
PARAM Rudra

USER MANUAL

Last Updated: 17th May 2024

www.cdac.in

PARAM Rudra – User Manual

 Page | 1

Copyright Notice

Copyright © 2024 Centre for Development of Advanced Computing

All Rights Reserved.

Any technical documentation that is made available by C-DAC (Centre for Development of Advanced

Computing) is the copyrighted work of C-DAC and is owned by C-DAC. This technical documentation is being

delivered to you as is, and C-DAC makes no warranty as to its accuracy or use. Any use of the technical

documentation or the information contained therein is at the risk of the user. C-DAC reserves the right to

make changes without prior notice.

No part of this publication may be copied without the express written permission of C-DAC.

Trademarks

CDAC, CDAC logo, NSM logo are trademarks or registered trademarks.

Other brands and product names mentioned in this manual may be trademarks or registered trademarks of

their respective companies and are hereby acknowledged.

Intended Audience

This document is meant for PARAM Rudra users.

Typographic Conventions

Symbol Meaning

Blue underlined text A hyperlink or link you can click to go to a related section in
this document or to a URL in your web browser.

Bold The names of menus, menu items, headings, and buttons.

Italics Variables or placeholders or special terms in the document.

Console text Console commands

Getting help

For technical assistance or license renewal, please send an email to rudrasupport@iuac.res.in.

Give us your feedback

We value your feedback. Kindly send your comments on content of this document to rudrasupport@iuac.res.in

Please include the page number of the document along with your feedback.

DISCLAIMER

The information contained in this document is subject to change without notice. C-DAC shall not be liable for

errors contained herein or for incidental or consequential damages in connection with the performance or use

of this manual.

mailto:support.paramrudra@iuac.res.in
mailto:support.paramrudra@iuac.res.in

PARAM Rudra – User Manual

 Page | 2

Table of Content

Introduction .. 5

System Architecture and Configuration ... 6

System Hardware Specifications .. 6

Login Nodes .. 6

Service Nodes ... 7

CPU Compute Nodes .. 7

GPU Ready Compute Nodes .. 7

GPU Compute Nodes ... 8

High Memory Compute Nodes .. 8

Storage ... 9

PARAM Rudra Architecture Diagram ... 9

Operating System ... 9

Primary Interconnection Network ... 10

Secondary Interconnection Network ... 10

Software Stack ... 10

First Things First .. 13

Getting an Account on PARAM Rudra ... 13

How to access the cluster .. 14

First login .. 18

Forgot Password?... 18

How to change the password: ... 19

Transferring files between local machine and HPC cluster 20

Tools ... 21

Resource Management ... 23

SLURM Partitions ... 23

QoS Job policy .. 24

Scheduling Type ... 24

Job Submission ... 25

PARAM Rudra – User Manual

 Page | 3

Listing Partition .. 33

Monitoring jobs .. 34

Getting Node and Partition details .. 35

Accounting ... 36

Investigating a job failure... 37

I am familiar with PBS/ TORQUE. How do I migrate to SLURM? ... 38

Addressing Basic Security Concerns .. 39

Loading modules through SPACK ... 40

Introduction ... 40

To Use Pre-Installed Applications from Spack ... 41

To install new application .. 41

Uninstalling Packages... 43

Using Environments ... 44

Packaging (For Application developers) .. 44

Sample steps taken for creating linewidth application recipe for Spack 46

Sample SLURM script for OpenMP applications/programs. to use Spack 46

Sample SLURM script for MPI applications/programs to use Spack 47

Preparing Your Own Executable .. 48

Debugging Your Codes... 52

Introduction ... 52

Basics: How To ... 52

Conclusion .. 73

Points to Note .. 73

Overall Coding Modifications Done ... 74

Machine Learning (ML) / Deep Learning (DL) Application Development 75

Building Your Own Conda Environment .. 77

Submitting job using sbatch script for DL Application ... 78

How to launch a Jupyter notebook? .. 79

Some Important Facts ... 81

About File Size .. 81

PARAM Rudra – User Manual

 Page | 4

Little-Endian and Big-Endian issues? ... 82

Best Practices for HPC ... 83

Installed Applications/Libraries ... 84

Standard Application Programs on PARAM Rudra .. 84

LAMMPS Applications .. 85

GROMACS APPLICATION .. 87

Acknowledging the National Supercomputing Mission in Publications 89

Getting Help – PARAM Rudra Support ... 90

Steps to Create a New Ticket ... 90

User Creation Process.. 93

Process/Steps ... 93

Closing Your Account on PARAM Rudra ... 96

References .. 97

PARAM Rudra – User Manual

 Page | 5

Introduction

This document is the user manual for the PARAM Rudra Supercomputing facility at SNBNCBS,

S. N. Bose National Centre for Basic Sciences Kolkata. It covers a wide range of topics ranging

from a detailed description of the hardware infrastructure to the information required to

utilize the supercomputer, such as information about logging on to the supercomputer,

submitting jobs, retrieving the results on to the user's Laptop/ Desktop etc. In short, the

manual describes all that one needs to know to effectively utilize PARAM Rudra.

The supercomputer PARAM Rudra is based on heterogeneous and hybrid configuration of

Intel Xeon 2nd Gen Cascade Lake processors, and NVIDIA Ampere A100 GPU cards. The

system was designed and implemented by HPC Technologies group, Centre for

Development of Advanced Computing (C-DAC).

It consists of 4 Login nodes, 6 Management and 162 (CPU+GPU+HM) compute nodes with

total peak computing capacity of (CPU+GPU+HM) 838 PFLOPS.

PARAM Rudra – User Manual

 Page | 6

System Architecture and

Configuration

System Hardware Specifications

PARAM Rudra system is based on the Intel Xeon Gold 6240R with a total peak performance

of 838 PFLOPS. The cluster consists of compute nodes connected with the InfiniBand

HDR100 Low-Latency, High-Bandwidth InfiniBand interconnect network. The system uses

the Lustre parallel file system.

● Total number of Nodes: 172 (10 + 162)

o Login Nodes: 4

o Management Nodes: 6

o CPU only Nodes: 96

o GPU Nodes: 8

o GPU ready Nodes: 26

o High Memory CPU only Nodes: 32

Login Nodes

Login nodes are typically used for administrative tasks such as editing, writing scripts,

transferring files, managing your jobs and the like. You will always get connected to one of

the login nodes. From the login nodes you can get connected to a Compute Node and

execute an interactive job or submit batch jobs through the batch system (SLURM) to run

your jobs on compute nodes. For all users PARAM Rudra Login Nodes are the entry points

and hence are shared. By default, there will be a limit on the CPU time that can be used on a

Login Node by a user and there is a limit/user on the memory as well. If any of these are

exceeded, the job will get terminated.

Login Nodes: 4

2* Intel Xeon G-6240R

Cores = 48, 2.4 GHz

Total Cores = 192 cores

Memory= 192 GB each Total Memory = 768 GB

PARAM Rudra – User Manual

 Page | 7

Service Nodes

PARAM Rudra is an aggregation of a large number of nodes connected through networks.

Management nodes play a crucial role in managing and monitoring every component of

PARAM Rudra cluster. This includes monitoring the health, load, and utilization of individual

components, as well as providing essential services such as security, management, and

monitoring to ensure the cluster functions smoothly.

Management nodes: 6

2* Intel Xeon G-6240R

Cores = 48, 2.4 GHz

Total Cores = 288 cores

Memory= 192 GB Total Memory= 1152 GB

CPU Compute Nodes

CPU nodes are the individual machines dedicated to performing computational tasks. These

nodes collectively form the computational power of the cluster. All the CPU intensive

activities are carried on these nodes. Users can access these nodes from the login node to

run interactive or batch jobs.

CPU only Compute Nodes: 96

2* Intel Xeon G-6240R

Cores = 48, 2.4 GHz

Total Cores = 4608 cores

Memory= 192 GB, DDR4 2933 MHz Total Memory=18,432 GB

SSD = 800 GB local per node

GPU Ready Compute Nodes

GPU Ready Compute Nodes are similar to CPU Compute nodes which can be upgraded to

support GPU computations in the future.

GPU Compute Nodes: 26

2* Intel Xeon G-6240R

Cores = 48, 2.4 GHz

Total Cores = 1248 cores

PARAM Rudra – User Manual

 Page | 8

Memory= 192 GB, DDR4 2933 MHz

SSD = 800 GB (local) per node

Total Memory= 4992 GB

GPU Compute Nodes

GPU Compute Nodes feature accelerators cards that offer significant acceleration for

parallel computing tasks using frameworks like CUDA and OpenCL. By harnessing the

computational power of modern GPUs, these nodes are utilized for tasks such as scientific

simulations, deep learning, and data analytics, providing high computational power and

memory.

GPU Compute Nodes: 8

2* Intel Xeon G-6240R

Cores = 48, 2.4 GHz

Total Cores = 384 cores

Memory = 192 GB, DDR4 2933 MHz Total Memory = 1536 GB

SSD = 800 GB (local) per node

2*Nvidia A100 per node

GPU Cores per node= 2*6912= 13824

GPU Memory = 80 GB HBM2e per Nvidia A100

High Memory Compute Nodes

High Memory Compute nodes are specialized nodes designed to handle workloads that

require a large amount of memory.

High memory Compute nodes: 32

2* Intel Xeon G-6240R

Cores = 48, 2.4 GHz

Total Cores = 1536 cores

Memory= 768 GB, DDR5 2933 MHz Total Memory= 24576 GB

SSD = 800 GB (local) per node

PARAM Rudra – User Manual

 Page | 9

Storage

● Based on Lustre parallel file system

● Total useable capacity of 1.0 PiB Primary Storage

● Throughput 100 GB/s

PARAM Rudra Architecture Diagram

Figure 1 - PARAM Rudra Architecture Diagram

Operating System

The operating system on PARAM Rudra is Linux – Alma 8.9

Network infrastructure

A robust network infrastructure is essential for implementing the basic functionalities of a

cluster. These functionalities include:

a) Management functionalities, such as monitoring, troubleshooting, starting and

stopping various components of the cluster. The network/ or portion of the

network that implements this functionality is referred to as the Management

fabric.

b) Ensuring fast read/ writes access to the storage, the network or portion of the

network that implements this functionality is referred to as the storage fabric.

PARAM Rudra – User Manual

 Page | 10

c) Ensuring fast I/O operations, such as connecting to other clusters and connecting

the cluster to various users on the campus LAN. The network or portion of the

network that implements this functionality is referred to as the I/O Fabric.

d) Ensuring High-Bandwidth, Low-latency communication among processors is

essential for achieving high-scalability. The network or portion of the network

that implements this functionality is referred to as Message Passing Fabric.

Technically, all the above functionalities can be implemented in a single network. However,

for optimal performance, economic suitability, and meeting specific requirements, these

functionalities are implemented using two different networks based on different

technologies, as explained below:

Primary Interconnection Network

InfiniBand: HDR 100 Gbps

Computing nodes of PARAM Rudra are interconnected by a high-bandwidth, low-latency

interconnect network, specifically InfiniBand: HDR 100 Gbps. InfiniBand, a high-performance

communication architecture owned by Mellanox, offers low communication latency, low

power consumption and a high throughput. All CPU nodes are connected via the InfiniBand

interconnect network.

Secondary Interconnection Network

Gigabit Ethernet: 10 Gbps

Gigabit Ethernet is the most commonly available interconnection network. No additional

modules or libraries are required for Gigabit Ethernet. Both Open MPI, MPICH

implementations will work over Gigabit Ethernet.

Software Stack

Software Stack is an aggregation of software components that work together to accomplish

various task. These tasks can range from facilitating users in executing their jobs to enable

system administrator to manage the system efficiently. Each software component within

the stack is equipped with the necessary tools to achieve its specific task, and there may be

multiple components of different flavors for different sub-tasks. Users have the flexibility to

mix and match these components according to their preferences. For users, the primary

focus is on preparing executables, executing them with their datasets, and visualizing the

output. This typically involves compiling codes, linking them with communication libraries,

math libraries, and numerical algorithm libraries, preparing executables, running them with

desired datasets, monitoring job progress, collecting results, and visualizing output.

PARAM Rudra – User Manual

 Page | 11

System administrators, on the other hand, are concerned with ensuring optimal resource

utilization. To achieve this, they may require installation tools, health-check tools for all

components, efficient schedulers, and tools for resource allocation and usage monitoring.

The software stack provided with this system have a wide range of software components

that meet the needs of both users and administrators. Figure 2 illustrates the components

of the software stack.

C-CHAKSHU, a multi-cluster management tool designed to help administrator operate the

HPC facility efficiently. It also enables the users to monitor system metrics relating to CPU,

storage, interconnects, file system and application-specific utilization from a single

dashboard. For more information, please follow the link:

https://paramrudra.bose.res.in/chakshu-front

Figure 2- Software Stack

Functional Areas Components

Base OS Alma 8.9

Architecture X86_64

Provisioning and

Cluster Manager

xCAT 2.16.5

Monitoring Tools C-CHAKSHU, Nagios, Ganglia

Resource Manager SLURM- 23.01.1

https://paramrudra.bose.res.in/chakshu-front

PARAM Rudra – User Manual

 Page | 12

I/O Services Lustre Client

High Speed Interconnects Mellanox InfiniBand (MLNX_OFED_LINUX-

23.10)

Compiler Families GNU (gcc, g++, GNU Fortran)

Intel Compiler (icc, ifort, icpc)

MPI Families MVAPICH, Open MPI, MPICH

PARAM Rudra – User Manual

 Page | 13

First Things First

Getting an Account on PARAM Rudra

To begin with, you need to get an account on PARAM Rudra.

