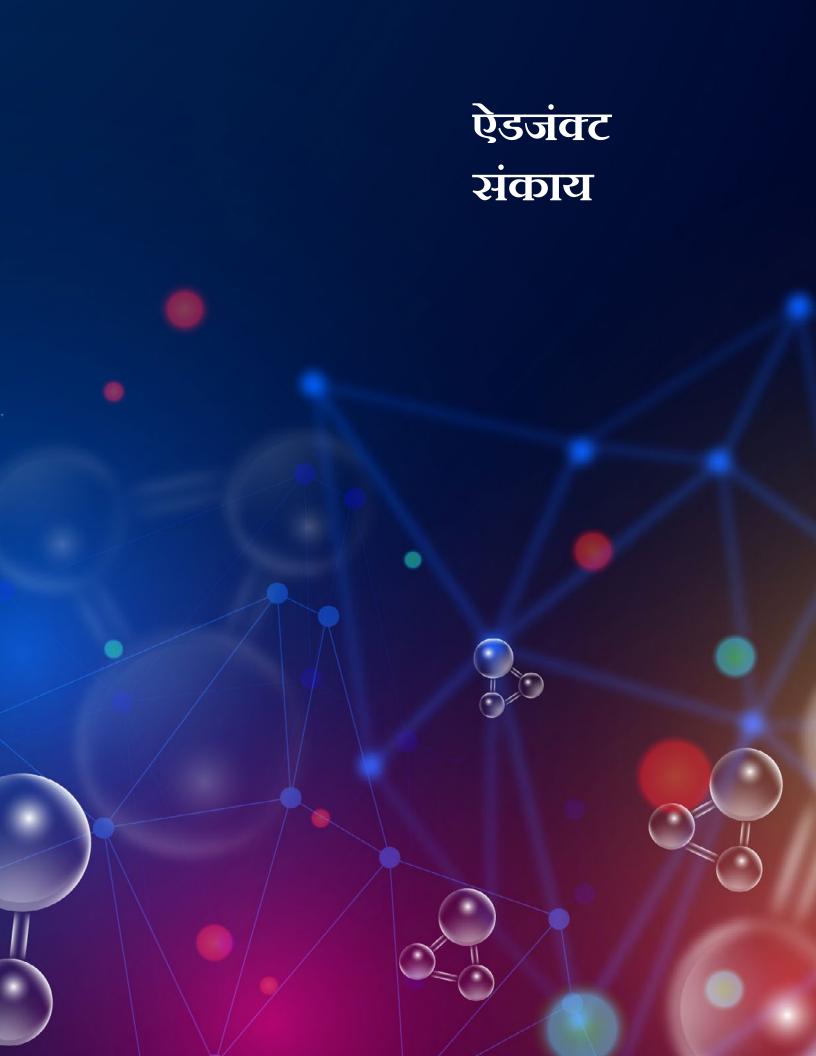


Fig. 6. (a)-(f) Field dependent Hall resistivity (ρ_{xy}) measured at 3, 5, 15, and 40 K. (red, yellow, green, and white colored regions in (a)-(d) represents AFM, CAFM, FM, and PM states of the system, respectively). The lower panels of (a)-(e) shows the anomalous Hall resistivity (ρ_{xy}^A) obtained after subtracting the normal Hall resistivity from ρ_{xy} . (g) Charge carrier density (n) plotted as a function of Sn doping concentration.

 $\mathsf{MnBi}_{_2}\mathsf{Te}_{_4}$. के इलेक्ट्रॉनिक और चुंबकीय गुणों को महत्वपूर्ण रूप से प्रभावित करता है।


परियोजना सहित भविष्यत् कार्य की योजना

मॉल्टेड-ग्रोथ, फ्लक्स-ग्रोथ के ठोस-अवस्था प्रतिक्रिया मार्ग का उपयोग करके डिराक और वेइल सेमीमेटल्स, ट्रांज़िशन मेटल डाइक्लोजेनाइड्स (टीएमडीसी), क्वांटम स्पिन तरल पदार्थ (क्यूएसएल), और दो-आयामी (2 डी) चुंबकीय सामग्री के उच्च गुणवत्ता वाले एकल क्रिस्टल और रासायनिक वाष्प परिवहन

(सीवीटी) तकनीकों को उन्नत करना। इन विदेशी सामग्रियों की अंतर्निहित भौतिकी को समझने के लिए बड़े नमूनों का उनके विद्युत, चुंबकीय गुणों और इलेक्ट्रॉनिक बैंड संरचना के लिए बड़े पैमाने पर अध्ययन किया जाएगा।

अनुसंधान के सामाजिक प्रभाव सहित अन्य प्रासंगिक जानकारी

1. ARPES माप के लिए बीमटाइम 13 से 20 जून, 2022 के दौरान सोलेइल सिंक्रोट्रॉन स्विधा द्वारा प्रदान किया गया था।

गौतम शीट ऐडजंक्ट संकाय

गौतम की प्रमुख अनुसंधान रुचि में अल्ट्रा-निम्न तापमान और उच्च चुंबकीय क्षेत्रों पर स्कैनिंग जांच माइक्रोस्कोपी और ट्रांसपोर्ट स्पेक्ट्रोस्कोपी का उपयोग करके टोपोलॉजिकल रूप से गैर-ट्राइवियल प्रणालियों (जैसे टोपोलॉजिकल इंस्लेटर, टोपोलॉजिकल सुपरकंडक्टर्स, वेइल सेमीमेटल्स, डिराक सेमीमेटल्स इत्यादि) की प्रयोगात्मक जांच शामिल है।

किए गए शोध-कार्य

ऊर्जा-कुशल नैनो-स्केल इलेक्ट्रॉनिक उपकरणों की मांग के कारण नवीन स्पिंट्रोनिक सामग्रियों के विकास की आवश्यकता है। वैन डेर वाल्स (vdW) फेरोमैग्नेट पर आधारित अगली पीढ़ी के स्पिनट्रॉनिक उपकरण, जैसे कि FenGeTe2 (n≥3), इस चुनौती को पूरा करने का वादा करते हैं। ये लौह चुम्बक अपनी स्तरित संरचना के कारण नियर-रुम टेंपरेचर लौह चुम्बकत्व, उच्च विद्युत चालकता और अन्य सामग्रियों के साथ एकीकरण में आसानी का प्रदर्शन करते हैं। डॉ. शीट ने बिंदु संपर्क स्पेक्ट्रोस्कोपी (पीसीएस) और स्कैनिंग टनलिंग माइक्रोस्कोपी/स्पेक्ट्रोस्कोपी प्रयोगों (एसटीएम/एस) के माध्यम से इन लौहचुंबकों में अत्यधिक स्पिन-ध्रवीकृत फर्मी सतह और कोंडो जाली व्यवहार के सह-

अस्तित्व का पहला प्रायोगिक प्रदर्शन दिया। पारंपरिक स्परकंडक्टर्स के साथ इन वीडीडब्ल्यू फेरोमैग्नेट्स के मेसोस्कोपिक जंक्शनों पर डॉ. शीट द्वारा किए गए अध्ययनों से पता चला है कि इन फेरोमैग्नेट्स में अत्यधिक स्पिन-ध्रुवीकृत परिवहन धारा उत्पन्न करने की क्षमता होती है, जिससे वे फेरोमैग्नेट्स का एक महत्वपूर्ण परिवार बन जाते हैं जो एक निम्न शक्ति वाला स्पिट्रोनिक उपकरण आदर्श स्पिन स्रोत होने के लिए सभी आवश्यकताओं को पूरा करते हैं राणा व अन्य फिजिकल रिव्यू (2022)। राणा व अन्य फिजिकल रिव्यू (2022)

टोपोलॉजिकल स्परकंडक्टर्स अपनी सीमाओं या भंवर कोर पर मेजराना बाध्य अवस्थाओं को प्रदर्शित करते हैं, जिन्हें मेजराना शून्य-ऊर्जा मोड (एमजेडएम) के रूप में जाना जाता है। एमजेडएम गैर-एबेलियन ब्रेडिंग आँकड़ों का पालन करते हैं, जो उन्हें डिकॉयरेंस-मूक्त टोपोलॉजिकल क्वांटम कंप्यूटिंग के लिए आदर्श बनाते हैं। हालाँकि, स्रंग निर्माण प्रयोगों में अस्पष्टता के कारण इन तरीकों का प्रायोगिक कार्यान्वयन चुनौतीपूर्ण बना हुआ है। डॉ. शीट ने स्थानीय टॉप गेटिंग या मैकेनिकल स्विच का उपयोग करके मल्टीवायर मेजराना सरणी में परिवहन-सक्रिय नैनोवायरों की संख्या में हेरफेर करके मेजराना शून्य मोड का पता लगाने और नियंत्रित करने के लिए एक अद्वितीय सेटअप का प्रस्ताव दिया। यह योजना शून्य-पूर्वाग्रह चालन शिखर (जेडबीसीपी) को सक्रिय या निष्क्रिय करने में सक्षम बनाती है, जो एमजेडएम के अध्ययन के लिए एक मजबूत विधि प्रदान करती है (राणा व अन्य जर्नल ऑफ एप्लाइड फिजिक्स, (2022)। (राणा व अन्य जर्नल ऑफ एप्लाइड फिजिक्स, (2022))

इंद्रनील सरकार ऐडजंक्ट फैकल्टी

- (क) एपिटैक्सियल टोपोलॉजिकल और स्पिंट्रोनिक हेटेरो-संरचनाओं का विकास और समझ
- (ख) चुंबकीय संपत्ति और चुंबकीयकरण गतिशीलता के साथ इलेक्ट्रॉनिक और भौतिक संरचना सहसंबंध
- (ग) इंटरफ़ेस संचालित क्वांटम परिघटना

किए गए शोधकार्य

वित्तीय वर्ष 2022-2023 में मेरा समूह स्पिंट्रोनिक और मैग्नेटाइजेशन डायनेमिक्स आधारित अनुप्रयोग के लिए हेटरोस्ट्रक्चर्ड थीन फिल्मों और नैनोक्रिस्टल विकसित करने में लगा हुआ है। निम्नलिखित प्रमुख झलकियाँ हैं:

क) हमने स्पिन पंपिंग दक्षता बढ़ाने के लिए फेरोमैग्नेट/हेवी मेटल हेटरोस्ट्रक्चर के इंजीनियर इंटरफेस की योजना को समझने और विकसित करने की दिशा में काम किया है। स्पिन पंपिंग प्रक्रिया में, एफएम/एचएम इंटरफ़ेस में स्पिन कोणीय गति संरक्षण के कारण शुद्ध स्पिन धारा उत्पन्न होती है, जिससे फेरोमैग्नेटिक परत से एचएम परत तक स्पिन कोणीय गति का स्थानांतरण होता है।

विशेष रूप से हमने पर्मलॉय/ α-टैंटलम हेटरोस्ट्रक्चर में लगभग 8 $\times 10^{18} \,\mathrm{m}^{-2}$ के बड़े स्पिन मिश्रण चालन और लगभग 4×10^{-3} के कम चुंबकीय अवमंदन $\alpha_{_{\mathrm{aff}}}$ मान को प्राप्त करने की संभावना का प्रदर्शन किया है। एक्स-रे परावर्तन और विवर्तन अध्ययन के साथ फेरोमैग्नेटिक अनुनाद स्पेक्ट्रोस्कोपी को जोड़कर, हमने इंटरफेशियल क्रिस्टलीय संरचना और स्पिन पंपिंग दक्षता के बीच एक संबंध स्थापित किया है। इन अध्ययनों के माध्यम से हमने प्रस्तावित किया है कि इन बहुत उपयोगी स्पिंट्रोनिक हेटरोस्ट्रक्चर में स्पिन मिश्रण चालन और चुंबकीय डंपिंग को अनुकूलित करने के लिए भारी धात् जमाव तापमान को कैसे ट्यून किया जा सकता है।

ख) हमने चुंबकीय मिश्र धातु का एक नया वर्ग नैनोक्रिस्टल विकसित किया है, जिसका नाम है, हेउल्सर मिश्र धात् और वैकल्पिक चुंबकीय क्षेत्र के अनुप्रयोग के तहत पीढ़ी के लिए उनकी क्षमता का प्रदर्शन किया है। चुंबकत्व गतिशीलता और एक्स-रे विवर्तन अध्ययन के माध्यम से हमने तनाव के उत्पाद और सुसंगत क्रिस्टलीय आकार से संबंधित एक महत्वपूर्ण संरचनात्मक पैरामीटर पाया है। इस पैरामीटर का उपयोग हेउलसर यौगिक नैनोकणों के संरचनात्मक क्रम और चुंबकीय गुणों को कुशलतापूर्वक नियंत्रित करने के लिए किया जा सकता है। इस उत्पाद पैरामीटर का अनुकूलन Co FeSn हेस्लर नैनोकणों में संरचनात्मक क्रम और चुंबकीय संक्रमण तापमान दोनों को बढ़ाने के लिए पाया गया

पार्थ गुहा ऐडजंक्ट फैकल्टी

- इंटीग्रेबल सिस्टम और आइसोक्रोनस डायनामिकल सिस्टम
- नॉनलीनियर डायनेमिक्स, नॉनलीनियर ओडीई और नॉनलीनियर कंपन
- ज्यामितीय यांत्रिकी और गणितीय भौतिकी
- जटिलता, सामान्यीकृत एन्ट्रॉपी और सूचना ज्यामिति

किए गए शोधकार्य

जैकोबी के अंतिम गुणक का उपयोग करके किल-द विनर पारिस्थितिक मॉडल के एकल लैग्रेंजियन विवरण का अध्ययन किया गया। इस मॉडल का हैमिल्टनियन विवरण विवश ज्यामिति और डिराक ब्रैकेट औपचारिकता का उपयोग करके वर्णित किया गया है।

एक ग्राफ़ पर इहारा-ज़ेटा फ़ंक्शन पर आधारित एक सूचना-सिद्धांत का अध्ययन किया गया है। एक गतिशील प्रणाली में एक बिलियर्ड माना जाता है, जहां प्रतिक्रियाएं ग्राफ के शीर्षों द्वारा दर्शायी जाती हैं। इहारा एन्ट्रापी और बिलियर्ड की गतिशीलता के बीच एक गहरे संबंध का पता लगाया गया है।

शुद्धिपत्र में लघु पल्स समीकरण और समकालिकता गुण का भी आगे अध्ययन किया गया है।

वर्तमान में हम \टाइम क्रिस्टल" समस्या पर काम कर रहे हैं, जो समय के साथ उसी तरह दोहराई जाती है जैसे पारंपरिक क्रिस्टल अंतरिक्ष में टोहराते हैं।

एसएनबीएनसीबीएस संबद्धता का उपयोग करते हुए ज़र्नल में प्रकाशन

1. सुदीप गराई, ए. घोष-चौधरी और **पार्थ गुहा**, *ऑन अ ज्योमेट्रिक* डिसक्रिप्शन ऑफ़ टाइम-डिपेंडेंट सिंगुलर लैग्रेंजियनंस विथ एप्पलीकेशन टू बॉयोलॉजिकल सिस्ट्म्स, इंटरनेशनल ज़र्नल ऑफ़ ज्योमेट्रिक मेथड्स इन मॉडर्न फिजिक्स, 19, 2250181, 2022

समित कुमार राय ऐडजंक्ट फैकल्टी

द्धि-आयामी सामग्री, सेमीकंडक्टर नैनोस्ट्रक्चर, ऊर्जा संचयन उपकरण, प्लारमोनिक ऑप्टिकल उपकरण

किए गए शोधकार्य

2D-2D कॉन्फ़िगरेशन में बड़े क्षेत्र ग्राफीन से सजाए गए टर्नरी मिश्र धातु $MoS_{2x}Se_{2(1-x)}$ का उपयोग करके तीन टर्मिनल हाइब्रिड उपकरणों के फोटों प्रतिक्रिया गुणों का अध्ययन किया गया है। MoSSe डिवाइस उत्कृष्ट गेट ट्यूनेबिलिटी के साथ विस्तृत UV-NIR (365-810 एनएम) रेंज में अत्यधिक उच्च फोटोरिस्पॉन्सिविटी (>10⁴ A/W), निम्न शोर समतुल्य शक्ति (~10⁻¹⁴ W/Hz^{0.5}), उच्च विशिष्ट डिटेक्टर (~ 10¹¹ जोन्स) प्रदर्शित करता है। यह कार्य $MoS_{2x}Se_{2(1-x)}$ मिश्र धातुओं के वेफर-स्केल उत्पादन के साथ बड़े क्षेत्र की स्केलेबिलिटी को प्रदर्शित करता है, जिसका उच्च-प्रदर्शन ऑप्टोइलेक्ट्रॉनिक उपकरणों के स्विधाजनक और स्केलेबल निर्माण की दिशा में महत्वपूर्ण निहितार्थ है।

पॉलीमेरिक ग्रेफाइट कार्बोनाइट्राइड (जी-सी3एन4) नैनोशीट से 2डी साइट्रेट कैप्ड पॉलीमेरिक कार्बोनाइट्राइड नैनोडॉट्स (सी-

सी3एन4एनडी) को संश्लेषित किया गया। इन विकसित नैनोडॉट्स में रुम टेंपरेचर पर प्रतिक्रियाशील ऑक्सीजन प्रजातियां (आरओएस) उत्पन्न करने की क्षमता है। स्पेक्ट्रोस्कोपिक अध्ययनों से संकेत मिलता है कि C-C3N4NDs संचित Pb(II) से प्रभावी रूप से बंधते हैं। पीबी(II)-एनडीएस कॉम्प्लेक्स के गठन के बाद अवशोषण और प्रतिदीप्ति स्पेक्ट्रा में महत्वपूर्ण परिवर्तन सीसा का पता लगाने के लिए एक लागत प्रभावी और सरल विधि के रूप में कार्य करता है।

एसएनबीएनसीबीएस संबद्धता का उपयोग करते हुए ज़र्नल में प्रकाशन

- 1. शुभ्राशीष मुखर्जी, दिधीति भट्टाचार्य, समित कुमार राय, और अतींद्र नाथ पाल, हाई-Performance ब्रॉड-बैंड फोटोडिटेक्शन बेस्ड ऑन ग्राफीन $-MoS_{2x}Se_{2(1-x)}$ एलॉय इंजिनियर्ड फोटोट्रांजिस्टर्स, एसीएस एप्लाइड मैटेरियल्स एंड इंटरफेस, 14, 34875, 2022
- सुरिमता मंडल, सायन बायन, रिया घोष, मोनोजीत दास, अनिरुद्ध अधिकारी, दीपांजन मुखर्जी, असीम कुमार मल्लिक, समित कुमार राय और समीर कुमार पाल, फंक्शनलाइज़ टू-डायमेंशनल कार्बन नाइट्राइड नैनोडॉट्स डिटेक्ट एंड रिवर्स लीड टॉक्सिसटी इन द फिजियोलॉजिकल मिलिएउ, एसीएस एप्लाइड मैटेरियल्स एंड इंटरफेस, 14, 27002, 20222

सुभ्रो भट्टाचार्य एडजंक्ट फैकल्टी

अनुसंधान क्षेत्र

मेरी शोध रुचि मेनी-बॉडी प्रणालियों में उभरती घटनाओं के विभिन्न पहलुओं तक फैली हुई है। अभी, मुझे समरूपता के कार्यान्वयन और नवीन क्वांटम संघनित पदार्थ चरणों में मेनी-बॉडी इंटैंगलमेंट के साथ इसके परस्पर क्रिया में रुचि है।

किए गए अनुसंधान कार्य

2022-23 में, मेरा शोध नवीन इलेक्ट्रॉनिक चरणों में समरूपता और उलझाव के परस्पर क्रिया के उपरोक्त पहलुओं का पता लगाने की कोशिश पर केंद्रित था। विशेष रूप से, हमने इसके संदर्भ में इसका पता लगाया

(क) गैर-क्रैमर्स पायरोक्लोर चुंबक Pr2Zr2O7 जहां एक स्पिन-ऑर्बिटल तरल को संभवतः कम तापमान और चुंबकीय क्षेत्र में रैखिक स्पिन-जाली युग्मन (https://www.nature. com/articles/s41567-022-01816-4) और इसके संभावित रमन प्रभागांक द्वारा सहायता प्राप्त होती है। (https://journals.aps.org/prb/abstract/10.1103/ PhysRevB.106.054507),,

(ख) नोएल मैग्नेटोइलास्टिक कपलिंग के माध्यम से छिपे हुए ऑक्टोपोलर ऑर्डर (https://arxiv.org/abs/2211.07666) की जांच करना, (ग) SU(8) समरूपता (https://arxiv.org/ pdf/2304.07223) के साथ डायराक फर्मियन की ओर अग्रसर स्पिन-ऑर्बिट युग्मन के कारण बढ़ी हुई समरूपता।

एसएनबीएनसीबीएस संबद्धता का उपयोग करते हुए ज़र्नल प्रकाशन

1. समीर रोम, संतु बैद्य, सुभ्रो भट्टाचार्जी, और तनुश्री साहा-दाशगुप्ता, मैग्नेटिज्म एंड अनकंवेंशनल टोपोलॉजी इन LaCoO /SrIrO हेटरोस्ट्रक्चर, अपलाइड फिजिक्स लेटर्स, 122, 021602, 2023

पुस्तकालय

पुस्तकालय के बारे में

सेंटर का पुस्तकालय शिक्षा प्राप्ति एवं अनुसंधान का केंद्र है। 1986 में हुई स्थापना के समय से पुस्तकालय उपयोगकर्ताओं को जानकारी प्रदान करने एवं विभिन्न प्रकार के शैक्षिक क्रियाकलापों को विकसित करने में महत्त्वपूर्ण भूमिका निभा रहा है। पुस्तकालय पूरे देश एवं विदेशों में कार्य करने वाले सेंटर के संकाय सदस्यों, शोधकर्ताओं, बाहरी उपयोगकर्ताओं को हर संभव तरीके से अपनी सेवाएँ प्रदान कर रहा है।

संसाधन

पुस्तकालय में काफी समृद्ध एवं उपयोगी दस्तावेज़ों का संग्रह है। इस समय पुस्तकालय में 17056 से अधिक प्तकों का संग्रह है और इसमें 8000 से अधिक सजिल्द पंजिकाएं हैं। यह पुस्तकालय अनेक महत्वपूर्ण पंजिकाओं की खरीद करता है, जिनका प्रकाशन प्रतिष्ठित प्रकाशनों द्वारा अधिकांशतः इलेक्ट्रोनिक स्वरूप में होता है। इसके अतिरिक्त नेशनल नॉलेज रिसोर्स कन्सोर्टियम (एनकेआरसी) का सदस्य होने के नाते पुस्तकालय व्यापक संख्या में महत्वपूर्ण ऑनलाइन पंजिकाओं को पढ़ने की सुविधा प्रदान करता है। इस पुस्तकालय में डेटाबेस, जैसे वेब ऑफ साइंस, साइफ़ाइंडर स्कॉलर, मैथसाइनेट, आईसीएसडी (इनोर्गनीक क्रिस्टल स्ट्रक्चर डेटाबेस), प्लागियारीस्म चेकिंग सॉफ्टवेयर (आईथेनटीकेट) आदि से भी समृद्ध है। इस पुस्तकालय में कथा-साहित्य भी पर्याप्त मात्रा में है, जिसमें अंग्रेज़ी, हिन्दी और बंगला की अच्छी पुस्तकें हैं। इसमें उपन्यास, कहानियाँ, जीवनवृत्त, नाटक और सामान्य रुचि की पुस्तकें शामिल हैं, जो सभी प्रकार के पाठकों को संतुष्ट करती है। पुस्तकालय में दृश्य-श्रव्य सामग्री का भी पर्याप्त संग्रह है। इस पुस्तकालय में एक अलग पंजिका एवं समाचार पाठ अनुभाग भी है। इस अनुभाग में 25 लोकप्रिय पंजिकाओं एवं विभिन्न भाषाओं के 13 समाचार पत्रों की खरीद नियमित रूप से की जाती है। इस पुस्तकालय में एस एन बोस के मूल्यवान अभिलेखों को रखा गया है। इन अभिलेखों में एस एन बोस की निजी वस्तुएँ तथा कुछ दुर्लभ पुस्तकें भी शामिल हैं। आर्काइव के डिजिटल रूप भी वेबसाइट में उपलब्ध हैं।

पुस्तकालय का कार्यसमय

पुस्तकालय प्रातः 9.00 बजे से रात 12.00 बजे तक खुला रहता है। परीक्षा के समय पुस्तकालय पूरी रात खुला रहता है। शनिवार को सुबह 9.00 बजे से शाम 8 बजे तक खुला रहता है। हालांकि परिचालन काउंटर प्रातः 9.00 बजे से शाम 5.30 बजे तक खुला रहता है। पुस्तकालय रविवार एवं राष्ट्रीय अवकाश के दिन बंद रहता है।

पुस्तकालय के उपयोगकर्ता

औसतन 50 उपयोगकर्ता प्रतिदिन पुस्तकालय में आते हैं। ऑनलाइन पंजिकाएँ तथा डेटाबेस कैम्पस के लोकल एरिया नेटवर्क के माध्यम से कैम्पस के भीतर तथा वीपीएएन के माध्यम से कैम्पस के बाहर के यूजर इसका उपयोग कर सकते हैं। अतः उपयोगकर्ता अपनी सुविधा के स्थान से दोनों ऑनलाइन संसाधनों का प्रयोग कर सकते हैं।

सेवाएँ

- 1. पठन सुविधाएँ: पुस्तकालय अपने सदस्यों एवं बाहरी पाठकों को वाचन सुविधाएँ उपलब्ध कराता है। संदर्भ ग्रन्थों सहित सभी पुस्तकें वर्गीकृत हैं और सहज उपलब्ध स्थिति में रखी हुई हैं।
- दस्तावेज उधार सेवा: प्रत्यव्क सदस्य एक बार में 6 पुस्तकें और पंजिकाओं के 2 सजिल्द खंड प्राप्त कर सकता है।
- 3. संदर्भ सेवा: संदर्भ सेवाएँ इ-मेल, टेलीफ़ोन या निजी बातचीत के माध्यम से एनसाइक्लोपीडिया, निर्देशिकाओं, शब्दकोशों, इयरबुक, वेब ऑफ साइन्स, वार्षिक प्रतिवेदन जैसी विभिन्न संदर्भ सामग्री की सेवाएँ प्रदान की जाती हैं।
- 4. ओपैक: पुस्तकालय ऑनलाइन पब्लिक एक्सैस कैटलॉग (ओपैक) उपलब्ध कराता है, जो उपयोगकर्ताओं को वेब-ओपैक के माध्यम से लेखक, शीर्षक, विषय, वर्गीकरण संख्या आदि के द्वारा पुस्तकालय के संग्रहों को पढ़ने की सुविधा प्रदान करता है।

- 5. इ-संसाधन तथा इन्टरनेट सुविधा: पुस्तकालय पर्याप्त संख्या में कम्प्युटरों से समृद्ध है जिसमें केबल लैन के माध्यम से इन्टरनेट कनैक्शन लगे हुए हैं तथा लैपटॉप उपयोगकर्ताओं के लिए नेटवर्किंग सुविधा उपलब्ध है। पुस्तकालय अनेक इलेक्ट्रोनिक पत्रिकाओं, डेटाबेस, अभिलेख संग्रह तथा कॉन्सोशियम को पढ़ने की सुविधा उपलब्ध कराता है। उपयोगकर्ता इ-संसाधन का पूरी तरह उपयोग कर सकते हैं।
- **6. रेप्रोग्राफिक सेवा**: पुस्तकालय में प्रिन्टर सह कॉपीयर, अच्छा कलर प्रिन्टर, फ़ोटोकोपी मशीन तथा पोस्टर प्रिन्टर हैं, जो रेप्रोग्राफिक सेवाएँ प्रदान करते हैं।
- 7. ऑडियो-विजुअल कक्ष: पुस्तकालय में मल्टीमीडिया प्रस्तुतियाँ, वीडियो व्याख्यान, वृत्तचित्र आदि दिखाने के लिए एक अलग ऑडियो-विज़ुअल कक्ष है। कमरा प्रोजेक्टर, स्क्रीन, व्हाइट बोर्ड और बैठने की व्यवस्था से सुसज्जित है। इस कमरे का उपयोग शिक्षकों और छात्रों के लिए चर्चा कक्ष के रूप में किया जाता है।
- 8. बिब्लिओमेट्रिक सेवा: पुस्तकालय उपयोगकर्ताओं के अनुरोध के अनुसार विभिन्न बिब्लिओमेट्रिक रिपोर्ट तैयार करने में मदद करता है, खासकर उपयोग सांख्यिकी, साइटेशन एनालिसिस, एच-इंडेक्स, पत्रिकाओं के इंपैक्ट फ़ैक्टर आदि तैयार करने में मदद करता है।
- 9. पुस्तकालय संसाधन आदान-प्रदान कार्यः पुस्तकालय अपने संसाधनों को भारत के सभी महत्वपूर्ण शैक्षिक/ शोध संस्थानों को प्रदान करता है। नेशनल नॉलेज रिसौर्सेस कॉन्सोर्शियम (एनकेआरसी) के सदस्य के रूप में यह पुस्तकालय विज्ञान एवं प्रौद्योगिकी विभाग तथा सीएसआईआर के अधीन अन्य पुस्तकालयों के साथ निकट संपर्क बनाए रखता है। एसएनबी पुस्तकालय की ब्रिटिश काउंसिल लाइब्रेरी (बीसीएल), कोलकाता एवं अमेरीकन लाइब्रेरी, कोलकाता के साथ संस्थागत सदस्यता है।
- 10. अवकाश के समय पुस्तकालय: पुस्तकालय में एक अलग अनुभाग भी है, जहाँ बंगला, हिन्दी तथा अंग्रेज़ी साहित्य, कथा-साहित्य, क्लासिकल साहित्य, उपन्यास, इतिहास और सामान्य रुचि की पुस्तकें उपलब्ध हैं।
- 11. मानचित्र अनुभागः पुस्तकालय ने एक मानचित्र अनुभाग बनाया जिसमें दीवार पर लगे 5 बड़े मानचित्र शामिल हैं। यानी विश्व, भारत, पश्चिम बंगाल, उत्तर 24 परगना और साल्ट लेक सिटी का मानचित्र।
- 12. प्रलेखीकरण सेवा: पुस्तकालय हिन्दी एवं अंग्रेज़ी में संस्था का वार्षिक प्रतिवेदन, डायरी एवं कलंडर को संगृहीत करता रहा है और उनके प्रकाशन प्रक्रिया हेतु समन्वय का कार्य करता है। सेंटर के विभिन्न दस्तावेज़ों, जैसे पोस्टर, सम्मेलन के ब्रोशर आदि की डिज़ाइनिंग तथा मुद्रण का कार्य।

- 13. नया आगमन विभाग: पुस्तकालय में एक ऐसा अनुभाग है जहाँ नई संसाधित पुस्तकें प्रत्येक महीने उपयोगकर्ताओं के अवलोकनार्थ रखी जाती है। प्रत्येक महीने वहीं सूची वेबसाइट में अपलोड कर दी जाती है और सभी सदस्यों (पुस्तकालय के) को इ-मेल द्वारा सूचित किया जाता है।
- 14. अनुसंधान प्रकाशन स्थित तथा उद्धरण प्राप्तिः पुस्तकालय प्रत्येक महीने सेंटर के अनुसंधान संबंधी प्रकाशनों की स्थिति और उन प्रकाशनों से प्राप्त उद्धरणों को तैयार करता है। उसे नियमित आधार पर वेबसाइट में अपलोड किया जाता है। इस रिपोर्ट में एच-इंडेक्स, प्रति वर्ष प्राप्त उद्धरण इत्यादि भी शामिल हैं।
- 15. संस्थागत रिपोजिटरी: पुस्तकालय में एक संस्थागत डिजिटल रिपोजीटरी भी है, जिसमें सर्च इंजिन की सुविधा है। यह एस एन बोस सेंटर के प्रकाशित अनुसंधान आलेखों की पूर्व-प्रकाशित प्रतियों से समृद्ध है। पुस्तकालय ने एस एन बोस आर्काइव का भी निर्माण किया है जिसमें एस एन बोस से संबंधित फोटोग्राफ एवं स्कैन किए हुए दस्तावेज़ रखे हुए हैं। पुस्तकालय में सेंटर के पी एच डी शोधप्रबंध की रिपोजीटरी भी है।
- 16. एस एन बोस पुरालेख और संग्रहालय: पुस्तकालय एस एन बोस पुरालेख और संग्रहालय का रखरखाव कर रहा है, जहां एस एन बोस से संबंधित दस्तावेजों और लेखों को संरक्षित किया गया है। पुस्तकालय कर्मचारी संग्रहालय देखने के लिए आगंतुकों का मार्गदर्शन करते हैं।

वित्तीय वर्ष 2022-23 में शामिल किए गए संसाधन एवं सेवाएँ

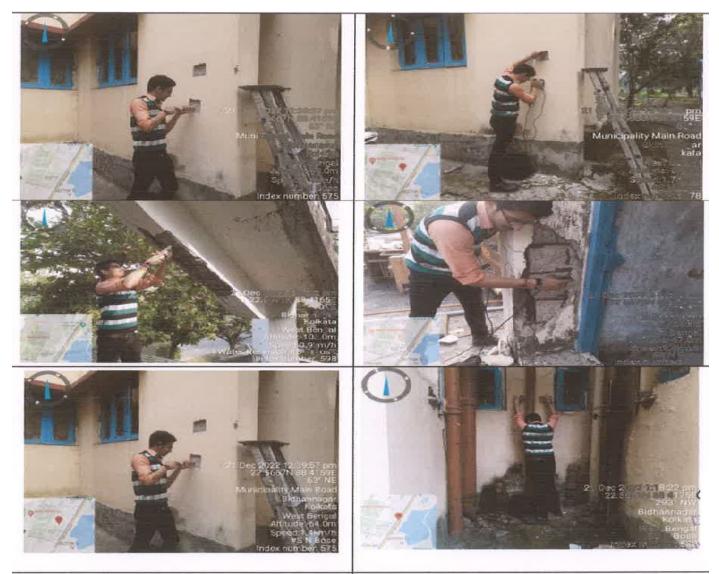
- उपर्युक्त वित्तीय वर्ष के दौरान पुस्तकालय संग्रह में लगभग 256 नई पुस्तकें और कुछ नई पत्रिकाएँ जोड़ी गई हैं।
- पुस्तकालय ने मल्टीपल सर्च सुविधा के साथ एक संस्थागत डिजिटल रिपॉजिटरी विकसित की है। यह एस.एन. के प्रकाशित शोध पत्रों के पूर्व-प्रकाशित प्रतियों से समृद्ध है। केंद्र इस वित्तीय वर्ष में वर्ष 2021 के लिए पूर्व-प्रकाशित प्रतियाँ रिपॉजिटरी में अपलोड किए गए हैं।
- वित्तीय वर्ष 2022-23 में, क्लासिक साहित्य, उपन्यास, लघु कहानी, जीवनी और सामान्य रुचि की पुस्तकों की 36 पुस्तकें खरीदकर फिक्शन अनुभाग को समृद्ध किया गया है।
- 4. उक्त वित्तीय वर्ष में पुस्तकालय संग्रह में 10 हिंदी पुस्तकें शामिल की गईं।

Abinai

सौमेन अधिकारी पुस्तकालयाध्यक्ष-सह-सूचना अधिकारी

अभियांत्रिकी अनुभाग

क. सिविल कार्य


1. ओपन चर्चा कक्ष:

खुली हवा में शैक्षणिक चर्चा के उद्देश्य से मुख्य भवन के सामने गार्डन एरिया में एक ओपन चर्चा कक्ष बनाया गया है।

2. संरचनात्मक लेखापरीक्षा:

केंद्र में मुख्य भवन, भागीरथी, सुवर्णरेखा और आरसीसी ओवरहेड टैंक के लिए एक संरचनात्मक स्थिरता ऑडिट जादवपुर विश्वविद्यालय द्वारा आयोजित किया जाता है।

- 3. गहरे ट्यूबवेल-3 (बसुंधरा के पास) से मुख्य आपूर्ति लाइन तक पाइप लाइन प्रदान करना और गहरे ट्यूबवेल-3 के लिए नए सबमर्सिबल पंप की स्थापना प्रदान करना:
- 4. डक्ट, कृष्णाचूरा छात्रावास में क्षतिग्रस्त जल पाइप लाइन को बदलना।
- 5. सभी जल भंडारण टैंकों की सफाई तिमाही आधार पर की जा रही है।
- 6. फर्नेस लैब-3 में अनुकूलित लकड़ी का फर्नीचर उपलब्ध कराया जाता है।
- 7. सुवर्णरेखा भवन के कक्ष क्रमांक-ई3/4 का नवीनीकरण।

ख) एस्टेट

- 1. परिसर के सौंदर्य स्वरूप को बनाए रखने के लिए भूदृश्य और बागवानी का रखरखाव और विकास
- 2. 75 माइक्रोन से कम के प्लास्टिक कैरी बैग के उपयोग को रोककर "शून्य प्लास्टिक हरित परिसर" बनाए रखना।
- कार्यालय और छात्रावास भवनों के सामान्य क्षेत्रों में निवारक स्वास्थ्य उपाय के एक भाग के रूप में नियमित आधार पर कोविड-19 विशेष स्वच्छता प्रदान करना।
- 4. केंद्र के मुख्य भवन के प्रशासनिक तल में कार्यालय कक्ष के दरवाजों पर त्रिभाषी नेम प्लेट लगाना।

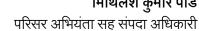
ग) विद्युतीय

- 11 केवी विद्युत उप-स्टेशन: केंद्र के पिरसर में 2 इनडोर प्रकार के 11KV/0.433KV विद्युत उप-स्टेशन हैं जो 04 के माध्यम से बिजली प्रदान कर रहे हैं। 630 केवीए ट्रांसफार्मर की।
- 2. एमवी-एलटी वितरण पैनल: एमवी-एलटी वितरण पैनल के माध्यम से, मुख्य भवन, भागीरथी गेस्ट हाउस, कृष्णचूरा छात्रावास भवन, बसुंधरा भवन, सुवर्णरेखा भवन (ईएसक्यू), राधाचूरा छात्रावास, 02 प्रयोगशाला भवनों में बिजली आपूर्ति की जाती है। सभी स्ट्रीट लाइटों सहित पंप हाउस।
- 3. स्वचालित पावर फैक्टर नियंत्रक पैनल।
- 4. डब्ल्यूबीएसईडीसीएल से बिजली लागत/पावर फैक्टर लाभ को कम करने के लिए केंद्र के पास 870 केवीएआर पावर फैक्टर नियंत्रकों की कुल क्षमता है।
- 5. ठं.केंद्र के पास अपने सभी आवश्यक स्थानों पर 24X7 आधार पर 100% विद्युत पावर बैकअप प्रदान करने के लिए तीन संख्या में डीजल जनरेटर सेट हैं यानी 320 केवीए (टीआईएल मेक), 500 केवीए (ग्रीव्स कॉटन मेक) और अन्य 750 केवीए (पर्किन्स मेक) हैं। डब्ल्यूबीएसईडीसीएल की ओर से बिजली बंद होने की स्थित में या ट्रांसफार्मर/स्विच गियर आदि के उपयुक्त निवारक रखरखाव के समय केंद्र की।
- 6. केंद्र में औसतन 200 ट्र. वीआरएफ एयर-कंडीशनिंग सुविधा जिसमें विभिन्न क्षमताओं और विभिन्न प्रकार की 600 एयर

वार्षिक प्रतिवेदन 2022-2023

कंडीशनिंग मशीनें शामिल हैं, जिन्हें उचित शीतलन प्रभाव प्रदान करने के लिए विभिन्न लैब क्षेत्रों, कार्यालय स्थानों और कंप्यूटर सेंटर सर्वर रूम में समय-समय पर रखरखाव और सेवा की आवश्यकता होती है। केंद्र में अनुसंधान सुविधाओं के लिए वैज्ञानिक उपकरण।

- 7. पूरे वर्ष गर्म पानी की उपलब्धता के लिए कृष्णचुरा छात्रावास भवन की छत पर सौर जल तापन प्रणाली (एसडब्ल्यूएचएस) की 2500 एलपीडी क्षमता का रखरखाव समय-समय पर किया जाता है।
- 8. अग्नि एवं जल पम्पः 12.5 एच.पी. के 02 नग हैं। सबमर्सिबल मोटर पंप सेट (बोरवेल प्रकार), 04 सेंट्रीफ्यूगल पंप, 02 3.0


एच.पी. ओपनवेल प्रकार के सबमर्सिबल वॉटर पंप, 10 एचपी के 02 नग। कृष्णचूरा छात्रावास भवन और बसुंधरा भवन में पानी की आपूर्ति के लिए मोनो ब्लॉक पंप। इनके अलावा, 75.0 एचपी क्षमता वाले फायर पंप और डीजल चालित पंप भी हैं। रेटिंग 5.0 एच.पी. के जॉकी पंप के साथ। कृष्णचुरा छात्रावास भवन और बस्ंधरा भवन की अग्निशमन व्यवस्था के लिए, जिनका नियमित रूप से रखरखाव किया जाता है। इसके अलावा पंप हाउस में एक आयरन रिमूवल प्लांट है, उस आईआर प्लांट के संचालन और रखरखाव की देखभाल इंजीनियरिंग अनुभाग द्वारा की जाती है।

मिथिलेश कुमार पांडे

Mishiler

Staff members, Engineering Section.

