

INSTITUTE SEMINAR

Friday, 8 August 2014

4:00 pm

Fermion

Speaker:

Dr. Satyabrata Patnaik

School of Physical Sciences, Jawaharlal Nehru University, New Delhi

Title:

Some exciting developments in superconducting and multiferroic materials

Abstract:

Layered chalcogenides have made a triumphant return to the center stage of superconducting material research in the recent past. In this talk we shall review the current status of superconductivity in three generic systems involving Sulfur (S), Selenium (Se), and Tellurium (Te). In all we shall discuss synthesis and detailed electromagnetic characterization of four compounds; the topological crystalline superconductor $Sn_{0.5}In_{0.5}Te$, the copper intercalated topological insulator Bi_2Se_3 , the BiS_2 based $Bi_4O_4S_3$ and the quintessential $FeSe_xTe_{1-x}$. Along with estimation of fundamental parameters such as upper critical field anisotropy and coherence length, we shall summarize results from temperature dependent Hall and Seebeck coefficient measurements. Of particular interest are the results from temperature dependent RF penetration depth study that provide evidence for varied pairing symmetry in $Sn_{0.5}In_{0.5}Te$ vis à vis $Bi_4O_4S_3$. With regard to multiferroic materials, we shall focus on oxides wherein ferroelectricity is driven by cycloidal magnetic orderings rather than ab-initio noncentrosymmetric crystal structure. The examples would include Y_2CoMnO_6 , $NdCrTiO_5$, and $Cu_3Nb_2O_8$.

References

- 1. Shruti, P. Srivastava and S. Patnaik, J. Phys.: Condens. Matter, 25, 312202 (2013).
- 2. S. K. Singh, A. Kumar., B. Gahtori, Shruti, G. Sharma, S. Patnaik and V. P. S. Awana, J. Am. Chem. Soc.,134 16504 (2012).
- 3. P. <u>Srivastava</u>, <u>Shruti</u> and <u>S. Patnaik</u>, Supercond. Sci. Tech. 27, 055001 (2014).
- 4. V. Maurya, Shruti, P.Srivastava, S. Patnaik, arxiv: cond-mat 1406.2155
- 5. J. Saha, G. Sharma, and S. Patnaik, J. Mag. Mag. Mat. 360, 34 (2014).
- 6. G. Sharma, T. S. Tripathi, J. Saha, and S. Patnaik, J. Mag. Mag. Mat. 368, 318 (2014).
- 7. G. Sharma, J. Saha, S. D. Kaushik, V. Siruguri, and S. Patnaik, Appl. Phys. Lett. 103, 012903 (2013).