Recommended process for creating a user account to access the PARAM Rudra:

1. Visit nsmindia.in

2. Navigate to the "How to access NSM HPC System" section, where you will find a link to

the User Creation portal.

3. Click on the provided link to access the registration page.

4. Fill in all required information on the registration page.

5. Select SNBNCBS, S. N. Bose National Centre for Basic Sciences Kolkata as the institute.

6. Upload the necessary documents as instructed.

7. Once the form is complete, submit the details.

8. The NSM committee will review the submission.

9. If accepted, users will receive an email containing their user credentials and allocated

cluster.

PARAM Rudra – User Manual

 Page | 14

How to access the cluster

To access cluster using Windows:

To access PARAM Rudra, there are few tools available, please see some below:

1. PuTTY is the most popular open source ssh client application for Windows. Following are

the steps:

a) Download PuTTY from its official website.

b) Install PuTTY on your computer.

c) Launch Putty from your desktop or Start menu.

d) In the dialog, locate the "Hostname or IP Address" input field.

e) Enter the hostname of the cluster: paramrudra.bose.res.in

f) For SNBNCBS users, use port 22

g) For external users, use port 4422

h) Select open, then enter your username

i) Enter the captcha when prompted, then input your password.

j) Press Enter to proceed with the connection.

2. Another popular tool is MobaXterm, which is a third party freely available tool which can

be used to access the HPC system and transfer files to the PARAM Rudra system through

your local systems (laptop/desktop). Here are the steps:

a) Download MobaXterm from its official website.

b) Install MobaXterm on your computer.

c) Launch MobaXterm from your desktop or Start menu.

d) Click on the "Session" button in MobaXterm.

e) Enter the hostname, along with your username.

f) For SNBNCBS users, use port 22

g) For external users, use port 4422

h) Enter the captcha when prompted, then input your password.

i) Press Enter to proceed with the connection.

PARAM Rudra – User Manual

 Page | 15

Figure 3 - A snapshot of command using MobaXterm

1. Command Prompt (Windows native application)

This is a native tool for Windows machines which can be used to transfer data from the

PARAM Rudra system through your local systems (laptop/desktop).

PARAM Rudra – User Manual

 Page | 16

Figure 4 - A snapshot of the "scp" command using Windows command prompt.

2. PowerShell (Windows native application)

This is a native tool for Windows machines which could be used to transfer data from the

PARAM Rudra system through your local systems (laptop/desktop).

PARAM Rudra – User Manual

 Page | 17

Figure 5 - A snapshot of the "scp” command using Windows PowerShell.

To access cluster using Mac or Linux

Both Mac and Linux systems provide a built-in SSH client, eliminating the need to install any

additional package. To connect to a SSH server, open the terminal and type the following

command:

ssh[username]@[hostname]

For example, to connect to PARAM Rudra cluster:

For IUAC Users:x

ssh user1@paramrudra.bose.res.in

For External Users:

ssh user1@paramrudra.bose.res.in -p 4422

After entering captcha, you will be prompted for a password. Once entered, you will be

connected to the server.

After getting credentials you may access the cluster, please remember the following points:

mailto:user1@paramrudra.bose.ac.in
mailto:user1@paramRudra.BOSE.ac.in

PARAM Rudra – User Manual

 Page | 18

▪ When you log in to the cluster, you will land on the login nodes. The login node

serves as the primary gateway to the rest of the cluster, housing a job scheduler

(known called Slurm) and other applications for creating and submitting the job. You

can submit jobs to the queue, and they will execute when the required resources

become available.

▪ Please refrain from running jobs directly on the login node. Login nodes are intended

for compiling codes, transferring data and submitting jobs. If you run your job

directly on the login node, it will be terminated.

▪ By default, two directories are available (i.e. /home and /scratch). These directories

are available on the login node as well as the other nodes on the cluster. /scratch

is for temporary data storage, generally used to store data required for running jobs.

Users are requested to regularly back up their own data in scratch directory. As per

policy, any files not accessed in the last three months will be permanently deleted.

First login

Whenever a newly created user on PARAM Rudra attempts to log in with the user ID and

temporary password provided via email by PARAM Rudra support, it is mandatory for the

user to change the password to one of their choosing. This ensures the security of your

account. It is recommended to use a strong password containing a combination of

lowercase and uppercase letters, numbers, and a few special characters that are easy for

you to remember.

Your password will be valid for 90 days. On expiry of 90 days period, you will be prompted

to change your password, on attempting to log in. You are required to provide a new

password.

Forgot Password?

1. Please open a ticket regarding this issue, and the support team will assist you with your

problem. Follow the steps below:

2. Visit the PARAM Rudra support site, which is the ticketing tool, by clicking on the

following link: PARAM Rudra Support.

3. Log in using your username or registered email ID.

4. Raise a ticket to request a password reset.

5. The support team will respond with an email for verification.

6. Once you acknowledge the email, the password will be reset for you, and you will

receive an email confirming the same.

7. You can then log in using the temporary password provided and set a new password of

your choice.

PARAM Rudra – User Manual

 Page | 19

How to change the password:

Use the passwd command to change your user password. Enter your current password,

followed by your new password, and then confirm the new password.

PARAM Rudra – User Manual

 Page | 20

Transferring files between local

machine and HPC cluster

Users need to have their data and applications related to their project or research work on

PARAM Rudra. To store the data, special directories named “home” have been made

available to the users. While these directories are common to all the users, each user will

have their own directory with their username in the “/home/” directory, where they can

store their data.

/home/<username>/ : This directory is generally used by the user to store their data and if

need install their own applications.

However, there is a limit to the storage provided to users. The limits have been defined

according to quota over these directories, and all users will be allotted the same quota by

default. When a user wishes to transfer data from their local system (laptop/desktop) to the

HPC system, they can use various methods and tools.

A user using the ‘Windows’ operating system will have access to methods and tools native

to Microsoft Windows, as well as tools that can be installed on their Windows machine.

Linux operating system users, however, do not require any tool. They can simply use the

“scp” command on their terminal. Here’s how:

scp -r -P 22 <path to the local data directory>

<username>@paramrudra.bose.res.in:<path to directory on HPC where to save

the data>

Note: use port 22 within SNBNCBS Institute

Example:

Same Command could be used to transfer data from the HPC system to other HPC system,

or your own system.

scp -r -P 4422 <file path> <username@<cluster

IP/hostname>:/home/user/<path>

Note: use port 4422 for your system.

PARAM Rudra – User Manual

 Page | 21

Note: The local system (laptop/desktop) must be connected to a network that allows access

to the HPC system. Additionally, please ensure that the firewall settings on your laptop are

configured to allow access from the HPC system.

Users are advised to keep a copy of their data once their project or research work is

completed by transferring the data from PARAM Rudra to their local system

(laptop/desktop). The command below can be used for file transfers in all the tools.

Tools

WinSCP (Windows installable application)

This popular tool is freely available and is used very often to transfer data from Windows

machine to Linux machine. This tool is GUI based which makes it very user-friendly.

Link for this tool is: https://winscp.net/eng/download.php

Figure 6 - A snapshot of the "WinSCP" tool to transfer file to and from remote computer.

https://winscp.net/eng/download.php

PARAM Rudra – User Manual

 Page | 22

Figure 7–Enter Captcha/String

Note: Port Used for SFTP connection is 4422 and not 22. Please change it to 4422

PARAM Rudra – User Manual

 Page | 23

Resource Management

This section explains how you interact with the resource manager. It covers information

about the resource manager, the definition of nodes within partitions, job policies,

scheduler information, the process of submitting jobs to the cluster, monitoring active jobs

and getting useful information about resource usage.

A cluster is a group of computers that work together to solve complex computational tasks

and presents itself to the user as a single system. For the resources of a cluster (e.g. CPUs,

GPUs, memory) to be used efficiently, a resource manager (also called workload manager or

batch-queuing system) is important. While there are many different resource managers

available, the resource manager at PARAM Rudra is SLURM. After submitting a job to the

cluster, SLURM will try to fulfill the job’s resource request by allocating resources to the job.

If the requested resources are already available, the job can start immediately. Otherwise,

the start of the job is delayed (pending) until enough resources are available. SLURM allows

you to monitor active (pending, running) jobs and to retrieve statistics about finished jobs.

SLURM, which is open-source workload manager, efficiently allocates computing resources

such as CPUs, GPUs, and memory to users' jobs, ensuring optimal resource utilization and

job scheduling. SLURM provides features for job submission, monitoring, and management,

allowing users to specify job requirements and dependencies. Slurm is a widely used batch

scheduler in the top500 HPC list.

SLURM Partitions

Partition is a logical grouping of nodes that share similar characteristics or resources.

Partitions are helpful to manage and allocate resources efficiently based on the specific

requirements of jobs or users. PARAM Rudra consists of three types of computational

nodes: i.e. CPU only nodes, High memory (with 768 GB memory) nodes and GPU-enabled

GPGPU nodes.

The following partitions/queues have been defined to meet different user requirements:

1. standard: By default, all user job will be submitted to the standard partition which

contains 154 nodes. These nodes consist of CPU and High Memory (HM) nodes.

2. CPU: This partition is specifically designed for nodes that only have CPU resources.

3. GPU: The GPU partition includes nodes equipped with NVIDIA A100 GPUs. Jobs

submitted to this partition will run on nodes that can leverage the high-performance

computing capabilities of A100 GPU cards for parallel processing tasks. The GPU

PARAM Rudra – User Manual

 Page | 24

partition exclusively contains GPU nodes. If a user’s wishes to submit a job only on

GPU nodes, they need to specify the number of GPU cards with the partition name.

4. hm: The High Memory partition is intended for nodes with a substantial amount of

RAM. Specifically, it accommodates CPU nodes that are equipped with 768 GB of

RAM, allowing jobs requiring large memory resources to be executed efficiently.

QoS Job policy

Users have the flexibility to run up to 10 simultaneous jobs. They can run an 8-node job for 4

days, a 16-node job for 2 days, or a 32-node job for 1 day. The default policy of the cluster

allows for a maximum wall time of 4 days per job. However, this policy can be tailored to

individual user needs or adjusted for all users in the future, depending on cluster usage.

Users will be informed about any changes made to the SLURM policy.

Walltime

The walltime parameter defines how long your job will run, with the maximum runtime

determined by the QoS Policy. The default walltime for every job is 2 hours, so users are

requested to explicitly specify the walltime in their scripts. If more than 4 days are required,

users can raise a query on the support portal of PARAM Rudra, and it will be addressed on a

case-by-case basis. If a job exceeds the specified walltime in the script, it will be terminated.

Specifying the appropriate walltime improves scheduling efficiency, resulting in enhanced

throughput for all jobs, including yours.

Scheduling Type

PARAM Rudra has been configured with Slurm’s backfill scheduling policy. It is good for

ensuring higher system utilization; it will start lower priority jobs if doing so does not delay

the expected start time of any higher priority jobs. Since the expected start time of pending

jobs depends upon the expected completion time of running jobs, reasonably accurate time

limits are important for backfill scheduling to work well.

Job Priority

The job's priority at any given time will be a weighted sum of all the factors that have been

enabled in the slurm.conf file. Job priority can be expressed as:

Job_priority =

 site_factor +

 (PriorityWeightAge) * (age_factor) +

 (PriorityWeightAssoc) * (assoc_factor) +

 (PriorityWeightFairshare) * (fair-share_factor) +

 (PriorityWeightJobSize) * (job_size_factor) +

 (PriorityWeightPartition) * (priority_job_factor) +

 (PriorityWeightQOS) * (QOS_factor) +

 SUM(TRES_weight_cpu * TRES_factor_cpu,

PARAM Rudra – User Manual

 Page | 25

 TRES_weight_<type> * TRES_factor_<type>,

 ...)

 - nice_factor

All of the factors in this formula are floating point numbers that range from 0.0 to 1.0. The

weights are unsigned, 32-bit integers. The larger the number, the higher the job will be

positioned in the queue, and the sooner the job will be scheduled. A job's priority, and

hence its order in the queue, can vary over time. For example, the longer a job sits in the

queue, the higher its priority will grow when the age weight is non-zero.

Age Factor: The age factor represents the length of time a job has been sitting in the queue

and eligible to run.

Association Factor: Each association can be assigned an integer priority. The larger the

number, the greater the job priority will be for jobs that request this association. This

priority value is normalized to the highest priority of all the association to become the

association factor.

Job Size Factor: The job size factor correlates to the number of nodes or CPUs the job has

requested.

Nice Factor: Users can adjust the priority of their own jobs by setting the nice value on their

jobs. Like the system nice, positive values negatively impact a job's priority and negative

values increase a job's priority. Only privileged users can specify a negative value.

Partition Factor: Each node partition can be assigned an integer priority. The larger the

number, the greater the job priority will be for jobs that request to run in this partition.

Quality of Service (QOS) Factor: Each QOS can be assigned an integer priority. The larger

the number, the greater the job priority will be for jobs that request this QOS.