कंप्यूटर सेवा प्रकोष्ठ

संजय चौधरी

वैज्ञानिक – डी

कार्य की प्रकृति के दो अलग-अलग क्षेत्र हैं:

- 1. प्रशासनिक प्रकृति: प्रकोष्ठ के वैज्ञानिक प्रभारी के रूप में कंप्यूटर सेवा प्रकोष्ठ के तहत केंद्रीय कम्प्यूटेशनल सुविधाओं को संभालना।
- 2. शैक्षणिक प्रकृति: अनुसंधान गतिविधियाँ व्यक्तिगत और सहयोगात्मक अनुसंधान के साथ।
- क) शैक्षणिक कार्य सामान्य अनुसंधान क्षेत्रों और समस्याओं पर काम किया गया:
 - 1. नेशनल इंस्टीट्यूट ऑफ टेक्नोलॉजी, मेघालय में आर्टिफिशियल इंटेलिजेंस और मशीन लर्निंग, सूचना प्रौद्योगिकी और एज/फॉग कंप्यूटिंग पर कंप्यूटर साइंस और इंजीनियरिंग में पीएचडी कर रहा हूं।

पीएच.डी. प्रगति: पीएचडी थीसिस राष्ट्रीय प्रौद्योगिकी संस्थान (एनआईटी), मेघालय में पूर्व-प्रस्तुत।

अपनी सैद्धांतिक तकनीकी प्रशासनिक जिम्मेदारी के अलावा, मैं IoT पर एज कंप्यूटिंग/फॉग कंप्यूटिंग अनुसंधान पर काम कर रहा हूं। एज/फॉग कंप्यूटिंग दुनिया भर के अंतिम उपयोगकर्ताओं के लिए कंप्यूटिंग संसाधनों तक ऑन-डिमांड पहुंच प्रदान करता है। यह विभिन्न भौगोलिक क्षेत्रों में फैली अपनी परिवेश साइटों के माध्यम से 'पे-एज़-यू-गो' मॉडल पर सेवाएं प्रदान करता है। शहरों में नवीकरणीय ऊर्जा स्रोतों का उपयोग करना, और इसके उपयोग को अधिकतम करने के लिए नवीकरणीय ऊर्जा का पूर्वानुमान करना। इस शोध के प्रमुख उद्देश्य इस प्रकार हैं:

- 1. क्यूओएस स्निश्चित करते हुए अतिभारित स्थिति के तहत अंतिम उपयोगकर्ता अनुरोधों के लिए वर्चुअल मशीन (वीएम) संसाधन आवंटन से निपटने के लिए प्रभावी समाधान की जांच करना।
- 2. इंटरप्ले क्यूओएस और ऊर्जा खपत की जांच करना।
- 3. कोहरे के वातावरण पर क्यूओएस सुनिश्चित करते हुए ऊर्जा खपत में कमी के लिए नवीन योजना की जांच करना।
- 4. क्यूओएस कारकों को बनाए रखने के लिए स्थायी गतिशील वीएम प्लेसमेंट एल्गोरिदम विकसित करना।

यह शोध कार्य वर्तमान फॉग संसाधन आवंटन दृष्टिकोण की सीमाओं का प्रतिनिधित्व करेगा: एक ओर, उतार-चढ़ाव वाली मांग और आपूर्ति से निपटने में, और दूसरी ओर, फॉग के अंतिम उपयोगकर्ताओं को अधिक नियंत्रण प्रदान करने में। लक्ष्य अंततः फॉग सक्षम स्मार्ट शहरों में ऊर्जा और क्यूओएस कारकों को सुनिश्चित करने वाले बाजार-आधारित तंत्र के माध्यम से अधिक लचीला और कुशल आवंटन सक्षम करना है।

Publication:

1. संजय चौधरी, आशीष कुमार लुहाच, वलीद अलनुमाय, बुद्धदेब प्रधान और दीप्तेंद्र सिन्हा रॉय, स्मार्ट शहरों, कंप्यूटर और इलेक्ट्रिकल इंजीनियरिंग में प्रौद्योगिकी ऊर्जा दक्षता की बेहतर जानकारी के लिए एक न्यूरो विकासवादी योजना, 104 (भाग बी), 108443, 2022

कंप्यूटर सेंटर एक केंद्रीय सुविधा है, जो संस्थान के विभिन्न शैक्षणिक विभागों और विभिन्न अनुभागों की जरूरतों को पूरा करता है। एसएनबीएनसीबीएस में कंप्यूटर सेंटर का मिशन शैक्षणिक उत्कृष्टता की खोज के लिए एक कंप्यूटिंग वातावरण बनाना और बनाए रखना है।

केंद्रीय कम्प्यूटेशनल संसाधन (2022-23):

सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र, अपने अकादिमक अनुसंधान और प्रशासनिक प्रयास के लिए कंप्यूटिंग सुविधा:

भारत के महत्वाकांक्षी राष्ट्रीय सुपर कंप्यूटिंग मिशन के हिस्से के रूप में, आने वाले दिनों में देश के शीर्ष संस्थानों में नौ और सुपर कंप्यूटर स्थापित किए जाएंगे। एसएनबीएनसीबीएस (सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र) उनमें से एक संस्थान होगा। 830 टीएफ सुपरकंप्यूटर के कार्यान्वयन के लिए एसएनबीएनसीबीएस, कोलकाता और सीडीएसी, पुणे के बीच समझौता ज्ञापन पर हस्ताक्षर किए गए हैं।

सीडीएसी बैंगलोर द्वारा किए गए सर्वेक्षण के आधार पर एस.एन. बोस सेंटर की उच्च प्रदर्शन कंप्यूटिंग सुविधा को भारत के शीर्ष 50 सुपर कंप्यूटरों (क्रे एक्सई 6 और क्रे एक्ससी 50) में सूचीबद्ध किया गया है। क्लस्टर का सैद्धांतिक प्रदर्शन 222.40 टीएफ है जो केंद्र की जीवंत कम्प्यूटेशनल गतिविधि की कम्प्यूटेशनल आवश्यकता को पूरा करता है।

क्षमता

- नई प्रौद्योगिकी के विकास एवं कार्यान्वयन में दक्षता
- डेटाबेस प्रबंधन
- केंद्र में ही विंडो/लिनक्स आधारित सॉफ्टवेयर का डिजाइन एवं विकास।

गतिविधियाँ

- केंद्र में ही सॉफ्टवेयर का विकास
- डेटाबेस प्रबंधन

- नेटवर्किंग समाधान एवं सेवाएँ
- 🕨 इंफ्रास्ट्रक्चर प्रापण, स्थापना और रखरखाव
- र्मूचना सुरक्षा समाधान
- भंडारण समाधान
- वेब सेवाएं
- उपयोगकर्ता सहायता सेवाएँ
- प्रशिक्षण
- शैक्षिक अनुसंधान

उपयोग में आने वाला सॉफ़्टवेयर (केंद्र में विकसित)

- कार्मिक सूचना प्रणाली
- लेखा विभाग के लिए बैक ऑफिस ऑटोमेशन (बिलिंग, वेतन, पेंशन, जीपीएफ, एनपीएस, आयकर, ई-भुगतान आदि शामिल है)
- खरीद के लिए बैक ऑफिस ऑटोमेशन, मुख्य स्टोर
- ईआरपी व्यक्तिगत सूचना सॉफ्टवेयर, वेब आधारित व्यक्तिगत जानकारी
- गेटवे सुरक्षा और डेटा सुरक्षा
- संस्थान डोमेन के अंतर्गत ईमेल सेवा
- वेब पोर्टल ई-लर्निंग
- वेब साइटें इंटरनेट, इंट्रानेट
- बायोमेट्रिक उपस्थिति प्रसंस्करण प्रणाली और समय निर्धारण
- ऑनलाइन प्रवेश फॉर्म जमा करना
- ऑनलाइन छात्र मूल्यांकन
- ऑनलाइन स्टाफ/छात्र अवकाश प्रविष्टि, अनुमोदन और ड्यूटी रोस्टर
- ऑनलाइन एमआईएस डैशबोर्ड
- गेट पास प्रबंधन
- प्रोजेक्ट पोर्टल-संस्थान परियोजनाओं की निगरानी के लिए

- छात्र भुगतान गेटवे
- फ़ाइल ट्रैकिंग सिस्टम
- मासिक प्रगति रिपोर्ट प्रस्तुत करने के लिए शैक्षणिक अनुभाग के लिए सॉफ्टवेयर
- वीडियो कॉन्फ्रेंसिंग और वर्च्अल क्लास रूम

टूल्स

- संस्थान सामान्य सॉफ्टवेयर्स
- एंटीवायरस एंडपॉइंट सुरक्षा
- मैथेमैटिका
- मैथलैब
- एमएस 365

स्विधाएँ

केंद्रीय/परियोजना कम्प्यूटेशनल सुविधाओं का सारांश

मशीन का नाम एचपीसी (सामानांतर/ क्रमिक)	प्रोसेसर कोर	स्टोरेज	उपयोगकर्ता
फोटॉन	84	-	55
फोनॉन	84	-	27
यूएनएएनएसटी	480	12 टीबी	25
यूएनएएनएसटी	96	12 टीबी	30
पोलारोन	416	64 टीबी	35
नई एचपीसी	1312	80 टीबी	15
नया जीपीयू	6 Nodes	-	5

मशीन का नाम	प्रोसेसर कोर	स्टोरेज	उपयोगकर्ता
हाइब्रिड सिस्टम	24 सीपीयू कोर +	4 टीबी	08
(सीपीयू+जीएचपी)	14336 जीपीयू कोर		
एथीना	320	-	12
क्रे	7808	255 टीबी	50
टीआरसी क्रे	960	120 टीबी	30

अत्याधुनिक डेटा केंद्र

- 1000 एमबीपीएस लीज्ड लाइन इंटरनेट कनेक्शन
- 100 एमबीपीएस बीएसएनएल कनेक्टिविटी सहित एनकेएन कनेक्टिवटी
- वाई-फाई सक्षम, 400 नोड्स के साथ इंटर कनेक्टेड परिसर
- वेब सर्वर 4
- संस्थान ईमेल सर्वर 1
- एप्लिकेशन/प्रबंधन/टर्मिनल सर्वर 14
- नेटवर्क सुरक्षा उपकरण 2
- राउटर और स्विच 89

- वायरलेस नियंत्रक 1, पहुंच बिंदु 50
- लेजर प्रिंटर 128
- डॉट-मैट्रिक्स प्रिंटर 38
- दस्तावेज़ स्कैनर 7
- पीसी-383
- निगरानी कैमरा 55
- एनवीआर-2
- 20 पीसी के साथ कंप्यूटर लैब
- 20 पीसी के साथ लाइब्रेरी में सामान्य ब्राउज़िंग सुविधा

सेवाएँ

उपयोगकर्ता सहायता सेवाएँ - सेवाओं का एक सच्चा अभिसरण, जो संगठन की संपूर्ण आवश्यकता को पूरा करता है।

- सॉफ्टवेयर और हार्डवेयर का रखरखाव
- अनुसंधान गतिविधियों के लिए समर्थन
- वेब साइट अपडेट
- सर्वर, स्विच, घुसपैठ का पता लगाने वाली प्रणालियों, फ़ायरवॉल की निगरानी और प्रबंधन
- पैच प्रबंधन, उन्नयन
- सुरक्षा आकलन, सुरक्षा ऑडिट
- आपात्कालीन स्थितियों पर प्रतिक्रिया देना

सेवाओं के लिए अपनाई जाने वाली सर्वोत्तम प्रणाली

- उपयोगकर्ता प्रार्थमिकताएँ और सेवा
- हार्डवेयर और सॉफ्टवेयर विक्रेता स्वतंत्रता
- स्वामित्व की लागत में यथासंभव कम करना
- सर्वोत्तम प्रदर्शन, लचीलेपन और स्केलेबिलिटी की हार्डवेयर इकाइयाँ
- सुरक्षा और लचीलापन
- कंद्रीकृत और कुशल सेवा कॉल प्रबंधन
- अनुप्रयोग उपलब्धता
- संबंधित बिजली की खपत में कमी
- भौतिक स्थान की कमी, सर्वर, व्यापक भंडारण
- सभी प्रणालियों का लचीलापन और मापनीयता

sanjoy choudhury संजय चौधरी

प्रभारी, कंप्यूटर सेवा प्रकोष्ठ

परियोजना एवं पेटेंट प्रकोष्ठ

परियोजना एवं पेटेंट प्रकोष्ठ, केंद्र की परियोजनाओं और पेटेंट के अभिलेख रक्षण प्रकोष्ठ के रूप में कार्य करता है। यह बाह्य निधीयन के लिए प्रस्तृत परियोजना प्रस्तावों, स्वीकृत परियोजनाओं, दायर किए गए पेटेंट प्रस्तावों और केंद्र को दिए गए पेटेंट का विवरण रखता है। यह पेटेंट के अनुदान के लिए दायर प्रस्तावों के मूल्यांकन के लिए प्राधिकरण द्वारा गठित समिति (यों) के साथ समन्वय भी करता है और आविष्कारक(कों) के निर्देश के तहत पेटेंट दाखिल करने के दौरान प्रशासनिक मामलों का भी ध्यान रखता है।

वर्ष 2022-23 के दौरान परियोजना और पेटेंट सेल के सदस्य :

प्रो. समीर कुमार पाल – संयोजक

डॉ. अतींद्र नाथ पाल - सदस्य

प्रो. गौतम गंगोपाध्याय - सदस्य

प्रो. सौमेन मंडल - सदस्य

उप कुलसचिव (प्रशासन) - सदस्य

उप कुलसचिव (वित्त) - सदस्य

डीलिंग असिस्टेंट, अधिष्ठाता कार्यालय (सं) - सदस्य

कार्यालय सहायक, शैक्षणिक अनुभाग - सदस्य

श्री अच्युत साहा, निदेशक के निजी सहायक, परियोजना और पेटेंट प्रकोष्ठ को सचिवीय सहायता प्रदान करते हैं।

निम्न तालिका पिछले पांच वर्षों के लिए केंद्र में बाह्य वित्त पोषित परियोजनाओं का विवरण प्रस्तुत करती है:

वर्ष	परियोजनाओं की संख्या	प्राप्त राशि (रु.)
2018-2019	31	4,62,15,993=00
2019-2020	27	4,15,59,908=00
2020-2021	30	2,21,97,328=00
2021-2022	34	3,22,95,557=00
2022-2023	40	3,55,46,511=00

इसके अलावा, केंद्र को जनवरी 2016 के दौरान टीआरसी परियोजना भी मिली है।

स.ना. बसु राष्ट्रीय मौलिक विज्ञान केंद्र 2022-23 के दौरान परियोजनाएँ

-2.2	2	0-0	-0 \ -00-		
परियोजना का शीर्षक	पीआई / सह- पी आई	निधीयन एजेंसी	परियोजना की अवधि	कुल स्वीकृत	अभियुक्तियाँ
SERB/BGS/17-18/189 – "बाइनरी	डॉ बर्णाली घोष (साहा) – पी आई	SERB	06-07-2018 to 05-07-2021	44,48,969/-	
ऑक्साइड के ऊर्ध्वाधर रूप से संरेखित	डॉ माणिक प्रधान – सह- पी आई	EMR/2017/001990	05-01-2022 तक 6 महीने के लिए बढ़ाया		
नैनोवायर या नैनोट्यूब के विकास			गया		
को समझना और उनके द्वारा गैसों के			(कोई लागत विस्तार नहीं)		
समस्थानिक विखंडन की भौतिकी"			05-04-2022 तक 3 महीने और बढ़ा		
			दिया गया		
			(कोई लागत विस्तार नहीं)		
DST/ASM/17-18/201 -	प्रो. अर्चन एस. मजूमदार	DST	24-04-2019 से 23-04-2022	17,00,000/-	
"फोटोनिक उपकरणों के साथ क्वांटम	C.	DST/ICPS/QuST/	30-09-2023 तक बढ़ाया गया	(Capital)	
सूचना प्रौद्योगिकी"		Theme-1/2019		97,14,000/-	
		(Proposal-18)		(General)	
DST/PM/17-18/204 – "सेमीकंडक्टर	प्रो. प्रिया महादेवन	DST	28-12-2018 to 27-12-2021	30,83,480/-	
नैनोप्लेटलेट्स के इलेक्ट्रॉनिक,		DST/NM/	27-06-2022 तक कोई लागत विस्तार नहीं		
संरचनात्मक और ऑप्टिकल गुण"		NS/2018/18 (G)			
INAE/SKP/18-19/219 – "नवजात शिशु	प्रो. एस.के. पाल	INAE	01-08-2018 to 31-07-2021	57,00,000/-	
में बिलीरुबिन स्तर, हीमोग्लोबिन एकाग्रता		INAE/121/AKF	01-08-2021 से 31-07-2023 तक 2	(पहले तीन वर्षों के	
और ऑक्सीजन संतृप्ति के सटीक माप के			साल के लिए बढाया गया	लिए)	
ृ लिए एक स्वदेशी गैर-इनवेसिव गैर-संपर्क				+	
पोर्टेबल मजबूत हाथ से पकड़े जाने वाले				19,00,000/-	
उपकरण का बड़े पैमाने पर सत्यापन /				+	
फील्ड परीक्षण"				19,00,000/-	

परियोजना का शीर्षक	पीआई / सह- पी आई	निधीयन एजेंसी	परियोजना की अवधि	कुल स्वीकृत	अभियुक्तियाँ
IUSSTF/AB/18-19/220 -	प्रोफेसर अंजन बर्मन	IUSSTF	23-12-2019 to 22-12-2021	32,82,850/-	
"ऊर्जा कुशल कंप्यूटिंग, संचार और डेटा		IUSSTF/JC-030/2018	31-03-2023 तक कोई लागत		
भंडारण के लिए नैनोमैग्नेटिक्स केंद्र"			विस्तार नहीं		
SERB(DST)/SC/18-19/221 - "RhoGDI	डॉ. सुमन चक्रवर्ती	SERB	16-03-2019 to 15-03-2022	31,96,600/-	
के फॉस्फोराइलेशन के माध्यम से Rho		ECR/2018/002903	14.05.2022 तक कोई लागत		
GTPases के नियमन का आणविक तंत्र:			विस्तार नहीं		
कम्प्यूटेशनल तरीकों का उपयोग करके					
"फॉस्फोराइलेशन कोड" को उजागर करने की					
दिशा में"					
ICAR/SKP/18-19/230 -	प्रो. एस.के. पाल	ICAR (NASF)	01-06-2021 to 31-05-2024	41,00,000/-	
"मिट्टी और पौधों की वास्तविक समय	(एसएनबीएनसीबीएस से	NASF/NRM-8031/2020-		(Non Recurring)	
सिंचाई के लिए क्लाउड आधारित नेटवर्क के	सह-पीआई)	21/214		59,04,278/-	
माध्यम से नैनो सेंसर का विकास और इसका	अग्रणी केंद्र:	dated 31-05-2021		(Recurring Cost)	
अनुप्रयोग"	ICAR-IISS			एसएनबीएनसीबीएस	
	अन्य सह केंद्र:			के लिए	
	ICAR-CIAE				
Sarfez/SC/19-20/232 -		Sarfez Cure India	19-06-2019 to 18-06-2022	8,24,032/-	
"एलडीएलआर के साथ अंतःक्रिया को	g	Salisz Salo maia	18/12/2022 तक कोई लागत	5, = .,00 = /	
नियंत्रित करने की दिशा में पीसीएसके9 प्रोटीन			विस्तार नहीं		
के लचीले क्षेत्रों की इलेक्ट्रोस्टैटिक्स और			14((11(-10)		
गतिशीलता को ट्यून करना: एक कम्प्यूटेशनल					
दृष्टिकोण"					
SERB/RKM/19-20/234 –	प्रो राजीव कुमार मित्रा	SERB	06-02-2020 to 05-02-2023	26,56,800/-	
SERB/RKM/19-20/234 -		CRG/20I9/000970			
"टीएचजेड टाइम डोमेन और ऑप्टिकल		0.10/20.0/0000.0			
टाइम रिजॉल्व्ड स्पेक्ट्रोस्कोपी द्वारा भीड़ भरे					
वातावरण में एकत्रीकरण के दौरान प्रोटीन					
हाइड्रेशन में परिवर्तन पर जांच"					
SERB/PP/19-20/237 -		SERB	21-02-2020 to 20-02-2023	6,60,000/-	
"स्व-चालित कणों के मॉडल में उतार-चढ़ाव	3	MTR/2019/000386		, ,	
और परिवहन"					
SERB/SC/19-20/240 -	डॉ. शकुंतला चटर्जी	SERB	15-02-2020 to 14-02-2023	6,60,000/-	
"शोर भरे वातावरण में चलने-फिरने की गति की		MTR/2019/000946			
सेद्धांतिक जांच"					
DST/AB/19-20/246 — "स्पिंट्रोनिक	प्रोफेसर अंजन बर्मन	DST	21-10-2021 to 20-10-2026	1,28,43,000/-	
अनुप्रयोगों के लिए दृढ़ता से स्पिन कक्षा युग्मित		DST/NM/TUE/QM-3/2019-			
टोपोलॉजिकल क्वांटम हेटरोस्ट्रक्चर का		1G-SNB			
विकास"					
DST/TSD-AP/19-20/249 –	एसएनबीएनसीबीएस के	(DST)	28-03-2023 to 27-03-2028	97,92,549/-	
"टोपोलॉजी अवधारणा में सामूहिक और	जांचकर्ता:	DST/NM/TUE/QM-10/2019			
इंजीनियर्ड घटना के लिए कंसोर्टियम"	डॉ अतींद्र नाथ पाल	(C)/2			
		(Nano Mission)			
PM/SERB/19-20/250 -	प्रो. प्रिया महादेवन	SERB	30-03-2020 to 29-03-2025	2,17,60,250/-	
"ट्रांज़िशन मेटल डाइक्लोजेनाइड्स के साथ		IPA/2020/000021			
ट्विस्ट्रोनिक्स"					
DST(SERB)/TS/19-20/251 –	ਤ <u>ੱ</u> i. ਟੀ. सेट्टी	SERB	18-12-2020 to 17-12-2022	26,02,800/-	
"एंटीफेरोमैग्नेटिक टोपोलॉजिकल सिस्टम में		SRG/2020/000393			
भौतिक और इलेक्ट्रॉनिक गुणों पर चुंबकीय क्षण					
पुनर्संरचना का प्रभाव, (Mn1-xFex)3Sn और					
(Mn1-xFex)3Ge"					
SERB/MK/19-20/253 –	डॉ मनोरंजन कुमार	SERB	30-12-2020 to 29-12-2023	58,68,145/-	
"कम तापमान पर कुंठित चुंबकों में क्वांटम और		CRG/2020/000754			
थर्मल उतार-चढ़ाव की खोज"					

वार्षिक प्रतिवेदन 2022-2023

परियोजना का शीर्षक	पीआई / सह- पी आई	निधीयन एजेंसी	परियोजना की अवधि	कुल स्वीकृत	अभियुक्तियाँ
SERB(DST)/ANP/19-20/255 – "इनैलास्टिक इलेक्ट्रॉन स्पेक्ट्रोस्कोपी और शॉट शोर के माध्यम से परमाणु और आणविक नैनो-संपर्क में कक्षीय संकरण और संरचनात्मक विषमता की जांच करना"	डॉ अतींद्र नाथ पाल	SERB CRG/2020/004208	17-02-2021 to 16-02-2024	36,12,421/-	
SERB/TSD/20-21/260 — "जे.सी. बोस फ़ेलोशिप"	प्रो. तनुश्री साहा दासगुप्ता	SERB JCB/2020/000004 Dairy No. SERB/F/3797/2020-2021	12-10-2020 to 11-10-2025	95,00,000/-	
SERB(NPDF)/JB/20-21/261 – "संवेदन में अनुप्रयोगों के साथ संक्रमण धातु डाइक्लोजेनाइड आधारित सतह प्लास्मोन अनुनाद संरचना पर सैद्धांतिक और प्रयोगात्मक जांच"	डॉ जयेता बनर्जी (संरक्षक: डॉ. माणिक प्रधान)	SERB (NPDF) PDF/2020/001422	31-12-2020 to 30-12-2022	16,41,600/-	
SERB/NK/20-21/264 – "लौहचुंबकीय टोपोलॉजिकल क्वांटम सामग्रियों में त्रि-आयामी से द्वि-आयामी क्वांटम विसंगतिपूर्ण हॉल प्रभाव"	डॉ नितेश कुमार	SERB CRG/2021/002747	10-3-2022 to 09-3-2025	27,26,791/-	
DST/ASM/20-21/265 – "क्वांटम हीट इंजन" (QuEST Project Q-79)	प्रो. अर्चन एस. मजूमदार (सह- पी आई) पी आई – डॉ. सिबाशीष घोष, आईएमएससी, चेन्नई	DST DST/ICPS/QuST/ Theme-1/2019 (Proposal-13)	22-04-2021 to 21-04-2024	12,17,000/- (1st Year) 8,07,000/- (2nd Year) 8,66,000/- (3rd Year)	
SERB/SC/20-21/266 – "दवा जैसे अणुओं के भौतिक रासायनिक गुणों की तीव्र भविष्यवाणी के लिए कृत्रिम तंत्रिका नेटवर्क (एएनएन) आधारित मॉडल का विकास"	डॉ. सुमन चक्रवर्ती	SERB MTR/2021/000859	24-02-2022 to 23-02-2025	6,60,000/-	
RSF-DST/TSD/21-22/268 — "नवीन चुंबकीय और टोपोलॉजिकल सामग्रियों की खोज करें"	प्रोफेसर तनुश्री साहा- दासगुप्ता	DST DST/INT/RUS/RSF/P-53/2021 (G)	20-01-2023 to 19-01-2026	82,52,170/-	
Holoflex/SKP/21-22/269 – "डिस्प्ले लेबल में संभावित अनुप्रयोगों के लिए रेट्रो रिफ्लेक्टिव सामग्री के बड़े पैमाने पर उत्पादन के लिए एक औद्योगिक प्रक्रिया का विकास"	प्रो. एस.के. पाल	Holoflex Limited	01-07-2021 to 30-06-2022 31-03-2023 तक बढ़ाया गया	7,80,000/- (9,20,400/- including GST) + 2,26,200/- + 2,26,200/- + 2,26,200/-	
SERB(NPDF)/DS/21-22/270 – "क्वांटम उपकरणों का स्व-परीक्षण और उपकरण-स्वतंत्र सूचना प्रसंस्करण"	डॉ देबाशीष साहा	SERB (NPDF) PDF/2020/001682	15-03-2021 to 14-03-2023 12-8-2022 को इस्तीफा दे दिया	22,36,800/-	
"एब इनिशियो टोपोलॉजिकल मॉट इंसुलेटर की खोज करता है"	प्रो. प्रिया महादेवन	DST DST/INT/SWD/VR/P-08/2019	12-01-2021 to 11-01-2024	30,30,600/-	
"संक्रमण धातु ऑक्साइड की मुक्त खड़ी फिल्मों की इलेक्ट्रॉनिक संरचना".	प्रो. प्रिया महादेवन	SERB SPF/2021/000066	24-03-2021 to 23-03-2023	Amount received 12,70,000/- + 7,23,000/-	
SERB/DB/21-22/271 – "ग्राउंड आधारित गामा-रे और न्यूट्रिनो टेलीस्कोप का उपयोग करके बहुत उच्च ऊर्जा क्षेत्र में खगोलभौतिकीय स्रोतों का अध्ययन" – रामानुजन फैलोशिप	डॉ. देबंजन बोस	SERB SB/S2/RJN-038/2017	Implemented at SNBNCBS from 04-12-2020 वैध अवधि: 14.11.2022	Amount received 29,00,000/-	
Max Planck/NK/21-22/275 - "अर्ध-एक- आयामी सामग्रियों में नवीन क्वांटम स्थिति"	डॉ नितेश कुमार	Max Planck	01-09-2022 to 31-08-2027	Euro 1,00,000	

परियोजना का शीर्षक	पीआई / सह- पी आई	निधीयन एजेंसी	परियोजना की अवधि	कुल स्वीकृत	अभियुक्तियाँ
UGC-DAE CSR/TS/21-22/276	डॉ. टी. सेट्टी	UGC-DAE CSR	06-04-2022 to 05-04-2023	45,000/-	
– "सहसंबंधित चुंबकीय टोपोलॉजिकल		CRS/2021-22/01/373			
सेमीमेटल्स की स्पेक्ट्रोस्कोपिक जांच"					
DBT/MM/21-22/277 —	डॉ.मनोज मंडल	DBT	15-07-2021 to 14-07-2026	1,13,60,000/-	
"फोटोसिस्टम ॥ में जल-ऑक्सीकरण तंत्र		BT / RLF / Re-entry / 41 /			
और प्रोटॉन युग्मित इलेक्ट्रॉन स्थानांतरण		2020			
प्रतिक्रियाओं की खोज: स्वच्छ ईंधन की ओर					
एक दृष्टिकोण"					
- रामलिंगस्वामी री-एंट्री फ़ेलोशिप					
SERB/AHK/21-22/278 – "फोटोनिक	डॉ अली हुसैन खान	SERB	01-11-2021 to 31-03-2026	Credited	
अनुप्रयोगों के लिए डोप्ड 2डी नैनोक्रिस्टल		RJF/2020/000091		Till Date:	
(रामानुजन फैलोशिप)				11,62,598/-	
				+ 19,14,000/-	
DAE(RRF)/RB/21-22/279 – "गैर-	प्रो. रबिन बनर्जी	DAE (RRF)	03-05-2021 to 02-05-2024	13,50,000/-	
सापेक्षतावादी सिद्धांतों में गेज और गुरुत्वाकर्षण		1003/6/2021/RRF/ R&D-		(1 st Year)	
समरूपता: औपचारिकता और अनुप्रयोग" —		II/10348		7,56,280/-	
डीएई राजा रमन्ना फैलोशिप		Dated 2-9-2021		(2 nd Release)	
SERB/PSP/21-22/281 – "हाइड्रोजन		SERB	27-09-2022 to 26-09-2024	32,35,560/-	
उत्पादन के लिए फोटोकैटलिटिक जल	01. 7414 (11(14)(144)(144)	SRG/2022/000217	27 03 2022 to 20 03 2024	32,33,300/	
विभाजन के लिए ओलेफिन-लिंक्ड सहसंयोजक		Dated 9-9-2022			
कार्बनिक फ्रेमवर्क (सीओएफ)"		Dateu 9-9-2022			
SERB/AHK/22-23/283 – "हेवी-मेटल-मुक्त	 डॉ अली हुसैन खान	SERB	08-02-2023 to 07-02-2026	42,26,428/-	
फोटोनिक कोलाइडल 2डी नैनोसिस्टल्स"	5. 5.t § 5	CRG/2022/006225	00 02 2020 to 0. 02 2020	.=,=0, .=0,	
SERB/AC/22-23/284 — "फेरोइलेक्ट्रिक/		(SERB)	Sanction Date: 06-03-	22,08,600/-	
फोटोइलेक्ट्रॉनिक 2डी सामग्री हाइब्रिड	ा जानजारा मान्यरा	CRG/2022/001145	2023	22,00,000/	
प्रणाली का उपयोग करने वाले ब्रॉडबैंड		CKG/2022/001143	2023		
ऑप्टोइलेक्ट्रॉनिक सिनैप्टिक उपकरणों का					
विकास और परीक्षण"					
IHQTF/MB/22-23/290 – "क्वांटम	 डॉ. माणिक बनिक	I-Hub Quantum Technology	13-06-2022 to 31-03-2023	Amount Received	चाणक्य
संसाधनों की सहायता से संचार के व्यावहारिक	OI. III. II. II. I	Foundation (IHQTF)	(At SNBNCBS)	till date:	पोस्ट-
रूप से कार्यान्वयन योग्य उन्नत साधन तैयार		I-HUB/PDF/2021-22/008	(/ tt ONDINODO)	11,10,653/-	डॉक्टोरल
करना - डॉ. माणिक बनिक के मार्गदर्शन में		1-110D/1 D1 /2021-22/000		11,10,000/-	रिसर्च फेलो:
चाणक्य पोस्ट डॉक्टरल फ़ेलोशिप"					डॉ. मीर
ALL					
SERB(NPDF)/UD/22-23/291 – "स्तन		OEDD (NDDE)	00.40.0000105.40.0004	00.00.000/	अलीमुद्दीन
कैंसर स्टेम कोशिकाओं को लक्षित करने के	डॉ उपासना दास	SERB (NPDF)	26-12-2022 to 25-12-2024	22,36,800/-	
लिए थेरानोस्टिक्स के रूप में क्रिस्टलीय		PDF/2022/000322			
फ्रेमवर्क-आधारित चुंबकीय नैनोकम्पोजिट के					
एक समूह का विकास" SERB(NPDF)/IB/22-23-293 – "टेराहर्ट्ज़	 डॉ इंद्राणी भट्टाचार्य	CEDD (NDDE)	00 40 0000 +- 07 40 0004	22.20.000/	
स्पेक्ट्रोस्कोपी और पूरक प्रायोगिक तकनीकों	ा इप्राणा महापाय	SERB (NPDF)	28-12-2022 to 27-12-2024	22,36,800/-	
को नियोजित करके स्थानीय पर्यावरणीय		PDF/2022/000540			
मापदंडों में मॉड्यूलेशन द्वारा ट्रिगर किए गए					
प्रोटीन एकत्रीकरण की हाइड्रेशन हाइड्रेशन					
गतिशीलता और तरल-तरल चरण पृथक्करण					
के साथ इसके संबंध की खोज"		OEDD (1977)	00.04.0000 + 05.01.000	00.00.0001	
SERB(NPDF)/GB/22-23/294 – "चुंबकीय	डा. गागा भट्टाचाय	SERB (NPDF)	06-01-2023 to 05-01-2025	22,36,800/-	
टोपोलॉजिकल क्वांटम मैटर (एमटीक्यूएम) से		PDF/2022/002839			
ग्राफीन पर निकटता प्रेरित स्पिन-ऑर्बिट युग्मन					
और चुंबकत्व"					