Fair-share Factor: The fair-share component to a job's priority influences the order in which

a user's queued jobs are scheduled to run based on the portion of the computing resources

they have been allocated and the resources their jobs have already consumed.

Job Submission

We can submit jobs either through a SLURM script or by using the interactive method.

Creating a SLURM script is the optimal way to submit a job to the cluster.

Submitting Batch Scripts Jobs

Here is the example of sample slurm script:

#!/bin/bash#!/bin/bash

PARAM Rudra – User Manual

 Page | 26

#SBATCH -N 1 // number of nodes

#SBATCH --ntasks-per-node=1 // number of cores per node

#SBATCH --error=job.%J.err // name of output file

#SBATCH --output=job.%J.out // name of error file

#SBATCH --time=01:00:00 // time required to execute the program

#SBATCH --partition=standard // specifies queue name (standard is the

default partition if you do not specify any partition job will be submitted

using default partition). For other partitions you can specify hm or gpu

// To load the package //

spack load intel-oneapi-compilers

cd <Path of the executable>

a.out (Name of the executable)

We can consider four cases of submitting a job here:

1. Submitting a simple standalone job

This is a simple submit script which is to be submitted

$ sbatch slurm-job.sh

Submitted batch job 106

2. Submit a job that's dependent on a prerequisite job being completed

Consider a requirement of pre-processing a job before proceeding to actual processing. Pre-

processing is generally done on a single core. In this scenario, the actual processing script is

dependent on the outcome of the pre-processing script.

Here’s a simple job script.

Note that the Slurm -J option is used to give the job a name.

#!/bin/bash

#SBATCH -p standard

#SBATCH -J simple

sleep 60

Submit the job:

$ sbatch simple.sh

Submitted batch job 149

Now we'll submit another job that's dependent on the previous job. There are many ways to

specify the dependency conditions, but the "singleton" method is the simplest. The Slurm -d

singleton argument tells Slurm not to dispatch this job until all previous jobs with the same

name have completed.

https://www.brightcomputing.com/Blog/bid/172545/How-to-Submit-a-Simple-Slurm-GPU-job-to-your-Linux-cluster

PARAM Rudra – User Manual

 Page | 27

$ sbatch -d singleton simple.sh //may be used for first pre-processing

on a core and then submitting

Submitted batch job 150

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 150 standard simple user1 PD 0:00 1 (Dependency)

 149 standard simple user1 R 0:17 1 rbcn001

Once the prerequisite job finishes the dependent job is dispatched.

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 150 standard simple user1 R 0:31 1 rbcn001

3. Submit a job with a reservation allocated

Slurm has the ability to reserve resources for jobs being executed by select users and/or

select bank accounts. A resource reservation identifies the resources in that reservation and

a time period during which the reservation is available. The resources which can be reserved

include cores, nodes.

Use the command given below to check the reservation name allocated to your user

account

$ scontrol show reservation

If your ‘user account’ is associated with any reservation the above command will show you

the same. For e.g. The given reservation name is user_11. Use the command given below to

make use of this reservation

$ sbatch --reservation=user_11 simple.sh

4. Submitting multiple jobs with minor or no changes (array jobs)

A SLURM job array is a collection of jobs that differs from each other by only a single index

parameter. Job arrays can be used to submit and manage a large number of jobs with

similar settings.

PARAM Rudra – User Manual

 Page | 28

Figure 9 – Snapshot depicting the usage of “Job Array”

N1 is specifying the number of nodes you want to use for your job. example: N1 -one node,

N4 - four nodes. Instead of tmp here you can use the below example script.

#!/bin/bash

#SBATCH -N 1

#SBATCH --ntasks-per-node=48

#SBATCH --error=job.%A_%a.err

#SBATCH --output=job.%A_%a.out

#SBATCH --time=01:00:00

#SBATCH --partition=standard

spack load intel-oneapi-compilers

cd /home/guest/Rajneesh/Rajneesh #change to your required directory

export OMP_NUM_THREADS=${SLURM_ARRAY_TASK_ID}

/home/guest/Rajneesh/Rajneesh/md_omp

Running Interactive Jobs

Another way to run your job is interactively. You can run an interactive job as follows:

The following command asks for a single core in one hour with default amount of memory.

$ srun --nodes=1 --ntasks-per-node=1 --time=01:00:00 --pty /bin/bash -i

The command prompt of the allocated compute node will appear as soon as the job starts.

Exit the bash shell to end the job.

If the job is waiting for the resources, then this is how it will look :

$ job 1040 queued and waiting for resources

If after a while, it will allocate resources, then it will look like this:

PARAM Rudra – User Manual

 Page | 29

$ job 1040 has been allocated resources

If you exceed the time or memory limit the job will also abort.

Please note that PARAM Rudra is NOT meant for executing interactive jobs. However, it can

be utilized to quickly verify the successful execution of a job before submitting a larger

batch job with a high iteration count. It can also be used for running small jobs. However,

it's important to consider that other users may also be utilizing this node, so it's advisable

not to inconvenience them by running large jobs.

There are various use cases for requesting interactive resources, such as debugging

(launching a job, adjusting setup parameters like compile options, relaunching the job, and

making further adjustments) and interactive interfaces (inspecting a node, etc.).

PARAM Rudra – User Manual

 Page | 30

Parameters used in SLURM job script

The job flags are used with the SBATCH command. The syntax for the SLURM directive in a

script is "#SBATCH <flag>". Some of the flags are used with the srun and salloc commands.

 Flag Syntax Description

partition --partition=<partition name> Partition is a queue for the jobs.

time --time=01:00:00 Time limit for the job.

nodes --nodes=2 Number of compute nodes for the

job.

cpus/cores --ntasks-per-node=8 Corresponds to the number of cores

on the compute node.

resource

feature

--gres=gpu:2 Request use of GPUs on the gpu

compute nodes

account --account=<group-slurm-

account>

User may belong to multiple

accounts. If only one account is

allocated, it will be set as the

default.

job name --job-name="lammps" Name of the job.

error file --error=<filename_pattern> Instruct Slurm to connect the batch

script's standard error directly to

the file name specified in the

"filename pattern". By default, both

standard output and standard error

are directed to the same file.

output file --output=<filename_pattern> Instruct Slurm to connect the batch

script's standard output directly to

the file name specified in the

"filename pattern". By default, both

standard output and standard error

are directed to the same file.

PARAM Rudra – User Manual

 Page | 31

node list -w, --nodelist Request a specific list of hosts.

mail-type --mail-type= Notify users by email when certain

event types occur. Valid type values

are NONE, BEGIN, END, FAIL,

REQUEUE, ALL, TIME_LIMIT,

TIME_LIMIT_90 (reached 90 percent

of time limit), TIME_LIMIT_80

(reached 80 percent of time limit),

and TIME_LIMIT_50 (reached 50

percent of time limit), and

ARRAY_TASKS (send emails for each

array task). Multiple type values

may be specified in a comma

separated list

mail-user --mail-user=<user email> User to receive email notification of

state changes as defined by --mail-

type.

Reservation --reservation=<reservation> Allocate resources for the job from

the named reservation.

Validate

script

--test-only Validate the batch script and return

an estimate of when a job would be

scheduled to run given the current

job queue and all the other

arguments specifying the job

requirements. No job is actually

submitted.

exclusive

access to

nodes

--exclusive Exclusive access to compute nodes.

The job allocation cannot share

nodes with other running jobs

Sample SLURM Scripts for reference

Script for a Sequential Job

#!/bin/bash

#SBATCH -N 1 // number of nodes

mailto:--mail-userusername@iuac.res.in

PARAM Rudra – User Manual

 Page | 32

#SBATCH --ntasks-per-node=1 // number of cores per node

#SBATCH --error=job.%J.err // name of output file

#SBATCH --output=job.%J.out // name of error file

#SBATCH --time=01:00:00 // time required to execute the program

#SBATCH --partition=standard // specifies queue name (standard is the

default partition if you do not specify any partition job will be submitted

using default partition). For other partitions you can specify hm or gpu

// To load the package //

spack load intel-oneapi-compilers

cd <Path of the executable>

a.out (Name of the executable)

Script for a Parallel OpenMP Job

#!/bin/bash

#SBATCH -N 1 // Number of nodes

#SBATCH --ntasks-per-node=48 // Number of core per node

#SBATCH --error=job.%J.err // Name of output file

#SBATCH --output=job.%J.out // Name of error file

#SBATCH --time=01:00:00 // Time take to execute the program

#SBATCH --partition=cpu // specifies partition name

spack load intel-oneapi-compilers // To load the package

cd <path of the executable>

or

cd $SLURM_SUBMIT_DIR //To run job in the directory from where it is

submitted

export OMP_NUM_THREADS=48 //Depending upon your requirement you can change

the number of threads. If total number of threads per node is more than 48,

multiple threads will share core(s) and performance may degrade)

/home/cdac/a.out //Name of the executable)

Script for Parallel Job – MPI (Message Passing Interface)

#!/bin/sh

#SBATCH -N 16 // Number of nodes

#SBATCH --ntasks-per-node=48 // Number of cores per node

#SBATCH --time=06:50:20 // Time required to execute the

program

#SBATCH --job-name=lammps // Name of application

#SBATCH --error=job.%J.err_16_node_48 // Name of the output file

#SBATCH --output=job.%J.out_16_node_48 // Name of the error file

#SBATCH --partition=standard // Partition or queue name

spack load intel-oneapi-compilers // To load the package

// Below are Intel MPI specific settings //

export I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:dapl

PARAM Rudra – User Manual

 Page | 33

export I_MPI_DEBUG=9 // Level of MPI verbosity

cd $SLURM_SUBMIT_DIR //change to required path where command needs to be

executed

or

cd /home/manjuv/LAMMPS_2018COMPILER/lammps-22Aug18/bench

// Example Command to run the lammps in Parallel //

time mpiexec.hydra -n $SLURM_NTASKS -genv OMP_NUM_THREADS 1

/home/manjuv/LAMMPS_2018COMPILER/lammps-22Aug18/src/lmp_intel_cpu_intelmpi

-in in.lj

Script for Hybrid Parallel Job – (MPI + OpenMP)

#!/bin/sh

#SBATCH -N 16 // Number of nodes

#SBATCH --ntasks-per-node=48 // Number of cores for node

#SBATCH --time=06:50:20 // Time required to execute the program

#SBATCH --job-name=lammps // Name of application

#SBATCH --error=job.%J.err_16_node_48 // Name of the output file

#SBATCH --output=job.%J.out_16_node_48 // Name of the error file

#SBATCH --partition=standard // Partition or queue name

spack load intel-oneapi-compilers // To load the package

//change to script submission directory

cd $SLURM_SUBMIT_DIR

// Below are Intel MPI specific settings //

export I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:dapl

export I_MPI_DEBUG=9 // Level of MPI verbosity

export OMP_NUM_THREADS=24 //Possibly then total no. of MPI ranks will be = (total no. of

cores, in this case 16 nodes x 48 cores/node) divided by (no. of threads per MPI rank i.e. 24)

// Example Command to run the lammps in Parallel //

time mpiexec.hydra -n 32 lammps.exe -in in.lj

Listing Partition

sinfo displays information about nodes and partition allowing users to view available nodes

in the partition within the cluster.

PARAM Rudra – User Manual

 Page | 34

Figure 8- Output of sinfo command

Monitoring jobs

Monitoring jobs on SLURM can be done using the command squeue. The command

squeue provides high-level information about jobs in the Slurm scheduling queue (state

information, allocated resources, runtime, etc .

$ squeue

The command scontrol provides even more detailed information about jobs and job steps.

It will report more detailed information about nodes, partitions, jobs, job steps, and

configuration.

$ scontrol show job <jobid>

PARAM Rudra – User Manual

 Page | 35

Figure 12 – scontrol show job displays specific job information

scontrol update job <jobid>- set <new attribute value>

The above command change attributes of submitted job. Like time limit, nodelist, number of

nodes, etc. For example:

scontrol update jobid=163 set TimeLimit=4-00:00:00

Deleting jobs:

Use the scancel command to delete active jobs. Users can cancel their own jobs only.

$ scancel <jobid>

$ scancel 163

$ squeue --me

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

Holding a job:

Use the scontrol command to hold the job.

$scontrol hold <jobid>

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 163 standard simple user1 PD 0:00 1 (Dependency)

138 standard simple user1 R 0:16 1 rbcn001

$ scontrol hold 163

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 163 standard simple user1 PD 0:00 1 (JobHeldUser)

 138 standard simple user1 R 0:32 1 rbcn001

Releasing a job:

$ scontrol release 139

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 163 standard simple user1 PD 0:00 1 (Dependency)

 138 standard simple user1 R 0:46 1 rbcn001

Getting Node and Partition details

scontrol show node <node name> - shows detailed information about compute nodes.

PARAM Rudra – User Manual

 Page | 36

Figure 10 – scontrol show node displays compute node information

scontrol show partition <partition name>- shows detailed information about a specific

partition

Figure 11 – scontrol show partition displays specific partition details

Accounting

Accounting system tracks and manages HPC resource usage. As jobs are completed or

resources are utilized, accounts are charged and resource usage is recorded. Accounting

policy is like a Banking System, where each department can be allocated with some

predefined budget on a quarterly basis for CPU usage. As and when the resources are

utilized, the amount will be deducted. The allocation will be reset half yearly. Depending

upon the policy, users will be informed when their account is created about how much CPU

hours have been allocated to them.

sacct

This command can report resource usage for running or terminated jobs including individual

tasks, which can be useful to detect load imbalance between the tasks.