^{***} इसके अलावा, केंद्र को जनवरी 2016 के दौरान टीआरसी परियोजना भी मिली है।

वर्ष 2022-23 की परियोजनाओं के तहत पोस्टडॉक्स, वैज्ञानिकों, डीएसटी इंसपायर संकाय, आदि की सूचि

क्रम							
सं.	नाम	पदनाम	परियोजना का नाम	परियोजना के पी. आई	से नियुक्त	तक नियुक्त	
1	अनुभव बनर्जी ,	शोध सहयोगी – I, एएचईपी	जमीन आधारित गामा किरण और न्यूट्रिनो टेलीस्कोप का उपयोग करके बहुत उच्च ऊर्जा क्षेत्र में खगोलभौतिकीय स्रोतों का अध्ययन	डॉ. देबंजन बोस	01.04.2022	14.11.2022	
2	डॉ अस्मिता कुमारी	शोध सहयोगी 🗕 । (अनौपचारिक), एएचईपी	क्वांटम सूचना का अनुप्रयोग	प्रो. अर्चन एस मजूमदार	21.09.2022	20.03.2023	
3	डॉ देबाशीष साहा	नेशनल पोस्ट डॉक्टोरल फेलो	क्वांटम उपकरणों का स्व-परीक्षण और उपकरण-स्वतंत्र सूचना प्रसंस्करण	स्वयं [प्रो. अर्चन एस मजूमदार, मेंटर]	15.03.2021	12.08.2022 को इस्तीफा दे दिया	
4	डॉ. दीपायन सेन	शोध सहयोगी – III, सीएमएमपी	जे.सी. बोस फ़ेलोशिप	प्रोफेसर तनुश्री साहा- दासगुप्ता	01.11.2022	31.01.2023	
5	डॉ. इंद्राणी भट्टाचार्य	नेशनल पोस्ट डॉक्टोरल फेलो	टेराहर्ट्ज स्पेक्ट्रोस्कोपी और पूरक प्रायोगिक तकनीकों को नियोजित करके स्थानीय पर्यावरणीय मापदंडों में मॉड्यूलेशन द्वारा ट्रिगर किए गए प्रोटीन एकत्रीकरण की हाइड्रेशन गतिशीलता और तरल-तरल चरण पृथक्करण के साथ इसके संबंध की खोज	स्वयं [प्रोफेसर राजीब के मित्रा, मेंटर]	28.12.2022	27.12.2024	
6	डॉ. गार्गी भट्टाचार्य	नेशनल पोस्ट डॉक्टोरल फेलो	चुंबकीय टोपोलॉजिकल क्वांटम मैटर (एमटीक्यूएम) से ग्राफीन पर निकटता प्रेरित स्पिन-ऑर्बिट युग्मन और चुंबकत्व	स्वयं [प्रोफेसर प्रिया महादेवन, मेंटर]	06.01.2023	05.01.2025	
7	डॉ जयेता बनर्जी ,	नेशनल पोस्ट डॉक्टोरल फेलो	संवेदन में अनुप्रयोगों के साथ संक्रमण धातु डाइक्लोजेनाइड आधारित सतह प्लास्मोन अनुनाद संरचना पर सैद्धांतिक और प्रयोगात्मक जांच	स्वयं [डॉ. माणिक प्रधान, मेंटर]	31.12.2020	30.12.2022	
8	डॉ. मीर अलीमुद्दीन	चाणक्य पीडीएफ	क्वांटम संसाधनों की सहायता से संचार के व्यावहारिक रूप से कार्यान्वयन योग्य उन्नत साधन तैयार करना	स्वयं [डॉ. माणिक बनिक, मेंटर]	13.06.2022	31.03.2024	
9	डॉ. पार्थ नंदी	शोध सहयोगी – । (अनौपचारिक), एएचईपी	क्वांटम सूचना का अनुप्रयोग	प्रो. अर्चन एस मजूमदार	01.09.2022	30.11.2022	
10	डॉ. संजुक्ता पॉल	शोध सहयोगी — । सीएमएमपी	ट्रांज़िशन मेटल डाइक्लोजिनाइड्स के साथ ट्विस्ट्रोनिक्स	प्रो. प्रिया महादेवन	07.06.2021	06.12.2022	
11	डॉ सौमेन्दु दत्ता	शोध सहयोगी – III, सीएमएमपी	जे.सी. बोस फ़ेलोशिप	प्रोफेसर तनुश्री साहा- दासगुप्ता	25.08.2021	24.08.2023	
12	डॉ सौरव चक्रवर्ती	शोध सहयोगी – । (अनौपचारिक), सीएमएमपी	कम तापमान पर कुंठित चुंबकों में क्वांटम और थर्मल उतार-चढ़ाव की खोज	डॉ मनोरंजन कुमार	05.12.2022	30.04.2023	
13	डॉ. सुमित नंदी	शोध सहयोगी – I, एएचईपी	क्वांटम सूचना का अनुप्रयोग	प्रो. अर्चन एस मजूमदार	05.07.2021	04.07.2022	

क्रम सं.	नाम	पदनाम	परियोजना का नाम	परियोजना के पी. आई	से नियुक्त	तक नियुक्त
14	डॉ. सुमित हलदर	शोध सहयोगी – I, सीएमएमपी	कम तापमान पर कुंठित चुंबकों में क्वांटम और थर्मल उतार-चढ़ाव की खोज	डॉ मनोरंजन कुमार	01.09.2021	Resigned on 02.12.2022
15	श्रेया दास	शोध सहयोगी – । (अनौपचारिक), सीएमएमपी	जे.सी. बोस फ़ेलोशिप	प्रोफेसर तनुश्री साहा- दासगुप्ता	10.01.2022	09.07.2022
16	डॉ उपासना दास	नेशनल पोस्ट डॉक्टोरल फेलो	स्तन कैंसर स्टेम कोशिकाओं को लक्षित करने के लिए थेरानोस्टिक्स के रूप में क्रिस्टलीय फ्रेमवर्क-आधारित चुंबकीय नैनोकम्पोजिट्स के एक समूह का विकास	स्वयं [डॉ. पी.एस. पचफुले, मेंटर]	26.12.2022	25.12.2024

क्रम सं.	नाम	पदनाम	परियोजना का नाम	परियोजना के पी. आई	से नियुक्त	तक नियुक्त
1	डॉ.अनूप घोष	डीएसटी इंस्पायर फैकल्टी	डीएनए/जी क्वाड्रुप्लेक्स की संरचनात्मक गतिशीलता पर अल्ट्राफास्ट 2डी-आईआर स्पेक्ट्रोस्कोपी	स्वयं	01.01.2019	31.12.2023
2	डॉ. दीपानविता मजूमदार	डीएसटी इंस्पायर फैकल्टी	धातु नैनोकणों के ऑप्टिकल और इलेक्ट्रॉनिक गुण, सजाया संक्रमण धातु डाइक्लोजेनाइड्स और उनके अनुप्रयोग	स्वयं	03.01.2019	16.04.2022 [16.04.2023 तक कोई लागत विस्तार नहीं]
3	डॉ. देबंजन बोस	रामानुजन फेलो (Transferred from IIT, KGP)	ग्राउंड आधारित गामा किरण और न्यूट्रिनो टेलीस्कोप का उपयोग करके बहुत उच्च ऊर्जा क्षेत्र में खगोलभौतिकीय स्रोतों का अध्ययन	स्वयं	04.12.2020	14.11.2022
4	प्रो. रबिन बनर्जी	राजा रमन्ना फेलो	गैर-सापेक्षतावादी सिद्धांतों में गेज और गुरुत्वाकर्षण समरूपता: औपचारिकता और अनुप्रयोग	स्वयं	03.05.2021	02.05.2024
5	डॉ.मनोज मंडल	रामलिंगास्वामी री-एंट्री फेलो	फोटोसिस्टम II में जल ऑक्सीकरण तंत्र और प्रोटॉन युग्मित इलेक्ट्रॉन स्थानांतरण प्रतिक्रियाओं की खोज: स्वच्छ ईंधन की ओर एक दृष्टिकोण	स्वयं	15.07.2021	14.07.2026
6	डॉ अली हुसैन खान	रामानुजन फेलो (Transferred from INST, Mohali)	फोटोनिक अनुप्रयोगों के लिए डोप्ड 2डी नैनोक्रिस्टल	स्वयं	01.11.2021	31.03.2026
7	डॉ. सुमन चौधरी	डीएसटी इंस्पायर फैकल्टी	2डी संक्रमण-धातु ऑक्साइड में थर्मोक्रोमिज्म की खोज	स्वयं	10.10.2022	08.06.2023 से इस्तीफा दे दिया गया
8	डॉ सुजॉय कुमार घोष	डीएसटी इंस्पायर फैकल्टी	स्व-चालित बायो-रिसोबेंबल इम्प्लांटेबल डिवाइस	स्वयं	09.03.2023	08.03.2028

स्व-चालित बायो-रिसोर्बेबल इम्प्लांटेबल डिवाइस

क्रम सं.	छात्र का नाम	वर्तमान पदनाम	परियोजना प्रशिक्षक	विभाग	परियोजना का नाम	शामिल हुए	नियुक्ति की अवधि	छात्रों की संख्या	परियोजना की अवधि	तक नियुक्त	इस्तीफ़ा की तिथि
1	सुरंजना चक्रवर्ती	परियोजना सहायक	अनुप घोष	सीएमएमपी	डीएनए/जी क्वाड्रुप्लेक्स की संरचनात्मक गतिशीलता पर अल्ट्राफास्ट 2डी- आईआर स्पेक्ट्रोस्कोपी	13.10.2020	31.12.2023		31.12.2023	31.12.2023	
2	मधुरिता दास	प्रोजेक्ट जेआरएफ (अनौपचारिक)	प्रिया महादेवन	सीएमएमपी	ट्रांजिशन मेटल डाइक्लोजेनाइड्स के साथ ट्विस्ट्रोनिक्स	14.01.2022	6 महीने		29.03.2025	13.07.2022	
			विभाग कुल					2			
1	नेहा भट्टाचार्य	अनुसंधान कर्मचारी (परियोजना)	समीर कुमार पाल	सीबीएस	डिस्प्ले लेबल में संभावित अनुप्रयोगों के लिए रेट्रो-रिप्लेक्टिव सामग्री के बड़े पैमाने पर उत्पादन के लिए एक औद्योगिक प्रक्रिया का विकास	14.01.2022	प्रोजेक्ट के अंत तक		(31.03.2023 तक बढ़ाया गया)	31.03.2023	31.03.2023
2	रिया घोष	प्रोजेक्ट एसआरएफ	समीर कुमार पाल	सीबीएस	मिट्टी और पौधों की वास्तविक समय सिंचाई के लिए क्लाउड आधारित नेटवर्क के माध्यम से नैनो सेंसर का विकास और इसका अनुप्रयोग	14.01.2022	प्रोजेक्ट के अंत तक		31.05.2024	31.05.2024	
3	सौम्यदीप दे	परियोजना सहायक (अनौपचारिक)	अली हुसैन खान	सीबीएस	फोटोनिक अनुप्रयोगों के लिए डोप्ड 2डी नैनोक्रिस्टल	17.01.2022	6 महीने		31.03.2026	16.07.2022	24.04.2022
	सौम्यदीप दे	परियोजना सहायक	अली हुसैन खान	सीबीएस	फोटोनिक अनुप्रयोगों के लिए डोप्ड 2डी नैनोक्रिस्टल	25.04.2022	शामिल होने की तारीख से 1 वर्ष		31.03.2026	24.04.2023	31.07.2022
4	अवंती चक्रवर्ती	परियोजना सहायक	अली हुसैन खान	सीबीएस	फोटोनिक अनुप्रयोगों के लिए डोप्ड 2डी नैनोक्रिस्टल	25.04.2022	शामिल होने की तारीख से 1 वर्ष + 3 महीने का विस्तार		31.03.2026	24.04.2023	
5	नीरव्र चक्रवर्ती	परियोजना सहायक	मनोज मंडल	सीबीएस	Exploring the water-oxidation mechanism and proton coupled electron transfer reactions in photosystem II: an approach towards clean fuel	13.01.2023	शामिल होने की तारीख से 1 वर्ष		14.07.2026	12.01.2024	
			विभाग					5			
			कुल								

क्रम सं.	छात्र का नाम	वर्तमान पदनाम	परियोजना प्रशिक्षक	विभाग	परियोजना का नाम	शामिल हुए	नियुक्ति की अवधि	छात्रों की संख्या	परियोजना की अवधि	तक नियुक्त	इस्तीफ़ा की तिथि
1	अरुण कुमार दास	प्रोजेक्ट जेआरएफ	अर्चन एस मजूमदार	एपीएचईपी	क्वांटम सूचना के अनुप्रयोग	16.10.2019	प्रोजेक्ट के अंत तक		23.04.2022 (30.09.2023 तक बढ़ाया गया)	30.09.2023	
2	शुभंकर बेरा	प्रोजेक्ट जेआरएफ	अर्चन एस मजूमदार	एपीएचईपी	क्वांटम सूचना के अनुप्रयोग	03.10.2019	प्रोजेक्ट के अंत तक		23.04.2022 (30.09.2023 तक बढ़ाया गया)	30.09.2023	
3	अर्नब मुखर्जी	प्रोजेक्ट जेआरएफ	अर्चन एस मजूमदार	एपीएचईपी	क्वांटम हीट इंजन	12.11.2021	11.11.2023		21.04.2024	11.11.2023	
			विभाग कुल					3			
			कुल						10		

समीर कुमार पाल संयोजक, परियोजना एवं पेटेंट प्रकोष्ठ

तकनीकी अनुसंधान केंद्र (टीआरसी)

एस एन बोस नेशनल सेंटर फॉर बेसिक साइंसेज में विज्ञान और प्रौद्योगिकी विभाग (डीएसटी), विज्ञान और प्रौद्योगिकी मंत्रालय, भारत सरकार द्वारा वित्त पोषित तकनीकी अनुसंधान केंद्र (टीआरसी) 1 जनवरी 2016 को लॉन्च किया गया था। इसका उद्देश्य एक स्थापित करना है एस.एन. बोस राष्ट्रीय केंद्र के भीतर नवाचार सह अनुवाद अनुसंधान केंद्र जो सामग्री विज्ञान और स्पेक्ट्रोस्कोपिक तकनीकों में अपनी मौजूदा मुख्य ताकत का लाभ उठाकर उपयोगी विज्ञान और प्रौद्योगिकी प्लेटफार्मों का निर्माण करेगा। टीआरसी (चरण- II) का विस्तार चरण औपचारिक रूप से जनवरी 2021 से शुरू हो गया है, हालांकि चरण- ॥ के लिए बजट निधि फरवरी 2023 को डीएसटी से स्वीकृत की गई थी।

विस्तारित चरण (चरण II) में प्रमुख लक्षित क्षेत्र:

- कम्प्यूटेशनल सामग्री विज्ञान: तकनीकी रूप से महत्वपूर्ण स्वदेशी नई सामग्रियों और नई कार्यात्मकताओं के लिए गणना मॉडलिंग;
- क्वांटम प्रौद्योगिकी और नैनोडिवाइसेस के लिए नैनो-निर्माण: प्रौद्योगिकी विकास में नवाचार - क्वांटम प्रौद्योगिकी और नैनोडिवाइसेज के लिए नैनो-निर्माण; अति पतली परत वाली सामग्रियों का उपयोग करके एनसर्स और ऑप्टो-इलेक्ट्रॉनिक उपकरणों का विकास; कार्यात्मक ऑक्साइड पैटर्न वाली फिल्मों का उपयोग करके पतली फिल्म उपकरणों का प्रोटोटाइप बनाना; वगैरहा
- बायो-मेडिकल इंस्ट्रमेंटेशन: स्पेक्ट्रोस्कोपिक और ऑप्टिकल तकनीक - बायोमेडिकल और स्वास्थ्य देखभाल अनुप्रयोगों के लिए ट्राइबोइलेक्ट्रिक नैनोजेनरेटर; मानव शरीर में सोडियम, लिथियम और पोटेशियम (NaLiK) जैसे आवश्यक इलेक्ट्रोलाइट्स का न्युनतम-आक्रामक पता लगाने के लिए एक ऑप्टिकल उत्सर्जन स्पेक्ट्रोस्कोपी-आधारित सेंसर; पैटर्न वाली सामग्रियों का उपयोग

- करके टीएचजेड-एफआईआर विकिरण का मॉड्यूलेशन और फार्मास्यूटिक्स को प्रमाणित करने के लिए इसका अनुप्रयोग; वगैरहा
- खाद्य मिलावट और पर्यावरणीय शमन: अनुप्रयोगों के लिए ऑप्टिकल/एनआईआर स्पेक्ट्रोस्कोपिक उपकरण का प्रोटोटाइप विकास - पीने के पानी में एक स्पेक्ट्रोस्कोपी-आधारित फ्लोराइड सेंसर (FeFlu); स्पेक्ट्रोस्कोपिक तकनीक (मिल-क्यू-वे) का उपयोग करके दूध में मिलावट; वगैरह।

परियोजना अन्वेषक :

क. टीआरसी विस्तारित चरण (चरण II):

प्रो. सौमेन मंडल (नोडल अधिकारी); प्रो. तन्श्री साहा दासगुप्ता; प्रो. अंजन बर्मन प्रो. समीर के. पाल; प्रो. जयदेब चक्रवर्ती; प्रो. राजीब के. मित्रा; डॉ. बरनाली घोष साहा; डॉ. अतींद्र नाथ पाल और डॉ. सुमन चक्रवर्ती।

ख. टीआरसी चरण I:

प्रो. सौमेन मंडल (नोडल अधिकारी); प्रो. तनुश्री साहा दासगुप्ता; प्रो. समीर के. पाल; प्रो. रंजीत विश्वास; डॉ. बरनाली घोष साहा; डॉ. माणिक प्रधान; प्रो. जयदेब चक्रवर्ती; प्रो. पी.के. मुखोपाध्याय; प्रो. ए.के. रायचौधरी (दिसंबर 2019 तक नोडल अधिकारी); डॉ. सुभ्रा जाना, डॉ. अतींद्र नाथ पाल और डॉ. स्मन चक्रवर्ती।

2022-2023 के दौरान प्रमुख अनुसंधान गतिविधियाँ:

क. शैक्षणिक आउटपुट:

- चल रही अनुवाद संबंधी अनुसंधान परियोजनाएं : 29
- शोध प्रकाशन : 51
- पीएच.डी. डिग्री (थीसिस प्रस्तुत): 4

ख. दायर और स्वीकृत पेटेंट की संख्या :

क्र. सं.	शीर्षक	अन्वेषक	देश	फ़ाइल सं.	स्थिति
1.	अल्ट्रा-लो वॉल्यूम संपूर्ण रक्त नमूने के पॉइंट-	समीर कुमार पाल	भारत	201731029433	दायर दिनांक
	ऑफ-केयर विश्लेषण के लिए डिजिटल			स्वीकृत पेटेंट नं. 393473	19/08/2017
	कैमरा आधारित स्पेक्ट्रोमेट्रिक प्रणाली				मंज़ूरी दिनांक:
					29/03/2022
2.	किसी विषय की हेमोडायलिसिस	शांतनु मंडल, चिरंजीत घोष और		201731042502	दायर दिनांक
	प्रभावकारिता की निगरानी के लिए एक	माणिक प्रधान		स्वीकृत पेटेंट नं. : 431879	27/11/2017
	प्रणाली				मंज़ूरी दिनांक:
					16/05/2023

टीआरसी के तहत विकसित कुछ प्रोटोटाइप प्रौद्योगिकी हस्तांतरण के लिए तैयार हैं:

टीआरसी के अंतर्गत चल रही परामर्श परियोजनाओं/औद्योगिक भागीदारों की सूची:

क्र. सं.	औद्योगिक भागीदार का विवरण	ट्रांसलेशनल प्रोजेक्ट/प्रौद्योगिकी का नाम	विकास/व्यावसायीकरण आदि में विशिष्ट भूमिका
1	एज्रेक्स हेल्थ टेक प्रा. लिमिटेड	एक कम लागत वाला गैर-संपर्क AJO उपकरण	व्यावसायीकरण के लिए प्रौद्योगिकी को
			अपनाने वाला
2	सरफेज क्योर इंडिया	हाइड्रेट्स के अपघटन गतिकी पर योजकों के प्रभाव का अध्ययन करें	औद्योगिक सहयोग शुरू किया गया
3	डंडी यूनिवर्सिटी, स्क्टोलैंड और एज़रेक्स हेल्थ	स्पेक्ट्रोस्कोपिक तकनीकों का उपयोग करके मूत्राशय के कैंसर का पता	संयुक्त रूप से परामर्श परियोजना
	टेक प्राइवेट लिमिटेड (संयुक्त रूप से परामर्श	लगाने के लिए एक स्क्रीनिंग डिवाइस (स्पेक-यू-लेसियन)	-
	परियोजना)		

टीआरसी पर ज्ञान आधारित सेवाएं:

टीआरसी कई स्पेक्ट्रोस्कोपिक से लेकर सूक्ष्मदर्शी उपकरणों तक, कई अत्यधिक परिष्कृत उपकरणों में ज्ञान आधारित सेवाएं प्रदान करता है। अधिक जानकारी के लिए कृपया मेरी वेबसाइट का अवलोकन करें : http://newweb.bose.res.in/departments/TRC

सौमेन मंडल

नोडल अधिकारी तकनीकी अनुसंधान केंद्र

तकनीकी प्रकोष्ठ

एसएनबीएनसीबीएस की केंद्रीय प्रयोग सुविधा को बनाए रखने के लिए तकनीकी सेल की स्थापना 2008 में की गई थी, जिसका लाभ हमारे केंद्र के साथ-साथ अन्य संस्थान/प्रयोगशालाओं से कोई भी शोधकर्ता उठा सकता है। उपलब्ध प्रायोगिक सुविधाओं का विवरण और इन सुविधाओं का उपयोग करने के नियम और शर्तें वेबसाइट में उल्लिखित हैं: https://newweb.bose.res.in/facilities/TechnicalCell/.

1. अप्रैल 2022, मार्च 2023 के दौरान तकनीकी सेल की गतिविधियाँ तकनीकी सेल के तहत निम्नलिखित अनुभागों में रिपोर्ट की गई हैं::

क्र. सं.	उपकरण का नाम	क्र. सं.	उपकरण का नाम
1.	अन्य अनुलग्नकों के साथ ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोप (टीईएम)	16.	रासायनिक प्रयोगशाला
2.	थर्मो ग्रेविमेट्री/डिफरेंशियल थर्मल एनालाइजर (टीजी-डीटीए)	17.	इलिप्सोमीटर
3.	गतिशील प्रकाश प्रकीर्णन (डीएलएस)	18.	विस्कोमीटर
4.	क्लीन रूम	19.	घनत्वमापी
5.	ई-बीम बाष्पीकरणकर्ता	20.	एक्स-रे डिफ्रेक्टोमीटर (एक्सआरडी) (पैनालिटिकल एक्स-पर्ट प्रो)
6.	आईसीपी-आरआईई	21.	स्पंदित लेजर जमाव (पीएलडी) इकाई
7.	दोहरी बीम एफआईबी/एसईएम	22.	हीलियम रिसाव डिटेक्टर
8.	वायर बॉन्डर	23.	प्रयोगशाला में उपयोग के लिए तरल नाइट्रोजन और गैसें
9.	मुखौटा संरेखक	24.	प्रतिदीप्ति स्पेक्ट्रोमीटर (फ्लोरोलॉग)
10.	3K प्रतिरोधकता मापन सेटअप	25.	स्पेक्ट्रोफ्लोरोमीटर (फ्लोरोमैक्स)
11.	फ़ील्ड उत्सर्जन स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी (एफईएसईएफ) क्वांटा एफईजी 250	26.	फूरियर ट्रांसफॉर्म इन्फ्रारेड स्पेक्ट्रोमीटर (FTIR)
12.	एक्स - रे विवर्तन	27.	मैकेनिकल वर्कशॉप, स्पटरिंग यूनिट, मिलिपोर वॉटर
13.	यूवी विजिबल स्पेक्ट्रोमीटर (यूवी-विज)(2600)	28.	कंपन नमूना मैग्नेटोमीटर (वीएसएम)
14.	यूवी विज़िबल स्पेक्ट्रोमीटर (यूवी-विज़)(2450)	29.	विभेदक स्कैनिंग कैलोरीमीटर (डीएससी)
15.	वृत्ताकार द्वैतवाद (सीडी)	30.	परमाणु बल माइक्रोस्कोप (एएफएम)

II. अनुसंधान गतिविधियों को समर्थन::

हमारे केंद्र के लगभग 81 छात्रों ने अपनी पीएच.डी. के लिए उपरोक्त प्रायोगिक सुविधाओं का बड़े पैमाने पर उपयोग किया। थीसिस कार्य. 10 विद्यार्थियों ने एम.एससी. पूरा किया। / एम.टेक. प्रोजेक्ट कार्य और 19 छात्रों ने तकनीकी सेल में व्यापक कार्य करते हुए अपना ग्रीष्मकालीन प्रोजेक्ट पूरा किया। लगभग 86 बाहरी उपयोगकर्ताओं ने अपने शोध कार्य के लिए हमारी तकनीकी सेल सुविधाओं का उपयोग किया।

III. एसएनबीएनसीबीएस की तकनीकी गतिविधियों को समर्थन

हमारे आईपीएचडी कार्यक्रम के छात्रों ने हमारी तकनीकी सेल स्विधाओं का उपयोग किया और अपने उन्नत प्रायोगिक पाठ्यक्रम (पीएचवाई 391) के एक भाग के रूप में एक्स-रे विवर्तन, यूवी-विज़ स्पेक्ट्रोस्कोपी, डिफरेंशियल स्कैनिंग कैलोरीमेट्री पर कुछ प्रयोग किए। उन्होंने अपना प्रोजेक्ट कार्य आईपीएचडी पाठ्यक्रम के एक भाग के रूप में किया।

IV. आउटरीच कार्यक्रम

- (क) सी.के. मजूमदार मेमोरियल ग्रीष्मकालीन कार्यशाला 2018 28 मई से 7 जून 2018 के दौरान आयोजित की गई थी। 30 संख्याएँ। विभिन्न कॉलेजों के तृतीय वर्ष के भौतिकी (माननीय) छात्रों ने कार्यशाला में भाग लिया और एक्स-रे विवर्तन, अंतर स्कैनिंग कैलोरीमेट्री, स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप, तकनीकी सेल के कंपन नमूना मैग्नेटोमीटर पर प्रयोग किए।
- (ख) उत्तर पूर्व के छात्रों का वैज्ञानिक दौरा: 17 मार्च 2019 को 56 छात्रों ने हमारे केंद्र का दौरा किया और उन्हें तकनीकी सेल के उपकरणों का प्रदर्शन किया गया।
- (ग) सेंट जेवियर्स कॉलेज का दौरा:
 - 9 अप्रैल 2018 को सेंट जेवियर्स कॉलेज के छात्रों का वैज्ञानिक दौरा

V. प्रमुख रखरखाव एवं उन्नयन

VI. उपकरण का उपयोग

वस्तु	प्रयोग (समय और घंटा)	अप टाइम %	डाउन टाइम %	बाहरी उपयोगकर्ताओं की संख्या
PLD	1340	90%	10%	शून्य
FESEM	900	90%	10%	18
XPERT PRO	910	90%	10%	8
MINI XRD	229	90%	10%	शून्य
TG/DTA	510	92%	8%	18
DSC	460	80%	20%	12
AFM	647	85%	15%	19
VSM	1320	90%	10%	11
TEM	300	25%	75%	शून्य

VII. राजस्व उत्पत्ति

सुविधाओं से राजस्व सृजन बाहरी उपयोगकर्ताओं से किया जा रहा है।

समीर कमार पार

समीर कुमार पाल प्रभारी, तकनीकी प्रकोष्ठ

यांत्रिक कर्मशाला

केंद्र में यांत्रिक कार्यशाला एक महत्वपूर्ण हिस्सा है, विशेषकर प्रायोगिक संकायों के लिए। पूरे वर्ष यांत्रिक कार्यशाला ने कार्य किया और विभिन्न विभागों और बाहर की मांगों को पूरा किया। इसे सप्ताह के सभी दिनों में एक मैकेनिक (श्री शुभब्रत दास) द्वारा नियंत्रित किया जाता है और उपयोगकर्ताओं को रिकॉर्ड के लिए लॉग बुक में प्रमुख कार्यों की अपनी मांगों को कम से कम एक रफ स्केच के साथ दर्ज करना होता है।

समाप्त नौकरियों की कुल संख्या: 79. माहवार विवरण नीचे दिया गया है: (2022 - 2023)। कार्यशाला में तीन प्रमुख उपकरण हैं: सीएनसी मिलिंग मशीन, ऑल गियर लेथ मशीन और वेल्डिंग मशीन, जो केंद्र की टीआरसी परियोजना से खरीदी गई हैं।

अप्रैल 2022 से मार्च 2023 के दौरान किया गया कुल कार्य: 79

Atindra Nath Pal अतींद्र नाथ पाल प्रभारी, यांत्रिक कर्मशाला

अतिथि-गृह

भागीरथी - अतिथि-गृह

केंद्र का अपना एक अत्याधुनिक अतिथि-गृह है जिसे 'भागिरथी' कहा जाता है, जो केंद्र के परिसर में ही स्थित है। अतिथि-गृह में पूरी तरह से वातानुकूलित पाँच (5) सूट और तीन (3) पारगमन कक्ष (ट्रांजिट रूम) है, जिसमें प्रत्येक में स्नानागार एवं रसोईघर संलग्न है। साथ ही स्नानागार के साथ संलग्न दो-बिस्तर वाले आठ (8) कमरें और एक-बिस्तर वाले छियालीस (46) कमरें हैं, तथा सभी कमरें पूरी तरह से वातानुकूलित एवं सुसज्जित है। सभी कमरों में बुनियादि सुविधाएँ जैसे गर्म एवं सामान्य जल, टेलीफोन, डीटीएच कनेक्शन के साथ टेलीविजन, इलेक्ट्रिक केतली आदि उपलब्ध है। अतिथि-गृह में वाई-फ़ाई स्विधाएँ उपलब्ध है। गेस्ट हाउस फ्रंट डेस्क में एक अत्याध्निक डिस्प्ले यूनिट स्थापित की गई है, जो गेस्ट हाउस के बारे में विभिन्न जानकारी प्रदर्शित करती है। इन मेहमानों के कमरें भागीरथी भवन के भूतल, प्रथम तल और द्वितीय तल में फैले हैं। इस समय, अतिथि-गृह के तृतीय तल पर एक-बिस्तर वाले बाईस (22) तथा दो-बिस्तर वाले चार (4) कमरें विद्यार्थियों के रहने के लिए उपलब्ध है। अतिथि-गृह के परिसर में विशेष डायनिंग स्विधाओं के साथ एक छोटा सेमिनार

कक्ष है, जहाँ छोटे सम्मेलन एवं बैठकें आदि आयोजित की जाती है। केंद्र का मेडिकल सेल अतिथि-गृह के अंतर्गत कार्य करता है जहाँ केंद्र के कार्मिकों एवं छात्र-छात्राओं के लिए डॉक्टर परामर्श जैसी सुविधाएँ उपलब्ध है। केंद्र के अतिथि-गृह में एक अत्याध्निक कैफ़ेटोरिया एवं एक रसोईघर भी है। केंद्र के कर्मचारी सदस्यों और आगंतुकों को नियमित भोजन सेवा प्रदान के अलावा यह कैफ़ेटेरिया केंद्र के सेमिनार. सम्मेलन आदि के विशेष अवसरों पर लंच, डिनर एवं हाई-टी प्रदान करने का भी कार्य करता है। केंद्र के अतिथियों एवं आगंतुकों को आवास की स्विधा प्रदान करने के साथ-साथ केंद्र के विभिन्न सरकारी विभागों, संगठनों, अनुसंधान प्रयोगशालाओं, विश्वविद्यालयों आदि के अतिथियों को भी आवासीय स्विधाएँ प्रदान करता है। केंद्र, विभिन्न शैक्षणिक और अनुसंधान संगठनों को आवासीय सुविधाएँ प्रदान करने के लिए अतिथि-गृह स्विधाएँ प्रदान करता है। अतिति-गृह में रहने वाले सभी अतिथियों को संतोषजनक सेवा एवं गर्मजोशी से आतिथ्य सत्कार प्रदान की जाती है। इस अतिथि-गृह के प्रथम तल के बरामदे में जल्द ही एक रूफटॉप कैफेटेरिया शुरू करने की योजना है।

rafunder

सोहिनी मजुमदार कुलसचिव

आयोजित उत्सव/ समारोह से संबंधित महत्वपूर्ण दिवस

केंद्र ने COVID-19 से संबंधित सभी प्रतिबंधों/ दिशानिर्देशों को पालन करते हुए निम्नलिखित कार्यक्रम आयोजित किए:

- दिनांक 26 जनवरी 2023 को 74वें गणतंत्र दिवस और 15 अगस्त 2022 को 76वें स्वतंत्रता दिवस पर निदेशक द्वारा राष्ट्रीय ध्वज फहराया गया। दोनों अवसरों पर केंद्र के कार्मिक सदस्यों और छात्रों ने भाग लिया और इस अवसर को विशेष रूप से महत्वपूर्ण बनाने हेतु राष्ट्रगान गाया गया।
- दिनांक 2 जनवरी 2023 को, केंद्र में प्रख्यात वैज्ञानिक प्रो. एस. एन. बस् की प्रतिमा पर माल्यार्पण करके प्रो. सत्येन्द्र नाथ बस् की 130वीं जयंती मनाई गई। केंद्र ने प्रोफेसर सत्येन्द्र नाथ बस् की 130वीं जयंती मनाने के लिए उक्त दिवस को 'ओपन डे' के रूप में आयोजन किया। उक्त अवसर पर, कलकत्ता विश्वविद्यालय के प्रोफेसर अनिर्बान कुंडू द्वारा एक लोकप्रिय विज्ञान वार्ता प्रदत्त की गई, इसके उपरांत विज्ञान प्रयोगशाला का दौरा, एस.एन. बसु आर्काइव का दौरा और ग्रह एवं तारों का विहंगम अवलोकन किया गया।

केंद्र में निम्नलिखित उत्सव/ समारोह भी आयोजित किए गए:-

- दिनांक 31 अक्टूबर 2022 को आभाषी रूप से प्रतिज्ञा के साथ राष्ट्रीय एकता दिवस मनाया गया।
- दिनांक 26 नवंबर 2022 को संविधान दिवस पर ऑनलाइन प्रतिज्ञा ग्रहण समारोह के माध्यम से भारत-लोकतंत्र की जननी विषय पर एक ऑनलाइन प्रश्नोत्तरी प्रतियोगिता आयोजित की गई।.
- 'मुक्तांगन' द्वारा निम्नलिखित कार्यक्रम आयोजित किए गए:-
 - दिनांक 23.09.2022 को फ्रेशर्स का स्वागत कार्यक्रम।
 - दिनांक 27-28 जनवरी 2023 को एक अंतर-संस्थान बैडमिंटन टूर्नामेंट (एकल और युगल दोनों);
 - दिनांक 23-25 जनवरी 2023 को एक अंतर-संस्थान फुटबॉल टूर्नामेंट।
 - दिनांक 4-5 फरवरी 2023 को एक अंतर-संस्थान क्रिकेट टूर्नामेंट।

उपरोक्त सभी आयोजन अत्यंत सफल रहे।

बोस फेस्ट

- दिनांक 27 अप्रैल 2022 29 अप्रैल 2022 के दौरान आयोजित 'बोस फेस्ट 2022' के अवसर पर, 29 अप्रैल 2022 की शाम को परिवार दिवस मनाया गया। दिनांक 29 अप्रैल 2022 को, 'मुक्तांगन' के प्रदर्शन कला समूह द्वारा पूर्वश्री ऑडिटोरियम -ईजेडसीसी, सॉल्ट लेक में गायन, वाचन, नाटक और ड्रामा के व्यक्तिगत और सामूहिक प्रदर्शनों से युक्त एक आंतरिक कार्यक्रम आयोजित किया गया। कार्यक्रमों में कार्मिक सदस्यों और छात्रों के दोस्तों एवं परिवार के सदस्यों ने भाग लिया और यह एक बडी सफलता थी। आंतरिक बोस फेस्ट कार्यक्रम के बाद एक भव्य रात्रिभोज का आयोजन किया गया जिसमें केंद्र के कार्मिक सदस्यों और छात्रों के दोस्तों और परिवार के सदस्यों ने भाग लिया। उत्सव के दौरान कला और फोटोग्राफी उत्सव के साथ-साथ छात्रों द्वारा मौखिक और पोस्टर प्रस्तृतियाँ भी आयोजित की गई।
- दिनांक 1 मार्च 2023 3 मार्च 2023 के दौरान आयोजित 'बोस फेस्ट 2023' के अवसर पर, 3 मार्च 2023 की शाम को परिवार दिवस मनाया गया। दिनांक 3 मार्च 2023 को, 'मुक्तांगन' के प्रदर्शन कला समूह ने एक आंतरिक कार्यक्रम का आयोजन किया जिसमें गायन, वाचन और नाटक के व्यक्तिगत और सामूहिक प्रदर्शन शामिल थे। कार्यक्रमों में कार्मिक सदस्यों और छात्रों के दोस्तों एवं परिवार के सदस्यों ने भाग लिया और यह एक बड़ी सफलता थी। आंतरिक बोस फेस्ट कार्यक्रम के बाद एक भव्य रात्रिभोज का आयोजन किया गया जिसमें केंद्र के कार्मिक सदस्यों और छात्रों के दोस्तों और परिवार के सदस्यों ने भाग लिया। दिनांक 2 मार्च 2023 की शाम को प्रसिद्ध बंगाली लोक बैंड 'दोहर' ने अपने लोकप्रिय गानों से दर्शकों का मनोरंजन किया। उत्सव के दौरान कला और फोटोग्राफी उत्सव के साथ-साथ छात्रों द्वारा मौखिक और पोस्टर प्रस्तुतियाँ भी आयोजित की गईं।

दोनों बोस फेस्ट अत्यंत सफल रहे।

सोहिनी मजुदार कुलसचिव

Sonafunder

प्रकाशन 2022-2023 की सूची

खगोल भौतिकी और उच्च ऊर्जा भौतिकी विभाग

- 1. सौम्य चक्रवर्ती एवं अमिताभ लाहिडी, ब्रह्मांडीय त्वरण के चालक के रूप में स्केलर-फर्मियन इंटरैक्शन, फ़िज़िक्स ऑफ द डार्क ईउनीभर्स, 37, 101121, 2022
- सैकत चैटर्जी, **अमिताभ लाहिड़ी** एवं अंबर एन सेनगुप्ता, श्रेणीबद्ध कनेक्शन के लिए पुशफॉरवर्ड और गेज परिवर्तन, थियरि एंड अप्प्लिकशंस ऑफ कटेगोरिज, 38(25), 1015, 2022
- 3. शांतनु मुखर्जी एवं अमिताभ लाहिड़ी, भंवरों की आयामी कमी द्वारा स्पिन-फ्लक्स लगाव, न्यूक्लियर फ़िज़िक्स बी, 986, 116050, 2023
- 4. इंद्रजीत घोष, रिया बारीक एवं **अमिताभ लाहिड़ी**, स्पेसटाइम ज्योमेट्री के कारण न्यूट्रिनो दोलन, लेटर्स इन हाइ एनर्जि फ़िज़िक्स, 2023, 349, 2023
- शुभंकर बेरा, शशांक गुप्ता एवं **ए एस मजूमदार**, *यादृच्छिक क्वांटम* अवस्थाओं का उपयोग करके डिवाइस-स्वतंत्र क्वांटम कुंजी वितरण, क्वांटम इन्फोर्मशान प्रोसेसिंग, 22, 109, 2023
- 6. अरुण कुमार दास, देवर्षि दास, शिलादित्य माल, दिपंकर होम एवं ए एस मजूमदार, अनुक्रमिक नेटवर्क में दो-क्विबिट उलझी हुई स्थिति की एकल प्रति की संसाधन-सैद्धांतिक प्रभावकारिता, क्वांटम इन्फोर्मशान प्रोसेसिंग, 21, 381, 2022
- 7. शुभंकर बेरा, आनंद जी माइति, शिलादित्य माल एवं ए एस मज्मदार, क्वांटम रैंडम एक्सेस कोड को सशक्त बनाने में गैर-शास्त्रीय अस्थायी सहसंबंध की भूमिका, फ़िज़िकल रिविऊ ए, 106, 042439, 2022
- आशदूल हालदार, शशांक शेखर पांडे एवं ए एस मजूमदार, चिपचिपी डार्क एनर्जी मॉडल में वैश्विक 21-सेमी चमक तापमान, जर्नल ऑफ कोसमोलोजी एंड एस्ट्रोपार्टिक्ल फ़िज़िक्स, 2022, 049, 2022
- शशांक शेखर पांडे, अर्णव सरकार, आमना अली एवं **ए एस** मजूमदार, सघन वस्तुओं के बायनेरिज़ से गुरुत्वाकर्षण तरंगों के प्रसार पर विषमताओं का प्रभाव, जर्नल ऑफ कोसमोलोजी एंड एस्ट्रोपार्टिक्ल फ़िज़िक्स, 6, 021, 2022
- 10. देवर्षि दास, आनंद जी माइती, देबाशीष साहा एवं ए एस मजूमदार, अस्थायी सहसंबंधों से मनमाने परिणाम क्वांटम माप का मजबूत प्रमाणीकरण, क्वांटम, 6, 716, 2022

- 11. ऋद्धि चैटर्जी एवं ए एस मजूमदार, सुपरकंडिक्टंग माइक्रोवेव सर्किट में गतिशील कासिमिर फोटॉन द्वारा बेल-असमानता का उल्लंघन, फ़िज़िकल रिविऊ ए, 106, 042224, 2022
- 12. स्मित नंदी, देबाशीष साहा, दिपंकर होम एवं ए एस मजूमदार, सभी अलग-अलग द्विविभाजनों का उपयोग करके बहुपक्षीय गैर-स्थानीयता का विग्नर-दृष्टिकोण-सक्षम पता लगाना, फ़िज़िकल रिविऊ ए, 106, 062203, 2022
- 13. ए चंदा, ए हालदार, **ए एस मजूमदार** एवं बी सी पॉल, *घातीय* अंतः क्रियाओं के साथ f(R,G) गुरुत्वाकर्षण में अंतिम समय का ब्रह्मांड विज्ञान, द यूरोपियन फ़िज़िकल जर्नल सी, 83, 23, 2023
- 14. शशांक गुप्ता, देबाशीष साहा, जेन-पेंग ज़ू, अदान काबेलो एवं **ए एस** मज्मदार, क्वांटम प्रासंगिकता संचार जटिलता लाभ प्रदान करती है, फ़िज़िकल रिविऊ लेटर्स, 130, 080802, 2023
- 15. रबीन बनर्जी, पुनरावृत्तीय नोएदर दृष्टिकोण से गेज सिद्धांतों का दोहरा विवरण, न्यूक्लियर फ़िज़िक्स बी, 981, 115875, 2022
- 16. रुचि पांडे, गेसेसेव आर हबती, राहुल बंद्योपाध्याय, **रामकृष्ण दास**, फ्रेंकोइस टेयस्सिएर, जोएन गुयारों फलो, आवर्तक नोवा आरएस ओफ़ियुची के 2021 विस्फोट का अध्ययन: फोटोआयनीकरण और मॉर्फोकिनेमेटिक मॉडलिंग, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 515, 4655, 2022
- 17. स्नेह लता, डब्लू पी चेन, जे सी पांडे, अतुल दिलीप, ज़्होंग-हान आई, अलीशर एस होजएव, नीलम पँवार, संतोष जोशी, सौमेन मण्डल, सिद्धार्थ बिश्वास, बी सी भट्ट, युवा खुले क्लस्टर NGC 6823 में फोटोमेट्रिक वैरिएबल सितारे, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 520, 1092, 2023
- 18. अलिक पांजा, यान सून, वेन पिंग चेन एवं सौमेन मण्डल, Sh2-112 फिलामेंटरी क्लाउड कॉम्प्लेक्स में स्टार और क्लस्टर निर्माण, द एस्ट्रोफ़िज़िकल जर्नल, 939, 46, 2022
- 19. सौमेन बेरा, तपन के सासमल, दूषमंत पात्र एवं **सौमेन मण्डल**, LOFAR टू-मीटर स्काई सर्वे फर्स्ट डेटा रिलीज़ (LoTSS DR1) से "विंग्ड" रेडियो स्रोत, द एस्ट्रोफ़िज़िकल जर्नल, 260, 7 2022
- 20. ऋतुपर्णा मण्डल, सुनंदन गंगोपाध्याय एवं अमिताभ लाहिड़ी, क्वांटम से न्यूटोनियन ब्रह्माण्ड विज्ञान ने न्यूटोनियन क्षमता को संशोधित किया, फ़िज़िक्स लेटर्स बी, 839, 137807, 2023

- 21. सुनंदन गंगोपाध्याय, सोहम सेन एवं ऋतुपर्णा मण्डल, *क्वांटम* सुधारित ब्लैक होल के घटना क्षितिज से हस्तक्षेप और प्रतिबिंब, यूरोफ़िज़िक्स लेटर्स, 141, 49001, 2023
- 22. अष्मिता दास, सोहम सेन एवं सुनंदन गंगोपाध्याय, दो अदिश फोटॉन की उपस्थिति में परमाण्-दर्पण प्रणाली में आभासी संक्रमण, फ़िज़िकल रिविऊ डी, 107, 025009, 2023
- 23. अनीश दास, आशीष दास एवं **सुनंदन गंगोपाध्याय**, *सह-गतिमान* पर्यवेक्षक के लिए प्लाज्मा की उपस्थिति में कोटलर ब्लैक होल की छाया, क्लासिकल एंड क्वांटम ग्राविटि, 40, 015008, 2023
- 24. ऋतुपर्णा मण्डल एवं सुनंदन गंगोपाध्याय, स्पर्शोन्मुख रूप से स्रक्षित गुरुत्वाकर्षण में ब्लैक होल थर्मोडायनामिक्स, जनरल रिलेटिविटी एंड ग्रेविटेशन, 54, 159, 2022
- 25. अनिर्वाण रॉय चौधरी, आशीष साहा एवं **सुनंदन गंगोपाध्याय**, पृष्ठ वक्र में पारस्परिक जानकारी की भूमिका, फ़िज़िकल रिविऊ डी, 106, 086019, 2022
- 26. ऋतुपर्णा मण्डल, **सुनंदन गंगोपाध्याय** एवं अमिताभ लाहिड़ी, स्पर्शोन्मुख रूप से सुरक्षित गुरुत्वाकर्षण में संशोधित निरंतरता समीकरण के साथ ब्रह्माण्ड विज्ञान, द यूरोपियन फ़िज़िकल जर्नल प्लस, 137, 1110, 2022
- 27. मंजरी दत्ता, श्रीमयी गांगुली एवं **सुनंदन गंगोपाध्याय**, गैर-अनुवांशिक स्थान में समय पर निर्भर हार्मोनिक ऑसिलेटर के लिए बेरी चरण का रूपष्ट रूप, फ़िज़िका रिक्रपटा, 97, 105204, 2022
- 28. अर्णव मुखर्जी, **सुनंदन गंगोपाध्याय** एवं **ए एस मजूमदार**, एक परावर्तक सीमा की उपस्थिति में अनरुह क्वांटम ओटो इंजन, जर्नल ऑफ हाइ एनर्जि फ़िज़िक्स, 2022, 105, 2022
- 29. सोहम सेन, सुकान्त भट्टाचार्य एवं **सुनंदन गंगोपाध्याय**, सामान्यीकृत अनिश्चितता सिद्धांत ढांचे में गुरुत्वाकर्षण तरंगों के गुंजयमान डिटेक्टर के लिए पथ इंटीग्रल एक्शन, यूनिवर्स, 8, 450, 2022
- 30. सोहम सेन, ऋतुपर्णा मण्डल एवं **सुनंदन गंगोपाध्याय**, स्थिर गोलाकार सममित ब्लैक होल ज्यामिति के वर्ग में गिरने वाले परमाणु के त्वरण विकिरण के निकट क्षितिज पहलू, फ़िज़िकल रिविऊ डी, 106, 025004, 2022
- 31. आशीष साहा, **स्नंदन गंगोपाध्याय** एवं ज्योति प्रसाद साहा, पारस्परिक जानकारी, ब्लैक होल में द्वीप और पेज वक्र, द यूरोपियन फ़िज़िकल जर्नल सी, 82, 476, 2022
- 32. सोहम सेन, ऋतुपर्णा मण्डल एवं सुनंदन गंगोपाध्याय, क्वांटम सुधारित ब्लैक होल में गिरने वाले परमाणु की समतुल्यता

- सिद्धांत और HBAR एन्ट्रापी, फ़िज़िकल रिविऊ डी, 105, 085007, 2022
- 33. नीरज कुमार, सोहम सेन एवं **सुनंदन गंगोपाध्याय**, बोर्न-इन्फेल्ड एडीएस ब्लैक होल में चरण संक्रमण संरचना और केंद्रीय चार्ज क्रिटिकलिटी की सार्वभौमिक प्रकृति को तोड़ना, फ़िज़िकल रिविऊ डी, 106, 026005, 2022
- 34. नीरज कुमार, सोहम सेन एवं सुनंदन गंगोपाध्याय, गॉस-बोनट गुरुत्वाकर्षण में एडीएस ब्लैक होल में केंद्रीय चार्ज क्रिटिकलिटी की सार्वभौमिक प्रकृति को तोड़ना, फ़िज़िकल रिविऊ डी, 107, 046005, 2023
- 35. अनिर्वाण रॉयचौधरी, आशीष साहा एवं सुनंदन गंगोपाध्याय, बूस्टेड ब्लैक ब्रैन में मिश्रित राज्य सूचना सैद्धांतिक उपाय, एनाल्स ऑफ फ़िज़िक्स, 452, 169270, 2023
- 36. वेन्यू जियाओ, के वांग, तुषार जी एस पिल्लई, तापस बाग, सिजु ज़ांग एवं फेंगवे ज़ू, उच्च-द्रव्यमान "स्टारलेस" कोर G10.21-0.31 का विखंडन: स्टार निर्माण के लिए एक सुसंगत विकासवादी चित्र, द एस्ट्रोफ़िज़िकल जर्नल, 945, 81, 2023
- 37. क्षितिज के मल्लिक, लोकेश के देवांगन, देवेन्द्र के ओझा, तापस बाग एवं इगोर आई ज़ीनचेंकों, बाहरी गैलेक्टिक प्लेन में Sh2-138-A डिस्टेंट हब-फिलामेंट सिस्टम की संरचना और किनेमैटिक्स, द एस्ट्रोफ़िज़िकल जर्नल, 944, 228, 2023
- 38. एस्टरेला गूजमान कोल्क, मनुएल फेर्नंडेज-लोपेज, लुईस ए जापाता एवं **तापस बाग**, IRAS 16076-5134 में संभावित विस्फोटक फैलाव बहिर्प्रवाह ALMA के साथ प्रकट हुआ, द एस्ट्रोफ़िज़िकल जर्नल, 937, 51, 2022
- 39. अनिंद्य साहा, आनंदमयी तेज, हाँग-ली लिउ, टाइ लिउ, निमता ईसाक, चांग वॉन ली, गुइडो गर्रे, पॉल एफ गोल्डरिमथ, मिका जुवेला, शेंग-ली क्वीन, एमेलिया स्टट्ज, शङ्घुओ ली, के वांग, तापस बाग, लियोनार्डो ब्रोंफमैन, फेंग-वाई ज़ू, योंग ज़ंग, चकली एस्वरईयाह, परमाणु: विशाल तारा-निर्माण क्षेत्रों के अल्मा तीन-मिलीमीटर अवलोकन - XII: प्रोटोक्लस्टर्स G12.42+0.50 और G19.88-0.53 में विखंडन और मल्टीस्केल गैस कीनेमेटिक्स, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 516, 1983, 2022
- 40. वाई पुटो, एफ मोट, **टी बाग** और अन्य, अल्मा-आईएमएफ III. तारकीय द्रव्यमान की उत्पत्ति की जांच: W43-MM2&MM3 मिनी-स्टारबर्स्ट में शीर्ष-भारी कोर द्रव्यमान फ़ंक्शन, एस्ट्रोनोमी एंड एस्ट्रोफ़िज़िक्स, 664, A26, 2022

- 41. जिआन-वेन जाऊ, टाइ लिउ, तापस बाग और अन्य, परमाणु: विशाल तारा-निर्माण क्षेत्रों के अल्मा तीन-मिलीमीटर अवलोकन - XII हब-फिलामेंट सिस्टम में अंतर्वाह से अंतर्प्रवाह तक, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 514, 6038, 2022
- 42. ए जिंसबर्ग, टी सेंगेरी, टी बाग और अन्य, अल्मा-आईएमएफ II. तारकीय द्रव्यमान की उत्पत्ति की जांच: सातत्य छवियां और डेटा प्रोसेसिंग, एस्ट्रोनोमी एंड एस्ट्रोफ़िज़िक्स, 662, A9, 2022
- 43. एफ मोट, एस बोण्टेंप्स, **टी बाग** और अन्य, ALMA-IMF तारकीय द्रव्यमान की उत्पत्ति की जांच: बड़े कार्यक्रम का परिचय और पहले परिणाम, एस्ट्रोनोमी एंड एस्ट्रोफ़िज़िक्स, 662, A8, 2022
- 44. यपिंग पेंग, टाइ लिउ, शेड्ग-ली कुइन, **तापस बाग**, हाँग ली-लिउ, के वांग, गाइडो गरे, चाओ ज़ंग, लॉन्ग-फ़ाई चेन, चांग वॉन ली, मिका जुवेला, डाले ली, केनीची तातेमातस्, जून-चुआन लिउ, जेओंग-एउन ली, गान लुओ, लोकेश देवांगन, यूए-फंग वू, ली ज़ंग, लियोनार्डो ब्रोंफमैन, जिजिंग गे, मेंगयों टंग, योंग ज़ंग, फेंग-वाई ज़्, याओ वांग, बिंग जाऊ, परमाणु: विशाल तारा-निर्माण क्षेत्रों का अल्मा तीन-मिलीमीटर अवलोकन - X. G9.62+0.19 में विशाल कोर के बीच रासायनिक भेदभाव. मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 512, 4419, 2022
- 45. होंग-ली लियू, आनंदमयी तेज, टाई लियू, पॉल एफ गोल्डस्मिथ, अमेलिया स्टुट्ज़, मिका जुवेला, शेंग-ली किन, फेंग-वेई जू, लियोनार्डो ब्रोंफमैन, नील जे इवांस, अनिंद्य साहा, निमता इसाक, केनिची तातेमात्सु, के वांग, शांघुओं ली, सिजू झांग, तापस बाग, लोकेश देवांगन, यू-फैंग वू, योंग झांग, चांग वोन ली, ज़्न-चुआन लियू, जियानवेन झोउ, अर्चना सोम, परमाणु: विशाल तारा-निर्माण क्षेत्रों के अल्मा तीन-मिलीमीटर अवलोकन - IXI बहु-स्तरीय संरचनाओं और गैस कीनेमेटिक्स पर आईआरडीसी जी034.43+00.24 की दिशा में एक पायलट अध्ययन, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 511, 4480, 2022
- 46. रोंग लियू, टाई लियू, गैंग चेन, होंग-ली लियू, के वांग, जिन-ज़ेंग ली, चांग वोन ली, जुंचुआन लियू, मिका जुवेला, गुइडो गारे, लोकेश देवांगन, अर्चना सोम, लियोनार्डो ब्रोंफमैन, जिंहुआ हे, चाकली ईश्वरैया, सी-जू झांग, योंग झांग, फेंग-वेई जू, एल विक्टर टोथ, झी-कियांग शेन, शांघुओ ली, यू-फैंग वू, शेंग-ली किन, झियुआन रेन, गुओइन झांग, आनंदमयी तेज, पॉल एफ गोल्डस्मिथ, तापस बाग , किउयी लुओ, जियानवेन झोउ, चांग झांग, परमाणु: विशाल तारा-निर्माण क्षेत्रों का अल्मा तीन-मिलीमीटर अवलोकन - VIII

- एसीए अवलोकनों से SiO क्लंप की एक सूची, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 511, 3618, 2022
- 47. शेंग-ली किन, टाई लियू, ज़ुंचुआन लियू, पॉल एफ गोल्डस्मिथ, डि ली, किझोउ झांग, होंग-ली लियू, यूफैंग वू, लियोनार्डो ब्रॉन्फ़मैन, मिका जुवेला, चांग वोन ली, गुइडो गारे, योंग झांग, जिंहुआ हे, शिह- यिंग सू, ज़ी-कियांग शेन, जियोंग-यून ली, के वांग, निंग्यु तांग, मेंग्याओ तांग, चाओ झांग, यिंगहुआ यू, क्रियाओवेई ज़ू, शांगहुओ ली, यापिंग पेंग, सोमनाथ दत्ता, जिक्सिंग जीई, फेंगवेई जू, लॉन्ग-फ़ेई चेन , **तापस बाग**, लोकेश देवांगन, आनंदमयी तेज, परमाण्: विशाल तारा-निर्माण क्षेत्रों का अल्मा तीन-मिलीमीटर अवलोकन - VIIII C,H,CN, CH,OCHO, और CH,OH लाइनों का उपयोग करके गर्म कोर की खोज, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 511, 3463, 2022
- 48. एल के देवांगन, एन के भदरी, ए मेन्शिकोव, ई. जे. चुंग, आर. देवराज, सी. डब्ल्यू. ली, ए. के. मैती, और टी. बाग, आईसी 5146 डार्क स्ट्रीमर: एज कोलैप्स, हब-फिलामेंट सिस्टम और इंटरट्वाइंड सब-फिलामेंट्स का पहला विश्वसनीय उम्मीदवार, द एस्ट्रोफ़िज़िकल जर्नल, 946, 22, 2023
- 49. पियाली साहा, जी महेश्वर, डी के ओझा, तापस बाग, नेहा शर्मा, Gaia EDR का उपयोग करके चमकीले किनारों वाले बादलों में रॉकेट प्रभाव की जांच, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी: लेटर्स, 515, L67-L71, 2022
- 50. पियाली साहा, अर्चना सोम, तापस बाग, महेश्वर गोपीनाथन, सौमेन मंडल, तुहिन घोष, धूमकेतु बादल L1616 में चुंबकीय क्षेत्र और युवा तारकीय वस्तुएं, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 513, 2039, 2022
- 51. सुमित नंदी, क्यूडिट-उलझी अवस्था से थर्मोडायनामिकल कार्य निकालने के लिए आवश्यक मानदंड, प्रमाण, 97, 19, 2023
- 52. इंद्रनील चक्रवर्ती, सौम्य भट्टाचार्य एवं सुमंत चक्रवर्ती, वर्महोल स्पेसटाइम में गुरुत्वाकर्षण तरंग स्मृति, फ़िज़िकल रिविऊ डी, 106, 104057, 2022
- **53. अष्मिता दास** एवं विभास रंजन माझी, गैर-स्थानीय क्षेत्र सिद्धांत में उरुह-पूर्ण प्रभाव: उरुह अपघटन की भूमिका, फ़िज़िकल रिविऊ डी, 106, 105025, 2022
- 54. देवर्षि दास एवं सोमश्भ्र बंद्योपाध्याय, क्वांटम स्विच के क्वांटम स्विच का उपयोग करके क्वांटम संचार, प्रोसीडिंग्स ऑफ द रॉयल सोसाइटी ए: मैथमेटिकल, फ़िज़िकल एंड इंजीन्यरिंग साइन्सेस, 478, 2266, 2022

- 55. उपला मुखोपध्याय, देबाशीष मजूमदार एवं अशदूल हालदार, 21 सेमी चमक तापमान परिणामों से पीबीएच द्रव्यमान वितरण को रोकना और 21 सेमी सिग्नल और पीबीएच द्रव्यमान की संभाव्यता वितरण के बीच एक विश्लेषणात्मक मानचित्रण, जर्नल ऑफ कोसमोलोजी एंड एस्ट्रोपार्टीक्ल फ़िज़िक्स, 2022, 099, 2022
- 56. देवव्रत तिवारी, शौनक दत्ता, साम्यदेव भट्टाचार्य एवं शुभाशीष बनर्जी, स्पिन रनान में डूबे दो केंद्रीय स्पिनों की गतिशीलता, फ़िज़िकल रिविऊ ए, 106, 032435, 2022
- 57. अनुभव बनर्जी, प्रांतिक नंदी, राज प्रिंस, रुकाईया खातून, देबांजन बोस, ब्लेज़र टीएक्सएस 1700+685 पर ब्रॉडबैंड स्पेक्ट्रो-टेम्पोरल अध्ययन, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 515, 4675, 2022
- 58. सत्यम श्रीवास्तव, **मिलन सील**, प्रसन्ता गोरै, अमित पाठक, भलामुरुगन सीवरमैन, अंकन दस, यथार्थवादी बंधन ऊर्जाओं के साथ गर्म आणविक कोर में शाखित कार्बन-श्रृंखला अणुओं की प्रचुरता का अध्ययन करने के लिए एस्ट्रोकेमिकल मॉडल, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 515, 3524, 2022
- 59. सौम्य चक्रवर्ती, कौशिक दत्ता, जैक्सन लेवी सेड, स्क्रीनिंग तंत्र और देर-समय का ब्रह्मांड विज्ञान: गिरगिट-ब्रांस-डिके अदिश क्षेत्र की भूमिका, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 514, 427, 2022
- 60. राणा घोष, मिलन सील, सुमन कुमार मंडल, प्रसन्ता गोरै, दिपेन साहू, राहुल कुमार कुशवाहा, भलामुरुगन सीवरमैन एवं अंकन दास, उच्च द्रव्यमान तारा-निर्माण क्षेत्रों में फिनोल, रिसर्च इन एस्ट्रोनोमी एंड एस्ट्रोफ़िज़िक्स, 22, 065021, 2022
- 61. श्रुति प्रिया, राज प्रिंस, अदिति अग्रवाल, देबांजन बोस, अयकुट ओज़्डोनमेज़, एर्गुन एगे, ब्लेज़र एस5 1803+78 का मल्टीवेवलेंथ अस्थायी और वर्णक्रमीय विश्लेषण, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 513, 2239, 2022
- 62. सौम्य चक्रवर्ती, भिन्न-भिन्न सूक्ष्म संरचना स्थिरांक के सामान्यीकृत सिद्धांतों पर, मंथली नोटीसेस ऑफ द रॉयल एस्ट्रोनोमिकल सोसाइटी, 513, 1088, 2022
- 63. अनुभव बनर्जी, अयान भट्टाचार्य, दीपक देबनाथ, संदीप ए. चक्रवर्ती, जीआरएस 1915+105 और आईजीआर जे17091-3624 के बीच अभिवृद्धि प्रवाह गुणों में समानताएं और अंतर: एक केस अध्ययन, अड्वांसेस इन स्पेस रिसर्च, 69, 2930, 2022

- 64. शुभायन सरकार एवं **देवाशीष साहा**, क्वांटम सहसंबंधों का प्रदर्शन जो माप की निरपेक्षता के साथ असंगत हैं, फ़िज़िकल रिविऊ ए, 107, 022226, 2023
- 65. शशांक गुप्ता, वास्तविक थ्री क्वबिट आइंस्टीन-पोडॉल्स्की-रोसेन स्टीयरिंग अंडर डीकोहेरेंस: प्री-प्रोसेसिंग के माध्यम से छिपी हुई वास्तविक संचालन क्षमता को प्रकट करना, क्वांटम इन्फॉर्मेशन प्रोसेसिंग, 22, 49 2023
- 66. प्रतापदित्य बेज, अर्कप्रभा घोषाल, अरूप रॉय, शिलादित्य मल और देवर्षि दास, सामान्यीकृत उलझाव स्वैपिंग में क्वांटम सहसंबंध बनाना, फ़िज़िकल रिविऊ ए, 106, 022428, 2022

जटिल प्रणालियों का भौतिकी विभाग

- 1. मानस मंडल, श्रावणी चक्रवर्ती, जी किन गाओ, धनंजय भट्टाचार्य, जयदेव चक्रवर्ती, श्वसन बूंदों के इनडोर प्रसार पर सूक्ष्म मॉडल, कंपिउटेशनल बयोलॉजी एंड कैमिस्ट्रि, 102, 107806, 2023
- 2. राहुल कर्माकर, ऐशानी घोषाल और जे. चक्रवर्ती, फेस मास्क के माध्यम से संचालित श्वसन बूंदों की गति पर मॉडल अध्ययन, यूरोफ़िज़िक्स लेटर्स, 141, 27001, 2023
- 3. आयत्ती मल्लिक गुप्ता, जयदेब चक्रबर्ती, उत्परिवर्तन के कारण SARS-CoV-2 के स्पाइक प्रोटीन की संरचना पर प्रभाव, बायोटेक्नालजी एंड अप्लाइड बायोकैमिस्ट्रि, 2022, 1-13, 2022
- 4. अभिक घोष मौलिक एवं **जे चक्रबर्ती**, **C**-lactalbumin की पिघली हुई ग्लोब्यूल अवस्था में गठन संबंधी उतार-चढ़ाव, फ़िज़िकल कैमिस्ट्रि केमिकल फ़िज़िक्स, 24, 21348, 2022
- 5. पिया पात्रा, राजा बनर्जी, जयदेब चक्रवर्ती, टाट पॉलीपेप्टाइड द्वारा डिपाल्मिटॉयलफॉर-फेटिडिलकोलाइन बाइलेयर विरूपण पर बाइफॉर-फेट नमक का प्रभाव, बायोपोलिमर्स, 113, e23518, 2022
- 6. अभिक घोष मौलिक एवं **जे चक्रबर्ती**, एक प्रोटीन में सहसंबद्ध द्विध्रवीय और डायहेडूल उतार-चढ़ाव, केमिकल फ़िज़िक्स लेटर्स, 797, 139574, 2022
- 7. जय प्रकाश सिंह, सुदीप्त पटनायक, श्रद्धा मिश्रा, जयदेव चक्रवर्ती, सक्रिय रनान में निष्क्रिय कणों की स्थिर अवस्था संरचनाओं का प्रभावी एकल घटक विवरण, द जर्नल ऑफ केमिकल फ़िज़िक्स, 156, 214112, 2022

- 8. षष्ठी चरण मण्डल एंड **जयदेब चक्रबर्ती**, ZnO में ग्लूकोज का सतही विशिष्ट अधिशोषण, फ़िज़िकल कैमिरिन्ट्र केमिकल फ़िज़िक्स, 25, 7805, 2023
- सम्राट सेन, एडविन पीटर लोबो, राम कृष्णा पत्र, साहिल गोपालकृष्ण नैक, आनन्दमय दस भौमिक, मीर अलीमुद्दीन, एंड माणिक बनिक, समयबद्ध सहसंबंध और क्वांटम टेंसर उत्पाद संरचना, फ़िज़िकल रिविऊ ए, 106, 062406, 2022
- 10. एडविन पीटर लोबो, साहिल गोपालकृष्ण नैक, सम्राट सेन, राम कृष्णा पत्र, माणिक बनिक, एंड मीर अलीमुद्दीन, क्वांटम-इनपुट बेल परीक्षण के माध्यम से रऱ्थानीय रत्तर पर क्वांटम नो-सिग्नलिंग सिद्धांतों की क्वांटमनेस से परे प्रमाणित करना, फ़िज़िकल रिविऊ ए, 106, L040201, 2022
- 11. समगीथ पुलियिल, माणिक बनिक, और मीर अलीमुद्दीन, वास्तविक बहुपक्षीय उलझाव के थर्मोडायनामिक हस्ताक्षर, फ़िज़िकल रिविऊ लेटर्स, 129, 070601, 2022
- 12. गोविंद लाल सिद्धार्थ, मिर अलिमुद्दीन एवं माणिक बणिक, आनुवंशिक एल्गोरिदम के माध्यम से शोर वाले क्वांटम चैनलों की सुसंगत जानकारी की सुपरएडिटिविटी की खोज, फ़िज़िकल रिविऊ ए, 106, 012432, 2022
- 13. राम कृष्णा पत्र, साहिल गोपालकृष्ण नैक, एडविन पीटर लोबो, सम्राट सेन, गोविन्द लाल सिद्धार्ध, मीर अलीमुद्दीन, एंड माणिक बिणक, सूचना कारणता का सिद्धांत क्वांटम संरचना को तर्कसंगत बनाता है, फ़िज़िकल रिविऊ लेटर्स, 130, 110202, 2023
- 14. कंचन मीणा एवं **पी सिंहा देव**, इलेक्ट्रॉनों को आकर्षित करने का एक तंत्र, एडवांसेस इन थियोरेटिकल एंड कंपीउटेशनल फ़िज़िक्स, 5(2), 458, 2022
- 15. कंचन मीणा एवं **पी सिंहा देव**, *बैरियर टनलिंग में समय की* स्थिति उलट गई, फिसिका ई: लो-डाइमेनशनल सिस्टम्स एंड नैनोस्ट्रक्चर्स, 149, 115680, 2023
- 16. अनिर्वाण मुखर्जी एवं **पुण्यव्रत प्रधान**, संरक्षित मन्ना सेंडपाइल में गतिशील सहसंबंध, फ़िज़िकल रिविऊ ई, 107, 024109, 2023
- **17. शक्तला चैटर्जी**, एकल कोशिका ई. कोलाई के लिए कदम उत्तेजना के लिए कम समय की चरम प्रतिक्रिया, जर्नल ऑफ स्टेटिस्टिकल मेकनिक्स: थियरि एंड एक्सपरिमेंट, 2022, 123503, 2022
- 18. अयन साँतरा, **उर्ना बस्** और संजीब सभापंडित, *दो आयामों में* कणों के दौड़ने और गिरने का लंबे समय तक व्यवहार, जर्नल ऑफ स्टेटिस्टिकल मेकनिक्स: थियरि एंड एक्सपरिमेंट, 2023, 033203, 2023
- 19. ऋत्विक सरकार, अयन साँतरा, और **उरना बसु**, गतिविधि-संचालित हार्मोनिक श्रृंखलाओं की स्थिर अवस्थाएँ, फ़िज़िकल

- रिविऊ ई, 107, 014123, 2023
- 20. अयन साँतरा, उर्ना बसु और संजीब सभापंडित, स्टोकेस्टिक प्रसार गुणांक के साथ ब्राउनियन गति पर स्टोकेस्टिक रीसेटिंग का प्रभाव, जर्नल ऑफ फ़िज़िक्स ए: मैथमेटिकल एंड थियोरेटीकल, 55, 414002, 2022
- 21. उरना बसु, विसेंट डेमरी, एड्रिया गंबासी, गॉसियन क्षेत्र से जुड़े कोलाइडल कण की गतिशीलता: एक परिरोध-निर्भर से एक गैर-रेखीय स्मृति तक, साइपोस्ट फ़िज़िक्स, 13, 078, 2022
- 22. अयन साँतरा, **उर्ना बस्**, हार्मोनिक श्रृंखलाओं में गतिविधि संचालित परिवहन, साइपोस्ट फ़िज़िक्स, 13, 041, 2022
- 23. अयन साँतरा, **उर्ना बसु** और संजीब सभापंडित, <u>म</u>ुक्त सक्रिय कणीं के दीर्घकालिक स्थिति वितरण के लिए सार्वभौमिक ढांचा, जर्नल ऑफ फ़िज़िक्स ए: मैथमेटिकल एंड थियोरेटीकल, 55, 385002,
- 24. सुजीत के बोस, अशांत द्वि-आयामी उथले पानी के समीकरण और *उनके संख्यात्मक समाधान*, आर्काइव ऑफ अप्लाइड मेकनिक्स, 92, 3405, 2022
- **25. ए कुमारी** एवं ए के पान, अनुक्रमिक पर्यवेक्षकों की एक मनमानी जोड़ी द्वारा बेल प्रयोग में तैयारी की प्रासंगिकता को साझा करना, फ़िज़िकल रिविऊ ए, 107, 012615, 2023
- **26. एस एस मन्ना**, क्रमिक अंतःस्राव में द्वीप और झील के आकार का वितरण, जर्नल ऑफ फ़िज़िक्स ए: मैथमेटिकल एंड थियोरेटीकल, 55, 264005, 2022
- **27. संज्_{का} पॉल**, स्दीप मुखर्जी, बिजिन जोसेफ, असीम घोष और बिकास के. चक्रवर्ती, बचत प्रवृत्ति के साथ काइनेटिक विनिमय आय वितरण मॉडल: असमानता सूचकांक और स्व-संगठित गरीबी स्तर, फिलोसोफ़िकल ट्रान्सक्शंस ऑफ द रॉयल सोसाइटी ए: मथेमेटिकल, फ़िज़िकल एंड एंजिनियरिंग साइनसेस, 380, 2224, 2022
- 28. मनु माथुर एवं अतुल राठोर, एसयू(एन) टोरिक कोड और गैर-एबेलियन एनियन, फ़िज़िकल रिविऊ ए, 105, 052423, 2022
- **29. एस एस मन्ना**, सौम्यज्योति विश्वास, विकास के. चक्रवर्ती, स्व-संगठित महत्वपूर्ण मॉडलों में सामाजिक असमानता सूचकांकों के लगभग सार्वभौमिक मूल्य, फिजिका ए: स्टेटिस्टिकल मेकनिक्स एंड इट्स अप्लीकेशन्स, 596, 127121, 2022
- 30. बीजीन जोसेफ एवं विकास के. चक्रवर्ती, धन वितरण के काइनेटिक एक्सचेंज मॉडल में बचत प्रवृत्ति के साथ गिनी और कोलकाता सूचकांकों में भिन्नता: एक विश्लेषणात्मक अध्ययन, फिजिका ए: स्टेटिस्टिकल मेकनिक्स एंड इट्स अप्लीकेशन्स, 594, 127051, 2022