$ sacct -j <jobid>

PARAM Rudra – User Manual

 Page | 37

Investigating a job failure

Job executions aren't always successful. There are various reasons for a job to stop or crash.

The most common causes are:

• Exceeding resource limits

• Software-specific errors

This section discusses methods to gather information and find ways to avoid common

issues.

It is important to collect error and output messages by either writing this information to the

default location or specifying specific locations using the --error/--output option.

Redirecting the error/output stream to /dev/null should be avoided unless you fully

understand its implications, as error and output messages serve as the initial point for

investigating job failures.

Exceeding Resource Limits

Each partition defines default and maximum time limits of the job runtime and memory

usage. Within the job script, the current limits can be defined within the ranges. For better

scheduling, the job requirements should be estimated and the limits should be adapted to

the needs. Lower limits enable SLURM to find suitable scheduling opportunities more

effectively. Additionally, specifying minimal resource overhead minimizes resource wastage.

If a job exceeds the runtime or memory limit, it will get killed by SLURM.

Software Errors

The exit code of a job is captured by Slurm and saved as part of the job record. For sbatch

jobs the exit code of the batch script is captured. For srun, the exit code will be the return

value of the executed command. Any non-zero exit code is considered a job failure, and

results in job state of FAILED. When a signal was responsible for a job/step termination, the

signal number will also be captured, and displayed after the exit code (separated by a

colon).

PARAM Rudra – User Manual

 Page | 38

I am familiar with PBS/ TORQUE. How do I migrate to SLURM?

Environment Variables PBS/Torque SLURM

Job Id $PBS_JOBID $SLURM_JOBID

Submit Directory $PBS_JOBID $SLURM_SUBMIT_DIR

Node List $PBS_NODEFILE $SLURM_JOB_NODELIST

Job Specification PBS/Torque SLURM

Script directive #PBS #BATCH

Job Name -N [name] --job-name=[name] OR -J [name]

Node Count -1 nodes=[count] --nodes=[min[-max]] OR -N [min[-max]]

CPU count -1 ppn=[count] ---ntasks-per-node=[count]

CPUs Per Task --cpus-per-task=[count]

Memory Size -1 mem-[MB] --mem=[MB] OR –mem_per_cpu=[MB]

Wall Clock Limit -1

walltime=[hh:mm

:ss]

--time=[min] OR –mem_per_cpu=[MB]

Node Properties -1

nodes=4.ppn=8:[

property]

--constraint=[list]

Standard Output File -o [file_name] --output=[file_name] OR -o [file_name]

Standard Error File -e [file_name] --error=[file_name] OR -e {file_name]

Combine stdout/stderr -j oe (both to

stdout)

(This is default if you do not specify –

error)

PARAM Rudra – User Manual

 Page | 39

Job Arrays -t [array_spec] --array=[array_spec] OR -a [array_spec]

Delay Job Start -a [time] --begin=[time]

Addressing Basic Security Concerns

⚫ Your account on PARAM Rudra is ‘private to you’. You are responsible for any actions

emanating from your account. It is suggested that you should never share the password

with anyone.

⚫ Do not grant permission of your home directory to any other user, as it may expose

your personal files to unauthorized access.

Per user

• Every user will have quota of 50 GB of soft limit and X GB of hard limit with grace

period of X days in HOME file system (/home) and X GB of soft limit and X GB of hard

limit with grace period of X days in SCRATCH file system

• Users are recommended to copy their execution environment and input files to

scratch file system (/scratch/<username>) during job running and copy output data

back to HOME area

• File retention policy has been implemented on Lustre storage for the "/scratch" file

system. As per the policy, any files that have not been accessed for the last 3 months

will be deleted permanently

It is important to note:

• Compilations are performed on the login node. Only the execution is scheduled via

SLURM on the compute nodes.

• It is important to collect error/output messages, either by writing such information

to the default location or by specifying specific locations using the --error or --output

option. Error and output messages serves as the starting point for investigating a job

failures. If not specified, the Job Id is also appended to the output and error

filenames.

• Submitting a series of jobs (a collection of similar jobs) as array jobs instead of one

by one is crucial for improving backfilling performance and thus job throughput,

instead of submitting the same job repeatedly.

• User has to specify #SBATCH --gres=gpu:1/2 in their job script if user wants to use 1

or 2 GPU cards on GPU nodes

PARAM Rudra – User Manual

 Page | 40

Loading modules through SPACK

PARAM Rudra extensively uses spack. The purpose of spack is to provide freedom to users

for loading required applications or packages of specific versions with all its dependencies in

the user environment. Users can find the list of all installed packages with their specific

versions and dependencies. This also specifies which version of the application is available

for a given session. All applications and libraries are made available through spack. A User

has to load the appropriate package from the available packages.

Introduction

Spack automates the download-build-install process for software - including dependencies -

and provides convenient management of versions and build configurations. It is designed to

support multiple versions and configurations of software on a wide variety of platforms and

environments. It is designed for large supercomputing centers, where many users and

application teams share common installations of software on clusters with exotic

architectures, using libraries that do not have a standard ABI. Spack is non-destructive:

installing a new version does not break existing installations, so many configurations can

coexist on the same system.

On your login node command prompt execute below commands:

$ module load spack

It will load SPACK module and set up environment for SPACK.

Kindly see the above screenshot and source below line including initial dot.

$. /home/apps/spack//share/spack/setup-env.sh

PARAM Rudra – User Manual

 Page | 41

To Use Pre-Installed Applications from Spack

spack find

The spack find command is used to query installed packages on PARAM Kamrupa. Note that

some packages appear identical with the default output. The -l flag shows the hash of each

package, and the -f flag shows any non-empty compiler flags of those packages.

spack load application name

The easiest way is to use spack load <application name@version>

To know the Pre-Loaded Application/Compliers

To install new application

First check the available compilers in Spack with below command:

spack compilers

Spack manages a list of available compilers on the system, detected automatically from the

user’s PATH variable. The spack compilers command is an alias for the command spack

compiler list.

PARAM Rudra – User Manual

 Page | 42

To check the compliers available in the system

Check if application is available in Spack repo with command-

spack list

The spack list command shows available packages.

The spack list command can also take a query string. Spack automatically adds wildcards to

both ends of the string, or you can add your own wildcards.

PARAM Rudra – User Manual

 Page | 43

Before installing application check its spec with command

spack install

Below is an example of installation of package using spack:

spack install gromacs@2020.5 +cuda~mpi+blas %intel ^intel-mkl

Above command will install gromacs version 2020.5 with blas and cuda support and without

MPI support. For blas there are multiple providers like OpenBLAS, Intel MKL, amdblis, and

essl, ^intel-mkl will tell spack to use intel-mkl for blas routines.

Operators in Spack

% to select compiler out of available compilers

 ̂ to use variant of package

@ to define the version number of packages to be installed.

+ to enable variant for package

~ to disable variant for package

Uninstalling Packages

Earlier we installed many configurations each of zlib. Now we will go through and uninstall

some of those packages that we didn’t really need.

PARAM Rudra – User Manual

 Page | 44

$ spack uninstall zlib %gcc@6.5.0 (type: y)

Using Environments

Spack has an environment feature in which you can group installed software. You can install

software with different versions and dependencies in each environment and can change

software to use at once by changing environments. You can create a Spack environment by

spack env create command. You can create multiple environments by specifying different

environment names here.

spack env create myenv

To activate the created environment, type spack env activate. Adding -p option will display

the current activated environment on your console. Then, install software you need to the

activated environment.

spack env activate -p myenv

myenv] [username@es1 ~]$ spack install xxxxx

You can deactivate the environment by spack env deactivate. To switch to another

environment, type spack env activate to activate it.

[myenv] [username@es1 ~]$ spack env deactivate [username@es1 ~]$

Use spack env list to display the list of created Spack environments.

[username@es1 ~]$ spack env list

==> 2 environments myenv another_env

Packaging (For Application developers)

Spack packages are installation scripts, which are essentially recipes for building the

software.

They define properties and behaviour of the build, such as:

• where to find and how to retrieve the software.

• its dependencies.

• options for building the software from source; and

• build commands.

PARAM Rudra – User Manual

 Page | 45

Once we’ve specified a package’s recipe, users of our recipe can ask Spack to build the

software with different features on any of the supported systems. Refer Packaging Guide —

Spack 0.22.0 documentation for detailed understanding of the Spack packaging.

Example Creating Own Package:

In below spec file we have used Linewidth an IISc developed code. See the bold lines for

comments related to preceding lines in the spec file of spack package named IiscLinewidth:

Copyright 2013-2021 Lawrence Livermore National Security, LLC and other #

Spack Project Developers. See the top-level COPYRIGHT file for details. #

SPDX-License-Identifier: (Apache-2.0 OR MIT) import os

import platform import sys

import llnl.util.tty as tty from spack import *

class IiscLinewidth(MakefilePackage): """

Linewidth developed by IISC Banglore. """

homepage = ""

#Url for homepage

url = "file://{0}/linewidth.tar.gz".format(os.getcwd())

#Url for source code

manual_download = True

#If source code is not available in public domain

version('1',

sha256='7215f6765e5f5eddfde5f0c67a5bbdef5960607f3e199a609ef5619278ec8a66',

preferred=True)

#You can add different versions for you package.

variant('mpi', default=True, description='Install with MPI support')

variant('openmp', default=True, description='Install with OpenMP

support')

#Variant gives flexibility to users for changing parameter before

compilation.

depends_on('gmake', type='build') depends_on('mpi', when='+mpi')

depends_on('hdf5+fortran+hl+mpi') depends_on('intel-mkl') depends_on('py-

h5py')

depends_on('py-matplotlib', type=('build', 'run'))

#Depend clause used to specify dependencies for your code.

@property

def build_targets(self): targets = [

#'--directory=SRC', '--file=Makefile',

'LIBS={0} {1} '.format(self.spec['intel-mkl'].libs.ld_flags,

self.spec['hdf5'].libs.ld_flags),

'HDFINCFLAGS={0}'.format(self.spec['hdf5'].prefix.include),

'HDF5_HOME={0}'.format(self.spec['hdf5'].prefix),

'FC={0}'.format(self.spec['mpi'].mpifc)

]

return targets

def install(self, spec, prefix): mkdirp(prefix.bin) install('linewidth',

prefix.bin)

#This code uses Makefile for building application. We can define some

properties

to make changes in Makefile, changing parameter in Makefile at compile

time.

https://spack.readthedocs.io/en/latest/packaging_guide.html
https://spack.readthedocs.io/en/latest/packaging_guide.html

PARAM Rudra – User Manual

 Page | 46

Sample steps taken for creating linewidth application recipe for

Spack

1. Source code

Source code of Linewidth was not available through public repo like GitHub, so needed to

import OS package.

os.getcwd() - expects the source tar present in current working directory. cha256 - to check

for sha256 checksum we added same in version clause and for place holder we have given

version as 1.

manual download = True refers to spack will not try to download source code for the

package.

name - make sure that name of tar file is same as used inside package recipe

2. Variant- User can control behavior of application being built through this clause. Ex- To

enable MPI support we have defined it to be true by default.

3. depends_on() - This clause defines all dependencies required to build the given

application.

Ex- In linewidth example we have used Intel-MKl and HDF5.

4. @property - With this decorator we can define some properties for build system like

edit, build, install.

5. property build_targets - Defines logic of building source for native platform.

6. property install - Defines install procedure to be used after building source code. Ex- In

our example we define prefix path

Sample SLURM script for OpenMP applications/programs. to use

Spack

#!/bin/bash

#SBATCH --nodes=1

#SBATCH -p cpu ## gpu/standard

#SBATCH --exclusive

#SBATCH -t 1:00:00

echo "SLURM_JOBID="$SLURM_JOBID

echo "SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST echo

"SLURM_NNODES"=$SLURM_NNODES

echo "SLURM_NTASKS"=$SLURM_NTASKS

ulimit -s unlimited ulimit -c unlimited

PARAM Rudra – User Manual

 Page | 47

export OMP_NUM_THREADS=4 ### Maximum number of threads= Number of physical core

#To load necessary application/compiler through spack module load spack

export SPACK_ROOT=/home/apps/SPACK

. $SPACK_ROOT/share/spack/setup-env.sh

spack load intel-mpi@2019.10.317 /6icwzn3

spack load intel-mkl@2020.4.304

spack load intel-oneapi-compilers@2021.4.0

spack load gcc@11.2.0

(time <executable_path>)

Sample SLURM script for MPI applications/programs to use Spack

#!/bin/bash

#SBATCH --nodes=2

#SBATCH -p cpu ## gpu/standard

#SBATCH --exclusive

#SBATCH -t 1:00:00

echo "SLURM_JOBID="$SLURM_JOBID

echo "SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST echo

"SLURM_NNODES"=$SLURM_NNODES

echo "SLURM_NTASKS"=$SLURM_NTASKS

ulimit -s unlimited

ulimit -c unlimited

#To load necessary application/compiler through spack module load spack

export SPACK_ROOT=/home/apps/SPACK

. $SPACK_ROOT/share/spack/setup-env.sh

spack load intel-mpi@2019.10.317 /6icwzn3

spack load intel-mkl@2020.4.304

spack load intel-oneapi-compilers@2021.4.0

spack load gcc@11.2.0

(time mpirun -np $SLURM_NTASKS <executable_path>)

PARAM Rudra – User Manual

 Page | 48

Preparing Your Own Executable

The compilations are done on the login node, whereas the execution happens on the

compute nodes via the scheduler (SLURM).