रासायनिक और जैविक विज्ञान विभाग

- 1. प्रेमाशीष कुमार और गौतम गंगोपाध्याय, अमानवीय प्रवाह के साथ एक सरल प्रतिक्रिया-प्रसार प्रणाली में ग्लाइकोलाइटिक तरंग पैटर्न: गतिशील संक्रमण, केमफीसकेम, e202200643, 2023
- 2. प्रेमाशीष कुमार, किंशुक बनर्जी और गौतम गंगोपाध्याय, गतिज प्रफरीडिंग में ऊर्जा, अपव्यय और त्रुटि की परस्पर क्रिया: एकाग्रता और बाध्यकारी ऊर्जा के माध्यम से नियंत्रण, फिजिका ए: स्टेटिस्टिकल मेकनिक्स एंड इट्स अप्लीकेशन्स, 603, 127735, 2022
- 3. संदीप साहा और गौतम गंगोपाध्याय, एलएलएस प्रमेय से परे लियानार्ड-लेविंसन-स्मिथ (एलएलएस) समीकरण में एक स्थिर सीमा चक्र का अस्तित्व, कमिउनिकेशंस इन नॉनलिनियर साइन्स एंड निउमेरिकल सिमुलेशन, 109, 106311, 2022
- 4. नंदन घोराई, **गौतम दे**, हिरेंद्र एन घोष, *ढांकता हुआ फिल्मों* में एम्बेडेड सोने के नैनोकणों में प्लारमोन मध्यस्थ इलेक्ट्रॉन स्थानांतरण और तापमान पर निर्भर इलेक्ट्रॉन-फोनन स्कैटरिंग, केमफीसकेम, 23, e202200181, 2022
- 5. अतिन प्रमाणिक, श्रेयसी चट्टोपाध्याय, **गौतम दे** और सौरिन्द्र महंती, लिथियम-आयन बैटरी एनोड के लिए क्यूबॉइडल FeNi S -rGO-MWCNTs कंपोजिट का डिज़ाइन उत्कृष्ट आधा और पूर्ण सेल प्रदर्शन दिखाता है, बैटरिस, 8(12), 261, 2022
- 6. अर्धेंद् पाल, सौम्यदीप्त चक्रवर्ती, विश्वजीत पांडा, **माणिक प्रधान**, 5.2 µm पर NO के 2 1/2 और 2 3/2 स्पिन-स्प्लिट उप-बैंड में \Lambda-डबल विभाजन और घूर्णी क्वांटम संख्या-निर्भर टकराव संबंधी विस्तार को स्पष्ट करना, जर्नल ऑफ मोलेकुलर स्पेक्ट्रोस्कोपी, 391, 111719, 2023
- 7. देवदास कर्माकर, सूजॉय कुमार मंडल, सूमना पॉल, सप्तर्षि पाल, माणिक प्रधान, सुजॉय दत्ता और देबनारायण जाना, उत्कृष्ट एलईडी प्रकाश चालित फोटोकैटलिटिक डाई गिरावट की दिशा में Sb2WO6 नैनोकण का एक-चरण हाइड्रोथर्मल संश्लेषण, अप्लाइड फ़िज़िक्स ए, 128, 689, 2022
- 8. जयेता बनर्जी, सुदीप मंडल और माणिक प्रधान, ध्रुवीकरण-बहुसंकेतन असंगत ब्रॉडबैंड सतह प्लास्मीन अनुनाद: प्लास्मीनिक सेंसिंग के लिए एक नई विश्लेषणात्मक रणनीति, अनलिटिकल कैमिस्टि, 94, 6689, 2022
- 9. जयेता बनर्जी और **माणिक प्रधान**, 2डी-टीएमडीसी-संवर्धित संघनित चरण कैविटी रिंग-डाउन स्पेक्ट्रोस्कोपी,

- पानी के आइसोटोपोलॉग्स पर जांच के लिए सतह प्लारमोन अनुनाद के साथ मिलकर, ओपटिक्स कमिउनिकेशंस, 527, 128956, 2023
- 10. विश्वजीत पांडा, अर्धेन्दु पाल, सौम्यदिप्त चक्रवर्ती और माणिक प्रधान, वायुमंडलीय निगरानी और सांस निदान के एक साथ अनुप्रयोगों के लिए मध्य-आईआर क्षेत्र में 7.8 µm पर ईसी-क्यूसीएल आधारित दोहरी-प्रजाति (सीएच४/एन२ओ) का पता लगाने की विधि, इंफ्रारेड फ़िज़िक्स एंड टेक्नालजी, 125, 104261, 2022
- 11. आकाश दास, सौमेन मंडल, और **माणिक प्रधान**, कमजोर माप के माध्यम से मोनोलेयर MoSू में फोटोनिक स्पिन हॉल प्रभाव का हस्ताक्षर, जर्नल ऑफ द ऑप्टिकल सोसाइटी ऑफ अमेरिका बी, 39(7), 1822, 2022
- 12. मनोज मण्डल, किसुके साइटो एवं हिरोशी ईशिकिता, Ca²⁺ का प्रतिस्थापन और फोटोसिस्टम ॥ के ऑक्सीजन-विकसित परिसर के पास H-बॉन्ड नेटवर्क में परिवर्तन, फ़िज़िकल कैमिस्ट्रि केमिकल फ़िज़िक्स, 25, 6473, 2023
- **13. मनोज मण्डल**, किसुके साइटो एवं हिरोशी ईशिकिता, फोटोसिस्टम ॥ में ऑक्सीजन-इवोल्विंग कॉम्प्लेक्स में सब्सट्रेट जल अणुओं से इलेक्ट्रॉनों और प्रोटॉन की रिहाई, जर्नल ऑफ द फ़िज़िकल सोसाइटी ऑफ जापान, 91, 091012, 2022
- 14. मनोज मण्डल, किसुके साइटो एवं हिरोशी ईशिकिता, फोटोसिस्टम ॥ में टायरोसिन डी और डी2-हिज189 के बीच एक प्रोटॉन का विमोचन और एक लो-बैरियर हाइड्रोजन बॉन्ड का निर्माण, एसीएस फ़िज़िकल कैमिस्ट्रि एयू, 2, 423, 2022
- 15. माइकल ट्रैक्सलर, सेबेस्टियन गिरुबर्ट्ज़, **प्रदीप पचफुले**, जोहान्स श्मिट, जेरोम रोसेर, सुजैन रीस्चौएर, जाबोर रबिया, बार्थीलोमस पीबर, अर्ने थॉमस, मेटलाफोटोकैटलिटिक सी-एन क्रॉस-कपलिंग के लिए फोटोकैटलिस्ट के रूप में एक्रिडिन-फंक्शनल सहसंयोजक कार्बनिक फ्रेमवर्क (सीओएफ), अंगेवांटे किमी, 61, e202117738, 2022
- 16. ज़ीआओजिया जाओ, कुन ली, प्रदीप पचफुले, जिया वांग, शियिन लिउ, वैजीयन वू, मींगजिंग वू, अरने थॉमस, एंटीबायोटिक दवाओं के कुशल अवशोषण के लिए सहसंयोजक कार्बनिक फ्रेमवर्क नैनोफाइबर झिल्ली का निर्माण, रमाल, 2301200, 2023
- 17. रिया साहा एवं **राजीव कुमार मित्रा**, प्रोटीन में त्रिसंयोजक धनायन-प्रेरित चरण पृथक्करण: जलयोजन में आयन विशिष्ट योगदान भी मायने रखता है, फ़िज़िकल कैमिस्ट्रि केमिकल फ़िज़िक्स, 24, 23661, 2022

- 18. सुमना पाइन, पार्थ पाइन एवं **राजीव कुमार मित्रा**, कोलेस्ट्रॉल के जुड़ने से मॉडल लिपिड की सतह पर जलयोजन बदल जाता है: एक स्पेक्ट्रोरकोपिक जांच, फ़िज़िकल कैमिस्ट्रि केमिकल फ़िज़िक्स, 24, 20381, 2022
- 19. सुमना पाइन, पार्थ पाइन एवं राजीव कुमार मित्रा, सर्फेक्टेंट/ कोलेस्ट्रॉल वेसिकल्स में आंतरिक जलयोजन बाहरी जलयोजन से भिन्न होता है: एक स्पेक्ट्रोस्कोपिक जांच, केमफीसकेम, 23, e202200337, 2022
- 20. 20. सैकत पाल एवं **राजीव कुमार मित्रा**, नॉनपोलर हाइड्रोफोबिक अमीनो एसिड लाइसोजाइम की एंजाइमेटिक गतिविधि को ट्यून करते हैं, बायोफ़िज़िकल कैमिस्ट्रि, 288, 106842, 2022
- 21. सोनाली मण्डल, सुमना पाइन, पार्थ पाइन, अनिमेष पात्र, **राजीव** कुमार मित्रा एवं सौमेन घोष, एक मॉडल एनियोनिक-सरफैक्टेंट/ पॉलिमर सेल्फ-असेंबली में विलेय गतिविधि से संबंधित इंटरफेशियल संरचना और इलेक्ट्रोस्टैटिक्स, लंगमुईर, 39, 2850, 2023
- 22. रिया साहा एवं राजीव कुमार मित्रा, त्रिसंयोजक आयन-प्रेरित सूक्ष्म प्रोटीन-समृद्ध चरणों का थर्मो-प्रतिरोधी चरण व्यवहार: आयन-विशिष्ट प्रोटीन हाइड्रेशन के साथ सहसंबंध, लंगमुईर, 39, 4601, 2023
- 23. शुभदीप चक्रबर्ती, पार्थ पाइन, राजीव कुमार मित्रा एवं देवशीष दास महंत, हाइड्रोफिलिक और हाइड्रोफोबिक जलयोजन के बीच एक सुक्ष्म परस्पर क्रिया पानी में ब्यूटेनॉल (डी) के मिश्रण को नियंत्रित करती है, केमिकल फ़िज़िक्स लेटर्स, 807, 140080, 2022
- 24. स्वरूप बनर्जी, प्रदीप कुमार घोरई, ध्रुबज्योति माझी एवं रंजीत विश्वास, (एसिटामाइड + Na/KSCN) डीप यूटेक्टिक्स के बीच "सुपरकूलिंग" एफ़िनिटी में अंतर: घटकों और समाधान के सिम्युलेटेड विसंगतिपूर्ण गतियों में प्रतिबिंब माइक्रोहेटोजेनिटी विशेषताएं, द जर्नल ऑफ फ़िज़िकल कैमिस्ट्रि बी, 126, 10146, 2022
- 25. दिबाकर सरकार, नारायण चंद्र मैती, गौरव शोम, किरियाकोस गेब्रियल वर्नावा, विजयालेक्समी सरोजिनी, सुब्रमण्यम विवेकानंदन, निराकर साहू, सौरव कुमार, अतीन कुमार मंडल, रंजीत विश्वास और अनिर्बान भुनिया, कार्यात्मक रूप से भिन्न मानव आइलेट पॉलीपेप्टाइड (एचआईएपीपी) अमाइलॉइड में यंत्रवत अंतर्दृष्टिः सी-टर्मिनल संरचनात्मक रूपांकनों की आंतरिक भूमिका, फ़िज़िकल कैमिस्ट्रि केमिकल फ़िज़िक्स, 24, 22250, 2022

- 26. कल्लोल मुखर्जी, काजल कुम्भकार और **रंजीत विश्वास**, पीईजी आधारित पॉलिमर जेल इलेक्ट्रोलाइट की गतिशीलता: एक संयुक्त आवृत्ति पर निर्भर ढांकता हुआ विश्राम और समय-समाधान प्रतिदीप्ति स्पेक्ट्रोस्कोपिक अध्ययन, जर्नल ऑफ मलैक्युलर लिकुइंड्स, 360, 119491, 2022
- 27. अतनु बक्शी एवं रंजीत विश्वास, कुछ प्रतिक्रियाओं में अत्यधिक भिन्न चिपचिपे मीडिया में समान प्रतिक्रिया दर क्यों होती है? आवृत्ति-निर्भर घर्षण के माध्यम से एक संभावित स्पष्टीकरण, जर्नल ऑफ केमिकल साइन्सेस, 134, 51, 2022
- 28. स्दीप्त मित्रा, अर्नब सिल, रंजीत विश्वास और स्मन चक्रवर्ती, एंजाइम लैकेस में सब्सट्रेट संकीर्णता की आणविक थर्मोडायनामिक उत्पत्ति: डाई अपशिष्टों के एक व्यापक-रूपेक्ट्रम डिग्रेडर की ओर, द जर्नल ऑफ फ़िज़िकल कैमिस्ट्रि लेटर्स, 14, 1892, 2023
- 29. नारायण चंद्र मैती, अतानु बक्सी, काजल कुंभकार और **रंजीत** विश्वास, जलीय ऑक्टेनॉल मिश्रण में पानी का प्रभाव और संरचना: हर्ट्ज-गीगाहर्ट्ज ढांकता हुआ विश्राम माप और कंप्यूटर सिमुलेशन, जर्नल ऑफ फोटोकैमिस्ट्रि एंड फोटोबयोलॉजी ए: कैमिस्ट्रि, 439, 114600, 2023
- 30. हिदेकी शिरोता, जुरिटी राजबांग्शी, महारूफ कोयक्कट, अतानु बक्सी, मेंगजुन काओ और रंजीत विश्वास, रिलाइन की कम आवृत्ति स्पेक्ट्रा और पानी के साथ इसका मिश्रण: फेमटोसेकंड रमन-प्रेरित केर प्रभाव स्पेक्ट्रोस्कोपी और आणविक गतिशीलता सिमुलेशन पर आधारित एक तूलनात्मक अध्ययन, जर्नल ऑफ फोटोकैमिस्ट्रि एंड फोटोबयोलॉजी ए: कैमिस्ट्रि, 437, 114504, 2023
- 31. अमृता बनर्जी, रिया घोष, तपन अधिकारी, सुभादिप्त मुखोपाध्याय, अर्पिता चट्टोपाध्याय और समीर कुमार पाल, कॉपर माइन टेलिंग वेस्ट से नैनोमेडिसिन का विकास: उन्नत रेडॉक्स नैनोटेक्नोलॉजी के साथ सर्कुलर इकोनॉमी की ओर एक प्रगति, कैटालिस्ट्स, 13, 369, 2023
- 32. रिया घोष, नेहा भट्टाचार्य, अमृता बनर्जी, लोपामुद्रा रॉय, देबदत्त मुखर्जी, सौमेंद्र सिंह, अर्पिता चट्टोपाध्याय, तपन अधिकारी और समीर कुमार पाल, दानेदार मैट्रिक्स की जैवउपलब्ध जल सामग्री को समझना: एक संयुक्त प्रायोगिक और कम्प्यूटेशनल अध्ययन, बायोसेंसर्स, 13, 185, 2023
- 33. अमृता बनर्जी, दीपांजन मुखर्जी, अर्पण बेरा, रिया घोष, सुरिमता मंडल, सुभादिप्त मुखोपाध्याय, रंजन दास, हातेम एम. अल्तास, समीर। एस. ए. नट्टो, ज़ियाद मौसा, सालेह ए. अहमद, अर्पिता चट्टोपाध्याय और **समीर कुमार पाल**, बहू-दवा प्रतिरोधी बैक्टीरिया के संभावित सहक्रियात्मक उपचार के लिए नैनोस्कोपिक डिलीवरी

- वाहन में कई दवाओं का आणविक सह-स्थानीयकरण, साइंटिफिक रिपोर्ट्स, 12, 18881, 2022
- 34. अमृता बनर्जी, सौमेंद्र सिंह, रिया घोष, मोहम्मद नूर हसन, अर्पण बेरा, लोपामुद्रा रॉय, नेहा भट्टाचार्य, अनिमेष हलदर, अर्पिता चट्टोपाध्याय, सुभादिप्त मुखोपाध्याय, अमिताव दास, हातेम एम. अल्तास, ज़ियाद मौसा, सालेह ए. अहमद, समीर कुमार पाल, तीव्र जल विषाक्तता की बहुसंकेतन निगरानी के लिए एक पोर्टेबल स्पेक्ट्रोस्कोपिक उपकरण: डिजाइन, परीक्षण और मूल्यांकन, रिविऊ ऑफ साइंटिफिक इन्स्ट्रमेंट्स, 93, 115105, 2022
- 35. नेहा भट्टाचार्य, दीपांजन मुखर्जी, सौमेंद्र सिंह, रिया घोष, सौरव कर्मकार, अंकिता मल्लिक, अर्पिता चट्टोपाध्याय, पुलक मंडल, तपन मंडल, देबासिस भट्टाचार्य, असीम कुमार मल्लिक, गुलाम नबी, समीर कुमार पाल, मूत्राशय कैंसर के अदृश्य वाष्पशील कार्बनिक यौगिक (वीओसी) मार्कर को "देखना": बेंच से बेडसाइड तक प्रोटोटाइप रपेक्ट्रोस्कोपिक डिवाइस का विकास, बायोसेंसर्स एंड बायोइलेक्ट्रॉनिक्स, 218, 114764, 2022
- 36. सुरिमता मंडल, मोनोजीत दास, रिया घोष, सौमेंद्र सिंह, सौमेंद्र दरबार, नेहा भट्टाचार्य, अनिरुद्ध अधिकारी, अंजन कुमार दास, सिद्धार्थ शंकर भट्टाचार्य, देबाशीष पाल, असीम कुमार मल्लिक और समीर कुमार पाल, अंग-विशिष्ट चिकित्सीय नैनोकण स्तनधारियों में पारंपरिक एक्स-रे तकनीक का उपयोग करके संभावित नैनोथेरानोस्टिक्स के लिए रेडियोल्यूसेंट प्रतिक्रियाशील प्रजातियां उत्पन्न करते हैं, अप्लाइड नैनोसाइन्स, 12, 3851, 2022
- 37. मोनोजीत दास, सुस्मिता मंडल, रिया घोष, प्रीतम विश्वास, ज़ियाद मौसा, सौमंद्र दरबार, सालेह ए. अहमद, अंजन कुमार दास, सिद्धार्थ शंकर भट्टाचार्य, देबाशीष पाल, असीम कुमार मल्लिक, प्रांत चक्रवर्ती, जयंत कुमार कुंडू, अनिरुद्ध अधिकारी और समीर कुमार पाल, एनीमिया और संबंधित विकारों के उपचार के लिए एक नैनो एरिथ्रोपोएसिस उत्तेजक एजेंट, आइसाइन्स, 25, 105021, 2022
- 38. शेख सलीम पाशा, अमृता बनर्जी, श्रीजेश श्रीधरन, सौमेंद्र सिंह, नौफल कंदोथ, कैथरीन एवालिस, समीर कुमार पाल, सुमित कुमार प्रमाणिक और अमिताव दास, *पानी और माइटोकॉन्ड्रिया में iAsIII* के अनुपातमितीय जांच और विषहरण के लिए अल्ट्रासेंसिटिव अभिकर्मक, इनओरगनिक कैमिस्ट्रि, 61, 13115, 2022
- 39. निवेदिता पान, संगीता घोष, मोहम्मद नूर हसन, सालेह ए. अहमद, अर्का चटर्जी, जयिता पटवारी, चिन्मय भट्टाचार्य, जिहान कुर्बान, अब्देलरहमान एस. खदर, और समीर कुमार पाल, उन्नत फोटोबोल्टिक गतिविधि के लिए प्लास्मोन-युग्मित दाता-स्वीकर्ता

- प्रकार कार्बनिक सेंसिटाइज़र-आधारित फोटोएनोड: अल्ट्राफास्ट डायनामिकल अध्ययन से मुख्य जानकारी, एनर्जि एंड फुएल्स, 36, 9272, 2022
- 40. अर्पण बेरा, मोहम्मद नूर हसन, निवेदिता पान, रिया घोष, रीम ए. अलसंताली, हातेम एम. अल्तास, रामी जे. ओबैद, सालेह ए. अहमद और समीर कुमार पाल, नए ऑप्टिकल गुणों को प्राप्त करने और चिकित्सीय क्षमता में सुधार के लिए एमएनएस नैनोकणों की सतह क्रियाशीलता का कार्यान्वयन, आरएससी एडवांसेस, 12, 20728, 2022
- 41. अनिरुद्ध अधिकारी, विनोद के. भूटानी, सुस्मिता मंडल, मोनोजीत दास, सौमेंद्र दरबार, रिया घोष, नबारुन पोली, अंजन कुमार दास, सिद्धार्थ शंकर भट्टाचार्य, देबाशीष पाल, असीम कुमार मल्लिक और समीर कुमार पाल, एक नैनोस्यूटिकल एजेंट के साथ बिलीरुबिन एन्सेफैलोपैथी की कीमोरोकथाम, पीडीएट्रिक रिसर्च, 93, 827, 2023
- 42. नेहा भट्टाचार्य, सौमेंद्र सिंह, रिया घोष, अमृता बनर्जी, अनिरुद्ध अधिकारी, अनिमेष हलदर, महाश्वेता गोरऱ्वामी, अर्पिता चट्टोपाध्याय, पुलक मंडल, समीर एस ए नट्टो, सालेह ए अहमद, असीम कुमार मल्लिक, समीर कुमार पाल, आरामदायक और स्वच्छ साँस लेने के लिए एक स्मार्ट सक्रिय श्वासयंत्र का विकास, फ़िज़िक्स ऑफ फ्लुइड्स, 34, 051901, 2022
- 43. नेहा भट्टाचार्य, सौमेंद्र सिंह, अमृता बनर्जी, रिया घोष, ओइंद्रिला सिन्हा, नायरित दास, राजकुमार गायेन, सौम्या शुभ्रा पाल, सहेली गांगुली, तन्मय दासगुप्ता, तनुश्री दासगुप्ता, पुलक मंडल, अनिरुद्ध अधिकारी, शर्मिला सरकार, देबाशीष भट्टाचार्य, असीम कुमार मल्लिक, ओम प्रकाश सिंह, समीर कुमार पाल, प्री-स्कूलर्स में ध्यान-अभाव सक्रियता विकार (एमएएचडी) के वस्तुनिष्ठ माप के लिए इलेक्ट्रोएन्सेफलोग्राम (ईईजी) और मोशन ट्रैकिंग सेंसर का एकीकरण, रिविऊ ऑफ साइंटिफिक इन्स्ट्रमेंट्स, 93, 054101, 2022
- 44. स्रिमता मंडल, निवेदिता पान, रिया घोष, अर्पण बेरा, दीपांजन मुखर्जी, तुहिन कुमार माजी, अनिरुद्ध अधिकारी, संगीता घोष, चिन्मय भट्टाचार्य, समीर कुमार पाल, रेडॉक्स-मॉड्यूलेटरी नैनो-हाइब्रिड के साथ पीलिया मार्कर अणु की सहभागिता: एक थेरानोस्टिक टूल के विकास की दिशा में एक संयुक्त इलेक्ट्रोकेमिकल और स्पेक्ट्रोस्कोपिक अध्ययन, केममेडकेम, 17, e202100660, 2022
- 45. रिया घोष, सौमेंद्र सिंह, अनिरुद्ध अधिकारी, सुस्मिता मंडल, दीपांजन मुखर्जी, नेहा भट्टाचार्य, अनिमेष हलदर, मैत्री भट्टाचार्य

- और समीर कुमार पाल, लंबे समय तक चलने वाले नसबंदी प्रभाव के लिए नैनो-फॉर्मूलेशन का संश्लेषण और लक्षण वर्णन, माटेरियल्स टुडे प्रोसीडिंग्स, 80, 1846, 2023
- 46. एम. शाहीर मलिक, शेख फाजिल, मेशारी ए. अलशरीफ, काजी मोहम्मद साजिद जमाल, जाबिर एच. अल-फहेमी, अमृता बनर्जी, अर्पिता चट्टोपाध्याय, समीर कुमार पाल, अहमद कमाल और सालेह ए. अहमद शक्तिशाली उपन्यास लाइनज़ोलिड-आधारित ऑक्साज़ोलिङिनोन के जीवाणुरोधी गुण और कम्प्यूटेशनल अंतर्दृष्टि, फ़ार्मासिउटिकल्स, 16(4), 516, 2023
- 47. रिया घोष, दीपांजन मुखर्जी, गौरव घोष, एमडी नूर हसन, अर्पिता चट्टोपाध्याय, रंजन दास और समीर कुमार पाल, समय-समाधान केमिलुमिनसेंस के माध्यम से एक माइक्रोफ्लुइडिक चैनल में सेलुलर संलयन की नकल करना, जर्नल ऑफ फोटोकैमिस्ट्रि एंड फोटोबयोलॉजी, 441, 114731, 2023
- 48. निवेदिता पान, रिया घोष, देबदत्ता मुखर्जी, नेहा भट्टाचार्य, लोपामुद्रा रॉय, अमृता बनर्जी, सौमेंद्र सिंह, राधा तमल गोस्वामी, माला मित्रा, अर्पिता चट्टोपाध्याय और **समीर कुमार पाल**, भारी धातु का पता लगाने के लिए एक नैनोसेंसर-आधारित प्रोटोटाइप विकास: एक संयुक्त स्पेक्ट्रोस्कोपिक और सैद्धांतिक अध्ययन, आईईईई सेंसर्स लेटर्स, 7(2), 1500304, 2023
- 49. अमृता बनर्जी, नेहा भट्टाचार्य, रिया घोष, सौमेंद्र सिंह, अनिरुद्ध अधिकारी, सुस्मिता मंडल, लोपामुद्रा रॉय, एनी बजाज, नीलांजना घोष, अमन भूषण, महाश्वेता गोस्वामी, अहमद एस ए अहमद, ज़ियाद मौसा, पुलक मंडल, सुभादिप्त मुखोपाध्याय, देबासिस भट्टाचार्य, अर्पिता चट्टोपाध्याय, सालेह ए अहमद, असीम कुमार मल्लिक और समीर कुमार पाल, देखभाल के बिंदु पर संपूर्ण ऑप्टिकल स्पेक्ट्रम विश्लेषण का उपयोग करके एक साथ नवजात शिश्ओं के हीमोग्लोबिन, बिलीरुबिन और ऑक्सीजन संतृप्ति का गैर-आक्रामक अनुमान, साइंटिफिक रिपोर्ट्स, 13, 2370, 2023
- 50. अमृता बनर्जी, रिया घोष, अर्पण बेरा, सुभादिप्त मुखोपाध्याय, मुनिराह एम अल-रूकी, इस्माइल आई अल्थगाफी, अब्देलरहमान एस खदर, सालेह ए. अहमद, अर्पिता चट्टोपाध्याय, समीर कुमार पाल, "नेनो-कॉपर": एंटीबायोटिक-प्रतिरोधी संक्रमणों का एक संभावित उपचार, जर्नल ऑफ नैनोमेडिसिन, 6(1), 1058, 2023
- 51. गौरव घोष, दीपांजन मुखर्जी, रिया घोष, प्रिया सिंह, उत्तम पाल, अर्पिता चट्टोपाध्याय, मिथुन संतरा, क्यो हान आह्न, पी. मोसे सेल्वाकुमार, रंजन दास और समीर कुमार पाल, प्रोटीन डीएनए पहचान की जांच के लिए एक उपन्यास आणविक रिपोर्टर: एक ऑप्टिकल स्पेक्ट्रोस्कोपिक और आणविक मॉडलिंग अध्ययन,

- स्पेक्ट्रोकीमिका एक्टा पार्ट ए: मलैक्युलर एंड बायोमलैक्युलर स्पेक्टरोसकोपी, 291, 122313, 2023
- 52. प्रीतम विश्वास, अनिरुद्ध अधिकारी, उत्तम पाल, सुस्मिता मंडल, दीपांजन मुखर्जी, रिया घोष, रामी जे. ओबैद, ज़ियाद मौसा, सुदेशना श्याम चौधरी, सालेह ए. अहमद, रंजन दास और समीर कुमार पाल, रासायनिक संशोधन के तहत संरचना-कार्य-गतिशीलता पर एक संयुक्त रूपेक्ट्रोरूकोपिक और आणविक मॉडलिंग अध्ययन: फॉर्मेलिन परिरक्षक के साथ अल्फा-काइमोट्रिप्सिन, फ्रंटियर्स इन कैमिस्ट्रि, 10, 1-13, 2022
- 53. मोहम्मद नूर हसन, फेलिक्स सोर्गेनफ्रेई, निवेदिता पैन, दिब्या फुयाल, महमूद अब्देल-हाफीज, **समीर कुमार पाल**, अन्ना डेलिन, पैट्रिक थुनस्ट्रॉम, डी. डी. सरमा, ओले एरिकसन, देबजानी कर्माकर, पुनः डाइक्लोजेनाइड्स: उनकी संरचना-संपत्ति संबंध के संघर्षों का समाधान, एडवांस्ड फ़िज़िक्स रिसर्च, 1(1), 2200010, 2022
- 54. रिया घोष, सुस्मिता मंडल, दीपांजन मुखर्जी, अनिरुद्ध अधिकारी, मैत्री भट्टाचार्य और समीर कुमार पाल, नैनो-संकर में अकार्बनिक-कार्बनिक सिनर्जी लक्षित वितरण के साथ दवा का एक नया वर्ग बनाती है: संभावित अस्थि मज्जा वितरण और एक्स-रे डायनेमिक थेरेपी के लिए आयरन नैनोकणों का ग्लूटामेट कार्यात्मककरण, करेंट ड्रग डेलीवेरी, 19(10), 991, 2022
- 55. लोपामुद्रा रॉय, दीपांजन मुखर्जी, सौमेंद्र सिंह, अमृता बनर्जी, नेहा भट्टाचार्य, अनिमेष हलदर, प्रिया सिंह, सुभादिप्त मुखोपाध्याय, कल्लोल भट्टाचार्य, रंजन दास और समीर कुमार पाल, पिको-सेकेंड सॉल्व्ड फ़ॉर्स्टर रेजोनेंस एनर्जी ट्रांसफर (FRET) जलीय माध्यम में स्व-इकड्ठे जैविक मैक्रोमोलेक्यूल्स को अलग करता है, केमिकल फ़िज़िक्स इंपेक्ट, 4, 100081, 2022
- 56. रिया घोष, सुरिमता मंडल, दीपांजन मुखर्जी, अनिरुद्ध अधिकारी, सालेह ए. अहमद, रीम आई. अलसंताली, अब्देलरहमान एस. खदर, हातेम एम. अल्तास, ज़ियाद मौसा, रंजन दास, मैत्री भट्टाचार्य और समीर कुमार पाल, पॉलिमरिक नैनोकैरियर का उपयोग करके मौखिक दवा वितरण: रिफैम्पिसन की डिलीवरी में चिटोसन नैनोकण, मटेरियल्स एडवांसेस, 3, 4622, 2022
- 57. अर्पण बेरा, मोहम्मद नूर हसन, अर्का चटर्जी, दीपांजन मुखर्जी और समीर कुमार पाल, चिकित्सीय प्रभावकारिता में सुधार के लिए नैनोहाइब्रिड में इलेक्ट्रॉन और ऊर्जा संचयन के माध्यम से दोहरी संवेदनशीलता, एसीएस फ़िज़िकल कैमिस्ट्रि एयू, 2, 171, 2022

- 58. काव्या मृद्ला ताडेपल्ली, सुमन चक्रवर्ती, प्रमोद पाटिल और रजनीश कुमार, आणविक गतिशीलता का उपयोग करके उन्नत तेल पुनर्प्राप्ति में CO थिकनर का डिज़ाइन और सुगंधित रिंगों की भूमिका, लंगमुईर, 39, 989, 2023
- 59. धीमान रे, इमोचा राजकुमार सिंह, अनिंदिता भट्टा, अभिनंदन दास, स्मन चक्रवर्ती, शिवप्रसाद मित्रा, दवा बाइंडिंग क्षमता का मॉड्यूलेशन और सतह-सक्रिय आयनिक तरल पदार्थों की उपस्थिति में लाइसोजाइम की संवर्धित एंजाइमेटिक गतिविधि को स्थिर किया गया, जर्नल ऑफ मोलेकुलर लिकुइड्स, 367, 120356, 2022
- 60. राजलक्ष्मी साहू, दिब्येंद् मैती, डी. एस. शंकर राव, सुमन चक्रवर्ती, सी. वी. येलमग्गड, और एस. कृष्णा प्रसाद, *कोलेस्टेरिक और* ट्विस्ट ग्रेन सीमा रमेक्टिक-सी* मेसोफेज में फोटोप्रेरित संक्रमणों में डिमर-समता-निर्भर विषम-सम प्रभाव: प्रयोग और सिमुलेशन, फ़िज़िकल रिविऊ ई, 106, 044702, 2022
- 61. नीलेश सी. रेङ्डी, राजीब मोल्ला, प्रल्हाद नामदेव जोशी, सजीव टी.के., इप्सिता बस्, ज्योत्सना कवाडकर, नीतू कालरा, राम कुमार मिश्रा, सुमन चक्रवर्ती, संजीव शुक्ला और विशाल राय, ट्रेसलेस सिस्टीन-लिंचपिन देशी प्रोटीन में लाइसिन की सटीक इंजीनियरिंग को सक्षम बनाता है, नेचर कमिउनिकेशंस, 13, 6038, 2022
- 62. प्रयासी बरुआ, धीमान रे, इबेम्हनबी कोंथौजम, अभिनंदन दास, सुमन चक्रवर्ती, कृपामीय अगुआनब और शिवप्रसाद मित्रा, सतह-सक्रिय आयनिक तरल पदार्थों के चिकित्सीय अवसर: एसिटाइलकोलिनेस्टरेज़, साइट्रेट सिंथेज़ और हेला सेल लाइनों पर एक केस अध्ययन, न्यू जर्नल ऑफ कैमिस्ट्रि, 46, 20419, 2022
- 63. भावना पांडे, कृष्णेंदु सिन्हा, आदित्य देव, हिमाल के. गांगुली, रमरजीत पोले, सुमन चक्रवर्ती और गौतम बस्, एस्चेरिचिया कोली टॉक्सिन हिपा का फॉर-फोराइलेशन-सक्षम मेटार-टेबल राज्य, बायोकैमिस्ट्रि, 62, 989, 2023
- 64. शुभ्रा कांति भौमिक, दिब्येंदु मैती, इप्सिता बसु, सुमन चक्रवर्ती और सुप्रतिम बनर्जी, स्व-इकट्ठे कार्बनिक ल्यूमिनसेंट नैनोट्यूब में कुशल प्रकाश संचयन, केमिकल साइन्स, 14, 4363, 2023
- 65. प्रशांत कुंडु, रोडोबैक्टर स्पैरोइड्स के प्रकाश संश्लेषक प्रतिक्रियां केंद्रों में प्रारंभिक चार्ज पृथक्करण की कैनेटीक्स, द जर्नल ऑफ फ़िज़िकल कैमिस्ट्रि बी, 126, 3470, 2022