Note: The compilation and execution must be done with the same libraries and matching

version to avoid unexpected results.

Steps:

1. Load required modules on the login node.

2. Do the compilation.

3. Open the job submission script and specify the same modules to be loaded as used while

compilation.

4. Submit the script.

The directory contains a few sample programs and their sample job submission scripts. The

compilation and execution instructions are described in the beginning of the respective files.

The user can copy the directory to his/her home directory and further try compiling and

executing these sample codes. The command for copying is as follows:

cp -r /home/apps/Docs/samples/ ~/.

1. mm.c - Serial Version of Matrix-Matrix Multiplication of two NxN

matrices

2. mm_omp.c - Basic OpenMP Version of Matrix-Matrix Multiplication of two

NxN matrices

3. mm_mpi.c - Basic MPI Version of Matrix-Matrix Multiplication of two NxN

matrices

4. mm_acc.c - OpenAcc Version of Matrix-Matrix Multiplication of two NxN

matrices

5. mm_blas.cu - CUDA Matrix Multiplication program using the cuBlas

library.

6. mm_mkl.c - MKL Matrix Multiplication program.

7. laplace_acc.c - OpenACC version of the basic stencil problem.

It is recommended to use the intel compilers since they are better optimized for the

hardware.

PARAM Rudra – User Manual

 Page | 49

Compilers

Compilers Description Versions Available

gcc/gfortran GNU Compiler

(C/C++/Fortran)

8.5.0, 9.3.0, 12.2.0, 13.2.0

icc/icpc/ifort Intel Compilers

(C/C++/Fortran)

2021.5.0, 2021.11.0, 2021.10.0

oneapi@2024.0.0,

oneapi@2023.2.0,

oneapi@2022.0.0

mpicc/mpicxx/mpif90 Intel-MPIwith GNU

compilers (C/C++/Fortran)

2021.11.0

mpiicc/mpiicpc/mpiifort Intel-MPIwithIntel

compilers (C/C++/Fortran)

2021.11.0

nvcc CUDA C Compiler 9.1.85, 11.8.0, 12.3.0

Optimization Flags

Optimization flags are meant for uniprocessor optimization, wherein, the compiler tries to

optimize the program, on the basis of the level of optimization. The optimization flags may

also change the precision of output produced from the executable. The optimization flags

can be explored more on the respective compiler pages. A few examples are given below.

Intel: -O3 –xHost

GNU: -O3

PGI: -fast

Given next is a brief description of compilation and execution of the various types of

programs. However, for certain bigger applications, loading of additional dependency

libraries might be required.

C Program:

Setting up of environment:

spack load gcc@13.2.0 /irq6zpy

spack load intel-oneapi-compilers@2024

compilation: icc -O3 -xHost <<prog_name.c>>

Execution: ./a.out

PARAM Rudra – User Manual

 Page | 50

C + OpenMP Program:

Setting up of environment:

spack load gcc@13.2.0 /irq6zpy

spack load intel-oneapi-compilers@2024

Compilation: icc -O3 -xHost -qopenmp <<prog_name.c>>

Execution: ./a.out

C + MPI Program:

Setting up of environment:

spack load gcc@13.2.0 /irq6zpy

spack load intel-oneapi-compilers@2024

Compilation: mpiicc -O3 -xHost <<prog_name.c>>

Execution: mpirun -n <<num_procs>> ./a.out

C + MKL Program:

Setting up of environment:

spack load gcc@13.2.0 /irq6zpy

spack load intel-oneapi-compilers@2024

Compilation: icc -O3 -xHost -mkl <<prog_name.c>>

Execution: ./a.out

CUDA Program:

Setting up of environment:

spack load gcc@12.2.0

spack load cuda@11

Example (1)

Compilation: nvcc -arch=sm_80<<prog_name.cu>>

Execution: ./a.out

Note: The optimization switch -arch=sm_80 is intended for NVIDIA A100 GPUs

and is valid for CUDA 11 and later. Similarly, older versions of CUDA have

compatibility with lower versions of GCC only. Accordingly, appropriate

modules of GCC must be loaded.

Example (2)

Compilation: nvcc -arch=sm_80 /home/apps/Docs/samples/mm_blas.cu -lcublas

Execution: ./a.out

PARAM Rudra – User Manual

 Page | 51

CUDA + OpenMP Program:

Setting up of environment:

spack load gcc@12.2.0

spack load cuda@11

Example (1)

Compilation: nvcc -arch=sm_80 -Xcompiler="-fopenmp" -lgomp

/home/apps/Docs/samples/mm_blas_omp.cu -lcublas

Execution: ./a.out

Example (2)

Compilation: g++ -fopenmp /home/apps/Docs/samples/mm_blas_omp.c -I

/home/apps/spack/opt/spack/linux-almalinux8-skylake_avx512/gcc-8.5.0/cuda-

11.8.0-6tjefbpfvo3ysl2dtqudbhsdgifpbgdh/include -L

/home/apps/spack/opt/spack/linux-almalinux8-skylake_avx512/gcc-8.5.0/cuda-

11.8.0-6tjefbpfvo3ysl2dtqudbhsdgifpbgdh lib64 -lcublas

Execution: ./a.out

OpenACC Program:

Setting up of environment:

spack load nvhpc/ybz5nou

Compilation for GPU: pgcc -acc -fast -Minfo=all -

ta=tesla:cc80,managed/home/apps/Docs/samples/laplace_acc.c

Execution:./a.out

Compilation for CPU: pgcc -acc -fast -Minfo=all -ta=multicore-tp=skylake

/home/apps/Docs/samples/laplace_acc.c

Execution:./a.out.

PARAM Rudra – User Manual

 Page | 52

Debugging Your Codes

Introduction

A debugger or debugging tool is a computer program that is used to test and debug other

programs (the "target" program).

When the program "traps" or reaches a preset condition, the debugger typically shows the

location in the original code if it is a source-level debugger or symbolic debugger, commonly

now seen in integrated development environments.

Debuggers also offer more sophisticated functions such as running a program step by step

(single-stepping or program animation), stopping (breaking) (pausing the program to

examine the current state) at some event or specified instruction by means of a breakpoint,

and tracking the values of variables.

Some debuggers have the ability to modify program state while it is running. It may also be

possible to continue execution at a different location in the program to bypass a crash or

logical error.

Basics: How To

Compilation

Compilation with a separate flag ‘-g’ is required since the program needs to be linked with

debugging symbols.

gcc -g <program_name.c>

e.x. gcc -g random_generator.c

Running with gdb:

gdb is a command line utility available with almost all Linux systems’ compiler collection

packgages.

gdb <executable.out>

e.x. gdb a.out

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Stepping_(debugging)
https://en.wikipedia.org/wiki/Program_animation
https://en.wikipedia.org/wiki/Breakpoint

PARAM Rudra – User Manual

 Page | 53

Basic gdb commands (to be executed in gdb command line window):

Start:

Starts the program execution and stops at the first line of the main procedure. Command

line arguments may be provided if any.

Run:

Starts the program execution but does not stop. It stops only when any error or program

trap occurs. Command line arguments may be provided if any.

Help:

Prints the list of commands available. Specifying ‘help’ followed by a command (e.x. ‘help

run’) displays more information about that command.

File <filename>:

Loads a binary program that is compiled with ‘-g’ flag for debugging.

List [line_no]

Displays the source code (nearby 10 lines) of the program in execution where the execution

stopped. If ‘line_no’ is specified, it displays the source code (10 lines) at the specified line.

Info:

Displays more information about the set of utilities and saved information by the debugger.

For example; ‘info breakpoints’ will list all the breakpoints, similarly ‘info watchpoints’ will

list all the watchpoints set by the user while debugging their programs.

Print <expression>:

Prints the values of variables / expression at the current running instance of the program.

Step N:

Steps the program one (or ‘N’) instructions ahead or till the program stops for any reason.

Steps through each and every instruction even if it is a function call (only function or

instruction compiled with debugging flags).

next:

This command also steps through the instructions of the program. Unlike the ‘step’

command, if the current source code line calls a subroutine, this command does not enter

the subroutine, but instead steps over the call, in effect treating it as a single source line.

PARAM Rudra – User Manual

 Page | 54

Continue:

This command continues the stopped program till the next breakpoint has occurred or till

the end of the program. It is used to continue from a paused/debug point state.

Break [sourcefile:]<line_no> [if condition]:

Stops the program at the specified line number and provides a breakpoint for the user.

Specific source code file and breakpoint based on a condition can also be set for specific

cases. You can also view the list of breakpoints set, by using the ‘info breakpoints’

command.

watch <expression>:

A watchpoint means break the program or stop the execution of the program when the

value of the expression provided is changed. Using watch command specific variables can be

watched for value changes. You can also view the list of watchpoints by using the ‘info

watchpoints’ command.

Delete <breakpoint number>

Delete command deletes a breakpoint or a watchpoint that has been set by a user while

debugging the program.

Backtrace:

Prints the backtrace of all stack frames of the program. Provides the call stack and more

other information about the running program.

These are some of the most powerful utilities that can be used to debug your programs

using gdb. gdb is not limited to these commands and contains a rich set of features that can

allow you to debug multi-threaded programs as well. Also, all the commands, along with the

ones listed above have ‘n’ number of different variants for more in-depth control. Same can

be utilized using the help page of gdb.

Using gdb (example – inspecting the code)

For this case study, we have a small program that generates a long unique random number

for each run.

PARAM Rudra – User Manual

 Page | 55

Let’s look at the code we have.

Figure 15 – Snapshot of debugging process

Things to note:

1) We have a few libraries included for the functions that are used in the program.

2) We have two ‘#define’ statements:

a. ‘N’ for the number of times the ‘rand_fract’ function will spend in calculating

the random number.

b. ‘N_LEN’ for the length of the final random number string generated.

Currently it is set to ‘100’ which means that the long random number will be

of length 100.

3) Then, we have a function by name ‘rand_fract’ that iterates over two loops and using

the values of iterators (‘i’ and ‘j’), it calculates a small random number. Since, ‘rand()’

function is used for the outer loop, its number of iterations cannot be clearly defined

which gives the function a random nature.

PARAM Rudra – User Manual

 Page | 56

4) The next function is as simple as its name is. It just takes an unsigned integer and

returns its factorial.

PART 2:

Figure 16 – Snapshot of debugging process

Things to note:

1) This is the main function of the program.

2) The flow of the main function is as follows:

a. The program first sets a random seed using the process-id of the program.

b. It calls ‘rand_fract’ function and the resultant random number is operated by

a modulo 10 operation. Finally, the result is stored in the variable ‘f1’.

PARAM Rudra – User Manual

 Page | 57

c. Next the factorial of the obtained ‘f1’ is calculated and stored in

‘random_fract’.

d. This result is again passed through a modulo ‘N_LEN + 1’ and stored in

‘normalized_fact’.

e. Then a dynamic array is constructed and partially filled with integer values in

descending order from the ‘normalized_fact’ value.

f. Finally, the partial array is printed by mixing the value of the array with rand()

function values followed by a modulo 10 operation.

g. The remaining partial part of the final random value is generated using a

basic rand() modulo 10 operation.

Using gdb (example – using the debugger)

The code that we looked upon seems correct, as well as it compiles successfully without any

errors. But, when we run this code snippet, this is the result we get.

Figure 17- Output at a debugging stage

The program ended up with a core dump without giving much information but just ‘Floating

point exception’. Now let’s compile the code with debugging information and run the

program simply with gdb.

PARAM Rudra – User Manual

 Page | 58

Figure 18 – Snapshot of debugging process

Here we compiled the code using ‘-g’ and then used the ‘run’ command we studied earlier

for running the program. You can observe that the debugger stopped at line number 13

where the ‘Floating point exception (SIGFPE)’ occurred. At this point we can even go and

check the code at line number 13. But for now, let’s check what other information we can

get from the debugger. Let’s check the values of the variables ‘i’ and ‘j’ at this point.

Figure 19 – Output depicting “Arithmetic Exception”

PARAM Rudra – User Manual

 Page | 59

The values of both ‘i’ and ‘j’ appear to be ‘0’ and thus a divide by zero exception is what

caused our program to terminate. Let’s update the code such that the value of ‘i’ and ‘j’ will

never become ‘0’. This is the modified code:

Figure 20 – Snapshot of debugging process

Thus, we just updated the loop index variables to start from ‘1’ instead of ‘0’. Thus, using

gdb, it was very simple to identify the point where the error occurred. Let’s re-run our

updated code and check what we get.

Figure 21 – Well, we dumped core !!

What!? This is unexpected. We just cured the error part of our program and still getting an

FPE. Let’s go through the debugger and check where the error point is right now.

PARAM Rudra – User Manual

 Page | 60

Figure 22 - Snapshot of debugging process

The debugger output shows that the error occurred on the same line as earlier. But in this

case, the value of ‘i’ and ‘j’ are not ‘0,0’ but they are ‘1, -1’ which is causing the denominator

at line 13 to be ‘0’ and thus, causing an FPE. In addition to print commands, we have also

issued the ‘list’ command which shows the nearby 10 lines of the code where the program

stopped.

You can observe that some bugs in the programs are easier to debug but some aren’t.

PARAM Rudra – User Manual

 Page | 61

We will have to dig in much more to find out what is going on. Also, to be noted, we have

our inner loop iterating from 1 to N (which is 100), but still the value of ‘j’ is printed out to

be ‘-1’. How is this even possible!? Smart programmers would have the problem identified,

but let’s stick to the basics on how to gdb. Let us use the ‘break’ command and set a

breakpoint at line number 13 and observe what is going on.

Figure 23 – Setting Breakpoint

Thus, using the command ‘break 13’ we have set the breakpoint at line number 13 which

was verified using the ‘info breakpoint’ command. Then, we reran the program with the

‘run’ command. At line 13 the program stopped and using the ‘print’ command we checked

the values of ‘i’ and ‘j’. t this point, all seems to be well. Now, let’s proceed further. For

stepping 1 instruction we can use the ‘step’ command. Let’s do that and observe the value

of ‘j’.

PARAM Rudra – User Manual

 Page | 62

Figure 24 – single stepping through to catch error!!

You can observe the usage of the ‘step’ command. We are going through the program line

by line and checking the values of the variable ‘j’.

There seems to be a lot of writing/typing of the ‘step’ command just to proceed with the

program. Since we have already set a breakpoint at line 13, we can use another command

called ‘continue’. This command continues the program till the next breakpoint or the end

of the program.

PARAM Rudra – User Manual

 Page | 63

Figure 25 – Debugging continued

You can see that we reduced the typing of the ‘step’ command by 3 times to a ‘continue’

command just 1 time. But this is also having us write ‘continue’ and ‘print’ multiple times.

Let us use some other utility in gdb known as ‘data breakpoints’ also known as watchpoints.

But before that, let us delete the existing breakpoint using the ‘delete’ command.

Figure 26 – Debugging continued

Now let us see how to set a watchpoint.

PARAM Rudra – User Manual

 Page | 64

Figure 27 – Setting a watchpoint

Thus, using the command ‘watch j’ we have set a watchpoint over ‘j’. Now every time when

the value of ‘j’ changes, a break will occur. You can also note the old and new values of ‘j’

printed out at each break. Another point to note is that after having one ‘continue’

command, the program had a break. Further, by just pressing the ‘Enter/Return’ button on

the keyboard, the continue command was repeated. Thus, by pressing the ‘Enter/Return’

button, the last command is repeated. At this point, we have learned much about the

debugger, but we are still not able to proceed fast with our error. Is there any other way to

proceed? Well, yes!!

PARAM Rudra – User Manual

 Page | 65

We want to observe at the point where the value of ‘j’ reaches closer to ‘N i.e. 100’. Which

means that we are only concerned about what happens after ‘j’ reaches 99. Here, we land

up on using what are called conditional breakpoints. First, we will delete our watchpoint and

then make use of the conditional breakpoint.

Figure 28 – Debugging continued

You can observe another variant of the ‘break’ command. We have explicitly stated the file

and the line number along with a condition to stop. This is useful, when the source code is

large and has multiple files. After setting a conditional break, we stopped at the point where

the value of ‘j’ becomes ‘99’. Now, let us see what happens next. Since, this is a critical point

at which we could observe the program, it is better if we step in the program using the

‘step’ command instead of relying on any break/watch points.

PARAM Rudra – User Manual

 Page | 66

Figure 29 – Well, Back to square one !!

This is unexpected!! The value of ‘j’ should never be 100 or anything above it.

Thus, something is wrong with the conditional statement!!

By observation, we have figured out that the condition is itself wrong. It should have been ‘j

< N’ instead of ‘i < N’. This is a silly mistake of the programmer that led us to this much of an

effort.

Also, the value of ‘j’ which was observed as ‘-1’ was an outcome of the ‘short’ data type

overflow i.e. the value of ‘j’ went from 1 to 32767 (assuming short as 2 bytes) and then from

-32768 to -1.

Finally, a hard programming bug was discovered. Let us correct this error and rerun the

program.

PARAM Rudra – User Manual

 Page | 67

Figure 30 – Again, Dumping Core!! Things are getting interesting or frustrating or both!!

This is strange!!

Sometimes the program is getting the correct output, but sometimes, we are getting a

segmentation fault. Debugging such a program may be tricky since the occurrence of the

bug is low. We will proceed with our standard debugger steps to identify the error.

Figure 31 – Debugging continued

We compiled the code and ran it using the debugger. But the program completed

successfully. Let us rerun it till a point where the program fails.

Figure 32 – Debugging continued

Here we observe a point where the program exited at the function ‘factorial’.

PARAM Rudra – User Manual

 Page | 68

This is a point where the debugger didn’t give much information about what the value of

the variable ‘x’ was. It just pointed out that the program failed at the function named

‘factorial’. That’s it!

Another reason for such kind of output would be because of the recursive nature of the

function. The stack frame where the function ‘factorial’ failed could be in a long nest of

recursive calls. At such points, it would be better to inspect the program at an earlier point

and look for errors. Let us have a breakpoint before the ‘factorial’ function was called and

view the value of the parameters that are passed to the function.

Figure 33 – Debugging continued (Will it ever end?)

Thus, we have set a breakpoint before the call of the function ‘factorial’ and run the

program. For the value of ‘f1 = 8’ for the ‘factorial’ function the process seems to exit

normally. Let us rerun.

PARAM Rudra – User Manual

 Page | 69

Figure 34 – We are almost there!!

Unexpectedly, we have got the value of ‘f1’ as ‘-8’ and the program seems to have crashed.

Let us observe the ‘rand_fract’ function and ‘factorial’ function once again. And study the

behavior of the functions where we could get a negative number.

Figure 35 – Debugging continued

PARAM Rudra – User Manual

 Page | 70

Important points here to observe are:

The ‘rand_fract’ function is returning a datatype of ‘short’ while the calculation of the return

value could be significantly large which may overflow the size of ‘short’, thus, causing a

negative answer.

The function ‘factorial’ is expecting a value of type ‘unsigned int’. Since the value passed to

the function is a negative value, having an implicit conversion from a negative number to an

unsigned number means that we are having a very large value passed to the factorial

function.

Also, since the ‘factorial’ function is recursive, passing a very large number to it could cause

multiple calls to the same function and thus, overflowing the stack provided to the user.

Now let us step further into our program and see whether what we are discussing is the

same behavior that is being observed.

PARAM Rudra – User Manual

 Page | 71

Figure 36 – At last, a clue!!!

This is what we had expected.

A number ‘-1’ passed to the ‘factorial’ function is being implicitly converted to a very large

number ‘4294967295’.

Stepping in more reveals the recursive behavior of the ‘factorial’ function i.e. each call is

having a sub call to the same function with one value less. Thus, what to do in these types of

cases. Assume you have a large code where these functions are called from multiple

locations.

Modifying the signature of any of the functions means changing the code everywhere where

the function is called. This is not affordable. These are some cases, where a choice is to be

made where patching the code is necessary for semantics of the program.

PARAM Rudra – User Manual

 Page | 72

Let us observe a piece of code where this change can be made and then test our program

for the expected results.

Figure 37 - Correction applied

By observing the code, we find out that the expected value of ‘f1’ is between ‘0 to 9’

(because of the modulo 10 operation).

Thus, without changing the signature of any function, we have inserted a patch (the

highlighted) portion, that maintains the semantics of the code as well cures the problem

that we had. Now let us rerun and check our final program.

PARAM Rudra – User Manual

 Page | 73

Figure 38 – Resolved

Thus, we are getting the correct results as expected.

Conclusion

We started with a program that we assumed to be functional but then the program ended

up with bugs that were not straightforward. We then explored the power of the debugger

and the various ways to identify the bugs in our program. We looked upon the easy

solutions, and slowly migrated towards the type of bugs that are not easily traceable.

Finally, we identified and corrected all the bugs in our program with the help of the

debugger and arrived at a bug free code.

Points to Note

● Bugs in the program cannot be necessarily a compilation error.

● One type of error can be caused by multiple bugs in the same line of code.

● Sometimes, it is not possible to change the code even when the problem is

identified. The best way to cure this is to study the behavior of the code and apply

patches wherever necessary.

● Using simple utilities from the ‘GNU Debugger’ can help in getting rid of problems

causing bugs in large programs.

PARAM Rudra – User Manual

 Page | 74

Overall Coding Modifications Done

Figure 39 – What all we did to get things right !

PARAM Rudra – User Manual

 Page | 75

Machine Learning (ML) / Deep

Learning (DL) Application

Development

Most of the popular python-based ML/DL libraries are installed on the PARAM Rudra

system. Users while developing and testing their applications, can use conda based python

installation.

For the conda environment different modules are prepared. Users can check the list of the

modules by using “module avail” command. Shown below is an example of loading conda

environments in the current bash shell and continuing with application development.

Once logged into PARAM Rudra HPC Cluster, check which all libraries are available, loaded in

the current shell. To check list of modules loaded in current shell, use the command given

below:

$ module list

To check all modules available on the system, but not loaded currently, use the command

given below:

$ module avail

Defaults libraries and framework specific conda environment has been made available for

user to start with application development which is installed with most of the popular

python packages as shown below

Loading the Conda Base Module and Activating the Environments
In order to use base conda environment we first, access and load the miniconda module,

which provides access to the base environment which is installed with default packages:

$ module load mldl/Miniconda

To see the list of other packages installed, use the command given below,

PARAM Rudra – User Manual

 Page | 76

$ conda list

We provide multiple conda environments that include basic machine learning packages, as

well as common image processing and natural language processing packages, for your

machine learning projects.

The following table shows currently available conda environments with their version (all

include GPU support):

 Frameworks Environment Version

DL Framework Tensorflow Tensorflow 2.15.0

Tensorflow-gpu Tensorflow-gpu 2.15.0

Pytorch Pytorch 2.2.0

Pytorch-gpu Pytorch-gpu 2.2.1

Theano Theano 1.0.5

Theano-gpu Theano-gpu 1.0.5

Caffe Caffe 1.0

Caffe-gpu Caffe-gpu 1.0

Distributed DL Framework Horovod Tensorflow 0.28.1

Pytorch 0.28.1

Data science Framework Rapids Rapids 21.06

To activate any one of the environments we can load it on PARAM Rudra, load module

“ENV_NAME” as shown below:

$ module load <ENV_NAME>

Once the “ENV_NAME” module is loaded, end-users can use all libraries inside their python

program. Users can load those libraries using the “module load” command and use them

for their applications.

Example: To activate Pytorch environment we can load it on PARAM Rudra, using module

load Pytorch as shown below:

PARAM Rudra – User Manual

 Page | 77

$ module load mldl/Pytorch

This will activate Pytorch environment in which users can use pytorch library and its related

functionalities

Useful Conda Commands

After loading the module, you will have access to conda commands, including:

$ conda info --env

Shows available environments.

$ conda list -n env_name

Shows installed packages within an environment.

(env_name)$ conda deactivate

Deactivates an environment after loading.

For more detailed documentation, see the Conda website.

Managing and Installing Python Packages in Conda Environments

You have two options to install your own Python packages in our machine learning

environment:

● Use the pip tool to install them directly

● Build your own conda environment

Consider the benefits and disadvantages of each method, before choosing which works best

for you.

NOTE: Use Conda primarily for environment management, especially in scientific computing

and data science projects where non-Python dependencies are common.

Use pip for installing Python packages from PyPI when you don't need the advanced

environment management features provided by Conda.

Building Your Own Conda Environment

Building your own conda environment gives you the control to manage and install your own

packages, and they will be less likely to have version errors than the pip-installed packages.

https://docs.conda.io/projects/conda/en/latest/index.html

PARAM Rudra – User Manual

 Page | 78

The easiest way to create your own environment is to clone an existing conda environment

into your own directory, then modify it.

Creating an environment can take up a significant portion of your disk quota, depending on

the packages installed. To ensure that you can use your conda environment properly, please

familiarize yourself with all the basic conda commands.

Conda based installation provides the latest version of DL framework, however users can

install their own choice of DL framework or library version locally by following below steps.

Step 1. Login to Rudra cluster by using your credential.

Step 2. Activate conda environment.

$ module load mldl/Miniconda

Step 3. Create the local environment myenv (myenv is the environment name, you can

give any name of your choice).

$ conda create --name myenv

Step 4. Activate a newly created environment.

$ conda activate myenv

Step 5. Install your own DL framework / python library. <package-name> will get replaced

by desired package which user wants to install

$ conda install <package-name>

Example: In order to install numpy we can use below command.

$ conda install numpy

Now you can use the newly installed package in your python program.