संघनित पदार्थ एवं पदार्थ भौतिकी विभाग

- 1. सुचेतना मुखोपाध्याय, सुदीप मजूमदार, सूर्य नारायण पांडा और अंजन बर्मन, अल्ट्राफास्ट डिमैग्नेटाइजेशन और गिल्बर्ट डंपिंग की जांच और समान परिस्थितयों में विकसित विभिन्न फेरोमैग्नेटिक पतली फिल्मों में उनके सहसंबंध, नैनोटेक्नालजी, 34, 235702, 2023
- 2. अमृत कुमार मंडल, सुदीप मजूमदार, बिपुल कुमार महतो, सास्वती बर्मन, योशिका ओटानी और अंजन बर्मन, त्रिकोणीय आकार के Ni80Fe20 नैनोडॉट सरणियों में पूर्वाग्रह क्षेत्र अभिविन्यास संचालित पुन: कॉन्फ़िंगर करने योग्य मैग्नोनिक्स और मैग्नॉन-मैग्नन युग्मन, नैनोटेक्नालजी, 34, 135701, 2023
- 3. सौरव साहू, स्चेता मंडल, समीरन चौंध्र्या, जयवर्धन सिंह, अंजन बर्मन, Ta/CoFeB/SiOू हेटरोस्ट्रक्चर में गिल्बर्ट डंपिंग और स्पिन ऑर्बिट टॉर्क का ऑल-ऑप्टिकल अध्ययन, मटेरियल्स साइन्स एंड इंजीन्यरिंग: बी. 287 116131, 2023
- 4. सोमा दत्ता, सूर्य नारायण पांडा, जयवर्धन सिन्हा, समीरन चौधरी और **अंजन बर्मन**, इसके अल्ट्राफास्ट डीमैग्नेटाइजेशन पर $oldsymbol{eta}$ -Ta/ Co20Fe60B20 इंटरफ़ेस के माध्यम से स्पिन ट्रांसपोर्ट की भूमिका: अल्ट्रा-हाई-स्पीड स्पिन-ऑर्बिट्रोनिक डिवाइसेस के लिए निहितार्थ, एसीएस अप्लाइड नैनो मटेरियल्स, 5, 17995, 2022
- 5. निर्माण चक्रवर्ती, सूर्य नारायण पांडा, अजय के. मिश्रा, अंजन बर्मन और स्वास्तिक मंडल, कमरे के तापमान पर कोई जांच नहीं करने के लिए फेरोमैग्नेटिक $Ni_{1-x}V_{x}O_{1-y}$ नैनो-क्लस्टर: चुंबकीय क्षेत्र-प्रेरित केमिरेसिस्टिव सेंसिंग का एक मामला, एसीएस अप्लाइड मटेरियल्स एंड इंटेर्फ़ेसेस. 14. 52301. 2022
- 6. प्रताप कुमार पाल, सौरव साहू, कौस्तुव दत्ता, अंजन बर्मन, सास्वती बर्मन, योशीचिका ओटानी, Ni_{80} Fe_{20} नैनोस्ट्रिप एरेज़ में मोटाई-निर्भर पुन: कॉन्फ़िगर करने योग्य स्पिन-वेव डायनेमिक्स, एडवांस्ड मटेरियल्स इंटेर्फ़ेसेस, 9, 2201333, 2022
- 7. सुरंजना चक्रवर्ती, अंजन बर्मन और अनुप घोष, S=O का असामान्य इन्फ्रारेड अवशोषण: **a**-C-H/D का एक गड़बड़ी अध्ययन, द जर्नल ऑफ फ़िज़िकल कैमिस्ट्रि बी, 126, 5490, 2022
- 8. सूर्य नारायण पांडा, बिवास राणा, योशीचिका ओटानी, अंजन बर्मन, नॉनमैग्नेट/फेरोमैग्नेट हेटेरोस्ट्रक्चर में अल्ट्राफास्ट स्पिन डायनेमिक्स पर स्पिन-ऑर्बिट कपलिंग की भूमिका, एडवांरूड क्वांटम टेक्नालजीस, 5, 2200016, 2022

- स्रंजना चक्रवर्ती, समाधान एच. देशम्ख, अंजन बर्मन, सायन बागची और अनुप घोष, डाइमिथाइल सल्फ़ोक्साइड के S=O कंपन जांच का ऑन-ऑफ इन्फ्रारेड अवशोषण, द जर्नल ऑफ फ़िज़िकल कैमिस्ट्रि बी, 126, 4501, 2022
- 10. ए. वी. चुमक, पी. काबोस, **ए. बर्मन** एवं अन्य, *स्पिन-वेव कंप्यूटिंग* पर मैग्नेटिक्स रोडमैप में प्रगति, आईईईई ट्रैंज़ैक्शंस ऑन मगनेटिक्स, 58, 0800172, 2022
- 11. कौस्तुव दत्ता, सूर्या एन पांडा, ताकेशी सेकी, सांतनु पान, कोकी ताकानाशी, अंजन बर्मन, Co₂Fe₀₄Mn₀₆Si/Pt हेटरोस्ट्रक्चर में स्पिन पंपिंग और विशाल इंटरफेशियल स्पिन पारदर्शिता का ऑल-ऑप्टिकल डिटेक्शन, एडवांस्ड क्वांटम टेक्नालजीस, 5, 2200033, 2022
- 12. पायल भट्टाचार्जी, अंजन बर्मन, सास्वती बर्मन, *स्पिन-ध्रुवीकृत* धारा द्वारा चुंबकीय भंवर ट्रांजिस्टर का संचालन: एक सूक्ष्मचुंबकीय दृष्टिकोण, फिसिका स्टेटस सोलिडी ए: एप्लिकेशंस एंड मटेरियल्स साइन्स, 219, 2100564, 2022
- 13. सुरंजना चक्रवर्ती और अनुप घोष, एमाइड । का असंगत हाइड्रोजन बांड-मध्यस्थता कंपन युग्मन, आर एस सी एडवांसेस, 13, 1295, 2023
- 14. सत्यब्रत बेरा, सुमन कल्याण प्रधान, मोहम्मद सलमान खान, रिज् पाल, बुद्धदेब पाल, एसके कलीमुद्दीन, अर्नब बेरा, विश्वजीत दास, अतींद्र नाथ पाल, मिंटू मंडल, अर्ध-2D vdW चुंबकीय सामग्री, Fe_GeTe ् में स्पिन पुनर्अभिविन्यास संक्रमण की प्रकृति को उजागर करना, जर्नल ऑफ माग्नेटिस्म एंड मागनेटिक मटेरियल्स, 565, 170257, 2023
- 15. विश्वजीत पाबी और **अतींद्र नाथ पाल**, कमरे के तापमान पर एकल परमाणू/आणविक जंक्शन के माध्यम से क्वांटम परिवहन की जांच के लिए एक प्रायोगिक सेट-अप, प्रमाण, 97, 8, 2023
- 16. शुभदीप मौलिक, रफीकुल आलम और **अतींद्र नाथ पाल**, एक बड़े क्षेत्र के ग्राफीन क्षेत्र-प्रभाव ट्रांजिस्टर में प्रतिरोध शोर के माध्यम से दूरस्थ थोक दोषों को समझना, एसीएस अप्लाइड मटेरियल्स एंड इंटरफ़ेसेस, 14, 51105, 2022
- 17. अनुप्रिया न्यायबन, सुभासिस पांडा और अविजित चौधरी, ऑप्टोइलेक्ट्रॉनिक अनुप्रयोगों की दिशा में ब्रोमाइड मिश्रित-RbPbl का सैद्धांतिक अध्ययन, जर्नल ऑफ एलेक्ट्रोनिक मटेरियल्स, 52, 3146, 2023
- 18. अनुप्रिया न्यायबन, सुभासिस पांडा, अविजीत चौधरी, RbPbl के इलेक्ट्रॉनिक और ऑप्टो-इलेक्ट्रॉनिक गुणों पर बी-साइट मिश्रधातु का प्रभाव: एक डीएफटी अध्ययन, फिसिका बी: कंडेंस्ड मैटर, 649, 414384, 2023

- 19. निपोम शेखर दास, सैकत मित्रा, **अविजीत चौधरी** और असीम रॉय, सीटू कार्यात्मक स्तरित rGO-MoSू नैनोकम्पोजिट पर आधारित गैर-वाष्पशील यादगार उपकरण, ईसीएस जर्नल ऑफ सॉलिड स्टेट साइन्स एंड टेक्नालजी, 11, 071003, 2022
- 20. सुमा दास, त्रिनयन डेका, पुजिता निंगथौखंगजाम, अविजित चौधरी, रंजीत जी. नायर, जल विभाजन और पर्यावरणीय उपचार के लिए धात्-ऑक्साइड एम्बेडेड जी-सी3एन4-आधारित प्रत्यक्ष जेड-स्कीम फोटोकैटलिस्ट की संभावनाओं और चुनौतियों पर *एक महत्वपूर्ण समीक्षा*, अप्लाइड सरफेस साइन्स एडवांसेस, 11, 100273, 2022
- 21. सुमा दास, सौमिक दास, रंजीत जी. नायर, **अविजीत चौधरी**, *दृश्य* प्रकाश के तहत बढ़ी हुई फोटो-फेंटन उत्प्रेरक गतिविधि के लिए चुंबकीय रूप से अलग करने योग्य ZnFe ,O , ग्राफ्टेड g-C ,N / rGO टर्नरी नैनोकम्पोजिट, मटेरियल्स टूडे ससटेनबिलिटि, 21, 100263, 2023
- 22. स्दीप्त चटर्जी, ज्योतिर्मय साव, स्ब्रत घोष, सहेली सामंत, बरनाली घोष, मनोरंजन कुमार और कल्याण मंडल, टोपोलॉजिकल वेइल और नोडल-लाइन सेमीमेटल हेस्लर कंपाउंड Co Val में विसंगतिपूर्ण हॉल प्रभाव, जर्नल ऑफ फ़िज़िक्स: कंडेंस्ड मैटर, 35, 035601, 2022
- 23. स्नेहमयी हाजरा, अंकिता घटक, अर्नब घोष, सुभमिता सेनगुप्ता, ए के रायचौधरी और बरनाली घोष, ध्रुवीय चरण सामग्री की ट्यूनिंग के माध्यम से बीटीओ एनडब्ल्यू-पीवीडीएफ समग्र में उन्नत पीजोइलेक्ट्रिक प्रतिक्रिया, नैनोटेक्नालजी, 34, 045405, 2022
- 24. अविसेक मैती, सोहेल सिराज, ए के रायचौधरी, अभिजीत साहा और **बरनाली घोष**, *हाइब्रिड हैलाइड पेरोव्स्काइट (MAPbBr*3) का उपयोग करके कम शक्ति वाले पेपर इलेक्ट्रॉनिक्स आधारित पहनने योग्य विकिरण डिटेक्टर: गामा किरण की वास्तविक समय की निगरानी, फ्लैक्सिब्ल एंड प्रिंटेड इलेक्ट्रॉनिक्स, 8, 015010, 2023
- 25. अविसेक मैती, सुदीप्त चटर्जी, अरूप कुमार रायचौधरी, और बरनाली घोष, गेट डाइइलेक्ट्रिक के रूप में पॉलिमरिक इलेक्ट्रोलाइट का उपयोग करके सिंगल-क्रिस्टल हैलाइड पेरोन्स्काइट से द्विध्रुवी प्रतिक्रिया के साथ गेटेड फोटोडिटेक्टर, एसीएस अप्लाइड एलेक्ट्रोनिक मटेरियल्स, 4, 4298, 2022
- 26. चंदन सामंत, अंकिता घटक, अरूप कुमार रायचौधरी और बरनाली घोष, पी-सी एनडब्ल्यू/जेडएनओ फोटोडिटेक्टर के हेटेरोर-ट्रक्चर ऐरे में ब्रॉडबैंड (यूवी-एनआईआर) फोटोरेर-पॉन्स की ओर चार्ज कैरियर ट्रांसपोर्ट पर सतह/इंटरफ़ेस दोष इंजीनियरिंग, एसीएस अप्लाइड एलेक्ट्रोनिक मटेरियल्स, 5, 865, 2023

- 27. स्दीप्त चटर्जी, ज्योतिर्मय साव, सहेली सामंत, बरनाली घोष, नितेश कुमार, मनोरंजन कुमार और कल्याण मंडल, नोडल-लाइन और द्रिपल पॉइंट फर्मियन ने टोपोलॉजिकल हेस्लर कंपाउंड Co CrGa में विसंगतिपूर्ण हॉल प्रभाव को प्रेरित किया, फ़िज़िकल रिविऊ बी, 107, 125138, 2023
- 28. स्वर्णाली हैत और **कल्याण मंडल**, $Ga_{0.8}Fe_{1.2}O_3 Y_3Fe_5O_{12}$ मिश्रित के निर्माण द्वारा गैलियम फेराइट के क्यूरी तापमान को कमरे के तापमान से अधिक बढ़ाना, एआईपी एडवांसेस, 13, 025345, 2023
- 29. स्वर्णाली हैत, अनुपम गोराई, **कल्याण मंडल**, मल्टीफेरोइक बिरमथ और गैलियम फेराइट में विभिन्न माइक्रोवेव अवशोषण की उत्पत्ति, मटेरियल्स लेटर्स, 331, 133520, 2023
- 30. स्वर्णाली हैत, इशिता जाना और **कल्याण मंडल**, अनाज के आकार में कमी के कारण रिसाव, विद्युत और मैग्नेटो-ढांकता हुआ गुणों में एक साथ सुधार, जर्नल ऑफ मग्नेटिस्म एंड मग्नेटिक मटेरियल्स, 565, 170239, 2023
- 31. दीपांजन मैती, देबाशीष पाल, सोहम साहा, पूजा पुनेठा, देबाशीष सरकार, देबासिस डे, गोबिंदा गोपाल खान, **कल्याण मंडल**, सतह निष्क्रियता और होल ट्रांसफर उत्प्रेरक परत के रूप में CeO, ZnFe ृ0 नैनोरोड्स फोटोएनोड के सौर जल ऑक्सीकरण को बढ़ावा देता है, ऍडवांस्ड मटेरियल्स इंटरफ़ेसेस, 10, 2201645, 2023
- 32. स्ब्रत घोष, सहेली सामंत, जे. श्रीधर मोहंती, जयी सिन्हा, कल्याण मंडल, (MnNiSi), (FeNiGa) प्रणाली में विशाल कमरे के तापमान मैग्नेटोकलोरिक प्रतिक्रिया, जर्नल ऑफ अप्लाइड फ़िज़िक्स, 132, 045001, 2022
- 33. दीपांजन मैती, देबाशीष पाल, केशब कर्मकार, रूपाली रक्षित, गोबिंदा गोपाल खान और कल्याण मंडल, दोहरे सह-उत्प्रेरक ने कुशल सौर जल ऑक्सीकरण के लिए कम टर्न-ऑन क्षमता और उन्नत चार्ज संग्रह के साथ हेमेटाइट नैनोरोड्स को सक्रिय किया, नैनोटेक्नालजी, 33, 265402, 2022
- 34. सहेली सामंत, सुब्रत घोष, सुदीप्त चटर्जी, **कल्याण मंडल**, Fe-Co डोप्ड $Ni_{_{50-x}}$ (FeCo) $_{_{x}}Mn_{_{37}}Ti_{_{13}}$ ऑल-डी-मेटल हेस्लर मिश्रधातु में बड़ा मैग्नेटोकलोरिक प्रभाव और मैग्नेटोरेसिस्टेंस, जर्नल ऑफ अलोयस एंड कम्पाउण्ड्स, 910, 164929, 2022
- 35. स्वर्णाली हैत और **कल्याण मंडल**, बीए और वाई सह-डोपित बिरमथ फेराइट नैनोकणों के उन्नत फेरोइलेक्ट्रिक, ढांकता हुआ और मैग्नेटोडायइलेक्ट्रिक गुण, फ़िज़िका बी: कंडेंस्ड मैटर, 645, 414243, 2022

- 36. सहेली सामंत, स्दीप्त चटर्जी, स्ब्रत घोष और कल्याण मंडल, Ni(Co)-Mn-Ti ऑल-डी-मेटल हेस्लर मिश्रधातु में क्रिस्टलोग्राफिक संगतता स्थिति में सुधार करके बड़े प्रतिवर्ती मैग्नेटोकलोरिक प्रभाव और मैग्नेटोरेसिस्टेंस, फ़िज़िकल रिविऊ मटेरियल्स. 6. 094411. 2022
- 37. एसके सनीउर रहमान, सुमित हलधर और मनोरंजन कुमार, कुंठित एक आयामी स्पिन-1/2 प्रणाली के क्वांटम चरण संक्रमणों का अध्ययन करने के लिए मशीन लर्निंग दृष्टिकोण, जर्नल ऑफ फ़िज़िक्स: कंडेंस्ड मैटर, 35, 115603, 2023
- 38. अनुप कुमार बेरा, एस. एम. यूसुफ, सुदीप कुमार साहा, **मनोरंजन** कुमार, डेविड वोनेशेन, यूरी स्कोस्की और सर्गेई ए. ज़िवागिन, इंटरैक्टिंग स्पिन-1/2 ट्रिमर के उभरते कई-शरीर मिश्रित उत्तेजना, नेचर कम्युनिकेशंस, 13, 6888, 2022
- 39. शोवन दान, बिनीता मंडल, सुदीप कुमार साहा, सुदीप्त मंडल, आर. रंगनाथन, मनोरंजन कुमार और चंदन मजूमदार, Ndlr के बहुरूपी चरणों के समान और असमान गूण, द जर्नल ऑफ फ़िज़िकल कैमिस्ट्रि सी, 126, 16514, 2022
- 40. शंभूनाथ दास, दयासिंधु डे, एस. रामासेषा और मनोरंजन कुमार, तिरछी सीढ़ी में क्वांटम चरण संक्रमण: एक उलझाव एन्ट्रापी और निष्ठा अध्ययन, द यूरोपियन फ़िज़िकल जर्नल बी, 95, 147, 2022
- 41. विशाल कुमार अग्रवाल, शैली सेट, ज्योतिर्मय साव, अंकिता घटक, मनोरंजन कुमार, अचिंत्य सिंघा, और ए.के. रायचौधरी, जीई नैनोवायर के फोनन और थर्मल गुण: एक रमन र-पेक्ट्रोर-कोपी जांच और फोनन सिमुलेशन, द जर्नल ऑफ फ़िज़िकल कैमिस्ट्रि सी, 126, 15046, 2022
- 42. गौरव के.शुक्ला, ज्योतिर्मय साव, विशाल कुमार, मनोरंजन कुमार एवं संजय सिंह, बैंड विभाजन ने NiCoMnGa चतुर्धातुक हेरूलर परिसर में बेरी फ्लक्स और आंतरिक विसंगतिपूर्ण हॉल चालकता को प्रेरित किया, फ़िज़िकल रिविऊ बी, 106, 045131, 2022
- 43. मनोदीप राउथ, सुदीप कुमार साहा, **मनोरंजन कुमार**, और ज़ोल्टन जी सूस, J,-J, का स्पिन-पीयरल्स संक्रमण और लौहचुंबकीय J, के साथ विस्तारित मॉडल: **β**-TeVO में ज़िगज़ैग श्रृंखलाओं का सबलैटिस डिमराइजेशन और थर्मोडायनामिक्स, फ़िज़िकल रिविऊ बी, 105, 235109, 2022
- 44. सुदीप कुमार साहा, देबस्मिता मैती, मनोरंजन कुमार और ज़ोल्टन जी सूस, सहसंबद्ध 1डी फर्मिओनिक मॉडल के निम्न तापमान थर्मोडायनामिक्स के लिए घनत्व मैट्रिक्स पुनर्सामान्यीकरण समूह दृष्टिकोण, जर्नल ऑफ मग्नेटिस्म एंड मगनेटिक मटेरियल्स, 552, 169150, 2022

- 45. मोनालिसा चटर्जी, देबस्मिता मैती, **मनोरंजन कुमार**, कुंठित स्पिन-1/2 फेरो-एंटीफेरोमैग्नेटिक सामान्य सीढ़ी का क्वांटम चरण आरेख, केमफीसकेम, 24(5), e202200538, 2023
- 46. देबस्मिता मैती, दयासिंधु डे और मनोरंजन कुमार, इंटरैक्टिंग हाइजेनबर्ग एंटीफेरोमैग्नेट स्पिन-1/2 और 1 चेन का अध्ययन, कंडेंस्ड मैटर, 8(1), 17, 2023
- 47. दयासिंधु डे, असलम परवेज, शंभुनाथ दास, सुदीप कुमार साहा, मनोरंजन कुमार, एस रामसेशा और ज़ोल्टन जी सूस, स्पिन चेन और सीढ़ी के बीच परस्पर क्रिया के लिए घनत्व मैट्रिक्स पुनर्सामान्यीकरण समूह (डीएमआरजी), जर्नल ऑफ केमिकल साइन्सेस, 135, 25, 2023
- 48. के. मन्ना, **एन. कुमार**, एस. चट्टोपाध्याय, जे. नोकी, एम. याओ, जे. पार्क, टी. फोर्स्टर, एम. उहलर्ज़, टी. चक्रवर्ती, बी. वी. श्वार्ज़, जे. हॉर्नुंग, वी. एन. स्ट्रोकोव, एच. बोर्रमैन, सी. शेखर, वाई. सन, जे. वोसनित्ज़ा, सी. फ़ेलसर, और जे. गूथ, *SrSi*₂ में त्रि-आयामी क्वासक्वांटाइज़्ड हॉल इंसुलेटर चरण, फ़िज़िकल रिविऊ बी, 106, L041113, 2022
- 49. रत्नद्वीप सिंघा, शुवम सरकार, अरूप घोष, शुभंकर रॉय, सजल बर्मन, मोहम्मद बलाल, सुदीप्त रॉय बर्मन, **प्रभात मंडल**, एलिमेंटल रूथेनियम में टोपोलॉजिकल सरफेस स्टेट और अपरंपरागत मैग्नेटोट्रांसपोर्ट गुणों के हस्ताक्षर, एडवांस्ड क्वांटम टेक्नालजीस, 6, 2200116, 2023
- 50. शुभंकर मिश्रा, अदिति साहू, सुचंदा मंडल, **पी. मंडल**, चंदन कुमार घोष, दीप्तेन भट्टाचार्य, मल्टीफेरोइक $SrCo_2Fe_{16}O_2/Sr_3Co_2Fe_{24}O_{41}$ मिश्रित में विद्युत-क्षेत्र-चालित प्रतिरोधक संक्रमण, जर्नल ऑफ अप्लाइड फ़िज़िक्स, 131, 204101, 2022
- 51. सुदीप मलिक, अरूप घोष, चंचल के. बर्मन, आफताब आलम, जेड. हुसैन, **प्रभात मंडल**, और जे. नायक, *Cu-doped CaAuAs में कमजोर एंटीलोकलाइज़ेशन प्रभाव और त्रिगुणित पतित अवस्था*, फ़िज़िकल रिविऊ बी, 105, 165105, 2022
- 52. रेजाउल एसके, देबायन मंडल, इमरानखान मुलानी, **प्रिया** महादेवन और अपर्णा देशपांडे, एक अबाधित टोपोलॉजिकल सतह स्थिति के साथ उभरता हुआ नकारात्मक विभेदक प्रतिरोध, द जर्नल ऑफ फ़िज़िकल कैमिस्ट्रिसी, 126, 16744, 2022
- 53. रंजन कुमार पटेल, कृष्णेंदु पात्रा, शशांक कुमार ओझा, सिद्धार्थ कुमार, सागर सरकार, आकाश साहा, नंदना भट्टाचार्य, जॉन डब्ल्यू फ्रीलैंड, जोंग-वू किम, फिलिप जे रयान, प्रिया महादेवन

- और श्रीमंत मिद्दे, नेगेटिव चार्ज ट्रांसफर इंसुलेटर में होल डोपिंग, कम्युनिकेशंस फ़िज़िक्स, 5, 216, 2022
- 54. शिशिर के. पांडे, आशीष के. नंदी, पूनम कुमारी, और **प्रिया महादेवन**, डबल पेरोव्स्काइट $Sr_{p}FeReO_{g}$ में कमरे के तापमान के लौहचुम्बकत्व की सूक्ष्म उत्पत्ति, फ़िज़िकल रिविऊ बी, 105, 214422, 2022
- 55. सुमंती पात्रा, प्रसून बोयाल और **प्रिया महादेवन**, WSe_2 के मुड़े हुए बाइलेयर्स में विद्युत-क्षेत्र-प्रेरित धातु-अर्धचालक संक्रमण, फ़िज़िकल रिविऊ बी, 107, L041104, 2023
- 56. दीपानविता मजूमदार, सुभजीत जना और **समित कुमार रे**, सोने के नैनोकणों ने 2D-WSe को SERS सब्सट्रेट के रूप में सजाया, स्पेक्ट्रोकीमिका अक्टा पार्ट ए: मलैक्युलर एंड बायोमलैक्युलर स्पेक्ट्रोस्कोपि, 278, 121349, 2022
- 57. सयान बयान, सौरभ पाल और **समित के रे**, पहनने योग्य ऊर्जा स्रोतों के रूप में कपड़ा आधारित ट्राइबोइलेक्ट्रिक नैनोजेनरेटर के लिए इंटरफ़ेस इंजीनियर्ड सिल्वर नैनोकणों से सजाए गए $g-C_3N_4$ नैनोशीट, नैनो एनर्जि, 94, 106928, 2022
- 58. शुभ्राशीष मुखर्जी, दिधिति भट्टाचार्य, **समित कुमार रे** और अतींद्र नाथ पाल, ग्राफीन- MoS_{2x}Se_{2(1-x)} मिश्र धातु इंजीनियर्ड फोटोट्रांजिस्टर पर आधारित उच्च-प्रदर्शन ब्रॉड-बैंड फोटोडिटेक्शन, एसीएस अप्लाइड मटेरियल्स एंड इंटरफेसेस, 14, 34875, 2022
- 59. सुप्रिया घोषाल, नीलाद्रि शेखर मंडल, **सुमन चौधरी**, देबनारायण जाना, जर्मा-ग्राफीन के दो नए चरण: भविष्यवाणी, इलेक्ट्रॉनिक और परिवहन अनुप्रयोग, अप्लाइड सर्फ़ेस साइन्स, 614, 156107, 2023
- 60. कृष्णांशु बसाक, मैनाक घोष, सुमन चौधरी और देबनारायण जाना, द्वि-आयामी संक्रमण धातु ट्राइहैलाइड्स के इलेक्ट्रॉनिक, चुंबकीय और ऑप्टिकल गुणों पर सैद्धांतिक अध्ययन, जर्नल ऑफ फ़िज़िक्स: कंडेंस्ड मैटर, 35, 233001, 2023
- 61. पायल आइच, श्रेया दास, शुवाजीत हलदर, कार्लो मेनेघिनी, देशेंग फू, वासुदेव सिरुगुरी, सोम दत्त कौशिक, मित्सुरु इटोह, तनुश्री साहा-दासगुप्ता और सुगत रे, रिक्ति-आदेशित ब्राउनमिलराइट में फ्लोरिनेशन-प्रेरित विषमता: मल्टीफेरोइक व्यवहार का मार्ग, कैमिस्ट्रि ऑफ मटेरियल्स, 35, 991, 2023
- 62. सौमेंदु दत्ता, ऐश्वर्या घोष और तनुश्री साहा-दासगुप्ता, पहले सिद्धांत कोर-शेल, जानूस की सापेक्ष स्थिरता, इलेक्ट्रॉनिक और

- उत्प्रेरक गुणों और द्विधातु पीडी-एक्स नैनो-मिश्र धातु (X = Co, Ni, Cu, Rh, Ag, Ir, Pt, Au) के लिए मिश्रित संरचनात्मक पैटर्न में अंतर्दृष्टि प्रदान करते हैं, फ़िज़िकल कैमिरिट्र केमिकल फ़िज़िक्स, 25, 4667, 2023
- 63. समीर रोम, संतु बैद्य, सुभ्रो भट्टाचार्जी, और तनुश्री साहा-दासगुप्ता, LaCoO/SrIrO़ हेटरोस्ट्रक्चर में चुंबकत्व और अपरंपरागत टोपोलॉजी, अप्लाइड फ़िज़िक्स लेटर्स, 122, 021602, 2023
- 64. ए. वोरोब्योवा, आई. डेनिलोविच, आई. मोरोज़ोव, वाई. ओवचेनकोव, ए. वासिलिव, ओ. वोल्कोवा, ए. इकबाल, बी. रहमान, टी. साहा-दासगुप्ता, वर्गाकार जाली प्रतिलौह चुम्बक (NO)M(NO3)3 (M = Co, Ni): अनिसोट्रॉपी के प्रभाव, जर्नल ऑफ अलोयस एंड कम्पाउण्ड्स, 929, 167197, 2022
- 65. तिलक दास, स्वस्तिका चटर्जी और तनुश्री साहा-दासगुप्ता, Fe-युक्त वाडस्लेइट में जल समावेशन का प्रथम-सिद्धांत अध्ययन, फ़िज़िक्स ऑफ द अर्थ एंड प्लानेटरी इंटीरीअर्स, 333, 106940, 2022
- 66. अन्ना ए. वोरोब्योवा, इगोर एल. डेनिलोविच, इगोर वी. मोरोज़ोव, अलेक्जेंडर एन. वासिलिव, ओल्गा एस. वोल्कोवा, आसिफ इकबाल, बदीउर रहमान और **तनुश्री साहा-दासगुप्ता**, अर्ध-द्धि-आयामी Co(NO,), 2H,O में आइसिंग जैसा चुंबकत्व, मटेरियल्स, 15(20), 7066, 2022
- 67. हरमन श्राइत, डैनियल बाउर्नफ़ींड, **तनुश्री साहा-दासगुप्ता**, और मार्कस आइचोर्न, *डबल पेरोव्स्काइट इरिडेट BaूYIrOू की शून्य-*तापमान जमीनी स्थिति में लंबी दूरी के चुंबकीय क्रम के बिना छोटे क्षण, फ़िज़िकल रिविऊ बी, 106, 035132, 2022
- 68. हर्षित बनर्जी, हरमन श्राइत, मार्कस आइचोर्न, और तनुश्री साहा-दासगुप्ता, हंड्स धातुओं के चुंबकत्व पर ज्यामिति का प्रभाव: BaRuO्र का केस अध्ययन, फ़िज़िकल रिविऊ बी, 105, 235106, 2022
- 69. ऐश्वर्या घोष, सौमेंदु दत्ता, और **तनुश्री साहा-दासगुप्ता**, *बाईमेटेलिक* नैनोक्लस्टर्स के लिए कोर-शेल प्राथमिकताओं में रुझान को समझना: एक मशीन लर्निंग दृष्टिकोण, द जर्नल ऑफ फ़िज़िकल कैमिस्ट्रि सी, 126, 6847, 2022
- 70. शिलादित्य कर्माकर, प्रदीप चक्रवर्ती और तनुश्री साहा-दासगुप्ता, Fe(ii)-आधारित स्पिन क्रॉसओवर सिस्टम में प्रकाश-प्रेरित उत्तेजित-अवस्था रिपन ट्रैपिंग में रुझान, फ़िज़िकल कैमिस्ट्रि केमिकल फ़िज़िक्स, 24, 10201, 2022

- 71. शिलादित्य कर्माकर, राजदीप विश्वास और तनुश्री साहा-दासगुप्ता, द्वि-आयामी मोलिब्डेनम-आधारित जानूस संरचना में विशाल रशबा प्रभाव और गैर-रेखीय विसंगतिपूर्ण हॉल चालकता, फ़िज़िकल रिविऊ बी, 107, 075403, 2023
- 72. अचिंत्य लो, सुसांता घोष, सुरिमता चांगदार, सायन राउथ, शुभम पुरवार, और एस. थिरुपथैया, Fe डोपिंग के माध्यम से दृढ़ता से सहसंबद्ध एंटीफेरोमैग्नेट Mn Sn में टोपोलॉजिकल गुणों की ट्यूनिंग, फ़िज़िकल रिविऊ बी, 106, 144429, 2022
- 73. सुस्मिता चांगदार, सुसांता घोष, कृतिका विजय, इंद्राणी कर, सायन राउथ, पी.के. माहेश्वरी, सौम्या घोराई, सोमा बनिक और एस. थिरुपथैया, एंटीफेरोमैग्नेटिक टोपोलॉजिकल इंस्लेटर MnBi2Te4 के इलेक्ट्रॉनिक और चुंबकीय गुणों पर गैर-चुंबकीय एसएन डोपिंग प्रभाव, फ़िज़िका बी: कंडेंस्ड मैटर, 657, 414799, 2023
- 74. सुराका भट्टाचार्जी, कौशिक मंडल और सुपूर्णा सिन्हा, एक चुंबकीय क्षेत्र में एक स्पिन की क्वांटम लैंग्विन गतिशीलता में अपव्यय और रमृति की परस्पर क्रिया, इंटरनेशनल जर्नल ऑफ मॉडर्न फ़िज़िक्स बी, 2024, 245005, 2023
- 75. बनश्री साधुखान, रघुवीर चिमाता, बिप्लब सान्याल और अभिजीत मुखर्जी, रासायनिक विकार की उपस्थिति में Fe Co में चुंबकीयकरण गतिशीलता, मगनेटोकैमिस्ट्रि, 9, 44, 2023
- 76. यश वाथ, एम. हरिप्रसाद, फ्रेया शाह और **शशांक गुप्ता**, अनुक्रमिक क्वांटम अनशार्प माप हमलों का उपयोग करके क्वांटम कुंजी वितरण नेटवर्क को सुनना, द यूरोपियन फ़िज़िकल जर्नल प्लस, 138, 54, 2023
- 77. राम अवधेश कुमार, **आलो दत्ता** और टी. पी. सिन्हा, *माइक्रोवेव* ढांकता हुआ सामग्री के संरचनात्मक और ढांकता हुआ गुण $xBa(Zn_{1/3}Ta_{2/3})O_3$ - $(1-x)La(Zn_{1/2}Ti_{1/2})O_3$, जर्नल ऑफ एल्क्ट्रोसिरैमिक्स, 50, 1, 2023
- 78. देबाशीष पाल, **दीपांजन मैती**, अयान सरकार, देबासिस डे, आदित्य राज, और गोबिंदा गोपाल खान, एंटीमनी-डोप्ड TiO नैनोरोड्स फोटानोड की ऑक्सीजन विकास गतिविधि को कुशलतापूर्वक बढ़ाने के लिए बहुक्रियाशील अल्ट्राथिन अनाकार CoFe-प्रशियन ब्लू एनालॉग उत्प्रेरक, एसीएस अप्लाइड एनर्जि मटेरियल्स, 5, 15000, 2022
- 79. हिमाद्रि शेखर त्रिपाठी, रिजु कर्माकर, तुषार के. भौमिक, सास्वता हलदर, आलो दत्ता, टी. पी. सिन्हा, कुशल ठोस-अवस्था समित

सुपरकैपेसिटर के लिए RCoO (R=Pr, Nd and Sm) इलेक्ट्रोड-आधारित, सॉलिड स्टेट साइन्सेस, 134, 107065, 2022

- 80. अनुपम गोराई, रोहन मंडल, दीपिका मंडल, द्वि-स्तरित नैनो-खोखले क्षेत्रों द्वारा उन्नत विद्युतचुंबकीय तरंग अवशोषण, आईईईई ट्रैंज़ैक्शंस ऑन मगनेटिक्स, 58, 2102006, 2022
- 81. रवींद्र सिंह बिष्ट, सुदीप्त चटर्जी, श्रेयान राहा, अचिंत्य सिंघा, डी. कबीराज, डी. कांजीलाल, और ए.के. रायचौधरी, आर्गन-विकिरणित NdNiO किल्म में कमजोर एंडरसन स्थानीयकृत शासन के लिए मॉट इंसुलेटर का विकार-प्रेरित क्रॉसओवर, फ़िज़िकल रिविऊ बी, 105, 205120, 2022
- 82. हिमाद्री शेखर त्रिपाठी, **आलो दत्ता** और टी. पी. सिन्हा, उन्नत असममित सॉलिडस्टेट सुपरकैपेसिटर के लिए Sr²+ में संरचनात्मक और इलेक्ट्रोकेमिकल गुणों को शामिल करते हुए नैनोस्ट्रक्चर्ड BiFeO को शामिल किया गया, एल्क्ट्रोकीमिका अक्टा, 421, 140505, 2022
- 83. देबाशीष पाल, **दीपांजन मैती**, अयन सरकार, देबाशीष सरकार, गोबिंदा गोपाल खान, एसबी-डॉप्ड TiOू नैनोरोड्स फोटोएनोड की फोटोकैरियर गतिशीलता और इलेक्ट्रॉनिक संरचना पर दोष-समृद्ध Co-CeO OER कोकैटलिस्ट का प्रभाव, जर्नल ऑफ कोलोएड एंड इंटरफ़ेस साइन्स, 620, 209, 2022

अंतर-विभागीय प्रकाशन

- देबाशीष पॉल, अनिर्बान पॉल, दीपांजन मुखर्जी, सरोज सरोज, मनोरमा घोषाल, सुचेतन पाल, दुलाल सेनापति, जयदेब चक्रवर्ती, समीर कुमार पाल और तटिनी रक्षित, हायल्यूरोनन-कोटेड एक्स्ट्रासेल्युलर वेसिकल्स पर एक मैकेनोइलास्टिक झलक, द जर्नल ऑफ फ़िज़िकल कैमिरिन्ट्र लेटर्स, 13, 8564, 2022
- आकाश दास, **सौमेन मंडल**, और **माणिक प्रधान**, कमजोर माप के माध्यम से मोनोलेयर MoS2 में फोटोनिक स्पिन हॉल प्रभाव का हस्ताक्षर, जर्नल ऑफ द ऑप्टिकल सोसाइटी ऑफ अमेरिका बी, 39, 1822, 2022
- दिधिति भट्टाचार्य, शुभ्राशीष मुखर्जी, अतींद्र नाथ पाल, राजीब कुमार मित्रा, समित कुमार रे, नैनोजेनरेटर के लिए दो-आयामी Mo W , S , मिश्र धातु, स्व-संचालित यूवी सेंसर के लिए रिकॉर्ड