Submitting job using sbatch script for DL Application

You can activate your machine learning environment, run your program, and deactivate the

environment in a SLURM sbatch script. For example:

#!/bin/bash -x

#SBATCH -N 1

#SBATCH --ntasks-per-node=<np>

https://docs.conda.io/projects/conda/en/latest/commands.html

PARAM Rudra – User Manual

 Page | 79

#SBATCH -p cpu

#SBATCH -J <job_name>

#SBATCH -t 05:00:00

#SBATCH -o %j.out # name of stdout output file(--output)

#SBATCH -e %j.err # name of stderr error file(--error)

cd $SLURM_WORKDIR

module purge

module load mldl/Miniconda # load the module and environment

conda activate <env_name> # load working environment

python <script>.py # run python script

conda deactivate # deactivate environment

end of script

How to launch a Jupyter notebook?

You can access the Jupyter notebook from your local system, while it is actually running

under the conda virtual environment, setup on a remote server. It can be accessed

through the browser of your local system using ssh tunneling technique.

NOTE: To launch the jupyter notebook from gpu, first login to gpu node using the below

command in the login node.

$ salloc --nodes=1 --time=1:00:00 --partition=gpu

To check which gpu node is assigned, use the below command.

$ squeue --me

Now ssh to the node assigned to you. For example, in the screenshot below, you can see

that gpu007 was assigned to the user.

$ ssh gpu007

Now to launch the notebook from the gpu node, follow the below steps.

1. Activate the Conda environment.

To submit the job, use the below command.

$ module load mldl/Miniconda

2. Start the jupyter notebook by below command.

(base)$ jupyter notebook --ip=0.0.0.0 --port=<PORT_NO> --allow-root --no-

browser

PARAM Rudra – User Manual

 Page | 80

For example,

(base)$ jupyter notebook --ip=0.0.0.0 --port=8888 --allow-root --no-browser

Note: Token number displayed on the screen would later be used for login to jupyter

notebook through your local web browser.

3. From another terminal, on your mobaxterm, create ssh tunneling between your local

machine and remote system by executing below command

$ ssh -t -t username@<IP_ADDR> -L <PORT_NO>:localhost:<PORT_NO> ssh gpu<NO>

-L <PORT_NO>:localhost:<PORT_NO>

For example,

$ ssh -p 4422 -t -t appsupport@<IP_ADDR> -L 8888:localhost:8888 ssh gpu007

-L 8888:localhost:8888

Note: Use the port number and gpu node that is assigned by slurm.

4. Type the below address in your local browser to access Jupyter notebook.

https://localhost:<PORT_NO>

For example,

https://localhost:8888

Note: Enter token number for login

5. The Jupyter notebook can now be opened after entering the valid token

PARAM Rudra – User Manual

 Page | 81

Some Important Facts

About File Size

The global space is served by a number of storage arrays. Each of the storage array contains

a portion of the space. The size of a disk in the storage array is 285TB. Technically, the size

of a file can be about 285 TB (which is really big). However, since the disk is shared by a

large number of files, effectively the size of a single file will be far smaller. Normally, this file

size is kept to be about a few GBs which is sufficient for most of the users. However, if you

wish to have file sizes which are larger than this, you need to create files ACROSS disks and

this process is known as ‘striping’.

lfs setstripe -c 4.

After this has been done all new files created in the current directory will be spread over 4

storage arrays each having 1/4th of the file. The file can be accessed as normal no special

action needs to be taken. When the striping is set this way, it will be defined on a per

directory basis so different directories can have different stripe setups in the same file

system; new subdirectories will inherit the striping from its parent at the time of creation.

We recommend users to set the stripe count so that each chunk will be approx. 200-300GB

each, for example

File Size Stripe count Command

500-1000 GB 4 lfs setstripe -c 4 .

1000 – 2000 GB 8 lfs setstripe -c 8

Once a file is created with a stripe count, it cannot be changed. A user by themselves is also

able to set stripe size and stripe count for their directories and A user can check the set

stripe size and stripe count with following command:

lfs getstripe <path to the direcory>

To set the stripe count as

lfs setstripe -c 4 -s 10m <path to the direcory>

The options on the above command used have these respective functions.

PARAM Rudra – User Manual

 Page | 82

• -c to set the stripe count; 0 means use the system default (usually 1) and -1 means

stripe over all available OSTs (lustre Object Storage Targets).

• -s to set the stripe size; 0 means use the system default (usually 1 MB) otherwise use

k, m or g for KB, MB or GB respectively

Little-Endian and Big-Endian issues?

By and large, most of the computers follow little-endian format. This essentially means that

the last byte of the binary representation of data is stored first. However, there is another

way of representing data (used in some machines) where in the first byte of the binary

representation of data is stored first. When binary files are to be read across these different

kinds of machines, bytes need to be re-ordered. Many compilers do support this feature.

Please explore this aspect, if a perfectly working code on a given machine fails to get

executed on another machine (with a different processor).

PARAM Rudra – User Manual

 Page | 83

Best Practices for HPC

1. Do NOT run any job which is longer than a few minutes on the login nodes. Login node is

for compilation of jobs. It is best to run the job on compute nodes.

2. It is recommended to go through the beginner’s guide in /home/apps/Docs/samples

this should serve as a good starting point for the new users.

3. Use the same compiler to compile different parts/modules/library-dependencies of an

application. Using different compilers (e.g. pgcc + icc) to compile different parts of an

application may cause linking or execution issues.

4. Choosing appropriate compiler switches/flags/options (e.g. –O3) may increase the

performance of the application substantially (accuracy of output must be verified).

Please refer to documentation of compilers (online / docs present inside compiler

installation path / man pages etc.)

5. Modules/libraries used for execution should be the same as that used for compilations.

This can be specified in the Job submission script.

6. Be aware of the amount of disk space utilized by your job(s). Do an estimate before

submitting multiple jobs.

7. Please submit jobs preferably in $SCRATCH. You can back up your results/summaries in

your $HOME

8. $SCRATCH is NOT backed up! Please download all your data to your Desktop/ Laptop.

9. Before installing any software in your home, ensure that it is from a reliable and safe

source. Ransomware is on the rise!

10. Please do not use spaces while creating the directories and files.

11. Please inform PARAM Rudra support when you notice something strange - e.g.

unexpected slowdowns, files missing/corrupted etc.

PARAM Rudra – User Manual

 Page | 84

Installed Applications/Libraries

Following is the list of few of the applications from various domains of science and

engineering installed in the system.

HPC Applications

Bio-informatics

MUMmer, HMMER, MEME,

Schrodinger, PHYLIP,

mpiBLAST, ClustalW,

Molecular Dynamics NAMD (for CPU and GPU),

LAMMPS, GROMACS

Material Modeling,

Quantum Chemistry

Quantum-Espresso, Abinit,

CP2K, NWChem,

CFD OpenFOAM, SU2

Weather, Ocean, Climate WRF-ARW, WPS (WRF),

ARWPost (WRF), RegCM,

MOM, ROMS

Deep Learning Libraries

cuDNN, TensorFlow, Tensorflow with Intel Python ,

Tensorflow with GPU, Theano, Caffe , Keras , numpy,

Scipy, Scikit-Learn, pytorch.

Visualization Programs GrADS, ParaView, VisIt, VMD

Dependency Libraries NetCDF, PNETCDF, Jasper, HDF5, Tcl, Boost, FFTW

Standard Application Programs on PARAM Rudra

The purpose of this section is to expose the users to different application packages which

have been installed on PARAM Rudra System. Users interested in exploring these packages

may kindly go through the scripts, typical input files and typical output files. It is suggested

that at first, the users may submit the scripts provided and get a feel of executing the codes.

Later, they may change the parameters and the script to meet their application

requirements.

PARAM Rudra – User Manual

 Page | 85

LAMMPS Applications

LAMMPS is an acronym for Large-scale Atomic/ Molecular Massively Parallel Simulator. This

is extensively used in the fields of Material Science, Physics, Chemistry and many others.

More information about LAMMPS may please be found at https://lammps.sandia.gov .

1. The LAMMPS input is in.lj file which contains the below parameters.

Input file = in.lj

3d Lennard-Jones melt

variable x index 1

variable y index 1

variable z index 1

variable xx equal 64*$x

variable yy equal 64*$y

variable zz equal 64*$z

units lj

atom_style atomic

lattice fcc 0.8442

region box block 0 ${xx} 0 ${yy} 0 ${zz}

create_box 1 box

create_atoms 1 box

mass 1 1.0

velocity all create 1.44 87287 loop geom

pair_style lj/cut 2.5

pair_coeff 1 1 1.0 1.0 2.5

neighbor 0.3 bin

neigh_modify delay 0 every 20 check no

fix 1 all nve

run 1000000

2. THE LAMMPS RUNNING SCRIPT

#!/bin/sh

#SBATCH -N 8

#SBATCH --ntasks-per-node=40

#SBATCH --time=08:50:20

#SBATCH --job-name=lammps

#SBATCH --error=job.%J.err_8_node_40

#SBATCH --output=job.%J.out_8_node_40

#SBATCH --partition=standard

spack load intel-oneapi-compilers /jtvke3n

spack load intel-oneapi-mpi/2db2e7t

spack load gcc@13.2.0/3wdooxp

source /home/apps/SPACK/spack/opt/spack/linux-almalinux8-cascadelake/gcc-

13.2.0/intel-oneapi-mkl-2024.0.0-

yq4keqsjr44rf5ffroiiim2iklxg4let/setvars.sh intel64

export I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:ofa

#export I_MPI_FABRICS=shm:tmi

#export I_MPI_FABRICS=shm:dapl

export I_MPI_DEBUG=5

https://lammps.sandia.gov/

PARAM Rudra – User Manual

 Page | 86

#Enter your working directory or use SLURM_SUBMIT_DIR

cd /home/manjunath/NEW_LAMMPS/lammps-7Aug19/bench

export OMP_NUM_THREADS=1

time mpiexec.hydra -n $SLURM_NTASKS -genv OMP_NUM_THREADS 1 <path of lammps

executable> -in in.lj

3. LAMMPS OUTPUT FILE.

LAMMPS (7 Aug 2019)

 using 1 OpenMP thread(s) per MPI task

Lattice spacing in x,y,z = 1.6796 1.6796 1.6796

Created orthogonal box = (0 0 0) to (107.494 107.494 107.494)

 5 by 8 by 8 MPI processor grid

Created 1048576 atoms

 create_atoms CPU = 0.00387692 secs

Neighbor list info ...

 update every 20 steps, delay 0 steps, check no

 max neighbors/atom: 2000, page size: 100000

 master list distance cutoff = 2.8

 ghost atom cutoff = 2.8

 binsize = 1.4, bins = 77 77 77

 1 neighbor lists, perpetual/occasional/extra = 1 0 0

 (1) pair lj/cut, perpetual

 attributes: half, newton on

 pair build: half/bin/atomonly/newton

 stencil: half/bin/3d/newton

 bin: standard

Setting up Verlet run ...

 Unit style : lj

 Current step : 0

 Time step : 0.005

Per MPI rank memory allocation (min/avg/max) = 3.154 | 3.156 | 3.162 Mbytes

Step Temp E_pair E_mol TotEng Press

 0 1.44 -6.7733681 0 -4.6133701 -5.0196704

 1000000 0.65684946 -5.7123998 0 -4.7271266 0.49078272

Loop time of 2955.97 on 320 procs for 1000000 steps with 1048576 atoms

Performance: 146145.063 tau/day, 338.299 timesteps/s

99.4% CPU use with 320 MPI tasks x 1 OpenMP threads

MPI task timing breakdown:

Section | min time | avg time | max time |%varavg| %total

Pair | 1284.2 | 1512.3 | 1866.9 | 494.3 | 51.16

Neigh | 178.94 | 207.58 | 261.09 | 217.8 | 7.02

Comm | 793.59 | 1207.7 | 1468.3 | 654.3 | 40.86

Output | 0.00011516 | 0.00084956 | 0.0027411 | 0.0 | 0.00

Modify | 19.566 | 22.639 | 29.863 | 67.3 | 0.77

Other | | 5.744 | | | 0.19

Nlocal: 3276.8 ave 3325 max 3231 min

Histogram: 4 7 21 63 67 80 50 22 5 1

Nghost: 5011.29 ave 5063 max 4956 min

Histogram: 5 9 26 45 57 76 51 34 12 5

Neighs: 122781 ave 127005 max 118605 min

Histogram: 3 5 36 59 63 52 66 24 11 1

Total # of neighbors = 39290074

Ave neighs/atom = 37.4699

Neighbor list builds = 50000

Dangerous builds not checked

PARAM Rudra – User Manual

 Page | 87

Total wall time: 0:49:15

GROMACS APPLICATION

GROMACS

GROningen MAchine for Chemical Simulations (GROMACS) is a molecular dynamics package

mainly designed for simulations of proteins, lipids, and nucleic acids. It was originally

developed in the Biophysical Chemistry department of University of Groningen, and is now

maintained by contributors in universities and research centres worldwide. GROMACS is one

of the fastest and most popular software packages available, and can run on central

processing units (CPUs) and graphics processing units (GPUs).