- पीजो-आउटपूट और यूग्मित फोटोडिटेक्टर का उत्पादन करते हैं, एडवांरुड ऑप्टिकल मटेरियल्स, 10, 2200353, 2022
- 4. दीपांजन मुखर्जी, गुल्मी चक्रवर्ती, मोहम्मद नूर हसन, उत्तम पाल, प्रिया सिंह, तातिनी रक्षित, रीम आई. अलसंताली, तनुश्री साहा दासगुप्ता, सालेह ए. अहमद, रंजन दास, **समीर कुमार पाल**, *जैव-आणविक* इंटरफेस में स्पाइरोपाइरन की प्रतिवर्ती फोटोस्विचिंग: एक संयुक्त स्पेक्ट्रोस्कोपी और कम्प्यूटेशनल अध्ययन, जर्नल ऑफ फोटोकैमिस्ट्रि एंड फोटोबयोलॉजी ए: कैमिस्ट्रि, 430, 113958, 2022
- 5. सुस्मिता मंडल, सायन बायन, रिया घोष, मोनोजीत दास, अनिरुद्ध अधिकारी, दीपांजन मुखर्जी, असीम कुमार मल्लिक, समित कुमार रे और समीर कुमार पाल, द्वि-आयामी कार्बन नाइट्राइड नैनोडॉट्स शारीरिक वातावरण में लीड विषाक्तता का पता लगाते हैं और उसे उलट देते हैं, एसीएस अप्लाइड मटेरियल्स एंड इंटरफेसेस, 14, 27002, 2022
- 6. सुदीप गराई, ए. घोष-चौधरी और **पार्थ गुहा**, जैविक प्रणालियों के अनुप्रयोगों के साथ समय-निर्भर एकवचन लैग्रेंजियों के ज्यामितीय विवरण पर, इंटरनेशनल जर्नल ऑफ जिओमेट्रिक मेथड्स इन मॉडर्न फ़िज़िक्स, 19, 2250181, 2022
- 7. सुप्तीश घोष, अयान मंडल, गौरी टुडू, **सौरव घोष**, हेरम्बा वी.एस. आर.एम. कोप्पिसेट्टी, हरीश रेड्डी इंता, दीपानिता साहा, और वेंकटरमणन महालिंगम, क्षारीय जल ऑक्सीकरण प्रदर्शन को बढ़ावा देने के लिए कोबाल्ट- और सिल्वर-आधारित प्रीकैटलिटिक ऑक्सालेट फ्रेमवर्क का कुशल विद्युत रासायनिक पुनर्निर्माण, एसीएस ससटेनेब्ल कैमिस्ट्रि एंड इंजीन्यरिंग, 10, 7265, 2022
- 8. सौरव घोष, हरीश रेड्डी इंता, मोहुआ चक्रवर्ती, गौरी टुडू, हेरम्बा वी. एस. आर. एम. कोप्पिसेट्टी, खुशबू एस. पालीवाल, दीपानिता साहा, और वेंकटरमणन महालिंगम, बैटरी जैसे सुपरकैपेसिटर के लिए निकेल-कोबाल्ट ऑक्सालेट से सजाए गए नैनोपोरस ग्रेफाइटिक कार्बन नाइट्राइड नैनोशीट्स, एसीएस अप्लाइड नैनो मटेरियल्स, 5, 7246, 2022
- 9. संजय चौधरी, आशीष कृ. लुहाच, वलीद अलनुमाय, बुद्धदेब प्रधान और दीप्तेंद् सिन्हा रॉय, स्मार्ट शहरों में बेहतर IoT ऊर्जा दक्षता के लिए एक न्यूरो विकासवादी योजना, कम्प्युटर्स एंड इलैक्ट्रिकल इंजीन्यरिंग, 104(Part B), 108443, 2022

जर्नल प्रकाशन की कुल संख्या: 253

अन्य प्रकाशन

खगोल भौतिकी और उच्च ऊर्जा भौतिकी विभाग

सौमेन मंडल, रामकृष्ण दास, तापस बाग और मिथिलेश पांडे – "एस.एन. बोस खगोलीय वेधशाला: भारत के पूर्वी भाग में एक नई पहल", अवलोकन स्विधाओं पर एस्ट्रोनॉमिकल सोसायटी ऑफ इंडिया (एएसआई) का विज़न दस्तावेज़, दिसम्बर 2022

रासायनिक और जैविक विज्ञान विभाग

1. पी. बारिक और एम. प्रधान (2022), बायोकम्पैटिबल क्वांटम डॉट्स का ऑल-ऑप्टिकल डिटेक्शन। इन: बारिक, पी., मंडल, एस. (संस्करण) जीव विज्ञान और चिकित्सा में क्वांटम डॉट्स का अनुप्रयोग। स्प्रिंगर, सिंगापुर (2022)

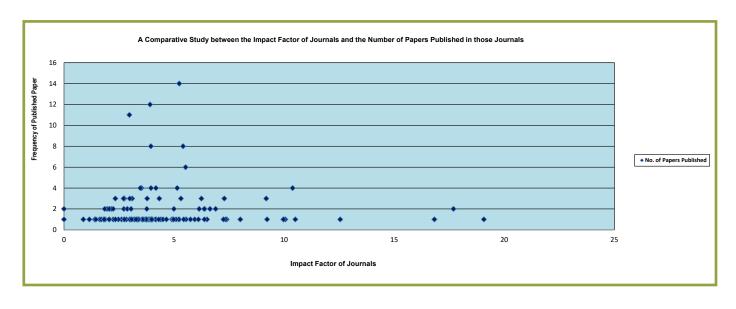
संघनित पदार्थ एवं पदार्थ भौतिकी विभाग

- अध्याय एक पुस्तक श्रृंखला "सॉलिड स्टेट फिजिक्स", v.73, पृष्ठ १ में मादुरज़ ज़ेलेंट, पावेल ग्रुरज़ेकी, मैथ्यू मोआलिक, ओलाव हेलविग, अंजन बर्मन, मैकिएज क्राव्जिक द्वारा "लंबवत चुंबकीय अनिसोट्रॉपी के साथ पैटर्न वाले चुंबकीय मल्टीलेयर में स्पिन डायनेमिक्स"। 51, 2022
- एन एस दास, के के गोगोई, ए चौधरी, ए रॉय, संश्लेषित ग्राफीन ऑक्साइड और थर्मल रूप से कम किए गए ग्राफीन ऑक्साइड के ऑप्टिकल और संरचनात्मक गुणों की जांच, सामग्री आज: कार्यवाही 76 (2023) 160-165

- 3. एन एस दास, एन के दास, ए चौधरी, ए रॉय, थर्मली एनील्ड कम ग्राफीन ऑक्साइड पॉलिमर नैनोकम्पोजिट्स का विद्युत अध्ययन, सामग्री आज: कार्यवाही 74 (2023) 329-333
- 4. स्वर्णाली हैट, कल्याण मंडल, "Ga0.8Fe1.2O3-Y3Fe5O12 मिश्रित के गठन द्वारा कमरे के तापमान से परे गैलियम फेराइट के क्यूरी तापमान में वृद्धि", एआईपी सलाहकार। 13 (2023)। सम्मेलन का नाम और विवरण: एमएमएम सम्मेलन, 31 अक्टूबर-04 नवंबर 2022, मिनियापोलिस, यूएसए
- 5. ऊपरी मेंटल पीटी स्थितियों के तहत ओलिवाइन में Fe2+ का ऑर्डर देना जेड घोलमी महमूदाबादी, एस चटर्जी, टी साहा-दासगुप्ता एजीयू फ़ॉल मीटिंग एब्सट्रैक्ट्स 2022, MR22A-0052
- 6. एंटीफेरोमैग्नेटिक सीआरएसई के विद्युत और चुंबकीय गुणों पर एमओ डोपिंग का प्रभाव, सायन राउथ, सुशांत घोष, पी.के. माहेश्वरी, पी. सिंघा देव, एस. थिरुपथैया, सामग्री आज: कार्यवाही, 65, 342-344 (2022)
- 7. हेक्सागोनल कोसे पर सिंगल क्रिस्टल ग्रोथ, इलेक्ट्रिकल और चुंबकीय गुण अध्ययन, शुभम पुरवार, सायन राउथ, एस. थिरुपथैया, सामग्री आज: कार्यवाही, 65, 332-334 (2022)
- 8. NiTe2 में रैखिक से द्विघात चुंबकत्व तक क्रॉसओवर, इंद्राणी कर और एस. थिरुपथैया, सामग्री आज: कार्यवाही, 65, 70-73 (2022)

अन्य प्रकाशनों की कुल संख्या: 10

वित्तीय वर्ष 2022-23 में प्रकाशन

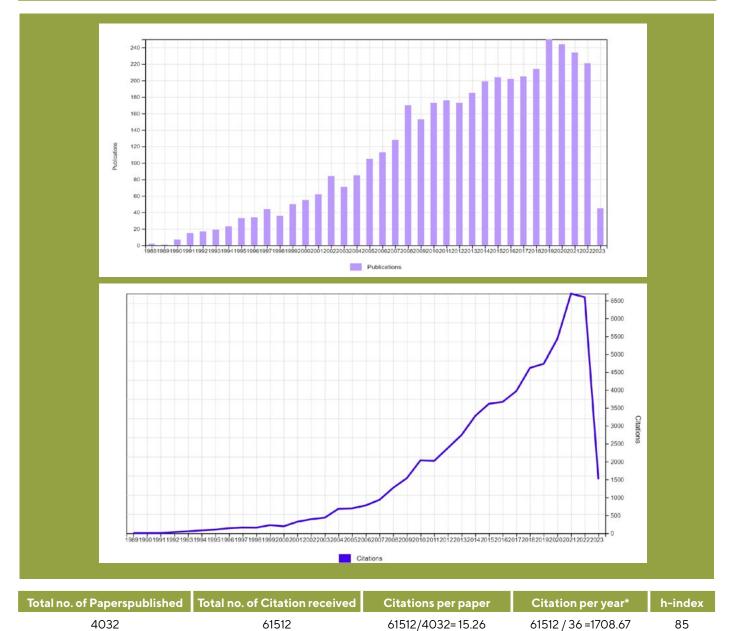

के लिए प्रभाव कारक

क्र. सं.	पत्रिका का नाम	पत्रिका प्रभाव कारक	प्रकाशित आलेखों की संख्या	पत्रिका में कुल प्रभाव कारक
1	ACS Applied Electronic Materials	4.494	2	8.988
2	ACS Applied Energy Materials	6.959	1	6.959
3	ACS Applied Materials & Interfaces	10.383	4	41.532
4	ACS Applied Nano Materials	6.14	2	12.28
5	ACS Physical Chemistry Au	NA	2	NA
6	ACS Sustainable Chemistry & Engineering	9.224	1	9.224
7	Advanced Materials Interfaces	6.389	2	12.778
8	Advanced Optical Materials	10.05	1	10.05
9	Advanced Physics Research	NA	1	NA
10	Advanced Quantum Technologies	5.31	3	15.93
11	Advances in Space Research	2.611	1	2.611
12	Advances in Theoretical & Computational Physics	1.62	1	1.62
13	AIP Advances	1.697	1	1.697
14	Angewandte Chemie	16.823	1	16.823
15	Analytical Chemistry	8.008	1	8.008
16	Annals of Physics	3.036	1	3.036
17	Applied Nanoscience	3.869	1	3.869
18	Applied Physics A	2.983	1	2.983
19	Applied Physics Letters	3.971	1	3.971
20	Applied Surface Science	7.392	1	7.392
21	Applied Surface Science Advances	4.4	1	4.4
22	Archive of Applied Mechanics	2.467	1	2.467
23	Astronomy & Astrophysics	6.24	3	18.72
24	Astrophysical Journal	5.521	6	33.126
25	Batteries	5.938	1	5.938
26	Biochemistry	3.321	1	3.321
27	Biophysical Chemistry	3.628	1	3.628
28	Biopolymers	2.24	1	2.24
29	Biosensors	5.743	1	5.743
30	Biosensors and Bioelectronics	12.545	1	12.545
31	Biotechnology and Applied Biochemistry	2.724	1	2.724
32	Catalysts	4.501	1	4.501
33	Chemical Physics Impact	1.8	1	1.8
34	Chemical Physics Letters	2.719	2	5.438
35	Chemical Science	9.969	1	9.969
36	Chemistry of Materials	10.508	1	10.508
37	ChemMedChem	3.54	1	3.54

क्र. सं.	पत्रिका का नाम	पत्रिका प्रभाव कारक	प्रकाशित आलेखों की संख्या	पत्रिका में कुल प्रभाव कारक
38	ChemPhysChem	3.52	4	14.08
39	Classical and Quantum Gravity	3.853	1	3.853
40	Communications in Nonlinear Science and Numerical Simulation	4.186	1	4.186
41	Communications Physics	6.497	1	6.497
42	Computational Biology and Chemistry	3.737	1	3.737
43	Computers and Electrical Engineering	4.152	1	4.152
44	Condensed Matter	3.7	1	3.7
45	Current Drug Delivery	3.758	1	3.758
46	ECS Journal of Solid State Science and Technology	2.07	1	2.07
47	Electrochimica Acta	7.336	1	7.336
48	Energy & Fuels	4.654	1	4.654
49	European Physical Journal B	1.398	1	1.398
50	European Physical Journal C	4.994	2	9.988
51	The European Physical Journal Plus	3.758	2	7.516
52	Europhysics Letters	1.958	2	3.916
53	Flexible and Printed Electronics	3.768	1	3.768
54	Frontiers in Chemistry	5.545	1	5.545
55	General Relativity and Gravitation	2.84	1	2.84
56	Infrared Physics & Technology	2.997	1	2.997
57	IEEE Sensors Letters	4.9	1	4.9
58	IEEE Transactions on Magnetics	1.848	2	3.696
59	Inorganic Chemistry	5.436	1	5.436
60	International Journal of Geometric Methods in Modern Physics	1.873	1	1.873
61	International Journal of Modern Physics B	1.404	1	1.404
62	iScience	6.107	1	6.107
63	Journal of Alloys and Compounds	6.371	2	12.742
64	Journal of Applied Physics	2.877	2	5.754
65	Journal of Chemical Physics	4.304	1	4.304
66	Journal of Chemical Sciences	2.15	2	4.3
67	Journal of Colloid and Interface Science	9.965	1	9.965
68	Journal of Cosmology and Astroparticle Physics	7.28	3	21.84
69	Journal of Electroceramics	1.814	1	1.814
70	Journal of Electronic Materials	2.047	1	2.047
71	Journal of High Energy Physics	6.376	1	6.376
72	Journal of Magnetism and Magnetic Materials	3.097	3	9.291
73	Journal of Molecular Liquids	6.633	2	13.266
74	Journal of Molecular Spectroscopy	1.451	1	1.451
75	Journal of Nanomedicine	1.15	1	1.15

क्र. सं.	पत्रिका का नाम	पत्रिका प्रभाव कारक	प्रकाशित आलेखों की संख्या	पत्रिका में कुल प्रभाव कारक
76	Journal of the Optical Society of America B	2.058	2	4.116
77	Journal of Photochemistry and Photobiology A: Chemistry	5.141	4	20.564
78	Journal of Physical Chemistry B	3.466	4	13.864
79	Journal of Physical Chemistry C	4.177	4	16.708
80	The Journal of Physical Chemistry Letters	6.888	2	13.776
81	Journal of the Physical Society of Japan	1.828	1	1.828
82	Journal of Physics A: Mathematical and Theoretical	2.331	3	6.993
83	Journal of Physics: Condensed Matter	2.745	3	8.235
84	Journal of Statistical Mechanics: Theory and Experiment	2.234	2	4.468
85	Langmuir	4.331	3	12.993
86	Letters in High Energy Physics	0.88	1	0.88
87	Magnetochemistry	3.336	1	3.336
88	Materials	3.748	1	3.748
89	Materials Advances	3.181	1	3.181
90	Materials Letters	3.574	1	3.574
91	Materials Science and Engineering: B	3.407	1	3.407
92	Materials Today Sustainability	7.244	1	7.244
93	Materials Today: Proceedings	3.2	1	3.2
94	Monthly Notices of the Royal Astronomical Society	5.235	14	73.29
95	Monthly Notices of the Royal Astronomical Society: Letters	5.235	1	5.235
96	Nano Energy	19.069	1	19.069
97	Nanotechnology	3.953	4	15.812
98	Nature Communications	17.69	2	35.38
99	New Journal of Chemistry	3.925	1	3.925
100	Nuclear Physics B	3.045	2	6.09
101	Optics Communications	2.335	1	2.335
102	Pediatric Research	3.953	1	3.953
103	Pharmaceuticals	5.215	1	5.215
104	Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences	4.019	1	4.019
105	Physica A: Statistical Mechanics and its Applications	3.778	3	11.334
106	Physica B: Condensed Matter	2.988	3	8.964
107	Physica E	3.369	1	3.369
108	Physica Scripta	3.081	1	3.081
109	Physica Status Solidi (a): applications and materials science	3.277	1	3.277
110	Physical Chemistry Chemical Physics	3.945	8	31.56

क्र. सं.	पत्रिका का नाम	पत्रिका प्रभाव कारक	प्रकाशित आलेखों की संख्या	पत्रिका में कुल प्रभाव कारक
111	Physics of the Dark Universe	5.09	1	5.09
112	Physical Review A	2.971	11	32.681
113	Physical Review B	3.908	12	46.896
114	Physical Review D	5.407	8	43.256
115	Physical Review E	2.707	3	8.121
116	Physical Review Letters	9.185	3	27.555
117	Physical Review Materials	3.98	1	3.98
118	Physics Letters B	4.95	1	4.95
119	Physics of the Earth and Planetary Interiors	2.748	1	2.748
120	Physics of Fluids	4.98	1	4.98
121	Pramana	2.669	2	5.338
122	Proceedings of the Royal Society A: Mathematical,	3.213	1	3.213
	Physical and Engineering Sciences			
123	Quantum	6.777	1	6.777
124	Quantum Information Processing	1.965	3	5.895
125	Research in Astronomy and Astrophysics	1.889	1	1.889
126	Review of Scientific Instruments	1.843	2	3.686
127	RSC Advances	4.036	2	8.072
128	Scientific Reports (Nature Publishing Group)	4.996	2	9.992
129	SciPost Physics	5.5	2	11
130	Small	15.153	1	15.153
131	Solid State Sciences	3.752	1	3.752
132	Spectrochimica Acta Part A: Molecular and	4.831	2	9.662
	Biomolecular Spectroscopy			
133	Theory and Applications of Categories	0.545	1	0.545
134	Universe	2.813	1	2.813
	कुल	614.356	253	1067.684



शोध प्रकाशन की स्थिति

उद्धरण रिपोर्ट (18 अप्रैल, 2023 को)

Time span = All years. Database =SCI-EXPANDED, CPCI-S, CPCI-SSH, CCR-EXPANDED, IC.

No. of Publications :	4032
Sum of the Times Cited :	61512
Sum of Times Cited without self-citations :	50495
Citing Articles :	40765
Citing Articles without self-citations :	37918

* Year of establishment of the Centre is 1986. Citations received after 1987 to 2023 = 36 years

Source: web of science

Prepared by $\,:\,$ Dr. Saumen Adhikari, Librarian – cum – Information Officer

244 सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केंद्र

सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र

ब्लॉक जेडी, सेक्टर- III, साल्ट लेक, कोलकाता - 700 106

बजट सारांश 2022-2023

निधि विज्ञान और प्रौद्योगिकी विभाग, नई दिल्ली से प्राप्त होती है। वर्ष 2021-2022 के लिए बजट आकलन निम्नलिखित है।

(आंकड़े लाखों रु. में)

	वास्तविक 2021-2022	बजट आकलन 2022-2023	संशोधित आकलन 2022-2023
योजना	4471.74	4598.72	4984.28*

^{*} डीएसटी योजना द्वारा स्वीकृत रु.4259.00 लाख निम्नानुसार जारी:

योजना

क्रम सं.	स्वीकृति पत्र सं	दिनांक	राशि (रु.) लाख में
1	एआई/एसएनबी/एसएएल/003/2022/1	21.06.2022	220.00
2	एआई/एसएनबी/एसएएल/003/2022/2	12.08.2022	370.00
3	एआई/एसएनबी/एसएएल/003/2022/3	11.10.2022	438.00
4	एआई/एसएनबी/एसएएल/003/2022/3	30.12.2022	625.00
5	एआई/एसएनबी/जीईएन/003/2022/1	10.06.2022	500.00
6	एआई/एसएनबी/जीईएन/003/2022/2	22.08.2022	370.00
7	एआई/एसएनबी/जीईएन/003/2022/3	14.11.2022	320.00
8	एआई/एसएनबी/जीईएन/003/2022/4	30.12.2022	686.00
9	एआई/एसएनबी/सीएपी/003/2022/1	10.06.2022	200.00
10	एआई/एसएनबी/सीएपी/003/2022/2	22.08.2022	200.00
11	एआई/एसएनबी/सीएपी/003/2022/3	14.11.2022	330.00
	कुल (योजना)		कुल. 4259.00

स्वतंत्र लेखा परीक्षकों की रिपोर्ट

सत्येन्द्र नाथ बोसु राष्ट्रीय मौलिक बिज्ञान केन्द्र के शासी निकाय को स्वतंत्र लेखा परीक्षकों की रिपोर्ट

विचार

हमने सत्येन्द्र बोस नेशनल सेंटर फॉर बेसिक साइंसेज ("केंद्र") के वित्तीय विवरणों का ऑडिट किया है, जिसमें 31 मार्च, 2023 की बैलेंस शीट और समाप्त वर्ष के लिए आय और व्यय खाता, प्राप्तियां और भुगतान खाता शामिल है। , और महत्वपूर्ण लेखांकन नीतियों के सारांश सहित वित्तीय विवरणों पर नोट्स।

हमारी राय में, इकाई के वित्तीय विवरण, सभी भौतिक मामलों में, केंद्र और सोसायटी के नियमों के अनुसार तैयार किए जाते हैं।

विचार के आधार

1. वित्तीय वर्ष 2022-23 के लिए 26एएस विवरण के अनुसार टीडीएस डिफ़ॉल्ट के लिए देयता रु। खातों में 4843.00 उपलब्ध नहीं कराया गया है।

हमने अपना ऑडिट आईसीएआई द्वारा जारी ऑडिटिंग मानकों (एसए) के अनुसार किया। उन मानकों के तहत हमारी जिम्मेदारियों को हमारी रिपोर्ट के वित्तीय विवरण अनुभाग के ऑडिट के लिए लेखा परीक्षक की जिम्मेदारियों में आगे वर्णित किया गया है। हम आईसीएआई द्वारा जारी आचार संहिता के अनुसार इकाई से स्वतंत्र हैं और हमने आचार संहिता के अनुसार अपनी अन्य नैतिक जिम्मेदारियों को पूरा किया है। हमारा मानना है कि हमने जो ऑडिट साक्ष्य प्राप्त किए हैं, वे हमारी राय के लिए आधार प्रदान करने के लिए पर्याप्त और उपयुक्त हैं।

मामले का जोर

हम वित्तीय विवरणों के निम्नलिखित नोट संख्या में बताए गए मामलों पर ध्यान आकर्षित करते हैं। इन मामलों के संबंध में हमारी राय संशोधित नहीं है.

- क) निर्धारण वर्ष (2023-24) के लिए 26एएस विवरण के अनुसार, रु. 25,51,438.00 और रु. 29,135/- क्रमशः स्रोत पर कर कटौती और स्रोत पर एकत्रित कर के विरुद्ध वापसी योग्य हैं, जिसके लिए केंद्र ने अभी तक आवश्यक आयकर रिटर्न जमा नहीं किया है।
- ख) केंद्र ने बाहरी एजेंसी के माध्यम से संपत्तियों का भौतिक सत्यापन श्रूक कर दिया है, लेकिन रिपोर्ट अभी तक केंद्र को सौंपी जानी

बाकी है। इसलिए, हम 31.03.2023 को खाते की पुस्तकों में ली गई अचल संपत्तियों के मूल्यांकन पर टिप्पणी नहीं कर सकते।

वित्तीय विवरण के लिए प्रबंधन और शासन के प्रभारी लोगों की जिम्मेदारियां

केंद्र का प्रबंधन, केंद्र के नियमों के अनुसार वित्तीय विवरण तैयार करने के लिए जिम्मेदार है और ऐसे आंतरिक नियंत्रण के लिए प्रबंधन निर्धारित करता है जो वित्तीय विवरणों की तैयारी को सक्षम करने के लिए आवश्यक है जो कि भौतिक गलतबयानी से मुक्त हैं, चाहे वह किसी भी कारण से हो। धोखाधड़ी या त्रुटि.

वित्तीय विवरण तैयार करने में, प्रबंधन एक चालू संस्था के रूप में इकाई को जारी रखने की क्षमता का आकलन करने, चालू संस्था से संबंधित मामलों का, जैसा लागू हो, खुलासा करने और लेखांकन के चालू चिंता के आधार का उपयोग करने के लिए जिम्मेदार है, जब तक कि प्रबंधन या तो इकाई को समाप्त करने या बंद करने का इरादा नहीं रखता है। संचालन, या ऐसा करने के अलावा कोई यथार्थवादी विकल्प नहीं है।

जिन पर शासन का प्रभार है, वे इकाई की वित्तीय रिपोर्टिंग प्रक्रिया की देखरेख के लिए जिम्मेदार हैं।

वित्तीय विवरणों की लेखापरीक्षा के लिए लेखापरीक्षक की जिम्मेदारियाँ

हमारा उद्देश्य इस बारे में उचित आश्वासन प्राप्त करना है कि क्या समग्र रूप से वित्तीय विवरण भौतिक गलतबयानी से मुक्त हैं, चाहे वह धोखाधड़ी या त्रुटि के कारण हो, और एक लेखा परीक्षक की रिपोर्ट जारी करना है जिसमें हमारी राय शामिल है। उचित आश्वासन एक उच्च स्तर का आश्वासन है, लेकिन यह गारंटी नहीं है कि एसएएस के अन्सार आयोजित ऑडिट हमेशा मौजूद होने पर एक महत्वपूर्ण गलतबयानी का पता लगाएगा। ग़लतबयानी धोखाधड़ी या त्रुटि से उत्पन्न हो सकती है और उन्हें महत्वपूर्ण माना जाता है यदि, व्यक्तिगत रूप से या समग्र रूप से, उनसे इन वित्तीय विवरणों के आधार पर लिए गए उपयोगकर्ताओं के आर्थिक निर्णयों को प्रभावित करने की उचित उम्मीद की जा सकती है।

एसए के अनुसार ऑडिट के हिस्से के रूप में, हम पेशेवर निर्णय लेते हैं और पूरे ऑडिट के दौरान पेशेवर संदेह बनाए रखते हैं। हम भी:

वित्तीय विवरणों के भौतिक गलत विवरण के जोखिमों को पहचानें और उनका आकलन करें, चाहे वह धोखाधड़ी या त्रुटि के कारण हो, उन जोखिमों के प्रति उत्तरदायी ऑडिट प्रक्रियाओं को डिजाइन और निष्पादित करें, और ऑडिट साक्ष्य प्राप्त करें जो हमारी राय के

लिए आधार प्रदान करने के लिए पर्याप्त और उचित हो। धोखाधडी के परिणामस्वरूप हुई किसी महत्वपूर्ण गलतबयानी का पता न चल पाने का जोखिम, त्रुटि के परिणामस्वरूप हुई किसी सामग्री की तुलना में अधिक होता है, क्योंकि धोखाधड़ी में मिलीभगत, जालसाजी, जानबूझकर चूक, गलत बयानी या आंतरिक नियंत्रण का उल्लंघन शामिल हो सकता है।

- परिस्थितियों में उपयुक्त ऑडिट प्रक्रियाओं को डिजाइन करने के लिए ऑडिट से संबंधित आंतरिक नियंत्रण की समझ प्राप्त करें, लेकिन इकाई के आंतरिक नियंत्रण की प्रभावशीलता पर राय व्यक्त करने के उद्देश्य से नहीं।
- उपयोग की गई लेखांकन नीतियों की उपयुक्तता और जीबी द्वारा किए गए लेखांकन अनुमानों और संबंधित खुलासों की तर्कसंगतता का मूल्यांकन करें।

लेखांकन के चालू चिंता आधार के प्रबंधन के उपयोग की उपयुक्तता पर निष्कर्ष निकालें और, प्राप्त लेखापरीक्षा साक्ष्य के आधार पर, क्या कोई भौतिक अनिश्चितता है

ऐसी घटनाओं या स्थितियों से संबंधित है जो इकाई की चालू संस्था के रूप में जारी रहने की क्षमता पर महत्वपूर्ण संदेह पैदा कर सकती हैं। यदि हम यह निष्कर्ष निकालते हैं कि कोई महत्वपूर्ण अनिश्चितता मौजूद है, तो हमें अपने ऑडिटर की रिपोर्ट में वित्तीय विवरणों में संबंधित खुलासों पर ध्यान आकर्षित करना होगा या, यदि ऐसे खुलासे अपर्याप्त हैं, तो अपनी राय को संशोधित करना होगा। हमारे निष्कर्ष हमारे ऑडिटर की रिपोर्ट की तारीख तक प्राप्त ऑडिट साक्ष्य पर आधारित हैं। हालाँकि, भविष्य की घटनाओं या स्थितियों के कारण इकाई एक चालू संस्था के रूप में जारी रहना बंद कर सकती है।

प्रकटीकरण सहित वित्तीय विवरणों की समग्र प्रस्तुति, संरचना और सामग्री का मूल्यांकन करें, और क्या वित्तीय विवरण अंतर्निहित लेनदेन और घटनाओं का इस तरह से प्रतिनिधित्व करते हैं जिससे निष्पक्ष प्रस्तुति प्राप्त हो सके।

भौतिकता वित्तीय विवरणों में गलत बयानों की भयावहता है, जो व्यक्तिगत रूप से या समग्र रूप से, यह संभव बनाती है कि वित्तीय विवरणों के एक उचित जानकार उपयोगकर्ता के आर्थिक निर्णय प्रभावित हो सकते हैं। हम (i) अपने ऑडिट कार्य के दायरे की योजना बनाने और अपने कार्य के परिणामों का मूल्यांकन करने में मात्रात्मक भौतिकता और गुणात्मक कारकों पर विचार करते हैं; और (ii) वित्तीय विवरणों में किसी भी पहचाने गए गलत विवरण के प्रभाव का मूल्यांकन

हम अन्य मामलों के अलावा, ऑडिट के नियोजित दायरे और समय और महत्वपूर्ण ऑडिट निष्कर्षों के संबंध में, आंतरिक नियंत्रण में किसी भी महत्वपूर्ण कमी सहित, जिसे हम अपने ऑडिट के दौरान पहचानते हैं, शासन के प्रभारी लोगों के साथ संवाद करते हैं।

हम उन लोगों को एक बयान भी प्रदान करते हैं जिन पर शासन का आरोप है कि हमने स्वतंत्रता के संबंध में प्रासंगिक नैतिक आवश्यकताओं का अनुपालन किया है, और उन सभी रिश्तों और अन्य मामलों के साथ संवाद करने के लिए जो उचित रूप से हमारी स्वतंत्रता पर असर डाल सकते हैं, और जहां लागू हो, संबंधित सुरक्षा उपाय कर सकते हैं।

> रॉय और बागची के लिए, चार्टर्ड अकाउंटेंट

एफआरएन: 301053ई

(अमित मित्रा) साथी

एम. नं.- 060694

उदीन: 23060694BGXBYU6642

स्थान: कोलकाता

दिनांक: 31.08.2023

वार्षिक प्रतिवेदन २०२२-२०२३

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106

31 मार्च 2023 तक का तलन पत्र

राशि रू.

निधि एवं देयताएँ	अनुसूची	चालु वर्ष	पिछला वर्ष
पुंजीगत निथि	1	1348893098.36	1339278916.58
आरक्षित एवं अधिशेष	2	-	
चिह्नित / स्थायी निधि	3	296187801.93	294625792.61
प्रतिभूतिसहित ऋण एवं उधार	4		
असुरक्षित ऋण और उधार	5		
आरक्षित ऋण देखताएँ	6		
चालु देयताएं और प्रावधान	7	48792269.22	81416704.58
<u>क</u> ुल		1693873169.51	1715321413.77
आस्तियां			
अचल आस्तियां	8	866186938.41	706776267.04
निवेश - चिह्नित / स्थायी निधि में	9	192121693.00	194150237.00
निवेश - अन्य	10	479577646.00	578938579.00
चालु आस्तियां, ऋण, अग्रिम आदि	11	155986892.10	235456330.73
विविध व्यय			
(जिसे बट्टा खाता नही डाला गया है या समायिजत नही कया गया उस सीमा तक)			
कुल		1693873169.51	1715321413.77
उल्लेखनीय लखांकन नीति	24		
अनुषंगी देखताएं तथा लेख पर टप्पनी	25		

दिनांक 31.08.2023 स्थान: कोलकाता

रमारे इसी तारिख की रिपोर्ट के अनुसार रॉय और बागची के लिए, चार्टर्ड अकाउंटेंट एफआरएन: 301053E

(अमित मित्रा)

साझीदार

एम. नं. 060694

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106

दिनांक 31.08.2023 स्थान: कोलकाता

31 मार्च 2023 को समाप्त वर्ष का आय एवं व्यय लेखा

राशि रू.

•	अनुसूची	चालु वर्ष	पिछला वर्ष
आय			
सेवाओं से आय	12	11265542.15	8199279.95
अनुदान /सहायता राशि	13	305423171.00	322300000.00
शुल्क / सदस्यता (छात्र प्रवेश और सेमेस्टर शुल्क)	14	1545501.00	982504.00
निवेश से आय (निर्दिष्ट निवेश निधि में अंतरित स्थायी निधि से आय)	15	24565712.00	
चिह्नित / स्थायी निधि को निधि में			
प्रौद्योगिकी हस्तांतरण और अनुबंध परियोजना से आय	16	0.00	560000.00
कर्मचारियों को ऋण (एचबीए आदि) पर ब्याज	17	15624.00	301532.00
अन्य आय	18	1074686.00	1760626.28
तैयार माल तथा निर्माणाधीन कार्य के स्टाक में वृद्धि / कमी	19		
कुल (क)		343890236.15	334103942.23
व्यय			
स्थापना व्यय	20	165404561.00	140762100.00
अन्य प्रशासिनक व्यय	21	206901765.27	170651397.68
अनुदान, सहयोग राशि आदि पर व्यय	22		
कुल (ख)		372306326.27	311413497.68
व्यय से अधिक आय का शेष (क-ख)		-28416090.12	22690444.55
पूर्व अवधि समायोजन (ऋण)		271564.28	772341.12
पुंजीगत निधि से / में अंतरित			
शेष अधिक (कम) होने पर कॅर्पस / पूंजीगत निधि			
में अंतरित		-28144525.84	23462785.67
उल्लेखनीय लेखांकन नीति	24		
आनुसंगिक देयताएँ एवं लेखे पर टिप्पणी	25		

रमारे इसी तारिख की रिपोर्ट के अनुसार

रॉय और बागची के लिए,

चार्टर्ड अकाउंटेंट

एफआरएन: 301053E

(अमित मित्रा)

साझीदार

एम. नं. 060694

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र

ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106

प्राप्तियाँ एवं भुगतान खाते 31 मार्च, 2023 को समाप्त वर्ष के लिए

राशि रू.

प्राप्तियाँ	चालु वर्ष	पिछला वर्ष	भृगतान	चालु वर्ष	पिछला वर्ष
I. आथ शेष	3		I. व्यय		
a) हाथ में नकदी	17877.00	9083.00	a) स्थापना व्यय	207101769.00	157510669.00
b) बैंक शेष			b) प्रशासनिक व्यय	95282270.08	122699361.60
।. चालु खाते में (अनुसूची 11 ओ)	114243200.96	82541353.63	c) रखरखाव	53185227.00	36190357.00
ii. जमा खाते में			II. विभिन्न परियोजनाओ के लिए		
अनुसूची - 10	596732724.00	519520689.00	निधि के एवज में भुगतान		
अनुसुची - 11 ए	1192809.00	22042464.00			
iii. बचत खाता (अनुसूची 11A)	49935060.20	58387229.80	III.किया गया निवेश एवं जमा		
iv.मार्गस्थ प्रेषण			a) चिह्नत, स्थायी, अपनी निधि से	0.00	10000000.00
II. प्राप्त अनुदान			b)CPWD जमा और NBCC जमा		
a) भारत सरकार से			c बैंक गारंटी एवं एलसी खाता		20849655.00
- वर्ष के लिए	447874865.00	515973268.00	d) निधि से बाहर	258620290.00	125000000.00
- पिछले वर्ष के लिए					
b) राज्य सरकार से			IV. अचल आस्तियों एवं पुंजीगत जारी		
c) अन्य स्रोत से			कार्य पर व्यय		
(पुंजीगत एवं राजस्व व्यय के लिए			a) आचल आस्तियों की खरीद	189400272.00	121013634.24
अनुदान को अलग से दिखाया गया)			b) पुंजीगत जारी कार्य पर व्यय		
			V. अधिशेष राशि / ऋण का वापसी		
III. प्राप्त निवेश			a) भारत सरकार को		15206049.00
a) बैंक के जमाराशि पर	5531552.00	7184045.76	b) राज्य सरकार को		
			c) अन्य निधि प्रदानकारी को		
IV. अन्य आय	12730092.00	11502606.28	VI. आर्थक व्यय (ब्यज)		
IV. अन्य आय			VII. अन्य भुगतान	136031669.43	45011470.93
VI. कोई अन्य	7847732.88	6274281.46	•		
			a) हाथ में नकदी	4934.00	17877.00
VII. जमा खाते से चालु / बचत	278892693.00	77212035.00	b) बैंक में नकदी		
खाते में अंतरित राशि			I. चालु खाते में (आनुसीची - 11A)	33929134.53	114243200.96
			ii. जमा खाते में		
VIII. जमा खाते से चालु / बचत	2522232.00	114955812.00	अनुसूची - 10	479577646.00	596732724.00
खाते में हस्तांतरित राशि			अनुसूची - 11A	0.00	1192809.00
			iii. बचत खाता(अनुसूची 11A)	64387626.00	49935060.20
			iv. मार्गस्थ प्रेषण		
	1517520838.04	1415602867.93		1517520838.04	1415602867.93

दिनांक 31.08.2023 स्थान: कोलकाता

रमारे इसी तारिख की रिपोर्ट के अनुसार रॉय और बागची के लिए, चार्टर्ड अकाउंटेंट

एफआरएन: 301053E (अमित मित्रा)

साझीदार एम. नं. 060694

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106

31.03.2023 तक तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 1 -पूंजगत निधि:

Amount (Rs.)

	चा	लु वर्ष	पिछले वर्ष
वर्ष की शुरुआत में शेष	1339278916.58		1198723826.32
जोड़ें: कॉर्पस /पुंजीगत निधि में योगदान	72999342.00		148500000.00
घटाएँ: वर्ष के लिए मूल्यहास	35240634.38		31407695.41
जोड़ें: वर्ष के दौरान अधिशेष	-28144525.84		23462785.67
		1348893098.36	1339278916.58
वर्ष के अंत तक शेष		1348893098.36	1339278916.58

अनुसूची 2 - आरक्षित एवं अधिशेष

	चा	लु वर्ष	पिछले	वर्ष
	₹	₹	₹	₹
1. पूंजीगत आरक्षित निधि				
पिछले लेखे के आनुसार				
वर्ष के दौरान वृद्धि				
घटाएँ वर्ष के दौरान कटौती				
2. आरक्षित निधि का पुनर्मूल्यांकन				
पिछले लेखे के आनुसार				
वर्ष के दौरान वृद्धि				
घटाएँ वर्ष के दौरान कटौती				
3.विशेष आरक्षित निधि				
पिछले लेखे के आनुसार				
वर्ष के दौरान वृद्धि				
घटाएँ वर्ष के दौरान कटौती				
4. सामान्य निधि				
पिछले लेखे के आनुसार				
वर्ष के दौरान अधिशेष		-		-
ु		-		-

वार्षिक प्रतिवेदन २०२२-२०२३

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 3 -चिह्नित/ स्थायी निधि

			निधिवार ब्योरा			कु	ल
	तकनीकी अनुसंधान केन्द्र	परियोजना निधि	अवसरकालीन सुबिधाँए निधि	कर्मचारी चिकित्सा निधि	कार्पस निधि	चालु वर्ष	पिछले वर्ष
क) निधि का आरंभिक शेष	29066319.63	124909817.98	107303424.00	10053382.00	23292849.00	294625792.61	335681997.22
ख) निधि में योग							
"I) दान / अनुदान / सहयोग"	0.00	69448452.00	17260569.00	1319150.00	1079847.50	89108018.50	60167776.00
ii) निधि के निवेश	618238.00	4387584.00	7276542.00	417286.00	798407.00	13498057.00	14068633.00
से आय							
iii) अन्य योग -							
- वर्ष के दौरान प्रावधान							
कुल (क+ ख)	29684557.63	198745853.98	131840535.00	11789818.00	25171103.50	397231868.11	409918406.22
ग) निधि के उद्देश्य के लिए							
उपयोग व्यय							
I) पुंजीगत व्यय							
 अचल आस्ति	137695.00	8962077.00				9099772.00	42627864.01
अन्य							
 कुल							
ii) राजस्व व्यय							
 वेतन, मजदुरी,		29712497.00				29712497.00	33091412.00
 भाता आदि							
किराया							
अन्य प्रशासनिक							
 व्यय							
अन्य व्यय	304835.78	13457023.40	2513519.00	417286.00		16692664.18	29652106.60
iii)समायोजन (ब्याज)							
(भारत सरकार, डीएसटी को रिफांडबल)	3323165.00	141977.00				3465142.00	9921231.00
Unspent Balance Refunded	24878000.00	17195991.00				42073991.00	
कुल (ग)	28643695.78	69469565.40	2513519.00	417286.00	0.00	101044066.18	115292613.61
वर्ष के अंत पर शुद्ध शेष (क+ख-ग)	1040861.85	129276288.58	129327016.00	11372532.00	25171103.50	296187801.93	294625792.61

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र

ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

राशि र्रु.

		चाल्	पु वर्ष	पिछल	ने वर्ष
1. केंद्रीय सरकार					
2. राज्य सरकार (निर्दिष्ट करे)					
3. वित्तीय संस्थान					
a) सावधि ऋण					
b) उपचिय एवं देय ब्याज					
4. बैंक					
a) सावधि ऋण					
उपचित एवं देय ब्याज					
b) अन्य ऋण (निर्दिष्ट करे)					
उपचित एवं देय ब्याज					
5. अन्य संस्थान एवं एँजेन्सियाँ					
6. डिबेंचार एवं बांढ					
7. अन्य (निर्दिष्ट करे)					
व्	<u>.</u>	शून्य	शून्य	शून्य	शून्य

अनुसूची 5 - बिना प्रतिभूति ऋण एवं उधार

राशि रू.

	चालु वर्ष		पिछले	वर्ष
1. केंद्रीय सरकार				
2. राज्य सरकार (निर्दिष्ट करे)				
3. वित्तीय संस्थान				
4. बैंक				
a) सावधि ऋण				
b) अन्य ऋण (निर्दिष्ट करे)				
5. अन्य संस्थान एवं एँजेन्सियाँ				
6. डिबेंचार एवं बांढ				
7.मियादी जमा				
8.अन्य (निर्दिष्ट करे)				
कुल	शुन्य	शुन्य	शुन्य	शुन्य

अनुसूची 6 -आस्थगित ऋण देयताएँ

	चालु	वर्ष	पिछले	ा वर्ष
a) पुंजीगत उपकरण एवं अन्य आस्थियाँ को दृष्टिबंगक रखकर प्राप्त स्वीकृति				
b) अन्य				
कुल	शुन्य	शुन्य	शुन्य	शुन्य

वार्षिक प्रतिवेदन २०२२-२०२३

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के आंग के रूप में अनुसूचियाँ

अनुसूची ७ -चालु देयताएँ एवं प्रावधान

राशि र्रु.

	चालु वर्ष		पिछले वर्ष
क. चालु देखनाएँ	3		<u>.</u>
1. स्वीकृति			
2. विविध लेनदार			
a) पूंजीगत व्यय के लिए	4979152.00		8158201.00
b) अन्य - राजस्व व्यय - परियोजना टीआरसी सहित	9055454.00		14574669.00
3. अन्य देयताएँ	7955462.88		2704860.8
4.ठेकेदार से जमाराशि (परियोजना तथा टीआरसी सह)	10644816.50		12301556.00
5. विद्यार्थीयों से जमाराशि	2229500.00		2249500.0
6.संविदातमक कर्मचिरयाँ से जमाराशि	1601023.00		1598434.0
7. भविष्यनिधि खाता (देय)	1554375.80		0.0
8.परियोजना उपरि व्यय	7783807.53		7319228.4
9. मीयादी जमा तथा बचत बैंक (देय) पर अर्जित ब्याज (डीएसटी को	0.00		29551006.7
धनवापसी)			
10. कर्मचारी कल्याण कोष	129429.00		100000.0
11. ईवीएलपी ओवरहेड फंड	2859248.51		2859248.5
कुल (क)	48792269.22		81416704.5
इ. प्रावधान			
1. कराधान हेतु			
2. ग्रेच्युटी			
3. अधिवर्षिता/ पैशन			
4.संचित छुड़ी नकदीकरण			
5. व्यापार वांरटी/ दावा			
6. अन्य - तदर्थ बोनस	0.00		0.0
कुल (ख)	0.00	-	0.0
कुल (क+ख)	48792269.22		81416704.58

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र

ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के आंग के रूप में अनुसूचियाँ

अनुसूची 8 - अचल आस्तयाँ

	-									
		सकल	ब्लाक			4	विवरण समायोजन		ਚੀ ਚੀ	लागत
विवरण	लागत / मूल्यांकन वर्ष की शुरु में	"वर्ष के दौरान परिवर्धन"	"वर्ष के दौरान समायोजन"	वर्ष के अंत में लागत / मूल्यांकन	लागत / मूल्यांकन वर्ष की शुरू में	"वर्ष के दौरान परिवर्धन"	"वर्ष <i>के दौरान</i> समायोजन"	"वर्ष के अंत में कुल"	वर्तमान वर्ष का अंत	पिछले वर्ष का अंत
A. आचल आस्ति										
1. मूमि										
a) भाररहित										
b) लीजधारित	10950654.60	00.00		10950654.60	00.00	0.00		0.00	10950654.60	10950654.60
2. भवन										
a) भाररहित भूमि पर	449356225.86	5700004.00		455056229.86	80800626.35	7158078.75		87958705.10	87958705.10 367097524.76	368555599.51
b) लीजधारित मूमि पर										
c)स्वामित्वयुक्त फ्ल्याट, परिसर										
d)उस भूमि पर संरचना										
जो संस्था की नहीं है										
3. संयन्द्र, मशीनरी एवं उपकरण	553032007.45	553032007.45 122575525.00		675607532.45	460765132.51	20732976.80		481498109.31	194109423.14	92266874.94
4. वाहन	1042199.00	00.00		1042199.00	631195.08	85640.84		716835.92	325363.08	411003.92
5. फर्नीचर एवं जुडनार	43220334.22	7850592.00		51070926.22	37475227.37	1328497.11		38803724.48	12267201.74	5745106.85
6. कार्यालय उपकरण	6205896.29	669114.00		6875010.29	5701268.12	172090.09		5873358.21	1001652.08	504628.17
7. कंप्युटर संबधित उपकरण	96688175.44	49262934.75		145951110.19	77081686.02	5021693.00		82103379.02	63847731.17	19606489.42
8.इलेकट्रिक संस्थपना	11699040.00	0.00		11699040.00	9474985.71	741657.79		10216643.50	1482396.50	2224054.29
9. पुस्तकालय के पुस्तकें	273040722.11	8593136.00		281633858.11	69586478.05			69586478.05	69586478.05 212047380.06	203454244.06
10. ट्युबवेल एवं जलापूर्ति								0.00	00.00	•
11. अन्य अचल आस्तियाँ	84225.55	00.00		84225.55	80014.27			80014.27	4211.28	4211.28
चालु वर्ष का कुल	1445319480.52 194651305.75	194651305.75	0.00	1639970786.27	741596613.48	35240634.38	0.00	776837247.86	863133538.41	703722867.04
पिछले वर्ष का कुल	1381529652.29 63967993.23	63967993.23	1,78,165.00	1445319480.52	710291516.34	31407695.41 1,02,598.27	1,02,598.27	741596613.48	703722867.04	741596613.48 703722867.04 703722867.04
ख. जारी पुंजीगत कार्य	3053400.00			3053400.00	'	'	'	00.00	3053400.00	3053400.00
कुल (क + ख)	1448372880.52	1448372880.52 194651305.75	0.00	1643024186.27	741596613.48	35240634.38	0.00	776837247.86	866186938.41	706776267.04

वार्षिक प्रतिवेदन २०२२-२०२३

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र

ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 9 - चिह्नित स्थायी निथि से निवेश

राशि र्र्ज.

	चालु वर्ष	पिछले वर्ष
1.सरकारी प्रतिभुतियाँ में		
2. अन्य अनुमोदित प्रतिभूतियोँ में		
3. शेयर		
4. डिबेंचर एवं बांड		
5. सहायक कंपनी तथा संयुक्त उद्यम		
6. परियोजना निधि निवेश	66247478.00	63540324.00
7. अवसरकालीन सुविधाएँ निधि	104094692.00	93577032.00
8. कर्मचारी चिकित्सा निधि निवेश	7047708.00	6789112.00
9.कार्पस निधि निवेश (परियोजना सह)	14731815.00	12449624.00
10. टीआरसी फंड निवेश	0.00	17794145.00
कुल	192121693.00	194150237.00

अनुसूची 10 - निवेश - अन्य

	चालु वर्ष	पिछले वर्ष
1. सरकारी प्रतिभूतियों में		
2. अन्य अनुमोदित प्रतिभूतियों में		
3.शेयर		
4. डिबेंचर एवं बांड		
5. सहायक कंपनी तथा संयुक्त उद्यम		
6 .अन्य - इंडियन ओवरसीज बैंक में मयादी जमा (परियोजना सह)	323480333.00	487261365.00
युनियन बैंक आफ इंडिया में मियादी जमा	156097313.00	91677214.00
कुल	479577646.00	578938579.00

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 11 - चालु आस्तियों, ऋण एवं अग्रिम राशि

	चालु वर्ष		चालु वर्ष पिछले वर्ष		ने वर्ष
p. चालु आस्तियाँ					
1. मालसूची					
a) भंडार एवं अतिरिक्त पुरजे		32868.57		32969.5	
2) हाथ में नकदी शेष		4934.00		17877.0	
3) बैंक शेष					
a) अनुसुचित बैंकों में					
चालु खाते में					
इंडियन ओवरसीज बैंक (CA-089302000000220)	21669307.18		82169274.16		
इंडियन ओवरसीज बैंक (CA-089302000000273)	3479505.55		12580128.75		
युनियन बैंक आफ इंडिया (CA-460901010034252)	6824170.95		3327974.42		
एचडीएफसी बैंक (जीईएम) (373218248)	12184.00		45340.00		
भारतीय रिज़र्व बैंक (टीएसए)	24776.00	32009943.68		98122717.3	
एलसी एवं बीजी के लिए जमा खातों पर:					
इंडियन ओवरसीज बैंक (CA-089302000000220)	24806691.00		27328923.00		
इंडियन ओवरसीज बैंकk (SB-089301000018598 TRC)					
इंडियन ओवरसीज बैंक (CA-089302000000273 PROJECT)		24806691.00	1192809.00	28521732.0	
बचत खातों पर:					
इंडियन ओवरसीज बैंक(SB-089301000010662 UNAST)	3770610.60		3668215.00		
इंडियन ओवरसीज बैंक(SB-089301000012029 SYNC.)	840319.96		817571.36		
इंडियन ओवरसीज बैंक(SB-089301000011479 NANO TECH)	595777.66		579676.06		
युनियन बैंक आफ इंडिया (SB-460901110050013)	8046874.97		8046945.77		
एक्सिस बैंक (SB-775010100024408)	426984.00		223174.00		
एक्सिस बैंक (SB-775010100017860)	1906.00		1850.00		
वीओएम (1817)	4722041.00				
वीओएम (3237)	24071569.00				
इंडियन ओवरसीज बैंक-(SB-089302000019902)	20509911.80				
युनियन बैंक आफ इंडिया(SB-460902010097273 TRC)	68242.80		66356.80		
इंडियन ओवरसीज बैंक (SB- 089301000018598 TRC)	1850948.05		16054126.83		
एचडीएफसी बैंक (SB-6771192)	1401631.01		615794.01		
		66306816.85	35981834.00	66055543.8	
5. एलसी एवं बीजी के लिए जमा खातों पर:					
6. डाकघर - बचत खाता					
कुल (क)		123161254.10		192750839.7	

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र

ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 11 - चालु आस्तयाँ, ऋण एवं अग्रिम आदि

राशि रू.

	चात्	नु वर्ष	पिछ	न्ले वर्ष
ı.ऋण, अग्रिम एवं अ न ्य आस्तियाँ				
1. ऋण				
क) कर्मचारी - गृह नर्माण अग्रिम, वाहन एवं पीसी अग्रिम (परियोजना सह)		155000.00		146825.0
2. प्राप्त मूल्य के लिए नकदी या बस्तु के रुप में वसुलीयोग्य				
क) पुंजीगत खाते पर - सीपीडब्लुडी जमा खाता	438840.00		438840.00	
ख)जीएसटी भुगतान	0.00		0.00	
ग) अन्य	377073.00		305430.00	
घ) ठेकेदार एवं आपूर्तिकर्ता	323347.00	1139260.00	5375275.00	6119545.0
3.उपचिय आय				
क) चिह्नित स्थायी निधि से निवेश पर (परियोजना तथा टीआरसी सह)	20958302.00		24993222.00	
ख) निवेश से - अन्य	8436645.00		8699768.00	
ग) आयकर (टीडीएस)		29394947.00		33692990.0
4.प्राप्त दावे - राष्ट्रीय अनुसंधान विकास निगम		2030313.00		2657513.0
5. सुरक्षा जमा		106118.00		88618.0
कुल (ख)		32825638.00		42705491.0
कुल (क + ख)		155986892.10		235456330.7

31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 12 - बिक्रि/ सेवा से आय

	Current Year	Previous Year
1)बिक्रि से आय		
क) तैयार माल की बिक्रि		
ख) कच्चे माल की बिक्रि		
ग) स्क्रप्स की बिक्रि	484250.00	
2) सेवा से आय		
क) अतिथिगृह किराया	1948300.00	364299.95
ख)छात्रावास प्रभार (एचआरए की वसुली)	5670237.00	5717635.00
ग) उपकरण उपयोग शुल्क	449000.00	474700.00
घ) छात्रावास रखरखाव शुल्क	1937455.00	1161723.00
ङ) परियोजना उपरिब्यय	431939.40	389449.00
च) विएसएनएल से आय	141107.00	54973.00
छ) सेमिनार कक्ष किराया	0.00	0.00
ज) भोजनालय कक्ष का किराया	0.00	0.00
झ)जल शुल्क की वसूली	0.00	0.00
ञ) कनफारेन्स पंजीकरण शुल्क	202000.00	36500.00
ट) लैपटॉप के प्रतिधारण पर लाभ	1253.75	
कुल	11265542.15	8199279.95

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 13 - अनुदान/सहायता

प्राप्त अदेय अनुदान एवं सहायता अनुदान

राशि रू.

	चालु वर्ष	पिछले वर्ष
1) केंद्रीय सरकार	305423171.00	322300000.00
2) राज्य सरकार		
3) सरकारी एजिंसयाँ		
4) संस्थान/ कल्याणकारी निकाय		
5) अंतराष्ट्रीय संगठन		
6) अन्य		
कुल	305423171.00	322300000.00

अनुसूची 14 - शुल्क/अभिदान

राशि रू.

	चालु वर्ष	पिछले वर्ष
1)छात्र प्रवेश शुल्क	132501.00	126504.00
2) वार्षिक शुल्क/अभिदान		
3)छात्र सेमिस्टार शुल्क	1413000.00	856000.00
4) परामर्श शुल्क		
5) अन्य		
कुल	1545501.00	982504.00

टिप्पणी:प्रत्येक पद के लिए लेखांकन नीति प्रकट की जाए।

अनुसूची 15 - निवेश से आय

(चिह्नित स्थायी निधि से निवेश पर आय को निधि में अंतरित किया गया)

	चिह्नित निधि से निवेश		निवेश	- अन्य
	चालु वर्ष	पिछले वर्ष	चालु वर्ष	पिछले वर्ष
1) ब्याज				
क) सरकारी प्रतिभूतियों पर				
ख) अन्य बांड/डिबेंचरों से				
2) लभ्यांश:				
क)शेयर पर				
ख) म्युचुअल फंड प्रितभूतियों पर				
3) किराया				
4) अन्य				
क) बैंकों में सावधि जमा पर ब्याज	24066810.00			
ख) बचत खातों पर ब्याज	498902.00			
कुल	24565712.00	शुन्य	शुन्य	शुन्य
चिह्नित/ स्थायी निधि में अंतरित	शुन्य	शुन्य	शुन्य	शुन्य

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र

ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 16 - प्रयुक्ति हस्तांतर एवं परियोजना चुक्ति से आय

राशि रू.

	चालु वर्ष	पिछले वर्ष
1. प्रयुक्ति हस्तांतर से आय		560000.00
2. परियोजना चुक्ति से आय		
3.अन्य		
कुल	0.00	560000.00

अनुसूची 17 -अर्जित ब्याज

राशि रू.

	चालु वर्ष	पिछले वर्ष
1) सावधि जमा पर		
क) अनुसुचित बैंकों में		
ख) संस्थानों में		
ग) अन्य		
2) बचत खाते पर		
क) अनुसुचित बैंकों में		
ख) डाक घर बचत खाता		
ग) अन्य		
3) ऋण पर		
क) कर्मचारी/स्टाफ (ब्याज - एचवीए पर, आदॉ)	15624.00	301532.00
ख) अन्य		
4) डिबेंचर एवं अन्य प्राप्त राशियों पर ब्याज		
कुल	15624.00	301532.00

अनुसूची 18 - अन्य आय

राशि र्रु.

	चालु वर्ष	पिछले वर्ष
1) आस्तियों की बिक्रि/ निपटान से लाभ		
क) स्विमत्व की आस्ति		
ख) अनुदान से अर्जित आस्ति या नि:शुल्क प्राप्त		
2) निर्यात प्रोत्साहत की प्राप्ति		
3) विविध सेवाओं के लिए शुल्क		
4) विविध आय	1074686.00	1760626.28
 कुल	1074686.00	1760626.28

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 19 - तैयार माल एवं प्रक्रियागत कार्य के स्टाँक में वृद्धि/ कमी

राशि रू.

	Current Year	Previous Year
क) अंतिम स्टाँक		
तैयार माल		
प्रकियागत कार्य		
ख) घटाएँ: प्रारंभिक माल		
तैयार माल		
प्रकियागत कार्य		
शुद्ध वृद्धि/(हास) [क-ख]	Nil	Nil

अनुसूची 20 - स्थापना व्यय

	चालु वर्ष	पिछले वर्ष
क) वेतन एवं मजदुरी	126933421.00	117502728.00
ख) अन्य भत्ता एवं बोनस	0.00	0.00
ग) कर्मचारी भविष्य निधि में अंशदान	3152185.00	3534961.00
घ) अन्य निधियों में अंशदान - अवसरकालीन सुबिधाएँ	16724007.00	10108074.00
ङ) कर्मचाररी कल्याण व्यय (चिकित्सा)	3669973.00	3003569.00
च) एनपीएस में अंशदान	12002345.00	5390774.00
छ) अन्य (एलटीसी, छुट्टी वेतन निधि आदि)	2922630.00	1221994.00
कुल	165404561.00	140762100.00

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 21 -अन्य प्रशासनिक व्यय आदि

राशि रू.

	चालु वर्ष	पिछले वर्ष
a) विस्तारित आगंतुक कार्यक्रम। (सेमिनार और कार्यशालाओं सहित)	21635553.30	11466656.00
b) बैठक व्यय	1212737.00	720682.00
c) पुस्तकालय सामान्य व्यय	74011.00	120108.00
d) बिजली	34917178.00	35709722.00
e) प्रयोगशाला व्यय	12689570.00	9780903.00
f) बीमा	36707.00	30383.00
g) मरम्मत और रखरखाव	66728055.00	50000956.00
h) टीपीएससी कार्यक्रम	614000.00	0.00
i) संसदीय समिति की बैठक का व्यय	0.00	0.00
j) वाहन किराया शुल्क	1705009.00	1930574.00
k) डाक, टेलीफोन और संचार शुल्क	985775.00	871883.00
।) मुद्रण और स्टेशनरी	1793414.00	1169333.00
m)यात्रा एवं वाहन व्यय	2443845.00	134250.00
n) संकाय के लिए आनुषंगिक व्यय	0.00	20000.00
o) लेखा परीक्षकों का पारिश्रमिक	59000.00	59000.00
p) बैंक प्रभार	211797.45	193899.83
q) पेशेवर प्रभार (कानूनी शुल्क)	20793.00	18896.00
r) कर्मचारी प्रशिक्षण और कल्याण	514136.00	89718.00
s) पेटेंट और ट्रेडमार्क	48451.00	106714.00
t) एकीकृत पीएच.डी.	2724857.00	1129831.00
u) हिंदी कार्यक्रम	157206.00	764320.00
v) विज्ञापन और प्रचार	246641.00	199484.00
w) अ न ्य	2120552.52	1104977.85
x) नगरपालिका कर	141388.00	141388.00
z) अनुबंध सेवाएं	18606757.00	18161958.00
z1) वजीफा (पोस्ट बीएससी और पोस्ट एमएससी)	37214332.00	36725761.00
कुल	206901765.27	170651397.68

अनुसूची 22 - अनुदान, सहायता आदि पर व्यय

राशि रू.

	चालु वर्ष	पिछले वर्ष
क)संस्थानों/संगठनों को दिया गया अनुदान		
ख) संस्थानों/संगठनों को दिया गया सहायता अनुदान		
कुल	शून्य	शुन्य

अनुसूची 23 - ब्याज

	चालु वर्ष	पिछले वर्ष
क) मयादी ऋण पर		
ख) अन्य ऋणों पर (बैंक प्रभार सहित)		
ग) अन्य		
कुल	शून्य	शुन्य

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र

ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 24 उल्लेखनीय लेखांकन नीति

1. लेखांकन परंपरा

वित्तीय विवरणों को ऐतिहासिक लागत परंपरा के आधार पर तैयार किया जाता है, जब तक कि अन्यथा कहा न जाए और लेखांकन के आकस्मिक तरीके पर। स्टाफ और गेस्ट हाउस रेंट को दिए गए ब्याज असर ऋण / अग्रिमो पर ब्याज का भुगतान नकद आधार पर किया जाता है। नियंत्रण रेखा / बीजी के खिलाफ ग्रहणाधिकार पर सावधि जमा पर ब्याज का भुगतान नकद आधार पर किया जाता है।

2. मालसूची का मूल्यांकन

2.1 स्टोर और पुर्जों (मशीनरी के पुर्जों सहित) का मूल्य दिया जाता है।

3. निवेश

3.1 लागत पर निवेश को महत्व दिया जाता है।

4. अचल आस्तियाँ

- 4.1 अचल संपत्तियों को अधिग्रहण की लागत पर आवक माल ढुलाई, कर्तव्यों और करों और अधिग्रहण से संबंधित आकरिमक और प्रत्यक्ष खर्चों के साथ-साथ आयात किए गए उपकरणों पर सीमा शुल्क और समाशोधन शुल्क भी पूंजीकृत किए गए हैं।
- 4.2 गैर-मौद्रिक अनुदान (कैपिटल फंड की तुलना में) के माध्यम से प्राप्त किए गए फिक्स्ड एसेट्स कैपिटल फंड के लिए इसी क्रेडिट द्वारा बताए गए / सहमत मूल्य पर बड़े होते हैं। अधूरे काम को पूँजी-कार्य के रूप में दिखाया जाता है- प्रगति पर पूँजी को पूरा करने के लिए।
- 4.3 पुस्तकालय पुस्तकों की प्राप्ति के आधार पर और पत्रिकाओं के लिए जिम्मेदार हैं भुगतान के आधार पर।
- 4.4 उपकरण के आवंटन और मरम्मत के खर्च के लिए कंप्यूटर आदि खरीदने के लिए किए गए व्यय से राजस्व का शुल्क लिया जाता है।

5. मूल्यह्रास

5.1 कैपिटलाइज़ेशन पर मूल्यहास का मूल्य निर्धारण के समय / इससे अधिक के रूप में और जब एसेट्स पर बाद में और आइटम जोड़े गए थे, तब निर्धारित मूल्य पर लगाया गया है।

- 5.2 कंपनी अधिनियम, 2013 में निर्दिष्ट दरों के अनुसार स्ट्रेट-लाइन पद्धति पर मूल्यहास प्रदान किया जाता है।
- 5.3 वर्ष के दौरान अचल संपत्तियों से परिवर्धन / विलोपन के संबंध में, मूल्यहास समर्थक अनुपात के आधार पर माना जाता है। परिसंपत्तियों के अधिग्रहण की तारीख से मूल्यहास प्रदान किया
- 5.4 फिक्स्ड एसेट्स पर आने वाले मूल्यहास को फिक्स्ड एसेट्स से घटाया जाता है और कैपिटल फंड से भी निकाला जाता है, जिसमें से फिक्स्ड एसेट्स बनाए जाते हैं और इनकम और एक्सपेंडेचर अकाउंट से नहीं गुजारे जाते हैं और सीधे कैपिटल फंड में डेबिट किया जाता है।
- 5.5 पुस्तक और पत्रिकाओं पर वर्ष के लिए कोई मूल्यहास प्रदान नहीं किया गया है क्योंकि कंपनी अधिनियम, 2013 में इसका उल्लेख नहीं किया गया है।
- 5.6 TRC फंड द्वारा वित्तपोषित कार्यालय भवन की ओर से मूल्यहास प्रदान नहीं किया गया है, लेकिन डाकघर द्वारा वित्त पोषित भवन के हिस्से पर मूल्यह्रास प्रदान किया गया है

6. विदेशी मुद्रा लेनदेन

6,1 विदेशी मुद्रा में संप्रेषित लेन-देन का विनिमय दर पर लेन-देन की तारीख में प्रचलित हिसाब लगाया जाता है।

7. सेवानिवृत्ति लाभ

- 7.1 कर्मचारियों की मृत्यु / सेवानिवृत्ति पर देय ग्रेच्युटी के प्रति देयता की गणना इस धारणा पर की जाती है कि कर्मचारी प्रत्येक वर्ष के अंत में लाभ प्राप्त करने के हकदार हैं।
- 7.2 कर्मचारियों को संचित अवकाश नकदीकरण लाभ के लिए प्रावधान उपार्जित किया गया है और इस धारणा पर गणना की जाती है कि कर्मचारी प्रत्येक वर्ष के अंत में लाभ प्राप्त करने के हकदार हैं।
- 7.3 उपरोक्त खातों के तहत देयताओं को राष्ट्रीयकृत बैंक के साथ सावधि जमा खातों में अलग से निवेश किया जाता है।

सत्येन्द्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र

ब्लाक जेडी, सेक्टर - III, साल्ट लेक सिटी, कोलकाता 700 106 31.03.2023 तक के तुलन पत्र के अंग के रूप में अनुसूचियाँ

अनुसूची 25 आनुसंगिक देयताएं और खातों पर टिप्पणियां

1. आनुसंगिक देयताएं

1.1 केंद्र के खिलाफ दावों को ऋण के रूप में स्वीकार नहीं किया गया - रु शून्य (पिछले वर्ष रु शून्य)।

1.2 के संबंध में

- केंद्र द्वारा/की ओर से दी गई बैंक गारंटी सावधि जमा के माध्यम से 100% मार्जिन मनी के विरुद्ध रु.1,05,00,000.00 (पिछले वर्ष रु.1,05,00,000.00)। ऐसी जमा राशि पर अर्जित ब्याज का लेखा नकद आधार पर किया जाता है।
- केंद्र और परियोजना की ओर से बैंक द्वारा खोले गए साख पत्र-रु. 1,81,06,372/- (पिछले वर्ष रु.1,31,88,209.00) 100% मार्जिन मनी के विरुद्ध। ऐसी जमा राशि पर अर्जित ब्याज का लेखा नकद आधार पर किया जाता है।
- बैंकों के साथ छूट वाले बिल रु। शून्य (पिछले वर्ष रु। शून्य)।
- 1.3 विवादित मांगें के संबंध में:

आयकर रु. शून्य (पिछले वर्ष रु शून्य)

जीएसटी रु. शून्य (पिछले वर्ष रु शून्य)

1.4 आदेशों के निष्पादन के लिए पार्टियों के दावों के संबंध में, लेकिन केंद्र द्वारा चुनौती दी गई - शून्य (पिछले वर्ष रु। शून्य)।

खातों पर नोट्स

2.1.1पूंजी प्रतिबद्धताएं:

शेष अनुबंधों का अनुमानित मूल्य पूंजी खाते पर निष्पादित किया जाना है और रुपये के लिए प्रदान नहीं किया गया है। शून्य (पिछले वर्ष रु। शून्य)।

2.2.1 अचल संपत्तियों का भौतिक सत्यापन एक बाहरी एजेंसी को सौंपा गया है और सत्यापन प्रक्रियाधीन है, भौतिक सत्यापन रिपोर्ट प्रस्तुत करने पर खातों में समायोजन यदि कोई हो तो दिया जाएगा। 2.2.2 अप्रैल, 2022 को पूंजीगत कार्य प्रगति पर 30,53,40.00 रुपये अतिरिक्त था। चालू वर्ष शून्य रुपये है, कुल 30,53,400.00 रुपये की राशि को पूंजीकृत किया गया है, 30,53,400.00 रुपये की शेष राशि को आगे बढ़ाया गया है।

2.2.3 चालू परिसंपत्तियां, ऋण और अग्रिम

प्रबंधन की राय में, चालू परिसंपत्तियों, ऋणों और अग्रिमों का व्यवसाय के सामान्य क्रम में वसूली पर मूल्य होता है, जो कम से कम बैलेंस शीट में दिखाई गई कुल राशि के बराबर होता है।

असमायोजित यात्रा अग्रिम:-

नाम	राशि	टिप्पणी
अमृता सरकार	रु. 63000.00	2012-13 से असमायोजित

2.2.4 कराधान

आयकर अधिनियम 1961 के तहत कोई कर योग्य आय नहीं होने के कारण, आयकर के लिए कोई प्रावधान आवश्यक नहीं माना गया है।

2.2.5 विदेशी मुद्रा लेनदेन

i) विदेशी मुद्रा लेनदेन

		चालू वर्ष	पिछला वर्ष
-	पूंजीगतसामान	₹.2,21,25,361/-	₹.3,66,83,739/-
_	उपभोज्य	रु.53,11,119/-	₹.8,61,978/-

- ii) विदेशी मुद्रा में व्यय:
 - ए) यात्रा: शून्य
 - बी) वित्तीय संस्थानों/बैंकों को विदेशी मुद्रा में प्रेषण और ब्याज भुगतान: शून्य
 - ग) अन्य व्यय: शून्य

- बिक्री पर कमीशन
- कानूनी और व्यावसायिक खर्च
- विविध व्यय।
- बैंक प्रभार

कोलकाता दिनांक 31.08.2023 iii) कमाई:

एफओबी आधार पर निर्यात का मूल्य: शून्य

2.2.6 पिछले वर्ष के तदनुरूपी आंकड़ों को पुनः समूहित/पुन: व्यवस्थित किया गया है, जहां आवश्यक हो।

लेखापरीक्षा प्रेक्षणों के पैरा-वार उत्तर

SI	लेखापरीक्षा अवलोकन	पैरा-वार जवाब
1	वित्त वर्ष 2022-23 के लिए 4,843.00 रुपये के 26एएस विवरण के	अवलोकन भविष्य के अनुपालन के लिए नोट किया गया है।
	अनुसार टीडीएस चूक के लिए देयता खातों में प्रदान नहीं की गई है।	
2	आकलन वर्ष (2023-24) के लिए 26एएस स्टेटमेंट के अनुसार,	केंद्र सरकार सितंबर, 2023 के अंत तक लेखा परीक्षित खातों के आधार पर वित्तीय
	25,51,438.00 रुपये और 29,135.00 रुपये क्रमशः स्रोत पर कर कटौती	वर्ष (2023-24) से संबंधित आकलन वर्ष (2023-24) के लिए ऑनलाइन आयकर
	और स्रोतों पर एकत्र किए गए कर के खिलाफ वापसी योग्य हैं, जिसके लिए	रिटर्न (आईटीआर -7) जमा करेगी ताकि टीडीएस (25,51,438.00 रुपये) और
	केंद्र को आवश्यक आयकर रिटर्न जमा करना बाकी है।	टीसीएस (29,135.00 रुपये) के रिफंड का दावा किया जा सके।
3	केंद्र ने बाहरी एजेंसियों के माध्यम से परिसंपत्तियों का भौतिक सत्यापन	अचल संपत्तियों का भौतिक सत्यापन बहुत जल्द पूरा किया जाएगा। रिपोर्ट लेखा
	किया है, लेकिन रिपोर्ट अभी तक केंद्र को प्रस्तुत नहीं की गई है। इसलिए,	परीक्षा के अगले चरण में प्रस्तुत की जाएगी।
	हम 31.03.2023 को बही-खातों में ली गई अचल संपत्तियों के मूल्यांकन	
	पर टिप्पणी नहीं कर सकते हैं।	

सत्येंद्र नाथ बसु राष्ट्रीय मौलिक विज्ञान केन्द्र

ब्लॉक जेडी, सेक्टर- III, सॉल्ट लेक, कोलकाता - 700 106 फ़ोन: +91 33 2335 5706/07/08, Fax: +91 33 2335 3477 http://www.bose.res.in