Input description of Gromacs

Input file can be download from

ftp://ftp.gromacs.org/pub/benchmarks/water_GMX50_bare.tar.gz

The mdp option used is pme with 50000 steps

Submission Script:

#!/bin/sh

#SBATCH -N 10

#SBATCH --ntasks-per-node=48

##SBATCH --time=03:05:30

#SBATCH --job-name=gromacs

#SBATCH --error=job.16.%J.err

#SBATCH --output=job.16.%J.out

#SBATCH --partition=standard

source /home/apps/spack/share/spack/setup-env.sh

spack load intel-oneapi-compilers /glrrtsv

spack load gromacs@2024.2 /5p3fjl3

#Enter your working directory or use SLURM_SUBMIT_DIR

cd /home/shweta/water-cut1.0_GMX50_bare/3072

export I_MPI_DEBUG=5

export OMP_NUM_THREADS=1

mpirun -np 4 gmx_mpi grompp -f pme.mdp -c conf.gro -p topol.top

time mpirun -np $SLURM_NTASKS gmx_mpi mdrun -s topol.tpr) 2>&1 | tee

log_gromacs_40_50k_mpirun

Output Snippet:

Number of logical cores detected (48) does not match the number reported by

OpenMP (1).

https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Lipid
https://en.wikipedia.org/wiki/Nucleic_acid
https://en.wikipedia.org/wiki/University_of_Groningen
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
ftp://ftp.gromacs.org/pub/benchmarks/water_GMX50_bare.tar.gz

PARAM Rudra – User Manual

 Page | 88

Consider setting the launch configuration manually!

Running on 10 nodes with total 192 cores, 480 logical cores

 Cores per node: 0 - 48

 Logical cores per node: 48

Hardware detected on host cn072 (the node of MPI rank 0):

 CPU info:

 Vendor: GenuineIntel

 Brand: Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz

 SIMD instructions most likely to fit this hardware: AVX2_256

 SIMD instructions selected at GROMACS compile time: AVX2_256

Reading file /home/shweta/Gromacs/water-cut1.0_GMX50_bare/3072/topol.tpr,

VERSION 5.1.4 (single precision)

Changing nstlist from 10 to 20, rlist from 1 to 1.032

The number of OpenMP threads was set by environment variable

OMP_NUM_THREADS to 1 (and the command-line setting agreed with that)

NOTE: KMP_AFFINITY set, will turn off gmx mdrun internal affinity

 setting as the two can conflict and cause performance degradation.

 To keep using the gmx mdrun internal affinity setting, set the

 KMP_AFFINITY=disabled environment variable.

Overriding nsteps with value passed on the command line: 50000 steps, 100

ps

Will use 360 particle-particle and 120 PME only ranks

This is a guess, check the performance at the end of the log file

Using 480 MPI processes

Using 1 OpenMP thread per MPI process

Back Off! I just backed up ener.edr to ./#ener.edr.2#

starting mdrun 'Water'

50000 steps, 100.0 ps.

 Average load imbalance: 5.5 %

 Part of the total run time spent waiting due to load imbalance: 3.0 %

 Average PME mesh/force load: 1.252

 Part of the total run time spent waiting due to PP/PME imbalance: 13.2 %

NOTE: 13.2 % performance was lost because the PME ranks

 had more work to do than the PP ranks.

 You might want to increase the number of PME ranks

 or increase the cut-off and the grid spacing.

 Core t (s) Wall t (s) (%)

 Time: 204872.624 427.847 47884.5

 (ns/day) (hour/ns)

Performance: 20.195 1.188

PARAM Rudra – User Manual

 Page | 89

Acknowledging the National

Supercomputing Mission in

Publications

If you use supercomputers and services provided under the National Supercomputing

Mission, Government of India, please let us know of any published results including Student

Thesis, Conference Papers, Journal Papers and patents obtained.

Please acknowledge the National Supercomputing Mission as given below:

We acknowledge National Supercomputing Mission (NSM) for providing computing

resources of ‘PARAM RUDRA’ at Aruna Asaf Ali Marg, near Vasant Kunj, Vasant Kunj, New

Delhi, Delhi 110067, which is implemented by C-DAC and supported by the Ministry of

Electronics and Information Technology (MeitY) and Department of Science and Technology

(DST), Government of India.

Also, please submit the copies of dissertations, reports, reprints and URLs in which “National

Supercomputing Mission, Government of India” is acknowledged to:

HPC Technologies,

Centre for Development of Advanced Computing,

CDAC Innovation Park,

S.N. 34/B/1,

Panchavati, Pashan,

Pune – 411008

Maharashtra

Communication of your achievements using resources provided by the National

Supercomputing Mission will help the Mission in measuring outcomes and gauging the

future requirements. This will also help in further augmentation of resources at a given site

of the National Supercomputing Mission.

PARAM Rudra – User Manual

 Page | 90

Getting Help – PARAM Rudra Support

We suggest that you please refer to these four easy steps to generate a Ticket related to the

issue you are experiencing.

Your Ticket will be assisted by the Rudra Support team. The ticket generated will be closed

only when the related issue gets resolved.

You can generate a new ticket for any of the new issues that you are experiencing.

Steps to Create a New Ticket

1. Place the URL (https://paramrudra.bose.res.in/support) in your browser.

2. On the right-top corner of the page click Sign In. Refer to Fig: 36 for the same.

Figure 40 – Snapshot of Ticketing System

3. Sign in by using the Username and Password that you use for logging to the Cluster.

Refer to Fig37 for the same.

https://paramrudra.bose.res.in/support

PARAM Rudra – User Manual

 Page | 91

Figure 41- Snapshot of Ticketing System

4. Select a Help Topic from the Dropdown and then Click on Create Ticket. Refer to Fig:38

for the same

Figure 42 - Snapshot of Ticketing System

PARAM Rudra – User Manual

 Page | 92

5. Please fill in the details of your issue in the fields given and then click on Create ticket.

Figure 43 - Snapshot of Ticketing System

Once the Ticket is generated, an acknowledgement e-mail will be sent to your official e-mail

address. The e-mail will also contain the Ticket number along with reference to the ticket

that you have generated.

In case of any difficulty while accessing Rudra Support you can reach us via e-mail at

rudrasupport@iuac.res.in

mailto:support.paramrudra@iuac.res.in

PARAM Rudra – User Manual

 Page | 93

User Creation Process

To get access to this HPC Facility, proceed with registration on the Portal through the link

provided below:

Link: https://services.nsmindia.in/userportal/account

Once registered, you will receive an email outlining the next steps to be followed for your

User Creation Request.

User Creation Portal streamlines the user data collection process, enabling multiple users to

submit user creation requests simultaneously. Physical form maintenance is eliminated;

users need to provide accurate official details and an email address for procedural

notifications. Users can track their account creation status, remaining steps, and identify

necessary actions. Administrative or Higher authorities can access all user details through

secure login into the portal.

Process/Steps

Users initiate registration on the portal by entering their email address, city, and institute

name. An email will be sent to verify the provided email address, upon verification

registration form link is sent for completing the user account request. Users have the option

to preview and edit the form before the final submission. Upon submission, a link for

Document Upload is provided, where documents like ID proof, User Creation Form and

other needed documents are uploaded. Once documents are uploaded, modifications are

not possible as the documents will undergo verification processes.

User details and documents undergo verification by the user's Institute HOD/PI. Upon

approval, a verification email is sent to the coordinator. The coordinator selects the

appropriate cluster for the user based on document verification and requirements. Final

approval is granted by higher authority, resulting in acceptance of the user request.

If you have any queries, refer to the User Creation Manual and Flowcharts accessible in the

Help section within the User Creation Portal. Furthermore, common questions are

addressed in the FAQ section located beside the Help section. If you have any additional

inquiries or require assistance, feel free to reach out to us at nsmsupport@cdac.in.

Note: Kindly use your official email address for registration to avoid the possibility of your

request being declined.

https://services.nsmindia.in/userportal/account

PARAM Rudra – User Manual

 Page | 94

Figure 43 - Snapshot of Ticketing System

Figure 44 - User Flow

PARAM Rudra – User Manual

 Page | 95

Figure 45 - HOD/PI/Co-PI verification Flow

PARAM Rudra – User Manual

 Page | 96

Closing Your Account on PARAM

Rudra

When once you have completed your research work and you no longer need to use PARAM

Rudra, you may please close your account on PARAM Rudra. Please raise a ticket by

following the URL https://paramrudra.iuac.res.in/support The system administrator will

guide you about the “Closure Procedure”. You will need clearance from your project-

coordinator/ Supervisor/ Head of the Department about you having surrendered this

resource for getting “no dues” certificate from the institute.

https://paramrudra.iuac.res.in/support

PARAM Rudra – User Manual

 Page | 97

References

1. LAMMPS (Molecular Dynamics Simulations) https://lammps.sandia.gov/

2. https://www.openacc.org/

3. https://www.openmp.org/

4. BLAST (Basic Local Alignment Search Tool) https://blast.ncbi.nlm.nih.gov/Blast.cgi

5. VASP (Vienna Ab initio Simulation Package) https://www.vasp.at/

6. Gaussian (Computational Chemistry Software) https://gaussian.com/

7. https://computing.llnl.gov/tutorials/mpi/

8. CUDA (Parallel Computing Platform and API) https://developer.nvidia.com/cuda-zone

9. https://www.mmm.ucar.edu/weather-research-and-forecasting-model

10. GROMACS (Molecular Dynamics Simulations) http://www.gromacs.org/

11. OpenFOAM (Computational Fluid Dynamics) https://www.openfoam.com/

12. SLURM (Simple Linux Utility for Resource Management) https://slurm.schedmd.com/

13. https://www.tutorialspoint.com/gnu_debugger/what_is_gdb.htm

14. https://nsmindia.in/

15. https://en.wikipedia.org/wiki/Deep_learning

16. https://docs.conda.io/en/latest/miniconda.html

17. https://www.tensorflow.org/

18. https://github.com/PaddlePaddle/Paddle

19. Keras, https://keras.io/

20. Pytorch, https://pytorch.org

21. https://mxnet.apache.org

22. https://software.intel.com/en-us/distribution-for-python

23. https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-

guide

24. NAMD (Molecular Dynamics Simulations) https://www.ks.uiuc.edu/Research/namd/

25. ANSYS (Engineering Simulation Software) https://www.ansys.com/

26. MPI (Message Passing Interface) https://www.mpi-forum.org/

27. AMBER (Assisted Model Building with Energy Refinement) https://ambermd.org/

28. CHARMM (Chemistry at HARvard Macromolecular Mechanics)

https://www.charmm.org/

	Introduction
	System Architecture and Configuration
	System Hardware Specifications
	Login Nodes
	Service Nodes
	CPU Compute Nodes
	GPU Ready Compute Nodes
	GPU Compute Nodes
	High Memory Compute Nodes
	Storage
	PARAM Rudra Architecture Diagram
	Operating System
	Network infrastructure

	Primary Interconnection Network
	InfiniBand: HDR 100 Gbps

	Secondary Interconnection Network
	Gigabit Ethernet: 10 Gbps

	Software Stack

	First Things First
	Getting an Account on PARAM Rudra

	How to access the cluster
	To access cluster using Windows:
	To access cluster using Mac or Linux
	First login
	Forgot Password?
	How to change the password:

	Transferring files between local machine and HPC cluster
	Tools
	WinSCP (Windows installable application)

	Resource Management
	SLURM Partitions
	QoS Job policy
	Walltime

	Scheduling Type
	Job Priority

	Job Submission
	Submitting Batch Scripts Jobs
	Running Interactive Jobs
	Parameters used in SLURM job script
	Sample SLURM Scripts for reference
	Script for a Sequential Job
	Script for a Parallel OpenMP Job
	Script for Parallel Job – MPI (Message Passing Interface)
	Script for Hybrid Parallel Job – (MPI + OpenMP)

	Listing Partition
	Monitoring jobs
	Getting Node and Partition details
	Accounting
	sacct

	Investigating a job failure
	Exceeding Resource Limits
	Software Errors

	I am familiar with PBS/ TORQUE. How do I migrate to SLURM?
	Addressing Basic Security Concerns

	Loading modules through SPACK
	Introduction
	To Use Pre-Installed Applications from Spack
	To install new application
	Uninstalling Packages
	Using Environments
	Packaging (For Application developers)
	Sample steps taken for creating linewidth application recipe for Spack
	Sample SLURM script for OpenMP applications/programs. to use Spack
	Sample SLURM script for MPI applications/programs to use Spack

	Preparing Your Own Executable
	C Program:
	C + OpenMP Program:
	C + MPI Program:
	C + MKL Program:
	CUDA Program:
	CUDA + OpenMP Program:
	OpenACC Program:

	Debugging Your Codes
	Introduction
	Basics: How To
	Compilation
	Running with gdb:
	Basic gdb commands (to be executed in gdb command line window):
	Using gdb (example – inspecting the code)
	Using gdb (example – using the debugger)

	Conclusion
	Points to Note
	Overall Coding Modifications Done

	Machine Learning (ML) / Deep Learning (DL) Application Development
	Building Your Own Conda Environment
	Submitting job using sbatch script for DL Application
	How to launch a Jupyter notebook?

	Some Important Facts
	About File Size
	Little-Endian and Big-Endian issues?

	Best Practices for HPC
	Installed Applications/Libraries
	Standard Application Programs on PARAM Rudra
	LAMMPS Applications
	GROMACS APPLICATION
	GROMACS

	Acknowledging the National Supercomputing Mission in Publications
	Getting Help – PARAM Rudra Support
	Steps to Create a New Ticket

	User Creation Process
	Process/Steps

	Closing Your Account on PARAM Rudra
	References

